Efficient Zero-Knowledge Arguments for Some Matrix Relations over Rings and Non-malleable Enhancement

Yuan Tian

1 Software School, Dalian University of Technology, Dalian, Liao Ning, P.R.China, tianyuan_ca@dlut.edu.cn

Abstract Various matrix relations widely appeared in data-intensive computations, as a result their efficient zero-knowledge proofs/arguments are naturally required in large-scale private computing applications. In the first part of this paper, we concretely establish efficient zero-knowledge arguments for linear matrix relation $A U = B$ and bilinear relation $U^T Q V = Y$ over the residue ring \mathbb{Z}_m with logarithmic message complexity. We take a direct, matrix-oriented (rather than vector-oriented in usual) approach to such establishments on basis of the elegant commitment scheme over finite ring recently established by Attema et al[16]. The constructed commit-and-proof protocols are public-coin and in c.r.s paradigm (c.r.s used only as the public-key of the commitment scheme), suitable for any size matrices and significantly outperform the protocols constructed in usual approach with smaller-sized c.r.s (e.g., decreased by a factor of d for linear and by $n^2 d$ for bilinear relation where d is the extension degree of Galois ring and n is the order of the witness square), fewer rounds (decreased by a fraction > $\log d / 2 \log n$ for linear and > $1/2$ for bilinear relation) and lower message complexity (e.g., number of ring elements decreased by a fraction > $\log d / \log n$ for linear and > $1/6$ for bilinear relation) for large-size squares. The on-line computational complexities are almost the same in both approaches. In the second part, on basis of the simulation-sound tag-based trapdoor commitment scheme we establish a general compiler to transform any public coin proof/argument protocol into the one which is concurrently non-malleable with unchanged number of rounds, properly increased message and computational complexity. Such enhanced protocols, e.g., the versions compiled from those constructed in the first part of this work, can run in parallel while keeping all their security properties, particularly resisting man-in-the-middle attacks.

Keywords: Zero-Knowledge, Linear Matrix Equation, Bilinear Matrix Equation, Σ-Protocol, Concurrent Non-malleability, Galois Ring.

1 Introduction

1.1 Basic Problems and Related Works

Efficient zero-knowledge proofs for various relations are crucial techniques to support multiparty private computing tasks[1,2], secure distributed ledger systems[3,4,5] and many other cryptographic applications. In data-intensive private computation, lots of data relations appear in the form of high dimensional vector or large-size matrix equa-
tions[3,4] and efficient zero-knowledge proof/argument protocols (ZKP/ZKA) with low message complexity are highly valuable to support these applications in complicated network environment.

Recently, some innovative techniques have been developed in [6,7] to construct highly efficient ZKAs for linear vector relation $a^T u = b$ and inner product relation $u^T v = w$ over finite field. The constructed ZKAs have message complexity of only $O(\log n)$ where n is the dimension of witness space, significantly improving previous works in performance. This approach was further developed in [8] to construct ZKA for vectors’ quadratic relation $u^T A u + b^T u = c$ over finite field with logarithmic message complexity and lots of other improvements in performance. This approach was also applied to constructing ZKAs with logarithmic message complexity for bilinear relations on groups with pairing structure[9,10] and partial-knowledge proofs[11].

The critical idea initiated in [6,7] for compressing the argument is on basis of an observation that the normally constructed commit-and-proof arguments (for relations discussed there) have some intrinsic recursive structure. With the aid of homomorphism of the commitment scheme and smart witness space decomposition, such recursive structure can be used to expand the original arguments to multiple rounds. In such expansion the total message complexity is highly compressed while the number of rounds only increases as slowly as the logarithm of the dimension of witness space. Such idea was generalized in [12] within the widely used Σ-protocol framework and a very general theory for linear and nonlinear relations was henceforth established.

After succeeding in developing efficient ZKAs for linear vector relations over finite field, it is natural to establish efficient ZKAs for nonlinear relations over finite field and other arithmetic systems, e.g., finite rings \mathbb{Z}_n or integer ring \mathbb{Z}.

In the first direction, bilinear relation is the simplest non-linear relation which efficient ZKA construction was partially solved, e.g., [6-8] has established the protocols with logarithmic message complexity in some special cases. More specifically, the protocols constructed in [6,7] are only for inner-product relation, and the protocols in [8] are only for quadratic relation with 1-rank coefficient matrix. So far with the author’s knowledge there is no direct work on bilinear relation $u^T Q v = y$ with general Q or with witnesses not only u and v but also Q and y. These relations naturally appear in contemporary cryptographic applications. For non-linear relations, so far the most common and effective approach is linearization[12]. In this approach, any relation over the finite field can be equivalently transformed into a (maybe very high dimensional) linear relation through secrete sharing techniques. On the other hand, as indicated in [9], the compilation from nonlinear to linear relation comes at the price of losing conceptual simplicity and modularity in protocol design. Therefore, developing direct approach for specific non-linear relation is still useful in cryptography theory and applications. [9-11] are heuristic examples in this direction.

In the second direction, recently a ZKA with polynomial-logarithmic message complexity was constructed in [13] for a linear relation over the integer ring \mathbb{Z}. [16] established a family of general and elegant commitment schemes for vectors over Galois ring, and the ZKA with logarithmic message complexity is constructed by generalizing techniques in [12] for linear relations over the ring. The ZKA for any nonlinear relation over Galois ring can be also constructed via the linearization ap-
proach and related techniques developed in multiparty private computation over the
ring. However, a straightforward generalization of ZKA construction from the finite
field to finite ring does not sufficiently make use of all flexibilities provided by this
scheme. There are new and interesting problems for applying this new commitment
scheme in ZKA-construction, even for linear relations.

Contributions Our contributions in this paper have two parts. In the first part (Sec.
3 and 4) we concretely establish efficient commit-and-proof zero-knowledge argu-
ment (ZKA) protocols for linear matrix relation $AU = B$ and bilinear relation $U^T QV =
Y$ over the residue ring Z_m with logarithmic message complexity. In private comput-
ing applications various data relations can be represented by or reduced to some ma-
trix relation, e.g., the (private) isomorphic relation between two lattices or graphs;
mutiplicative, inverse or similarity relations between two private matrices, etc. In
addition, Z_m is one of the most widely used arithmetic systems in practice. One of the
main challenges in constructing ZKA protocols for relations over a ring is how to
ensure sufficient number of challenges to fulfill the necessary soundness require-
ments. This is elegantly achieved in [16] by committing over the extended ring S,
which elements are polynomials of some finite degree d over Z_m. As a direct result, a
Z_m-vector is regarded as a special S-vector and the ZKA protocol for a relation over
Z_m is simply constructed as a ZKA protocol for a relation over S, by generalizing
techniques (e.g., amortization, compression, etc.) from Galois field to Galois rings.
However, in private computing applications, what is actually needed is to prove rela-
tions over, e.g., Z_m, rather than over its extension S, so when establishing the ZKA
protocol for a matrix relation this vector-oriented approach (dealing with a matrix just
as a collection of vectors) is not as efficient as desired.

We take a matrix-oriented approach on basis of an observation that a n-
dimensional vector over the Galois ring S can be effectively related with a Z_m-matrix
in various ways. For example, by re-arranging a large-size, n-by-nd Z_m-matrix U to be
a nt-by-d matrix U^t, it can be equivalently regarded as a nt-dimensional S-vector u^t so
its commitment can be always valued in G^d, i.e., its commitment size can be inde-
pendent of its total size and only determined by the targeted knowledge-error in ZKA.
Furthermore, how to transform the original relation for matrices over Z_m into an
equivalent relation for the correspondent vectors over S while keeping the commit-
ment size fixed (e.g., d) or as slowly-increasing as possible is crucial to make use of
these observations. This is simple in linear case but technically involved in non-linear
case. Details are elaborated in sec. 3 and 4.

Our matrix-oriented approach to ZKA for matrix relations is able to deal with
Z_m-matrix in any size. The constructed protocols have almost the same on-line compu-
tational complexity as those constructed in vector-oriented approach. It begins to
outperform the vector-oriented approach when number of columns $> \log$(number of
rows) with smaller c.r.s, shorter commitments, fewer rounds and lower message com-
plexity. For example, for linear relation with the witness of n-by-n Z_m-matrix, number of
rounds can be reduced from $4\log n$ to $4\log n-2\log d$ and message complexity can be
reduced from $4d\log n$ to $4d\log n-2d\log d$(for number of group elements) and from
$6d\log n$ to $6d\log n-3d\log d$(for number of ring elements). In addition, the number of
group elements in c.r.s can be reduced by a factor of d (see tab. 1 & 2 in sec.3). For
bilinear matrix relation, the matrix-oriented approach also outperforms the general linearization approach in almost all aspects, e.g., the number of rounds can be reduced by $> 1/2$; size of c.r.s. reduced by $> n^d$ times; total number of ring elements in messages reduced by $> 1/6$ and total number of group elements asymptotically the same but decreased by $4d \log d$ (n is the number of rows in the witness square, see tab. 3 & 4 in sec.4). Such advantages are not only helpful for interactive but also for non-interactive argument constructions. This is a result of making use of specific structural features of the commitment scheme and matrix equations. The same approach can also deal with more complicated matrix relations such as eigenvalue relation $U^a = \lambda^a$, $AUB^T = C$, $U^TQ V + AUB^T + CVD^T = R$ (with witnesses U and V) with similar performance advantages.

All constructed protocols in this paper are public-coin and in c.r.s paradigm, where the c.r.s is only used as the commitment scheme’s public key.

In the second part (Sec.5), on basis of the general and formal public-coin protocol structure, we establish a general compiler to transform any such proof/argument protocol into the protocol which is \textit{concurrently non-malleable} with unchanged number of rounds, properly increased message and computational complexity (by nearly constant times). The innovative approach developed in [20-22] for 3-round protocols is generalized to multi-round public-coin protocols via some recent analysis and results in [13]. The basic tool is the simulation-sound trap-door commitment scheme introduced in [20-22]. Such enhanced protocols, e.g., all the enhanced versions of protocols in sec. 3 and 4, can run in parallel environment while keeping all its security properties, particularly resisting man-in-the-middle attacks.

\textbf{Some Notes on Terminologies} In second part of our work, we simply inherit the terminology \textit{non-malleability} from [22] but it is strictly weaker than the “non-malleability” in [20-21] which is actually equivalent to \textit{universal composability}. In addition, “tag-based” and “simulation soundness” for the trapdoor commitment scheme are terminologies inherited from [20] which are similar (but not exactly the same) as the properties proposed in [22] in different names.

\section{Preliminaries}

\textbf{Notations and Conventions} λ usually represents the security parameter, $\text{poly}(\lambda)$ represents a polynomial in λ. A function $\varepsilon(\lambda)$ is called \textit{asymptotically negligible} or simply negligible if $\lim_{\lambda \to \infty} \text{poly}(\lambda) \varepsilon(\lambda) = 0$.

P.P.T. means Probabilistic Polynomial Time.

R \rightarrow J means a random variable u is sampled on a set J under uniform distribution.

Two random variable ensembles \{ X_i \} and \{ Y_i \} are called \textit{statistically indistinguishable} if the differences of their distribution is negligible:

$$\sum_{u} |P[X_i = u] - P[Y_i = u]| \leq \varepsilon(\lambda)$$

\{ X_i \} and \{ Y_i \} are called \textit{computationally indistinguishable} if for any P.P.T. algorithm A the following inequality holds where the function $\varepsilon(\lambda)$ is negligible.
\[|P[A(X_\lambda)=1] - P[A(Y_\lambda)=1]| \leq \varepsilon(\lambda) \]

2.1 Zero-knowledge Proofs/Arguments

A binary relation \(R \) is NP-class if there exists a polynomial-time algorithm \(A \) to decide whether \((x,w) \) is in \(R \), \(L_R = \{ x: \text{there exists } (x,w) \in R \} \).

In an interactive proof system \((P,V)\) where \(P \) and \(V \) are P.P.T prover and verifier, \(\sigma \) represents the common reference string (c.r.s.), \(x \) represents the public information for \(P \) and \(V \), \(w \) represents the private information only for \(P \), i.e., the witness, \(<P(w)_i;V>_i(x)\) represents the output of \(V \) valued in \([0,1]\) after the interaction with \(P \) on input \(x \) and c.r.s. \(\sigma \), \(\text{Tr}<P,V>_i(x) \) the trace during the interaction between \(P \) and \(V \). These notations have the same meaning for any interactive algorithms \(A \) and \(B \).

Definition 1 (Zero-knowledge Proof) For a relation \(R \) and some given function \(\kappa(\lambda) \), an interactive proof system \((P,V)\) is defined as a *zero-knowledge proof of knowledge* for \(R \), \(ZKPoK \) hereafter, if it has all the following properties:

1. **Complete** For any \((x,w)\in R\) there holds \(P[<P(w)_i;V>_i(x)=1]=1 \).
2. **Knowledge-sound with knowledge-error \(\kappa(\lambda) \)** There exists a polynomial \(q(.) \) and an algorithm \(\text{Ext} \) (called extractor) with expected polynomial time complexity, such that for any (maybe dishonest) prover \(P^* \) which can be rewound by \(\text{Ext} \) there holds
 \[
 P[w^* \leftarrow \text{Ext}^P(\sigma,x,\text{Tr}<P^*,V>_i(x)): (x,w^*)\in R] \geq (\mu(x) - \kappa(|x|))/q(|x|)
 \]
 where \(\mu(x) \equiv P[<P^*;V>_i(x)=1] \geq \kappa(|x|) \).
3. **Zero-knowledge** There exists a P.P.T. algorithm \(S \), called simulator, such that for any (maybe dishonest) verifier \(V^* \), the output of \(S(\sigma,x) \) and \(\text{Tr}<P^*,V>_i(x) \) are statistically indistinguishable for any \(x \in L_R \).

For knowledge soundness, there is an equivalent definition ([18] sec. 4.7) that on input of \(x \) and \(\text{Tr}<P',V>_i(x) \) with \(<P';V>_i(x)=1 \) and \(\text{Ext} \) can rewind \(P' \), \(\text{Ext} \) outputs a witness \(w' : (x,w')\in R \) with the expected time at most \(q(|x|)/\mu(x)-\kappa(|x|) \).

If knowledge soundness only holds for P.P.T. prover \(P^* \), the proof system is called *knowledge argument*, notated by \(ZKAoK \) hereafter.

Definition 2 (Σ-Protocol and generalized Σ-Protocol) An interactive proof system \((P,V)\) for relation \(R \) is called a \(\Sigma \)-protocol, if it has 3 rounds with the first message from \(P \) to \(V \) and the second message just being a random coin from \(V \) to \(P \) independent of the session context.

An interactive proof system \((P,V)\) for relation \(R \) is called a *generalized \(\Sigma \)-protocol*, if it has \(2k+1 \) rounds with the first message from \(P \) to \(V \) and any messages from \(V \) to \(P \) just being random coins independent of each other and session context.

A generalized \(\Sigma \)-protocol for relation \(R \) is called *special honest verifier zero-knowledge (SHVZK)* if there exists a P.P.T. algorithm \(S \) such that for any verifier \(V^* \), the real trace \(\text{Tr}<P,V>_i(x) \) and the output of \(S \) on input \((\sigma,x,e_1,...,e_k)\) have the same distribution for any \(x \in L_R \) and independent random coins \(e_1,...,e_k \).
Definition 3 ((μ₁, ..., μₖ)-special soundness and session-tree for a generalized Σ-Protocol) A (μ₁, ..., μₖ)-session-tree, denoted by Tₖ(x), for the proof system of relation R with c.r.s. σ is a tree in which:

1. Each node α is associated with a message instance from P to V in the interaction between P and V with public information x, in particular the root is with the first message in the interaction.
2. Each edge is a random coin from V to P.
3. At level-i (the root being at level-1) each node α has μᵢ edges and the random coin instances ε₁, ..., εₙ are associated with these edges are distinct. The downstream node of each edge is associated with the message instance of P in response to the random coin.

Each integer μᵢ is called the soundness factor of the i-th round.

Obviously, each path from the root to a leaf in the tree Tₖ(x) is a complete session instance, i.e., a trace. The number of paths in a tree Tₖ(x) is μ₁...μₖ. If the verifier V outputs 1 on all these paths, the tree Tₖ(x) is called accepting.

A generalized Σ-protocol is called (μ₁, ..., μₖ)-special sound, if there exists a P.P.T. algorithm (extractor) which with overwhelming probability outputs a witness w: (x, w) ∈ R on input of σ, x and the accepting tree Tₖ(x).

