
Digital Signature from Syndrome Decoding Problem
Abdelhaliem Babiker

Dept. of Basic Eng. Sciences, College of Engineering
Imam Abdulrahman Bin Faisal University

Dammam, Saudi Arabia
aababiker@iau.edu.sa

Abstract—This paper introduces new digital signature scheme
whose security against existential forgery under adaptive chosen
message attack is based on hardness of the Syndrome Decoding
Problem. The hardness assumption is quite simple and hence
easy to analyze and investigate. The scheme as whole is neat with
intuitive security definition and proof in addition to elegant and
efficient signing and verifying algorithms. We propose parameter
sets for three security levels (128-bits, 192-bits, and 256 bits) and
estimate the corresponding sizes of the keys and the signature
for each level. Additionally, the scheme has an interesting feature
of signature verification using an arbitrary part of the public
key, which allows the verifying party to store a small random
secret part of the public key rather than the full-size public
key. Using small part of the public key for verification gives us
more time and memory efficient verification mode which we call
Light Verification Key Mode (LVK) mode. Also, we suggest Light
Signing Key Mode (LSK) which enables a smaller size of the
private (signing) key while maintaining the same security level.

I. INTRODUCTION

Many public-key cryptosystems are under threat of the
large-scale quantum computers which are anticipated to be
built in the foreseeable future. In particular, cryptosystems
that are based on the Discrete Logarithm Problem (DLP) or
the Integer Factorization Problem will be compromised using
Shor’s algorithms [1] which are designed to exploit quantum
computers to solve these problems. Therefore, there has
recently been great interest in cryptosystems that are based
on hardness of different problems which are assumed to
resist attacks of both classical and quantum algorithms. One
of these problems is Syndrome Decoding Problem which has
long history of study and forms basis for security of many
cryptosystems, for example [2]–[4]. The syndrome decoding
problem is closely connected to Learning Parity with Noise
problem which also has many cryptographic applications [5].

In response to the ongoing advancements of quantum
computing, National Institute of Standards and Technology
(NIST) has initiated in 2016 a competition-like standardization
process for selecting quantum-safe public-key algorithms to be
standardized in order to replace the currently used public-key
algorithms. In July 2022, after three rounds, NIST announced
selection of one key encapsulation mechanism and three digital
signature algorithms to be standardized and additional four
public-key encryption and key-establishment algorithms for
the fourth-round of standardization process. Three of these
fourth-round finalists, namely Classic McEliece [2], BIKE [3]
and HQC [4] are based on the hardness of the syndrome

decoding problem. Except for one algorithm, all of the selected
algorithms for standardization are lattice-based algorithms. As
there is no fourth-round selected digital signature algorithm,
NIST is calling for additional digital signature proposals [6],
which are preferred to be based on hardness assumptions other
than structured lattices which form basis for three out of the
four selected algorithms.
This paper introduces Signature from Syndrome Decoding
(SSD, for short), a new digital signature scheme that is based
on hardness of syndrome decoding problem. More precisely,
we formulate definition of security of the signature against
existential forgery under adaptive chosen message attack into
an assumption which is based on the hardness of the syndrome
decoding problem.

Paper Organization: We start in Section 2 with high level
description of the scheme in order to give the reader the big
picture before we delve into the details in Section 3 in which
we devise our basic building blocks. Next, we introduce the
main hardness assumption in Section 4 and give justification
for its hardness. Thence we present the signature scheme in
Section 5 and prove its correctness. Security analysis of the
scheme is given in Section 6. Also, in this section we define the
security levels of the scheme and the corresponding parameter
sets. In Section 7 we give estimations of hardness of the
underlying syndrome decoding instances of the parameter sets
of the scheme. Finally, we devote Section 8 and to the Light
Verification Key (LVK) mode of the scheme along with its
security estimation, and Section 9 for brief description of the
Light Signing Key mode (LSK).

II. DIGITAL SIGNATURE SCHEME: HIGH LEVEL
DESCRIPTION

Suppose that we have a message m which we want to sign
using our digital signature scheme. First we specify the pair
of the private and public key which are used for signing and
verifying, respectively. Thence we show how to use these keys
to sign and verify a signature, and why the scheme should be
secure, i.e. why it is hard to forge a signature for any arbitrary
message. Also, we explain the rationale behind the way in
which the scheme is designed. The details of how the scheme
works are given in the subsequent sections. The reader may
also come back to this section after completing reading the
paper. In this case this section provides the summary of the
scheme’s description.

1) The Keys: Let us start with publicly known random ma-
trix Y ∈ Fk′×k

2 and three secret random matrices S ∈ Fk×n
2 ,

K ∈ Fn×n
2 , and P ∈ Fn×n

2 , where P is permutation matrix.
All of these four matrices are randomly constructed but with
specific structure in order to enable the required functionality
of the scheme. Then we set H ← Y SP−1. Next, we keep the
matrices K and P privately, and we set as a public key the
matrices Y and H in addition to some hash function H such
that

H : {0, 1}∗ → Fn
2 .

In other words, we set

pk = (Y,H,H) and sk = (K,P).

We conjecture and prove that the matrix Y is computationally
indistinguishable from the random and that it is hard to recover
the secret matrices S and P from H and Y (Theorem 3).

2) Signing: Now, to sign the message m, we obtain

h← H(m).

That is, h ∈ Fn
2 is hash value of the message m. Then we

generate the signature as

s← P (Kh⊕ r),

where r ∈ Fn
2 is a secret random vector obtained from some

random subspace of Fn
2 . In fact, the vector r represents random

noise added to the vector Kh before applying the secret
permutation on the sum (Kh ⊕ r). All of the permutation
matrix P , the matrix K, and the noise vector r are secret,
and for every new signature, a new random independent noise
vector r is used. Thus, we make sure that the signatures do
not reveal the secret matrices K and P .

3) Verifying: The pair (m, s) of the message and its signa-
ture is verified as follows. First the receiver compute the hash
value of m, h ← H(m), where h = [h1 · · · hγ]T and
hi ∈ Fk

2 , for 1 ≤ i ≤ γ. That is, the hash value is viewed as
γ equal-length parts for some nonegative integer γ and each
part is represented as a vector in Fk

2 . Then the receiver checks
if

Hs = Y h̄, where h̄ =

γ∑
j=1

hi.

The receiver accepts the signature if and only if the equality
holds and the Hamming weight of the vector s is within certain
range.

A. Performance of the Scheme

It is easy to see that the scheme efficient with signing and
verifying preformed in O(n2) operations. Size of each of the
the public key and private key is of order O(n2) and the
signature size is n bits.

B. Security of the Scheme

The verification equation Hs = Y h̄ corresponds to an
instance of syndrome decoding problem in which rows of H
are subset of rows of some random parity check matrix for
some (unknown) random binary linear [n, k′, d]-code C, the
vector (v = Y h̄) represents syndrome of some (unknown)
codeword, and the signature s is a solution for this instance.
(See Section 4 for full details.)
Therefore, if it is hard to solve the syndrome decoding instance
(H,ω,v) for s, where ω is the Hamming weight of s, then
given the message m, it is hard to forge a signature s′ with
weight wt(s′) ≈ ω such that Hs′ = Y h̄.

1) Hamming Weight of the Signature: Hardness of syn-
drome decoding instance (H,ω,v) depends on the parameter
ω as well as dimensions of the matrix H (i.e., k′ and n).
We choose ω, which represents the Hamming weight of the
legitimate signature in our scheme, to be restricted within
certain rage. Particularly, the upper bound on ω is restricted
by Gilbert–Varshamov bound of d and k

n . The lower bound
on ω can be made arbitrarily close to the upper bound.
To achieve this restriction on weight of the signature we
designed the signature algorithm such that the sum after adding
the random noise vector r to Kh results in the required weight.
The whole operation can be randomized such that the random
vector r in the sum (Kh⊕r) is uniformly drown from random
subspace of Fn

2 which we call the noise distribution. Note that
weight of the signature s = P (Kh⊕ r) is same as the weight
of the vector (Kh⊕r), since multiplication by the permutation
matrix P preserves the weight.

2) Parameter Sets and Security Levels: We choose the
parameters n and k′ such that the syndrome decoding instance
(H,ω,v) is sufficiently hard. To do this, we use estimation of
Andre Esser and Emanuele Bellini [7] for hardness of the syn-
drome decoding problem, which is based on the performance
of the best known information set decoding algorithms for
solving the syndrome decoding problem. Thus, we determine
the parameter sets and their corresponding security level using
Esser-Bellini estimations as reference.
We provide thee parameter sets for three security levels (128-
bits, 192-bits, and 256-bits). Table I shows these security
levels along with the parameters of the underlying syndrome
decoding instance and sizes of the keys and the signature.

