gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies

Foteini Baldimtsi1, Panagiotis Chatzigiannis1, S. Dov Gordon1, Phi Hung Le1, and Daniel McVicker1

George Mason University
{foteini,pchatzig,gordon,ple13,dmcvicke}@gmu.edu

Abstract. We present gOTzilla, a protocol for interactive zero-knowledge proofs for very large disjunctive statements of the following format: given publicly known circuit C, and set of values $Y = \{y_1, \ldots, y_n\}$, prove knowledge of a witness x such that $C(x) = y_1 \lor C(x) = y_2 \lor \cdots \lor C(x) = y_n$. These type of statements are extremely important for the proof of assets (PoA) problem in cryptocurrencies where a prover wants to prove the knowledge of a secret key sk that associates with the hash of a public key $H(pk)$ posted on the ledger. We note that the size of n in popular cryptocurrencies, such as Bitcoin, is estimated to 80 million.

For the construction of gOTzilla, we start by observing that if we restructure the proof statement to an equivalent of proving knowledge of (x, y) such that $(C(x) = y) \land (y = y_1 \lor \cdots \lor y = y_n)$, then we can reduce the disjunction of equalities to 1-out-of-N oblivious transfer (OT). Our overall protocol is based on the MPC in the head (MPCitH) paradigm. We additionally provide a concrete, efficient extension of our protocol for the case where C combines algebraic and non-algebraic statements (which is the case in the PoA application). We achieve an asymptotic communication cost of $O(\log n)$ plus the proof size of the underlying MPCitH protocol. While related work has similar asymptotic complexity, our approach results in concrete performance improvements.

We implement our protocol and provide benchmarks. Concretely, for a set of size 1 million entries, the total run-time of our protocol is 14.89 seconds using 48 threads, with 6.18 MB total communication, which is about 4x faster compared to the state of the art when considering a disjunctive statement with algebraic and non-algebraic elements.

1 Introduction

A zero-knowledge (ZK) proof [30] allows a prover P to convince a verifier V that a statement x is true without revealing any further information. ZK proofs have numerous applications: they are used as a building block in various cryptographic constructions such as secure multiparty computation [29], signatures [11] and anonymous credentials [16] just to name a few, and more recently they have been used as a core component in privacy-preserving cryptocurrencies [13].

ZK proofs can be constructed generically for any NP language [29], however such generic constructions are usually not efficient. In order to achieve practical constructions, customized ZK proofs have been designed for specific languages (e.g. particular algebraic statements), or with specific optimization goals (e.g. proof size succinctness or non-interactivity). Many different approaches have been proposed, each with different trade-offs on the types of supported languages, efficiency goals and underlying assumptions. In terms of efficiency, the tradeoffs appear in the prover complexity, the verifier complexity, and the communication costs.

Our focus. In our work, we focus on zero-knowledge proofs that can efficiently support very large disjunctive statements. We are inspired by the Proof of Assets (PoA) problem in UTXO based cryptocurrencies where a prover (usually some exchange or other organization) wishes to convince a verifier that it knows the respective private keys of at least a certain number of coins on the blockchain, without revealing which those coins are. In Bitcoin, and other cryptocurrencies with similar structure, PoA can be expressed as a disjunctive ZK proof where the statement is a set of hashed public keys (often called addresses), and the witness is one or more secret keys that correspond to some of the public keys. The challenge when computing a ZK proof
for PoA is bifold: (a) the size of the statement grows with the total size of the Bitcoin UTXO set, which has hundreds of millions of elements, and (b) the statement is a combination of an algebraic circuit – the discrete log relation between \((sk, pk)\) – and a Boolean hash function, since the prover needs to prove that it knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.

Our Construction. We first focus on the challenge of dealing with very large statements. Specifically, we are interested in statements of the following form: for a publicly known circuit \(C\), the prover wishes to prove that \(C(x) = y\) for \(y \in \{y_1, \ldots, y_n\}\), the prover knows the secret key for one of the hashed public keys. Concrete protocols for the PoA application have been designed in the literature \([22, 5]\), but as explained in related work (Section 1.1), they fall short in addressing the two main design challenges simultaneously.
protocol as a black box. Our results are presented in detail in Section 6, where we show that we can prove knowledge over a disjunctive statement of $n = 2^{20}$ elements in 14.89 seconds, with 6.18 MB of communication and 10 seconds network latency at the worst case, for statistical security parameter $\lambda = 40$. Our evaluation shows a significant improvement in total protocol run-time over Mac’n’Cheese [10] the state of the art in disjunctive proofs, which has similar asymptotic costs to us as discussed in the Related Work section below.

1.1 Related Work

We provide a short, non exhaustive, overview of common ZK proof types for disjunctive proofs and mixed statements, as well as an overview of solutions specific to the PoA problem.

Standard ZK Techniques. Σ-protocols form a well studied class of efficient protocols specifically for algebraic statements, such as discrete logarithms and roots [41,32], while garbled-circuit approaches were used to efficiently prove Boolean circuits [35]. We note that if one attempted to use a Σ-protocol to prove a statement about a function represented as a Boolean (or arithmetic) circuit C, both proving and verification costs would grow linearly with the size of the circuit (a simple SHA256 evaluation would result in tens of thousands of exponentiations) which makes them prohibitive for a PoA like statement.

ZK-SNARKs (Succinct Non-Interactive Arguments of Knowledge) [40,31,12] is another well studied type of ZK proofs that received a lot of attention the last few years due to their use in private cryptocurrencies [13]. Their goal is to offer constant, succinct proof sizes and short verification times. In particular, ZK-SNARKs can be verified in time that is linear in the length of the input x, rather than the length of the circuit C. However, they suffer from large prover overhead, since they require the prover to perform a large number of public-key operations that is proportional to the size of the circuit representing the statement. ZK-SNARKs are better suited for Boolean or arithmetic circuits and while they could be used for algebraic statements, they would require circuits with thousands or millions of gates for a simple computation like an exponentiation exploding the prover’s cost. Finally, many ZK-SNARKs constructions, require an additional trust assumption. Namely, to guarantee soundness, they need a common reference string (CRS) that is generated ahead of time by a trusted party (or a distributed protocol). Some recent works [42,43,6,12,37] use techniques such as interactive oracle proofs (IOP), vector oblivious linear evaluation (VOLE) and the MPC in-the-head paradigm and do not rely on a setup phase, yet, they still impose high computational costs on the prover side thus are not directly relevant to the considered PoA application.

Disjunctive ZK Proofs. A number of related works have examined the general problem of building efficient disjunctive ZK proofs. Following the seminal work by Cramer et al. on constructing standard disjunctive proofs [21], Stacked Garbling [33] proposed a garbled-circuit approach for creating a disjunctive proof with sublinear communication complexity, based on Jawurek et al. [35]. Later, Stacking Sigmas [28] provided a generic compiler for reducing communication complexity (i.e “stacking”) of disjunctive Sigma-protocols satisfying a specific “stackable” property, and is compatible with recent MPCitH style ZK protocols such as KKW [37] and Ligero [6].

Table 1. Asymptotic comparison of disjunctive ZK proof systems for n statements for a single circuit C. NI = Non-Interactive. Π denotes an MPCitH protocol, $\Pi_{Runtime}$ and $\Pi_{Proofsize}$ denote Runtime and Proofsize of Π, respectively.

<table>
<thead>
<tr>
<th></th>
<th>No setup</th>
<th>NI</th>
<th>Prover Runtime</th>
<th>Proof size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligero [6]</td>
<td>✔</td>
<td>✔</td>
<td>$O((n +</td>
<td>C</td>
</tr>
<tr>
<td>$\Pi +$ Stacking Sigmas [28]</td>
<td>✔</td>
<td>✔/✗</td>
<td>$O(n) + \Pi_{Runtime}$</td>
<td>$O(\log n) + \Pi_{Proofsize}$</td>
</tr>
<tr>
<td>Mac’n’cheese [10]</td>
<td>✔</td>
<td>✗</td>
<td>$O(n +</td>
<td>C</td>
</tr>
<tr>
<td>Goel et al. [27]</td>
<td>✔</td>
<td>✔</td>
<td>$O(n) + \Pi_{Runtime}$</td>
<td>$O(\log n) + \Pi_{Proofsize}$</td>
</tr>
<tr>
<td>gOTzilla</td>
<td>✔</td>
<td>✗</td>
<td>$O(n) + \Pi_{Runtime}$</td>
<td>$O(\log n) + \Pi_{Proofsize}$</td>
</tr>
</tbody>
</table>
Recently, Mac’n’Cheese [10] proposed a new, VOLE based approach to build generic zero-knowledge proofs for disjunctive statements of the form \((x, i) : C_i(x) = y_i\) for \(i \in \{1, \ldots, n\}\) with communication cost of \(\max\{|C_i|\} + \log n\). In the general case where each \(C_i\) is a different circuit, both the prover and verifier have to execute all branches to construct or verify the proof, causing the total computation cost to be \(O(\sum_{i=1}^{n}|C_i|)\). In the special case where all the circuits \(C_i\) are identical, using our observation above that restructures the disjunctive portion, their construction can be slightly modified to improve the computational cost to \(O(n + |C|)\).

In a work concurrent to ours, Goel et al. [27] provided a membership proof protocol towards building a ring signature, which is equivalent to our observation discussed above (i.e. restructuring a disjunctive proof statement to a disjunction of equalities). Similar to our construction, this work relies on an underlying MPCitH protocol and has equivalent asymptotic costs, however it follows a cut and choose approach which naturally implies higher concrete computational costs, while having reduced concrete communication costs. In addition, being public-coin, it can be converted to a non-interactive protocol in the random oracle model using the Fiat-Shamir transform. However, as we later discuss in Section 5.1 interaction is naturally implied for our application scenario, and we discuss the tradeoffs between computation and communication costs in Section 6.

In Table 1 we provide a comparison of basic techniques for disjunctive statements. We note that although asymptotically we might have similar performance as Mac’n’Cheese [10] or Stacking Sigmas [28] combined with a suitable MPCitH protocol \(\Pi\), we have significant concrete improvements. In Section 6.1 we present a concrete comparison of our disjunctive protocol with Mac’n’Cheese [10] to showcase our improvement by 4x in runtime for the case of “mixed” disjunctive statements. There is no available implementation of Stacking Sigmas [28] for a direct comparison, however Stacking sigmas is expected to be more expensive than Mac’n’Cheese concretely due to its underlying techniques (Stacking sigmas relies on commitments with elliptic curve operations which are more expensive than VOLE used in Mac’n’cheese). Also, there is no available implementation for Goel et al. [27] therefore our comparison is based on their evaluation. We note that a caveat of our approach is that we generally have larger memory requirements as opposed to Mac’n’Cheese where the prover and verifier are not required to store the entire proof statement in memory. However, as we discuss in Section 6.1 gOTzilla can optimize RAM usage by generating the required data on the fly as needed to improve our storage costs.

1-out-of-n Oblivious Transfer and PIR The connection between PIR and Oblivious Transfer was studied before in [39,24] (where 1-out-of-n OT was also referenced as “Symmetric PIR” or SPIR). These works provided transformations of PIR to SPIR, which however have an overhead in computational and/or communication costs.

While most 1-out-of-n OT protocols require linear communication, Zhang et al. [44] presented a protocol with \(O(\sqrt{n})\) communication costs, while also proposing using PIR in conjunction with the appropriate ZK proofs. The protocol is quite practical (for short messages) in terms of computation time, however, the communication cost is high. For \(n = 10^6\) and the message size of 192 bits, it took their protocol 30 seconds and 480 MB on an Intel Core i5-2400 CPU running at 3.10 GHz in LAN setting. Beside the high communication cost, another drawback of their protocol is that the message space is restricted by the size of the group used in their protocol. When the message length is at least 10000 bits (as in our use case), it is not clear how to modify [44] to make it work while still being practical.