Recently [13] proved a fundamental fact that (μ₁, ..., μₖ)-soundness implies knowledge soundness, a general fact without imposing any restrictions on the challenge set where the random coins are sampled.

2.2 Commitment Scheme

Definition 4 (Commitment Scheme) A Commitment scheme CS = (CGen, Cmt, Cvf) is composed of three P.P.T. algorithms with the following properties:

1. **Complete** For any message x there holds
 \[\Pr[pk ← CGen(λ); (c, d) ← Cmt(pk, x); Cvf(pk, c, x, d) = 1] = 1\]

2. **Binding** There exists a negligible function ε(λ) s.t. for any P.P.T. algorithm A:
 \[\Pr[pk ← CGen(λ), (c, x₁, x₂, d₁, d₂) ← A(pk); Cvf(pk, c, x₁, d₁) = 1 ∧ Cvf(pk, c, x₂, d₂) = 1 ∧ x₁ ≠ x₂] ≤ ε(λ)\]

3. **Hiding** For any pk generated by CGen and any messages x₁, x₂ in the same size, the variables c₁: (c₁, d₁) ← Cmt(pk, x₁) and c₂: (c₂, d₂) ← Cmt(pk, x₂) has the same distribution.

2.3 Basic Facts about Galois Ring

Formally, a Galois ring is a finite ring with multiplicative unit 1 such that all of its zero divisors (including 0) forms a principal ideal (p1) for some prime number p.

One of the most important examples for Galois ring is the residue ring \(Z_m\) where \(m = p^e\) and \(p\) is a prime number. Another important example is \(Z_m[X] / (f(X))\) where \(Z_m\) is as before and \(f(X)\) is a monic irreducible polynomial of degree \(d\) over \(Z_m\). This ring is the extended ring of \(Z_m\) of degree \(d\), notated as GR(m, d) hereafter.
The most important facts about Galois ring useful in this paper are stated here. All details and proofs can be seen, e.g., in Chapter 14 of [17], particularly its theorems 14.1, 14.6, 14.8 and lemma 14.20 and 14.29.

Fact 1 Let S be a Galois ring of characteristic \(p' \) (i.e., \(p' \equiv 0 \) and \(N \equiv 0 \) for any integer \(N \not\equiv 0 \mod p' \)) and cardinality \(p'^d \) where \(p \) is a prime, \(s \) and \(d \) are positive integers. Then S is isomorphic to the ring \(\text{GR}(m,d) = \mathbb{Z}_m[X]/(f(X)) \) for \(m = p' \) and any irreducible polynomial \(f(X) \) of degree \(d \) over \(\mathbb{Z}_m \).

Fact 2 In Galois ring \(\text{GR}(m,d) = \mathbb{Z}_m[X]/(f(X)) \) with \(m = p' \):
1. There is an element \(\zeta \) of order \(p'^d-1 \) such that \(f(\zeta) = 0 \) and \(f(X) \) is the unique monic polynomial of degree \(\leq d \) over \(\mathbb{Z}_m \) with \(\zeta \) as its root.
2. \(X^{p'^d-1} - 1 \equiv 0 \mod f(X) \) and \(X^{|S|} - 1 \not\equiv 0 \mod f(X) \) for \(0 < N < p'^d-1 \).
3. \(\text{GR}(m,d) = \mathbb{Z}_m[\zeta] = \{ a_0 + a_1\zeta + a_2\zeta^2 + \ldots + a_{d-1}\zeta^{d-1} : a_0, a_1, a_2, \ldots, a_{d-1} \in \mathbb{Z}_m \} \)
4. Let \(E_{\text{GR}(m,d)} = \{ \zeta^i : i = 0, 1, 2, \ldots, p'^d-2 \} \) then any \(u \) in \(\text{GR}(m,d) \) has a unique \(p \)-adic representation as
 \[
 u = A_0 + A_1p + A_2p^2 + \ldots + A_{d-1}p^{d-1}
 \]
 with each \(A_i \) in \(E_{\text{GR}(m,d)} \cup \{ 0 \} \). Furthermore, \(u \) is invertible in \(\text{GR}(m,d) \) iff \(A_0 \neq 0 \).
5. \(E_{\text{GR}(m,d)} \) is called the *exceptional set* of Galois ring \(\text{GR}(m,d) \). \(E_{\text{GR}(m,d)} \) is a cyclic multiplicative group of order \(p'^d-1 \) and is isomorphic to the multiplicative subgroup of finite field \(F_{p'^d-1} \). \(\zeta^i \) is in \(E_{\text{GR}(m,d)} \) for any \(i \not\equiv j \), i.e., \(\zeta^i \not\equiv \zeta^j \) is always invertible in \(\text{GR}(m,d) \).
6. \(f(X) \) has roots \(\zeta, \zeta^p, \zeta^{p^2}, \ldots, \zeta^{p^{d-1}} \) in \(\text{GR}(m,d) \).

Fact 3 Let \(S = \text{GR}(m,d) \) and \(l < p'^d-1 \), then any non-identically zero polynomial \(\varphi(X) \in S[X] \) of degree \(\leq l \) cannot have more than \(l \) roots in the exceptional set \(E \).

Fact 4 Let \(S = \text{GR}(m,d) \) with \(m = p' \), \(S \) be \(\mathbb{S}/(p) \) and \(h \) be a monic polynomial in \(\mathbb{S}[X] \). If there are pairwise coprime monic polynomials \(g_1, \ldots, g_r \) in \(\mathbb{S}[X] \) such that \(h = g_1 \ldots g_r \mod (p) \), then there exist pairwise coprime monic polynomials \(\bar{g}_1, \ldots, \bar{g}_r \) in \(\mathbb{S}[X] \) such that \(f = \bar{g}_1 \ldots \bar{g}_r \mod (p) \) for each \(i \).

Although the commitment schemes established in [16] is not limited to ring \(\mathbb{Z}_m \) or its extensions with special \(m \), in this paper we only consider \(\mathbb{Z}_m \) and its extensions \(\text{GR}(m,d) \) with \(m = p' \) where \(p = 2 \) or any odd prime, the most important Galois ring family in applications.

2.4 Vector Commitments over Galois Ring

Attema T., et al in [16] established a family of general and elegant commitment schemes for vectors over any finite ring. Let \(S = \text{GR}(m,d) = \mathbb{Z}_m[X]/(f(X)) \) and \(u \) be a \(n \)-dimensional \(S \)-vector, i.e.,

\[
\begin{bmatrix}
 u_1(X) \\
 \vdots \\
 u_n(X)
\end{bmatrix} \in S^n
\]

(2.1)
where each component $u_i(X) \in S$ is a polynomial $u_1(k)+u_2(k)X+u_3(k)X^2+\ldots+u_d(k)X^{d-1}$.

Let R be the set on which to select the random element for hiding, then the commitment to u is an element in product group G^d where G is the commitment-friendly group, e.g., $G = Z_m$ for m odd or $J'(\mathcal{N})$ for m even with some strong RSA module \mathcal{N} (detailed discussions on G are in sec.3.2[16]). The commitment to u is computed by:

\[
\text{Cmt}(\sigma|u; r) = \begin{bmatrix}
\text{cmt}_{\sigma}(u_1(1), \ldots, u_1(n); \tau_1) \\
\vdots \\
\text{cmt}_{\sigma}(u_d(1), \ldots, u_d(n); \tau_d)
\end{bmatrix} \in G^d: S^n \times R^d \rightarrow G^d \quad (2.2)
\]

where $\text{cmt}_{\sigma}(w; r): Z_m^n \times R \rightarrow G$ is a basic commitment scheme for any n-dimensional Z_m-vector w. A general method is provided to construct the basic scheme $\text{cmt}_{\sigma}(\cdot; \cdot)$ in [16] to ensure the properties of unconditional completeness, perfect hiding and computational binding. Specifically, given the commitment key $\alpha = [G, g, m]$ with $g \equiv (g_1, \ldots, g_n)$ being group elements, for $w = [w_1, \ldots, w_n] \in Z_m^n$ with m odd then:

\[
\text{cmt}_{\sigma}(w; r) = r^m g[w] \equiv r^m g_1^{w_1} \cdots g_n^{w_n} \quad \text{where } r \in R
\]

For m even:

\[
\text{cmt}_{\sigma}(w; r) = r^m (-1)^b g[w] \equiv r^m (-1)^b g_1^{w_1} \cdots g_n^{w_n} \quad \text{where } (b, r) \in \{0,1\} \times R
\]

Note that we denote $g_1^{w_1} \cdots g_n^{w_n}$ as $g[w]$, $g_1^b \cdots g_n^b$ as $g[e]$ to simplify the expressions.

Besides security properties, homomorphism is also crucial for these commitment scheme’s applications. It is straightforward to show that (2.3) and (2.4) have the usual homomorphism properties required for a commitment. Furthermore, scheme $\text{Cmt}(\sigma|\cdot; \cdot): S^n \times R \rightarrow G^d$ has an algebraic property useful in protocol construction.

Lemma 1 Let e be in Galois ring $S= GR(m,d) = Z_m[X]/(f(X))$ and $M, \sigma \in Z_m^{d \times d}$ be its associated matrix, i.e., for any

\[
u = u_1+u_2X+u_3X^2+\ldots+u_dX^{d-1} \in S
\]

there holds

\[
eu = (\sum_{i=1}^{d} \sum_{j=1}^{d} M_{e}(i,j)u_j)X^{i-1} \mod f(X)
\]

Also let

\[
\text{Cmt}(\sigma|u; r) = \begin{bmatrix}
C_1 \\
\vdots \\
C_d
\end{bmatrix} \in S^d
\]

and u be the S-vector in (2.1), then

Footnote 1

Each g_i is the m-th power of some element in G, as a result the commitment to any message is always in G^m (except for a random factor -1 in case of even m) [16].
\[
\text{Cmt}(\sigma | eu; s) = \begin{bmatrix}
\prod_{j=1}^{d} c_{j}^{|M_e(1,j)|} \\
\vdots \\
\prod_{j=1}^{d} c_{j}^{|M_e(d,j)|}
\end{bmatrix}
\]

(2.6)

where \(s \) can be efficiently computed from \(u, r, e \) and is uniformly distributed if \(r \) or \(e \) are uniformly distributed. Equality (2.6) is denoted as \(\text{Cmt}(\sigma | eu; s) = \text{Cmt}(\sigma | u; s)^e \).

Proof For each \(k =1,\ldots, n \) let

\[
u_k = \sum_{j=1}^{d} u_j(k) X^{j-1}
\]

so by (2.5) one has \(eu_k = \sum_{j=1}^{d} (\sum_{i=1}^{d} M_e(i,j) u_j(k)) X^{j-1} \) mod \(f(X) \), hence

\[
eu = \begin{bmatrix}
\sum_{j=1}^{d} (\sum_{i=1}^{d} M_e(i,j) u_j(1)) X^{j-1} \\
\vdots \\
\sum_{j=1}^{d} (\sum_{i=1}^{d} M_e(i,j) u_j(n)) X^{j-1}
\end{bmatrix} = \begin{bmatrix}
u_1(1) & \cdots & \nu_d(1) \\
\vdots & \ddots & \vdots \\
\nu_1(n) & \cdots & \nu_d(n)
\end{bmatrix} \begin{bmatrix}
M_e(1,1) & \cdots & M_e(d,1) \\
\vdots & \ddots & \vdots \\
M_e(1,d) & \cdots & M_e(d,d)
\end{bmatrix} \begin{bmatrix} 1 \\
X \\
X^{d-1}
\end{bmatrix} = W \begin{bmatrix} 1 \\
X \\
X^{d-1}
\end{bmatrix} \mod f(X)
\]

where the \(\mathbb{Z}_m \)-matrix \(W = U M_e^T = [u_1, \ldots, u_d] M_e^T = [w_1, \ldots, w_d] \) with column vectors \(w_k = \sum_{j=1}^{d} M_e(k,j) u_j \) \(k =1,\ldots, d \)

By commitment scheme \(\text{cmt}_e \), ’s homomorphism property, the \(k \)-th component of \(\text{Cmt}(\sigma | eu) \) is (for simplicity we omit all random numbers’ expressions):

\[
\text{Cmt}(\sigma | eu)_k = \text{cmt}_e(w_k) = \text{cmt}_\sigma(\sum_{j=1}^{d} M_e(k,j) u_j) = \prod_{j=1}^{d} \text{cmt}_\sigma(u_j)^{M_e(k,j)}
\]

i.e., \(\text{Cmt}(\sigma | eu)_k = \prod_{j=1}^{d} \text{Cmt}(\sigma | u)^{M_e(k,j)} \)

which proves (2.6).

Remark 1 This result was basically established in [16] and lemma 2.1 presents it in a more explicit formulation (2.6). Furthermore, when the commitment (2.2) to a S-vector \(u \) in (2.1) is equivalently regarded as a commitment to a \(\mathbb{Z}_m \)-matrix

\[
U = \begin{bmatrix}
u_1(1) & \cdots & \nu_d(1) \\
\vdots & \ddots & \vdots \\
u_1(n) & \cdots & \nu_d(n)
\end{bmatrix} \in \mathbb{Z}_m^{n \times d}
\]

For simplicity, here and in the following arguments we always omit the long expressions for random objects which can be easily derived from basic formulas in sec.3.1 in [16].
and denoted by Cmt(σ|U), then (2.6) implies
\[\text{Cmt}(\sigma|U^T M) = \text{Cmt}(\sigma|U^\circ) \] (2.7)

This view of equalizing Sₜ-matrices is useful in the following work.

2.5 Probabilistic Equivalence Reduction

Two relations R(α;u) and S(β;v) (where α, β are public information while u, v are witnesses) are called *probabilistically equivalent* with each other if there exists negligible functions \(\varepsilon_1(\lambda) \) and \(\varepsilon_2(\lambda) \) such that
\[P[R(\alpha;u) | S(\beta;v)] \geq 1 - \varepsilon_1(\lambda) \text{ and } P[S(\beta;v) | R(\alpha;u)] \geq 1 - \varepsilon_2(\lambda) \]

This equivalence is denoted by R(α;u) \(\overset{\varepsilon}{\leftrightarrow} \) S(β;v). Usually one of \(\varepsilon_1(\lambda) \) or \(\varepsilon_2(\lambda) \) is 0, i.e., the reduction is deterministic in one direction but probabilistic in the other.

Let the reduction from R to S is deterministic, i.e., \(P[S(\beta;v)|R(\alpha;u)]=1 \), while on the other direction it is probabilistic: \(P[R(\alpha;u)|S(\beta;v)] \geq 1 - \varepsilon_1(\lambda) \) where \(\rho \) is a random variable. If there exists a P.P.T. algorithm A which can compute the witness u of R from at most \(m \) witnesses \(v_1, \ldots, v_m \) of S with overwhelming probability, we say this reduction has *soundness factor m* and denote this fact by \(R \overset{m}{\rightarrow} S \).

Some detailed analysis and useful examples of probabilistic reduction in zero-knowledge proofs for relations in Galois fields can be seen in [12]. Fact 3 in sec. 2.3 is the foundation to generalize these techniques from Galois fields to Galois rings.

3 Efficient ZKA Protocol for Matrix Relation \(AU = B \)

Consider the matrix equation \(AU = B \) in residue ring \(Z_m \) where matrices \(U \in Z_{m^n \times h}^{\times} \), \(A \in Z_{m^{l \times n}}^{\times} \) and \(B \in Z_{m^l}^{\times} \). Both \(n \) and \(h \) are sufficiently large and \(h = \text{id} \) for some integer \(t \). The extension degree of Galois ring S over \(Z_m \) is \(d \) and determined by \(p^m \log n < \text{the target knowledge error} \). Matrix U is the witness while A and B are public.

3.1 Basics

To present the main idea explicitly, let’s consider the case \(t = 1 \) at first, i.e., \(AU = B \) in residue ring \(Z_m \) where matrices \(U \in Z_{m^n \times d}^{\times} \), \(A \in Z_{m^l \times n}^{\times} \) and \(B \in Z_{m^l}^{\times d} \). There is no performance advantage in this case in comparison with the standard, vector-oriented approach. The objective of this section is to present the main ideas and techniques in our matrix-oriented approach.

In order to construct an efficient proof protocol with commitment to \(Z_m \)-matrix U, the first step is to find some relation over S which is equivalent to the original linear matrix relation over \(Z_m \).

For \(S = \text{GR}(m,d) \) with degree-\(d \) irreducible monic polynomial \(f(X) \) and matrix \(A \in Z_{m^{l \times n}}^{\times} \), define a S-linear operator:
\[L_{A} : S^n \rightarrow S^l ; L_{A}(u)_{i} \equiv \sum_{k=1}^{n} a_{ik} u_{k}(X) \mod f(X), \quad i = 1, \ldots, l \] (3.1)
where \(u_k(X) \) is the \(k \)-th component of vector \(u \) in \(S' \).

