
SP 800-22 and GM/T 0005-2012 Tests:
Clearly Obsolete, Possibly Harmful

Markku-Juhani O. Saarinen
PQShield Ltd. Oxford, UK

mjos@pqshield.com

Abstract—When it comes to cryptographic random number
generation, poor understanding of the security requirements
and “mythical aura” of black-box statistical testing fre-
quently leads it to be used as a substitute for cryptanalysis.
To make things worse, a seemingly standard document, NIST
SP 800-22, describes 15 statistical tests and suggests that
they can be used to evaluate random and pseudorandom
number generators in cryptographic applications. The Chi-
nese standard GM/T 0005-2012 describes similar tests. These
documents have not aged well. The weakest pseudorandom
number generators will easily pass these tests, promoting
false confidence in insecure systems. We strongly suggest
that SP 800-22 be withdrawn by NIST; we consider it to be
not just irrelevant but actively harmful. We illustrate this
by discussing the “reference generators” contained in the SP
800-22 document itself. None of these generators are suitable
for modern cryptography, yet they pass the tests. For future
development, we suggest focusing on stochastic modeling
of entropy sources instead of model-free statistical tests.
Random bit generators should also be reviewed for potential
asymmetric backdoors via trapdoor one-way functions, and
for security against quantum computing attacks.

Index Terms—TRNG, Entropy Sources, SP 800-22, GM/T
0005-2012, Statistical Randomness Tests, Stochastic Models

1. Introduction

In traditional “black-box” statistical testing for ran-
domness, no analysis of the process of random number
generation is performed. These tests were mainly moti-
vated by the requirements of numerical methods in applied
sciences. The approach predates the invention of digital
computers, information theory, and modern cryptography.

In the late 1930s, Kendall and Babington Smith
[KBS38], [KBS39] proposed four tests of randomness;
the frequency test, the serial test, the poker test, and the
gap test.

The famous RAND tables [RAN55] were generated
via electronic means in 1947, and their statistical testing
was performed with IBM electromechanical computers
[Bro49]. The four main tests used for assessment are very
similar to those used by Kendall and Babington Smith.

Essentially the same four tests were adopted for FIPS
140-1 standard in 1994 (monobit test, poker test, runs test,
and long runs test). They were removed only in FIPS 140-
2 Change Notice 2 in 2001 [NIS01].

At least from 2001, the AIS 20/31 [KS01], [KS11]
evaluation documents from German BSI have also ad-

dressed the security of physical random number gener-
ators, not just their statistical qualities.

1.1. Cryptographic RNG Evaluation

We recall some of the main security assurance as-
pects of random number generators used in cryptography.
The current standards in the SP 800-90 series [BK15],
[TBK+18], [BKR+21] and AIS-31 [KS11] already cover
many of these topics.

Pseudorandom Generator Evaluation. The process
of assessing the security of a pseudorandom number gen-
erator is entirely analogous to that of other cryptographic
modes and constructions. Rather than reinventing and re-
evaluating symmetric cryptography algorithms, one gener-
ally wishes to demonstrate (via mathematical proofs) that
breaking a DRBG (Deterministic Random Bit Generator)
implies a break of an underlying vetted cryptographic
algorithm such as AES or SHA-2/3 [BK15].

Pseudorandom Implementation Validation. A sta-
tistical test is a poor way of verifying that a deterministic
algorithm has been correctly implemented. In reality, one
would test DRBGs with chosen inputs and utilize Known
Answer Tests (KATs) with reference tests vectors. This is
one of the things that is done in NIST’s CAVP1.

A standard practice with hardware modules is to use
formal methods to validate the equivalence of the imple-
mentation against an abstract mathematical model. Formal
verification is increasingly being applied to software im-
plementations as well.

Entropy Source Evaluation. The security of physical
entropy sources is mainly assessed via design review and
testing of entropy production processes (stochastic mod-
els). Robustness of implementation can be increased with
start-up tests and continuous monitoring of noise sources
with health tests [TBK+18]. The health monitoring should
be tailored to the generator. Access to the raw noise is
necessary to validate the actual entropy content and the
correctness of stochastic models (See Section 3).

Physical / Interface Security Evaluation. Since cryp-
tographic random number generators are ultimately the
source of all secret key material, their physical security
and interface links must be robust and protected from
monitoring and interference. In many practical applica-
tions, the generator must be in the same physical enclosure
as the other cryptographic components. The key lifecycle
(generation, use, destruction) can happen entirely within
the security boundary of that module.

1. NIST Cryptographic Algorithm Validation Program https://csrc.nist.
gov/projects/cryptographic-algorithm-validation-program

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program

1.2. Current Standards

This work focuses on the NIST SP 800-22 ”black-box”
tests, initially published in October 2000 and revised as
recently as 2010 [RSN+10].

FIPS 140-3. Fortunately, SP 800-22 is no longer
used in NIST’s own Deterministic Random Bit Generator
(DRBG) and Entropy Source validation processes [NC21,
Annex D.J]. FIPS 140-3 [NIS19] requires compliance with
significantly more robust SP 800-90A [BK15] and SP 800-
90B [TBK+18] standards instead.