C. Light Verification Key (LVK) Mode

For efficiency in terms of both time and space required by
the verification algorithm, we introduce mode of operation
which we call Light Verification Key Mode. In this mode, the
receiver (or verifying party) keeps only a small part of the
public key rather than storing the entire public key, and he
uses this small part for verifying the signature. However, this
part must be kept privately. In other words, the receiver keeps
a private verification key which is derived randomly from the
original public key as follows. From public key

pk = (H,Y,H)

TABLE I
SECURITY LEVELS, THE UNDERLYING SYNDROME DECODING INSTANCE
(PARAMETER SETS) AND, SIZES OF KEYS AND THE SIGNATURE FOR THE

STANDARD SSD.

Security
Level 128-bits 192-bits 256-bits

Parameters
(n, k′, ω) (1760, 242, 484) (2744, 377, 754) (3728, 512, 1025)

Public Key
Size (KB) 65 158 291.5

Private Key
Size (KB) 27 63 113

Signature
Size (Bytes) 220 343 466

KB = 1024 Bytes.

the verifying party secretly forms the matrices H ′ and Y ′ from
rows of H and Y , respectively, by selecting random k′′ rows
from the matrix H and k′′ of their corresponding counterparts
from Y , where k′′ < k′. Then the verifying party forms the
new light verification key

pk
′
= (H ′, Y ′,H).

Signature verification is performed in the same way as in the
standard mode; the verifying party accepts the signature s if
and only if weight of s is within the legitimate range and

H ′s = Y ′h̄.

Note that there are
(
k′

k′′

)
way for driving the secret verification

key form the public key. We determine three parameter sets
for the three security levels (128-bits, 192-bits, and 256-
bits) using estimation of hardness of the underlying syndrome
decoding problem (H ′, ω, Y ′h̄), which is significantly easier
compared to syndrome decoding instance associated with the
full-size public key, since k′′ is less than k′, but however
the adversary does know which instance to solve among the(
k′

k′′

)
possible instances. Table II shows security levels for the

light verification key mode (LVK) in which the public key is
replaced with a secret verification key. Wee see from the table

TABLE II
SIZES OF THE KEYS AND THE SIGNATURE FOR DIFFERENT SECURITY

LEVELS OF THE LVK-SSD.

Security
Level 128-bits 192-bits 256-bits

Parameters
(n, k′′, ω) (1760, 32, 484) (2744, 40, 754) (3728, 48, 1025)

LVK Size (KB) 9 17 27.5

LSK Size (KB) 4.5 7.5 10.5

(Standard)
Private Key
Size (KB) 27 63 113

Signature
Size (Bytes) 220 343 466

that size of the verification key is reduced more than seven

times for the 128-bits security level, nine times for the 192-
bits security level, and ten times for the 256-bits security level.
Also the verification runtime is reduced since rows of matrices
H ′ and Y ′ are small fractions of rows of the matrices H and
Y . For example in the 192-bit security level H is 377× 2744
matrix, while H ′ is only 40× 2744.

D. Light Signing Key (LSK) Mode

Size of private key sk = (K,P) also can be reduced by
specifying spacial structure for the matrix K which allows K
to be stored and manipulated efficiently. We call this mode
of operation Light Signing Key (LSK) Mode. Dimensions of
the matrices K and P do not change, only structure of the
matrix K changes. Unlike the LVK mode which does not
require change in the key generation algorithms, in LSK mode
structure of both public and private keys change.
Table II shows sizes of the private key (i.e. signing key) in both
standard mode and LSK mode in which the standard signing
key is replaced with a space-efficient light signing key (LSK).
We see that LSK mod has more than six times smaller signing
key size for 128-bit security level, nine times smaller signing
key size for 192-bit security level, and more than eleven times
smaller signing key size for 256-bit security level. Note that,
as Table II suggests, LVK can also be combined with LSK
mode.

III. PRELIMINARIES

In the context of this paper, matrix always refers to a matrix
over F2. Addition and multiplication of matrices are ordinary
matrix addition and multiplication in which arithmetic is
carried over F2, and matrix addition is referred to by bitwise
xor, ⊕.

1) Notation: s
R←− S means element s is uniformly at

random selected from the set S. We use |S| to denote size of
the set S.

Let x =

 x1

...
xγ

, where xi ∈ Fk
2 , for 1 ≤ i ≤ γ. We define

x̄ as x̄ =
∑γ

i=1 xi. We use wt(v) to denote the Hamming
weight of the binary vector v, that is the number of the 1s in v.

Next, let M be nonsingular matrix in Fk×k
2 with multiplica-

tive order ϕ = 2r, for some odd number r ∈ N. In particular,
we define M as

M = F−1GF, (1)

where F ∈ Fk×k
2 is uniformly random full-rank matrix and

G ∈ Fk×k
2 , such that

G =

[
D

C

]
with D2 = Il and Cr = Im,

where D is l × l matrix, C is m×m matrix, and Il, Im are
l× l, m×m identity matrices, respectively. Thus, the matrix
M has multiplicative order of ϕ = 2r. That is,

Mϕ = F−1

[
D2r

C2r

]
F = F−1

[
Il

Im

]
F = Ik.

A. Construction of the Matrix M

It is easy to construct a matrix M as defined in (1). One
way to do that is as follows.
The Matrix F : the matrix F ∈ Fk×k

2 is full-rank matrix which
can easily be generated randomly.
The Matrix D: the matrix D can be any random l × l
involutory matrix. However. for simplicity of presentation and
analysis, and also for minimizing memory consumption and
computational cost, we choose D to be direct sum of random
matrices Di, for 0 ≤ i ≤ l

2 , where

Di ∈
{[

1 1
0 1

]
,

[
1 0
1 1

]}
.

That is,

D =

D1

. . .
Dl/2

 .

The matrices Di will be chosen uniformly at random, and
thus there are 2

l
2 possible combinations for the matrix D.

Furthermore, there are many other possible ways for
generating random involutory matrix (see for example [8]
and [9]).
The Matrix C: we construct the matrix C such that C has
multiplicative order r. It can be constructed as

C =

C1

. . .
Ct

 ,

where each Ci, for 1 ≤ i ≤ t, is a companion matrix of
which a minimal polynomial pi(x) ∈ F2[x] has multiplicative
order ri, where ri is odd. Thus, the multiplicative order
of C is the least common multiple of r1,. . . , rt. That is,
r = lcm(r1, ..., rt).

The matrix M , which can easily be generated randomly, has
the following property.

Let Q = (Ik ⊕Mr). Then,

MθQ = QMθ = Q, for every integer θ. (2)

Proof: It is obvious that QM = MQ, since Q = Ik⊕Mr.
Next, notice that

Q = (Ik⊕Mr) = F (Ik⊕Gr)F−1 = F

[
Il ⊕D

0m×m

]
F−1.

On the other hand

QM = (Ik ⊕Mr)M

= (Ik ⊕ FGrF−1)FGF−1

= F (Ik ⊕Gr)F−1FGF−1

= F (Ik ⊕Gr)GF−1.

Since Ik ⊕Gr =

[
Il ⊕D

0m×m

]
and G =

[
D

C

]
,

QM = F (Ik ⊕Gr)GF−1

= F

[
Il ⊕D

0m×m

] [
D

C

]
F−1

= F

[
(Il ⊕D)D

0m×mC

]
F−1.

We have (Il ⊕D)D = (D ⊕D2) = (D ⊕ Il). Hence,

QM = F

[
Il ⊕D

0m×m

]
F−1 = Q.

Using induction on θ we see that QMθ = QMMθ−1 =
QMθ−1 = ... = Q.

B. Column Space of the Matrix Q: Noise Distribution N γ

Consider

Q = (Ik ⊕Mr) = F−1(Ik ⊕Gr)F

= F

[
Il ⊕D

0m×m

]
F−1

=

F

b1,1
...

bl,1
0
...
0

· · · F

b1,n
...

bl,n
0
...
0

,

where bi,j = ((Il ⊕D)F)i,j ∈ {0, 1}.
Let l′ = l

2 . Given structure of the matrix D, it is easy to see
that the sub-matrix (Il⊕D) has exactly l′ = l

2 nonzero rows,
and these nonzero rows are linearly independent. Therefore,

the matrix
[
Il ⊕D

0m×m

]
has rank l′.

Note that the matrix F is full-rank matrix. Since multiplication
by a full-rank square matrix preserves rank 1, it is not hard to
see that

rank Q = l′ and dim Nul Q = k − l′.

Observe that columns of the matrix Q live in the l-dimensional
subspace spanned (or generated) by the first l columns of the
matrix F .

Let the set B = {v1, . . . ,vl′} be basis for Col Q, where
Col Q is the set of all linear combinations of the columns of
Q

1) Remark: Note that Q2 = QQ = 0k×k. Thus,
Col Q ⊆ Nul Q.

