
Optimized Implementation of Encapsulation and
Decapsulation of Classic McEliece on ARMv8

MinJoo Sim1, Siwoo Eum1, HyeokDong Kwon1,
HyunJun Kim1, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{minjoos9797, shuraatum, korlethean, khj930704, hwajeong84}@gmail.com

Abstract. Recently, the results of the NIST PQC contest were an-
nounced. Classic McEliece, one of the 3rd round candidates, was selected
as the fourth round candidate. Classic McEliece is the only code-based
cipher in the NIST PQC finalists in third round and the algorithm is re-
garded as secure. However, it has low efficiency. In this paper, we propose
an efficient software implementation of Classic McEliece, a code-based
cipher, on 64-bit ARMv8 processors. Classic McEliece can be divided
into Key Generation, Encapsulation, and Decapsulation. Among them,
we propose an optimal implementation for Encapsulation and Decapsu-
lation. Optimized Encapsulation implementation utilizes vector registers
to perform 16-byte parallel operations, and optimize using the specificity
of the identity matrix. Decapsulation implemented efficient Multiplica-
tion and Inversion on F2m field. Compared with the previous results, En-
capsulation showed the performance improvement of up-to 1.99× than
the-state-of-art works.

Keywords: 64-bit ARMv8 Processors, Code based Cipher, Classic McEliece,
NIST PQC, Parallel implementation, KEM

1 Introduction

Classic McEliece is the only code-based cipher in the NIST PQC finalists. The
basic structure is based on the McEliece [1] cryptosystem in 1978, and its sta-
bility has been verified through long-term research. In addition, the German
Federal Office for Information Security recommends Classic McEliece as long-
term security along with FrodoKEM [2].

Recently, NIST PQC final algorithms was decided. CRYSTALS-KYBER[3] was
selected as public key encryption and key establishment algorithms. And as
digital signature algorithms, CRYSTALS

DILITHIUM[4], FALCON[5], and SPHINCS+ [6] were selected. Optimal im-
plementation research on ARMv8 for the selected algorithm is being actively
conducted[7–12].

Although Classic McEliece is secure, it was not selected as a finalist due
to the large size of the public key. However, NIST PQC is conducting the 4th
candidate KEM, and it is judged that there is sufficient possibility because it is
the only code-based cipher among candidate algorithms [13].



2 Sim et al.

In this paper, we implement optimized Classic McEliece on ARMv8 proces-
sor. Our contributions are as follows:

1.1 Contribution

First Implementation of Classic McEliece on ARMv8 As far as we
know, there is no Classic McEliece optimization implementation on ARMv8 yet.
We present the first Classic McEliece optimization implementation of ARMv8.

Optimized Implementation of Encapsulation on ARMv8 We present
optimized implementation of Encapsulation on ARMv8. Optimized the Encap-
sulation process by optimizing the computation when generating the syndrome.
Most of the identity matrices in the syndrome generation process are zero, so we
use the omitting possibility for optimization.

Optimized Implementation of Decapsulation on ARMv8 We present
optimized implementation of Decapsulation on ARMv8. During decapsulation,
Multiplication operations and Inversion operations are performed on extended
binary finite-field F2m , where m is 12 or 13. Multiplication operations and In-
version operations take a lot of time. Therefore, in this paper, Multiplication
and Inversion operations on F2m operating in decapsulation are efficiently im-
plemented using ARM instructions.

2 Preliminaries

2.1 Classic McEliece

Classic McEliece is designed to combine the advantages of McEliece and Nieder-
reiter. The existing McEliece uses a Generator Matrix(G) for the public key,
whereas Classic McEliece uses the Parity Check Matrix(H) used as the public
key in Niederreiter. Classic McEliece is designed with a simple matrix multiplica-
tion process for Encapsulation and Decapsulation, allowing for fast computation.
It also has the advantage of having a shorter Ciphertext compared to the existing
Ciphertext. On the other hand, the length of the public key is very long and the
key generation process takes a long time. The length of the public key is 256KB
to 1.3MB, using it difficult to use on low-end devices with small memory space.
Classic McEliece parameters are shown in Table 1.

