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Abstract—Asynchronous Byzantine fault-tolerance (BFT) pro-
tocols (e.g., HoneyBadger and Dumbo family protocols) have
received increasing attention as the consensus mechanism of per-
missioned blockchains, given their particular robustness against
timing and performance attacks. However, there is a substantial
performance gap before they can be applied in real systems. In
this paper, we identify and address two critical issues, and design
Dory, an asynchronous BFT consensus protocol with improved
efficiency and lower communication compared to the state-of-
the-art protocol, sDumbo. At the core of our approach are two
new building blocks reducing the communication cost and a
novel framework utilizing transactions with quadratic message
complexity.

We have implemented Dory and sDumbo in a new Golang
library. Via a deployment using up to 151 participants on Amazon
EC2, we show that Dory consistently outperforms sDumbo during
both failure and failure-free scenarios. For instance, Dory has up
to 5x the throughput of sDumbo in the failure-free scenario.

Index Terms—Byzantine fault-tolerance, consensus, asyn-
chronous, blockchain, communication complexity, fairness.

I. INTRODUCTION

PERMISSIONED blockchains [1], [2] utilize Byzantine
fault-tolerance (BFT) protocols [3]–[8] as their consensus

mechanism to order transactions. Purely asynchronous BFT
consensus protocols are gaining renewed attention due to their
enhanced robustness without making any timing assumptions.
This property makes them particularly suitable for the global
deployment of blockchains, ensuring safety and liveness even
in the presence of failures and unbounded network delays.
However, there is a substantial performance gap before they
can be applied in real systems, for both theoretical and
practical reasons. In this paper, we identify and address two
critical issues, and introduce Dory, a novel asynchronous BFT
consensus protocol for permissined blockchain.
The communication bottleneck. Constructing an asymp-
totically optimal asynchronous BFT consensus protocol has
been a long-standing challenge since the seminal work of
Cachin et al. [9]. Given the number of participants n, input
transaction size |m|, and the security parameter λ, the commu-
nication bound that one could theoretically hope for (so far)
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is O(n2|m| + λn2) [10]. Despite recent advancements [11],
[12] in achieving optimal O(n2) message complexity, known
instantiations (refer to Table I) still fall short of the expectation
in terms of communication complexity. This theoretical gap
leads to poor scalability in practice. Taking the state-of-the-
art protocol, Speeding Dumbo (sDumbo), as an example,
it has an O(n2|m| + λn3 log n) communication complexity,
where the cost of O(λn3 log n) that transfers redundant data
(e.g., signatures and hashes) would expand much more rapidly
than the effective payload cost of O(n2|m|) as the network
size grows. Consequently, a bottleneck would emerge when
deploying such a protocol in a large-scale network.

Wasted proposals. Another issue that impacts the per-
formance of asynchronous BFT consensus is the potential
“waste” of proposed transactions. Asynchronous BFT consen-
sus protocols require all participants to propose in parallel and
use an agreement component to elect and order the proposals.
To tolerate the malicious behaviors of f faulty participants,
the agreement component exclusively orders proposals from
n−f participants, although in the normal case, all participants
may have proposed and successfully transmitted transactions.
Namely, up to f valid proposals are un-delivered, and the
relevant computation and bandwidth are “wasted.”

Resolving the above issue is not straightforward in the
asynchronous setting, as one cannot distinguish whether the
missing of proposals is due to malicious behaviors or the net-
work delay. Yang et al. propose a promising technique called
inter-node-linking [13] to address this challenge. It allows one
to temporarily set aside some proposals and re-use them later.
However, it is only possible with expensive reliable broadcast
protocols [12]–[15], resulting in high communication overhead
and sub-optimal O(n3) message complexity.

Our contributions. Compared to prior works, we propose
Dory, a faster asynchronous BFT consensus protocol with
some distinguishing features: 1) achieving lower communica-
tion complexity and optimal message complexity; 2) resolving
the wasted proposal issue; 3) achieving 5× the throughput of
the state-of-the-art. In addition, the design of Dory derives a
new data dissemination primitive and a new implementation of
agreement protocols, both of which might be of independent
interest. Here we show our contributions in detail.

A new data dissemination primitive. We propose a new prim-
itive called asynchronous vector-data dissemination (AVDD).
It is a variant of Das et al.’s asynchronous data dissemina-
tion [18], with a focus on disseminating vector-data through
the cooperation of participants. Besides, we also provide an
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TABLE I: Comparison for performance metrics. Communication complexity is
measured in bits.

Protocol Message
Complexity

Communication
Complexity†

Time
Complexity

HoneyBadger [16] O(n3) O(n2|m|+ λn3 logn) O(logn)
DispersedLedger [13] O(n3) O(n2|m|+ λn3 logn) O(logn)

Dumbo [17] O(n3) O(n2|m|+ λn3 logn) O(1)
Speeding Dumbo (sDumbo) [11] O(n2) O(n2|m|+ λn3 logn) O(1)

Dory (this work) O(n2) O(n2|m|+ (λ+ n)n2 logn) O(1)
† The security parameter λ denotes the length of signatures and hashes; in practice, λ is no less than

128. As λ+ n≪ λn, Dory has lower communication complexity than existing protocols.

efficient instantiation of the new primitive, which serves as a
flexible recovery phase of our BFT consensus protocol and is
crucial to lowering the communication complexity.
A new implementation of agreement protocol. Asynchronous
BFT consensus protocols are typically randomized due to the
FLP theorem [19]—there is no deterministic solution in the
asynchronous setting. In the long-term effort to bypass this
barrier, the recent works [11], [12], [20] using multi-valued
validated byzantine agreement (MVBA) stand out because of
better performance. In this paper, we also focus on MVBA-
based protocols and implement an efficient MVBA protocol
called dMVBA that achieves O(n|v| + λn2 log n) communi-
cation complexity for the first time.
A new BFT consensus framework utilizing proposals. We de-
sign a novel asynchronous BFT consensus framework that
efficiently utilizes proposals and tackles the issue of wasted
proposals. The framework develops the idea of inter-node-
linking technique and seamlessly incorporates it with our
AVDD and dMVBA. Different from the original work of Yang
et al. [13], our framework relaxes the need for expensive
broadcast primitives and is able to achieve the optimal O(n2)
message complexity.
Reduced communication and improved performance. Finally,
we propose Dory, an asynchronous BFT consensus protocol
for permissioned blockchains, which makes progress both
theoretically and practically.
• Dory is the first asynchronous BFT consensus protocol with

O(n2|m|+(λ+n)n2 log n) communication complexity and
optimal O(n2) message complexity, edging closer to the
known bound [10]. Before us, the commonly known best
communication complexity is O(n2|m|+ λn3 log n).

• Extensive experimental results show that Dory consistently
outperforms sDumbo, the state-of-the-art protocol. We im-
plement Dory and sDumbo in Golang1, and evaluate them
on up to 151 Amazon EC2 instances. Compared to sDumbo,
Dory has significantly lower communication cost, preserves
low latency (less than 8s) even for a large network, and
achieves high throughput (up to 5× that of sDumbo at
failure-free cases).

II. PRELIMINARIES

A. Notations

Let [n] denote the set of integers {1, 2, ..., n}. In our
protocols, f out of n participants ({Pi}i∈[n]) may be faulty.

1Our open-source code: https://github.com/xygdys/Dory-BFT-Consensus.

TABLE II: Notations

Notation Description
n Number of participants
f Number of faulty participants
λ Security parameter
e Epoch number
Pi The i-th participant
A The global vector in AVDD
Ai Pi’s local version of A in AVDD
ak The k-th element of A/Ai in AVDD
|a| Bit length of each element in A/Ai

Ri Pi’s requesting set in AVDD
dki The i-th fragment of ak in AVDD

Tk, T
∗
k Sets storing fragments of ak

vi Pi’s input of MVBA
|v| Bit length of MVBA’s each input
σi Signature combined by Pi

ρij Share of σi signed by Pj

S Set storing signature shares
rti Root of Pi’s Merkle tree
brij The j-th branch of Pi’s Merkle tree
propei Pi’s proposal of epoch e
me

i Pi’s input transactions of epoch e
|m| Bit length of transactions in each proposal
hi Hash value of Pi’s proposal
V Common view vector
Vi Pi’s local view vector
ID Unique session identifier of protocol instances

We may associate each protocol instance with a unique session
identifier ID, tagging each message in the protocol with ID.
More notations are listed in Table II.