Now, let N = Col Q. We define the noise distribution N γ

associated with the matrix M as follows

N γ = {e ∈ Fn
2 : e =

 e1
...
eγ

 ,where ei ∈ N , for 1 ≤ i ≤ γ}.

1https://statlect.com/matrix-algebra/matrix-product-and-rank

https://statlect.com/matrix-algebra/matrix-product-and-rank

Note that N is l′-dimensional subspace of Fk
2 with size

|N | = 2l
′
. Therefore, size of the set N γ which is subspace

of Fn
2 is

|N γ | = 2l
′γ .

The noise distribution has the following property. For every
ei ∈ N we have

Qei = 0 and Mei = ei. (3)

Sine ei ∈ (N = Col Q) and Col Q ⊆ Nul Q, it follows that
ei ∈ Nul Q and hence Qei = 0. Also, since MQ = Q and
ei ∈ Col Q, we get Mei = ei. Furthermore, since Mei = ei,
it follows that Mαei = Mα−1Mei = Mα−1ei = · · · = ei
for every integer α.

2) Purpose of the Noise Distribution N γ: We use the
noise distribution to achieve three major goals; (a) providing
randomness, thus (b) ensuring the secrecy of our underlying
trapdoor structures, (c) also we utilize the noise in reducing the
Hamming weight of the signature. In the public key the noise
serves in hiding the underlying structure which characterizes
the scheme and it virtue of which the verification works.
Furthermore, we use the noise within the function R(·) which
reduces weight of the signature, and also this contributes in
hiding both of the secret matrices K and P , as we will see.

C. Weight Reduction Function wrf

Consider the basis B = {v1, . . . ,vl′} of the subspace N .
Let B = [v1 · · ·vl′]. Consider the transpose matrix BT , which
is l′ × k matrix. We apply Gaussian elimination on BT to
transform it into reduced echelon form B̃T . Since the column
vectors v1, . . . ,vl′ are, by definition of the basis, linearly
independent, the matrix BT has l′ linearly independent rows
and its reduced echelon form B̃T has l′ pivot positions.
Next, consider

B̃ = (B̃T)T = [ṽ1 · · · ṽl′].

Let B̃(:, t) be sub-matrix of B̃ containing random t columns of
the matrix B̃ (assume that these columns are ordered according
the pivot positions in B̃T), where t ≤ l′. Note that the
transpose matrix B̃(:, t)T contains the corresponding t rows
from the matrix B̃T and thus it has t pivot positions. Consider
the set

PB̃(:,t)T = {(i, j) : (i, j) is pivot position in B̃(:, t)T }.

That is, the set PB̃(:,t)T contains subscripts of the pivots in
the sub-matrix B̃(:, t)T of the reduced echelon form matrix
B̃T .

Now, we define Weight Reduction Function

wrf(·, B̃, t) : Fk
2 −→ Fk

2

which reduces the Hamming weight of its input simply by
setting some of its nonzero entries to zeros, as in the following
algorithm. The function takes a vector x ∈ Fk

2 and ensures
every jth nonzero coordinate in x that corresponds to the jth

pivot column in B̃(:, t)T is turned into zero, for 1 ≤ j ≤ k.
Since the matrix B̃(:, t)T has t pivot columns, the function

wrf ensures that the particular t coordinates of the vector x
that correspond to the pivot positions in B̃(:, t)T are all set to
zeros (of course some these coordinates are already zeros).

Algorithm 1 Weight Reduction Function wrf

Require: x ∈ Fk
2 , B̃, t, such that wt(x) ≈ k

2 and t ≤ l′.
Ensure: x′ ∈ Fk

2 with weight wt(x′) ≈ k−t
2 . ▷ Let

(x1, . . . , xk) be the binary representation of x.
1:
2: for each (i, j) ∈ PB̃(:,t)T do ▷ i.e., for each pivot

position (i, j) in B̃(:, t)T .
3: if xj = 1 then
4: x← x⊕ ṽi ; ▷ i.e., set xj ← 0.
5: end if
6: end for
7: Output x;

The function wrf can be defined more neatly as

wrf(x, B̃, t) = x⊕
∑

(i,j)∈PB̃(:,t)T

xjṽi.

Note that for each (i, j) ∈ PB̃(:,t)T , the vector ṽi exists in
the sum above if and only if xj = 1. Since each ṽi has 1 in
the jth position (because (i, j) is a pivot position in B̃(:, t)T),
the statement x ← x ⊕ ṽi turns the 1 in each corresponding
jth position in the vector x to 0. Thus, algorithm\function
wrf ensures that the t entries of x that correspond the pivot
columns in B̃(:, t)T are all zeros.

Theorem 1: Let x be uniformly random vector from Fk
2 with

weight wt(x) ≈ k
2 . Then weight of x′ = wrf(x, B̃, t) equals

(k−t)
2 (approximately). That is,

wt(x′) ≈ (k − t)

2
.

.
Proof: We have

x′ = wrf(x, B̃, t) = x⊕
∑

(i,j)∈PB̃(:,t)T

xjṽi.

By definition of the wrf function, t entries of x′ are zeros.
Furthermore, since x is uniformly random, the remaining
(k − t) entries of x′ will remain uniformly random with (k−t)

2

1s (approximately). Therefore, wt(x′) ≈ (k−t)
2 .

1) Remark: Since N = span{ṽ1, . . . , ṽl′}, it follows that ∑
(i,j)∈PB̃(:,t)T

xjṽi

 ∈ N .

Hence,

x′ = x⊕ z,

for some z ∈ N , where z =
∑

(i,j)∈PB̃(:,t)T
xjṽi.

Next, let u =

 u1

...
uγ

 such that ui ∈ Fk
2 , i ∈ [1, γ], where

k = n
γ . We define the function

R(·, t) : Fn
2 −→ Fn

2

as follows

R(u, t) =

 wrf(u1, B̃, t)
...

wrf(uγ , B̃, t)

 .

Assume that u ∈ Fn
2 is uniformly random vector with

weight wt(u) ≈ n
2 . Hence, each part ui ∈ Fk

2 has weight
wt(ui) ≈ k

2 .
Now, by Theorem 1, each u′

i = wrf(ui, B̃, t) has weight
wt(u′

i) ≈
(k−t)

2 . Therefore, weight of u′ = R(u, t) is
wt(u′) =

∑γ
i=1 wt(u

′
i) ≈

γ(k−t)
2 .

2) Remark: [Generalization of Remark III-C1] From Re-
mark III-C1, each u′

i = wrf(ui, B̃, t) has the form u′
i =

ui ⊕ zi, where zi ∈ N . Therefore, the vector

u′ = R(u, t) =

 u′
1 = u1 ⊕ z1

...
u′
γ = uγ ⊕ zγ

 =

 u1

...
uγ

⊕
 z1

...
zγ

has the form

u′ = u⊕ r with r ∈ N γ , where r =

 z1
...
zγ

 .

IV. HARDNESS ASSUMPTIONS

A. Syndrome Decoding Problem
A random binary linear code [n, k, d]−code C is a k-

dimensional subspace of Fn
2 that can be defined as Nul space

for a matrix H ∈ F(n−k)×n
2 . That is,

C = {c ∈ Fn
2 : Hc = 0}.

The matrix H is known as a parity check matrix for C.
Elements of the code are called codewords. The parameter d
represents the minimum distance of the code, which is defined
as the smallest Hamming distance between two codewords in
the code, where the Hamming distance is Hamming weight of
the difference between two codewords.

Definition: [Syndrome Decoding Problem] Let C be some
binary linear code whose parity check matrix is H ∈ Fk×n

n ,
and let v ∈ Fk

2 be some given vector. If Hy = v, for some
y ∈ Fn

2 , then the vector v is said to be the syndrome of y. We
define the syndrome decoding instance (H,ω,v) as a problem
of finding a vector y ∈ Fn

2 with weight ω such that Hy = v.

B. The Main Assumption
In this section we introduce and discuss our main

assumption which is based on the hardness of syndrome
decoding problem.

First let us start with some definitions.

1) Algorithm Gen1: Let Gen1(n, k, l) be randomized
polynomial-time algorithm which on input n, k and l returns
the matrices H̃ ∈ Fk×n , Ỹ ∈ Fk×k and K ∈ Fn×n, where

Ỹ = R(Ik ⊕Mα0 ⊕R0Q), H̃ = Ỹ SP−1,

S =
[
Mα1 · · · Mαγ

]
,

and

K =

 M−α1

. . .
M−αγ

 ,

for uniformly random full-rank matrices R,R0 ∈ Fk×k
2 ,

uniformly random permutation matrix P ∈ Fn×n
2 , random

matrix M as defined by Equation (1) with Q = Mr ⊕ Ik, and
uniformly random odd numbers αj ∈ [1, ϕ], 0 ≤ j ≤ γ.