Proof of Assets. Provisions [22] was the first attempt to create an assets proof on behalf of a cryptocurrency exchange, as a part of a general solvency proof. The proof was constructed using standard \(\Sigma\)-protocols, which however was only compatible with unhashed public keys (P2PK), thus severely limiting both the anonymity set and its practical use. Agrawal et al. [5] made proving assets with hashed public keys possible as part of a zk-SNARK-based protocol combined with \(\Sigma\)-protocols (in a CRS model based on Pinocchio [40]), tailored for mixing arithmetic and boolean components. However, in addition to the setup assumptions, this approach is not efficient for large disjunctive statements (the size of the UTXO list in Bitcoin is in the order of hundreds of millions) as both the computational and space requirements scale linearly with its size, its has expensive concrete costs for the prover because of the underlying SNARKs and range proofs.

It will be too costly to use a group of size 10000 bits.
2 Preliminaries

2.1 Notation.

We denote an n-dimensional vector $v = \{v_1, \ldots, v_n\}$. By $a||b$ we denote concatenation of elements a and b. A probabilistic polynomial-time (PPT) algorithm B with input a and output b is written as $b \leftarrow B(a)$. By \oplus we define a bit-wise XOR operation. We define the statistical security parameter by λ.

2.2 Basic Cryptographic Building Blocks

Commitment Schemes A commitment protocol between a committer and a receiver consists of two phases: a committing phase where the committer on input a message m and public parameters pp, samples randomness r and computes a commitment $C_m \leftarrow \text{Com}(pp, m, r)$, and a de-committing or opening phase where the committer de-commits C_m to m. A commitment scheme should be hiding, i.e. C_m should not reveal any information about m and binding, i.e. it should be hard for the committer to find m' such that $\text{Com}(pp, m, r) = \text{Com}(pp, m', r')$ with $m' \neq m$. In the rest of the paper, we imply inputs pp and r and omit them for simplicity.

MACs A circuit-based one-time Message Authentication Code (MAC) on x is defined as $t = ax + b$ where a and b are randomly sampled by the verifier, and can be opened after the prover has committed to t [19].

Homomorphic Encryption An (additive) homomorphic encryption scheme is public-key encryption scheme equipped with an operation $\boxed{}$ over the ciphertext space such that for any two plaintexts a, b, $\text{Dec}(\text{Enc}(a) \boxplus \text{Enc}(b)) = a + b$.

2.3 Zero-knowledge Proofs

A zero-knowledge (ZK) proof π enables a prover P who holds some private witness w for a public instance x and an NP-relation R, to convince a verifier V that some property of w is true i.e. $R(x, w) = 1$, without V learning anything more. To denote a ZK proof statement we use the Camenisch-Stadler notation [17] as $\pi = \{(w) : R(x, w) = 1\}(x)$.

Definition 1 A zero-knowledge proof between P and V for an NP relation R must satisfy the following properties:

- Completeness: If $R(x, w) = 1$ and both players are honest V always accepts.
- Soundness: For every malicious and computationally unbounded P^*, there is a negligible function $\epsilon(\cdot)$ s.t. if x is a false statement (i.e. $R(x, w) = 0$ for all w), after P^* interacts with V, $\Pr[V \text{ accepts}] \leq \epsilon(|x|)$.
- Zero Knowledge: For every malicious PPT V^*, there exists a PPT simulator S and negligible function $\epsilon(\cdot)$ s.t. for every distinguisher D and $(x, w) \in R$ we have $|\Pr[D(\text{View}_{V^*}(x, w)) = 1] - \Pr[D(S) = 1]| \leq \epsilon(|x|)$.

Composed statements ZK proofs can be composed as follows: (1) AND composition $\pi_1 \land \pi_2$ which can be easily constructed by sequential or parallel proving of underlying assertions, and (2) OR composition $\pi_1 \lor \pi_2$ which can be constructed by proving knowledge for the one and simulating knowledge for the other, without revealing which of the two is actually proved and which is simulated.

Mixed statements Let f and g be non-algebraic and algebraic relations with public instances y and z respectively. A ZK proof on a mixed statement has the generic form $\{(w) : f(y, w) = 1 \land g(z, w) = 1\}(y, z)$.

2.4 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a fundamental functionality in secure computation between a sender S that holds two values v_0, v_1 and a receiver R. At the end of the protocol, the receiver learns exactly one of the sender values while the sender learns nothing. 1-out-of-n OT is a generalized version of 1-out-of-2 OT where the sender has n values, and the receiver learns one of them. In Figure [1] we describe the ideal functionality for 1-out-of-n OT.
Functionality $F_{OT}^{1/n}$

Functionality $F_{OT}^{1/n}$ communicates with sender S and receiver R, and adversary A.

1. Upon receiving input (sid, v_1, \ldots, v_n) from S where $v_i \in \{0, 1\}^\kappa$, record (sid, v_0, \ldots, v_n).
2. Upon receiving (sid, i) from R where $i \in \{1, \ldots, n\}$, send v_i to R. Otherwise, abort.

Fig. 1. The 1-out-of-n OT functionality.

2.5 MPC in the Head

We use the MPC-in-the-Head paradigm introduced by Ishai et al. [34]. An MPC protocol $\Pi_\mathcal{F}$ is an interactive protocol between m parties P_1, \ldots, P_m to securely compute some function \mathcal{F} on the joint input of all parties. In MPCitH a single party simulates the execution of all m parties locally and records transcripts of the interaction between the simulated parties. These simulated views can later be selectively opened to prove statements about the inputs of the simulated parties.

Formally, we require the following properties for $\Pi_\mathcal{F}$ to be an admissible protocol for MPCitH:

Definition 2 Let $\Pi_\mathcal{F}$ be an MPC protocol for a functionality $\mathcal{F}(x_1, \ldots, x_m)$.

- We say $\Pi_\mathcal{F}$ realizes \mathcal{F} with correctness if for all possible inputs the probability that the output of any party P_j running (semi-honest) $\Pi_\mathcal{F}$ is different from $\mathcal{F}(x_1, \ldots, x_m)$ is negligible in λ.
- We say $\Pi_\mathcal{F}$ realizes \mathcal{F} with t-privacy if for all sets of (semi-honest) corrupt parties $I \subset \{P_1, \ldots, P_m\}$ s.t. $|I| \leq t$ there exists a PPT simulator S s.t. for all inputs the set of views $\{\text{view}_j\}_{j \in I}$ is statistically indistinguishable from $S(I, \{x_j\}_{j \in I}, \mathcal{F}(x_1, \ldots, x_m))$.

We model the local simulation of the MPCitH protocol with the black-box functionality Π_{MPCitH} in Figure 2.

![Fig. 2. MPC-in-the-Head subroutine](image-url)

3 Oblivious Transfer from Private Information Retrieval

A Private Information Retrieval (PIR) protocol [35] between a receiver R and a server S which owns a database D consisting of items y_1, \ldots, y_n, enables R to retrieve some item y_i from D without S learning any
information about i. Intuitively, PIR is similar to a 1-out-of-n OT protocol, with the main difference being that it only protects the privacy of R’s input and assumes semi-honest behavior from both parties. In this section we construct a protocol for 1-out-of-n OT built on top of SealPIR [7]. Note that this construction cannot generically be applied to arbitrary PIR protocols, as it relies on properties of SealPIR’s construction.

Privacy against semi-honest receiver. SealPIR is constructed from the additive homomorphic encryption scheme BFV [14,25] based on Ring-LWE. As privacy is not a concern in a PIR protocol, SealPIR packs many y_i to fully utilize the large plaintext supported by Ring-LWE, and computes $f(b, y) = \sum_{j=1}^{n/k} b_j \cdot Y_j$ where $Y_j = (y_1 + (j-1)k, \ldots, y_{jk})$, k is the number of y_i’s that can be fitted into one plaintext, $b_j = 1$ if the selected item is in $[1 + (j-1)k; jk]$ and $b_j = 0$ everywhere else. In the protocol, b_j’s are encrypted and compressed by the receiver, decompressed by the sender who sends back the encrypted of $f(b, y)$. Finally the receiver decrypts the ciphertext and obtains $f(b, y) = Y_j$.

We observe that without packing the y_i, the protocol actually computes $f(b, y) = \sum_{j=1}^{n} b_j \cdot y_j$ and realizes a semi-honest 1-out-of-n OT protocol (with less efficiency if the plaintext has too much empty space).

Security against a malicious receiver. To achieve security against malicious receivers, after sending its query the receiver performs a zero-knowledge proof that the query is “well-formed” (i.e. is an encryption of a plaintext with exactly 1 nonzero index). We describe this protocol in figure 3.

First, $\Pi_{ZK}^{\text{WellFormed}}$ guarantees that the encrypted query c_i is a correctly-constructed ciphertext of a known plaintext with bounded noise using techniques proposed by Chen et al. [20]. The rest of the protocol proves that the underlying plaintext is well-formed.

The server creates a challenge by sampling a random element r_i and random polynomial Q_i and an $(n-1)$-out-of-n shamir-sharing of Q_i (denote the vector of shares as q_i). The server then homomorphically computes $c_i := r_i \cdot c_b + \text{Enc}(q_i)$ and sends c_i to the receiver.

If the query is well-formed, then the decryption of c_i will have enough unmodified shares to reconstruct Q_i. More specifically, the decrypted plaintext will contain $n - ||b||$ shares of Q_i where $||b||$ is the number of non-zero elements in the plaintext query. Hence if the query contains > 1 non-zero elements the receiver is unable to reconstruct Q_i. We repeat this process (in parallel) to achieve the desired level of soundness.

Security against a malicious sender. To make $\Pi_{ZK}^{\text{WellFormed}}$ malicious-secure, we observe that the server only needs to keep Q_i and r_i private until the receiver has sent its response. Additionally, once the receiver knows Q_i, r_i and the randomness used to encrypt q_i it can deterministically recompute the honestly-generated c_i to verify honest behavior of the server.

Along with the challenges c_i, the server now sends a commitment to a PRG seed s from which all other random values are sampled. The receiver commits to its responses, then the server opens the seed to the receiver. The receiver recomputes the challenges and verifies that they match what the server originally sent. If so, the receiver opens its responses to the server.

For the overall 1-out-of-n OT protocol we apply a similar methodology. First the server commits to its PRG seed and database input, and later opens this commitment so that the receiver may check for honest behavior. In order to preserve the receiver’s input privacy, this check must occur before any computations based on the received value are revealed to the sender. To preserve soundness, it must occur after all relevant prover computations have been run and their outputs committed. Because of this, our implementation of $\Pi_{OT}^{\text{WellFormed}}$ only attains security against semi-honest S and malicious R. When using $\Pi_{OT}^{\text{WellFormed}}$ in a larger protocol, we augment it with the PRG trick to reach malicious S security. As an optimization, we use a single seed for all instances of 1-out-of-n OT, allowing the server to reveal the databases for all instances simultaneously.

Theorem 1 Protocol $\Pi_{ZK}^{\text{WellFormed}}$ is a Zero Knowledge proof that an encrypted PIR query $\text{Enc}(b)$ satisfies the condition: $\#(i \neq j) \text{ s.t. } b_i \neq 0 \land b_j \neq 0$.

Proof (Proof (Sketch)).

Soundness: If the prover cheats by using a ciphertext which is not validly constructed as input, the soundness of the validity proof in step 1 guarantees the protocol will abort. If the prover cheats by setting more than one entry of b to be non-zero, then $c_i = q_i$ in at most $N - 2$ points. For the $N - 1$ degree polynomial Q_i, it will not have enough information for reconstruction. In order to pass the check, the prover...
must guess \(Q_i(0) = a_{i,0} \). As \(a_{ij} \) are sampled uniformly at random, the prover has probability of \(1/t \) to guess it correctly. Amplified over \(\sigma \) repetitions, a cheating prover has success probability \(t^{-\sigma} < 2^{-\lambda} \).

\[\Pi_{\mathbb{Z}_K}^{WellFormed} \]

Setup. Ring-LWE scheme with parameters \((N, t, g)\) where \(N \) is the degree of the cyclotomic polynomial, \(t \) the plaintext modulus, and \(q \) the ciphertext modulus. The prover has the key pair \((sk, pk)\), while the verifier has the public key \(pk \). \(\sigma \) is the soundness amplifier such that \(t^{-\sigma} < 2^{-\lambda} \).