B. System Model
The Dory protocol proceeds in consecutive epochs, where

in each epoch, participants agree on the order of a sequence
of transactions submitted by clients and output them to form
a block. Fig 1 illustrated an example of n = 4.
Client. Each client submits transactions to at least one of its
trusted participants.
Participant. Each participant maintains an input buffer to store
transactions submitted by clients. In each epoch, participants
batch an identical size of transactions from its buffer to
propose. Participants communicate via the BFT consensus
and output ordered transactions at the end of each epoch.
As in prior works [13], [21]–[23], we assume that correct
participants have de-duplicated input buffers containing mostly
different transactions.
Network. We consider completely asynchronous systems
making no timing assumptions on message processing or
transmission delays, and only assume peer-to-peer channels
between participants.
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Fig. 1: System model of Dory.

Adversary. Our implementations tolerate static corruption,
where the adversary needs to choose the set of faulty partic-
ipants before the execution of the protocol. We focus on the
Byzantine failure model where the faulty participants behave
arbitrarily and f ≤ ⌊n−1

3 ⌋. A quorum is a set of ⌈n+f+1
2 ⌉

participants. For simplicity, we may assume n = 3f + 1 and
a quorum size of 2f + 1.
Trusted setup. We assume trusted setup for the threshold
cryptosystems.

C. Problem Definition

This paper studies asynchronous BFT consensus protocols,
where participants atomically outputs transactions, each being
submitted by some client. The correctness of BFT consensus
protocols is specified as follows.
• Agreement. If any correct participant outputs a transaction
m, then every correct participant outputs m.

• Total order. If a correct participant outputs a transaction m
before outputting m′, then no correct participant outputs a
transaction m′ without first outputting m.

• Liveness. If a correct client submits a transaction m to a
correct participant, then every correct participant eventually
outputs m with probability 1.

• Fairness (Blockchain quality [24]). Let S be the set of
transactions that have been output by correct participants
from the beginning of the protocol. If S ̸= ∅, then at least
1/2 of transactions in S were input by correct participants.
Note that the fairness property prevents an adversary from

committing a majority of malicious transactions. It is also
referred to other names, such as ”blockchain quality” by Duan
et al. [24].

D. Primitives

Multi-valued validated Byzantine agreement (MVBA).
MVBA allows each participant that has an input to agree
on a value v, which satisfies a global and polynomial-time
computable Q known by all participants [9]. More formally,
an MVBA protocol satisfies the following properties:
• Agreement. If any correct participant outputs v, then every

correct participant outputs v.

• External Validity. If a correct participant outputs a value v,
then v is valid, i.e., Q(v) = 1.

• Termination. If n−f correct participants have an input, then
every correct participant gets an output with probability 1.

Threshold signature. Threshold signature allows any t par-
ticipants to produce a valid signature, while any participants
less than t cannot [25], [26]. It consists of five algorithms:
• Key generation: {pk, sk} ← KeyGen(λ, n, t). Given a

security parameter λ, the total number of participants n
and a threshold t, the algorithm outputs a public key pk,
and a vector of secret keys sk = (sk1, sk2, . . . , skn). For
simplicity, pk is dropped for the following algorithms.

• Signing: ρi ← Signt(ski,m). Given a secret key ski, a
message m, the algorithm outputs a signature share ρi.

• Share verification: 0/1 ← VerifySharet(m, (i, ρi)). Given
a message m, an index i and a signature share ρi, the
algorithm outputs 1 iff ρi is a valid signature share computed
by participant Pi for m.

• Combining: σ/⊥ ← Combinet(m, {(i, ρi)}i∈S). Given a
set of pairs {(i, ρi)}i∈S , where S ⊂ [n] and |S| = t, the
algorithm outputs a signature σ iff all shares in S are valid.

• Signature verification: 0/1 ← Verifyt(m,σ). Given a mes-
sage m and a signature σ, the algorithm outputs 1 if σ is a
valid signature for m; otherwise, it outputs 0.
A (n, t) threshold signature scheme should satisfy the

conventional robustness and unforgeability properties.
Merkle tree. Merkle tree is a hash tree allowing position-
binding commitment and verification on a vector. It consists
of two algorithms:
• Initialization: {rt, br1, br2, . . . , brn} ← Merkle(M). Given

a n-dimensional vector M = (m1,m2, . . . ,mn), the algo-
rithm outputs a root rt, and a branch proof bri for each
mi, i ∈ [n].

• Branch verification: 0/1 ← VerifyBranch(rt, i,mi, bri).
Given a root rt, a position number i, an element mi, and
a branch proof bri, the algorithm outputs 1 if mi is the i-
th element of the vector corresponding to rt; otherwise, it
outputs 0.
Given a n-dimensional vector, the bit length of the root and

the branch proof are O(λ) and O(λ log n), respectively.
Provable broadcast (PB). PB is a broadcast protocol among n
participants, where a designed participant (also called sender)
with ID multicasts some m [9], [11], [27], [28]. Additionally,
the sender will also output a tuple (h, σ) as proof, where h
is the hash of m and σ is a threshold signature for h and ID.
Formally, assuming a collision-resistant hash function H, a PB
protocol with an identifier ID satisfies the following properties:
• Provability. If the sender outputs any two tuples

(h, σ) and (h′, σ′) s.t. Verifyn−f (⟨ID, h⟩, σ) =
Verifyn−f (⟨ID, h′⟩, σ′) = 1, then h = h′ and at least
f + 1 correct participant output m s.t. H(m) = h.

• Termination. If the sender is correct and inputs a value m,
then all correct participants will output m. In addition, the
sender will output (h, σ) satisfying Verifyn−f (⟨ID, h⟩, σ) =
1 and H(m) = h.
The PB protocol can be easily instantiated using a (n, n−

f) threshold signature, and achieving O(n) messages and
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O(n|m|+ λn) communication [9], [11], [28].
Error correcting code. Error correcting code enables cor-
recting errors or recovering missing fragments of the encoded
data. It consists of the following algorithms:
• Encode: {d1, d2, . . . , dn} ← Encode(m,n, t). Given a data

block m, which is split into t coefficients of a polynomial
p(·) in a Galois Field F, the algorithm encodes m to n
fragments {d1, d2, . . . , dn}, where di ∈ F for i ∈ [n].

• Decode: m′ ← Decode(T, t, r). Given a set of fragments of
T , some of which may be incorrect, the algorithm outputs a
t− 1 degree polynomial, i.e., a data block m′, by correcting
up to r errors in T .
It is well-known that the decode algorithm can successfully

output the original data block provided |T | ≥ t+2r [29] (e.g.,
the Berlekamp-Welch algorithm [30], Gao’s algorithm [31]).

III. TECHNICAL OVERVIEW

In this section, we outline the background, and then show
our approach to building Dory, addressing the two issues stated
in the introduction.

A. Background

Asynchronous BFT Consensus. The consensus problem was
first introduced by Lamport et.al [32]. It has since been stud-
ied in various models with different assumptions. Recently,
there has been renewed interest in BFT consensus protocols,
driven by the advancements in blockchain. Pure asynchronous
BFT consensus protocols are particularly favored due to their
robustness against timing attacks.

The celebrated FLP theorem [19] shows that there is no
deterministic consensus protocol in the asynchronous setting.
Thus, asynchronous BFT consensus protocols typically use
randomized agreement components to circumvent it. The
current agreement protocols used in asynchronous BFT are
predominantly classified into two primitives: asynchronous
binary agreement (ABA) and multi-valued validated byzantine
agreement (MVBA). The ABA-based protocols [13], [16],
[33]–[36] have high complexities and perform well only when
n is small. In contrast, the MVBA-based protocols [9], [11],
[17] terminate in constant expected time and are more practical
and scalable. This paper focuses on MVBA-based protocols.
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Fig. 2: A general construction of asynchronous BFT.

Fig. 2 shows a general construction of asynchronous BFT
consensus (e.g., sDumbo [11]), including three phases in each
epoch. 1) In the broadcast phase, all n participants batch
their transactions into proposals and send them via broadcast
component in parallel. 2) The election phase determines n−f
valid proposals as the output of this epoch. If using MVBA,
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Fig. 3: The sDumbo framework and its communication bot-
tleneck ingredients.

a common approach to electing proposals is letting each
participant collect n − f proofs of received proposals, and
input the set of proofs to MVBA; then MVBA outputs one
participant’s set, indicating n − f proposals are elected. 3)
The recovery phase is used to ensure the elected proposals
will delivered by all correct participants. It is useful as up
to f elected proposals may be from faulty participants. Many
recent works follow this (or a similar) construction [11]–[13].
sDumbo. In the construction of asynchronous BFT consen-
sus protocols, various ingredients contribute to inefficiencies,
particularly in terms of communication complexity. We take
the state-of-the-art work, sDumbo [11], as an example. Fig. 3
illustrates the construction of sDumbo, which includes a
PB (provable broadcast)-based broadcast phase, an MVBA
(sMVBA)-based election phase, a recovery phase recovering
missing proposals, and a threshold decryption operation. The
election phase, the recovery phase, and the threshold de-
cryption operation have O(λn3), O(n2|m| + λn3 log n), and
O(λn3) communication, respectively. Note that the recovery
phase of sDumbo requires participants to exchange O(n3)
Merkle tree proofs each of which is O(λ log n) bits, and thus
incurs a high redundant communication. However, it cannot
be omitted as it plays a crucial role in ensuring the agreement
property. Indeed, many recent protocols [11]–[13], [22] are
faced with the same issue that the recovery phase is the most
expensive ingredient in their design.