For the \(Z_m \)-matrices

\[
U = \begin{bmatrix}
 u_1(1) & \cdots & u_d(1) \\
 \vdots & \ddots & \vdots \\
 u_1(n) & \cdots & u_d(n)
\end{bmatrix}, \quad B = \begin{bmatrix}
 b_1(1) & \cdots & b_d(1) \\
 \vdots & \ddots & \vdots \\
 b_1(l) & \cdots & b_d(l)
\end{bmatrix}
\] (3.2)

and each \(i = 1, \ldots, l \), \(k = 1, \ldots, n \), let:

\[
b_j(X) = \sum_{j=1}^{d} b_j(i) X^{j-1} = b_j(1) + b_j(2) X + \cdots + b_j(l) X^{l-1}
\]

\[
u_k(X) = u_k(1) + u_k(2) X + \cdots + u_k(n) X^{n-1}
\]

Regard \(U \) and \(B \) as vectors with components \(u_k(X) \)'s and \(b_j(X) \)'s in \(S \), the corresponding \(S \)-vectors are:

\[
u = \begin{bmatrix}
 u_1(X) \\
 \vdots \\
 u_n(X)
\end{bmatrix} \in S^n, \quad b = \begin{bmatrix}
 b_1(X) \\
 \vdots \\
 b_l(X)
\end{bmatrix} \in S^l
\] (3.3)

This correspondence is very useful and can be transformed by:

\[
u = U \begin{bmatrix}
 1 \\
 X \\
 X^2 \\
 \vdots \\
 X^{d-1}
\end{bmatrix}, \quad b = B \begin{bmatrix}
 1 \\
 X \\
 X^2 \\
 \vdots \\
 X^{d-1}
\end{bmatrix}
\] (3.4)

Then for the \(S \)-vector \(u \) corresponding to \(Z_m \)-matrix \(U \) in (3.2) one has, for each \(i \):

\[
L_{A}(u) = \sum_{k=1}^{n} a_{ik} u_k(X) = \sum_{j=1}^{d} (\sum_{k=1}^{n} a_{ik} u_j(k)) X^{j-1} \mod f(X)
\]

As a result, it’s easy to show the fact that:

\[
L_{A}(u) = b \text{ over } S
\]

if and only if \(\sum_{k=1}^{n} a_{ik} u_j(k) = b_j(i) \) for all \(i, j \), i.e., \(A U = B \) over \(Z_m \) (3.5)

Based on the fact (3.5), the problem of constructing a ZKA protocol for a linear relation over \(Z_m \) can be transformed into a problem of constructing a ZKA protocol for a linear relation over Galois ring \(S \). For this purpose, we define a formal linear relation over \(S \).

Let Galois ring \(S = \text{GR}(m,d) \), let \(\sigma \) be the public key of the \(S \)-vector commitment scheme and be used as c.r.s. of the proof protocol. The commitment is valued in product group \(G' \) where \(G \) is commitment-friendly. The linear relation \(\text{SLR} \) on space \(S' \) is defined as(all variables in the frame stand for witnesses):

\[
\text{SLR}(\sigma \mid U, b, A; \bar{r}, \bar{u}) = (3.6)
\]

\[
U = \text{Cmt}(\sigma | u; r) \land L_{A}(u) = b
\]

where \(L_{A} \) is defined in (3.1) with \(A \in \mathbb{Z}_m^{l \times n} \), \(b \in S^l \); witnesses \(u \) is a \(n \)-dimensional \(S \)-vector, \(r \) is a \(d \)-dimensional random vector with components in set \(R \).
In the above formulation, the commitment to S-vector u

$$U = \text{Cmt}(\sigma[u, r]) = \text{Cmt}(\sigma) \left[\begin{array}{c} u_1(1) \\ \vdots \\ u_1(n) \\ \vdots \\ u_d(1) \\ \vdots \\ u_d(n) \end{array} \right] \left[\begin{array}{c} r_1 \\ \vdots \\ r_d \end{array} \right] = \left[\begin{array}{c} \text{mnt}_\sigma(u_1(1), \ldots, u_1(n); r_1) \\ \vdots \\ \text{mnt}_\sigma(u_d(1), \ldots, u_d(n); r_d) \end{array} \right]$$

can be reasonably regarded as the commitment to Z_m-matrix U, so also noted as $\text{Cmt}(\sigma[U; r])$. All these basics are summarized in theorem 1 which is the starting point to construct ZKA protocol for linear matrix relation in Z_m.

Theorem 1 The linear matrix relation over Z_m:

$$\text{MLR}(\sigma[U, B, A; \sigma(U)]) : U = \text{Cmt}(\sigma[U; r]) \land AU = B \quad (3.7)$$

with $\mathbf{U} \in Z_m^{n \times d}$ (witness), $\mathbf{A} \in Z_m^{l \times n}$, $\mathbf{B} \in Z_m^{l \times d}$ is equivalent to the linear relation over Galois ring $S = \text{GR}(m, d) = Z_m[X]/(f(X))$:

$$\text{SLR}(\sigma[V, b, L_A; \sigma(U)]) : V = \text{Cmt}(\sigma[u; r]) \land L_A(u) = b \quad (3.8)$$

where $\mathbf{u} \in S^n$ (witness), L_A is the linear operator defined in (3.1), $b = \sum_{j=1}^{d} b_j (l)X^{j-1}$ and $V = U$. These two relations’ witnesses have the simple correspondence

$$U \equiv u$$

where \equiv means that n-dimensional S-vectors u is equivalently regarded as a n-by-d matrix in Z_m (see (3.2)–(3.4)).

3.2 Compressed Protocol with Logarithmic Message Complexity

S-linear relation SLR in (3.8) is the starting point to construct the efficient proof protocol for linear Z_m-matrix relation MLR in (3.7). However, $L_A(u) = b$ in (3.8) is actually a system of l linear equations in S. For the sake of efficiency, this equation system can be further reduced to just one linear equation via standard probabilistic equivalence reduction techniques.

Define a polynomial $\varphi(T)$ as

$$\varphi(T) = \sum_{i=1}^{l} (L_A(u)_i - b_i) T^{i-1} \in S[T] \quad (3.9)$$

Let ρ be randomly sampled from the exceptional set E_S in ring S. If there exists a $u \in S^n$ such that $L_A(u) = b$, i.e., $L_A(u)_i = b_i$ for each $i = 1, \ldots, l$, then

$$\sum_{i=1}^{l} (L_A(u)_i - b_i) \rho^{i-1} = \varphi(\rho) = 0$$

On the other hand, if $\varphi(\rho) = 0$ for φ defined in (3.9) and ρ in E_S, then ρ is a zero of $\varphi(T)$ in E_S. Since $\varphi(T)$ has at most $l-1$ zeroes in E_S, for $S = \text{GR}(m, d)$, $m = p^d$ and $l < p^d$ one has the conclusion that $\varphi(T) \equiv 0$ with probability $> 1 - lp^d$. Since $\varphi(T) \equiv 0$ implies $L_A(u) = b$, we have got the following result:
Theorem 2 Linear relation $\text{SLR}(\sigma|V, b, L, \mathcal{A}; \mathcal{F})$ in (3.8) is probabilistically equivalent to the linear relation (3.10) with soundness factor l:

$$
\text{sl-R}(\sigma|V, b, L, \mathcal{A}; \mathcal{F}): V = \text{Cmt}(\sigma|u, r) \land l_{\mathcal{A}}(u) = b_{\rho}
$$

(3.10)

where $b_{\rho} = \sum_{i=1}^{l} b_i \rho^{l-1} \in S$ and the S-linear functional $l_{\mathcal{A}}$ is defined as

$$
l_{\mathcal{A}}(w) = \sum_{i=1}^{l} \sum_{k=1}^{n} a_{ik} w_k \rho^{l-1}; \ S^n \rightarrow S
$$

The efficient protocol for linear Z_m-matrix relation (3.7) can now be constructed equivalently for the simple S-linear relation (3.10), via compressed techniques [6,7,12]. In fact, [16] has presented such a protocol framework with $O(\log n)$ message complexity and provided detailed analysis about its completeness, zero-knowledge and knowledge soundness properties so we don’t repeat it here.

3.3 Vector-oriented Approach and Comparisons

According to the basic result in [16], for $n = 2^k$ the compressed protocol for matrix relation $AU = B$ in Z_m is $2k+1$ round, complete, (2,3,...,3)-special sound henceforth knowledge sound with knowledge error $\leq k \rho^n$ and total message complexity $O(dk)$.

A standard, vector-oriented approach to constructing the efficient protocol for $AU = B$ is the amortization method. Let $U = [u_1,...,u_d]$ and $B = [b_1,...,b_d]$ where columns $u_i \in Z_m^n$, $b_i \in Z_m^l$, then $AU = B$ is a system of d linear equations $A u_i = b_i$. For any randomness ρ in E_δ it is equivalently reduced to a single vector equation:

$$
A_\rho u_i = b_\rho \text{ where } u_\rho = \sum_{i=1}^{d} a_{i,j} \rho^{l-1} \in S^n, \ b_\rho = \sum_{i=1}^{d} b_{i} \rho^{l-1} \in S^l
$$

and furthermore, by left-multiplying the row-vector $(1, \delta, \delta^2, ..., \delta^{l-1})$ for an independent randomness δ in E_δ on both sides, the above equality is equivalent to a scalar equation in S:

$$
a(\delta)^{T} u_\rho = b_{\rho+3}
$$

(3.11)

where $a(\delta)^{T} = (1, \delta, \delta^2, ..., \delta^{l-1})A$ and $b_{\rho+3} = (1, \delta, \delta^2, ..., \delta^{l-1})b_{\rho}$. In this way the linear matrix relation $AU = B$ in Z_m is (probabilistically) equivalent to the relation (3.11) with witness u_ρ. If all Z_m-vectors u_i’s have been individually committed to, then the commitment to u_ρ can be computed by (see (2.6)):

$$
\text{Cmt}(\sigma|u_\rho) = \prod_{i=1}^{d} \text{Cmt}(\sigma|u_i) \rho^{l-1}
$$

(3.12)

Here we can see one of the main differences between our (matrix-oriented) approach and the standard (vector-oriented) one: if a private computing task is vector-oriented and each Z_m-vector has to be committed individually, then the standard approach works well and needs totally d G-elements for commitments and some additional computations like (3.12); however, if all Z_m-vectors can be committed in a

3 By (2.2), the commitment to a u in S^n is formally comprised of d elements in G, however, for u in Z_m^n all components are 1 in G except for the first component, so actually only 1 non trivial G-element is needed for a commitment to u. See also sec.3 in [16].
batch or the computation is naturally matrix-oriented instead of just dealing with “a collection of vectors”, then our approach works well. The total number of G-elements needed for commitments to U is also d.

It’s easy to see that in this case these two approaches also have the same message complexity and the same on-line computational complexity. In summary, there are no significant differences in performance for t = 1.

However, in case of t > 1 the standard approach either (by regarding matrix U simply as a collection of td n-dimensional Z^n-vectors and committing to these vectors individually) needs totally td G-elements for commitments and n G-elements in c.r.s., or (by regarding U as a ntd-dimensional Z^n-vector) needs 1 G-elements for commitments and ntd G-elements in c.r.s. On the other hand, by carefully making use of the commitment scheme, the matrix-oriented approach can implement the protocol with proper number of G-elements in both commitments and c.r.s while improving the performance.

3.4 Matrix-oriented Construction

Consider t = 2, i.e., the equation \(A \cdot U = B \) with \(A \in \mathbb{Z}_{m}^{l \times n} \), \(\mathbb{Z}_{m}^{n \times 2d} \ni \lambda \equiv [U_1, U_2] \) with each \(U_i \in \mathbb{Z}_{m}^{n \times d} \) \(\cdot \) \(\mathbb{Z}_{m}^{1 \times 2d} \ni \beta = [B_1, B_2] \) with each \(B_i \in \mathbb{Z}_{m}^{1 \times d} \) and:

\[
U_1 = \begin{bmatrix}
u_1(1) & \cdots & v_d(1) \\
\vdots & \ddots & \vdots \\
u_1(n) & \cdots & v_d(n)
\end{bmatrix}, \quad U_2 = \begin{bmatrix}
u_1(1) & \cdots & v_d(1) \\
\vdots & \ddots & \vdots \\
u_1(n) & \cdots & v_d(n)
\end{bmatrix}
\]

In this case we take g of 2n elements in G for committing to U, i.e., let \(\sigma \equiv [G, g, m] \) with \(g \equiv (g_1, \ldots, g_{2n}) \) (see (2.3) or (2.4)). Since the equation \(A \cdot U = B \) is equivalent to \(A\cdot U_i = B_i \), \(i=1,2 \), i.e.,

\[
\begin{bmatrix}
A & O \\
O & A
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2
\end{bmatrix} =
\begin{bmatrix}
B_1 \\
B_2
\end{bmatrix} \quad \text{i.e., } A^*U = B^* \tag{3.13}
\]

where \(A^* \in \mathbb{Z}_{m}^{2l \times 2m} \) and \(U^* \in \mathbb{Z}_{m}^{2n \times d} \) are the matrices on the left side and \(B^* \) is the matrix on the right side. If committing to \(U^* \) (which is actually our definition of “the commitment to matrix U”) then with public key \(\sigma \) we have 1 commitment in G^d with its j-th component as (\(u_j \) and \(v_j \) are the j-th column in \(U_1 \) and \(U_2 \)):

\[
\text{Cmt}(\sigma | U_j^*) = \text{cmt}_d((u_j^T, v_j^T)) \in G, \quad j = 1, \ldots, d \tag{3.14}
\]

Now the ZKA protocol construction in sec.3.1 and 3.2 can be applied to equation (3.13) which (by theorem 1 and 2) corresponding linear relation is on \(S^{2n} \) with commitments (3.14). More generally, for any \(t > 1; \mathbb{Z}_{m}^{n \times td} \ni \forall \equiv [U_1, \ldots, U_t] \) and \(A \cdot U = B \) we can apply the efficient ZKA protocol construction to the equivalent linear relation

\[
\begin{bmatrix}
A & \cdots & O \\
\vdots & \ddots & \vdots \\
O & \cdots & A
\end{bmatrix}
\begin{bmatrix}
U_1 \\
\vdots \\
U_t
\end{bmatrix} =
\begin{bmatrix}
B_1 \\
\vdots \\
B_t
\end{bmatrix} \quad \text{c.r.s} \quad \text{with } n \text{ group elements in c.r.s. } \sigma \text{ and the commitments}
\]

\[
\text{Cmt}(\sigma | U_j^*) = \text{cmt}_d((u_j^{(1)^T}, \ldots, u_j^{(d)^T})) \in G, \quad j = 1, \ldots, d \tag{3.15}
\]
where each $u_j(k)$ is the j-th column \mathbb{Z}_m-vector in U_k. The corresponding S-linear relation of (3.15) is on space S^n.

Table 1 summaries the performance comparisons for different approaches (on basis of sec.4.4 in [16]). Note that when $U \in \mathbb{Z}_m^{n \times td}$ is regarded as a ntd-dimensional vector then ntd G-elements are needed in c.r.s. while when regarded as a collection of td n-dimensional vectors then n G-elements needed in c.r.s. Table 2 provides the special case for square U: $td = n$.