Prover’s input. \(b \in R_t[X]/(X^N + 1) \) and \(k \in [0, N) \) such that \(b_k \neq 0 \) and \(b_i = 0 \) \(\forall i \neq k \).

Common input. \(c_b = Enc(pk; b) \) where \(b \in R_t[X]/(X^N + 1) \).

Protocol.
1. The verifier sends a proof on the validity of ciphertext \(c_b \) which includes that the Ring-LWE noise is bounded.
2. The verifier samples a random seed \(s \in \{0, 1\}^n \). For \(i \in \{1, \cdots, \sigma\} \) the verifier samples \(r_i, Q_i(X) \leftarrow PRG(s) \) where \(r_i \in \mathbb{Z}_t \), \(Q_i(X) = \sum_{j=b}^{n-1} a_{ij} X^j \), \(a_{ij} \leftarrow \mathbb{Z}_t \), and computes \(q_i = (Q_i(1), \cdots, Q_i(N)) \in \mathbb{Z}_N^N \). It uses the additive homomorphic property of Ring-LWE to compute \(c_i \leftarrow Enc(pk; r_i \cdot b + q_i) \). After that, the verifier sends \(\text{Com}(s) \) and \(c_i \) to the prover.
3. The prover decrypts \(c_i \), obtains \(c_i = r_i \cdot b + q_i \), interpolates \(Q_i' \) from the points \((j, c_{ij})\), where \(j \in \{1, \cdots, N\}, j \neq k \). It then sends \(\text{Com}(Q_i'(0)) \) to the verifier.
4. The verifier decommits \(s \) to the prover.
5. The prover verifiers that \(c_i \) is correctly generated. If so, it decommits \(Q_i'(0) \) to the verifier.
6. The verifier checks that \(Q_i'(0) = a_{i,0} \).

Fig. 3. Zero-knowledge proof to prove that the encrypted ciphertext \(c_b \) is well formed and at most one of \(b_i \neq 0 \).

\[
\Pi_{\text{OT}}^{1:n} \]

Receiver input. \(b = \{b_1, \ldots, b_n\} \) where \(\exists i \in \{1, \ldots, n\} : b_i \neq 0 \land b_j = 0 \forall j \neq i \)

Sender input. \(y = \{y_1, \ldots, y_n\} \).

Setup. \(R \) generates a BFV keypair \((sk, pk)\) and sends \(pk \) to \(S \).

Protocol.
1. \(R \) computes \(c_b = Enc(b) \) and sends \(c_b \) to \(S \).
2. \(R \) and \(S \) run \(\Pi_{\mathbb{Z}_K}^{WellFormed} \) on \(c_b \).
3. \(S \) homomorphically computes \(c'_b = f(c_b; y) \) and sends \(c'_b \) to \(R \)
4. \(R \) computes \(b' = Dec(c'_b) \) and outputs \(b' \)

Fig. 4. 1-out-of-\(n \) OT protocol

Zero-knowledge: The semantic security of the encryption scheme preserves the privacy of the selection index. In the protocol, the prover only reveals \(Q_i'(0) \) after seeing the seed used to generate the challenges by the verifier. Thus, the verifier has no way to deviate from the protocol without being caught. If the verifier behaves honestly, then the decommitment to \(Q_i'(0) \) is already known by the verifier. If the verifier cheats, the protocol will abort, and the hiding property of the commitment scheme prevents the verifier from learning anything.

Theorem 2 Let \(\text{Com} \) be a binding and hiding commitment scheme, and let \(\text{SealPIR} \) be the protocol described in \([7]\), modified to not use any packing. Then the protocol described in Figure 3 implements \(\mathcal{F}_{\text{OT}}^{1:n} \) with security against a malicious receiver and semi-honest sender in the \(\text{Com-hybrid model} \).
Proof. (Sketch) The security against semi-honest senders follows directly from the semantic security of the cryptosystem and the zero-knowledge property of $\Pi_{\text{WellFormed}}^{ZK}$.

As for the security against malicious receivers, the soundness of $\Pi_{\text{WellFormed}}^{ZK}$ ensures that b is a valid query. Given that b is a valid query (i.e. only one i is nonzero) the sender’s response $c'_b = f(c_b, y) = \text{Enc} \left(\sum_{j=1}^{n} b_j \cdot y_j \right) = \text{Enc}(b_i \cdot y_i)$.

We construct a simulator S which interacts with R and the ideal functionality (shown in figure 5). The indistinguishability of R’s view when interacting with S in the real world versus R’s view when interacting with S in the ideal world follows directly from the soundness of the $\Pi_{\text{WellFormed}}^{ZK}$ ZKPoPK subprotocol [20].

$$\begin{align*}
S_{\mathcal{O}_T}^{\mathcal{O}_T} \\
1. & \quad R \text{ sends } c_b \text{ to } S. \\
2. & \quad \text{Perform } \Pi_{\text{WellFormed}}^{ZK} \text{ with } R. \text{ Using the ZKPoPK extractor from the subprotocol in step 1 [20] of } \Pi_{\text{WellFormed}}^{ZK} \text{ extract } b \text{ and learn } R’s \text{ secret index } i. \\
3. & \quad \text{Send } i \text{ to } \mathcal{O}_T^{\mathcal{O}_T}; \text{ receive } y_i \text{ in return.} \\
4. & \quad \text{Compute } c'_b \leftarrow \text{Enc}(b_i \cdot y_i) \text{ and send } c'_b \text{ to } R
\end{align*}$$

Fig. 5. Malicious-receiver simulator for $\Pi_{\mathcal{O}_T}^{\mathcal{O}_T}$

4 Disjunctive proofs from 1:N OT

4.1 MPCitH Disjunctive Proof

Towards our goal of constructing an efficient disjunctive proof, we first define a helper function $\text{ShareAt}(m, x, J, r)$ which pseudorandomly samples m-out-of-m additive secret shares of x from the seed r, outputting a vector of values $\{X_1, \ldots, X_m\}$ such that $\bigoplus_{j=1}^m X_j = x$ (we omit m as explicit input to ShareAt for the rest of the paper). In addition, ShareAt has the property that for a fixed index $J \in \{1, \ldots m\}$ and r, $\text{ShareAt}(m, x, J, r)$ and $\text{ShareAt}(m, x', J, r)$ will have identical outputs at every index except the J-th index. This function is shown in Figure 6.

Fig. 6. Secret sharing with specific offset index

We define our main protocol $\Pi_{\mathcal{O}_T}^{\text{MPCitH}-\text{OR}}$ in Figure 7. The common input is a function f, and a set of values y_1, \ldots, y_n. The Prover wishes to prove, in zero knowledge, that it knows input (x, y) such that $f(x, y) = 1 \land y \in \{y_1, \ldots, y_n\}$. We let Π_f denote an m-party protocol for securely computing $f(\bigoplus_j x_j, \bigoplus_j y_j)$. The verifier, V, begins by generating and committing to a PRG seed s from which all further random values are sampled. This seed will allow the prover to confirm the verifier’s honest behavior using the technique described in Section 3.
Next, the verifier V generates τ different sets of input encodings – each containing m shares – for each of the y_i common input values. This results in a 3D table of shares $(n \times m \times \tau)$, denoted Y^k_{ij}, as shown in Figure 8. This 3D table is divided into n 2D “slices” of dimension $(m \times \tau)$, each corresponding to an input y_i. These slices are encodings of y_i, such that all slices are identical in every position except for 1 per row (τ non-identical positions total). The non-identical position for the k-th row is denoted ε_k.

Then, prover P selects a “slice” of this 3D table through the 1-out-of-n OT protocol; the choice of the slice is its secret input, ℓ.

For each row of the slice (i.e. a chunk which was generated from the same value of k and adds up to y_ℓ) P generates additive shares of x and computes MPCitH views using the shares of y_ℓ from the slice and the newly-generated shares of x as input. Once all views are generated, P commits these views to V.

Finally, V reveals the committed seed s to P, who re-generates the whole 3D table, and verifies the honest behavior of the verifier. P aborts if there is a mismatch, otherwise P decommits the MPCitH views (except Party ε_k) to V who verifies the honest execution of the MPCitH protocol, and accepts the proof.

Note that since the slices are identical in each row except for at ε_k (i.e. the unrevealed MPCitH input) the privacy of the MPCitH protocol protects the prover from revealing its choice of index ℓ.

Theorem 3 Let $m \geq 3$, let $f(Y, X)$ be the function defined in Figure 7, let Com be a binding and hiding commitment scheme, let $\Pi_\mathcal{FX}$ implement f with correctness and $(m-1)$-privacy, and let $\Pi^{\text{OT}}_{\mathcal{FX}}$ implement $F^{1, n}_{\text{OT}}$ with security against a malicious receiver and a semi-honest sender. Then the protocol described in Figure 7 is a zero-knowledge proof protocol for the language $\{((y_1, \ldots, y_n), x) : \exists \ell \in \{1, \ldots, n\} \text{ such that } f(x, y_\ell) = 1\}$ in the $(\text{Com}, F^{1, n}_{\text{OT}})$-hybrid model.

Proof. Zero Knowledge: First, we claim that our protocol is honest-verifier zero knowledge. We show this through a series of hybrid steps:

\mathcal{H}_0: Execution of $\Pi_{\mathcal{F}}^{\text{MPCitH-OR}}$ in the real world.

\mathcal{H}_1: Same as \mathcal{H}_0, except we replace calls to the $\Pi^{1, n}_{\text{OT}}$ subroutine with the ideal functionality $F^{1, n}_{\text{OT}}$. Since $\Pi^{1, n}_{\text{OT}}$ implements $F^{1, n}_{\text{OT}}$ with semi-honest sender security and we are assuming the verifier behaves semi-honestly, this substitution produces indistinguishable views.

\mathcal{H}_2: Same as \mathcal{H}_1, except the simulator uses the ideal $F^{1, n}_{\text{OT}}$ to recover all the verifier input encodings $\{Y^{1}_i, \ldots, Y^{(\tau)}_i\}$ for all i, which defines $(\varepsilon_1, \ldots, \varepsilon_\tau)$. Then, the simulator replaces the call to Π_{MPCitH} with the $(n-1)$-privacy simulator from Definition 2 using P_{ε_i} as the honest party in the i-th iteration. For P_{ε_i}’s view, the simulator commits to a random string.

The indistinguishability between the $n-1$ revealed views of \mathcal{H}_1 and \mathcal{H}_2 follows from Definition 2. The indistinguishability of the unrevealed view follows from the hiding property of $\text{Com}.$

\mathcal{H}_3: Same as \mathcal{H}_2, except the simulator is not provided the witness and instead uses random values for the input to the $(n-1)$-privacy simulator. Since only $n-1$ views are revealed to the verifier, the two hybrids produce indistinguishable transcripts.

Next, we claim zero-knowledge against verifiers which deviate from the honest protocol.

Suppose V does not follow the protocol honestly. In the honest protocol, V’s messages are generated deterministically based on s, the common input, and P’s messages. Hence after V opens s in step 9, the prover can compare each message that V sent against the expected message in the honest-verifier protocol. By our assumption one of these messages is inconsistent, hence P’s next action is to abort the protocol.