sDumbo follows the general construction illustrated in
Fig. 2, but with an additional threshold encryption technique
to preserve liveness. In particular, the encrypted proposals
prevent the adversary from censoring specific transactions and
making the system violate the liveness property. However,
there are only n−f proposals can be output in each epoch, and
thus the remaining are still wasted. That is, achieving liveness
does not imply resolving the wasted proposal issue.
Inter-node-linking. Yang et al. [13] propose a promising tech-
nique called inter-node-linking to solve the wasted proposals
issue. The basic idea is to let each participant not only input the
proposal of the current epoch but also embed an observation
about the proposals of previous epochs; then, participants
make an agreement on proposals of both the current epoch and
previous epochs. That is, if some valid proposal was discarded
in the epoch that it was initialized, it could still be utilized and
output in a later epoch. Fig. 4 illustrates an example of this,
where each participant maintains a view vector Vi representing
the observation on previous proposals. In particular, if Pi has
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all correct participants have recorded it is valid in their view
vectors.

received Pj’s proposals for all epochs before e, Pi will set
Vi[j] as e.

However, the inter-node-linking technique inherently re-
quires expensive broadcast primitives, e.g., reliable broad-
cast, and n parallel instances of known practical reliable
broadcast [15], [18], [37] incur at least O(λn3) redundant
communication and O(n3) messages complexity. Therefore,
the framework of Yang et al. results in inefficiency in terms
of both message complexity and communication complexity.

B. Our Approach

In the design of Dory, we have two goals in mind: 1)
reducing the communication; and 2) resolving the wasted
proposal issue. First, we carefully design and implement
two building blocks, including AVDD and dMVBA, which
are crucial to lowering communication complexity. Then, we
propose a novel asynchronous BFT consensus framework that
is efficiently incorporated with our new building blocks to
utilize proposals. Here we show a nutshell of our approach.
AVDD. As discussed in Sec.III-A, many ingredients of current
protocols lead to high communication complexity. In partic-
ular, the recovery phase is uniformly the most expensive.
We propose a new primitive called asynchronous vector-data
dissemination (AVDD). It is able to disseminate a vector to
all participants through the cooperation of them. Formally,
suppose that we have a vector with that any element has
been held and verified by at least f + 1 correct participants,
then AVDD allows every correct participant to obtain the
same vector. We also provide an efficient instantiation which
incurs O(ℓn|a| + ℓn2 log n) communication complexity and
O(n2) message complexity for an ℓ-dimensional vector A =
(a1, . . . , aℓ).

AVDD naturally serves as a recovery phase of asynchronous
BFT consensus, as the elected proposals collectively form a
vector, with each proposal held and verified by at least f + 1
correct participants upon its election. In particular, for the
recovery of O(n) |m|-size proposals, ℓ = O(n) and |a| = |m|,
then our instantiation incurs O(n2|m| + n3 log n) communi-
cation complexity, achieving an O(λ) reduction compared to
existing works. Further, we utilize a technique enabling our
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instantiation to run in an on-request manner which makes
it more efficient in the optimistic case, with a nearly zero
communication overhead.
dMVBA. The MVBA protocol used in existing works is
another bottleneck ingredient, leading to a communication
complexity of at least O(λn3). This paper addresses this
issue by implementing a more efficient MVBA protocol,
building upon recent advancements in various performance
aspects of MVBA [10], [11]. Specifically, we use the APDB
technique from Lu et al. [10] on sMVBA [11] to reduce the
communication complexity, and thus instantiate an MVBA
protocol named dMVBA with O(n|v|+λn2 log n) communi-
cation complexity. If applied to asynchronous BFT consensus
protocols, dMVBA only incurs O(λn2 log n) communication
complexity assuming |v| = O(nλ).
The Dory framework. If we incorporate the above build-
ing blocks in the framework of sDumbo, only the commu-
nication of the election and recovery phases are reduced,
whereas the threshold decryption still consumes O(λn3) bits
of communication. Besides, the wasted proposal issue has not
been addressed. Also, the framework proposed by Yang et
al. [13] results in high message complexity and communication
complexity, which cannot be solved by simply replacing
underlying building blocks. Therefore, we need new design.

We propose a more efficient framework in this paper, which
resolves the wasted proposal issue with optimal message
complexity and lower communication. It has developed the
basic idea of inter-node linking [13] with much different and
advanced technical designs. Here we show an overview of the
Dory framework.

As shown in Fig. 5, it consists of three phases: broadcast,
election and recovery. Different from prior works, the execu-
tion of these phases in the Dory framework has two parallel
forward paths: one normal path to agree on most current
proposals and one supplemental path to utilize previously
undelivered proposals.

In the normal path, each participant invokes the PB instance
with its proposal as input to produce a lock proof and broadcast
it. Upon collecting n− f lock proofs from other participants,
each participant enters the election phase and input the lock
proofs into MVBA. Then, with the help of MVBA and the first
AVDD instance, participants are able to agree on and deliver
n− f proposals of the current epoch.

The supplemental path is executed simultaneously with the
election phase of the normal path. After receiving the lock
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Fig. 6: An example of the AVDD protocol where n = 7 and f = 2. Faulty participants are omitted. In the request phase, P1

requests its missing elements. After the dispersal phase, P1 will receive f +1 = 3 consistent fragments for a2, a3 respectively,
and hence set d∗21 and d∗31. Similarly, P2 will set d∗12, d

∗
32, P3 will set d∗13, d

∗
23. In the confirm phase, P1 will receive d∗21, d

∗
23

for a2 and d∗31, d
∗
32 for a3. Thus, P1 is able to collect 2f + 1 = 5 correct fragments for a2, a3 and successfully reconstruct

them. Similarly, other participants also reconstruct their missing elements.

proof of a PB instance, each participant creates a partial
signature and sends it to the sender. The sender combines
the signature shares from the participants into a finish proof
and broadcasts the proof. Then, each correct participant that
receives the finish proof is able to report the corresponding
proposal in a view vector that will be included in later
proposals. In a later epoch, if a proposal including the view
vector is delivered through the normal path, then an additional
AVDD instance of the recovery phase will be triggered to
deliver the proposals indexed in the view vector.

The key to our design is the supplemental path which stems
from a critical observation: the AVDD primitive can efficiently
reconstruct an incomplete vector of proposals for all correct
participants, as long as the proof of each PB is formed and
verified by at least f + 1 participants. Accordingly, upon a
finish proof of some discarded proposal is formed, then all
participants could obtain this proposal through AVDD, and
thus it can be securely utilized.

By combining our new framework with new building
blocks, e.g. instantiating MVBA with dMVBA, we finally
obtain the Dory protocol, which resolves the wasted pro-
posal issue and achieves O(n2) message complexity and
O(n2|m|+(λ+n)n2 log n), lower than O(n2|m|+λn3 log n)
of the existing works.

IV. DESIGNED BUILDING BLOCKS

In this section, we introduce the asynchronous BFT building
blocks by design, including asynchronous vector-data dissem-
ination (AVDD) and a new implementation of multi-valued
validated Byzantine agreement (dMVBA).

A. Asynchronous Vector-data Dissemination

In this paper, we first aim to design a more efficient recovery
phase for asynchronous BFT consensus protocols. Therefore,
we define asynchronous vector-data dissemination as a first-
class primitive in the following.
Asynchronous vector-data dissemination (AVDD). In a dis-
tributed system with n participants, suppose that we have a
global ℓ-dimensional vector A = (a1, . . . , aℓ) and for any
k ∈ [ℓ], at least f + 1 correct participants hold the same
ak and verify its correctness; then AVDD is to allow every

correct participant to obtain the same A. Formally, it satisfies
the following properties:

• Validity. For any k ∈ [ℓ], if at least f +1 correct participants
hold the same ak ̸= ⊥ and other correct participants set
ak = ⊥, then every correct participant outputs a complete
vector A with no ⊥ element.
• Consistency. For any two correct participants Pi and Pj , if

they output Ai and Aj separately, then Ai = Aj .