National Security Systems (NSS). SP 800-90B also
forms the basis for NIAP Entropy Assessment Reports
(EAR) [NIA13a], [NIA13b] used in U.S. Government
NSS. SP 800-90B is explicitly mentioned in current NIAP
Common Criteria Protection Profiles such as [NIA22].

Secure Electronics. Another widely used Common
Criteria evaluation methodology is AIS-20/31 [KS11]
from German BSI. This evaluation process includes
stochastic modeling as well as a design review in addition
to an array of statistical tests. It is referenced in protection
profiles of random number generators for Trusted Execu-
tion Environments (TEE) [Glo20], and Secure Elements
(SE) [Glo21] such as smartcards.

Elsewhere. Especially before the ratification of SP
800-90B in 2018, the AIS-31 was considered a global
“golden standard” for cryptographic random numbers.
AIS-31 was even translated to Russian and published by
the official Technical Committee for Cryptography Stan-
dardization (TC26) for the Russian Federation [TC218].

2. Obsoleted but Still Harmful: SP 800-22
Unfortunately, the results of black-box randomness

test suites such as Dieharder [BEB03], Fourmilab ENT
[Wal98], and SP 800-22 [RSN+10] are still being pre-
sented as sole evidence of the suitability of Random
Number Generators for cryptographic applications.

The situation is made worse by the active status of
NIST Special Publication 800-22 Rev. 1a, “A Statistical
Test Suite for Random and Pseudorandom Number Gen-
erators for Cryptographic Applications,” [RSN+10] even
though it has no actual role in security evaluation.

In January 2022, it was announced – against the ex-
pectations of many cryptographers in the CMUF Entropy
Working Group and elsewhere – that the document is not
withdrawn but will be revised instead2.

There are many recent examples of commercial and
academic usage of SP 800-22 in a cryptographic context.
For instance, in [MKAG20], the authors use SP 800-
22 as evidence of the suitability of DNA synthesis for
random number generation. No entropy assessment or
physical (interface) security analysis is performed. The
actual evaluation standards are not even cited; mainly just
other generators with no proper security analysis (See Fig.
1.)

2.1. The Tests: Cryptanalysis-in-a-Box?

SP 800-22 Rev. 1a [RSN+10] contains descriptions
of 15 statistical tests, which have also been implemented

2. January 12, 2022: Announcement of Proposal to Revise Spe-
cial Publication 800-22 Revision 1a https://csrc.nist.gov/News/2022/
proposal-to-revise-sp-800-22-rev-1a

in a software package available from the NIST website3.
We note that the current Chinese standard GM/T 0005-
2012 [SCA12] contains a very similar set of 15 tests. The
Chinese standard is also coming into a review, with a
revised standard GM/T 0005-2021 coming into effect in
May 2022 (the changes in the revised Chinese standard
are unknown to the author at the time of writing.)

The 15 tests take in a sequence of output bits, typi-
cally 1,000,000 bits, and produce P values based on that
information, which leads to a PASS/FAIL metric.

1. Frequency, monobit. 9. Maurer’s Universal.
2. Block Frequency. 10. Linear Complexity.
3. Runs Test. 11. The Serial Test.
4. Longest Run. 12. Approx. Entropy.
5. Binary Matrix Rank. 13. Cumulative Sums.
6. Fourier (Spectral). 14. Random Excursions.
7. Non-overlap match. 15. Rand. Excursions 2.
8. Overlapping Match.

2.2. A Systemic Problem

The SP 800-22 tests are based on a purely statistical
interpretation of uniform and independent randomness
[RSN+10, Sect. 1.1.1]. The definitions and stated goals of
the tests do not relate to computational indistinguishability
[KL14, Sect. 7] or other relevant cryptographic security
notions. Randomness is not viewed from a cryptanalytic
security perspective. In other words, the question of how
hard it is to “break” the random and pseudorandom gen-
erators is not considered.

The word “cryptanalysis” can be found in the abstract
of SP 800-22 three times, but not once in the body
of the publication. Some of the included tests have a
cryptanalytic flavor, however.

As an illustrative example, the “linear complexity
test” is motivated by statement “An LFSR that is too
short implies non-randomness.” That may be true with
some non-cryptographic notions of randomness, but every
cryptanalyst knows that a plain LFSR is never a secure
pseudorandom generator. Since LFSRs are linear, it is
a simple numerical exercise to solve the internal state
of a fixed LFSR from the output. The linear algebra
required runs in polynomial time; hence plain LFSRs are
cryptanalytically broken regardless of their length.

While the SP 800-22 tests can potentially be used
in elementary cryptanalysis, just as any other analytic
method, it is not usually considered relevant evidence
in mainstream cryptographic literature. As discussed in
Section 4, the “reference generators” described in the SP
800-22 document itself pass these tests while generally
lacking security.