Table 1. Performance of different approaches to constructing ZKA for linear matrix relation

<table>
<thead>
<tr>
<th>number of G-elements in c.r.s.</th>
<th>Vector-oriented (e.g., [12],[16])</th>
<th>Matrix-oriented (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of G-elements for commitment.</td>
<td>$1ntd$ or $2n$</td>
<td>nt</td>
</tr>
<tr>
<td>number of rounds</td>
<td>1: $2\log n + 2\log t + 2\log d - 1$</td>
<td>$2\log n + 2\log t - 1$</td>
</tr>
<tr>
<td>message complexity</td>
<td>1: $2\log (ntd) - 1$ $E_\mathbb{S}$-element</td>
<td>$2\log (ntd) - 1$ $E_\mathbb{S}$-element</td>
</tr>
<tr>
<td></td>
<td>2: $2\log n - 1$ $E_\mathbb{S}$-element</td>
<td>$\log (ntd) - 1$ $E_\mathbb{S}$-element</td>
</tr>
</tbody>
</table>

Table 2. Performance of different approaches to constructing ZKA for linear matrix relation (square witness)

<table>
<thead>
<tr>
<th>number of G-elements in c.r.s.</th>
<th>Vector-oriented (e.g., [12],[16])</th>
<th>Matrix-oriented (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of G-elements for commitment.</td>
<td>1: n^2 or $2n$</td>
<td>n^2/d</td>
</tr>
<tr>
<td>number of rounds</td>
<td>1: $4\log n - 1$</td>
<td>$4\log n - 2\log d - 1$</td>
</tr>
<tr>
<td>message complexity</td>
<td>1: $(4\log n - 3)d$ G-element</td>
<td>$(4\log n - 2\log d - 3)d$ G-element</td>
</tr>
<tr>
<td></td>
<td>2: $4\log n - 2\log d$ S-elements</td>
<td>$1+4\log n - 2\log d$ S-elements</td>
</tr>
<tr>
<td></td>
<td>$1+4\log n$ S-elements</td>
<td>$2\log n - 1$ $E_\mathbb{S}$-element</td>
</tr>
<tr>
<td></td>
<td>$2\log n - 1$ $E_\mathbb{S}$-element</td>
<td>$\log n - 1$ $E_\mathbb{S}$-element</td>
</tr>
</tbody>
</table>

Note that in the second sub-case in vector-oriented approach (regarding matrix U as a collection of td n-dimensional \mathbb{Z}_m-vectors so that each column is committed individu-
ally) there may be too many (totally td) commitments needed, so this sub-approach becomes inefficient when $td > \log n$. In particular, for square U ($td = n$) the matrix-oriented approach is greatly superior to the vector-oriented one. For example, the number of rounds is reduced from $4\log n$ to $4\log n - 2\log d$ and message complexity is reduced from $4d\log n$ to $4d\log n - 2d\log d$ (for number of group elements) and from $6d\log n$ to $6d\log n - 3d\log d$ (for number of ring elements). In addition, the number of group elements in c.r.s is reduced by a factor of d (see tab. 1 & 2).

Some ZKA constructions for more complicated linear matrix relations over \mathbb{Z}_m, are presented in Appendix C. All these relations can be equivalently reduced to the form of (3.8).

4 Efficient ZKA Protocol for Matrix Relation $U^T QV = Y$

Consider the matrix bilinear equation

$$U^T QV = Y$$

(4.1)

in residue ring \mathbb{Z}_m where matrices $U, V \in \mathbb{Z}_m^{n \times d}$, $Q \in \mathbb{Z}_m^{n \times n}$ and diagonal, $Y \in \mathbb{Z}_m^{d \times d}$. The extension degree of Galois ring \mathbb{S} over \mathbb{Z}_m is d and is determined by $p^d - \log n < \text{the targeted knowledge error}$. Furthermore matrices U and V are private (witnesses) while Q and Y are public.

For simplicity, Q is assumed to be diagonal in sec. 4.1. Non-diagonal case will be treated in sec. 4.2.

4.1 Basics

Consider $t = 1$ at first. If in this case the bilinear equation (4.1) is regarded as a collection of vector bilinear equations $\sum_{i,j=1}^{d} u_i^T Q v_j = Y_{ij}$ where u_i and v_j are column vectors of U and V and apply the standard amortization techniques, then this relation can be probabilistically equivalently reduced to a bilinear relation over the ring \mathbb{S}:

$$u_{\rho}^T Q v_{\delta} = \sum_{i,j=1}^{d} Y_{ij} \rho^{i-1} \delta^{j-1}$$

(4.2)

where the independent randomness $\rho, \delta \overset{R}{\leftarrow} \mathbb{S}$ are sampled by the verifier:

$$u_{\rho} = \sum_{i=1}^{d} u_i \rho^{i-1}, \quad v_{\delta} = \sum_{i=1}^{d} v_i \delta^{i-1}$$

(4.3)

The commitments are (see (2.6) and (2.7)):

$$U_{\rho} = \prod_{i=1}^{d} \text{Cmt}(|u_i \rho^{i-1}|, i=1,...,d)$$

$$V_{\delta} = \prod_{i=1}^{d} \text{Cmt}(|v_i \delta^{i-1}|, i=1,...,d)$$

(4.4)

Totally $2d$ elements in G are needed for commitment (see the footnote 4).

Now consider the case $t = 2$ where $S_{m \times 2d} \ni U = [U_1, U_2], \quad V = [V_1, V_2]$, each U_i and $V_i \in \mathbb{Z}_m^{n \times d}$.

Note that (4.1) in this case is formulated as:

$$\begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} Q [V_1, V_2] = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$
where \(Y_i \)'s are \(d \)-by-\(d \) blocks in \(Y \). This equation is just \(\iota_{\sum_{j=1}^d} U_i^T Q Y_j = Y_i \) and for any randomness \(\rho \in \text{E}_s \), sampled by the verifier, it is equivalent to the following matrix bilinear relation with probability \(> 1 - 3p^d \):

\[
(U_1 + p U_2) V_i \mu V_j = Y_{11} + p \mu Y_{21} + p \mu Y_{12} + p \mu Y_{22} = Y_{\rho}
\]

Also this can be reformulated in a \(2n \)-by-\(2n \) matrix form with witness matrices in \(Z_m \):

\[
[U_1, U_2] \begin{bmatrix} Q \rho^2 Q \rho^3 Q \end{bmatrix} = Y_{\rho} \in S^{d \times d} \quad (4.5)
\]

Let \(U', V \in Z_m^{n \times d} \) and \(Q_{\rho} \in S^{2n \times 2n} \) be the matrices on left side of (4.5), i.e.,

\[
U' = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} u_{1,1}(1), \ldots, u_{1,d}(1) \\ \vdots \\ u_{2,1}(n), \ldots, u_{2,d}(n) \end{bmatrix}, \quad Q_{\rho} = \begin{bmatrix} Q \rho^2 Q \rho^3 Q \end{bmatrix}
\]

By applying the methods presented in the first paragraph of this section, i.e., (4.3)–(4.4), relation (4.5) can be reduced to a bilinear relation (4.2) over the ring \(S \). In order to achieve this goal, we take \(2n \) elements \(g \) in \(G \) for committing \(U' \) and \(V' \), i.e., set \(\sigma \equiv \{ G, g, m \} \) with \(g = \{ g_1, \ldots, g_m \} \) and compute the commitments to \(U' \) and \(V' \) (which are actually our definition of “the commitments to matrix \(U \) and \(V' \)”) just as done in (3.16). These commitments have totally \(2d \) \(G \)-elements and the dimension of the corresponding \(S \)-vectors under commitment is \(2n \). For example:

\[
\text{Cmt}(\sigma | U') = \begin{bmatrix} \text{cm}_{\sigma}(u_{1,1}(1), \ldots, u_{1,1}(n), u_{2,1}(1), \ldots, u_{2,1}(n)) \\ \vdots \\ \text{cm}_{\sigma}(u_{1,d}(1), \ldots, u_{1,d}(n), u_{2,d}(1), \ldots, u_{2,d}(n)) \end{bmatrix} \in G^d
\]

In general, for any \(r > 1 \) where \(Z_m^{n \times d} \ni U = [U_1, \ldots, U_r], V = [V_1, \ldots, V_r] \) with each \(U_i \), \(V_i \in Z_m^{n \times d} \), by the above method relation (4.1) can be probabilistic-equivalently reduced to the form like:

\[
U'^t Q_{\rho} V'^r = Y_{\rho} \quad (4.6)
\]

where \(U', V' \in Z_m^{n \times d} \) and \(Q_{\rho} \in S^{tn \times tn} \) as:

\[
U' = \begin{bmatrix} U_1 \\ \vdots \\ U_r \end{bmatrix} = \begin{bmatrix} u_{1,1}(1), \ldots, u_{1,d}(1) \\ u_{1,1}(n), \ldots, u_{1,d}(n) \\ \vdots \\ u_{t,1}(1), \ldots, u_{t,d}(n) \end{bmatrix}, \quad Q_{\rho} = \begin{bmatrix} Q \rho^i Q \rho^j Q \rho^{t-i} Q \rho^{t-j} Q \rho^{t-1} Q \rho^{t+1} Q \rho^{t+1} Q \rho^{t+1} Q \rho^{t+1} Q \rho^{t-1} Q \rho^{t+1} Q \rho^{t+1} Q \\ \rho^{t-2} Q \\ \vdots \end{bmatrix}
\]
By applying the methods presented in (4.3)–(4.4), relation (4.6) can be reduced to a bilinear relation (4.2) over the ring \(S \). In order for this, we take \(m \) elements \(g \) in \(G \) for committing \(U \) and \(V \), i.e., set \(\sigma = [G, g, m] \) with \(g = (g_1, \ldots, g_m) \) and compute the commitments to \(U \), \(V \) as done in the above. The dimension of the corresponding S-vectors under commitment is \(m \), which commitments have totally \(2d \) G-elements.

In order to construct the efficient protocol for bilinear relation (4.2), \(Q \)'s diagonality is important (see sec. 4.4). However, \(Q^* \) in (4.6) (which will be inherited in the bilinear relation over \(S \)) is no longer diagonal even \(Q \) is diagonal. This can be handled in the following way on basis of a helpful observation that \(Q^*_{\rho} \in S^{m \times m} \) is actually a tensor product as:

\[
Q^*_{\rho} = \Delta(\rho) \bigotimes Q
\]

(7.7)

where:

\[
\Delta(\rho) = [\rho(t), \rho^2(t), \ldots, \rho^{n-1}(t)] \in E_S^{\text{txt}}
\]

and the column vector \(\rho(t)^T = [1, \rho, \rho^2, \ldots, \rho^{m-1}] \in E_S^m \).

Recall that \(E_S \) is the exceptional set in Galois ring \(S = GR(m, d) \) with \(m = p^i \) which is actually (with 0 added in it) isomorphic to Galois field \(F_p^d \). With overwhelming probability, there are efficiently computable non-singular matrices \(\Phi_{\rho}, \Psi_{\rho} \in E_S^{m \times m} \) and a diagonal matrix \(D_{\rho} \) such that:

\[
\Delta(\rho) = \Phi_{\rho}^T D_{\rho} \Psi_{\rho}
\]

(8.8)

Indeed, for \(i, j = 1, \ldots, J \) note that \(\Delta_\rho(\rho) = \rho^{i-1+i(i-1)} = \sum_{k,l=1}^J \rho^{i-1} \delta_{k,l} \rho^{i+j-1} \) where \(\delta_{k,l} \) is the Kronecker symbol and \(\rho_k = \rho^i, \rho_l = \rho^j \), so \(D = \text{diag}(1,0,\ldots,0) \) and \(\Phi, \Psi \) are Vandermonde matrices with determinants \(\det \Phi_{\rho} = \prod_{1 \leq \mu < \psi \leq t} (\rho^\mu - \rho^\psi) \), \(\det \Psi_{\rho} = \prod_{1 \leq \mu < \psi \leq t} (\rho^{\mu t} - \rho^{\psi t}) \). Obviously \(\Phi_{\rho} \) or \(\Psi_{\rho} \) is singular only if the randomness \(\rho \) is a root of the equation \(\rho^k = 1 \) or \(\rho^k = 1 \) for some \(k \); \(1 \leq k \leq t-1 \). Since \(t = \text{poly}(\lambda) \) but \(|E_S| = p^{\lambda}-2^\lambda \) so this occurs with probability negligible in security parameter \(\lambda \). As a result, the diagonalization (8.8) holds with overwhelming probability. Combining (7.7), (8.8) and the well-known identity \((AB) \bigotimes (CD) = (A \bigotimes C)(B \bigotimes D) \), one obtains the diagonalization for \(Q^*_{\rho} \):

\[
Q^*_{\rho} = (\Phi_{\rho}^T D_{\rho} \Psi_{\rho}) (\bigotimes L) = (\Phi_{\rho}^T D_{\rho} \Psi_{\rho}) (\bigotimes L)
\]

(8.9)

In summary, the large matrix \(Q^*_{\rho} \) can be efficiently diagonalized and the computational complexity of its diagonalization only depends on diagonalizing a special and relatively small-size matrix \(\Delta(\rho) \), which can be pre-calculated by the verifier.

For notational simplicity, reformulate (4.9) as follows with diagonal \(D_{\rho} \in E_S^{m \times m} \):

\[
Q^*_{\rho} = \Phi_{\rho}^T D_{\rho} \Psi_{\rho}
\]

Set new witness matrices \(\tilde{U} \) and \(\tilde{V} \) over \(S \) such that \(\tilde{U} = \Phi U^* \) and \(\tilde{V} = \Psi V^* \) then by simple calculations one has:

\[
U^* \tilde{Q}_{\rho} V^* = \tilde{U}^T D_{\rho} \tilde{V}
\]

Hence the bilinear relation (4.6) \(U^* \tilde{Q}_{\rho} V^* = Y \) with witness \(Z_{\rho} \)-matrices \(U^* \) and \(V^* \) is probabilistically equivalent to the diagonal bilinear relation \(\tilde{U}^T D_{\rho} \tilde{V} = Y \) with witness
S-matrices \mathbf{U} and \mathbf{V}: $\mathbf{U}^T \mathbf{D}_n \mathbf{V} = \mathbf{Y}_r$. Left-multiply this equation by vector $[1, \omega, \omega^2, \ldots, \omega^{d-1}]$ and right-multiply it by column vector $[1, \theta, \theta^2, \ldots, \theta^{d-1}]^T$ for any independent randomness ω and θ sampled by the verifier in the exceptional set E_ω, one reduces it furthermore to a bilinear relation with nt-dimensional S-vector witness $\mathbf{u}(\omega)$ and $\mathbf{v}(\theta)$:

$$
\mathbf{u}(\omega)^T \mathbf{D}_n \mathbf{v}(\theta) = \sum_{i,j=1}^d Y_{ij} (i,j) \omega^{i-1} \theta^{j-1} \tag{4.10}
$$

where $\mathbf{u}(\omega)^T = [1, \omega, \omega^2, \ldots, \omega^{d-1}] \mathbf{U}^T$ and $\mathbf{v}(\theta)^T = [1, \theta, \theta^2, \ldots, \theta^{d-1}] \mathbf{V}^T$. The overall reduction from relation (4.1) to relation (4.10) is of equivalence with overwhelming probability ($> 1 - O(n^p^n)$).

The remaining problem is how to efficiently calculate the commitments to S-vectors $\mathbf{u}(\omega)$ and $\mathbf{v}(\theta)$ from those to \mathbf{Z}-matrices \mathbf{U} and \mathbf{V}. Let $\mathbf{U} = [\mathbf{u}_1, \ldots, \mathbf{u}_n], \mathbf{V} = [\mathbf{v}_1, \ldots, \mathbf{v}_d]$ with columns $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{R}^{nt}$, note that:

$$
\mathbf{u}(\omega) = \sum_{i=1}^n \omega^{i-1} \mathbf{u}_i, \quad \mathbf{v}(\theta) = \sum_{i=1}^n \theta^{i-1} \mathbf{v}_i \tag{4.11}
$$

so for any public-key τ the commitments to S-vectors $\mathbf{u}(\omega)$ and $\mathbf{v}(\theta)$ are:

$$
\text{Cmt}(\tau(\mathbf{u}(\omega))) = \prod_{i=1}^n \text{Cmt}(\tau(\mathbf{u}_i)) \omega^{i-1}, \quad \text{Cmt}(\tau(\mathbf{v}(\theta))) = \prod_{i=1}^n \text{Cmt}(\tau(\mathbf{v}_i)) \theta^{i-1} \tag{4.12}
$$

In order to present how to calculate, e.g., $\text{Cmt}(\tau(\mathbf{u}_i))$ from the commitment to \mathbf{U}, we prove the following fact.