For this new primitive, we provide a simple and efficient
instantiation, but with some skillful designs. The basic idea is
to run the protocol in an on-request manner, i.e., each partic-
ipant initially examines its local version of the global vector,
requests the missing elements from others, and then other
participants reply with the requested elements. The key to this
idea is determining how and when participants reply. First,
we use error correcting code to reduce the communication
cost and thus participants only send encoded fragments instead
of whole elements. However, such a technique leads to a
liveness risk: if each participant only replies with fragments of
elements that it holds, then the requesting participant may not
receive enough fragments to decode the missing elements; or
if each participant does not reply until holds all the requested
elements, there may be a deadlock issue that every participant
waits fragments from others at the same time and the protocol
is stuck. To eliminate this liveness risk, we design a divide
and conquer technique. It allows each participant to divide
each request into two parts and conquer them separately: for
the requested elements that the participant holds, it replies
with the fragments immediately; while for those that the
participant does not hold, it defers the reply until receiving
the corresponding fragments from other participants.

Fig. 6 shows an example of the AVDD protocol, and now
we briefly introduce how a request is processed. It consists
of three phases: request, dispersal, and an optional confirm
phase. In the request phase, each participant creates a request
to claim the missing elements. In the dispersal phase, upon
receiving a request, every participant sends the fragments of
elements that it holds (if any). For those requested elements
that the participant does not hold, it waits until receiving the
corresponding fragments from other participants, then in the
confirm phase passes them to the participant that initiated the
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Algorithm 1 AVDD protocol with identifier ID for Pi

1: Initialization: Ri ← {}; ReadyF lag ← false; for k ∈ [ℓ] do, d∗ki ←
⊥, Tk ← {}, T ∗

k ← {}
2: upon receiving input Ai = (a1, a2, . . . , aℓ) do
3: for 1 ≤ k ≤ ℓ do
4: if ak = ⊥ then
5: Ri ← Ri ∪ {k}
6: if Ri is not empty then
7: broadcast (REQUEST, ID, Ri) ▷ Request phase
8: ReadyF lag ← true

9: wait until ReadyF lag = true
10: upon receiving (REQUEST, ID, Rj) from Pj do
11: D ← {}, C ← {}
12: for any k ∈ Rj and ak ̸= ⊥ do ▷ Disperse phase
13: (dk1, dk2, . . . , dkn)← Encode(ak, n, f + 1)
14: D ← D ∪ (k, dki, dkj)
15: send (DISPERSE, ID, D) to Pj

16: for any k ∈ Rj and ak = ⊥ do
17: wait until d∗ki ̸= ⊥ ▷ Updated in ln 26
18: C ← C ∪ (k, d∗ki)
19: if C is not empty then
20: send (CONFIRM, ID, C) to Pj ▷ Confirm phase
21: upon receiving (DISPERSE, ID, D) from Pj do
22: for any (k, dkj , dki) ∈ D do
23: Tk ← Tk ∪ {(j, dkj)}
24: T ∗

k ← T ∗
k ∪ {(j, dki)}

25: if there are f + 1 consistent (·, dki) in T ∗
k then

26: d∗ki ← dki
27: upon receiving (CONFIRM, ID, C) from Pj do
28: for any (j, dkj) ∈ C do
29: Tk ← Tk ∪ {(j, dkj)}

30: for any k ∈ Ri do
31: upon |Tk| ≥ 2f + 1 do ▷ Trigger OEC for mk

32: for 0 ≤ r ≤ f do
33: wait until |Tk| ≥ 2f + r + 1
34: pk(·)← Decode(Tk, f + 1, r)
35: if 2f + 1 (j, y) ∈ Tk satisfy pk(j) = y then
36: ak ← coefficients of pk(·)

37: wait until no element of Ai is ⊥
38: output Ai as A

request. Finally, each participant that initiated a request will
collect enough fragments and run the online error correcting
(OEC) [33] algorithm to reconstruct the missing elements.

We now present our instantiation (AVDD protocol) in detail.
The pseudocode for Pi is shown in Algorithm 1.
Initialization. Every participant Pi begins with an input Ai,
which is a vector of ℓ elements, i.e., a1, . . . , aℓ. Depending
on the protocol that triggers the AVDD protocol, some el-
ements might be ⊥. Participant Pi initializes several global
parameters: a set Ri tracking the elements that need to be
reconstructed; for each k ∈ [ℓ], a value d∗ki and two sets Tk

and T ∗
k storing the data fragments.

Request. At the beginning of the protocol, Pi first checks Ai

and adds k to a set Ri if ak = ⊥. If Ri is not empty, Pi

broadcasts a (REQUEST, ID, Ri) message to all participants
(ln 2-8) and then waits for all the elements in Ai to become
non-empty (ln 37).
Dispersal. If Pi receives an incoming REQUEST message from
participant Pj , it checks Ai and initializes two sets, D and C.
D is used to store a set of fragments for any k ∈ Rj and ak
is not ⊥. C is used to store a set of fragments for k ∈ Rj

and ak is ⊥. In our protocol, Pi can directly update D and

send a set of fragments to Pj , while the update of C might
be deferred but will eventually be completed. Specifically, we
distinguish two cases for each participant Pi:
• Case 1: for any k ∈ Rj that ak ̸= ⊥, Pi encodes ak to obtain

the i-th and j-th data fragments and adds a tuple (k, dki, dkj)
to D. After that, Pi sends a (DISPERSE, ID, D) message to
Pj (ln 12-15).

• Case 2: for any k ∈ Rj such that ak = ⊥, Pi waits until
d∗ki is updated. Namely, Pi need to obtain the corresponding
fragments from other participants before replying to the
request, which is handled in the confirm phase.

Confirm. For each elements Pi requests, upon receiving
a (DISPERSE, ID, D) message from Pj , Pi adds the data
fragments to the Ti and T ∗

i sets. If there are f + 1 matching
fragments dki, Pi sets d∗ki as dki. As we show in our proof, for
every element Pi requests in Ri, it will receive at least f + 1
matching dki from other participants (ln 21-26). Recall that
some requests could be not totally handled in the dispersed
phase (case 2). For such a request with Rj , if all d∗ki are
updated for any ak = ⊥ and k ∈ Rj , Pi adds them to C and
sends a CONFIRM message to Pj (ln 16-20).

If case 2 is triggered, the participant that send a request
may receive CONFIRM messages. Upon receiving a CONFIRM
message, Pi adds the fragments to Ti (ln 27-29).

Upon collecting 2f+1 fragments for any k ∈ Ri, Pi triggers
the online error correcting (OEC) algorithm [33] to reconstruct
ak. Concretely, each execution of the OEC algorithm performs
up to f trials of reconstruction. The number of required
fragments increases with the number of trials. As the f th

trial satisfies |Tk| ≥ 3f + 1, Pi eventually reconstruct ak, as
mentioned in Section II-D (ln 30-36). Finally, Pi waits until
it reconstructs all the elements such that there is no ⊥ in Ai.
Then Pi outputs Ai.
Correctness. We prove Algorithm 1 satisfies the two proper-
ties of our AVDD primitive in Sec. VI-A.
Complexity. Algorithm 1 has an O(n2) messages complexity
as it only involves all-to-all communication. Its communica-
tion cost is zero in the optimistic case where all participants
are correct and none of them miss any elements, and at
most 4ℓn|a| + O(ℓn2 log n) in the worst case. Thus, the
communication complexity is O(ℓn|a| + ℓn2 log n). Please
refer to Sec. VI-A for detailed analysis.
Comparison with ADD. In the design of AVDD, we are
inspired by the asynchronous data dissemination (ADD) pro-
posed by Das et al. [18]. Compared with their work, our
primitive and instantiation have several distinguishing features:
1) focusing on the data dissemination of a vector instead
of a single data block, which makes it more well-fitting for
asynchronous BFT consensus protocols; 2) running in an on-
request manner, allowing participants to exchange information
of missing data only. As a result, our AVDD protocol achieves
optimal O(n2) message complexity and lower communication
overhead. Table III shows the performance metrics of AVDD
and ADD. As the ADD protocol only disseminate a single
data block at once execution, we use ℓ-ADD representing ℓ
ADD instances for a fair comparison.

Note that AVDD has a significantly lower communication
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TABLE III: Comparison between AVDD and ℓ-ADD

Protocol Message
Complexity

Communication Cost
Optimistic Case Worst Case

AVDD O(n2) 0 4ℓn|a|+O(ℓn2 logn)
ℓ-ADD O(ℓn2) 6ℓn|a|+O(ℓn2 logn)

cost on the payload (0∼4ℓn|a| v.s. 6ℓn|a|), which has been
demonstrated crucial for achieving high throughput of asyn-
chronous BFT consensus protocols [11].

B. New Multi-valued Validated Byzantine Agreement

The MVBA protocol used in current BFT protocols is
another bottleneck ingredient. For example, the sMVBA [11]
protocol used in sDumbo has an O(n2|v|+λn2) communica-
tion complexity. If applying it in the election phase, there will
be |v| = O(λn), as each participant collects O(n) proofs of
received proposals as the input (refer to Fig. 2 in Sec. III-A).
Therefore, it incurs O(λn3) communication cost.