Consider the view of V right before the protocol aborts. The only messages V has received are encrypted queries of P’s private input ℓ (step 1 of $\Pi^{1, n}_{\text{OT}}$), a transcript of a zero-knowledge proof (step 2 of $\Pi^{1, n}_{\text{OT}}$), and commitments to MPCitH views (step 8 of $\Pi_{\mathcal{F}}^{\text{MPCitH-OR}}$).

We construct a simulator S for V’s view (shown in figure 9) for the case where V deviates from the honest protocol and argue that the view when interacting with the simulator is indistinguishable from V’s view when running $\Pi_{\mathcal{F}}^{\text{MPCitH-OR}}$. The encrypted query’s indistinguishability follows from the semantic security of the
\(\Pi^\text{MPCitH-OR} \)

Setup. Let \(f(x, y) \) be some function, and let \(\mathcal{F} \) be an \(m \)-party functionality that takes input \((X_j, Y_j)\) from each party \(P_i \) and outputs \(f(\oplus_{j=1}^m X_j, \oplus_{j=1}^m Y_j) \) \(\neq 1 \) to all parties. Let \(H_F \) be an \(m \)-party protocol that securely realizes \(\mathcal{F} \) with correctness and \((m - 1)\)-privacy.

Common inputs. \(\tau \) total number of repetitions, \(n \) values \(\{y_1, \ldots, y_n\} \in \{0, 1\}^n \), and \(m \), the number of parties involved in the MPC protocol, run in the head of the Prover, and \(m^{-\tau} < 2^{-\lambda} \), \(\lambda \) is a security parameter.

Prover’s input. \(x \in \{0, 1\}^* \) such that \(f(x, y_\ell) = 1 \) for some \(\ell \in \{1, \ldots, n\} \).

1. Verifier \(\mathcal{V} \) generates random seed \(s \) and sends \(C_s \leftarrow \text{Com}(s) \) to the prover \(P \). Throughout the rest of the protocol, all randomness of the Verifier is generated by applying a PRG, \(G(s) \). (We will, imprecisely, refer to these as “random” values.)
2. \(\mathcal{V} \) uses the random seed \(s \) to sample the following values uniformly at random:
 - \(\varepsilon_k \overset{\$}{\leftarrow} \{1, \ldots, m\} \) for \(k \in \{1, \ldots, \tau\} \).
 - \(r_k \overset{\$}{\leftarrow} \{0, 1\}^n \) for \(k \in \{1, \ldots, \tau\} \).
3. For \(i \in \{1, \ldots, n\} \), \(k \in \{1, \ldots, \tau\} \), \(\mathcal{V} \) computes \(\{Y_{i,1}^{(k)}, \ldots, Y_{i,m}^{(k)}\} \leftarrow \text{ShareAt}(y_i, \varepsilon_k, r_k) \), which results in a 3D table, as in Figure 8. (Note that the same \(r_k \) is used for every \(y_i \).)
4. For every \(i \in \{1, \ldots, n\} \), \(\mathcal{V} \) sends the 2D table \(\{(Y_{i,1}^{(1)}, \ldots, Y_{i,m}^{(1)}), \ldots, (Y_{i,1}^{(r)}, \ldots, Y_{i,m}^{(r)})\} = \{Y_i^{(1)} \ldots Y_i^{(r)}\} \)
 to \(\Pi_{\mathcal{V}}^{\text{MPCitH}} \).
5. \(P \) sends \(\ell \) to \(\Pi_{\mathcal{V}}^{\text{MPCitH}} \).
6. \(\Pi_{\mathcal{V}}^{\text{MPCitH}} \) outputs \(\{Y_1^{(r)}, \ldots, Y_{\ell}^{(r)}\} \) to \(P \).
7. For every \(k \in \{1, \ldots, \tau\} \), \(P \):
 - Computes \(X^{(k)} = \{X_{1}^{(k)}, \ldots, X_{m}^{(k)}\} \) as a random additive share of \(x \), i.e. \(x = \oplus_{j=1}^m X_j^{(k)} \).
 - Computes \(\{\text{view}_{1,k}, \ldots, \text{view}_{m,k}\} \leftarrow \text{MPCitH}(\Pi_x, (X^{(k)}, Y_{\ell}^{(k)}) \).
8. For all \(j \in \{1, \ldots, m\} \), \(k \in \{1, \ldots, \tau\} \), \(P \) sends \(C_{\text{view}_{j,k}} \leftarrow \text{Com}(\text{view}_{j,k}) \) to \(\mathcal{V} \).
9. \(\mathcal{V} \) de-commits \(s \), which \(P \) uses to derive \(\{\varepsilon_1, \ldots, \varepsilon_{\ell}\} \) and to reconstruct the 3D table as in above steps 2 - 3.
10. \(P \) verifies the following properties hold for all \(i, i', j \in \{1, \ldots, n\} \), \(k \in \{1, \ldots, \tau\} \):

\[
\oplus_{j=1}^{m} Y_{i,j}^{(k)} = y_i.
\]

\[
Y_{i,j}^{(k)} = Y_{i',j}^{(k)}.
\]

If these properties do not hold, \(P \) aborts.

\(P \) decommits each \(\{\text{view}_{j,k}\}_{k \in \{1, \ldots, \tau\}, j \in \{1, \ldots, m\}} \backslash \varepsilon_k \)

11. \(\mathcal{V} \) checks that the decommitted views are consistent with honest executions of \(\Pi_x \), include an output of 1, and that \(\text{view}_{j,k} \) has a \(Y \) input equal to \(Y_{i,j}^{(k)} \).

\(a \) The input length \(|x|\) can be either fixed or arbitrary.

\(b \) All messages sent by the receiver during \(\Pi_{\mathcal{V}}^{\text{MPCitH}} \) are computed deterministically from the seed \(s \) and the common input \(\{y_1, \ldots, y_n\} \).

Fig. 7. OR proof using MPC-in-the-Head
encryption scheme. The zero-knowledge transcript’s indistinguishability follows from the zero-knowledge property of \(\Pi_{\text{WellFormed}} \). The indistinguishability of the committed views follows from the hiding property of \(\text{Com} \). Finally, as discussed above a verifier that deviates from the honest protocol will always cause the protocol to abort after step 9.

Soundness: Suppose the Prover does not know a valid input \(x_i \) for any \(y_i \). By the hiding property of \(\text{Com} \), the prover learns nothing about the verifier’s state other than the queried row from \(\Pi_{\text{1}n} \) before it sends the commitments to its MPCitH views. And by the binding property of \(\text{Com} \) the prover’s MPCitH views must be fixed before the prover receives the rest of the verifier’s state. Since the proof is accepted or rejected based on these views, we can reduce the soundness of the protocol to the security properties of the MPCitH protocol.

We consider 3 cases, depending on how many simulated MPCitH parties perform malicious behavior (as measured by comparing inconsistencies in the parties’ views).

In the first case, all MPCitH parties act honestly. By the completeness of \(\Pi_{\mathcal{F}} \), either all parties output 0 with all but negligible probability (in which case the proof is rejected) or the input \((x_i, y_i)\) is a valid witness for \(f \). By our previous assumption, if \(f(x_i, y_i) = 1 \), then \(y_i \) is not a member of the common input set, hence the input encoding \(Y_{1,j} \) must be different from the encodings created by the verifier in at least one position. If any opened view’s input encoding of \(y_i \) does not match the verifier’s encodings the proof will be rejected, thus in order to create valid proof, \(\mathcal{P} \) must modify only the share of \(y_i \) that is not opened by \(\mathcal{V} \). By the hiding property of \(\text{Com} \), \(\mathcal{P} \) has no information about \(\epsilon_j \), hence the prover has at best \(\frac{1}{m} \) chance of guessing correctly for a single iteration. Amplified over \(\tau \) iterations the cheating prover’s probability of success is \(\leq \frac{1}{m^\tau} \).

The second case we consider is where exactly one simulated party performs malicious behavior. In this case, the malicious party’s view must be inconsistent with at least one other view. Since \((n - 1)\) views are opened, the verifier will see this inconsistency unless the malicious view, or the receiver of the malicious message, is the one left unopened. Therefore, the cheating prover’s probability of correctly guessing \(\epsilon_j \) for every iteration is \((\frac{2}{m})^\tau \).

The final case is that there are two or more malicious parties. In this case it is guaranteed that there will be an inconsistent pair of views in any \((n - 1)\)-subset, giving the cheating prover a success probability of 0 in this case.
Note that since the verifier’s random challenge for each iteration is independently generated, the probability of success between iterations is similarly independent. Thus in the event that a prover uses different strategies in different iterations, the total success probability is a straightforward multiplication of the chosen strategies’ success rates for each iteration, which is bounded by \(\left(\frac{2}{m} \right)^r \).

5 Disjunctive Proofs for Mixed Statements

In the proof of assets problem, the Prover and Verifier hold as common input a list of hashed public keys, \(L = \{y_1, \ldots, y_n\} \), where \(y_i = H(x_i) \), for some hash function \(H \). The Prover wishes to prove that it knows secret key \(z \) such that \((x, z)\) is a legitimate output of some cryptographic key generation algorithm, and, for some \(y_i \in L \), \(H(x) = y_i \).

More generally, we consider mixed statements of the form \(f(x, y_i) = 1 \land g(x, z) = 1 \), where \(y_i \in L \), \(f \) is a Boolean (or “non-algebraic”) function – in our application, a hash function – and \(g(x, z) \) is an algebraic function – in our application, one verifying that \(z \) is the secret key corresponding to \(x \).

Chase et al. [19] consider this question without the disjunction. That is, they assume \(|L| = 1\), and focus solely on the challenge of constructing an efficient proof for mixed statements. They do this by leveraging the specific proof system for \(f \), built from Garbled Circuits, in the following way. The prover begins by committing to input \(x \) with \(\text{Com}(x) \). The Verifier then prepares a garbled circuit for the Boolean circuit that outputs both \(f(x) \), as well as a one-time MAC on the Prover’s input: \(t = ax + b \). The prover is allowed to decode \(t \), and commits to this as well. Finally, the prover provides a proof, using an algebraic proof system, that it knows \((x, t)\) such that \(f(x, y) = 1 \), \(x \) is consistent with \(\text{Com}(x) \), \(t \) is consistent with \(\text{Com}(t) \), and \(t = ax + b \). In this way, the MAC on \(x \) that was derived while proving \(f(x, y) = 1 \) ensures that the same input \(x \) is used when proving that \(g(x, z) = 1 \).

Note that Chase et al. compute \(t = ax + b \) inside a Boolean circuit, which requires \(O(|a||x|) \) AND gates. We improve on their solution by using the oblivious transfer to avoid performing integer multiplication and addition in a Boolean circuit. As in the previous Section, we use MPC-in-the-head, rather than garbled circuits. Specifically, let \(x_i \) be the \(i \)th bit of \(x \), and for each \(u \in \{1, \ldots, |x|\} \), let \(0_u \) and \(1_u \) denote the input encodings generated by the verifier for that input bit. The verifier chooses \(a \) at random, and samples \(b \) by choosing random \(b_u \) for each \(u \in \{1, \ldots, |x|\} \) and setting \(b = \sum b_u \). When obliviously sending the encoding of the \(i \)th input bit, the verifier sends \((0_u, b_u)\) and \((1_u, 2^{u-1}a + b_u)\) to the OT functionality. By summing the 2nd value received in each of the \(|x|\) received ordered pairs, the Prover recovers \(ax + b \), and no computation in the circuit is required. We note that this leads to significant improvement over Chase et al. even when \(|L| = 1\), as we discuss in Appendix [C]. In Figure [10] we present the full protocol, highlighting the changes in our disjunctive proof from Figure [9] in order to support mixed statements.