Classic McEliece algorithm can be divided into three processes: a key gen-
eration process, an encryption process(Encapsulation), and a decryption pro-
cess(Decapsulation).

– Key Generation In the Key Generation process, first, g(x) of degree t
required for Goppa code generation and L called a support set are gener-
ated. Generate H(parity check matrix) using g(x) and L. The generated H
is converted to binary form and converted to systematic form by performing



Title Suppressed Due to Excessive Length 3

Gaussian elimination. That is, it is converted to the form H = (In−k|T),
and after removing In−k(Identity Matrix), the remaining T matrix is used
as a public key. The private key consists of g(x) and L, which are used to
generate the Goppa code, and a randomly generated s. In conclusion, the
public key is T and the private keys are g(x), L, and s.

– Encapsulation In the Encapsulation process, a random vector(e) with weight
t is first generated. A syndrome(C0) is generated using the generated e and
the public key(T). It uses the value of e and the number 2 to generate a hash
value(C1 = Hash(2, e)) and combines the two values(C = C0|C1) to finally
produce the ciphertext(C). Finally, for the session key, the hash value of the
number 1, e, C will be the session key(K = Hash(1, e, C)).

– Decapsulation In the Decapsulation process, Decapsulation is performed
using the delivered value of C and the owned private key. The value of
e(error matrix) can be obtained by performing syndrome decoding with the
syndrome(C0) included in C(ciphertext) and the private key. It is determined
whether there is an error by comparing the hash value with the number 2 in
front of the e value obtained through syndrome decoding and the C1 value
included in the transmitted C(ciphertext). If the two values are the same,
the hash value of the numbers 1, e, and C is computed to obtain the session
key.

Table 1. Parameters of Classic McEliece; m is log2q (q is the size of the field used); n
is length of code, and t is the sizes of guaranteed error-correction capability;

Algorithm m n t security level Public key Secret key

Mceliece 348864 12 3,488 64 1 261,120 6,492

Mceliece 460896 13 4,608 96 3 524,160 13,608

Mceliece 6688128 13 6,688 128 5 1,044,992 13,932

Mceliece 6960119 13 6,960 119 5 1,047,319 13,948

Mceliece 8192128 13 8,192 128 5 1,357,824 14,120

2.2 ARMv8 Processor

ARM is an ISA(Instruction Set Architecture) high-performance embedded pro-
cessor. ARMv8-A supports both 32-bit AArch32 and 64-bit AArch64 architec-
tures for backward compatibility. ARMv8-A provides 31 64-bit general-purpose
registers from x0 to x30 and 32 128-bit vector registers from v0 to v31. In this
case, the general purpose registers can also be used as 32-bit registers from w0
to w30. Vector registers can be operated in parallel. The vector registers can be
processed by dividing stored values into specific units. There are four types of
units supported: byte (8-bit), half word (16-bit), single word (32-bit), and dou-
ble word (64-bit). A vector instructions (called ASIMD or NEON) is used for
the vector register to perform parallel operation. Table 2 shows that instruction
lists for proposed implementations [14].



4 Sim et al.

Table 2. Summarized instruction set of ARMv8 for Classic McEliece; Xd, Vd: desti-
nation register (general, vector), Xn, Vn, Vm: source register (general, vector, vector),
Vt: transferred vector register.

asm Operands Description Operation

ADD Xd, Xn, Xm Add Xd ← Xn + Xm

AND Xd, Xn, Xm(,shifted #amount) Bitwise AND(shifted register) Xd ← Xn & (Xm <<#amount or
Xm >>#amount)