2.3. Perhaps It’s For Implementation Bugs?

The SP 800-22 section “Testing Strategy and Result
Interpretation” [RSN+10, Sect. 4] suggests that the 15
statistical tests are applied to random bit generators based
on cryptographic hash functions and block ciphers. No

3. Visited February 10, 2022: “NIST SP 800-22: Download
Documentation and Software.” https://csrc.nist.gov/projects/
random-bit-generation/documentation-and-software

https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-22-rev-1a
https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-22-rev-1a
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

Figure 1. Reproduced from Meiser et al. [MKAG20]. There exists a colorful “parallel universe” of ad hoc random number generators. These often
ignore physical and interface security altogether and use black-box statistical test suites such as NIST SP 800-22 as evidence of security. The Intel
DRNG forms an exception in the Meiser “references” as it is uses the current NIST SP 800-90 standards (its description is not accurate, however).

new or useful statistical features can be found in the
output of standard cryptographic algorithms with these
tests. Such algorithms pass these tests even without any
secret seeding material (and hence, with no security).

The only sensible motivation for using the tests on
the output of vetted cryptographic algorithms would be to
discover flaws in their implementation. However, a buggy
RNG should not be used, even if the bugs are so minor
that the output still passes these trivial tests. It is much
more useful to validate that a cryptographic hash function
or block cipher is implemented according to the standard
than to verify their statistical qualities.

We note good physical entropy sources are generally
not expected to yield strictly uniform output and would
fail these tests; that is why more appropriate stochastic
models are used instead. FIPS 140-3 generally forbids
the direct use of physical entropy sources without crypto-
graphic post-processing (conditioning) [BKR+21].

3. Entropy Sources: Stochastic Models

There is a statistical aspect of random bit generation
that a potential replacement to SP 800-22 could address:
Entropy Source Stochastic Models. While stochastic mod-
els are mentioned and suggested (they’re a “may” not
a “should”) in SP 800-90B [TBK+18, Sect 3.2.2], the
creation and requirements of stochastic models are not
sufficiently addressed in the current NIST (SP 800) pub-
lications.

Stochastic models are a common requirement in the
AIS-20/31 [KS11] evaluation methodology from German
BSI. It would benefit vendors and testing labs if the
NIST and BSI requirements were further harmonized. The
definition of a stochastic model for an entropy source (or
a ”TRNG” in AIS-20/31) is already very similar in the
two documents.

A stochastic model is a mathematical descrip-
tion (of the relevant properties) of an entropy
source using random variables. A stochastic
model used for an entropy source analysis is
used to support the estimation of the entropy of
the digitized data and finally of the raw data.
In particular, the model is intended to provide a
family of distributions, which contains the true
(but unknown) distribution of the noise source

outputs. Moreover, the stochastic model should
allow an understanding of the factors that may
affect the entropy. The distribution of the entropy
source needs to remain in the family of distri-
butions, even if the quality of the digitized data
goes down. [TBK+18, Appendix B, Page 65]

In practice, one studies the noise source and identifies
the stochastic processes that generate entropy. Understand-
ing the entropy process allows a stochastic model, output
distributions, and min-entropy estimates to be developed.
It also helps in deriving failure threshold parameters for
the start-up tests and continuous health tests. A stochastic
model can also have environmental components (e.g.,
temperature, voltage, interference metrics).

The statistical hypothesis testing in entropy source
validation tries to answer the question: Does the physical
entropy source behave as predicted by its stochastic model
(and produce the expected amount of entropy) ? Physical
entropy sources rarely have a stochastic behavior of white
noise. Note that entropy analysis can’t be performed after
post-processing as such steps generally introduce pseudo-
randomness; this is why access to raw noise sources is
generally required (and NIST has been wise to require
this interface in NIST SP 800-90B). Entropy sources
with non-uniform (but well-understood) stochastic models
are equally useful if they provide real entropy and have
implementation advantages (size, power, manufacturing
cost, physical robustness).

4. All the bad “Reference Generators”

Appendix D of SP 800-22 contains descriptions of
“Reference Pseudorandom Number Generators.” It is un-
clear what the purpose of these generators is, apart from
testing the proposed statistical suite itself. Many of these
generators are insecure yet pass the tests, conveniently
demonstrating the pitfalls of black-box statistical testing.

4.1. Basic Design Review

In addition to the standard high-level considerations of
statistical inconspicuousness and (enhanced) forward and
backward security (See AIS-20/33 [KS11, Sect 2.2.2].)
we also use this to illustrate certain additional features of
secure pseudorandom number generators (DRBGs) that

can be assessed in a design review: lack of backdoors and
security against a quantum adversary.

4.1.1. Computational Indistinguishability. The RNG
output should be computationally indistinguishable from
random. This is a cryptanalytic part of the design re-
view; random number generators are not exempt from
Kerchoff’s principle.

Security bounds can be set for both data and compu-
tational complexity, e.g., 2128 bits of output and compu-
tational requirements equivalent to breaking AES-256 in
both classical and quantum computational settings.

This requirement implies that the determination of
the internal state from DRBG output should be hard.
Another implication is that the generator has a sufficiently
large private internal state. Due to time-memory tradeoff
attacks, the state is usually larger than the security level
(e.g., twice as large).

Analysis: All generators in Appendix D fail this task;
either trivial distinguishers can be built directly from
output, or the exposure of the internal seed leads to
distinguishers.

4.1.2. Sufficient start-up entropy. The internal state
must be seeded with sufficient entropy before it can be
used to produce output.

Analysis: Seeding is not addressed by SP 800-22.

4.1.3. Secure Reseeding. The mechanism for adding en-
tropy (reseeding) must be secure against adaptive chosen
input attacks. One can adapt IND-CPA and IND-CCA
security models for this purpose.