Lemma 2 Let $S^{nt} \ni \mathbf{w} \in \mathbb{W}$ with each component $\mathbf{w}_j = \sum_{k=1}^d \mathbf{w}_{k,j}(i) X^{k-1}$ and $\mathbf{w}(i)$ in $\mathbb{Z}_m[X]$ (recall that the ring $\mathbb{R} = \mathbb{G}(m,d) = \mathbb{Z}_m[X]/\langle f(X) \rangle$, $\mathbb{E} \in \mathbb{E}^{nt \times nt}_S$ be any matrix over E_ω, $\mathbf{M}_n \in \mathbb{Z}_m^{d \times d}$ is the multiplicative matrix associated with the matrix element E_ω (see lemma 2.1 in sec.2.4), then

(i) The l-th component (an element in group G) of the commitment to $\mathbf{w} = \mathbf{E}_\omega \mathbf{w}$ is:

$$
\text{Cmt}(\sigma(\mathbf{w})) = \prod_{j=1}^n \prod_{k=1}^d \text{Cmt}_d ([M_{j,l,k}(i,k), \ldots, M_{nt,j}(i,k)]) \wr_k(i), \quad l=1,\ldots,d \tag{4.13}
$$

(ii) For $\mathbf{w} \in \mathbb{Z}_m^{nt}$ one furthermore has:

$$
\text{Cmt}(\sigma(\mathbf{w})) = \text{Cmt}(\sigma(\mathbf{w})) \tag{4.14}
$$

where the public-key $\sigma = [G, \mathbf{g}_1, \ldots, \mathbf{g}_{nt}, m]$ has:

$$
\mathbf{g}_j = \text{cmt}_d([M_{j,1,1}, \ldots, M_{nt,j,1,1}]) \tag{4.15}
$$

Proof (i) $S^{\alpha} \mathbf{w} = \mathbf{E}_\omega \mathbf{w}$ has its i-th component as:

$$
\mathbf{w}_i = \sum_{j=1}^{nt} E_{ij} \mathbf{w}_j = \sum_{j=1}^{nt} \sum_{k=1}^d M_{ij} (i,k) \mathbf{w}_k(j) X^{k-1}, \quad i=1,\ldots,nt
$$

hence the l-th component of the commitment to \mathbf{w} is:

$$
\text{Cmt}(\sigma(\mathbf{w})) = \text{cmt}_d([M_{j,l,k}(i,k), \ldots, M_{nt,j,l,k}(i,k)]) \wr_k(i), \quad l=1,\ldots,d
$$

(ii) For $\mathbf{w} \in \mathbb{Z}_m^{nt}$, the 1-st ($l=1$) component in its commitment carries complete information of the committed vector (other d-components are randomness or simply 1 in G) and the value of $\text{cmt}_d(\ldots)$ is always in \mathbb{G}^α (up to a random factor -1 in case of even m)
[16], so by separating the factor related with \(\mathbf{w} \) in \((4.13)\), appropriately re-arrange some factors to keep the equality and reduce all other factors to the random factor (always in a form of \(r^m \) in the commitment scheme), \((4.13)\) becomes:

\[
\text{Cmt}(\sigma|\mathbf{w}) = r^m \prod_{j=1}^{nt} \text{cmt}_\sigma([M_{ij}(1,1), \ldots, M_{nt,j}(1,1)])^{\tilde{g}_j} \tag{4.16}
\]

As a result, we have \(\text{Cmt}(\sigma|\mathbf{w}) = \text{Cmt}(\tilde{\sigma}|\mathbf{\tilde{w}}) \) where the public-key \(\tilde{\sigma} \equiv [G, \tilde{g}_1, \ldots, \tilde{g}_nt, m] \) with \(\tilde{g}_j = \text{cmt}_\sigma([M_{ij}(1,1), \ldots, M_{nt,j}(1,1)]) \). This proves the lemma.

Applying this lemma to column vectors of \(\mathbf{U}, \mathbf{V} \) and \(\mathbf{U}^*, \mathbf{V}^* \), the commitments to the original \(Z_m \)-matrices \(\mathbf{U} \) and \(\mathbf{V} \) with public-key \(\sigma \) is just the commitments to \(S \)-matrices \(\mathbf{U} \) and \(\mathbf{V} \) with public-key \(\tilde{\sigma}_1 \), \(\tilde{\sigma}_2 \) respectively each key dependent on the randomness sampled by the verifier), which can be efficiently computed by both prover and verifier (by \((4.15)\) where matrix \(\mathbf{M} \) substituted with \(\Phi^t \) and \(\Psi^t \) respectively).

In summary, the matrix bilinear relation \((4.1)\) over \(Z_m \) with witness matrices in any size can be probabilistic-equivalently reduced to a bilinear vector relation \((4.10)\) over \(S = GR(m,d) \) which coefficient matrix is diagonal. This reduction is summarized more accurately in next theorem, which is the starting point to constructing ZKA protocol for bilinear matrix relation in \(Z_m \).

Theorem 3 For Galois ring \(S = GR(m,d) \) with \(m = p^\ell \) and \(p \) being prime, let the bilinear matrix relation in \(Z_m \) (variables in the frame are witnesses) be:

\[
\text{MBLR}(\sigma|\mathbf{U}, \mathbf{V}, \mathbf{Q}; \mathbf{F}, \mathbf{G}, \mathbf{M}) = \mathbf{U}^T \mathbf{F} \mathbf{V} = \mathbf{G} \tag{4.17}
\]

with c.r.s. \(\sigma \) being a public key of the S-vector commitment scheme, witness matrices \(\mathbf{Z}_{m}^{nt \times d} \exists \mathbf{U} = [\mathbf{U}_1, \ldots, \mathbf{U}_l], \mathbf{V} = [\mathbf{V}_1, \ldots, \mathbf{V}_l] \) with each \(\mathbf{U}_i, \mathbf{V}_i \in \mathbf{Z}_{m}^{nt \times d}, \mathbf{Q} \in \mathbf{Z}_{m}^{nt \times n} \) diagonal, \(\mathbf{Y} \in \mathbf{Z}_{m}^{nt \times d} \) and:

\[
\mathbf{U} = \begin{bmatrix}
\mathbf{U}_1 \\
\vdots \\
\mathbf{U}_l
\end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix}
\mathbf{V}_1 \\
\vdots \\
\mathbf{V}_l
\end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix}
\mathbf{U}_1 \\
\vdots \\
\mathbf{U}_l
\end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix}
\mathbf{V}_1 \\
\vdots \\
\mathbf{V}_l
\end{bmatrix} \tag{4.18}
\]

then \(\text{MBLR} \) is probabilistic-equivalent with soundness factor \(2d+r^2 \) to the bilinear relation in Galois ring \(S \):

\[
\text{SBLR}(\overline{\sigma}_1, \overline{\sigma}_2|\mathbf{U}_2, \mathbf{V}_2, y_{\phi}(\alpha, \theta), \mathbf{D}_0; \mathbf{F}, \mathbf{G}, \mathbf{M}, \theta): \quad \mathbf{U}_2 = \text{Cmt}(\overline{\sigma}_1|\mathbf{u}(\alpha); r) \land \mathbf{V}_2 = \text{Cmt}(\overline{\sigma}_2|\mathbf{v}(\theta); s) \land \mathbf{u}(\alpha)^T \mathbf{D}_0 \mathbf{v}(\theta) = y_{\phi}(\alpha, \theta) \tag{4.19}
\]

where \(r, \alpha, \theta \) are sampled randomly and independently in \(E_k \) by the verifier, \(\mathbf{u}(\alpha), \mathbf{v}(\theta) \in S^n \), (witnesses) and \(y_{\phi}(\alpha, \theta) \) are specified in relation \((4.10)\), \(\mathbf{D}_0 = \mathbf{D}_0 \mathbf{Q} \) is diagonal and specified in \((4.9)\), \(\overline{\sigma}_1 \) and \(\overline{\sigma}_2 \) specified in \((4.15)\), \(\mathbf{U}_2, \mathbf{V}_2 \in \mathbf{G}^d \) are computed from \(\mathbf{U}_1, \mathbf{V}_i \in \mathbf{G}^d \) by the component wise formula: \(l = 1, \ldots, d \).
\[G \ni U_{1,i} = \prod_{i,j=1}^{d} U_{1,i}^{\lambda(i-1)i} \]
\[G \ni V_{1,i} = \prod_{i,j=1}^{d} V_{1,i}^{\lambda(i-1)i} \]

where \(M(e[i,j]) \) stands for the \((i,j)\)-element in the multiplicative matrix \(M \), associated with \(e \) in \(S \).

Proof The probabilistic-equivalent reduction from relation MLBR to SLBR has been elaborated in the above. The computational relation between the witnesses \(u(\omega) \), \(v(\theta) \) of relation SLBR and witnesses \(U, V \) of MLBR is completely implied by specifications for (4.6), (4.9) and (4.10) from which it’s easy to derive the soundness factor of this reduction is \(2d^r \). Finally the above formulas to compute \(U_2, V_2 \) from \(U_1, V_1 \) is the result of combining the formulas of (2.6), (4.12), (4.14) and (4.15).

4.2 Non-diagonal Matrix \(Q \)

In many applications, a non-diagonal coefficient matrix in bilinear form is usually symmetric, i.e., \(Q^T = Q \). If \(Q \)’s elements are regarded as numbers in rational field \(Q \), there exists (according to the general theory of quadratic forms over any field[24]) a matrix \(W \in Q^{n \times n} \) non-singular in \(Q \) which can be efficiently computed such that

\[W^T Q W = \text{diagonal matrix } D_Q \]

Rescaling this equality by some integer, matrices \(W \) and \(D_Q \) can be both integral. If the above equality holds in \(Z_m \), i.e., there exist matrix \(W \) and diagonal matrix \(D_Q \) such that \(\text{g.c.d.}(m, \det W) = 1 \) and:

\[W^T Q W = D_Q \text{mod } m \] \hspace{1cm} (4.20)

set new witness matrices \(\tilde{U} \) and \(\tilde{V} \) such that \(U = W \tilde{U} \) and \(V = W \tilde{V} \) then by simple calculations via the explicit commitment expressions in sec. 2.4 one obtains:

\[U^T Q V = \tilde{U}^T D_Q \tilde{V} \] \hspace{1cm} (4.21)

Let \(Z_m^{n \times d} \ni U = [U_1, \ldots, U_n], \tilde{U} = [\tilde{U}_1, \ldots, \tilde{U}_n] \) with each \(U_i, \tilde{U}_i \in Z_m^{n \times d} \), then \(U_i = \tilde{W}\tilde{U}_i \) and by notations in (4.18) one has:

\[u_{it}(J) = \sum_{k=1}^{n} W_{jk} \tilde{u}_{it}(k) \quad i = 1, \ldots, t; \quad l = 1, \ldots, d; \quad j = 1, \ldots, n \]

For c.r.s. \(\sigma \equiv [G, g, m] \) with \(g = \{ g_{ij}; i = 1, \ldots, t; j = 1, \ldots, n \} \) in \(G \), the \(l \)-th component of the commitment to \(U \) is (see (3.16) and here \(g_x \) stands for \(g^x \)):

\[\text{Cmt}(\sigma|U;r) = r_t^n \prod_{i=1}^n \prod_{j=1}^n g_{ij}[u_{it}(J)] = r_t^n \prod_{i=1}^n \prod_{j=1}^n g_{ij}[\sum_{k=1}^n W_{jk} \tilde{u}_{it}(k)] \]

\[= r_t^n \prod_{i=1}^n \prod_{k=1}^n \prod_{j=1}^n g_{ij}[W_{jk}]\tilde{u}_{it}(k) \]

\[= r_t^n \prod_{i=1}^n \prod_{k=1}^n \tilde{g}_{ik}[\tilde{u}_{it}(k)] = \text{Cmt}(\sigma|\tilde{U};r) \]

\[\text{i.e.,} \quad \text{Cmt}(\sigma|U;r) = \text{Cmt}(\sigma|\tilde{U};r) \text{ and } \text{Cmt}(\sigma|V;s) = \text{Cmt}(\sigma|\tilde{V};s) \] \hspace{1cm} (4.22)

where \(\tilde{g}_{ik} = \prod_{j=1}^n W_{jk}^{\tilde{g}_{ij}}, i = 1, \ldots, t, k = 1, \ldots, n \) and \(\tilde{\sigma} = [G, \tilde{g}, m] \).
As a result, in this case the bilinear matrix relation \(\text{MBLR}(\sigma[U,V,Y,Q; F_s,U,V]) \) with c.r.s. \(\sigma \) and symmetric \(Q \in Z_m^{n \times n} \) is equivalent to a bilinear relation \(\text{MBLR}(\overline{\sigma} [U,V,Y,D_Q]; [F_s,U,V]) \) with c.r.s. \(\overline{\sigma} \) and diagonal matrix \(D_Q \). Both prover and verifier can compute \(W \) and \(\overline{\sigma} \) from public information and these calculations can be done at initialization phase or off-line for the verifier, not degrading the verifier’s online performance. Moreover, this equivalent transformation preserves the witness space dimension so the message complexity of the proof protocol is unchanged.

Another method to deal with non-diagonal \(Q \) is by Smith Normal Form. For any (asymmetric) \(Q \) and regarding it as a matrix over \(Z \), there exist matrices \(W, M \in GL_n(Z) \) which can be efficiently computed such that:

\[
W^T Q M = \text{diagonal matrix } D_Q
\]

If this equality also holds over \(Z_m \), i.e., \(W, M \in GL_n(Z_m) \) such that

\[
W^T Q M = D_Q \mod m
\]

we can similarly set new witness matrices \(\tilde{U} \) and \(\tilde{V} \) such that \(U = W \tilde{U} \) and \(V = M \tilde{V} \) then by the same calculations one obtains (4.21) and:

\[
\text{Cmt}(\sigma[U;r]) = \text{Cmt}(\overline{\sigma}[\tilde{U};r]), \quad \text{Cmt}(\sigma[V;s]) = \text{Cmt}(\overline{\sigma}[\tilde{V};s])
\]

where \(\tilde{g}_{ik} = \prod_{j=1}^{n} g_{ij}^{w_{jk}}, \tilde{h}_{ik} = \prod_{j=1}^{n} g_{ij}^{d_{jk}}, i = 1, \ldots, n, k = 1, \ldots, n; \overline{\sigma} = [G, \tilde{g}, m] \) and \(\overline{\alpha} = [G, \tilde{h}, m] \). In this case the bilinear matrix relation \(\text{MBLR}(\sigma[U,V,Y,Q; F_s,U,V]) \) with c.r.s. \(\sigma \) and arbitrary \(Q \in Z_m^{n \times n} \) is equivalent to a bilinear relation \(\text{MBLR}(\overline{\sigma}, \overline{\alpha}[U,V,Y,D_Q]; [F_s,U,V]) \) with c.r.s. \(\overline{\sigma}, \overline{\alpha} \) and diagonal matrix \(D_Q \). Applying the methods in sec.4.1 to relation \(\text{MBLR}(\overline{\sigma}, \overline{\alpha}[U,V,Y,D_Q]; [F_s,U,V]) \), the matrix bilinear relation can be reduced to (4.19) since in this reduction the commitments to \(U \) and \(V \) are processed independently.

4.3 \(\Sigma \)-Protocol

On basis of the efficient equivalence between the bilinear matrix relation (4.17) over \(Z_m \) and the bilinear relation (4.19) over \(S \), now we construct the efficient ZKA protocol for the latter. The relation is reformulated here with simplified notations:

\[
\text{SBLR}(\sigma, \tau[U,Y,Q; F_s,U,V])
\]

\[U = \text{Cmt}(\sigma[u;r]) \wedge V = \text{Cmt}(\tau[v;s]) \wedge u^T Q v = y \quad (4.25)\]

where \(Q \) is a \(n \)-by-\(n \) diagonal matrix, \(y \) is an element in \(S \); witnesses \(u \) and \(v \) are \(n \)-dimensional \(S \)-vectors, \(r \) and \(s \) are \(d \)-dimensional random vectors with components in set \(R \). Note that in the following protocol, actually \(Q \) can be any diagonal matrix over \(S \), unnecessarily limited to \(Z_m \).

Protocol \(\Sigma \)-ZKA/SBLR

\[P \rightarrow V: \ P \text{ samples } \rho_1, \rho_2 \overset{R}{\leftarrow} R^d, x_1, x_2 \overset{R}{\leftarrow} S^n \text{ at random; } \]

\[P \text{ computes:} \]

\[\]
\[\eta_i = u^T Q x_i + x_i^T Q v, \eta_2 = x_i^T Q x_i, K_1 = \text{Cmt}(e|x_i, \rho_i), K_2 = \text{Cmt}(\tau|x_2, \rho_2). \]

P sends message \([K_1, K_2, \eta_1, \eta_2]\) to V.

P\rightleftarrows V: V samples \(e \leftarrow E_2\) from the exceptional set at random and sends \(e\) to P.

P\rightarrow V: P computes \(z_i = eu + x_i, z_2 = ev + x_2\).

P computes randomness \(\beta_1, \beta_2\) from \(u, v, r, s, e, x_1, x_2\).

P sends message \([z_1, z_2, \beta_1, \beta_2]\) to V.

V: V verifies

\[K_1 U' = \text{Cmt}(e|z_1, \beta_1) \land K_2 V' = \text{Cmt}(\tau|z_2, \beta_2) \land z_1^T Q z_2 = e \eta_1 + e^2 y \quad (4.26) \]

Theorem 4. The protocol \(\Sigma^*\)-ZKA/SBLR is unconditionally complete, special honest verifier zero-knowledge (SHVZK) and computationally 3-special-sound.

Proof. In Appendix A.