SUB Xd, Xn, #imm Substact (immediate) Xd ← Xn - Xm

EOR Xd, Xn, Xm Bitwise Exclusive OR Xd ← Xn ⊕ Xm

EOR Xd, Xn, Xm(,shifted #amount) Bitwise Exclusive OR (shift register) Xd ← Xn ⊕ (Xm <<#amount or
Xm >>#amount)

ORR Xd, Xn, Xm(,shifted #amount) Bitwise OR(shifted register) Xd ← Xn | (Xm <<#amount or
Xm >>#amount)

LD1 Vt.T, [Xn]

Load multiple single-element

structures to one, two, three,

or four registers

Vt ← [Xn]

LDR Xt, [Xn], amount Load Register Xt ← [Xn]

MOV Vd.T, Vn.T Move(vector) Vd ← Vn

MOV Vd.Ts[index1], Vn.Ts[index2]
Move vector element to

another vector element
Vd ← Vn

MOV Xd, Xn Move(register) Xd ← Xn

MOV Xd, #imm Move(immediate) Xd ← imm

RET {Xn} Return from subroutine Return

LSL Xd, Xn, #shift Logical Shift Left(immediate) Xd ← Xn <<#shift

LSR Xd, Xn, #shift Logical Shift Right(immediate) Xd ← Xn >>#shift

MUL Xd, Xn, Xm Multiply Xd ← Xn × Xm

BIC Vd.T, Vn.T, Vm.T Bitwise bit Clear(vector, register) Clear

LDRB Wt, [Xn], #amount Load Register Byte Wt ← [Xn]

LDRH Wt, [Xn], #amount Load Register Half word Wt ← [Xn]

STRB Wt, [Xn], #amount Store Register Byte Wt → [Xn]

STRH Wt, [Xn], #amount Store Register Half word Wt → [Xn]

CBNZ Wt, Label Compare and Branch on Nonzero Go to Label

CBZ Wt, Label Compare and Branch on Zero Go to Label

2.3 Previous Implementations of Post Quantum Cryptography on
ARM Processors

Becker et al. proposed implemented an optimization for Barrett multiplication
using the 64-bit ARM Cortex-A NEON vector instruction [8]. They are the
combination of Montgomery multiplication and Barrett reduction resulting in
Barrett multiplication which allows particularly efficient modular one-known-
factor multiplication using the NEON vector instructions. And proposed novel
techniques combined with fast two-unknown-factor Montgomery multiplication,
Barrett reduction sequences, and interleaved multi-stage butterflies result in sig-



Title Suppressed Due to Excessive Length 5

nificantly faster code. As a result, in the Saber, NTTs are far superior to Toom-
Cook multiplication on the ARMv8-A architecture, outrunning the matrix-to-
vector polynomial multiplication by 2.0×. On the Apple M1, the matrix-vector
products run 2.1× and 1.9× faster for Kyber and Saber respectively.

Sanal et al. proposed implemented Kyber encryption on 64-bit ARM Cortex-
A and Apple A12 processors [9]. They improved the performance of noise sam-
pling, Number Theoretic Transform (NTT), and symmetric function implemen-
tations based on an AES accelerator. As the result, the proposed Kyber512
implementation on ARM64 improved the previous work by 1.72×, 1.88×, and
2.29× for key generation, encapsulation, and decapsulation, respectively. And,
the proposed Kyber512-90s implementation(using AES accelerator) is improved
by 8.57×, 6.94×, and 8.26× for key generation, encapsulation, and decapsula-
tion, respectively.

Chen et al. proposed implemented Classic McEliece optimizations on the
ARM Cortex-M4 [15]. The Cortex-M4 is a family of 32-bit ARMv7. Due to the
small RAM size of 192KB, the public key was stored in the ROM and imple-
mented. In addition, performance improvement was shown by using Quick sort
when generating errors in the encapsulation process and applying the bitslicing
technique for matrix multiplication optimization. Decapsulation was also op-
timized for bitslicing and Radix-16 implementation. As a result, compared to
FrodoKEM, which has similar security strength, performance improvement was
79× faster in Encapsulation and 17× faster in Decapsulation.