In this paper, we address this issue by implementing a new
MVBA protocol with lower communication complexity. We
adopt the APDB technique proposed by Lu et al. [10] on
sMVBA [11] to reduce the communication complexity, and
thus construct a new MVBA protocol named dMVBA. In
technical, dMVBA drives sMVBA as a block-box: at first,
each participant encodes its input and disperses the fragments,
then it collects replies from other participants and thus forms
a proof; after that, each participant invokes sMVBA with
the short proof instead of the input; finally, participants will
exchange their fragments to reconstruct the original data
according to the proof output by sMVBA.

We now describe dMVBA in detail. Algorithm 2 and Fig. 7
show the pseudocode and the workflow, respectively.
Details of dMVBA. At the beginning, participant Pi encodes
its input into fragments, computes a Merkle tree over them,
and send each Pj an ECHO message with the corresponding
fragment and Merkle tree branch brij . Then, upon receiving a
valid fragment and branch, each participant returns a signature
share for the Merkle root rti via a READY message. After
collecting n − f signature shares, Pi combines them into
a signature σi and triggers sMVBA with rti and σi. Upon
sMVBA output (k, rtk, σk), participants exchange fragments
to reconstruct v′k. Finally, Pi re-computes the Merkle tree on
v′k, then checks whether it has been correctly encoded (i.e.,
rt′k = rtk), and satisfies the predicate. If true, output v′k;
otherwise, Pk must be faulty and re-invoke sMVBA.

sMVBA

𝑃1

𝑃2

𝑃3

𝑃𝑛

…

𝑃1

𝑃2

𝑃3
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𝑃3

𝑃𝑛

…

𝑃1

𝑃2

𝑃3

𝑃𝑛

…

ECHO READY RECAST

re-invoke

Fig. 7: The workflow of dMVBA protocol.

Correctness. The correctness of dMVBA follows [10]. We
present a security intuition in this paper. For the agreement

Algorithm 2 dMVBA protocol with identifier ID and global
known predicate Q. Code shown for Pi

1: Initialization: S ← {}
let the Q′ of the underlying sMVBA[⟨ID, r⟩] be the following predicate:
Q′(k, rtk, σk) ≡ (Verifyn−f (⟨ID, k, rtk⟩, σk) = 1)

2: upon receiving input vi s.t. Q(vi) = 1 do
3: (di1, di2, . . . , din)← Encode(vi, n, f + 1)
4: (rti, bri1, bri2, . . . , brin)← Merkle(di1, di2, . . . , din)
5: for any j ∈ [n] do
6: send (ECHO, ID, dij , rti, brij) to Pj

7: upon receiving (ECHO, ID, dji, rtj , brji) from Pj do
8: if VerifyBranch(rtj , i, dji, brji) = 1 do
9: ρji ← Signn−f (ski, ⟨ID, j, rtj⟩)

10: send (READY, ID, ρji) to Pi

11: store dji, brji

12: upon receiving (READY, ID, ρij) from Pj do
13: if VerifySharen−f (⟨ID, i, rti⟩, (j, ρij)) = 1 then
14: S ← S ∪ {j, ρij}
15: if |S| = n− f then
16: σi ← Combinen−f (⟨ID, i, rti⟩, S)

17: wait until σi ̸= ⊥
18: for r ∈ {1, 2, 3, . . .} do
19: invoke sMVBA[⟨ID, r⟩] with input (i, rti, σi)
20: wait until receiving (k, rtk, σk) from sMVBA[⟨ID, r⟩] do
21: T ← {}
22: if dki ̸= ⊥ then
23: broadcast (RECAST, ID, dki, brki)
24: upon receiving (RECAST, ID, dkj , brkj) from Pj do
25: if VerifyBranch(rtk, j, dkj , brkj) = 1 do
26: T ← T ∪ {(j, dkj)}
27: upon |T | = f + 1 do
28: v′k ← Decode(T, f + 1, r)
29: (rt′k, ·)← Merkle(Encode(v‘k, n, f + 1))
30: if rt′k = rtk and Q(v′k) = 1 then
31: output v′k and break the loop

property, the underlying sMVBA ensures participants receive
the same (k, rtk, σk) in each loop, and the Merkle tree ensures
the consistency of fragments received by correct replicas:
if Pk is correct, they will decode the same valid v′k and
output it; otherwise, they will find rt′k ̸= rtk and go back
together. For the termination property, sMVBA ensures there
is at least 1/2 probability of electing a (k, rtk, σk) that Pk is
correct, and thus dMVBA terminates after the expected two
executions of sMVBA. For the external validity property, it is
straightforward that only the value satisfies Q can be output.
Complexity. Algorithm 2 only involves all-to-all communica-
tion and thus its message complexity is O(n2). The size of
ECHO message, READY message, and RECAST message are
O( |v|f +λ log n), O(λ) and O( |v|f +λ log n), respectively. Fur-
ther, the underlying sMVBA incurs O(λn2) communication
cost as its input size is O(λ). Therefore, the communication
complexity of dMVBA is O(n|v| + λn2 log n). The time
complexity of dMVBA is O(1) as it terminates in the expected
constant rounds.

V. THE DORY FRAMEWORK AND PROTOCOL

This section presents the design of the Dory framework and
protocol. We start by introducing some definitions.
Status of proposals. In Dory, the status of each proposal
would transition according to the progress of participants. In
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Algorithm 3 Utility functions of Dory. Code shown for Pi.
1: procedure UpdateView(e):
2: initialize a |n|-dimensional vector Vi

3: for any j ∈ [n] do
4: Vi[j] ← the latest e′ s.t. e′ < e and finishe′′ [j] = 1 for all

1 ≤ e′′ ≤ e′

5: return Vi

6: procedure ObtainProposals(ID, In):
7: initialize a |In|-dimensional vector PPi, set k ← 0
8: for any (e, j) ∈ In do
9: if locke[j] = 1 then

10: PPi[k] = propej
11: else
12: PPi[k] = ⊥
13: k ← k + 1
14: invoke AVDD[ID] with input PPi

15: wait until AVDD[ID] outputs PP
16: for (e, j) ∈ T do
17: locke[j]← 1, finishe[j]← 1, commite[j]← 1
18: return PP

19: procedure CheckViews(views, In): ▷ Refer to Equation 1
20: initialize a n-dimensional vector V
21: for any j ∈ [n] do
22: V [j]← the (f +1)th largest value among {Vk[j]|Vk ∈ views}
23: for any j ∈ [n] and 1 ≤ e ≤ V [j] do
24: if commite[j] = 0 then
25: In← In ∪ {(e, j)}

particular, the status of propej (proposal created by Pj in epoch
e) maintained by participant Pi can be one of the following:
• locked. If Pi has received a proposal propej from Pj and

receives a lock proof (hj , σj) where σj is a valid signature
for ⟨e, j, hj⟩ and hj = H(propej), then the status is locked
and Pi sets locke[j] as 1.

• finished. If Pi receives a proof σ′
j in a FINISH message for

the proposal propej , then the status is finished and Pi sets
finishe[j] as 1.

• committed. If the proposal propej is delivered, then the status
is committed and Pi sets commite[j] as 1.
The status is useful for each participant to track the un-

delivered proposals and for our framework to achieve its
security properties. If the status is locked, at least f+1 correct
participant has already received the proposal. If the status is
finished, at least f + 1 correct participants have received the
proposal and verified its correctness, which is useful for the
supplemental path: a proposal un-delivered in previous epochs
can be delivered iff its status is finished.
View vector. Each participant maintains a view vector Vi

recording the observation on previous proposals. In particular,
if Pi has set Pj’s proposals as finished for all epochs before e,
Pi will set Vi[j] as e. At the each of each epoch, participants
will agree on n − f view vectors, e.g., Vk1

, Vk2
, . . . , Vkn−f

,
and compute a common view vector V on them: for i ∈ [n],

V [i] = maxf+1(Vk1
[i], Vk2

[i], . . . , Vkn−f
[i]), (1)

where maxf+1 represents the (f + 1)-th largest value. The
common view vector V is used to track and commit previously
un-delivered proposals.

Now we introduce the details of the Dory framework. The
pseudocode is shown in Algorithm 4 and the utility functions
are shown in Algorithm 3. The workflow is illustrated in Fig. 5.