Analysis: Reseeding is not addressed by SP 800-22.

4.1.4. Quantum Safety. The use of primitives that rely
on the hardness of problems for which fast quantum
attacks exist (e.g., factoring and the elliptic curve discrete
logarithm problem [Sho94]) are not suitable for use with
quantum-safe cryptography. However, there is no need
to use “quantum” random number generators to achieve
quantum safety in post-quantum cryptography; symmetric
cryptography is generally safe.

Analysis: The BBSG and MSG generators explicitly
fail in this aspect, possibly MODEXP too.

4.1.5. Absence of backdoors (and trapdoors). The ex-
istence of any “public key trapdoor” function in a place
where secure symmetric cryptography could be used is
often an indication that the generator can be used to instan-
tiate a covert channel or a backdoor. Pseudorandom num-
ber generation and conditioning only require trapdoor-
free one-way functions – such as symmetric cryptography
primitives. While a failure to protect the private state
effectively broadcasts secrets, “unique-access” backdoors
generally require public-key trapdoor functions. With such
a backdoor, a third party can choose the public instantia-
tion parameters so that a “private key” allows the secret
state to be covertly determined from DRBG output.

Analysis: The BBSG and MSG generators allow this,
possibly MODEXP too.

4.2. Linear Congruential Generator (LCG)

The first “reference generator” in Appendix D is a
multiplicative congruential generator, attributed to Fish-
man and Moore in the text, but really proposed by D.
H. Lehmer in 1949 [Leh51] – Lehmer even proposed
the specific Mersenne prime modulus p = 231 − 1 used.
Multiplicative generators can be seen as a subset of linear
congruential generators with the addition constant set to
zero, although their analysis is slightly different.

Description and implementation of LCG. Section
D.1 offers a definition for a multiplicative generator as
zi+1 = a ∗ zi mod (231 − 1), without stating what the a
value is. The text asserts that “a is a function of the state,”
which is clearly incorrect. Examination of the code and
outputs reveals it to be a = 950706376, which leads to
maximum (231 − 2) period.

The code (in src/generators.c) is a literal, line-
by-line translation to C of the 1980s era Fortran code
written by L. R. Moore of RAND corporation. The orig-
inal can be found in [Fis96, Fig. 7.3, p. 604]. It is
remarkable that the reference code implements the Lehmer
generator with five double-precision multiplications, four
full divisions, three calls to the floor() function, and
some additional arithmetic. However, this is equivalent:

z = (z * 950706376) % 0x7fffffff;

Note that the (mod p) reduction can be easily imple-
mented with a shift and an add since 231 ≡ 1 (mod p).
No division is required, just a single 31×31-bit multiply.
Perhaps their double-precision approach made sense with
a specific 1980s computer without an integer multiplier,
but we doubt it. We noticed the code does not work cor-
rectly under more aggressive floating-point optimization
levels; it is dependent on specific IEEE 754 floating-point
properties in a very “fragile” manner.

Weaknesses. Even if we ignore the cryptanalyti-
cally trivial 31-bit state size, a generator of this type
can be rapidly attacked and distinguished from random
[FHK+88].

4.3. Quadratic Congruential Generator I

The quadratic generator QCG-I is characterized by
iteration xi+1 = x2i (mod p), a 512-bit p, and starting
point x0. The values xi are used directly as 512-bit blocks.

Weaknesses. The generator outputs its entire state.
From xi it is trivial to compute xi+1 and also the two
square roots ±xi−1. Hence the generator has neither for-
ward nor backward security.

Statistically, the most significant bit of each 512-bit
block will be biased by 2−512p ≈ 0.5956 since xi < p.
The test suite does not seem to detect it, however. The bias
leads to a trivial, low-complexity statistical distinguisher
against the generator.

4.4. Quadratic Congruential Generator II

The QCG-II generator is based on iteration xi+1 =
2x2i + 3xi + 1 (mod 2512).

Weaknesses. Entire 512-bit blocks are output, includ-
ing the least significant bits. The generator allows both
prediction and backtracking.

QCG-II does not have good statistical properties since
there is no information flow from high-order bits towards
the lower-order bits. The least significant bits xi mod 2m

will form a cycle with a period of at most xm. For
example, the least significant bit of each 512-bit block
alternates in each block. The property leads to a trivial,
low-complexity distinguisher against the generator.

4.5. Cubic Congruential Generator (QCG)

The iteration used in GCQ is xi+1 = x3i (mod 2512).
We observe that this is equivalent to xi = x3

i

0 (mod
2512). The entire variable {xi} is output.

Weaknesses. The output blocks xi can be reduced to
a smaller modulus size 2m for analysis. We can observe,
for example, that the least significant byte satisfies xi ≡
xi+16 (mod 28); the cycle is only 16. As a result, there
will be an equivalent byte repeating with distance 16 ∗
(512/8) = 1024 bytes, which should be detectable purely
statistically – but is not. These properties lead to trivial,
low-complexity distinguishers against the generator.

4.6. Exclusive OR Generator (XORG)

The generated sequence starts with an initial value for
x1, x1, . . . , x127 and applies the recurrence xi = xi−1 ⊕
xi−127 for i ≥ 128 to generate bits.