3 Proposed Method

3.1 Optimized Implementation of Encapsulation

Excluding the hash process from encapsulation, it can be divided into two pro-
cesses: random vector generation and syndrome generation. In this paper, we
optimize the syndrome generation process. This process is called the ENCODE
process. The encoding process adds an identity matrix to the public key T to
create a parity check matrix. Then the parity check matrix is multiplied by a
randomly generated e matrix. ENCODE is defined as follow:

Define H = (I n−k|T ).
Compute and return C 0 = He ∈ Fn−k

2

Figure 1 shows the ENCODE process. 8 Rows are each matrix multiplied by
the error and then combined into 1 S. At this time, it can be seen that 96-byte
corresponding to the identity matrix are 0 except for 1-byte. Of course, most
of the values of the error matrix are also 0, but it is impossible to know which
index has a 0 value. That is, the operation of the identity matrix part except for
the public key may be omitted except for 1-byte.

Algorithm 1 shows the implementation of the identity matrix part. For non-
zero values, the eight values (1,2,4,8,16,32,64,128) are used repeatedly. This re-
peated value is n used in line 4. Since the error only needs to be computed for



6 Sim et al.

1 0 0 … 0 0 0 Public Key

2 0 0 … 0 0 0 Public Key

128 0 0 … 0 0 0 Public Key

0 1 0 … 0 0 0 Public Key

…

0 0 0 … 0 0 0 Public Key

0 0 0 … 0 0 128 Public Key

…

96 byte 340 byte

76
8 ×

e[0]

e[1]

e[7]

e[8]

e[434]

e[435]

…
…

S[0]

S[1]

S[7]

S[8]

S[94]

S[95]

…
…

=

436
byte

436 byte (3488 bit)

Fig. 1. ENCODE process of Encapsulation(In Classic McEliece-348864)

Algorithm 1 Assembly code implementing a macro that calculates only 1-byte
of the identity matrix part(x3:error matrix address, x5:non-zero index in identity
matrix, n:(1,2,4,8,16,32,64,128))

.macro row front n
1: movi.16b v0, #0
2: add x3, x2, x5
3: ldrb w6, [x3]
4: and w6, w6, #\n
5: mov.b v0[0], w6
6: add x3, x2, #96
.endm



Title Suppressed Due to Excessive Length 7

Algorithm 2 Syndrome 1-bit value operation macro(n:(1,2,4,8,16,32,64,128), i:
Bit index when storing as bytes in S, v0: (public key × error))

.macro calculate s 1bit n, i
1: row front \n
2: row process 21

3: row last

4: mov.d v3[0], v0[1]
5: eor.16b v0, v0, v3
6: mov.s v3[0], v0[1]
7: eor.16b v0, v0, v3
8: mov.h v3[0], v0[1]
9: eor.16b v0, v0, v3
10: mov.b v3[0], v0[1]
11: eor.16b v0, v0, v3

12: mov.s w9, v0[0]
13: and x9, x9, #0xff

14: lsr x10, x9, #4
15: eor x9, x9, x10
16: lsr x10, x9, #2
17: eor x9, x9, x10
18: lsr x10, x9, #1
19: eor x9, x9, x10
20: and x9, x9, #1
21: lsl x9, x9, #\i
22: orr x8, x8, x9
.endm

non-zero values, the operation is performed by calling only the error values that
have an index equal to the non-zero matrix index. The index of the non-zero
matrix is stored in the x5 register used in line 3. This index is incremented by 1
after 8 iterations (1,2,4,8,16,32,64,128). x3 is the address of the error matrix. It
is computed by incrementing this value by x5(index) and then calling the value.
Finally, correct the address of the error so that it is the same as the index where
the public key value is stored.