Theorem 2: Let Ỹ ← Gen1(n, k, l). Then, rank Ỹ = k− l′.
Proof: For every ei ∈ N , we have

Ỹ ei = R(In ⊕Mα0 ⊕R0Q)ei.

By Equation (3) we have Mα0ei = ei and Qei = 0. Hence,

Ỹ ei = 0, (4)

and ei ∈ Nul Ỹ . Since ei ∈ N =⇒ ei ∈ Nul Ỹ , it follows
that N ⊆ Nul Ỹ .
Next, we know that N is l′-dimensional subspace. Therefore,
N ⊆ Nul Ỹ implies that

|Nul Ỹ | ≥ |N | = 2l
′
. (5)

In other words, size of Nul Ỹ is not less than size of its subset
N .
On the other hand, we have by definition of the Nul of a matrix

|Nul Ỹ | = |{x : Ỹ x = 0}|
= |{x : R(In ⊕Mα0)x = RR0Qx}|
= |{x : R−1

0 (In ⊕Mα0)x = Qx}|,

since each of R and R0 is full-rank matrix and hence
invertible. Since columns of the matrix Q live in the l′-
dimensional space N , there are at most 2l

′
possible x such

that R−1
0 (In ⊕Mα0)x = Qx. Therefore,

|Nul Ỹ | ≤ 2l
′
. (6)

From Equations (5) and (6) we see that |Nul Ỹ | = 2l
′
.

Therefore,

dim Nul Ỹ = l′ and rank Ỹ = k − l′.

Theorem 3: Let (H̃, Ỹ) ← Gen1(n, k, l). Then the matrix
Ỹ is indistinguishable from the random. Furthermore, it is
hard to find the matrix K or the permutation matrix P from
H̃ and Ỹ , for sufficiently large n.

Proof: Consider the matrix

Ỹ = R(Ik ⊕Mα0 ⊕R0Q).

It is obvious that the matrix Ỹ is product of two secret random
matrices, where the left matrix R is uniformly random and the
right matrix is

(Ik ⊕Mα0 ⊕R0Q)

where R0 secret uniformly random and also each of Mα0 and
Q are secret and random. It is easy to see that columns of
the matrix Ỹ are random linear combinations of columns of
R which are in their turn uniformly random vectors in Fk

2 .
Therefore, the matrix Ỹ is indistinguishable the random.
To prove the second part, consider

H̃ = Ỹ SP−1

Suppose, for the sake of argument, that Ỹ is full-rank, thus
one can easily recover the matrix

SP−1 =
[
Mα1 · · · Mαγ

]
P−1,

by solving the system of equations Ỹ SP−1 = H̃ for the secret
matrix SP−1. However, both of S and P−1 are unknowns.
Moreover, Ỹ is actually not full-rank matrix; as we see from
Theorem 2, rank Ỹ = k − l′.
This prevents full recovery of the matrix SP−1, since any
attempt of solving the system of equations Ỹ SP−1 = H̃ for
SP−1 will result in many solution. It is not hard to see that,
since rank Ỹ = k − l′, there are 2Θ(n) possible solutions for
the system Ỹ SP−1 = H̃ .
Therefore, for sufficiently large n, it is hard to find any of the
matrices K or P given only the matrices H̃ and Ỹ .
Next, let hi = [hi1 · · · hiγ]T , hij ∈ Fk

2 , for 1 ≤ j ≤ γ
and i ∈ N. Thus h̄i =

∑γ
j=1 hij . Consider

yi = P (Khi ⊕ ri), where ri ∈ N γ .

That is, ri = [ri1 · · · riγ]T and rij ∈ N , for 1 ≤ j ≤ γ.
Multiplying H̃ by yi we get

H̃yi = Ỹ
[
Mα1 · · · Mαγ

]
P−1P (Khi ⊕ ri)

= Ỹ
[
Mα1 · · · Mαγ

]
×

 M−α1

. . .
M−αγ

 hi1

...
hiγ

⊕
 ri1

...
riγ

= Ỹ
[
Mα1 · · · Mαγ

] M−α1hi1 ⊕ ri1
...

M−αγhiγ ⊕ riγ

= Ỹ

γ∑
j=1

Mαj (M−αjhij ⊕ rij)

= Ỹ

γ∑
j=1

(hij ⊕Mαjrij),

(by Equation (3), we have Mαjrij = rij)

= Ỹ

γ∑
j=1

hij ⊕
γ∑

j=1

Ỹ rij

= Ỹ h̄i,

where h̄i =
∑γ

j=1 hij and Ỹ rij = 0 for each j, 1 ≤ j ≤ γ
(by Equation (4)).
Therefore,

H̃yi = Ỹ h̄i. (7)

2) Algorithm Gen2: Let Gen2(n, k, l) be randomized
polynomial-time algorithm which on input (n, k, l) returns
the matrices Y ∈ F(k−l′)×k

2 , H = Y SP−1, K and P , where
Y is a matrix that consists of k− l′ linearly independent rows
of Ỹ , and (Ỹ , S,K, P)← Gen1(n, k, l).

Recall that rank Ỹ is k− l′. That is, Ỹ has (k− l′) linearly
independent rows. Let k′ = k − l′. Thus, Y ∈ Fk′×k

2 and
H ∈ Fk′×n

2 . Since rows of Y are subset of rows of Ỹ we
have

Hyi = Y h̄i. (8)

Now we introduce our main assumption.
Assumption 1: Given the matrices H and Y and the

sequence of pairs

Shi,yi
= {(hi,yi) ∈ Fn

2 × Fn
2 : yi = P (Khi ⊕ ri)}qi=1 ,

for uniformly random vectors h1, . . . ,hq from Fn
2 , random in-

dependent vectors r1, . . . , rq from N γ , such that the Hamming
weight of each yi is wt(yi) ≈ ω. Then, given random h ∈ Fn

2 ,
it is hard to find a vector y ∈ Fn

2 with weight wt(y) ≈ ω such
that

Hy = Y h̄. (9)

Let A be probabilistic polynomial-time adversary, we state
Assumption 1 more neatly in terms of advantage function of
the adversary A in finding a pair (h,y) ∈ Fn

2 × Fn
2 which

satisfies Equation (9) as

Adv(A) = Pr[Hy = Y h̄ : (h,y)← A(H,Y,Shi,yi
)],

where h is generated by some random oracle.

Under hardness of the syndrome decoding instance
(H,ω,v = Y h̄), we know that, for a random vector h ∈ Fn

2 , it
is hard for the adversary to find a vector y ∈ Fn

2 (with weight
≈ ω) that satisfies Hy = Y h̄. Because doing so would imply
that the adversary can solve the syndrome decoding instance
(H,ω,v) which is hard problem.

C. Justification of Hardness of the Assumption 1

1) Secrecy of the Matrices K and P : Given the matrices
H and Y from Algorithm Gen2 and the sequence Shi,yi

=

(h1,y1 = P (Kh1 ⊕ r1)), . . . , (hi,yq = P (Khq ⊕ rq)),

where r1, . . . , rq are uniformly random secret vectors from
N γ . For a random vector h ∈ Fn

2 , without having the secret
matrices P and K, one cannot compute y = P (Kh⊕ r), for
some r ∈ N γ .
From Theorem 3 we see that Y is computationally indistin-
guishable from the random and also it is hard to find K and
P given H and Y .
We furthermore conjecture that, given H , Y and the sequence

Shi,yi
, it is hard to recover the secret matrices P and K. The

argument proceeds as follows.
To begin with, note that unlike permuting a vector or a list
of n distinct elements, permuting coordinates a binary vector
whose entries take only one of two possible values (i.e., 0 or
1) is hard to observe.

2) Example: To give an illustrative example, let x =
(1, 2, 3, 4) and y = (3, 2, 4, 1), if y = Px then it easy
to figure out the permutation P . However, if for example
x = (1, 0, 0, 1) , y = (0, 1, 0, 1), and y = Px, then it is
not easy to tell what is the permutation P , because there is
more than one permutation.

That is, in the case of the binary vector, given for example
x,y ∈ Fn such that wt(x) = wt(y), there are many
possible permutations P such that y = Px. This generally
makes permutation of binary vectors harder to detect than
permutation of a list with n distinct element. (Note that in
our assumption both x and P are unknowns.)
Now we show that the sequence Shi,yi =

(h1,y1 = P (Kh1 ⊕ r1)), . . . , (hi,yq = P (Khq ⊕ rq))

reveals no information about the matrices K and P . To see this
note that each secret vector ri is selected uniformly at random.
Hence, the vector (Khi ⊕ ri) is uniformly random and secret
for each i (note that the set N γ from which we draw ri has
size |N γ | = 2l

′γ), and therefore the vector yi = P (Khi ⊕ ri)
which is matrix-vector product of secret permutation matrix P
and secret vector (Khi ⊕ ri), does not reveal any information
about the secret matrix K or the secret permutation matrix P .
Furthermore, for i ̸= j, each of hi and ri is, by definition,
independent form hj and rj , respectively. Hence, Khi ⊕ ri is
independent from Khj ⊕ rj . That is, the vectors Khi ⊕ ri,
for 1 ≤ i ≤ q, are secret random independent vectors.
Therefore, the sequence Shi,yi reveals no information about
K or P .