Theorem 4 Let \(m \geq 3 \), let \(f(Y, X) \) be the function defined in Figure [11], let \(\text{Com} \) be a binding and hiding commitment scheme, \(\text{MAC}(x) \) an unforgeable one-time MAC and let \(\Pi_X \) implement \(f \) with correctness and \((m-1)\)-privacy. Then, the protocol described in Figure [14] is a zero-knowledge proof protocol for the language \(\{ (y_1, \ldots, y_n), z, x : \exists \ell \in \{1, \ldots, n\} \text{ such that } f(x, y_\ell) = 1 \land g(x, z) = 1 \} \) in the \((\text{Com}, \mathcal{F}_{\text{OT}}^{L})\)-hybrid model.

Proof (Sketch). Zero Knowledge: The simulator runs in the same fashion as in Theorem [3] and it inherits the same procedure for the ZK proof \(\pi \).

Soundness: Our protocol inherits the soundness properties as in Theorem [3]. Here the prover can also cheat by using an inconsistent witness \(x \) for functions \(f \) and \(g \). However this is prevented from the unforgeability property of the one-time MAC, the binding property of the commitment scheme and the soundness property of the ZK proof \(\pi \).

5.1 Proving the Value of Assets

When proving ownership of assets in a cryptocurrency such as Bitcoin, the exchange (i.e. the prover) needs to prove knowledge of a number of secret keys for the respective hashed public keys among those in the UTXO
Setup. Let $f(x, y)$ be a Boolean function and $g(x, z)$ an algebraic function. Let F be an m-party functionality that takes input (X_j, Y_j) from each party P_j and outputs $f(\oplus_{j=1}^{m} X_j, \oplus_{j=1}^{m} Y_j) \neq 1$ to all parties. Let Π_F be an m-party protocol that securely realizes F with correctness and $(m - 1)$-privacy.

Common inputs. τ total number of repetitions, n values $\{y_1, \ldots, y_n\} \in \{0, 1\}^n$, and m, the number of parties in the MPC protocol run in the head of the Prover. m and τ are set such that $m - \tau < 2^{-\lambda}$, where λ is a security parameter.

Prover's input. x, z, ℓ such that: $\ell \in \{1, \ldots, n\}$, $f(x, y) = 1$ and $g(x, z) = 1$. We denote as (x_1, \ldots, x_{ℓ}) the bit representation of x (i.e. $x = \sum_{i=1}^{\ell} x_i$).

Verifier's input. $C_x \leftarrow \text{Com}(x)$, $C_z \leftarrow \text{Com}(z)$.

1. Verifier V generates its random tape s and sends $C_s \leftarrow \text{Com}(s)$ to the prover P. Throughout the rest of the protocol, all randomness of the Verifier is generated by applying a PRG, $G(s)$. (We will, imprecisely, refer to these as "random" values.)

2. V uses the random seed s to sample the following values uniformly at random:
 (a) $\varepsilon_k \leftarrow \{1, \ldots, m\}$ for $k \in \{1, \ldots, \tau\}$.
 (b) $\rho_k \leftarrow \{0, 1\}^\nu$ for $k \in \{1, \ldots, \tau\}$.
 (c) $w_{\ell, k} \leftarrow \{0, 1\}^\nu$ for $u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\}$.
 (d) $a \leftarrow \{0, 1\}^\nu, b_u \leftarrow \{0, 1\}^{|x|+\lambda}$ for $u \in \{1, \ldots, |x|\}$. Define $b := \sum_{u=1}^{|x|} b_u$.

3. For $u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\}$, V computes vectors $\{1^{(u)}_{\ell, 1}, \ldots, 1^{(u)}_{\ell, m}\} \leftarrow \text{ShareAt}(0, \varepsilon_k, w_{\ell, k})$ and $\{1^{(k)}_{1, u}, \ldots, 1^{(k)}_{m, u}\} \leftarrow \text{ShareAt}(1, \varepsilon_k, w_{\ell, k})$.

4. For $i \in \{1, \ldots, n\}, k \in \{1, \ldots, \tau\}$, V computes vector $Y^{(i, k)}_{i, 1} \leftarrow \text{ShareAt}(y_i, \varepsilon_k, \rho_k)$.

5. Exchange labels for inputs.
 For $i \in \{1, \ldots, n\}$, denote 2D table $Y_i := \{Y_i(1), \ldots, Y_i(r)\}$, and for $u \in \{1, \ldots, |x|\}$, denote 2D tables $0_u := \{0^{(1)}_{u, 1}, \ldots, 0^{(1)}_{u, m}\}, 1_u := \{1^{(1)}_{u, 1}, \ldots, 1^{(1)}_{u, m}\}$.
 (a) V sends $\{Y_1, \ldots, Y_n\}$ to $\Pi^{\Pi_{\text{OT}}}_{\text{OT}}$.
 (b) P sends ℓ to $\Pi^{\Pi_{\text{OT}}}_{\text{OT}}$.
 (c) $\Pi^{\Pi_{\text{OT}}}_{\text{OT}}$ outputs Y_1 to P.
 (d) For every $u \in \{1, \ldots, |x|\}$
 - For every $u \in \{1, \ldots, |x|\}$, P sends x_u to $\Pi^{\Pi_{\text{OT}}}_{\text{OT}}$.
 - If $x_u = 0$ then $\Pi^{\Pi_{\text{OT}}}_{\text{OT}}$ outputs $(0_u, b_u)$ to P, otherwise it outputs $(1_u, 2u - 1 + a + b_u)$. P denotes whichever output it receives as $\{(X^{(1)}_{u, 1}, \ldots, X^{(1)}_{u, m}), \ldots, (X^{(r)}_{u, 1}, \ldots, X^{(r)}_{u, m}), M_u\}$.
 (e) For $k \in \{1, \ldots, \tau\}$ denote the 2D table $X^{(k)} := \{(X^{(k)}_{1, 1}), \ldots, (X^{(k)}_{|x|, 1}), \ldots, (X^{(k)}_{1, m}), \ldots, (X^{(k)}_{|x|, m})\}$.

6. For every $k \in \{1, \ldots, \tau\}$, P computes $(\text{view}_{1, k}, \ldots, \text{view}_{m, k}) \leftarrow \Pi_{\text{MPCitH}}(\Pi_F(X^{(k)}), Y^{(k)})$.

7. P computes $\text{MAC}(x) = \sum_{0 \leq i \leq |x|} (M_i) = a \cdot x + b$ and $C_{\text{MAC}(x)} \leftarrow \text{Com}(\text{MAC}(x))$.

8. For all $j \in \{1, \ldots, m\}, k \in \{1, \ldots, \tau\}$, P sends $C_{\text{MAC}(x)}$ and $C_{\text{view}_{j, k}} \leftarrow \text{Com}(\text{view}_{j, k})$ to V.

9. V decommits s, which P uses to reconstruct $\{\varepsilon_1, \ldots, \varepsilon_\tau\}, \{0_u, 1_u\}, \{Y_1, \ldots, Y_n\}$.

10. P verifies the following properties hold for all $i, i' \in \{1, \ldots, n\}, u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\}, j \in \{1, \ldots, m\}\}$\textbf{v}: $\bigoplus_{j=1}^m Y^{(i, k)}_{i, j} = y_i, Y^{(i, k)}_{i', j} = Y^{(i, k)}_{i, j}, \bigoplus_{j=1}^m 0^{(u)}_{u, j} = 0, \bigoplus_{j=1}^m 1^{(u)}_{u, j} = 1, 0^{(u)}_{u, j} = 1^{(k)}_{u, j}$

11. P decommits each $\{\text{view}_{j, k}\}_{k \in \{1, \ldots, \tau\}, j \in \{1, \ldots, m\}}$\textbf{v}

12. V checks that the decommitted views are consistent with honest executions of Π_F, and, if so, outputs 1.

13. P and V execute the following ZK proof protocol: $\tau = \{\pi, \text{MAC}(x), z : C_x \leftarrow \text{Com}(x) \land C_{\text{MAC}(x)} \leftarrow \text{Com}(\text{MAC}(x)) \land \text{MAC}(z) \land \text{MAC}(x) = 1 \land \text{Com}(\text{MAC}(x)), \text{Com}(\text{MAC}(x)), \text{Com}(\text{MAC}(x)), a, b\}$

14. If π verifies, V accepts, else V rejects.

Fig. 10. Disjunctive protocol via MPCitH for mixed statements. We denote by colored text the additional elements introduced compared to Fig[7]
Table 2. Evaluation for protocol in Fig 10: PIR preprocessing: NTT transform. Note: a) MPCitH encoding is needed by both the P and V, therefore this column is counted twice in the total runtime b) PIR preprocessing is executed by both P and V in parallel.

<table>
<thead>
<tr>
<th>Number of elements</th>
<th>MPCitH encoding (both P and V)</th>
<th>PIR Preprocessing (P and V)</th>
<th>PIR Query (P)</th>
<th>PIR Reply (V)</th>
<th>PIR Decode (P)</th>
<th>$H^\text{WellFormed}_{ZK}$ (polynomial interpolation) (P)</th>
<th>$H^\text{WellFormed}_{ZK}$ (bounded noise) (P)</th>
<th>Total Run-time</th>
<th>Run-time of [10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{13}</td>
<td>7ms</td>
<td>74ms</td>
<td><1ms</td>
<td>199ms</td>
<td>1ms</td>
<td>1ms</td>
<td>163ms</td>
<td>453ms</td>
<td>30.23s</td>
</tr>
<tr>
<td>2^{16}</td>
<td>31ms</td>
<td>392ms</td>
<td><1ms</td>
<td>880ms</td>
<td>2ms</td>
<td>1ms</td>
<td>151ms</td>
<td>1.64s</td>
<td>31.87s</td>
</tr>
<tr>
<td>2^{18}</td>
<td>86ms</td>
<td>1.3s</td>
<td>2ms</td>
<td>2.2s</td>
<td>3ms</td>
<td>1ms</td>
<td>152ms</td>
<td>3.83s</td>
<td>37.5s</td>
</tr>
<tr>
<td>2^{20}</td>
<td>358ms</td>
<td>6.47s</td>
<td>2ms</td>
<td>7.07s</td>
<td>5ms</td>
<td>1ms</td>
<td>163ms</td>
<td>14.89s</td>
<td>60s</td>
</tr>
<tr>
<td>2^{22}</td>
<td>1.61s</td>
<td>9.7s</td>
<td>3ms</td>
<td>9.6s</td>
<td>10ms</td>
<td>2ms</td>
<td>165ms</td>
<td>22.7s</td>
<td>150s</td>
</tr>
<tr>
<td>2^{24}</td>
<td>7.4s</td>
<td>38.59s</td>
<td>4ms</td>
<td>32.6s</td>
<td>10ms</td>
<td>3ms</td>
<td>167ms</td>
<td>86.09s</td>
<td>510s</td>
</tr>
</tbody>
</table>

set. Additionally, they might wish to prove something about the values assigned to such keys, e.g. that their total value exceeds some minimum. For simplicity, we treat the UTXO set as a list of tuples, where each tuple $(H_i||v_i)$ represents a hashed public key and value pair, where $H_i = H(pk_i)$. Therefore, given a common input of a tuple list $L = \{(H_1||v_1), (H_2||v_2), ..., (H_n||v_n)\}$, P must prove knowledge of secret keys $\{sk_k\}_{k=1}^t$ corresponding to a set of public keys $S = \{pk_k\}_{k=1}^t$ such that $\forall k \in \{1, \ldots, t\}$, (sk_k, pk_k) is a valid output of the appropriate key generation algorithm, $(H(pk_k), v_k) \in L$, and, $\sum_{k=1}^{t} v_k \geq v$.

The protocol as discussed above, is not sufficient for the Proof of Assets application as it does connect the provers’ keys to their corresponding “coin” value stored on the blockchain. In Figure 11 of the Appendix, we present an extension of our protocol that also supports values. The main change is to provide an additional MAC on the input values, in order to bind them with their respective hashed keys. Also for simplicity, we do not provide a k-out-of-n OR proof but rather a 1-out-of-n OR proof (i.e. we only assume that the exchange only controls one address in the UTXO set), however the protocol can be naturally extended to accommodate multiple keys.