Algorithm 4 The Dory framework. Code shown for Pi.
let the Q of MVBA[ID] be the following predicate:
QID({(j1, hj1 , σj1 ), . . . , (jn−f , hjn−f

, σjn−f
)}) ≡ (for any k ∈

[n− f ],Verifyn−f (⟨ID, jk, hjk ⟩, σjk ) = 1)

1: upon invocation of epoch e do
2: Initialization: locke ← (01, . . . , 0n); finishe ← (01, . . . , 0n);

commite ← (01, . . . , 0n); S ← {}; Li ← {}; In1 ← {}; In2 ← {}.
3: upon receiving transactions me

i to be proposed in epoch e do
4: Vi ← UpdateView(e) ▷ Broadcast phase
5: let propei = (me

i , Vi) be the proposal of epoch e
6: invoke PB[⟨e, i⟩] with input propei
7: upon receiving (hi, σi) from PB[⟨e, i⟩] do
8: broadcast (LOCK, e, hi, σi)
9: upon receiving propej from PB[⟨e, j⟩] do

10: store propej
11: upon receiving (LOCK, e, hj , σj) from Pj do
12: wait until propej ̸= ⊥
13: if H(propej) = hj and Verifyn−f (⟨e, j, hj⟩, σj) = 1 then
14: locke[j]← 1 ▷ Locked
15: ρji ← Signn−f (ski, ⟨e, j, locked⟩)
16: Li ← Li ∪ {(j, hj , σj)}
17: send (LOCKED, e, ρi) to Pj

18: upon receiving (LOCKED, e, ρij) from Pj do
19: if VerifySharen−f (⟨e, i, locked⟩, (j, ρij)) = 1 then
20: S ← S ∪ {j, ρij}
21: if |S| = n− f then
22: σ′

i ← Combinen−f (⟨e, i, locked⟩, S)
23: broadcast (FINISH, e, σ′

i)
24: upon receiving (FINISH, e, σ′

j) from Pj do
25: if Verifyn−f (⟨e, j, locked⟩, σ′

j) = 1 then
26: finishe[j]← 1 ▷ Finished
27: upon |Li| = n− f then ▷ Election phase
28: invoke MVBA[e] with input Li

29: upon receiving L = {(jk, hjk , σjk )}k∈[n−f ] from MVBA[e] do
30: for any (jk, hjk , σjk ) ∈ L do ▷ Recovery phase
31: if propejk ̸= ⊥ and H(propejk ) = hjk then
32: locke[jk]← 1 ▷ Locked
33: In1 ← In1 ∪ {(e, jk)}
34: PP 1 ← ObtainProposals(⟨e, 1⟩, In1) ▷ 1st AVDD
35: for any propej ∈ PP 1 do
36: extract view vector Vj from propej
37: CheckViews({Vj |propej ∈ PP 1}, In2)

38: PP 2 ← ObtainProposals(⟨e, 2⟩, In2) ▷ 2nd AVDD
39: output {me

j |propej ∈ PP 1} ∪ {me′
j′ |prop

e′
j′ ∈ PP 2}

Broadcast. The broadcast phase involves n parallel PB in-
stances. At the beginning of each epoch e, each participant
Pi first updates Vi by querying the UpdateView(e) function.
The function returns a view vector Vi. Vi[j] stores the latest
epoch number, up to which the proposals of Pj are set as
finished by Pi. Then, Pi includes a batch of transactions me

i

and Vi as the proposal propei and starts the i-th PB instance,
denoted as PB[⟨e, i⟩]. After PB[⟨e, i⟩] completes, (hi, σi) is
returned, where hi is the hash of propei and σi is a signature
for ⟨e, i, hi⟩. Then Pi broadcasts a LOCK message (ln 3-
8). Meanwhile, if Pi receives the proposal propej from Pj

in PB[⟨e, j⟩], it stores propej . Additionally, if Pi receives a
valid LOCK message from Pj , it creates a signature share for
⟨e, j, locked⟩ and sends a LOCKED message to Pj . Finally,
each participant that receives n − f signature shares from
LOCKED messages will combine the signature shares into a
signature σ′

i and then broadcast a (FINISH, e, σ′
i) message

(ln 9-26). The locke and finishe parameters are updated
simultaneously.
Election. After the n−f proposals of epoch e become locked,
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Pi invokes MVBA[e] with the lock proofs as input (ln 27-28).
Recovery. After MVBA[e] outputs L, Pi starts the recovery
phase. There are two AVDD instances, one for recovering
the proposals created in the current epoch, and one for
recovering the proposals indexed in the view vectors. In
particular, for every (jk, hjk , σjk) in L, if Pi has stored
propej but the status is not locked, Pi sets the status as
locked. Then, Pi starts the first AVDD instance by querying
the ObtainProposals(⟨e, 1⟩, In1) function. After a vector of
proposals PP 1 is obtained from AVDD, Pi extracts the view
vectors and combines them into a common vector V , by query-
ing the CheckViews({Vj |propej ∈ PP 1}, In2) function. Then
Pi starts the second AVDD instance to recover the proposals
indexed in V by querying the ObtainProposals(⟨e, 2⟩, In2)
function. Finally, Pi takes a union of the transactions included
in PP 1 and PP 2, and delivers them according to a pre-defined
deterministic order (ln 39).

If incorporating Algorithm 4 with Algorithm 1 and Algo-
rithm 2, we instantiate the Dory protocol. In the following, we
directly analyze the complexity and correctness of the Dory
protocol.
Correctness. We prove the Dory protocol satisfies agreement,
total order, liveness and faireness in Sec. VI-B.
Complexity. The Dory protocol achieves O(1) expected time,
O(n2) message and O(n2|m| + (λ + n)n2 log n) communi-
cation. Moreover, we prove that the concrete communication
cost on the payload is only n2|m| to 3n2|m|, which is crucial
to the performance, especially when the input is large. Please
refer to Sec. VI-B for detailed analysis.

VI. ANALYSIS

In this section, we analyze the correctness and the complex-
ity of the AVDD protocol and the Dory protocol in detail.

A. The AVDD Protocol

Correctness. We prove in the following that Algorithm 1
satisfies the properties defined in Sec. IV-A. The validity
property follows from Lemma 2, and the consistency property
follows from Lemma 3.

Lemma 1 After broadcasting a REQUEST message, each par-
ticipant Pi will hold the correct i-th fragments of all its missing
elements.

Proof: We assume that Pi broadcasts a REQUEST message
carrying an index set Ri. For every k ∈ Ri, Pi sets d∗ki only if
it receives consistent fragments through DISPERSE messages
from f + 1 different participants, at least one of which is
correct. In this way, d∗ki is certainly correct, as no correct
participant will send an incorrect fragment. Moreover, since
every element in A is held by at least f+1 correct participants,
Pi can always receive f + 1 consistent fragments for every
k ∈ Ri. Thus, each participant Pi will hold the correct i-th
fragments of all its missing elements. □

Lemma 2 (Validity) At the end of the protocol, every correct
participant outputs a complete vector A with no ⊥ element.

Proof: We assume that Pi broadcasts a REQUEST message
carrying an index set Ri ⊆ [ℓ]. From Lemma 1, each
participant Pj will hold either a full data or a j-th fragment
for every element in A. Thus, upon receiving a REQUEST
message carrying Ri from Pi, Pj will eventually return the
j-th fragments of all elements in Ri through DISPERSE and
CONFIRM messages. Then, for every element requested in Ri,
Pi will receive 2f+1 fragments to trigger the OEC algorithm.
Indeed, there may be up to f error fragments from faulty
participants. However, Pi will eventually receive 2f+1 correct
fragments from all correct participants, so the OEC algorithm
will eventually succeed and output. Therefore, every empty
position in vector Ai will be filled. □

Lemma 3 (Consistency) If each participant Pi outputs a
complete vector Ai, than every element in Ai is consistent
with the one that correct participants hold at the beginning.

Proof: As we assume that every element held by correct
participants Pi at the beginning is consistent with that of other
correct participants, we only consider its missing elements. For
every missing element ak ready to output, Pi has verified it
using 2f+1 fragments in Tk, of which at least f+1 are from
correct participants. Due to Lemma 1, every fragment sent by
correct participants must be correct. From the nature that f+1
points uniquely determine a (f +1)-degree polynomial, f +1
correct fragments confirm the correctness of ak. Therefore,
every element in Ai is consistent with the one that correct
participants hold at the beginning. □

Complexity. It is straightforward that the message complex-
ity of Algorithm 1 is O(n2) as it only involves all-to-all
communication. Now we analyze its communication cost in
Lemma 4, which indicates the communication complexity is
O(ℓn|a|+O(ℓn2 log n).

Lemma 4 The concrete communication cost of the AVDD
protocol is bounded by 4ℓn|a|+O(ℓn2 log n).

Proof: We assume that the number of elements requested by
participant Pi is no more than ℓi(ℓi ≤ ℓ) for any i ∈ [n].
Each REQUEST message carries a set of indices of missing
elements, which is no more than ℓi. Thus, the communication
cost of the request phase is at most n

∑
i∈[n] ℓi. During the

dispersal and confirm phases, each participant Pi receives
DISPERSE and CONFIRM messages carrying fragments about
its requested elements. The size of Reed-Solomon code frag-
ments is max( |a|f , log n) bits. For each participant Pi, the total
length of DISPERSE and CONFIRM messages received from a
participant is at most 2ℓi(

|a|
f + log n) +O(ℓi) bits. Thus, the

communication for Pi in the dispersal and confirm phases is
bounded by n(2ℓi(

|a|
f + log n) + O(ℓi)). Therefore, the total

communication cost of the AVDD protocol is at most

n
∑
i∈[n]

ℓi +
∑
i∈[n]

n(2ℓi(
|a|
f

+ log n) +O(ℓi))

= 2n
|a|
f

∑
i∈[n]

ℓi +O(n log n
∑
i∈[n]

ℓi).