It is not explained that XORG implements an LFSR
with an irreducible generator polynomial x127+x126+1.
Indeed its cycle 2127 − 1 is prime too.

Weaknesses. There is no secret state with xi, and
hence the XORG / LFSR has no cryptanalytic security –
despite attractive statistical properties and a long period.
One can trivially both predict and backtrack outputs. A
low-complexity attack models the LFSR as a system of
linear equations over GF(2) and is able to distinguish with
a high degree of certainty even it from random even if a
continuous “block” of output bits are not available.

4.7. Modular Exponentiation Generator

The MODEXP generator is loosely based on the
old Digital Signature Standard (DSS). One sets x1 =
gseed mod p and xi+1 = gyi mod p for i ≥ 1
where yi = xi mod 2160. The output sequence consists
of concatenated xi values.

Weaknesses. Since full output blocks xi are available,
the sequence has no security. It can also be also trivially
distinguished from random since the values satisfy xi < p.

Some parameters are given, but not those that would
be needed to assess the statistical quality of the generator.
The (p, g) values are the same as the (p, x0) values for
QCG-1. We note that the order of the generator g is not
given; if it is very small, then only a small number of
different xi values would be generated.

Checking for backdoors. To see how the backdoor
could have been created into a generator of this type, we
examine the factorization of the multiplicative order p−1.

Since the order of g was not given, it was left to the author
to discover the factorization4:

p− 1 = 25 ∗ 11 ∗ 47 ∗ 151 ∗ 175916087 ∗ 22940963671∗
p160 ∗ p269,

where the two largest prime components are

p160 = 1213137149285565671196618904624637288561

542502557, and
p269 = 6529682639905403810339488131303178790370

22014328109742486312983876569235660511721.

We find that p160 is the order of the value g presented:
gp160 ≡ 1 (mod p). A shorter cycle is more likely, with
the expected size being O(

√
n) where n is the minimum

of 2160 and multiplicative order of g.
It is also trivial to find weaker generators. For example,

h = 31fbe4d542ad14935055b18465de2a19

d261d3fd0625c565d1e17dceaebc479e

860bcb11a6d6697a0b1fd7172567600a

8808df985e2c88379bcb3a565db805e4

satisfies h11 ≡ 1 mod p and hence g = h could generate
at most 11 different 512-bit xi values.

4.8. Secure Hash Generator (G-SHA1)

SP 800-22 does not actually describe this generator but
suggests looking at [MvOV96, Chap 5, P. 175]. An investi-
gation of the code confirms that actual SHA-1 is not used,
but a variant G with no message padding. The comment
in STS 2.1.2, line 370 of src/generators.c states:
“This is the generic form of the generator found on the
last page of the Change Notice for FIPS 186-2”5.

We note that this 186-2 generation method was later
withdrawn as it produced biased random numbers (rejec-
tion sampling was not used, just reduction mod q).

The “generic form” (implemented in the code but
not explained in the documentation) sets y0 = Xkey and
iterates for x ≥ 1:

xi ← G(t, yi−1)

yi ← yi + xi + 1 mod 2160

Where G(IV,M) is a SHA-1 variant with start state t = IV
and message M with (nonstandard) zero padding. The
xi values are output. This generator prevents the direct
observation of the counter state yi.

Weaknesses. Since it is not an actual counter mode,
it will exhibit a cycle length of roughly O(

√
N) ≈ 280.

The security of G-SHA1 is also affected by weaknesses in
the SHA-1 compression function. The SHA-1 algorithm
was cryptanalytically broken in 2005 [WYY05] and de-
preciated by NIST in 2011 [BR11]. Many types of full,
practical attacks have been demonstrated [SBK+17].

4. The smaller factors were discovered on a personal laptop in a few
minutes using GMP-ECM Elliptic Curve Method (ECM) factorization
software. The remaining 429-bit composite was factored into p160 ∗
p269 in about 95 minutes of computation with a 2x16-core (64-thread)
AMD EPYC 7302 server using CADO-NFS Number Field Sieve (NFS)
software.

5. An apparent reference to “FIPS Publication 186-2 (with
Change Notice 1)”, dated October 5, 2001. https://csrc.nist.gov/
csrc/media/publications/fips/186/2/archive/2001-10-05/documents/
fips186-2-change1.pdf

https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf

4.9. Blum-Blum-Shub (BBSG)

The name refers to [BBS86]. The system parameters
p, q ≡ 3 (mod 4) are primes and n = pq is their product.
The generator iterates si ← s2i−1 (mod n) for i ≥ 1 from
an initial seed s0. The least significant bit xi ← si mod 2
forms the random sequence.

The input parameters are fixed in the code; each p, q
is 512 bits, and s is 509 bits. Note that such fixing these
parameters is not necessary if a module supports key
generation.

Weaknesses. Since prime generation is slow and
knowledge of the factorization, the composite n is often a
fixed system parameter. Such a generator can allow access
by those who know the fixed secret factors p and q of n.

A backdoor of this type was included in the SP 800-
90A random bit generator specification for a while6. The
Dual_EC_DRBG method was based on the public key
cryptography of elliptic curves.