In this paper, 16-byte parallel operation was performed using ARMv8 vector
registers. Algorithm 2 is the assembly code to calculate the 1-bit syndrome. In
lines 1-3, the public key and the error are computed in parallel and stored in
the v0 register divided into 16 bytes. lines 4-11 collect the divided values into
1-byte. Finally, lines 12-22 perform an operation to obtain a 1-bit value from
the calculated value. In line 21, i means the bit position in the byte. If this is
repeated 8 times, one syndrome byte is calculated.

And in this paper, 8-byte parallel operation was performed using general
registers. Algorithm 3 is an assembly code for calculating 1-bit syndrome using
general registers, and has the similarly as Algorithm 2. In lines 1-3, the public
key and the error are computed in parallel and stored in the x6 register divided
into 8-byte. lines 4-9 collect the divided values into 1-byte. Finally, lines 10-19
perform an operation to obtain a 1-bit value from the calculated value. In line
18, i is the same as i in Algorithm 2.

3.2 Optimized Implementation of Decapsulation

Decapsulation uses a decoder of the constant-time Berlekamp-Massey (BM) al-
gorithm. Inside the BM algorithm, Multiplication and Inversion are performed
on the extended binary finite-filed F2m . The expensive operations on public keys
are multiplication and inversion on finite-field. Therefore, in this paper, optimiza-
tion of multiplication and inversion on F2m used in decapsulation is performed



8 Sim et al.

Algorithm 3 Syndrome 1-bit value operation macro using only general registers
(n:(1,2,4,8,16,32,64,128), i: Bit index when storing as bytes in S, x6: (public key
× error))

.macro calculate s 1bit g n, i
1: row front \n
2: row process 21

3: row last

4: lsr x7, x6, #32
5: eor x6, x6, x7
6: lsr x7, x6, #16
7: eor x6, x6, x7
8: lsr x7, x6, #8
9: eor x9, x6, x7

10: and x9, x9, #0xff

11: lsr x10, x9, #4
12: eor x9, x9, x10
13: lsr x10, x9, #2
14: eor x9, x9, x10
15: lsr x10, x9, #1
16: eor x9, x9, x10
17: and x9, x9, #1
18: lsl x9, x9, #\i
19: orr x8, x8, x9
.endm

(m is 12 or 13). In the specification, F212 consists of F2[x]/(x
12 + x3 + 1) and

F213 consists of F2[x]/(x
13 + x4 + x3 + x+ 1) [15].

Multiplication on F213 . Multiplication on F2m proceeds as follows. Multipli-
cation is performed on two m-bit values. At this time, since the multiplication
result may be out of the range of F2m , the multiplication is completed on F2m

by performing modular reduction on the multiplication result value.
Algorithm 4 is an optimization implementation code for multiplication on

F213 . As shown in Table 2, ARMv8 general-purpose registers can implement
logical operations and shift operations using one instruction. The part corre-
sponding to lines 4-11 of Algorithm 4 implements the Multiplication part. The
omitted part proceeds as follows. As shown in line 6, the SHIFT operation is
performed by 1 to the left and the AND operation is performed. This SHIFT
operation is a process of increasing the value by 1 up to m− 1 and performing
the operations from lines 6 to 8 in the same way. Finally, it can be seen that the
m − 1 value of 12 is applied in line 9. And if multiplication is finished through
this process, there may be a result of multiplication out of F213 . Therefore, after
performing modular reduction, the operation corresponding to lines 12 to 24,
on the result of multiplication, the result of the operation is returned. As such,
it was possible to efficiently implement the corresponding part according to the
characteristics of the ARM instructions.