(2)

Moreover, each element in A has been held by at least
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f + 1 correct participants at the beginning, and thus may be
requested by at most 2f participants, i.e., the total number
of requests of all participants is no more than ℓ(2f), so we
have

∑
i∈[n] ℓi ≤ 2ℓf. Combining it with Equation (2), the

communication cost of our AVDD protocol is bounded by
4ℓn|a|+O(ℓn2 log n). □

B. The Dory Protocol

Correctness. We now prove that the Dory protocol satisfies
the definition of Sec. II-C. The agreement property follows
from Lemma 7 and Lemma 8. Then, due to the agreement,
it is straightforward that Dory achieves total order, as trans-
actions in a single epoch are delivered in the same order
according to a pre-defined deterministic algorithm and Dory
is invoked sequentially according to monotonically increasing
epoch numbers. Liveness follows from Lemma 9. Namely, if
some transactions are not delivered in the epoch that they are
proposed, they are still able to deliver through the supplemen-
tal path. Fairness follows from Lemma 10 as we assume that
each participant batches an identical size of transactions as the
proposal in each epoch.

Lemma 5 In epoch e, every correct participant will invoke
the MVBA instance and get the same output L satisfies that
for any tuple (j, hj , σj) ∈ L, Verifyn−f (⟨e, j, hj⟩, σj) = 1.

Proof: Due to the termination property of PB, all correct
participants will complete a PB instance as the sender and
broadcast the corresponding lock proof. It means that each
participant Pi will store propej and receive valid (hj , σj)
from at least n− f correct participants. Thus, Pi will invoke
the MVBA instance using a valid Li as input. Due to the
termination of MVBA, after all correct participants invoke the
MVBA instance with valid inputs, they will get an output
L from it. Then, due to the agreement and external valid-
ity of MVBA, the output L that every correct participant
gets is the same, and every tuple (j, hj , σj) in L satisfies
Verifyn−f (⟨e, j, hj⟩, σj) = 1. □

Lemma 6 For any PB instance PB[⟨e, k⟩], if any two correct
participants Pi and Pj set the status of the corresponding
proposal as locked and have stored (propek)

i and (propek)
j

respectively, then (propek)
i = (propek)

j . Namely, the proposal
is correct.

Proof: Suppose (propek)
i ̸= (propek)

j , then Pi and Pj must
have received different lock proofs, i.e., (h, σ) and (h′, σ′)
where h = H((propek)i) and h′ = H((propek)j). It violates
the provability property of PB. Thus, Pi and Pj must have
stored the same proposal from PB[⟨e, k⟩]. □

Lemma 7 In each epoch, every correct participant will set
In1 to the same value, and get the same proposals included
in PP 1.

Proof: In1 is determined by MVBA’s output L. Due to
Lemma 5, every correct participant will get the same L and
thus decide the same In1 by deterministic algorithms. Each
proposal indexed in In1 has been stored by at least f + 1
correct participants, and these participants will set its status

as locked because they are all able to see the corresponding
lock proof due to the agreement of MVBA. By Lemma 6, the
AVDD condition for the vector of these proposals is satisfied
and every correct participant will get the same PP 1 including
them. □

Lemma 8 In each epoch, every correct participant will set
In2 to the same value, and get the same proposals included
in PP 2.

Proof: In2 is determined by the view vectors included in
PP 1. Due to Lemma 7, every correct participant will get the
same PP 1 and thus decide the same In2 by deterministic
algorithms. In the CheckViews function (Algorithm 3), the
common view vector V is computed by taking the (f + 1)-th
largest value among n − f view vectors for each component
in V . Therefore, for any i ∈ [n], V [i] is no larger than at
least one Vj [i] from a correct participant. Namely, for each
proposal indexed in In2, at least one correct participant has
set it as finished. Thus, at least f +1 correct participants have
set it as locked. Then due to Lemma 6, the AVDD condition
for the vector of these proposals is satisfied and every correct
participant will get the same PP 2 including them. □

Lemma 9 For any proposal propei created by a correct par-
ticipant Pi in epoch e, if it is not delivered in epoch e, then
it will eventually be delivered in a later epoch e′(e′ > e).

Proof: At the beginning of epoch e, Pi inputs propei to
PB[⟨e, k⟩]. Due to Termination of PB, Pi is able to get the
corresponding lock proof. Then, since Pi is correct, it will
broadcast the lock proof to all participants, collect n − f
signature shares in LOCKED from correct participants at least,
and then broadcast a finish proof. Therefore, every correct par-
ticipant will see the finish proof and set finishe[i] as 1. Later,
at the beginning of epoch e′, every correct participant will
index propej in the view vector associated with its proposal.
In the recovery phase of epoch e′, the first AVDD instance will
output a vector PP 1 containing n − f view vectors, at least
f +1 of which are from correct participants. As the common
view vector V is computed by taking the (f + 1)-th largest
value among these view vectors for each component of V ,
propei must be indexed in V and thus delivered through the
second AVDD instance. □

Lemma 10 At any time, at least half of all output proposals
are created by correct participants.

Proof: Assuming the most recent completed epoch is e, then
there are at most fe faulty proposals in the system as each
participant can only propose once in each epoch. According to
Algorithm 4, participants will output at least n− f proposals
(via the normal path) in each epoch, among which at least f+1
proposals are created by correct participants. Therefore, there
are at least (f + 1)e proposals created by correct participants
until epoch e, and it is straightforward that (f+1)e

(f+1)e+fe > 1/2.□

Complexity. The Dory protocol achieves O(1) expected time,
O(n2) message and O(n2|m| + (λ + n)n2 log n) commu-
nication. The time complexity clearly is O(1) as dMVBA
achieves O(1) expected time and the other protocols we use
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are deterministic algorithms with a constant number of steps.
The message complexity is O(n2) as the Dory protocol only
involves all-to-all communication. The analysis of communi-
cation complexity is in Lemma 11. We also prove a concrete
communication cost bound on the payload in Lemma 12.

Lemma 11 The communication complexity of the Dory pro-
tocol is O(n2|m|+ (λ+ n)n2 log n).

Proof: In the broadcast phase, the input size of each PB
instance is O(|m| + n) considering the epoch number is
a constant. As the broadcast phase involves n parallel PB
instances, the communication complexity is O(n2|m|+λn2+
n3). The election phase has one dMVBA instance, and each
participant’s input includes O(n) hashes and O(n) signatures.
The communication complexity is thus O(λn2 log n). We now
work on the recovery phase. Recall that in every epoch, any
participant will not invoke MVBA until the status of n − f
proposals is locked. Accordingly, there are at most f proposals
that need to be recovered in an AVDD instance of the current
epoch or a later one. Due to the communication complexity of
AVDD, recovering these missing proposals incurs O(n2|m|+
n3 log n) communication. Therefore, the total communication
complexity of the Dory protocol is O(n2|m|+(λ+n)n2 log n).

Lemma 12 The concrete communication cost on the payload
of the Dory protocol is n2|m| to 3n2|m|.

According to Lemma 11, none of the correct participants
will request more than f proposals with the same epoch
number in AVDD. In particular, until epoch e, the num-
ber of requested proposals is up to ef , so the concrete
communication cost of the recovery phase is no more than
e(2n |m|+n

f ·nf +O(n log n ·nf)) ≤ e(2n2|m|+O(n3 log n))
due to Equation (2) in Lemma 4. Therefore, if we focus on
the recovery phase, the concrete communication cost on the
payload per epoch is 2n2|m|. Adding it with the cost of
the broadcast phase, the overall communication cost on the
payload is no more than 3n2|m|. Moreover, in the optimistic
case that all participants have received all proposals in the
broadcast phase, the AVDD protocol would not incur any
communication. In this case, the communication cost on the
payload is only n2|m|, i.e., no expansion.

VII. EVALUATION

This section shows our implementation details and eval-
uation results. We compare Dory with sDumbo in the WAN
settings. Our experiments show that 1) Dory significantly saves
the communication cost compared with sDumbo, 2) Dory
achieves low basic latency—less than 8s even for n = 151
participants, 3) Dory achieves high throughput (up to 5×
the throughput of sDumbo), and 4) during failures, Dory
exhibits even higher performance than sDumbo (up to 7× the
throughput of sDumbo).