4.4 Compressed Protocol with Logarithmic Message Complexity

In protocol \(\Sigma^*\)-ZKA/SBLR, the prover P convinces the verifier the following relation

\[\text{SBLR}(\sigma, \tau|U, V; y; Q; \bar{u}, v) : \]

\[U = \text{Cmt}(\sigma|u) \land V = \text{Cmt}(\tau|v) \land u^T Q v = y \quad (4.28) \]

Notations for the compressed protocol:

- Dimension of the witness vectors \(u\) and \(v\): \(n = 2^k\).
- C.F.S \(\sigma = [G, g, m]\), \(\tau = [G, h, m]\) where the group elements \(g \equiv (g_1, \ldots, g_n), h \equiv (h_1, \ldots, h_n)\) are divided into two parts:
 - \(g_L \equiv (g_1, \ldots, g_{m_2}), g_R \equiv (g_{m_2+1}, \ldots, g_n), h_L \equiv (h_1, \ldots, h_{m_2}), h_R \equiv (h_{m_2+1}, \ldots, h_n)\).
- \(n\)-dimensional vectors are decomposed into a direct-sum of \(n/2\)-dimensional parts:

4 For notational simplification we always omit the long expressions to compute the randomness \(\beta_i\) and \(\beta'_i\), which can be easily derived from the formulas in sec. 2 and 3 in [16].
\[u = u_1 + u_6, \quad v = v_1 + v_6 \]

(4.29)

The \(n \)-by-\(n \) diagonal matrix \(Q \) is decomposed into submatrices as:

\[
Q = \begin{bmatrix} Q_L & 0 \\ 0 & Q_R \end{bmatrix}
\]

(4.30)

where \(Q_L \) and \(Q_R \) are \(n/2 \)-by-\(n/2 \) diagonal.

Protocol NoZKA/SBLR

P→V: P performs the computations in group \(G^4 \):

\[
A_1 = \text{Cmt}(e | u_5 + 0), \quad A_2 = \text{Cmt}(e | v_5 + 0), \quad B_1 = \text{Cmt}(e | 0 + u_1), \quad B_2 = \text{Cmt}(e | 0 + v_1)
\]

(4.31)

P performs the computations in Galois ring \(S \):

\[
C_1 = u_6^1 Q_1 v_1 + u_1^1 Q_1 v_6, \quad C_2 = u_6^1 Q_2 v_1 + u_1^1 Q_2 v_6, \quad D_1 = u_6^1 Q_1 v_6, \quad D_2 = u_1^1 Q_2 v_1
\]

(4.32)

P sends message \([A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2]\) to \(V \).

V→P: V samples \(e \leftarrow E_5 \) at random and sends to \(P \).

V computes:

\[
U_e = A_1^{-1} U_e B_1^{-3}, \quad V_e = A_2^{-1} V_e B_2^{-3}
\]

(4.33)

\[
Q_e = e^2 Q_1 + e^2 Q_R \quad \text{and} \quad r_e = C_1 e^2 + C_2 e^3 + D_1 e^4 + D_2 e^5
\]

(4.34)

If \(n = 1 \) (in this case the message received from \(P \) is \([u_6, v_6]\)) then \(V \) verifies

\[
U_e = \text{Cmt}(e | u_e + e^2 v_e) \quad \text{and} \quad V_e = \text{Cmt}(e | v_e + e^2 v_e) \quad \text{with} \quad y + r_e
\]

(4.35)

otherwise \(n \) is substituted with \(n/2 \), \(U \) substituted with \(U_e \), \(V \) with \(V_e \), \(\sigma \) with \(\sigma_e = [G, g_e, m] \), \(\tau \) with \(\tau_e = [G, h_e, m] \) respectively.

P: On receiving the challenge \(e \) (in \(E_3 \)) from \(V \), P performs:

computing \(\sigma_e = [G, g_e, m] \), \(\tau_e = [G, h_e, m] \) and substituting \(\sigma \) with \(\sigma_e \) and \(\tau \) with \(\tau_e \);

\[
u_e = c u_e + e^1 u_6, \quad v_e = c v_1 + e^1 v_6, \quad Q_e = e^2 Q_1 + e^2 Q_R;
\]

if \(n = 1 \) then \(P \) sends \([u_e, v_e]\) to \(V \), otherwise \(P \) decomposes \(u_e \), \(v_e \) and \(Q_e \) according to (4.29) and (4.30), performs computations according to (4.33) and (4.34), sends message to \(V \) and then substitutes \(n \) with \(n/2 \).

Theorem 5 The protocol NoZKA/SBLR is \(2k \)-1 round, unconditionally complete and computationally \((5, 5, \ldots, 5)\)-special-sound.

Proof In Appendix A.

Remark 2 On basis of a general theorem proved in [13] that \((\mu_1, \ldots, \mu_k)\)-spacial soundness implies knowledge soundness, the above constructed protocol is ZK\(\sigma\)K.

\[3\] Actually \(U_e = \text{Cmt}(e | u_e) \) and \(V_e = \text{Cmt}(e | v_e) \) which can be verified by the explicit expressions of the commitment in sec.2.4 and straightforward calculations.
4.5 Performance and Comparisons against Linearization Approach

There are $2n$ witnesses in S in the relation SBLR (4.25). For $n = 2^d$, the whole protocol is $2k+1$ round, unconditionally complete and (3,5,5,...,5)-special sound (on basis of the commitment scheme’s binding property) where:

The first message ($P \rightarrow V$ and also the first one in protocol \sum-ZKA/SBLR) is composed of $2d$ elements in group G and 2 elements in Galois ring S.

For the 2^{nd}, 4^{th}, 6^{th}, ..., $2k$-th messages ($P \rightarrow V$), each one is composed of just 1 element in Galois ring’s exceptional set E_o.

For the 3^{rd}, 5^{th}, 7^{th}, ..., $2k$-1-th messages ($P \rightarrow V$ and all are messages of protocol NoZKA/SBLR), each one is composed of $4d$ elements in G and 4 elements in S.

The $2k$-th ($P \rightarrow V$ and also the last message) is composed of 2 elements in S.

Totally, the whole protocol needs $4dk$ G-elements, $5k$ S-elements in its communication where $k = \log_2 n$.

Currently there are no other works on matrix bilinear relation over Galois ring comparable, so we make a comparison between the above results and the general linearization approach, which compiles any non-linear arithmetic relation (circuit) into a linear one via secret-sharing techniques (which works originally over Galois fields and can be directly generalized to Galois ring, see. Sec. 6 in [12]). In the following tables, the performance results are derived from the results of linearization approach [12] and those of linear relation over Galois ring (sec.4 in [13]), while the performance results about our approach is from the above analysis with (including the costs in reduction) 3 S-elements and 1 message added, and n (dimension of S-vectors in (4.25)) substituted with nt (dimension of S-vectors in (4.19)).

| Table 3. Performance of ZKA for matrix bilinear relation in different approaches |
|---------------------------------|-------------------------------|-------------------------------|
| | Linearization (e.g., [12],[16]) | Matrix-oriented (ours) |
| Both with targeted knowledge error $\leq p^* \log n$ and $\text{U}_V, \text{VZ}_{m \times d}$ |
number of G-elements in c.r.s.	$4n^2r^2d^2 + 3$	nt
number of G-elements for commitment.	d	$2d$
number of rounds	$2\log(n^2+(1+2n^2)r^2d^4+4)+7$	$2+2\log(nt)$
message complexity	$2d\log(n^2+(1+2n^2)r^2d^4)+1$ G-element	$4d\log(nt)$ G-element.
	$3\log(n^2+(1+2n^2)r^2d^4)+1$ S-elements	$3+5\log(nt)$ S-elements

In summary, by specifically making use of structural features of the commitment scheme and matrix equations, the matrix-oriented approach outperforms the general one for bilinear matrix relation in all aspects, e.g., for large-size n-by-n square witnesses the size of c.r.s. is reduced by $> n^2d$ times; the number of rounds is reduced by $> 1/2\log d/2\log n$; total number of ring elements in messages reduced by $> 1/6+5\log d/12\log n$; total number of group elements asymptotically the same but de-
increased by a number of $4d \log d$ (see tab. 4). These improvements for bilinear relation are even better than those for the linear relation.

Table 4. Performance of ZKA for matrix bilinear relation in different approaches (square witness)

<table>
<thead>
<tr>
<th></th>
<th>Linearization (e.g., [12][16])</th>
<th>Matrix-oriented (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both with targeted knowledge error $\leq p^{-d \log n}$ and $U, V \in \mathbb{Z}_n^{m \times n}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of G-elements in c.r.s.</td>
<td>$4n^4 + 3$</td>
<td>n^2/d</td>
</tr>
<tr>
<td>number of G-elements for commitment</td>
<td>d</td>
<td>$2d$</td>
</tr>
<tr>
<td>number of rounds</td>
<td>$2 \log(n^2 + (1 + 2n^2)n^2 + 4) + 7$ $\geq 8 \log n$</td>
<td>$2 + 4 \log n - 2 \log d$</td>
</tr>
<tr>
<td>message complexity</td>
<td>$2d \log(n^2 + (1 + 2n^2)n^2 + 4) \geq 8d \log n$</td>
<td>$8d \log n - 4d \log d$</td>
</tr>
<tr>
<td></td>
<td>G-element</td>
<td>G-element</td>
</tr>
<tr>
<td></td>
<td>$3 \log(n^2 + (1 + 2n^2)n^2 + 4) - 1 \geq 12 \log n$</td>
<td>$3 + 10 \log n - 5 \log d$</td>
</tr>
<tr>
<td></td>
<td>S-elements</td>
<td>S-elements</td>
</tr>
</tbody>
</table>

As an example, the ZKA protocol for bilinear matrix relation is used in private 2D spectrum reconstruction where U and V are (private) transformation squares. In this application $n = 512$, $p = 2$, $s = 64$ (so $m = 2^{16}$), $G \equiv J(N) = \{a \in \mathbb{Z}_N: \text{the Jacobi symbol } (a/N) = 1\}$ (see sec.3.3[16] for details on this commitment-friendly group) with $N = PQ$ where large primes P and Q are selected such that $(P-1)(Q-1)/4$ is odd. For knowledge-error $\varepsilon = 2^{-56} \approx 10^{-16}$ and the matched $d = 64$ ($\varepsilon \approx p^{-d \log n}$), the number of rounds is reduced by $\approx 85\%$; total number of ring elements reduced by $\approx 44\%$; total number of group elements is decreased by 1536 (33%).

5 Concurrently Non-malleable Enhancement

In various private computing applications, zero-knowledge proof protocols need to be composed in complicated running environment. However, the protocols established in sec.3 and 4 can only ensure security in sequential composition. The concurrent non-malleable ZKA protocol[22] has such a property that, even a dishonest prover playing man-in-the-middle role by concurrently interacting with multiple honest provers, it still cannot efficiently generate a new statement and convince the verifier without knowing its witness. Such property enhances zero-knowledge proof protocol’s security in concurrent environment. [20-22] developed a general approach to compile any Σ-protocol into a non-malleable one. In this section, we extend this method to compile any $2k+1$-round argument protocol into a non-malleable one with the same number of rounds and properly increased message and computational complexity.

5.1 Basic Tools

One of the crucial tools needed is the tag-based simulation-sound trapdoor commitment scheme. This is a trapdoor commitment scheme with input (x, t) where x is plaintext and t is a tag variable (usually some identity). Intuitively, its security ensures
that an adversary cannot efficiently destroy the binding property even after collecting arbitrary number of commitments and related plaintexts, so its security is stronger than ordinary commitment schemes.

Definition 5 (Tag-based Commitment Scheme) [20] CS \(\equiv (\text{CGen}, \text{Cmt}, \text{Cvf})\) is called a Tag-based Commitment Scheme if CGen, Cmt, Cvf are all P.P.T algorithms and have the following properties:

1. **Complete** For any \((x,t)\) there holds
 \[P[pk \leftarrow \text{CGen}(\lambda); (y,d) \leftarrow \text{Cmt}(pk,x,t); \text{Cvf}(pk,y,x,t,d) = 1] = 1 \]

2. **Binding** There exists a negligible function \(\varepsilon(\lambda)\) s.t. for any P.P.T algorithm \(A\):
 \[P[pk \leftarrow \text{CGen}(\lambda); (y,t,x_1,x_2,d_1,d_2) \leftarrow A(pk); \text{Cvf}(pk,y,x_1,t,d_1) = 1 \land x_1 \neq x_2 \leq \varepsilon(\lambda) \]

3. **Hiding** For any \(pk\) generated by CGen, any \(x_1, x_2\) in the same bit-size and any tag \(t\), the output \(c_1: (c_1,d_1) \leftarrow \text{Cmt}(pk,x_1,t)\) and \(c_2: (c_2,d_2) \leftarrow \text{Cmt}(pk,x_2,t)\) are computationally indistinguishable.

In the following definition, the algorithm TCGen outputs public and private key-pair, i.e., \((pk,sk)\leftarrow \text{CGen}(\lambda)\). The symbol TCGen\(_{pk}\) notates such an algorithm the same as TCGen but only outputs \(pk\).

Definition 6 (Tag-based Trapdoor Commitment Scheme) [20] TC \(\equiv (\text{TCGen}, \text{TCmt}, \text{TCvf}, \text{TCFakeCmt}, \text{TCFakeDmt})\) is a tag-based trapdoor commitment scheme, if all the five algorithms are P.P.T with \((\text{TCGen}_{pk}, \text{TCmt}, \text{TCvf})\) satisfying properties (1)–(3) in definition 5. In addition, for any \((x,t)\) the two outputs
\[
(pk,x,t,y^*,d^*) = \text{TCGen}(\lambda); (y^*,\delta) \leftarrow \text{TCFakeCmt}(pk,sk,t); d^* \leftarrow \text{TCFakeDmt}(\delta,y^*,x,t) \]
and
\[
(pk,x,t,y,d) = \text{TCGen}(\lambda); (y,d) \leftarrow \text{TCmt}(pk,x,t) \]
are computationally indistinguishable.

Definition 7 (Simulation Soundness of Tag-based Trapdoor Commitment Scheme) [20] The scheme in definition 6 is called simulation sound if there exists a negligible function \(\varepsilon(\lambda)\) such that for any P.P.T algorithm \(A\):
\[
\text{Adv}_{\text{TC}}^{\text{SS}}(\lambda) \equiv P[pk,sk \leftarrow \text{TCGen}(\lambda); (y,t,x_1,x_2,d_1,d_2) \leftarrow A^{\text{sk},\text{Cmt},\text{Cvf}}(pk); \text{Cvf}(pk,y,x_1,t,d_1) = 1 \land \text{Cvf}(pk,y,x_2,t,d_2) = 1 \land x_1 \neq x_2 \land t \notin Q] \leq \varepsilon(\lambda) \]
where the oracle \(O(.|\text{sk})\) with the private key \(sk\) works in the following way:

1. Initialize \(Q\) to be empty.
2. For each query ["commit", \(t\)]:
 \[O(.|sk) \text{ computes } (y^*,\delta) = \text{TCFakeCmt}(pk,sk,t); \text{ Store } (y^*,\delta, t); Q = Q \cup \{t\}; \text{ Output } y^*. \]
3. For each query ["decommit", \(y^*, x\)]:
IF some \((y', t, \delta)\) exists in current storage
THEN
\(d' = \text{TCT FakeDmt}(\delta; y', x, t)\); output \(d'\);
END

For efficient constructions of simulation sound trapdoor commitment (SSTC hereafter) scheme, see [20-22].
Another tool required for constructing the compiler is the strongly unforgeable one-time signature scheme, which constructions can be seen in, e.g., [19][23].

5.2 Concurrently Non-malleable ZKA protocol

For a given interactive algorithm \(M\), let \([M]\) be a set of multiple instances of \(M\) running in any concurrent way. \([M]\) receives two classes of input instructions:

Instruction [START, \(id, x, w\)]: start a new instance of \(M\), assign identifier \(id\) and input \((\sigma, x, w)\) to it, where \(\sigma\) is the c.r.s.

Instruction [MSG, \(id, m\)]: send message \(m\) to the instance \(M(id)\) and return the output of this instance.

Given three interactive algorithms \(S, A\equiv(A_1, A_2)\) and \(B\), let \(\langle S, A_1|A_2, B\rangle\) denote the interactions of \(A_1\) with \(S\) and \(A_2\) with \(B\) where \((A_1, A_2)\) are coordinated, any information obtained by \(A_1\) can be used by \(A_2\) to generate the message sent to \(B\) and vice versa.