Algorithm 5 is an optimization implementation code for multiplication on
F213t . t corresponds to the value of t in Table 1. w7 is the index value of loop0.
w8 and w9 is the index value of loop1 and loop2. w12 is the index value of
loop3. In the lines 18, 39, 44, 49,and 54, Multiplication on F213 , the operation of
Algorithm 4, is performed. For the lines 6-12, after the operation, the operation
to initialize to 0 is performed for the corresponding array in which the operation
result value is to be stored. The lines 13-33 perform a multiplication operation



Title Suppressed Due to Excessive Length 9

Algorithm 4 Multiplication on F213(x0, x1 is input register; x13, x14 is tem-
porary registers).

Input: a (F213), b (F213)
Output: a * b (F213)

1: mov x10, x0
2: mov x20, x1
3: mov x3, #1

4: and x14, x20, x3, lsl #1
5: mul x13, x10, x14

6: and x14, x20, x3, lsl #2
7: mul x14, x10, x14
8: eor x13, x13, x14

...
9: and x14, x20, x3, lsl #12
10: mul x14, x10, x14

11: eor x13, x13, x14

12: and x14, x13, #0x1FF0000

13: eor x13, x13, x14, lsr #9
14: eor x13, x13, x14, lsr #10
15: eor x13, x13, x14, lsr #12
16: eor x13, x13, x14, lsr #13

17: and x14, x13, #0x000E000

18: eor x13, x13, x14, lsr #9
19: eor x13, x13, x14, lsr #10
20: eor x13, x13, x14, lsr #12
21: eor x13, x13, x14, lsr #13

22: lsl x14, x3, #13
23: sub x14, x14, #1
24: and x0, x13, x14

on the two input values. The lines 35-65 performs the reduction operation on
the results of the lines 13-33.

Inversion on F213 . Inversion operation on F213 can obtain by dividing 1(F213)
input value. Algorithm 6 represents the (S2)2 operation on the input value as
part of the inversion operation(in this case, the input value is referred to as
S(F213). Operation on the square of the input value S can be calculated by
changing the OR operation, SHIFT operation, and AND operation. This can be
implemented as lines 3-10 of Algorithm 6. The OR operation, which is one of
the logical operations, was also efficiently implemented so that the OR operation
proceeds after the SHIFT operation with one ORR instruction in the same way
as the AND instruction. And, as in multiplication on F2m , the result obtained
after the operation may be out of the range of F213 , so the operation is completed
by performing modular reduction on the result value.

4 Evaluation

Implementations were evaluated on a MacBook Pro 13 with the Apple M1 chip
that can be clocked up to 3.2 GHz. Since ARMv8 does not have a Classic
McEliece implementation, the performance is compared with the existing PQ-
Clean project reference code [16].

Encapsulation(up to ENCODE) was implemented in two ways. The two meth-
ods are parallel operation using vector register and parallel operation using gen-
eral register, respectively. Therefore, we measured the operation time(”up to”



10 Sim et al.

Algorithm 5 Multiplication on F213t(In Classic McEliece-460896)(x0, x1, x2 is
input register; w8, w9, w11, w12 is index.

Input: a (F213t), b (F213t)
Output: a * b (F213t)
1: mov x3, #1
2: mov w8, #t
3: mov w9, #t
4: mov w12, #t− 1
5: mov w11, #t ∗ 2

6: loop0:

7: mov w23, #0
8: strh w23, [x0], #2
9: add w11, w11, #− 2
10: cbnz w11, loop0

11: add x0, x0, #− t ∗ 2 ∗ 2
12: ldrh w7, [x1]

13: loop1:

14: ldrh w15, [x2]
15: ldrh w23, [x0]
16: mov w10, w7
17: mov w6, w15
18: gf mul

19: eor w23, w23, w13
20: add x2, x2, #2
21: strh w23, [x0], #2
22: add w8, w8, #− 1
23: cbnz w8, loop1

24: cbz w8, loop2

25: loop2:

26: add x1, x1, #2
27: ldrh w7, [x1]
28: add x0, x0, #− (t ∗ 2)− 2
29: add x2, x2, #− t ∗ 2
30: mov w8, #t
31: add w9, w9, #− 1
32: cbnz w9, loop1