Interaction. Note that while gOTzilla is interactive, interaction is still acceptable for the Proof of Assets application. Recall that PoA is not typically executed on its own, but rather in parallel with a ”Proof of Liabilities” (PoL) protocol [22,18,36] in order to prove solvency. PoA proves that an organization owns more than X assets, and PoL proves that an organization’s total liabilities towards its clients are less than some value Y. For the organization to be solvent, its assets should exceed its liabilities $X > Y$. While PoA is executed between an organization and an auditor, PoL is executed between an organization and its clients. In PoL, the organization publishes a digest on its total liabilities, and each client needs to check the inclusion of their value (which they store with the organization) in that published digest. This check can only happen interactively which in turn makes the complete Proof of Solvency protocol interactive as well (for the Organization side). Therefore, our interactive protocol is still in-line with the requirements of this application, while it is the first one to provide an efficient way to prove assets even among many million hashed public key - value tuples.
6 Implementation

gOTzilla implementation is based on SealPIR [2] and MP-SPDZ libraries. As discussed in Section 3, we use SealPIR for our needed OT functionality, and we provide more implementation details below.

6.1 Evaluation

Our first set of benchmarks for protocol $\Pi^\text{MPCitH-OR}_f$ is performed locally, with the prover and verifier running on the same host. We run our benchmarks on a z1d.metal AWS instance using 48 threads (24 physical cores) and 384 GB of RAM. We performed our evaluations for a range of disjunctive elements between 2^{16} and 2^{24}. As we require $m^\tau \approx 2^{-40}$ soundness, we pick $m = 3$ MPCitH (minimum required) parties and $\tau = 25$ repetitions as this choice of parameters minimizes $(m - 1) \cdot \tau$. Concretely, if we consider Limbo as an efficient underlying MPCitH protocol, this implies about 50ms additional runtime cost on top of the rest of our protocol’s runtime, which does not depend on n, and is dwarfed by the overall runtime costs of our protocol (therefore we do not take it into account). Assuming $|f(x)| = 256$ bits, the size of each slice of the 3D table is $256 \cdot m \cdot (\tau - 1)$ (we only need to send $\tau - 1$ shares as the remaining one can be inferred) which implies a 1600 byte size per element. As shown in Table 3 for $n = 2^{20}$ the total communication between the prover and verifier is 6.18 MB, plus 3.45 MB for communicating the PIR Galois keys beforehand. However, both the prover and verifier need to generate a version of the 3D table in their local memory (or storage) based on the seed s (steps 9 and 3 of the protocol $\Pi^\text{MPCitH-OR}_f$ respectively). In our current implementation, we store the entire table in RAM (requiring about 18GB memory for 2^{20} such elements), however this table can be offloaded to disk and retrieved as needed at the cost of additional I/O operations, or alternatively, each slice of the cube can be generated on demand as needed.

Table 2 shows our local benchmarks in detail, where we provide a break down of the protocol’s total runtime as follows:

1. Verifier’s secret share phase (step 3 for ShareAt() of Fig. 7).
2. The 1-out-of-n OT phase (steps 4 - 6 of Fig. 7) which include:
 - Preprocessing, Query, Reply and Decode costs of SealPIR.
 - Polynomial interpolation (step. 3 of Fig. 3).
 - Proof of bounded noise (step. 1 of Fig. 3).

Note for brevity, we don’t include the costs of PRG generation, commitment and de-commitment costs, one-time MAC and ZK proof protocol as these are negligible compared to the overall runtime costs (which as shown in Table 2 are dominated by MPCitH encoding and PIR preprocessing and reply).

We also performed a second set of benchmarks over a network for $n = 2^{20}$, as shown on Table 4, where we take the additional network latency into account as well. In particular, the PIR Query - Reply would replace the 5th and 6th column together on Table 2 and similarly the rest of our network measurements. This shows that although our protocol has many rounds of interaction (most of them during $\Pi^\text{WellFormedZK}_f$), the overall impact to its total run-time is very small.

Comparison. We now make a concrete comparison of our protocol’s runtime and communication costs with Mac’n’cheese [10], which also aims for disjunctive Zero-knowledge proofs and has similar asymptotic costs as shown in Fig. 1. We observe that Mac’n’cheese is not explicitly tailored for disjunctive proofs comprised of circuits with the same structure, however as discussed in Section 4 in such a case its disjunctive statement $C(x) = y_1 \lor C(x) = y_2 \lor \cdots \lor C(x) = y_n$ can be modified as $(C(x) = y) \land (y = y_1 \lor \cdots \lor y = y_n)$ to

We also treat the double hashing RIPEMD160(SHA256()) of public keys in Bitcoin as a single hash function $H^\text{DoubleHash}$.
avoid many circuit evaluations, resulting in a conjunctive statement which one part consists of a disjunctive statement of equality checks.

In addition, as discussed in Section 5 our protocol can be naturally extended to accommodate mixed statements, with only an overhead of $|x|$ 1-out-of-2 OTs, which only cost roughly 25ms in total for $|x| = 256$ [4], a negligible cost compared to the main protocol’s benchmarks presented above.

Given those observations, we first compare with Mac’n’cheese’s needed runtime for n equality checks plus proving ($C(x) = y$) where C is a 250 million gate Boolean circuit, which is equivalent to converting from an arithmetic circuit representing the algebraic statement. Specifically when $n = 2^{20}$, the estimated reported cost of C for Mac’n’Cheese is 30 seconds, and the cost for 2^{20} equality checks (256 million gates), is another 30 seconds, running on a system with equivalent specifications, adding to a total runtime of 60 seconds, with a total communication cost of 63 MB. Given our measurements, we observe significant improvements even when comparing with the disjunctive equality checks part of Mac’n’cheese. In addition, Mac’n’cheese can handle only Boolean or arithmetic circuits, therefore as an example, a mixed statement in the form of SHA256(g^x) = y would need around 250 million gates (as shown in Appendix B), while gOTzilla is compatible with techniques combining algebraic and non-algebraic statements similar to the work by Chase et al. [19] as discussed in Section 5, and therefore we don’t need to covert between circuit types. Finally, in comparison to the concurrent work of [27], and based on their reported numbers our protocol is roughly 6x more efficient in computational costs (assuming the reported runtime t in Table 2 of [27] only takes the prover’s or the verifier’s costs into account, but not both simultaneously as we do), namely for 2^{13} elements our total runtime for 256 bits of statistical security (which implies a parameter $\tau = 80$) is 644ms while the total runtime for [27] in an equivalent system would be 3960ms. However, our protocol has higher communication costs, primarily because of the required proof of bounded Ring-LWE noise.

Table 3. Communication costs for Fig. 7 protocol (including Fig. 3 subroutine) for $n = 2^{20}$

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR Query (Step 5)</td>
<td>64.14 KB</td>
</tr>
<tr>
<td>PIR Response (Step 4)</td>
<td>320.71 KB</td>
</tr>
<tr>
<td>ΠWellFormed poly interp.</td>
<td>192.04 KB</td>
</tr>
<tr>
<td>ΠWellFormed bounded noise</td>
<td>5.62 MB</td>
</tr>
<tr>
<td>Committed views (Step 8)</td>
<td>2.45 KB</td>
</tr>
<tr>
<td>Total</td>
<td>6.18 MB</td>
</tr>
</tbody>
</table>

Table 4. Latency costs for Fig. 7 protocol (including Fig. 3 subroutine) for $n = 2^{20}$

<table>
<thead>
<tr>
<th>Region</th>
<th>PIR Query + ΠWellFormed polynomial interp.</th>
<th>ΠWellFormed bounded noise</th>
<th>MPCitH views</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East - East</td>
<td>7.405s</td>
<td>7ms</td>
<td>298ms</td>
<td>370ms</td>
</tr>
<tr>
<td>US East - West</td>
<td>7.563s</td>
<td>126ms</td>
<td>892ms</td>
<td>381ms</td>
</tr>
<tr>
<td>US East - Japan</td>
<td>7.738s</td>
<td>292ms</td>
<td>1.59s</td>
<td>421ms</td>
</tr>
</tbody>
</table>

7 Conclusion

We presented gOTzilla, a novel protocol for disjunctive Zero-Knowledge proofs, tailored for large disjunctions. While our protocol has equivalent asymptotic communication costs with recent works, we show that

‡ These estimates were provided by Mac’n’cheese [10] authors assuming cost per gate is 120ns.
gOTzilla offers a concrete improvement over the state-of-the-art, especially when the disjunctions include mixed (i.e. algebraic and non-algebraic) statements, since our protocol is more “mixed statement-friendly”. Finally, as the Bitcoin’s UTXO count is roughly 80 million at the time of writing [3], gOTzilla can serve as a basis for a Proof of Assets over Bitcoin’s blockchain, where an exchange can interactively prove its assets to an auditor in a few minutes.

Acknowledgements

Foteini Baldimtsi and Panagiotis Chatziigiannis were partially supported by NSF #1717067 and Google and Facebook research awards.

References

1. Multi-protocol spdz.
2. Sealpir: A computational pir library that achieves low communication costs and high performance.
A Optimization for Preprocessing

Let \(m \) be the number of parties used for MPCitH, and \(\tau \) be the number of repetitions. For each input value \(y_i \), the verifier generates the randomized shares of \(y_i \) as

\[
(ShareAt(y_i, r_1), \ldots, ShareAt(y_i, r_\tau))
\]

Let \(\varepsilon_j \) be the position that will not be opened in the \(j \)th run, then we have \(ShareAt(y_i, r_j) = (r_{j,1}, \ldots, r_{j,\varepsilon_j-1}, r_{j,\varepsilon_j} + y_i, r_{j,\varepsilon_j+1}, \ldots, r_{j,m}) \) where \(r_{j,1} + \cdots + r_{j,m} = 0 \). This can be rewritten as

\[
ShareAt(y_i, r_j) = (r_{j,1}, \ldots, r_{j,m}) + y_i \cdot s_j
\]

where \(s_j \) is a vector of length \(m \) such that \(s_{j,k} = 0 \) for \(k \neq \varepsilon_j \) and \(s_{j,\varepsilon_j} = 1 \). Abuse the notation a bit, we can write \(ShareAt(y_i, r_j) = r_j + y_i \cdot s_j \).

Now, \((ShareAt(y_i, r_1), \ldots, ShareAt(y_i, r_\tau)) = (r_1, \ldots, r_\tau) + y_i \cdot (s_1, \ldots, s_\tau) = r + y_i \cdot s \) where \((r + y_i \cdot s) \) is the \(i \)th row of the database.

To compute the OT, the parties need to compute

\[
\sum_{i=1}^{N} C_i \cdot (r + y_{i+jN} \cdot s) = r \cdot (\sum_{i=1}^{N} C_i) + \sum_{i=1}^{N} C_i \cdot (y_{i+jN} \cdot s) = r \cdot (\sum_{i=1}^{N} C_i) + s \cdot (\sum_{i=1}^{N} C_i \cdot y_{i+jN})
\]

for \(j \in [1, n/N] \), which is the dominant computation cost of the protocol and accounts for more than 95% of the total run-time.

To compute this, we will first compute \(\sum_{i=1}^{N} C_i \) and \(\sum_{i=1}^{N} C_i \cdot y_{i+jN} \), followed by \(r \cdot (\sum_{i=1}^{N} C_i) \) and \(s \cdot (\sum_{i=1}^{N} C_i \cdot y_{i+jN}) \).