The quadratic residuosity and factoring problems un-
derlying BBS are, of course, vulnerable to Shor’s quantum
algorithm [Sho94]. Hence BBSG is not quantum-safe.

4.10. Micali-Schnorr Generator (MSG)

The name refers to [MS88], [MS91]. The MSG gen-
erator is not described in detail in [RSN+10, Appendix
D.9]. The STS 2.1.2 code has fixed 512-bit prime factors
p and q, and sets the exponent as e = 11. A fixed 186-
bit seed x0 is set as well. The output sequence consists
837-bit lower-order chunks zi, while the high 187 bits are
used for the next exponentiation.

yi ← xei−1 mod n

xi ← byi/2837c
zi ← yi mod 2837

Weaknesses. The security of the Micali-Schnorr
scheme relies on the difficulty of factoring n and some
additional statistical assumptions. It is vulnerable to Shor’s
quantum computing attack. The generator requires modu-
lar exponentiation and is therefore relatively slow.

A Micali-Schnorr generator MS_DRBG was pro-
posed for standardization alongside the backdoored
Dual_EC_DRBG. It is included in ISO/IEC 18031:2011
[ISO11]. The standard text includes only the “default”
composite moduli n, not their factors p, q. These unknown
factors are likely to form a backdoor for inverting the
random number generator.

4.11. Algebraic Irrational Numbers

Appendix F.3 of SP 800-22 [RSN+10] and the STS
2.1.2 test suite discuss binary expansions of four irrational
numbers; constants e and π,

√
2,
√
3. It is not explained

why these particular numbers are included. From the
perspective of “randomness testing”, some of them have
distinguishing properties.

We note that “irrational numbers” have been proposed
as a means of random number generation [Ste21]. We

6. Press release April 21, 2014, “NIST Removes Cryptography Algo-
rithm from Random Number Generator Recommendations.”

suspect that this was probably inspired by reading NIST
SP 800-22 since STS test are also offered as evidence of
security. That proposal is clearly insecure.

Weaknesses. While all of these numbers are irrational
(not expressible as a fraction), only e and π are transcen-
dental numbers. The square roots

√
2 and

√
3 are algebraic

numbers (roots of integer polynomials), and hence their
automatic identification and distinguishing from random
is relatively easy7.

Algorithms based on the LLL (Lenstra-Lenstra-Lovász
[LLL82]) method can rapidly find “minimal” polynomial
coefficients from the binary expansion (of a part) of
an algebraic number. Standard computer algebra systems
readily provide access to these methods; they are well
known to cryptanalysts. Hence algebraic number binary
expansions should not be considered indistinguishable
from random, and the process of computing them is not
a “one-way function” either.

5. Conclusions

We offer criticism of NIST SP 800-22 Rev 1a (and
other “black-box”) statistical testing methods for random
number generators. We consider the continued existence
of this document as a NIST Special Publication as harmful
to the security of information systems, as it trivializes
security analysis and leads to false confidence.

Implementation validation of (deterministic) pseudo-
random generators should be focused on algorithmic cor-
rectness; the “randomness” of output follows from this.

Evaluation of entropy sources should focus on the true
entropy content (physical and stochastic models), built-
in health tests, the reliability of the construction, and its
resistance to monitoring and interference.

If the SP 800-22 is to be revised, we suggest the new
SP focuses on evaluating stochastic models for entropy
sources as the SP 800-90 series currently does not address
this issue in depth.

We also presented a brief analysis of the “reference
generators” included in the SP 800-22 document. None
of the presented generators are secure, yet many pass the
statistical tests.

We encourage a systematic review of random bit gen-
erators against potential “trapdoor” asymmetric backdoors
and quantum computing vulnerabilities. Seemingly back-
doored and quantum-insecure generators were included in
the 2011 version of the random bit generator standard ISO
18031 [ISO11].

Bibliography

[BBS86] Lenore Blum, Manuel Blum, and Mike Shub. A simple
unpredictable pseudo-random number generator. SIAM J.
Comput., 15(2):364–383, 1986. doi:10.1137/0215025.

[BEB03] Robert G. Brown, Dirk Eddelbuettel, and David Bauer.
Dieharder: A random number test suite. Software distribution,
accessed January 2021, 2003. URL: https://webhome.phy.
duke.edu/∼rgb/General/dieharder.php.

[BK15] Elaine Barker and John Kelsey. Recommendation for random
number generation using deterministic random bit generators.
NIST Special Publication SP 800-90A Revision 1, June 2015.
doi:10.6028/NIST.SP.800-90Ar1.

7. Many thanks to Sophie Schmieg for a helpful discussion about
efficient solutions to this problem.

https://doi.org/10.1137/0215025
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.6028/NIST.SP.800-90Ar1

[BKR+21] Elaine Barker, John Kelsey, Allen Roginsky,
Meltem Sönmez Turan, Darryl Buller, and Aaron
Kaufer. Recommendation for random bit generator (RBG)
constructions. Draft NIST Special Publication SP 800-90C,
March 2021.

[BR11] Elaine Barker and Allen Roginsky. Transitions: Recommen-
dation for transitioning the use of cryptographic algorithms
and key lengths. NIST Special Publication 800-131A, January
2011. doi:10.6028/NIST.SP.800-131A.