3) Hardness of Syndrome Decoding Problem: Once again
the elements (hi,yi) of the sequence Shi,yi are independent
from each other. To see this note that, by their definition,
the vectors h1, . . . ,hq are random independent vectors. Also,
by definition, the vectors r1, . . . , rq are random independent
vectors. Hence, each yi = P (Khi ⊕ ri) is independent from
yj = P (Khj ⊕ rj), for hi ̸= hj , simply because each of hi

and ri are independent from hj and rj , respectively. Therefore,
given a particular random vector h ∈ Fn

2 ,

Pr[Hy = Y h̄ : (h,y)← A(H,Y,Shi,yi
)]

=

Pr[Hy = Y h̄ : (h,y)← A(H,Y)].

In other words, providing the adversary with the sequence
Shi,yi

does not improve his advantage in finding a vector y
such that Hy = Y h̄.
As mentioned before, for any given h ∈ Fn

2 , if the syndrome
decoding instance (H,ω, Y h̄) is hard, then it is hard to find a
vector y ∈ Fn

2 which has weight ω such that Hy = Y h̄. The

matrix H ∈ Fk′×n
2 represents subset of rows of parity check

matrix for some (unknown) random linear [n, k′, d]-code C
with distance d ≥ ω, and the vector Y h̄ represents a syndrome
for some unknown erroneous codeword c′ ∈ C. And we see by
Theorem 3 that Y is computationally indistinguishable from
the random. Also, H = Y SP−1 for secret random matrices S
and P . Thus, columns of the matrix H are just random linear
combinations of columns of the random matrix Y . Therefore,
finding a vector y such that Hy = Y h̄ means solving
the syndrome decoding instance (H,ω, Y h̄), which is well-
known hard problem for sufficiently large n and appropriately
restricted ω.

4) Upshot: Combining (a) secrecy of the matrices K
and P , (b) uniformity and independence of elements of the
sequence (hi,yi), for i ∈ [1, q], and (c) hardness of the
syndrome decoding instance (H,ω, Y h̄) , we conclude that
Assumption 1 is hard.

V. DIGITAL SIGNATURE SCHEME

In this section we introduce our digital signature algorithm
which is based on the Assumptions 1.

1) Primitive Components of the Scheme: The scheme con-
sists of four basic components. The most basic building block
of the scheme is a structured nonsingular matrix M ∈ Fk×k

2 .
The second component is a random subspace of Fn

2 , which
is referred to as noise distribution associated with the matrix
M , denoted N γ , and from which we draw our random noise
vectors, hence we call it the Noise Distribution. The third
component is a function R(·) which is used to reduce the
Hamming weight of the signature to the required bound; thus
it takes as its input a vector u ∈ Fn

2 and returns reduced weight
vector u′ = R(u, B̃, t). The function R(·) reduces weight of
the vector u ∈ Fn

2 by adding to it some vectors from the
noise distribution N γ such that the resulting vector is ensured
to have approximate weight ω.

2) Definition: [Digital Signature] A Digital Signature
Scheme is a scheme specified by three polynomial-time al-
gorithms KegGen(1λ) ,Sign(pk,m) and,
V erify(sk, (m, s)), where

• KeyGen is a randomized algorithm that on input 1λ,
where λ is security parameter, returns the pair (pk, sk)
of public and secret keys.

• Sign(sk,m) is a randomized algorithm that takes the
private key sk and a message m as an input and returns
the pair (m, s), of the message m and its corresponding
signature s.

• V erify(pk, (m, s)) is a deterministic algorithm that
takes the secret key pk the pair (m, s′) and response by
"Accept" if s′ is valid signature for the message m, or
"Reject" otherwise.

In what follows we present the proposed digital signature
scheme in details.

3) Algorithm KeyGen: We start with KeyGen which is
a probabilistic polynomial-time algorithm that on input 1n

returns a pair of (public, private) keys

(pk, sk) = ((H,Y,H, d, ω, µ), (K,P)) ,

where (H,Y,K, P) ← Gen2(n, k, l) exactly as in the As-
sumption 1,H is a hash function such thatH : {0, 1}∗ −→ Fn

2 ,
d is distance of [n, k′, d] binary linear code, ω is Hamming
weight of the valid signature, and µ is some small positive
integer which will be used as an approximation margin for ω.

Algorithm 2 KeyGen(1n)

Require: n.
Ensure: (pk, sk) = ((H,Y,H, d, ω, µ), (K,P)).

1: Set γ ← 4 , δ ← 0.9;
2: Set k ← n

γ , l← δk, and k′ ← n
γ (1−

δ
2);

3: Generate (H,Y,K, P)← Gen2(n, k, l);
4: Specify hash function H : {0, 1}∗ −→ Fn

2 ;
5: Set d← nH−1(1− k′

n), ω ← n
2 (1−

δ
2), and µ← ⌈log n⌉;

▷ H−1 is inverse of the binary entropy function.
6: Output (pk, sk) = ((H,Y,H, d, ω, µ), (K,P));

Observe that, by definition of Algorithm Gen2, H is k′ × n
matrix with k′ linearly independent rows.

4) Size of the Private Key (The Standard Mode): Recall
that secret matrix K is direct sum of four matrices M−α1 ,
M−α2 , M−α3 , and M−α4 . That is

K =

M−α1

M−α2

M−α3

M−α4

In order to minimize memory consumption we select uni-
formly random odd number α1 ∈ [1, ϕ−9], then (without loss
of generality) we set αi ← 2 + αi−1 for 2 ≤ i ≤ 4. Instead
of storing the matrix K which n×n we only store the matrix
M−1 which is k × k and the secret exponent α1. Also, the
secret permutation matrix P is stored as an n−tuple permu-
tation (or array). For ranges of n in the scheme this n−tuple
permutation is stored in 2n bytes. Furthermore, we do not need
to reconstruct the matrix K at all. We carry out the matrix-
vector multiplication Kh, where h = [h1 h2 h3 h4]T

and hi ∈ Fk
2 in signing algorithm using the sub-matrices

M−αi , since M−αi h̄i = M−(2+αi−1)h̄i. Thus, size of the
private key is sum of: k2 bits (size of M−1) plus 2n bytes
(size of the permutation P) plus (m = (k − l)) bits (size of
α1). Note that k − l = k − δk = 0.10k. That is, size of sk is

(k2 + 16n+ 0.10k) bits.

This optimization in memory usage comes at cots of run-time
since it requires more matrix-vector multiplications. But this
cost is acceptable given the reduction in size of the private key.

Signing and verifying are performed as described in the
following two algorithms.

5) Algorithm Sign: To sign a message m, we first compute
the hash value h← H(m) and then compute u← Kh. Now,
the vector u ∈ Fn

2 is secret random vector with Hamming
weight approximately n

2 . Next, we apply the function R(·)
on u to obtain u′ ← R(u, B̃, t) which has weight wt(u′) ≈

ω. Also, (see Remark III-C2) the vector u′ has the form
u′ = Kh⊕ r, for some unknown random vector r ∈ N γ .
Finally, we compute the signature s← Pu′.
We know that the weight of the signature is wt(s) ≈ ω,
since the multiplication by permutation matrix P preserves
the weight. Since u′ is secret random vector, the signature
s = Pu′ does not reveal the secret permutation matrix P , and
also the matrix K remains secret, no mater how many number
of signatures; every time the signature is s = Pu′ for a secret
random vector u′ ∈ Fn

2 and secret permutation matrix P .

Algorithm 3 Sign

Require: (m, sk).
Ensure: (m, s).

1: h← H(m);
2: u← Kh;
3: t← l′;
4: u′ ← R(u, B̃, t);
5:
6: while wt(u′) < ω − µ or wt(u′) < d− µ do:
7: t← (t− 1);
8: u′ ← R(u, B̃, t);
9: end while

10: s← Pu′;
11:
12: if wt(s) < ω − µ or wt(s) > d+ µ then
13: return ⊥ and exit; ▷ Report failure.
14: end if
15: Output (m, s);

Since the hash value h ∈ Fn
2 is uniformly random and K is

full-rank n×n matrix, the secret vector u = Kh is uniformly
random with approximate weight n

2 . Therefore, by definition
of the function R(·, B̃, t) and Theorem 1, the vector u′ =
R(u, B̃, t = l′) in step (4) of the Algorithm Sign will have
Hamming weight wt(u′) ≈ γ(k−l′)

2 = n
2 (1−

δ
2) = 0.275n.