In any interaction, a trace is defined as a sequence of messages \(Tr = [+m_1, m_2, m_3, m_4, \ldots]\) where \(+\) and \(-\) represent the opposite message transmission directions. Two traces \(Tr_1\) and \(Tr_2\) are called matched if they have the same message terms but in opposite directions, e.g., \(Tr_1 = [+m_1, m_2, m_3, m_4, \ldots]\) and \(Tr_2 = [-m_1, m_2, m_3, m_4, \ldots]\).

Definition 8 (Concurrent Non-Malleability of Zero Knowledge Proof / Argument) ([22]) \((D, P, V, \langle S_1, S_2\rangle)\) is called a concurrently non-malleable zero knowledge argument protocol for a relation \(R\) if all algorithms \(D, P, V, S_1, S_2\) are P.P.T. and have the following properties:

1. **Completeness** For \(\sigma \leftarrow D(\lambda)\) and \((x, w) \in R\) there holds \(P[<P(w); V \exists(\lambda) = 1] = 1\).
2. **Witness Extraction** For P.P.T algorithm \(P' = (P_1', P_2')\) consider the game \(\text{Exp}_{w}^{P'}(\lambda)\):

 \[
 \begin{align*}
 & (\sigma, t) \leftarrow S_1(\lambda); \\
 & (x', Tr^*, b^*) \leftarrow \langle S(\sigma), P_1'; P_2', V; > \rangle; \\
 & Q \leftarrow S(\sigma)'s\; \text{traces\; during\; the\; interactions}; \\
 & \text{IF}\; b^* = 1 \land \forall Tr^* \text{ is unmatched with any } Tr \\
 & \text{THEN output } 1; \\
 & \text{ELSE output } 0; \\
 & (Tr = \text{the trace between interactions of } P_1'\; \text{and } S_1; b^* = \text{the output of } V\; \text{on}\; \text{trace } Tr^*; \text{unmatched means } Tr^*\; \text{cannot be a copy of any trace appeared in}\; \text{the}\; \text{interactions\; between } P_1'\; \text{and } S_1)
 \end{align*}
 \]

 On each input \((x, w)\), \(\overline{S(\sigma)}\) decides whether \(R(x, w) = 1\): if true then it starts an instance \(S_2(\tau, \sigma, x)\) otherwise does nothing. Let

 \[\pi(P'\lambda) = P[\text{Exp}_{w}^{P'}(\lambda) = 1]\]
There exists an expected polynomial time algorithm Ext, a positive valued function \(\kappa \) and a negligible function \(\epsilon \) such that, if \(\pi(P') > \kappa(\lambda) \) then Ext with rewind access to \(P' \) can compute a \(w' \) such that \((x',w') \in R \) with probability \(\geq \pi(P') \cdot \kappa(\lambda) \cdot \epsilon(\lambda) \) where \(x' \) is the output of \(P' \) in \(\text{Exp}'' \).

(3) **Zero-knowledge** For any P.P.T. algorithm \(V' \) there has the computational indistinguishability

\[
\text{Tr}<P|V'^{\sigma(x)} \leftrightarrow \text{Tr}|V'^{\sigma(\lambda)}|V'^{\sigma(x)}
\]

where \(\sigma \) on the left side is generated by \(D: \sigma \leftarrow \text{D}(\lambda) \) and \(\sigma \) on the right side is generated by \(S_1: (\sigma, \tau) \leftarrow \text{S}_1(\lambda) \). On each input \((x, \omega)\), \(S'' \) decides whether \(R(x, \omega) = 1 \); if true then it starts an instance \(S_2(\tau, \sigma, x) \) otherwise does nothing. Note that \(S_2 \) always has the input \(x \in L_R \) but not \(\omega \).

5.3 Concurrently Non-Malleable ZKA Protocol’s Construction

Let \(R(\sigma|x, \omega) \) be the relation with c.r.s. \(\sigma \), public input \(x \) and witness \(\omega \); ZK\text{A}oK/R be the public-coin argument protocol for \(R \) with logarithmic message complexity and \(2k+1 \) rounds; \(A, A', B, \) and \(\psi \) be polynomial-time algorithms in the protocol.

Protocol ZK\text{A}oK/R

\[
\begin{align*}
P &\rightarrow V: \text{P computes } (x_1, \xi_1) = A(\sigma, x, \omega) \text{ and sends } x_1 \text{ to } V; \\
& \quad /\text{The } 1^{st} \text{ session} \\
P &\leftrightarrow V: \text{V samples } e_1 \text{ at random and sends } \text{it to } P; \\
& \quad \quad V \text{ computes } (b_1, \eta_1) = B_1(\sigma, x_1, e_1); \\
P &\rightarrow V: \text{P computes } (x_2, \xi_2) = A(\xi_1, e_1) \text{ and sends } x_2 \text{ to } V; \\
& \quad /\text{2^{nd} session} \\
P &\leftrightarrow V: \text{V samples } e_2 \text{ at random and sends } \text{it to } P; \\
& \quad \quad V \text{ computes } (b_2, \eta_2) = B_2(\xi_1, x_2, e_2); \\
P &\rightarrow V: \text{P computes } (x_3, \xi_3) = A(\xi_2, e_2) \text{ and sends } x_3 \text{ to } V; \\
& \quad /\text{i-th session} \\
P &\leftrightarrow V: \text{V samples } e_i \text{ at random and sends } \text{it to } P; \\
& \quad \quad V \text{ computes } (b_{i+1}, \eta_{i+1}) = B_i(\xi_{i-1}, e_i); \\
P &\rightarrow V: \text{P computes } (x_{i+1}, \xi_{i+1}) = A(\xi_i, e_i) \text{ and sends } x_{i+1} \text{ to } V; \\
& \quad /\text{The last session} \\
P &\leftrightarrow V: \text{V samples } e_i \text{ at random and sends } \text{it to } P; \\
& \quad \quad V \text{ computes } (b_{i+1}, \eta_{i+1}) = B_i(\xi_i, x_{i+1}, e_i); \\
P &\rightarrow V: \text{P computes } x_{i+1} = A(\xi_i, e_i) \text{ and sends } x_{i+1} \text{ to } V; \\
& \quad V \text{ verifies } \psi(\sigma, b_{i+1}, x_{i+1}, x_i) = 1.
\end{align*}
\]

Let S\text{TTC} = (TC\text{Gen}, TC\text{mt}, TC\text{Cft}, TC\text{FakeCmt}, TC\text{FakeDmt}) be the simulation-sound tag-based trapdoor commitment scheme defined in sec. 5.1; \(\text{SG} = (\text{KG, Sgn, Vf}) \) be the strongly unforgeable one-time signature scheme with key generator KG, signing algorithm Sgn and verification algorithm Vf; \(H \) be a collision-resistant hash function. With these basic cryptographic schemes, a new argument protocol for relation R
is compiled from protocol ZKAoK/R with new c.r.s. $\sigma^* = [\sigma, pk]$ where σ is the original protocol’s c.r.s. and pk is the public key of scheme SSTC.

Protocol CNM-ZKAoK/R

$\text{P} \rightarrow \text{V}$: P computes: $(s_{vk}, s_{sk}) = KG(\lambda)$;

$$(x_1, \xi_1) = A(\sigma, x_1, w);$$

$$(y_1, d_1) \leftarrow TCmt(pk, x_1, H(s_{vk}||1));$$

//Here x_1 in the original protocol is committed to with $H(s_{vk}||1)$ used as a tag.

P sends message $[s_{vk}, y_1]$ to V;

//1’s session

$\text{P} \rightarrow \text{V}$: V samples e_1 at random and sends it to P;

$\text{P} \rightarrow \text{V}$: P computes $(x_2, \xi_2) = A_1(\xi_1, e_1); (y_2, d_2) \leftarrow TCmt(pk, x_2, H(s_{vk}||2));$

P sends y_2 to V;

//2’s session

$\text{P} \rightarrow \text{V}$: V samples e_2 at random and sends it to P;

$\text{P} \rightarrow \text{V}$: P computes $(x_3, \xi_3) = A_2(\xi_2, e_2); (y_3, d_3) \leftarrow TCmt(pk, x_3, H(s_{vk}||3));$

P sends y_3 to V;

//i-th session

$\text{P} \rightarrow \text{V}$: V samples e_i at random and sends it to P;

$\text{P} \rightarrow \text{V}$: P computes $(x_{i+1}, \xi_{i+1}) = A_i(\xi_i, e_i); (y_{i+1}, d_{i+1}) \leftarrow TCmt(pk, x_{i+1}, H(s_{vk}||i+1));$

P sends y_{i+1} to V;

//the last session

$\text{P} \rightarrow \text{V}$: V samples e_k at random and sends it to P;

$\text{P} \rightarrow \text{V}$: P computes $x_{k+1} = A_k(\xi_k, e_k); z = (x_1, d_1, \ldots, x_k, d_k, x_{k+1});$

P then verifies $\psi(\sigma, x_{k+1}, x_1, z) = 1$ and $V(s_{vk}, s_{vk}||[y_1, e_1, \ldots, y_k, e_k]|z, s) = 1$

\begin{equation*}
\begin{aligned}
\Lambda_{i=1}^{k} TCmt(pk, y_i, x_i, H(s_{vk}||i), d_i) &= 1
\end{aligned}
\end{equation*}

Remark 3 As long as each y_i and d_i is in constant-size, total message size $\sum_{i=1}^{k}(|y_i| + |x_i| + |d_i|) + O(1)$ of the new protocol will be only constant times that of the original protocol. Relative to the original protocol, the prover adds the workload to compute commitments in each round, while the verifier delays all intermediate computations to the last round with some additional verification computation. With efficient implementation of SSTC scheme, the total computational workload in new protocol is approximately constant times the original.

About the new protocol’s properties, we have the following conclusions.

Lemma 3 If ZKAoK/R has SHVZK property, then CNM-ZKAoK/R is zero-knowledge in the sense of definition 8(3).
Lemma 4 Suppose the protocol ZKAoK/R is \((\mu_1, \ldots, \mu_k)\)-special sound, then there exists an extractor Ext for protocol CNM-ZKAoK/R as specified in def.8. Let the event EXT be “Ext outputs a \(w^*\) s.t. \((x^*, w^*) \in R\) for an accepting statement \(x^*\), \(|E|\) be the cardinality of the space for the verifier to sample challenges, then:

\[
P[\text{EXT}] > \pi(P^*|\lambda) - \sum_{i=1}^{k} \mu_i |E| - \text{Adv}_{T_C}^{SS}(\lambda) \prod_{i=1}^{k} \mu_i + \text{poly}(\lambda)\text{Adv}_{SG}^{UF_1}(\lambda)
\]

(Adv_{T_C}^{SS} specified in def. 7, \(\pi(P^*|\lambda)\) in def. 8) and Ext’s running time is \(\text{poly}(\lambda)\).

Proof In Appendix B.

Remark 4 For Galois ring GR\((m,d)\) with \(m = p^d\), we have \(|E| = p^{2d}\). For non-malleable enhanced protocols over GR\((m,d)\) with \(\mu = O(1)\) and \(k = O(\log n)\), if \(k\mu |E| \sim 2^k\) then \(d\) should take the value \(> (\lambda + \log k\mu)/\log p\).

In summary, one obtains the general result:

Theorem 6 If ZKAoK/R is an argument protocol for relation R with special soundness and SHVZK property (in terms of def. 2 and 3), then CNM-ZKAoK/R is a concurrently non-malleable zero knowledge argument protocol for R in terms of def. 10.

References

APPENDIX A. Proofs of Theorem 4 and 5

Theorem 4. The protocol Σ-ZKA/SBLR* is unconditionally complete, special honest verifier zero-knowledge (SHVZK) and computationally 3-special-sound.

Proof. If P has all the witnesses r,s,u,v then:
\[z_i^TQz_i = (eu+x_i)^TQ(xv+x_2) = x_i^TQx_2+e(x_i^TQv+u_i^TQx_2)+e^2u_i^TQv = \eta_1+e\eta_1+e^2 \gamma \]

Other two equalities in (4.26) can be easily confirmed by the homomorphic property of the commitment scheme, so the completeness is proved.

The protocol’s SHVZK property can be proved by constructing the following simulator which on input of (σ,e) performs the computation:

- Samples $\eta_1 \leftarrow S$, $\beta_1, \beta_2 \leftarrow S^2$ and $z_1, z_2 \leftarrow S^2$ at random;
- $K_1 = U \cdot \text{Cmt}(\sigma|z_1, \beta_1)$, $K_2 = V \cdot \text{Cmt}(\sigma|z_2, \beta_2)$, $\eta_2 = z_i^TQz_i-e\eta_1-e^2 \gamma$.
- Output $(K_1, K_2, \eta_1, \eta_2, e, z_1, z_2, \beta_1, \beta_2)$.

It’s straightforward to verify that the trace output by the simulator has the same distribution as the real trace in the interactions between the honest prover and the verifier, so the SHVZK property holds.

To prove the 3-special soundness, consider three accepting traces $\text{Tr}_i = [K_1, K_2, \eta_1, \eta_2, e, z_1, z_2, \beta_1, \beta_2]$ with distinct challenges e_1, e_2, e_3 sampled from E_S.

For Tr_1 and Tr_2, there exist μ_1 and μ_2 in S which can be efficiently computed as solutions to the equations:
\[\mu_1 + \mu_2 = 0, e\mu_1 + e\mu_2 = 1 \quad (A.1) \]

From the equations $K_i(U^e)^i \mu_i = \prod_{i=1}^2 \text{Cmt}(\sigma|z_i, \beta_i)^{\mu_i} = \text{Cmt}(\sigma(u^*, r^*))$ (A.2)

where
\[u^* = \sum_{i=1}^2 \mu_i z_i \]

In the same way we also have
\[V = \text{Cmt}(\sigma v^*, s^*) \text{ where } v^* = \sum_{i=1}^2 \mu_i z_i \]

Now we claim that there exist x_1, x_2 which are independent of i satisfying:
\[z_i = e_i u^* + x_1, \quad z_0 = e_i v^* + x_2, i = 1,2 \quad (A.4) \]

Indeed, let $z_i = e_i u^* + \xi_i, i = 1,2$ then by
\[u^* = \sum_{i=1}^2 \mu_i z_i = \sum_{i=1}^2 \mu_i (e_i u^* + \xi_i) = \sum_{i=1}^2 \mu_i e_i + \mu_1 \xi_1 + \mu_2 \xi_2 = u^* + \mu_1 (\xi_1 - \xi_2) \]

and $\mu_1 \neq 0$ one gets $\xi_1 = \xi_2$ and denote this by x_1. In a similar way one can confirm the existence of x_2 satisfying (A.4).

Substituting z_1 and z_2 in (4.26)’s equations $z_i^TQz_i = \eta_2 + e\eta_1 + e^2 \gamma$ $i = 1,2$ with the expressions in (A.4), after simple algebraic calculations one gets.
\[\eta_2 x_1^7 Q x_2 + (\eta_1 - x_1^7 Q v^2 - u^T Q x_2) e_i + (y - u^T Q v^2) e_i^2 = 0 \quad i = 1, 2 \] \hspace{1cm} (A.5)

which shows that \(e_1 \) and \(e_2 \) are roots of the degree-2 polynomial \(\eta_2 x_1^7 Q x_2 + (\eta_1 - x_1^7 Q v^2 - u^T Q x_2) T + (y - u^T Q v^2) T^2 \). This result is obtained from traces \(T_1 \) and \(T_2 \) with the resulted “witnesses”

\[
\vec{r}', \vec{s}', \vec{u}', \vec{v}', x_1, x_2 \hspace{1cm} (A.6)
\]

When the same analysis is applied to traces \(T_2 \) and \(T_3 \), another group of “witnesses”

\[
\vec{r}, \vec{s}, \vec{u}, \vec{v}, x_1, x_2 \hspace{1cm} (A.7)
\]

can be obtained which also satisfy equations (A.2)-(A.3), i.e.,

\[
\text{Cmt}(\sigma u^*, r^*) = U = \text{Cmt}(\sigma u', r'), \quad \text{Cmt}(\tau v^*, s^*) = V = \text{Cmt}(\tau v', s')
\]

Under the binding property of the commitment scheme, these equalities imply

\[
\begin{align*}
\vec{u}^* &= \vec{u}' \quad \vec{v}^* &= \vec{v}'
\end{align*}
\]

Note that equalities in (A.4) hold at \(i = 2 \) for both “witnesses” in (A.6) and (A.7), which implies

\[
x_1 = x_1', \quad x_2 = x_2'
\]

Equation (A.5) with coefficients \(y, u, v, x_1, x_2 \) also hold for \(e_2 \) and \(e_3 \). As a result, the coefficients in (A.5) are independent of \(i = 1, 2, 3 \), which means the degree-2 polynomial \(\eta_2 x_1^7 Q x_2 + (\eta_1 - x_1^7 Q v^2 - u^T Q x_2) T + (y - u^T Q v^2) T^2 \) has at least three distinct roots \(e_1, e_2, e_3 \) in the exceptional set \(\mathcal{E}_s \), so it must be identically zero. In particular, \(y = u^T Q v^2 \). This proves that \(\vec{u}^*, \vec{v}^* \) are correctly extracted witnesses.