33: cbz w9, loop3

34: loop3:

35: add x0, x0, #188

36: ldrh w23, [x0]
37: mov x10, x23
38: mov x6, #714
39: gf mul

40: mov x24, x13

41: ldrh w23, [x0]
42: mov x10, x23
43: mov x6, #5296
44: gf mul

45: mov x25, x13

46: ldrh w23, [x0]
47: mov x10, x23
48: mov x6, #728
49: gf mul

50: mov x26, x13

51: ldrh w23, [x0]
52: mov x10, x23
53: mov x6, #5881
54: gf mul

55: mov x5, x13

56: add x0, x0, #− 170

57: ldrh w23, [x0]
58: eor w23, w23, w24
59: strh w23, [x0], #− 12
60: ldrh w23, [x0]
61: eor w23, w23, w25
62: strh w23, [x0], #− 2
63: ldrh w23, [x0]
64: eor w23, w23, w26
65: strh w23, [x0], #− 8
66: ldrh w23, [x0]
67: eor w23, w23, w5
68: strh w23, [x0], #2
69: add w12, w12, #− 1
70: cbnz w12, loop3



Title Suppressed Due to Excessive Length 11

Algorithm 6 Partial operation process of inversion operation on F213(x0 is
input register; x11, x13, x14 is temporary registers).

Input: a(F213)
Output: (a2)2(F213)

1: mov x10, x0
2: mov x12, #1

3: orr x11, x10, x10, lsl #24
4: and x10, x11, #0x000000FF000000FF

5: orr x11, x10, x10, lsl #12
6: and x10, x11, #0x000F000F000F000F

7: orr x11, x10, x10, lsl #6
8: and x10, x11, #0x0303030303030303

9: orr x11, x10, x10, lsl #3
10: and x10, x11, #0x1111111111111111

11: and x13, x10, #0x0001FF0000000000

12: eor x10, x10, x13, lsr #9
13: eor x10, x10, x13, lsr #10
14: eor x10, x10, x13, lsr #12
15: eor x10, x10, x13, lsr #13

16: and x13, x10, #0x000000FF80000000

17: eor x10, x10, x13, lsr #9
18: eor x10, x10, x13, lsr #10
19: eor x10, x10, x13, lsr #12
20: eor x10, x10, x13, lsr #13

21: and x13, x10, #0x000000007FC00000

22: eor x10, x10, x13, lsr #9
23: eor x10, x10, x13, lsr #10
24: eor x10, x10, x13, lsr #12
25: eor x10, x10, x13, lsr #13

26: and x13, x10, #0x00000000003FE000

27: eor x10, x10, x13, lsr #9
28: eor x10, x10, x13, lsr #10
29: eor x10, x10, x13, lsr #12
30: eor x10, x10, x13, lsr #13

31: lsl x14, x3, #13
32: sub x14, x14, #1
33: and x0, x13, x14

Table 3. Encapsulation (up to ENCODE) Evaluation result on ARMv8 processors(Apple
M1) in terms of execution timing(i.e. clock cycles) and compile option -O3.(v is vector
register and g is general register.)

Algorithm mceliece 348864 mceliece 460896 mceliece 6688128 mceliece 8192128

[16] 7,426.531 10,177.125 21,789.469 28,130.500

Our work(v) 3,741.219 7808.875 14,393.469 27,208.156

Our work(g) 6,502.188 13,337.344 25,058.688 29,757.313

means until the hashing process is performed) by repeating the two methods
of encapsulation 10,000 times and compiled using the compile option -O3 (i.e.
fastest). Performance evaluation is given in Table 3.

It was confirmed that Encapsulation of our implementation using vector reg-
isters performed average 1.7× times higher than Encapsulation of our implemen-
tation using general registers.