[Bro49] George W. Brown. History of RAND’s random digits –
summary. Research Paper P-113, RAND Corporation, June
1949. Also appeared in: Monte Carlo Method, Nat. Bur.
Stand., Appl. Math. Series 12 (1951), pp. 31-32. URL:
https://www.rand.org/pubs/papers/P113.html.

[FHK+88] Alan M. Frieze, Johan Hastad, Ravi Kannan, Jeffrey C.
Lagarias, and Adi Shamir. Reconstructing truncated integer
variables satisfying linear congruences. SIAM J. Comput.,
17(2):262–280, apr 1988. doi:10.1137/0217016.

[Fis96] George Fishman. Monte Carlo. Springer, 1996. doi:10.
1007/978-1-4757-2553-7.

[Glo20] GlobalPlatform. Tee protection profile version 1.3.
GlobalPlatform Technology, Reference: GPD SPE 021,
July 2020. URL: https://globalplatform.org/specs-library/
tee-protection-profile-v1-3/.

[Glo21] GlobalPlatform. Secure element protection profile
version 1.0. GlobalPlatform Technology, Reference:
GPC SPE 174, February 2021. URL: https://globalplatform.
org/specs-library/secure-element-protection-profile/.

[ISO11] ISO. Information technology– security techniques – random
bit generation. Standard ISO/IEC 18031:2011, International
Organization for Standardization, 2011. URL: https://www.
iso.org/standard/54945.html.

[KBS38] Maurice G. Kendall and Bernard Babington-Smith. Random-
ness and random sampling numbers. Journal of the Royal
Statistical Society, 101(1):147–166, 1938. doi:10.2307/
2980655.

[KBS39] Maurice G. Kendall and Bernard Babington-Smith. Second
paper on random sampling numbers. Supplement to the
Journal of the Royal Statistical Society, 6(1):51–61, 1939.
doi:10.2307/2983623.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography, Second Edition. CRC Press, 2014. doi:10.
1201/b17668.

[KS01] Wolfgang Killmann and Werner Schindler. A proposal
for: Functionality classes and evaluation methodology
for true (physical) random number generators. AIS 31,
Version 3.1, English Translation, BSI, September 2001.
URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS 31 Functionality
classes evaluation methodology for true RNG e.html.

[KS11] Wolfgang Killmann and Werner Schindler. A
proposal for: Functionality classes for random
number generators. AIS 20 / AIS 31, Version 2.0,
English Translation, BSI, September 2011. URL:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Zertifizierung/Interpretationen/AIS 31 Functionality
classes for random number generators e.html.

[Leh51] Derrick H Lehmer. Mathematical methods in large-scale
computing units. Annu. Comput. Lab. Harvard Univ., 26:141–
146, 1951.

[LLL82] H.W. jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen,
261:515–534, 1982. doi:10.1007/BF01457454.

[MKAG20] Linda C. Meiser, Julian Koch, Philipp L. Antkowiak, and
Robert N. Grass. DNA synthesis for true random number
generation. Nature Communications, 11(5869), 2020. doi:
10.1038/s41467-020-19757-y.

[MS88] Silvio Micali and Claus-Peter Schnorr. Efficient, perfect
random number generators. In Shafi Goldwasser, editor,
Advances in Cryptology - CRYPTO ’88, 8th Annual Inter-
national Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1988, Proceedings, volume 403 of Lec-
ture Notes in Computer Science, pages 173–198. Springer,
1988. doi:10.1007/0-387-34799-2_14.

[MS91] Silvio Micali and Claus-Peter Schnorr. Efficient, perfect
polynomial random number generators. Journal of Crypto-
graphic Engineering, 3(3):157–172, 1991. doi:10.1007/
BF00196909.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of Applied Cryptography. CRC Press,
1996. URL: http://cacr.uwaterloo.ca/hac/, doi:10.1201/
9781439821916.

[NC21] NIST and CCCS. Implementation guidance for
FIPS 140-3 and the cryptographic module validation
program. CMVP, November 2021. URL: https://csrc.
nist.gov/Projects/cryptographic-module-validation-program/
fips-140-3-ig-announcements.

[NIA13a] NIAP. Clarification to the entropy documentation and as-
sessment annex. National Information Assurance Partnership
(NIAP), Common Criteria Evaluation and Validation Scheme,
2013.

[NIA13b] NIAP. Entropy submission and review process. National
Information Assurance Partnership (NIAP), Common Criteria
Evaluation and Validation Scheme, 2013.

[NIA22] NIAP. Protection profile for general-purpose computing plat-
forms. National Information Assurance Partnership, Version
1.0, February 2022. URL: https://www.niap-ccevs.org/MMO/
PP/PP GPCP v1.0.pdf.

[NIS01] NIST. Security requirements for cryptographic modules. Fed-
eral Information Processing Standards Publication FIPS 140-2
(With change notices dated October 10, 2001 and December
3, 2002), May 2001. doi:10.6028/NIST.FIPS.140-2.

[NIS19] NIST. Security requirements for cryptographic modules.
Federal Information Processing Standards Publication FIPS
140-3, March 2019. doi:10.6028/NIST.FIPS.140-3.