6) Remark: Note that

ω =
n

2
(1− δ

2
) and wt(u′) ≈ n

2
(1− δ

2
).

That is wt(u′) ≈ ω. Since ω < d, the vector u′ will satisfy
ω − µ ≤ wt(u′) ≤ d + µ with overwhelming probability.
However, if necessary the parameter µ can be increased for
more certainty, but it does not need to be large to ensure that
ω − µ ≤ wt(u′) ≤ d+ µ.

The vector u initially has weight wt(u) ≈ n
2 . Thus, from

the beginning, there is no problem with the lower bound of
wt(u) and hence we do not to worry about wt(u′) being less
than ω − µ. We always need to reduce weight of u in order
to ensure that wt(s) ≤ d+ µ. We use the function R(·, B̃, t)
which can reduce the weight up to 0.275n (when t = l′).
However, if wt(s) ≤ ω−µ, then we repeatedly set t← (t−1)
and recompute u′ ← R(u, B̃, t) until ω−µ ≤ wt(s). Note that
in each iteration weight of the vector u′ is wt(u′) = γ(k−t)

2
(by Theorem 1). Since t is decreasing the weight wt(u′) =
γ(k−t)

2 will eventually exceed ω−µ and the while loop ends.

Next, the matrix P in step (10) is permutation matrix and
hence the matrix-vector multiplication Pu′ does not change
the weight of the vector u′. Therefore, weight of the signature
vector s = Pu′ is wt(s) = wt(u′). Hence

ω − µ ≤ wt(s) ≤ d+ µ.

However, if otherwise wt(s) < ω − µ or wt(s) > d + µ,
then the algorithm reports failure, which is negligibly small
probability since wt(u′) ≈ ω and ω < d. (See Section 5 for
concrete values of d, ω and µ.)
Finally, recall form Remark III-C2 that the vector u′ has the
form u′ = u⊕ r, where r ∈ N γ . Since u = Kh, we have

s = Pu′ = P (u⊕ r) = P (Kh⊕ r).

Thus, the signature s satisfies conditions of the Assumption
1; it has restricted weight wt(s) ≈ ω, and it also has structure
s = P (Kh⊕ r), where r ∈ N γ .

7) Algorithm V erf : A valid signature s must satisfy

Hs = Y h̄ and wt(s) ≈ ω.

Algorithm 4 Verf
Require: (m, s, pk).
Ensure: Accept or reject the the signature s.

1: h← H(m);
2:
3: if ω − µ ≤ wt(s) ≤ d+ µ and Hs = Y h̄ then output 1,
4: else output 0;
5: end if

Thus, for a particular hash value h, forging a signature s′ ∈ Fn
2

is equivalent to finding a vector s′ that solves the syndrome
decoding instance

(H,ω, Y h̄).

8) Correctness of the Signature Verification: Correctness
of the valid signature follows from Equation (8) and Remark
V-6.

VI. SECURITY OF THE SCHEME

In this section we show that, if the Assumption 1 holds,
then the proposed digital signature scheme is secure against
existential forgery under adaptive chosen plaintext attack.
Indeed, Assumption 1 can be reformulated into definition
of security against existential forgery under adaptive chosen
plaintext attack for our signature scheme. In this definition
[11], the adversary is given an oracle access to the signing
algorithm, so that he can interact adaptively with algorithm
Sign(·, sk) issuing polynomially bounded number q of signing
queries, and eventually coming up with new message m that
has not been signed before, trying to forge a valid signature
for it.

1) Adversarial Model of Assumption 1: Let A be prob-
abilistic polynomial-time adversary who has the public ma-
trices (H,Y). We assume that the adversary has access to
two oracles; a random oracle Oh which generates uniformly
random vectors hi ∈ Fn, and signing oracle Sign(·, sk)
which takes the vector hi as an input and returns the vector
yi = P (Khi ⊕ ri), which represents the signature, where
ri

R←− N γ . The adversary’s goal is to find a new pair (h, s)
in which h has not been sent to the oracle Sign(·, sk) before
such that wt(s) ≈ ω and

Hs = Y h̄.

We define advantage function of A in achieving his goal as
follows

Advfrg(A) =

Pr

[
Hs = Y h̄ :

(H,Y,K, P)← Gen2(n, k, l)
(h, s)← AOh,Sign(·,sk)(H,Y)

]
.

Definition: Let A be probabilistic polynomial-time adver-
sary who has an oracle access to the algorithm Sign. We
define an advantage function of A in breaking our signature
scheme as follows.

Advacma
frg (A) =

Pr

[
Hs = Y h̄ :

(sk, pk)← KeyGen(1n);
(m, s)← ASign(·,sk) (pk) ;

]
.

Note that in spite of the fact the adversary is issuing signing
queries for a sequence of messages m1, . . . ,mq adaptively,
yet the corresponding hash values h1, . . . ,hq are produced
randomly (out of the adversary’s control). The hash function
H(·) whose output for every message m is out of control of the
adversary, is modeled in the adversarial model by the random
oracle Oh which returns uniformly random vector h ∈ Fn

2 .
Hence, the signing queries from A and the corresponding
signatures generated by the signing oracle Sign(·, sk) are
captured by the sequence (h1,yq), . . . , (hq,yq) in the As-
sumptions 1 where h1, . . . ,hq is uniformly random sequence
of vectors in Fn

2 . That is, the adaptive interaction of the
adversary with algorithm Sign is captured by the sequence

Shi,yi
= (h1,yq), . . . , (hq,yq)

in Assumption 1. Hence, breaking the signature scheme di-
rectly implies breaking Assumption 1.
In other words, Advacma

frg (A) ≡ Advfrg(A). Therefore, As-
sumption 1 directly implies that Advacma

frg (A) ≈ neg(n) for
sufficiently large n.

Theorem 4: Under Assumption 1, the signature scheme
(KeyGen, Sign, V erf) is secure against existential forgery
under adaptive chosen plaintext attack.

Proof: The proof follows directly from the equivalence
between Advacma

frg (A) and Advfrg(A).

A. Security Parameters for Assumption 1

Let (H,Y)← Gen2(n, k, l). Note that

Y ∈ Fk′×k
2 and H ∈ Fk′×n

2 .

TABLE III
PARAMETER SETS FOR STANDARD SSD

Parameter set SSD1760 SSD2744 SSD3728

γ 4 4 4
δ 0.9 0.9 0.9

[n, k′, d] [1760, 242, 502] [2744,337,782] [3728, 512, 1063]
ω 484 754 1025
µ 11 12 12
k 440 686 932

Suppose that C is random binary linear [n, k′, d]-code. Let

d = nH−1(1− k′

n
),

where H−1(·) is inverse of the binary entropy function

H(x) = −x log(x)− (1− x) log(1− x).

Consider the syndrome decoding instance

(H,ω,v), where ω ≤ d. (10)

We see that Assumption 1 depends on the hardness of solving
an instance (H,ω,v) of the syndrome decoding problem
which asks for vector y ∈ Fn

2 with weight ω such that
Hy = v.
The relation between decoding the random linear [n, k′, d]-
code C and solving the syndrome decoding instance (H,ω,v)
where H is k′ × n lies in the fact that the matrix H can be
viewed as part of a larger (unknown) (n−k′)×n parity check
matrix that defines the code C. That is, rows of our matrix H
are viewed as subset of rows of a larger (unknown) (n−k′)×n
parity check matrix for an (unknown) code C, and we view
the vector (v = h̄) as a syndrome for some (unknown) code
word of C which is usually used to correct errors, but we
are not concerned with an error correction problem in our
scheme. We are not interested in the code C; we only use its
parameter (the block length n, the dimension dimension k′,
and the distance d) as indicators for hardness of the syndrome
decoding instance (H,ω,v) where ω ≈ d.

1) Parameter Sets for Standard SSD: The syndrome de-
coding problem is well-known hard problem that has long
history of study. Solving algorithms for this problem generally
has exponential time complexity 2O(k′) for restricted weight
ω ≤ d, where d is determined by the Gilbert-Varshamov [10]
bound: d = nH−1(1− k′

n).
Hardness of the syndrome decoding instance for a [n, k′, d]-
code linear code C increases proportionally with dimension of
the code k′ and weight of the syndrome ω. Therefore, we aim
at maximizing both k′ and ω while keeping ω ≤ d. So, we
choose the parameters n, γ and δ such that ω ≤ d and k′ as
large as possible.
Let k = n

γ and l = δk. Hence l′ = l
2 = δk

2 = δn
2γ (see

Equation (1)). We set ω ← γ(k−l′)
2 . Thus,

ω =
γ(k − l′)

2
=

n

2
(1− δ

2
). (11)

TABLE IV
SIZES OF THE KEYS AND THE SIGNATURE FOR DIFFERENT SECURITY

LEVELS OF THE STANDARD SSD.