A. Implementation and Experiment Setup

Implementation. We implement Dory and sDumbo in Golang
(both open-source2) using the same underlying modules, li-

2https://github.com/xygdys/Dory-BFT-Consensus
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Fig. 8: Communication cost of Dory and sDumbo.

braries and security parameters. For the network connection,
we use TCP sockets to realize reliable point-to-point channels,
while running n message sending goroutines and one message
receiving goroutine at each participant. For threshold signature
and coin-tossing, we use Boldyreva’s pairing-based threshold
scheme [25] on BN256 curve implemented in kyber3; for
threshold encryption, we implement Baek and Zheng’s scheme
[38] on the same curve; for hash function, we use SHA3-512.
For Reed-Solomon error correcting code, we use an open-
source implementation in infectious4.
Experiment setup. We evaluate Dory and sDumbo in the
WAN settings. Our experiments are deployed on up to 151
Amazon EC2 instances that evenly distributed in up to 10
regions. Each participant runs on a t3.medium instance with
two virtual CPUs and 4GB memory. Following the prior
works [16], [17], we define the latency as the time interval
between the time the first participant starts a new epoch and the
time when the (n−f)-th correct participant finishes this epoch.
We assume that each transaction is a random string of 250
bytes, and participants will input batches of transactions every
time. We define the batch size as the number of transactions
input by all participants in a single epoch, and varies from 102

to 106. In all experiments, we run all protocols for ten epochs.

B. Communication Cost

We first evaluate the communication cost of Dory and
sDumbo. We measure the total communication bytes for all
the messages sent by each participant.

We illustrate the experiment result in Fig. 8(a), where the
ideal cost is the minimum communication cost (per partic-
ipant) one could expect for completing the consensus. Dory
keeps a tighter distance with the ideal cost than sDumbo when
the number of participants scales. For example, when n = 151

3https://github.com/dedis/kyber
4https://github.com/vivint/infectious
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TABLE IV: Result highlights of throughput and latency.

Scale Basic Latency (s)† Peak throughput (tx/s) Peak throughput
with Crash Fault (tx/s)

Peak throughput
with Byzantine Fault (tx/s)

sDumbo Dory sDumbo Dory sDumbo Dory sDumbo Dory
n = 31 2.40 1.93 ↓ 20% 41.1k 131.0k 3.2× 28.0k 43.6k 1.6× 11.5k 53.1k 4.6×
n = 55 4.85 2.57 ↓ 47% 29.1k 120.6k 4.1× 20.2k 41.7k 2.1× 6.6k 39.1k 5.9×
n = 64 6.17 3.09 ↓ 50% 24.9k 117.2k 4.7× 16.2k 41.2k 2.5× 5.9k 38.9k 6.6×
n = 100 12.35 4.32 ↓ 65% 17.4k 87.9k 5.0× 12.2k 32.6k 2.7× 3.5k 24.9k 7.1×
n = 121 17.59 5.60 ↓ 68% 14.5k 77.3k 5.3× 11.2k 31.7k 2.8× 2.6k 19.3k 7.5×

†the “Basic Latency” denotes the latency under zero payload, i.e., simply letting each participant input one transaction.
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Fig. 9: Throughput and latency of Dory and sDumbo at different participant scales and batch sizes.

and the batch size reaches 10,000, Dory costs about 2.88MB
per participant, which is only 21% higher than the ideal, while
sDumbo costs about 9.91MB per participant which is 4× that
of the ideal cost. Only when the batch size becomes much
larger (e.g. > 105), the communication cost of Dory and
sDumbo becomes closer to the ideal cost. This is because the
n2|m| term dominates the communication for large batches.
Zero payload. We also measure the communication cost
under zero payload (with only one input transaction for each
participant), which evaluates the inherent communication cost
of the two protocols and helps understand the following per-
formance difference. As shown in Fig. 8(b), when the number
of participants increases from 16 to 151, the communication
cost of Dory increases from 45.6KB to just 0.5MB, which
is in sharp contrast to that of sDumbo (from 106KB to
7.4MB). This result is consistent with our reduction in the
communication complexity.

C. Throughput and Latency

We now show the evaluation results on throughput and
latency of Dory and sDumbo. Table IV summarizes some
result highlights.

Fig. 9(a) shows throughput and latency of Dory and sDumbo
for different network sizes and batch sizes. In terms of
both throughput and latency, Dory consistently outperforms

sDumbo. In particular, when n ≥ 100, the throughput of Dory
is more than 5× that of sDumbo for all batch sizes, and the
latency of Dory is significantly lower than that of sDumbo.
Moreover, it is straightforward that as the number of partic-
ipants scales, Dory’s performance is higher and more stable
compared with sDumbo, which means Dory is more scalable.
The reason behind it is that Dory has lower complexity.

We report the latency vs. throughput for different scales in
Fig. 9(b), and the peak throughput in Fig. 10(a). Also, for all
settings, Dory has shown consistently better performance than
sDumbo.
Performance with faults. We also evaluate the performance
of Dory and sDumbo with crash fault and Byzantine fault.

For the crash fault experiment, we simply force f par-
ticipants to crash at all scales. As shown in Fig. 10(b), all
protocols suffer a significant reduction in throughput com-
pared with the no-fault scenario, but they offer different fault
resilience. Dory is still superior to sDumbo at all scales.
An interesting phenomenon is that Dory’s advantage over
sDumbo is not as significant as in the scenarios with no
fault. This is mainly because when we cause f participants
to crash, the design to address the wasted proposal issue
in the Dory framework becomes ineffective, and both Dory
and sDumbo can only output n − f proposals per epoch.
However, from another perspective, this also confirms that
simply reducing communication complexity can bring nearly
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Fig. 10: Peak throughput of Dory and sDumbo with no fault,
crash fault, and Byzantine fault.

3× the throughput improvement.
For the Byzantine fault experiment, we set f malicious

participants, each of them sends its proposal only to f + 1
correct participants in the broadcast phase, and the network is
scheduled to make sure the proposals from malicious partici-
pants are included in every participant’s input for MVBA. In
this way, in the recovery phase, at least f correct participants
need to reconstruct at least f proposals (created by malicious
participants). As illustrated in Fig. 10(c), Dory outperforms
sDumbo at all scales. In this experiment, participants would
trigger the recovery phase more frequently. We find that
Dory has an even more significant advantage over sDumbo
compared to that with no fault. This not only shows that Dory
has stronger robustness under the malicious attack, but also
demonstrates the efficiency of our AVDD protocol.

VIII. ADDITIONAL RELATED WORK.
Much related work has been discussed in the course of

the paper; here we discuss additional related work. The
current asynchronous BFT consensus protocols are predom-
inantly based on: asynchronous binary Byzantine agreement
(ABA) [13], [16], [33]–[36], multi-valued validated Byzantine
agreement (MVBA) [9], [11], [12], [20], and directed acyclic
graph (DAG) [21]–[23]. Instantiations derived from the above
three paradigms enjoy unique features.

This paper focuses on MVBA-based protocols, which typ-
ically have constant time complexity. The first MVBA-based

asynchronous BFT consensus protocol is proposed by Cachin
et al. [9], but it only proves the theoretical feasibility. After
that, the Dumbo family protocols [11], [12], [17] gradually
push the MVBA-based asynchronous BFT consensus into
practice, among which sDumbo [11] is the state-of-the-art
protocol with the same security guarantee as ours. The recent
work Dumbo-NG [12] does not achieve the fairness property,
and thus it is hard to deploy as the consensus mechanism
for permissioned blockchains, where fairness is needed to
ensure the blockchain quality [24]. FIN [20] aims to design
asynchronous BFT consensus protocols in the signature-free
setting.

Compared to our MVBA-based protocol, DAG-based pro-
tocols [21]–[23] either have higher complexity or only achieve
weak liveness: DAG-Rider [23] requires O(n3) messages,
Tusk [22] also has O(n) communication blowup (using de-
duplication), and Bullshark [21] aims to introduce garbage
collection mechanism into asynchronous BFT consensus pro-
tocols and thus sacrifices the liveness.

Another line of work studies ABA-based BFT protocols that
do not terminate in constant expected time and have higher
message complexity [13], [16], [33]–[36], but they perform
well when n is not too large. These protocols can be used to
build various applications such as asynchronous MPC [39].

IX. CONCLUSION

This paper designs and implements Dory, a faster asyn-
chronous BFT consensus protocol with reduced communi-
cation compared to existing protocols. We have designed
and implemented two building blocks, including a novel
primitive called asynchronous vector-data dissemination and
a new implementation of multi-valued validated Byzantine
agreement. We have also proposed a new asynchronous BFT
consensus framework that resolves the wasted proposals issue.
We have implemented and deployed Dory and sDumbo using
151 Amazon EC2 instances evenly distributed in 10 regions.
We have shown that Dory consistently outperforms sDumbo
during both failure and failrue-free scenarios.
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