The performance of the implementation of Encapsulation optimization using
vector registers performed in Classic Mceliece 348864 is 1.99× times higher than
[16]. The performance of the implementation of Encapsulation optimization us-
ing vector registers performed in Classic Mceliece 460896 is 1.30× times higher
than [16]. The performance of the implementation of Encapsulation optimiza-
tion using vector registers performed in Classic Mceliece 6688128 is 1.51× times



12 Sim et al.

higher than [16]. The performance of the implementation of Encapsulation opti-
mization using vector registers performed in Classic Mceliece 8192128 is 1.03×
times higher than [16].

5 Conclusion

In this paper, we implemented the optimization of Classic McEliece Encapsula-
tion and Decapsulation on ARMv8. Our Encapsulation implementation provides
two methods. The two methods are 16-byte parallel operation using vector regis-
ters and 8-byte parallel operation using general registers. As a result of compar-
ing the two methods, it was confirmed that the parallel operation using the vector
register improved performance 1.7× compared to the parallel operation using the
general register. As a result, our Encapsulation implementation achieves suffi-
cient performance improvement was achieved only through syndrome-generation
optimizations and efficiently performs 16-byte parallel operations using vector
registers. Our Decapsulation uses ARM instruction efficiently to achieve suffi-
cient performance improvement through optimization of multiplication and in-
version operations for F2m . As a result, Encapsulation showed a performance
improvement of 1.03× ∼ 1.99×. As a future study, we propose an optimized
implementation using Classic Mceliece on a low-end processor (i.e. AVR, RISC-
V) and another optimized implementation of post-quantum cryptography on an
ARMv8 processor.

References

1. R. J. McEliece, “A public-key cryptosystem based on algebraic,” Coding Thv,
vol. 4244, pp. 114–116, 1978.

2. D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederha-
gen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al., “Classic mceliece:
conservative code-based cryptography,” NIST submissions, 2017.

3. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm specifications and
supporting documentation,” NIST PQC Round, vol. 2, no. 4, 2019.

4. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “Crystals-dilithium: A lattice-based digital signature scheme,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 238–268,
2018.

5. P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-fourier lattice-based
compact signatures over ntru,” Submission to the NIST’s post-quantum cryptogra-
phy standardization process, vol. 36, no. 5, 2018.

6. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The sphincs+ signature framework,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2129–2146, 2019.

7. Y. Kim, J. Song, and S. C. Seo, “Accelerating falcon on ARMv8,” IEEE Access,
vol. 10, pp. 44446–44460, 2022.



Title Suppressed Due to Excessive Length 13

8. H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang, “Neon ntt:
faster dilithium, kyber, and saber on cortex-a72 and apple m1,” Cryptology ePrint
Archive, 2021.

9. P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-Kermani, “Kyber
on arm64: Compact implementations of kyber on 64-bit arm cortex-a processors,”
in International Conference on Security and Privacy in Communication Systems,
pp. 424–440, Springer, 2021.

10. Y. Kim, J. Song, T.-Y. Youn, and S. C. Seo, “Crystals-dilithium on armv8,” Se-
curity and Communication Networks, vol. 2022, 2022.

11. S. Kölbl, “Putting wings on sphincs,” in International Conference on Post-
Quantum Cryptography, pp. 205–226, Springer, 2018.

12. H. Becker and M. J. Kannwischer, “Hybrid scalar/vector implementations of keccak
and sphincs+ on aarch64,” Cryptology ePrint Archive, 2022.

13. “Nist pqc project.” https://csrc.nist.gov/Projects/post-quantum-cryptography.
Accessed : 2022-07-29.

14. “Armv8-a instruction set architecture.” https://developer.arm.com/documentation
/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets. Accessed: 2022-07-
29.

15. M.-S. Chen and T. Chou, “Classic McEliece on the ARM Cortex-M4,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 125–148,
2021.

16. “PQClean project.” Available online: https://github.com/PQClean/PQClean. Ac-
cessed: 2022-07-29.