Security
Level 128-bits 192-bits 256-bits

Parameter
Set SSD1760 SSD2744 SSD3728

Public Key
Size (KB) 65 158 291.5

Private Key
Size (KB) 27 63 113

Signature
Size (Bytes) 220 343 466

Since k′ = k − l′, it follows that

k′ = k(1− δ

2
) =

n

γ
(1− δ

2
). (12)

Thus, k′

n = 1
γ (1−

δ
2).

We choose γ = 4 and δ = 0.9 in order to achieve the optimal
values for k′ and ω. Thence we specify three parameter sets
(Table III) SSD1760,SSD2744 and SSD3728 which are
defined by the three basic parameters γ, δ, and n; the rest
of the parameters are calculated as functions of these basic
parameters.

VII. SYNDROME DECODING ESTIMATOR

In [7] Andre Esser and Emanuele Bellini give concrete
hardness estimations for time complexity for the best known
solving algorithms for syndrome decoding problem. That is,
their work provides us with concrete estimation for hard-
ness any given instance of syndrome decoding problem. In
their paper, which was initially motivated by the need for
determining the secure parameter sets for the code-based
schemes in NIST’s standardization process for post-quantum
cryptography, Esser and Bellini develop a framework that
allows them to obtain several of the major information set
decoding algorithms by choosing specific configurations of
that framework. Then, these algorithms are analyzed to drive
formulas that give the concrete complexity of solving the
syndrome decoding problem for each algorithm. Furthermore,
Esser and Bellini implemented their framework into a software
called Syndrome Decoding Estimator which is made available
online 2.
We use Esser-Bellini’s syndrome decoding estimator to es-
timate hardness of the syndrome decoding instance for code
[n, k′, d]-code C with weight ω ≈ d, then we select our security
parameters accordingly.
However, we should mention here that the matrix H in our
scheme has less number of rows than a parity check matrix that
defines an [n, k′, d]-code (about 6.5 times less). So, the reader
should take this in consideration. Also, following caution of
Esser and Bellini we should mention that these estimations
serve mainly as indicative benchmarks for ranges of parameter

2https://github.com/Crypto-TII/syndrome_decoding_estimator

https://github.com/Crypto-TII/syndrome_decoding_estimator

values and the corresponding sizes of the keys and signatures
for the required level of security. For more details about the
syndrome decoding estimator see the paper [7].
Tables V, VI and VII show Esser-Bellini’s time complexity and
memory estimation of syndrome decoding of each parameter
set (security level) of our scheme. Since we allow weight of the
signature wt(s) to be within the range ω−µ ≤ wt(s) ≤ d+µ,
we calculated estimation of hardness of three instances for
each level: (n, k′, ω−µ), (n, k′, ω), and (n, k′, d+µ) to make
sure the whole range of possible values of wt(s) satisfies the
required security level. Also, from these estimations we see
that the range [ω − µ, d + µ] can be expanded by increasing
µ with no significant decreasing of the relevant security level,
but for now we set µ← ⌈log n⌉.

VIII. LIGHT VERIFICATION KEY (LVK) MODE

In this section, we introduce Light Verification Key Mode
of operation (LVK Mode) in order to improve performance of
the verification in terms of both memory and run-time without
affecting the security. At the verifying end, given the public
key

pk = (H,Y,H, d, ω, µ)

the verifying party secretly forms the matrices H ′ and Y ′ from
rows of H and Y , respectively, by selecting random k′′ rows
from the matrix H and k′′ of their corresponding counterparts
from Y , where k′′ < k′. Then the verifying party forms the
new light verification key

pk
′
= (H ′, Y ′,H, d, ω, µ)

and keeps it privately. Now, instead of keeping the entire public
key pk, the the verifying party keeps only the smaller size
light key pk′, where H ′ is k′′ × n matrix and Y ′ is k′′ × k
matrix, instead of k′ × n and k′ × k in H and Y respectively
in the original public key. The verification algorithm run as
usual with H and Y replaced by H ′ and Y ′ respectively.
If the signature s is valid, then correctness of the equation
H ′s = Y ′h̄ follows directly from the fact that rows of H ′ and
Y ′ already satisfy the equation Hs = Y h̄. Thus, the verifying
party accepts the signature s as a valid signature if

ω − µ ≤ wt(s) ≤ d+ µ

and the signature s solves the syndrome decoding instance

(H ′, ω, Y ′h̄).

Since H ′ and Y ′ has fewer rows, the instance (H ′, ω, Y ′h̄)
is easier to solve (depending on how small k′′ is). However,
since the verifying key is random and secret, the adversary
does not know it, and therefore it is hard for him to forge
a valid signature that solves that secret verification instance
(H, k′′, ω).
The adversary knows the original public key, but he does not
know which part of it will be used by the verifying party.
Since the matrices H ′ and Y ′ are constructed by choosing
uniformly random rows of H and Y respectively, with(

k′

k′′

)
=

k′!

k′′!(k′ − k′′)!

possible secret matrices H ′ and Y ′. The adversary has no
way to find these secret matrices other exhaustive search,
which can be avoided by setting k′′ to be large enough.
Therefore, when the verifying party is using small size ma-
trices H ′ and Y ′ for verification, for example when H ′ is
32 × 1760 and Y ′ is 32 × 440 (instead of 242 × 1760 and
242 × 440, receptively) for 128-bit security, although it easy
to solve the (n, k′′, ω) = (1760, 32, 484) instance with bit
complexity 34, yet the adversary has no way for solving
this instance because it is secret. Attempting to attack this
mode of verification by solving all possible secret instances
(n, k′′, ω) = (1760, 32, 484) is unfeasible. Thus, we estimate
time complexity of attacking light verification key mode (LVK
Mode) of the signature scheme as(

k′

k′′

)
× T(n,k′′,ω),

where T(n,k′′,ω) is time of solving the syndrome decoding
instance (H ′, ω, Y ′h̄) which depends on the parameters n, k′′,
and ω.

We see the difference in size of the public key in the
standard mode (Table IV) and size of the secret verification
key in the LVK mode (Table VIII), which lead not only to
smaller memory consumption in the later mode, but also to
faster verification algorithm. Note that also the verification key
must be secret only before its use, but it does not require to be
kept for long time, a new secret verification key can always be
selected from the original public key. However, small secret
long-term verification key suits some applications.

IX. LIGHT SIGNING KEY (LSK) MODE

In this mode we minimize the size of the private key sk =
(K,P) by choosing the matrix M = FGF−1 of equation (1)
such that F is random permutation matrix which require order
of k memory space instead of k2. Thence for optimal memory
usage we do not store the matrix M and its powers directly
as k × k matrices. Instead, we store only its structure. The
permutation matrix F is stored as k−tuple permutation; for
ranges of k in this work, the k−tuple permutation representing
F can be stored in 2k bytes. Let l′ = l

2 . The involutory matrix
D is encoded as l′−bit string in which each bit b represents
matrix Db, b ∈ {0, 1}. The matrix C will be stored directly
as an m × m matrix (though characteristic polynomials of
the matrices Ci can be used to represent the matrix C, but for
now let us assume that C is stored directly as a square matrix;
it is anyway small matrix compared to D). Thus, the matrix
M (and also its inverse and powers) is stored in the memory
as: 2k bytes (size of permutation F) plus l′ bits (size of the
encoding of D) plus m2 bits (size of C). That is, M can be
stored in (16k+l′+m2) bits rather than k2 bits. Note that from
Equation (1) m = k − l, and note also that l = δk = 0.9k.
Thus, matrix M can be stored in

(16k + l′ + (0.10k)2) bits,

TABLE V
BIT COMPLEXITY ESTIMATION FOR SOLVING THE UNDERLYING SYNDROME DECODING INSTANCE OF THE PARAMETER SET SSD1760.

Parameters: γ = 4, δ = 0.9, [n, k′, d] = [1760, 242, 502], ω = 484, µ = 11

SD Instance (n, k′, ω − µ)

Algorithm Time Memory

Prange [12] 148.5 21.6
Stern [13] 129.9 29.9

Dumer [14] 129.7 35.3
Ball Collision [15] 129.9 34.8

BJMM (MMT) [16] 127.8 53.3
BJMM-pdw [17] 128.9 50.3
May-Ozerov [18] 128.0 62.1
Both-May [19] 129.9 33.9

(n, k′, ω)

Time Memory

151.9 21.6
133.2 29.9
133.0 35.3
133.2 34.8
131.1 53.3
132.1 50.3
131.3 62.1
133.2 33.9

(n, k′, d+ µ)

Time Memory

152.1 21.6
133.3 34.8
133.0 40.1
133.3 34.8
131.4 53.3
132.2 41.6
131.5 66.3
133.5 33.9

TABLE VI
BIT COMPLEXITY ESTIMATION FOR SOLVING THE UNDERLYING SYNDROME DECODING INSTANCE OF THE PARAMETER SET SSD2744.