Optimize the preprocessing The preprocessing involves the computation of the number theoretic transform (NTT) of \(C_i \) and \(y_i \). Note that due to the selected parameters, the plaintext modulus used in our Ring-LWE instance is only 12 bits. As \(y_i \) has 256 bits and does not fit into one coefficient, \(y_i \) is represented as a low degree polynomial (in \(R_i \)). Specifically, we represent \(y_i \) as coefficients of a polynomial of degree 21, of which coefficients have 12 bits. Without any optimizations, we need to execute \(n \) NTT operations to compute \(NTT(y_i) \). However, we can precompute the NTT for \(u_j \in R_i \) such that \(u_j[j] = 1 \) and \(u_j[k] = 0 \) for \(j \neq k \) and \(0 \leq j < 22 \). Let \(u_i = (y_{i,0}, \ldots, y_{i,22}) \), then \(NTT(y_i) = \sum_{j=0}^{21} y_{i,j} \cdot NTT(u_j) \). We can further speed up the precomputation by using a lookup table that store \(NTT(k \cdot u_j) \) for \(k \in [0, 2^{12}] \). The table will have at most \(22 \times 4096 = 90112 \) entries. After the precomputation step, each \(NTT(y_i) \) can be computed by 21 \(\cdot \) \(N \) additions instead of \(O(N \log N) \) multiplications. If \(n = 2^{20} \), the preprocessing will cost 90112 \(\cdot \) \(N \) multiplications and
21 \cdot 2^{20} \cdot N \text{ additions with the lookup table. The naive approach will cost } O(2^{20} \cdot N \log N) \text{ multiplications (} \log N \geq 11\). If we use only 8 bits for each chunk of \(y_i \), the lookup table can be precomputed with only \(32 \times 256 \times N = 8192 \cdot N \) multiplications. However, we need to perform \(31 \cdot N \) additions for each \(NTT \) operation instead of \(21 \cdot N \).

Reducing the cost of 1-out-of-\(n \) committed OT With a naive approach, the prover cannot verify the 1-out-of-\(n \) committed OT until the verifier decommits the random seed used in the computation. However, with our optimization, both the prover and verifier can execute the heavy part of the 1-out-of-\(n \) committed OT at the same time. The dominant cost of the 1-out-of-\(n \) committed OT is the cost to compute \(NTT(y_i) \) and \(\sum_{i=1}^{N} C_i \cdot y_{i+1}N \) for \(j \in [1; n/N] \). It is clear that these terms do not depend on the random seed that is used to generate \(r \) and \(s \). These computations takes more than 95\% of the total runtime of 1-out-of-\(n \) committed OT. Thus we save almost \(2x \) in terms of computation cost for the 1-out-of-\(n \) committed OT step.

B Elliptic curve point multiplication circuit

We estimate the size of the Boolean circuit that compute \(x \cdot G \) where \(x \) is a scalar and \(G \) is a publicly known elliptic curve point. Let \(q \) be the bit length of the elliptic curve and \(x = \sum_{i=0}^{\log N} x_i \cdot 2^i \), then \(x \cdot G = \sum_{i=0}^{k} x_i \cdot (2^i \cdot G) \). Assume that the computation of \(G_i \) is cheap, the size of the circuit is dominated by the cost to add all these \(q-1 \) points together, each costs 14q multiplications, or \(14q^2(q-1) \) AND gates. Finally, we need to convert the projective coordinates to the regular coordinates by computing one field inverse and 2 multiplications which cost around \(q^3 \) AND gates. In total, the size of the circuit is \(15q^3 - 14q^2 \) AND gates. For \(q = 256 \), the circuit will have around 250 million AND gates.

C Disjunctive proofs using Garbled Circuits

A Garbled Circuit (GC) scheme is defined by the following algorithms [19]:

\(- e, d, GC \leftarrow Gb(\mathbb{pp}, \lambda, f, r) \) which on input of a boolean circuit \(f \) outputs a garbled circuit \(GC \) and encoding and decoding information \(e \) and \(d \).
\(- X \leftarrow Enc(e, x) \) which on input of encoding information \(e \) and an input \(x \) corresponding to \(f \), outputs a garbled input \(X \).
\(- Y \leftarrow Eval(GC, X) \) on input of garbled circuit \(GC \) and garbled input \(X \) outputs encoded output \(Y \).
\(- y \leftarrow Dec(Y, d) \) which on input of an encoded output \(Y \) and decoding information \(d \) outputs \(y \).
\(- \{d, \emptyset\} \leftarrow Ver(GC, e, f) \) which on input of garbled circuit \(GC \), encoding information \(e \) and boolean function \(f \) outputs either decoding information \(d \) or \(\emptyset \).

Definition 3 A GC scheme \((Gb, Enc, Eval, Dec, Ver) \) must satisfy the following properties:

\(- \text{Correctness: } \forall f, x, GC, e, d: (a) \text{ For } Y \leftarrow Eval(GC, X), f(x) \leftarrow Dec(Y, d) \text{ and } (b) \text{ for } d \leftarrow Ver(GC, e, f) \text{ with } d \neq \emptyset \text{ and } Y \leftarrow Eval(GC, X), Dec(Y, d) = f(x) \).
\(- \text{Authenticity: } \forall f, x \text{ and PPT algorithm } \mathcal{A}, \text{ there is a negligible function } \epsilon(\cdot) \text{ s.t. } Pr[\exists y \neq f(x), y = Dec(d', d) : (e, d, GC) \leftarrow Gb(pp, \lambda, f, r), d' \leftarrow \mathcal{A}(GC, Enc(e, x))]| \leq \epsilon(\lambda) \).
\(- \text{Privacy: There exists a PPT simulator } \mathcal{S} \text{ s.t. the distributions } (Gb, Enc, Eval, Dec, Ver), X \leftarrow Enc(e, x) \text{ and } \mathcal{S}(f, f(x)) \text{ are indistinguishable.} \)

As discussed in Section 5, Chase et al. [19] aims to provide ZK proof protocols for mixed statements in the form of \(f(x, y) = 1 \land g(x, z) = 1 \). Towards this goal, it constructs protocols in two different ways. The first (and more efficient) assumes the existence of a bit-wise commitment as part of a larger protocol, while the second requires a separate sub-circuit to compute a one-time MAC \(t = a \cdot x + b \) which has \(O(|x||a|) \) AND gates, where \(|x| \) and \(|a| \) is the bit length of \(x \) and \(a \) respectively. For instance, if \(|x| = |a| = 512 \), then \(|x||a| = 262144 \), which is about 10 times the size of a SHA256 circuit.
Setup. \(f(x, y) \) is a Boolean function and \(g(x, z) \) is an algebraic function. \(\Pi \) is a semi-honest \(m \)-party protocol implementing the functionality \(\mathcal{F} \) which takes as input \((X_i, Y_j)\) from each party \(P_j \) and outputs to all parties \(f(\otimes_{j=1}^m X_j, \otimes_{j=1}^m Y_j) = 1 \) with correctness and \((m-1)\)-privacy.

Common inputs. \(\tau \) total number of repetitions, \(n \) public key and value pairs \((y_1, v_1), \ldots, (y_n, v_n)\) and a minimum asset value \(v_0, y_0 \in \{0, 1\}^\kappa \) and \(m^{-\tau} < 2^{-\lambda} \), \(\lambda \) is a security parameter.

Prover's input. \(x, z, \ell \) such that: \(f(x, y_k) = 1, v_k \geq v_0 \), and \(g(x, z) = 1 \). We denote as \((x_1, \ldots, x_{|x|})\) the bit representation of \(x \) (i.e. \(x = \sum_{k=1}^{\Sigma} 2^{u_k}x_u \)).

Verifier's input. \(C_x = \text{Com}(x), C_z = \text{Com}(z), C_v = \text{Com}(v) \).

1. Verifier \(\mathcal{V} \) generates its random tape \(s \) and sends \(C_s \leftarrow \text{Com}(s) \) to the prover \(\mathcal{P} \). Throughout the rest of the protocol, all randomness of the Verifier is generated by applying a PRG, \(\text{G}(s) \). (We will, imprecisely, refer to these as “random values”).

2. \(\mathcal{V} \) uses the random seed \(s \) to sample the following values uniformly at random:
 (a) \(\varepsilon_k \overset{\$}{\leftarrow} \{0, 1\}^\kappa \) for \(k \in \{1, \ldots, \tau\} \).
 (b) \(r_k \overset{\$}{\leftarrow} \{0, 1\}^\kappa \) for \(k \in \{1, \ldots, \tau\} \).
 (c) \(w_{u, k} \overset{\$}{\leftarrow} \{0, 1\}^\kappa \) for \(u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\} \).
 (d) \(a \overset{\$}{\leftarrow} \{0, 1\}^{|x|}, b_u \overset{\$}{\leftarrow} \{0, 1\}^{x_i+\lambda} \) for \(u \in \{1, \ldots, |x|\} \).
 (e) \(c_i \overset{\$}{\leftarrow} \{0, 1\}^\lambda, d_i \overset{\$}{\leftarrow} \{0, 1\}^{\lambda + \lambda} \).

3. For \(u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\} \), \(\mathcal{V} \) computes \(\{0_{u, 1}^{(k)}, \ldots, 0_{u, m}^{(k)}\} \leftarrow \text{ShareAt}(0, \varepsilon_k, w_{u, k}) \) and \(\{1_{u, 1}^{(k)}, \ldots, 1_{u, m}^{(k)}\} \leftarrow \text{ShareAt}(1, \varepsilon_k, w_{u, k}) \).

4. For \(i \in \{1, \ldots, n\}, k \in \{1, \ldots, \tau\} \), \(\mathcal{V} \) computes vector \(\{Y_{k, 1}^{(i)}, \ldots, Y_{k, m}^{(i)}\} \leftarrow \text{ShareAt}(y_i, \varepsilon_k, r_k) \).

5. Exchange labels for inputs.
 (a) \(\mathcal{V} \) sends \(\{0_{u, b_u}(1_u, 2^{u-1}a + b_u)\} \) to \(\Pi_{\ell, 1}^{|x|} \).
 (b) \(\mathcal{P} \) sends \(\ell \) to \(\Pi_{\ell, 1}^{|x|} \).
 (c) \(\Pi_{\ell, 1}^{|x|} \) outputs \(\{Y_{\ell, c} \cdot v_d + d\} \) to \(\mathcal{P} \).
 (d) For every \(u \in \{1, \ldots, |x|\} \),
 (i) \(\mathcal{V} \) sends \(\{0_{u, b_u}(1_u, 2^{u-1}a + b_u)\} \) to \(\Pi_{\ell, 2}^{2|x|} \).
 (ii) \(\mathcal{P} \) sends \(x_u \) to \(\Pi_{\ell, 2}^{2|x|} \).
 (iii) If \(x_u = 0 \) then \(\Pi_{\ell, 2}^{2|x|} \) outputs \(\{0_{u, b_u}\} \) to \(\mathcal{P} \), otherwise it outputs \(\{1_u, 2^{u-1}a + b_u\} \). \(\mathcal{P} \) denotes whichever output it receives as \(\{X_{u, 1}^{(i)}, \ldots, X_{u, m}^{(i)}\}, \{X_{u, 1}^{(r)}, \ldots, X_{u, m}^{(r)}\} \).
 (e) For \(k \in \{1, \ldots, \tau\} \), denote the 2D table \(X^{(k)} := \{X_{1, 1}^{(k)}, \ldots, X_{|x|, 1}^{(k)}, \ldots, (X_{1, m}^{(k)}, \ldots, (X_{|x|, m}^{(k)})\} \).

6. For every \(k \in \{1, \ldots, \tau\} \), \(\mathcal{P} \) computes \(\text{view}_{u, 1}, \ldots, \text{view}_{u, m} \) \(\leftarrow \Pi_{\text{MPCitH}}(\Pi_{\mathcal{F}}, (X^{(k)}, Y^{(k)})) \).

7. \(\mathcal{P} \) computes \(\text{MAC}(x) = \sum_{x_u} M_u \) and \(\text{CMAC}(x) \leftarrow \text{Com}(\text{MAC}(x)) \). Similarly compute \(\text{MAC}(v) = cv_d + d \) and \(C_{\text{MAC}(v)} \leftarrow \text{Com}(\text{MAC}(v)) \).