[RAN55] RAND Corporation. A Million Random Digits with 100,000
Normal Deviates. Free Press, 1955. URL: https://www.rand.
org/pubs/monograph reports/MR1418.html.

[RSN+10] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid,
Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel,
David Banks, Alan Heckert, JamesDray, and San Vo. A
statistical test suite for random and pseudorandom number
generators for cryptographic applications. NIST Special Pub-
lication SP 800-22 Revision 1a, April 2010. doi:10.6028/
NIST.SP.800-22r1a.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Al-
bertini, and Yarik Markov. The first collision for full SHA-
1. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, volume 10401 of Lecture
Notes in Computer Science, pages 570–596. Springer, 2017.
doi:10.1007/978-3-319-63688-7_19.

[SCA12] SCA. Randomness test specification. Cryptography Industry
Standard of the P.R. China GM/T 0005-2012, March 2012.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Dis-
crete logarithms and factoring. In 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mex-
ico, USA, 20-22 November 1994, pages 124–134. IEEE,
1994. URL: https://arxiv.org/abs/quant-ph/9508027, doi:
10.1109/SFCS.1994.365700.

[Ste21] Crown Sterling. Crown sterling cryptographic
security protocol. A Technical White Paper (From
a Snake Oil Vendor), December 2021. URL:
https://f.hubspotusercontent10.net/hubfs/9477568/Crown%
20Sterling%20White%20Paper%202021.pdf.

[TBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey,
Kerry A. McKay, Mary L. Baish, and Mike Boyle. Rec-
ommendation for the entropy sources used for random bit
generation. NIST Special Publication SP 800-90B, January
2018. doi:10.6028/NIST.SP.800-90B.

[TC218] TC26. (Russian) translation of AIS-31. Technical Com-
mittee for Standardization, Cryptographic Protection of In-
formation, 2018. URL: https://tc26.ru/standarts/perevody/
perevod-ais-31.html.

https://doi.org/10.6028/NIST.SP.800-131A
https://www.rand.org/pubs/papers/P113.html
https://doi.org/10.1137/0217016
https://doi.org/10.1007/978-1-4757-2553-7
https://doi.org/10.1007/978-1-4757-2553-7
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/secure-element-protection-profile/
https://globalplatform.org/specs-library/secure-element-protection-profile/
https://www.iso.org/standard/54945.html
https://www.iso.org/standard/54945.html
https://doi.org/10.2307/2980655
https://doi.org/10.2307/2980655
https://doi.org/10.2307/2983623
https://doi.org/10.1201/b17668
https://doi.org/10.1201/b17668
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_evaluation_methodology_for_true_RNG_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://doi.org/10.1007/BF01457454
https://doi.org/10.1038/s41467-020-19757-y
https://doi.org/10.1038/s41467-020-19757-y
https://doi.org/10.1007/0-387-34799-2_14
https://doi.org/10.1007/BF00196909
https://doi.org/10.1007/BF00196909
http://cacr.uwaterloo.ca/hac/
https://doi.org/10.1201/9781439821916
https://doi.org/10.1201/9781439821916
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://www.niap-ccevs.org/MMO/PP/PP_GPCP_v1.0.pdf
https://www.niap-ccevs.org/MMO/PP/PP_GPCP_v1.0.pdf
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-3
https://www.rand.org/pubs/monograph_reports/MR1418.html
https://www.rand.org/pubs/monograph_reports/MR1418.html
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1007/978-3-319-63688-7_19
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://f.hubspotusercontent10.net/hubfs/9477568/Crown%20Sterling%20White%20Paper%202021.pdf
https://f.hubspotusercontent10.net/hubfs/9477568/Crown%20Sterling%20White%20Paper%202021.pdf
https://doi.org/10.6028/NIST.SP.800-90B
https://tc26.ru/standarts/perevody/perevod-ais-31.html
https://tc26.ru/standarts/perevody/perevod-ais-31.html

[Wal98] John Walker. ENT – a pseudorandom number sequence test
program. Open Source Program, October 1998. URL: https:
//www.fourmilab.ch/random.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding
collisions in the full SHA-1. In Victor Shoup, editor, Advances
in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science, pages 17–36. Springer, 2005.
doi:10.1007/11535218_2.

https://www.fourmilab.ch/random
https://www.fourmilab.ch/random
https://doi.org/10.1007/11535218_2

	Introduction
	Cryptographic RNG Evaluation
	Current Standards

	Obsoleted but Still Harmful: SP 800-22
	The Tests: Cryptanalysis-in-a-Box?
	A Systemic Problem
	Perhaps It's For Implementation Bugs?

	Entropy Sources: Stochastic Models
	All the bad ``Reference Generators''
	Basic Design Review
	Computational Indistinguishability
	Sufficient start-up entropy
	Secure Reseeding
	Quantum Safety
	Absence of backdoors (and trapdoors)

	Linear Congruential Generator (LCG)
	Quadratic Congruential Generator I
	Quadratic Congruential Generator II
	Cubic Congruential Generator (QCG)
	Exclusive OR Generator (XORG)
	Modular Exponentiation Generator
	Secure Hash Generator (G-SHA1)
	Blum-Blum-Shub (BBSG)
	Micali-Schnorr Generator (MSG)
	Algebraic Irrational Numbers

	Conclusions
	Bibliography