Parameters: γ = 4, δ = 0.9, [n, k′, d] = [2744, 337, 782], ω = 754, µ = 11

SD Instance (n, k′, ω − µ)

Algorithm Time Memory

Prange 218.2 22.9
Stern 197.1 43.2

Dumer 196.7 48.9
Ball Collision 197.1 43.2

BJMM (MMT) 191.5 94.9
BJMM-pdw 193.8 68.0
May-Ozerov 191.9 105.9
Both-May 195.8 63.4

(n, k′, ω)

Time Memory

221.8 22.9
200.7 48.1
200.3 48.9
200.7 48.1
195.0 94.9
197.4 72.0
195.6 101.9
199.4 63.4

(n, k′, d+ µ)

Time Memory

225.5 22.9
204.3 48.1
203.9 48.9
204.3 48.1
198.5 104.2
201.0 72.0
199.4 98.3
203.3 66.4

TABLE VII
BIT COMPLEXITY ESTIMATION FOR SOLVING THE UNDERLYING SYNDROME DECODING INSTANCE OF THE PARAMETER SET SSD3728.

Parameters: γ = 4, δ = 0.9, [n, k′, d] = [3728, 512, 1063], ω = 1025, µ = 12

SD Instance (n, k′, ω − µ)

Algorithm Time Memory

Prange 287.9 23.7
Stern 264.6 61.4

Dumer 264.5 51.9
Ball Collision 264.6 61.4

BJMM (MMT) 255.4 121.8
BJMM-pdw 258.5 93.1
May-Ozerov 256.9 105.1
Both-May 261.6 70.8

(n, k′, ω)

Time Memory

291.5 23.7
268.2 61.4
268.1 51.9
268.2 61.4
259.0 121.6
262.2 97.1
260.6 105.1
265.3 70.8

(n, k′, d+ µ)

Time Memory

298.3 23.7
274.9 61.4
274.9 51.9
274.9 61.4
265.9 121.6
269.0 102.3
267.8 105.1
272.5 70.8

TABLE VIII
SIZES OF THE KEYS AND THE SIGNATURE FOR DIFFERENT SECURITY

LEVELS OF THE LVK-SSD MODE.

Security
Level 128-bits 192-bits 256-bits

Parameter
Set SSD1760 SSD2744 SSD3728

LVK Size (KB) 9 17 27.5

LSK Size (KB) 4.5 7.5 10.5

(Standard)
Private Key
Size (KB) 27 63 113

Signature
Size (Bytes) 220 343 466

TABLE IX
PARAMETER SETS FOR LVK-SSD MODE

Parameter set LVK-SSD1760 LVK-SSD2744 LVK-SSD3728

γ 4 4 4
δ 0.9 0.9 0.9

[n, k′, d] [1760, 242, 502] [2744, 337, 782] [3728, 512, 1063]
ω 484 754 1025
µ 11 12 12
k 440 686 932
k′′ 32 40 48

log
(k′

k′′
)

132 173 225

instead of k2 bits as in the standard mode. When performing
matrix exponentiation on M = FGF−1, the matrix mul-
tiplication can be performed only on the matrix C, since
D is involutory matrix with D2 = Il. In Subsection V-4
we see that the matrix K is represented by M−1 and the
secret number α1. In this mode the matrix M−1 has size
(16k + l′ + (0.10k)2) bits. Therefore, size of the private key
sk = (K,P) in the this mode is sum size of M−1 plus size of
the permutation P plus size of α1, that is (16k+l′+(0.10k)2)
plus 16n plus 0.10k bits, respectively. Hence, size of the
private key sk = (K,P) in the LSK mode is

(16n) + (16k + l′ + (0.10k)2 + 0.10k) bits.
(See Table X.)

TABLE X
SIZES OF THE KEYS AND THE SIGNATURE FOR DIFFERENT SECURITY

LEVELS OF THE LSK-SSD MODE.

Security
Level 128-bits 192-bits 256-bits

Parameter
Set SSD1760 SSD2744 SSD3728

Public Key
Size (KB) 65 158 291.5

LSK Size (KB) 4.5 7.5 10.5

Signature
Size (Bytes) 220 343 466

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. Ieee, 1994, pp. 124–134.

[2] T. Chou, C. Cid, S. UiB, J. Gilcher, T. Lange, V. Maram, R. Misoczki,
R. Niederhagen, K. Paterson, and E. Persichetti, “Classic mceliece:
conservative code-based cryptography, 10 october 2020,” 2020.

[3] N. Aragon, P. S. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al.,
“Bike: bit flipping key encapsulation,” 2017.

[4] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-
C. Deneuville, P. Gaborit, E. Persichetti, G. Zémor, and I. Bourges,
“Hamming quasi-cyclic (hqc),” NIST PQC Round, vol. 2, no. 4, p. 13,
2018.

[5] K. Pietrzak, “Cryptography from learning parity with noise,” in In-
ternational Conference on Current Trends in Theory and Practice of
Computer Science. Springer, 2012, pp. 99–114.

[6] NIST, “Call for Additional Digital Signature Schemes for the Post-
Quantum Cryptography Standardization Process,” no. October, pp. 1–
23, 2022. [Online]. Available: https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

[7] A. Esser and E. Bellini, “Syndrome decoding estimator,” in IACR
International Conference on Public-Key Cryptography. Springer, 2022,
pp. 112–141.

[8] B. Aslan and M. T. Sakallı, “Algebraic construction of cryptographi-
cally good binary linear transformations,” Security and Communication
Networks, vol. 7, no. 1, pp. 53–63, 2014.

[9] A. M. A. Rushdi and F. A. M. Ghaleb, “On self-inverse binary matrices
over the binary galois field,” Journal of Mathematics and Statistics,
vol. 9, no. 3, pp. 238–248, 2013.

[10] Guruswami, Venkatesh, Rudra, Atri, and Sudan, Madhu, “Essentials of
Coding Theory,” Book, 2022. [Online]. Available: https://cse.buffalo.
edu/faculty/atri/courses/coding-theory/book/

[11] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
computing, vol. 17, no. 2, pp. 281–308, 1988.

[12] E. Prange, “The use of information sets in decoding cyclic codes,” IRE
Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.

[13] J. Stern, “A method for finding codewords of small weight,” in Interna-
tional colloquium on coding theory and applications. Springer, 1988,
pp. 106–113.

[14] I. Dumer, “On minimum distance decoding of linear codes,” in Proc. 5th
Joint Soviet-Swedish Int. Workshop Inform. Theory, 1991, pp. 50–52.

[15] D. J. Bernstein, T. Lange, and C. Peters, “Smaller decoding exponents:
ball-collision decoding,” in Annual Cryptology Conference. Springer,
2011, pp. 743–760.

[16] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes
in O(20.054n),” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security. Springer, 2011, pp.
107–124.

[17] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random
binary linear codes in 2n/20 : How 1+ 1= 0 improves information
set decoding,” in Annual international conference on the theory and
applications of cryptographic techniques. Springer, 2012, pp. 520–
536.

[18] A. May and I. Ozerov, “On computing nearest neighbors with applica-
tions to decoding of binary linear codes,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 203–228.

[19] L. Both and A. May, “Decoding linear codes with high error rate and its
impact for lpn security,” in International Conference on Post-Quantum
Cryptography. Springer, 2018, pp. 25–46.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

	Introduction
	Digital Signature Scheme: High Level Description
	The Keys
	Signing
	Verifying

	Performance of the Scheme
	Security of the Scheme
	Hamming Weight of the Signature
	Parameter Sets and Security Levels

	Light Verification Key (LVK) Mode
	Light Signing Key (LSK) Mode

	Preliminaries
	Notation
	Construction of the Matrix M
	Column Space of the Matrix Q: Noise Distribution N
	Remark
	Purpose of the Noise Distribution N

	Weight Reduction Function wrf
	Remark
	Remark

	Hardness Assumptions
	Syndrome Decoding Problem
	The Main Assumption
	Algorithm Gen1
	Algorithm Gen2

	Justification of Hardness of the Assumption 1
	Secrecy of the Matrices K and P
	Example
	Hardness of Syndrome Decoding Problem
	Upshot

	Digital Signature Scheme
	Primitive Components of the Scheme
	Definition
	Algorithm KeyGen
	Size of the Private Key (The Standard Mode)
	Algorithm Sign
	Remark
	Algorithm Verf
	Correctness of the Signature Verification

	Security of the Scheme
	Adversarial Model of Assumption 1
	Security Parameters for Assumption 1
	Parameter Sets for Standard SSD

	Syndrome Decoding Estimator
	Light Verification Key (LVK) Mode
	Light Signing Key (LSK) Mode
	References