8. For all \(j \in \{1, \ldots, n\}, k \in \{1, \ldots, \tau\} \), \(\mathcal{P} \) sends \(C_{\text{MAC}(x)}^{(k)}, C_{\text{MAC}(v)}^{(k)}, \text{Cview}_{j, k} \leftarrow \text{Com}(\text{view}_{j, k}) \) to \(\mathcal{V} \).

9. \(\mathcal{V} \) decrypts \(s \), which \(\mathcal{P} \) uses to reconstruct \(\{\varepsilon_1, \ldots, \varepsilon_\tau\}, \{0_k, 1_k\}, \{Y_1, \ldots, Y_n\} \).

10. \(\mathcal{V} \) verifies the following properties hold for all \(i, i' \in \{1, \ldots, n\}, u \in \{1, \ldots, |x|\}, k \in \{1, \ldots, \tau\}, j \in \{1, \ldots, m\} \) \(\forall k \): \(\bigoplus_{j=1}^m Y_{i, j}^{(k)} = y_i \).

11. \(\mathcal{P} \) decrypts each \(\{\text{view}_{j, k}\}_{k \in \{1, \ldots, \tau\}, j \in \{1, \ldots, m\} \} \).

12. \(\mathcal{V} \) checks that the decrypted views are consistent with honest executions of \(\Pi_{\mathcal{F}} \) output 1.

13. \(\mathcal{P} \) and \(\mathcal{V} \) execute the following 2K proof protocols:
 (a) \(\pi_1 = \{x, \text{MAC}(x), z : C_x = \text{Com}(x) \land C_{\text{MAC}(x)} = \text{Com}(\text{MAC}(x)) \land \text{MAC}(x) = ax + b \land C_z = \text{Com}(z) \land g(x, z) = 1 \} \)
 (b) \(\pi_2 = \{v, \text{MAC}(v) ; C_v = \text{Com}(v) \land C_{\text{MAC}(v)} = \text{Com}(\text{MAC}(v)) \land \text{MAC}(v) = cv_d + d \land v \geq v_0 \} \).

14. If any of \(\pi_1, \pi_2 \) do not verify, \(\mathcal{V} \) rejects, else accepts.

Fig. 11. Disjunctive Composite protocol via MPCitH for Proving Assets in Bitcoin. We denote by colored text the additional elements introduced compared to Fig.10.
We observe that this one-time MAC value can be computed during a COT step using a similar process to how we encode the input (shown in $I_{\text{MAC},F}^\text{GC}$), where F_{COT} is equivalent to F_{OT} plus an opening phase to the receiver (refer to [19] for the ideal functionality). In this protocol, the prover and verifier compute $MAC(x) = a \cdot x + b$ as follows. The prover computes the bit decomposition of x: x_1, \ldots, x_n. The verifier creates additive shares of b: b_1, \ldots, b_n. For each bit x_u in x the two parties perform a 1-out-of-2 OT. If $x_u = 0$ the prover receives $M_u \leftarrow b_u$, otherwise the prover receives $M_u \leftarrow (2^{u-1}a + b_u)$. From M_1, \ldots, M_n the prover is able to compute $MAC(x)$ as $\sum_{u=1}^{n} M_u = \sum_{u=1}^{n} 2^{u-1}a \cdot x_u + b_u = a \cdot x + b = MAC(x)$.

\[
\Pi_{\text{GC-OR-Mix}}^\text{COT}
\]

Setup. Group \mathbb{G} where DDH assumption holds. $Com(\cdot)$ is a commitment scheme. Let $\mathcal{G} = (\text{Gb}, \text{En}, \text{De}, \text{Eval}, \text{Ve})$ be a garbling scheme.

Common input. y_1, \ldots, y_n where $y_i \in \{0,1\}^n$.

Verifier’s input. $x \in \mathbb{G}$, where x is the witness to statement y_t.

Protocols.

1. The verifier constructs a garbled circuit for F.

 \[(GC, e, d) \leftarrow \text{Gb}(1^n, F(x, y) = y \oplus f(x)\]

2. The prover sends (i, x_i) for all $i \in [n]$ to F_{COT}.
3. The verifier sends $(i, (K_i^0, b_i), (K_i^1, 2^i a + b_i))$ for all $i \in [n]$ to F_{COT} where a and b_i has length of λ and $|x| + \lambda$ bits respectively.
4. F_{COT} outputs $(K_i^{x_i}, 2^i a x_i + b_i)$ for all $i \in [n]$ to the prover.
5. The prover sends ℓ to $F_{\text{COT}}^{1:n}$.
6. The verifier sends (y_1, \ldots, y_n) to $F_{\text{COT}}^{1:n}$.
7. $F_{\text{COT}}^{1:n}$ outputs y_t to the prover.
8. The verifier sends the garbled circuit GC to the prover.
9. The prover evaluates the garbled circuit
 \[Z \leftarrow \text{Eval}(GC, \{K_i^{x_i}\}_{i \in [n]}, y_t)\]
10. The prover computes $t = \sum_{i=0}^{n-1} (2^i a x_i + b_i) = a x + b$.
11. The prover commits to the garbled output Z and t by sending $\text{Com}(Z)$, $\text{Com}(t)$ to the verifier and proves knowledge of opening.
12. The verifier sends open to F_{COT} and $F_{\text{COT}}^{1:n}$.
13. F_{COT} sends (K_i^0, K_i^1) and $F_{\text{COT}}^{1:n}$ sends (y_1, \ldots, y_n) to the prover for all $i \in [n]$.
14. The prover verifies that the circuit was garbled correctly by running $\text{Ve}(GC, \{K_i^0, K_i^1\}_{i \in [n]}, F)$ and the garbled inputs for x, y_1, \ldots, y_n are correct. If the check fails, the prover terminates. Else, it opens Z to the verifier.
15. The verifier checks that $\text{De}(d, Z) = 0$. Otherwise, it rejects and terminates.
16. The prover and the verifier execute a ZK proof to prove the following. $\pi = \{(x, t) : C_x = \text{Com}(x) \land C_t = \text{Com}(t) \land t = ax + b\}(C_x, C_t)$
17. If π does not verify, the verifier terminates.

Fig 12. OR Proof using Garbled Circuits with MAC. We denote by colored text the additional elements introduced compared to the protocol of Chase et al.

However, even with the above optimization, the costs for a disjunctive proof remain linear in the size of the circuit. In Figure 12 we show an optimized OR Proof using Garbled Circuits with MAC, while in Figure 13 we extend the previous protocol with value.
Setup. Group \mathcal{G} where DDH assumption holds. $\text{Com}()$ is a commitment scheme. Let $\mathcal{G} = (\text{Gb}, \text{En}, \text{De}, \text{Eval}, \text{Ve})$ be a garbling scheme.

Common input. $(y_1, v_1), \ldots, (y_n, v_n)$ where $y_i \in \{0,1\}^n$, $v_i \in [0,L]$.

Prover’s input. $x \in \mathcal{G}$, where x is the witness to statement y_e such that $v_e \geq v_0$.

Verifier’s input. $C_x = \text{Com}(x)$ and $C_{v_i} = \text{Com}(v_i)$.

Protocol.

1. The verifier constructs a garbled circuit for F.
 \[
 (GC, e, d) \leftarrow \text{Gb}(1^n, F(x, y) = y \oplus f(x))
 \]

2. The prover sends (i, x_i) for all $i \in [n]$ to \mathcal{F}_{COT}.

3. The verifier sends $(i, (K_i^0, b_i), (K_i^1, 2^i a + b_i))$ for all $i \in [n]$ to \mathcal{F}_{COT} where a and b_i has length of λ and $\lvert x \rvert + \lambda$ bits respectively.

4. \mathcal{F}_{COT} outputs $(K_i^0, 2^i a x_i + b_i)$ for all $i \in [n]$ to the prover.

5. The prover sends t to $\mathcal{F}_{\text{OT}}^{\l_1}$.

6. The verifier sends $((y_1, a'_v v_1 + b'), \ldots, (y_n, a'_v v_n + b'))$ to $\mathcal{F}_{\text{OT}}^{\l_1}$ where a' and b' has length of λ and $\lvert x \rvert + \lambda$ bits respectively.

7. $\mathcal{F}_{\text{COT}}^{\l_1}$ outputs $(y_e, a'_v v_e + b')$ to the prover.

8. The verifier sends the garbled circuit GC to the prover.

9. The prover evaluates the garbled circuit
 \[
 Z \leftarrow \text{Eval}(GC, \{K_i^1\}_{i \in [n]}, y_e)
 \]

10. The prover computes $t = \sum_{i=0}^{n-1} (2^i a x_i + b_i) = ax + b$ and $v = a'_v v_e + b'$.

11. The prover commits to the garbled output Z and t by sending $\text{Com}(Z), \text{Com}(t), \text{Com}(v)$ to the verifier and proves knowledge of opening.

12. The verifier sends open to \mathcal{F}_{COT} and $\mathcal{F}_{\text{COT}}^{\l_1}$.

13. \mathcal{F}_{COT} sends (K^0_i, K^1_i) and $\mathcal{F}_{\text{COT}}^{\l_1}$ sends $((y_1, a'_v v_1 + b'), \ldots, (y_n, a'_v v_n + b'))$ to the prover for all $i \in [n]$.

14. The prover verifies that the circuit was garbled correctly by running $\text{Ve}(GC, \{K^0_i, K^1_i\}_{i \in [n]}, F)$ and the garbled inputs for x, y_1, \ldots, y_n are correct. If the check fails, the prover terminates. Else, it opens Z to the verifier.

15. The verifier checks that $\text{De}(d, Z) = 0$. Otherwise, it rejects and terminates.

16. The prover and the verifier execute the following ZK proofs: $\pi_1 = \{(x, t) : C_x = \text{Com}(x) \land C_t = \text{Com}(t) \land t = ax + b\}$

 $\pi_2 = \{(v, e) : C_{v_i} = \text{Com}(v_i) \land C_v = \text{Com}(v) \land v = a'_v v_e + b' \land v_e \geq v_0\}$

17. If any of π_1, π_2 do not verify, the verifier terminates.

Fig. 13. OR Proof with MAC and value Protocol using Garbled Circuits. We denote by colored text the additional elements introduced compared to Fig. 12.

Table 5. Comparison of ZK proof systems for Proof of Assets for a single proof. $\lvert x \rvert$ is length of input, $\lvert F \rvert$ circuit size, λ security parameter. (for BTC UTXO $\lvert x \rvert = 512$ (BTC public key 256bits + 256 bits of padding for MD), probably $\lambda < x$, we can consider 128 or 256 sect bits. Circuit F' might be 10 times larger than F).

<table>
<thead>
<tr>
<th>No setup</th>
<th>NI</th>
<th>Prover</th>
<th>Verifier</th>
<th>Proof size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chase et al. [18] (w/o MAC)</td>
<td>✔</td>
<td>X</td>
<td>$O(\lvert x \rvert \</td>
<td>F \rvert \text{sym})$</td>
<td>$O(\lvert x \rvert \</td>
</tr>
<tr>
<td>Chase et al. [18] (w/ MAC)</td>
<td>✔</td>
<td>X</td>
<td>$O(\lambda \</td>
<td>F \rvert \text{sym})$</td>
<td>$O(\lambda \</td>
</tr>
<tr>
<td>Backes et al. [8]</td>
<td>✔</td>
<td>✔</td>
<td>$O(\lvert x \rvert + \lambda \</td>
<td>F \rvert \text{sym})$</td>
<td>$O(\lvert x \rvert + \lambda \</td>
</tr>
<tr>
<td>Figure 12 with value</td>
<td>✔</td>
<td>X</td>
<td>$O(\lambda \</td>
<td>F \rvert \text{sym})$</td>
<td>$O(\lambda \</td>
</tr>
</tbody>
</table>