Theorem 5
The protocol NoZKA/SBLR is 2k-1 round, unconditionally complete and computationally (5, 5, ..., 5)-special-sound.

Proof
Completeness can be confirmed by straightforward algebraic calculations. In order to prove (5, 5, ..., 5)-special-soundness, we construct an extractor which outputs the witness \(\vec{u}, \vec{v} \) and all variables \(\{A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2\} \) from 5 accepting traces with \(e_i^2 \neq e_j^2 \) in \(\mathcal{E}_s \) where \(i, j = 1, 2, 3, 4, 5 \):

\[
T_i = \{[A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2], e_i, [u_{e_i}, v_{e_i}] \}
\]

where each trace satisfies

\[
U_{e_i} = \text{Cmt}(\sigma u_{e_i} + e_i^2 u_{e_i}) \land V_{e_i} = \text{Cmt}(\tau v_{e_i} + e_i^2 v_{e_i}) \land u_{e_i}^T Q_{e_i} v_{e_i} = y + r_{e_i} \hspace{1cm} (A.8)
\]

If this claim can be proved for each recursive step, the whole protocol is (5, 5, ..., 5)-special sound.

Consider three traces \(T_i \), \(i = 1, 2, 3 \) at first. For these traces \(\mu_1, \mu_2, \mu_3 \) can be efficiently calculated as solution to the equations:

\[
\sum_{i=1}^{3} e_i^{-1} \mu_i = 0, \quad \sum_{i=1}^{3} e_i \mu_i = 1, \quad \sum_{i=1}^{3} e_i^2 \mu_i = 0 \hspace{1cm} (A.9)
\]

For notational simplicity, all variables with subscript \(e_i \) will be subscripted only by \(i \), e.g., \(U_{e_i} \) is simply notated as \(U_i \). Combining the verification equation \(U_i = \text{Cmt}(\sigma) \)
\(u_{ei} + e^2_t u_{ei}, i = 1,2,3 \) in (A.8) with (4.33) and (A.9) one can get:

\[
U = \prod_{i=1}^3 (A_i^{e_1^2} U^{e_1^2} B_i^{e_1^2})^{\mu_i} = \prod_{i=1}^3 U_i^{\mu_i} = \prod_{i=1}^3 \text{Cmt}(\sigma| u_{ei} + e^2_t u_{ei})^{\mu_i}
\]

Using the commitment scheme’s explicit expressions in sec. 2.4, one obtains:

\[
U = \text{Cmt}(\sigma| [u_{ei}^* + u_{er}^*]) \text{ where } u_{ei}^* = \sum_{i=1}^3 \mu_i u_i, \quad u_{er}^* = \sum_{i=1}^3 e^2_{i}^* \mu_i u_i \quad (A.10)
\]

Similarly, one can also obtain:

\[
V = \text{Cmt}(\varepsilon| [v_{ei}^* + v_{er}^*]) \text{ where } v_{ei}^* = \sum_{i=1}^3 \nu_i v_i, \quad v_{er}^* = \sum_{i=1}^3 e^2_{i}^* \nu_i v_i \quad (A.11)
\]

Also \(v_1, v_2, v_3 \) and \(\gamma_1, \gamma_2, \gamma_3 \) can be efficiently calculated as solutions to the following equations:

\[
\begin{align*}
\sum_{i=1}^3 e_i^3 v_i & = 1, \quad \sum_{i=1}^3 e_i^3 \nu_i = 0, \quad \sum_{i=1}^3 e_i^3 \gamma_i = 0 \\
\sum_{i=1}^3 e_i^3 \gamma_i & = 0, \quad \sum_{i=1}^3 e_i^3 \nu_i = 0, \quad \sum_{i=1}^3 e_i^3 \gamma_i = 1
\end{align*}
\]

Combining \(U_i = \text{Cmt}(\sigma| u_{ei} + e^2_t u_{ei}), i = 1,2,3 \) in (A.8) with (4.33), (A.12), there derives:

\[
A_i = \prod_{i=1}^3 (A_i^{e_1^2} U^{e_1^2} B_i^{e_1^2})^{\nu_i} = \prod_{i=1}^3 U_i^{\nu_i} = \prod_{i=1}^3 \text{Cmt}(\sigma| u_{ei} + e^2_t u_{ei})^{\nu_i}
\]

i.e.,

\[
A_i = \text{Cmt}(\sigma| [w_{ei}^* + w_{er}^*]) \text{ where } w_{ei}^* = \sum_{i=1}^3 \nu_i u_i, \quad w_{er}^* = \sum_{i=1}^3 e^2_{i}^* \nu_i u_i \quad (A.14)
\]

In a similar way, one can also get:

\[
\begin{align*}
B_i & = \text{Cmt}(\sigma| [q_{ei}^* + q_{er}^*]) \text{ where } q_{ei}^* = \sum_{i=1}^3 \gamma_i u_i, \quad q_{er}^* = \sum_{i=1}^3 e^2_{i}^* \gamma_i u_i \\
A_2 & = \text{Cmt}(\sigma| [q_{ei}^* + q_{er}^*]) \text{ where } q_{ei}^* = \sum_{i=1}^3 \gamma_i v_i, \quad q_{er}^* = \sum_{i=1}^3 e^2_{i}^* \gamma_i v_i
\end{align*}
\]

By the equality \(U_i = A_i^{e_1^2} U^{e_1^2} B_i^{e_1^2} \) in (4.33) and \(U_i = \text{Cmt}(\sigma| u_i + e^2_t u_i) \) in (A.8) for \(i = 1,2,3 \), we get:

\[
A_i^{e_1^2} U^{e_1^2} B_i^{e_1^2} = \text{Cmt}(\sigma| [u_i + e^2_t u_i])
\]

Put \(A_1, U, B_1 \)'s expressions (A.14), (A.10), (A.15) into the above expression, the obtained equality implies

\[
u_i \in \{e_i u_i^* + e_i^1 w_i^* + e_i^2 w_i, \quad e_i^2 u_i = e_i u_i^* + e_i^1 w_i^* + e_i^3 w_i, \quad i = 1,2,3 \}
\]

due to the commitment’s binding property. After eliminating \(u_i \) one has

\[
w_i = (u_{ei}^* - w_i) e_i^3 + (w_{ei}^* - u_i) e_i^2 = 0
\]

Equation (A.17) is satisfied by \(u_{ei}^*, u_{er}^*, w_{ei}^*, \) \(w_{er}^* \) which can be efficiently calculated from \(Tr_1, Tr_2, Tr_3 \) with challenges \(e_i \) in \(E_3: i = 1,2,3 \). When the derivation is applied to \(Tr_1, Tr_2, Tr_3 \), one can also calculate \(u_{ei}^*, u_{er}^*, w_{ei}^*, \) \(w_{er}^* \) which satisfy the same equations with \(e_i \) in \(E_3: i = 3,4,5 \). These two groups of calculated results all satisfy

\[
\text{Cmt}(\sigma| u_{ei}^* + u_{er}^*) = U = \text{Cmt}(\sigma| u_{ei}^* + u_{er}^*)
\]
Due to binding property of the commitment scheme, these equalities imply:

\[
\begin{align*}
\text{Cmt}(\sigma|w^*_L+w^*_R) &= A_t = \text{Cmt}(\sigma|w^*_L+w^*_R) \\
\text{Cmt}(\sigma'|w^*_L+w^*_R) &= B_t = \text{Cmt}(\sigma'|w^*_L+w^*_R)
\end{align*}
\]

As a result, (A.17) holds for more than 4 challenges \(e_i\), i.e., degree-3 polynomial \(w^*_R + (u^*_R-w^*_L)^T + (w^*_R-w^*_L)^T - w^*_L w^*_L\) in \(T\) has more than 4 distinct zeros \(e^2_i (e^2_i \neq e^2_i)\), \(i = 1,2,3,4,5\) in \(E_5\), which implies all its coefficients are zero:

\[
w^*_R = 0, u^*_R = w^*_L, u^*_R = w^*_L, w^*_L = 0
\] (A.19)

Combining (A.19) with (A.14) and (A.15) one obtains

\[
A_t = \text{Cmt}(\sigma|u^*_L+0), \quad B_t = \text{Cmt}(\sigma|0+u^*_L)
\] (A.20)

Combining (A.19) with (A.16) and (A.18) one obtains

\[
u_i = e_i u^*_L + e_i^1 u^*_R \quad i=1,\ldots,5
\] (A.21)

In a similar way one can also obtain

\[
A_2 = \text{Cmt}(\sigma|v^*_R+0), \quad B_2 = \text{Cmt}(\sigma|0+v^*_L)
\] (A.22)

\[
v_i = e_i v^*_L + e_i^1 v^*_R \quad i=1,\ldots,5
\] (A.23)

Combining the equation \(u^T_i Q_i v_j = y + r_j\) in (A.8) with equalities (A.21), (A.23) and \(Q_i = e^T_i Q^*_i + \tilde{Q}^*_i\) in (A.34), one has (for each \(i = 1,\ldots,5\)):

\[
y + r_i = u^T_i Q_i v_j = (e_i u^*_L + e_i^1 u^*_R) (e^2_i Q^*_i + e^2_i \tilde{Q}^*_i) (e_i v^*_L + e_i^1 v^*_R)
\]

\[
= u^T_i Q_i v_j + u^T_i Q_i v_j + (u^T_i Q_i v_j + u^T_i Q_i v_j) e_i^2
\]

\[
+ (u^T_i Q_i v_j + u^T_i Q_i v_j) e_i^2 + u^T_i Q_i v_j e_i^4
\] (A.24)

Put \(r_j\)'s expression (A.34.3) into (A.24) and after simple calculations, one gets:

\[
u^T_i Q_i v_j + u^T_i Q_i v_j + u^T_i Q_i v_j + u^T_i Q_i v_j - C_1 e_i^2
\]

\[
+ (u^T_i Q_i v_j + u^T_i Q_i v_j - C_1) e_i^2 + (u^T_i Q_i v_j - D_2) e_i^4 + (u^T_i Q_i v_j - D_2) e_i^4 = 0
\] (A.25)

i.e., the degree-4 polynomial in \(T\)

\[
u^T_i Q_i v_j - D_1 + (u^T_i Q_i v_j + u^T_i Q_i v_j - C_1) T + (u^T_i Q_i v_j + u^T_i Q_i v_j - C_1) T
\]

\[
+ (u^T_i Q_i v_j + u^T_i Q_i v_j - C_1) T + (u^T_i Q_i v_j - D_2) T
\]

has 5 distinct zeros \(e_i^2\) in \(E_3; i = 1,\ldots,5\), which implies all its coefficients are zero:

\[
C_1 = u^T_i Q_i v_j + u^T_i Q_i v_j, \quad C_2 = u^T_i Q_i v_j + u^T_i Q_i v_j
\]

\[
D_1 = u^T_i Q_i v_j, \quad D_2 = u^T_i Q_i v_j \quad y = u^T_i Q_i v_j + u^T_i Q_i v_j = u^T_i Q_i v_j
\] (A.26)

where

\[
u^*_L = u^*_L + u^*_R, \quad v^*_R = v^*_L + v^*_R
\] (A.27)

These results show that \(u^*_L, v^*_R\) satisfy the bilinear equation \(y = u^T_i Q_i v_j\) and the two commitments. The above arguments also provides an efficient knowledge extractor
which computes the witness \((u^*, v^*)\) and all related variables in consistency with the protocol’s specification from 5 accepting traces\(\{\text{Tr}_i; e_i^j \neq e_i^j, i=1,2,3,4,5\}\). Since this fact is true for each recursive step, the whole protocol is \((s, \ldots, s)\)-special-sound.

APPENDIX B. Proofs of lemma 3 and 4

Lemma 3 If ZKAO/K/R has SHVZK property, then CNM-ZKAO/K/R is zero-knowledge in the sense of definition 8(3).

Proof Let \(S^0\) be zero-knowledge simulator of ZKAO/K/R, the simulator \(S = (S_1, S_2)\) for CNM-ZKAO/K/R is constructed in the following:

\(S_1(\lambda)\):

- Generate the c.r.s. \(\sigma\) for ZKAO/K/R;
- Compute \((pk, sk) = \text{TGen}(\lambda); \; \sigma^* = [\sigma, pk]\);
- Output \((\sigma^*, sk)\)

\(S_2(\tau, \sigma^*, x)\):

Compute \((s_{vk}, s_{sk}) = \text{KG}(\lambda)\);

For each \(1 \leq i \leq k\):

Compute \(t_i = H(s_{vk}||i); (Y_i, \delta_i) = \text{TCFakeCmt}(pk, sk, t_i)\); (B.1)

Send message \([s_{vk}, Y_i]\) to \(V^*\);

For the \(i\)-th challenge \(e_i\) from \(V^*, 1 \leq i \leq k-1\), response \(V^*\) with \(Y_{i+1}\);

For the \(k\)-th challenge \(e_k\) from \(V^*\), compute:

\[
\begin{align*}
(X_{1}, \ldots, X_{k}, X_{k+1}) &= S^0(\sigma, x, e_1, \ldots, e_k); \\
D_i &= \text{TCFakeDmt}(\delta_i, Y_i, X_i, t_i); 1 \leq i \leq k-1 \\
\tilde{Z} &= (X_i, D_1, \ldots, X_i, D_i, X_{k+1}); \\
\tilde{U} &= (Y_i, e_1, \ldots, Y_i, e_k); \\
s^* &= \text{Sgn}(s_{sk}, s_{vk})||\tilde{U}||\tilde{Z}^*; \\
\text{Then send } [\tilde{Z}^*, s^*] \text{ to } V^*.
\end{align*}
\]

According to the above construction, the \(P \rightarrow V^*\) trace simulated by \(S\) is \(\text{TR} = [s_{vk} Y_1, Y_2, (X_1, D_1, \ldots, X_i, D_i, X_{k+1}), s]\). Now we claim that \(\text{TR}\) is computationally indistinguishable with the real \(P \rightarrow V^*\) trace \(\text{tr} = [s_{vk} Y_1, Y_2, (X_1, D_1, \ldots, X_i, D_i, X_{k+1}), s]\).

Obviously in \(\text{TR}\) and \(\text{tr}\) both \(s_{vk}\)'s are in the same distribution, furthermore the tags \(t_i = H(s_{vk}||i)\) in \(\text{TR}\) and \(\text{tr}\) are in the same distribution.

Due to (B.1), (B.2) and \(S^0\)'s trapdoor property (definition 8), for each \(1 \leq i \leq k\) there is the following computational indistinguishability:

\[
(X_i, t_i, Y_i, D_i) \leftrightarrow (X_i, t_i, \overline{Y}_i, \overline{D}_i)
\]

where \((\overline{Y}_i, \overline{D}_i) = \text{TGen}(pk, X_i, t_i)\) (B.3)

hence

\[
\text{TR} \leftrightarrow \overline{\text{TR}}
\]

where \(\overline{\text{TR}} = [s_{vk}, \overline{Y}_1, \ldots, \overline{Y}_k, (X_1, \overline{D}_1, \ldots, X_i, \overline{D}_i, X_{k+1}), \overline{s}]\), \(\overline{s} = \text{Sgn}(s_{sk}, s_{vk})||\overline{U}||\overline{Z}\), \(\overline{U}\) and \(\overline{Z}\) are the expressions resulted from replacing \(Y_i\) with \(\overline{Y}_i\), \(D_i\) with \(\overline{D}_i\) in \(U^*\)'s and \(Z^*\)'s expressions (see (B.2)).

For simulator \(S^0\) there holds:
\[(X_1, \ldots, X_n, X_{k+1}) \mapsto (x_1, \ldots, x_n, x_{k+1})\]

(B.5)

where \((x_1, \ldots, x_n, x_{k+1})\) is the real message sequence output from \(P\). In CNM-ZK AoK/R each \(x_i\) has the commitment:

\[(y_i, d_i) = \text{TCmt}(pk, x_i, H(s_{vk}||i))\]

(B.6)

So (B.3)–(B.6) implies:

\[
\text{TR} \xleftrightarrow{c} \text{tr} \tag{B.7}
\]

where \(\text{tr} \equiv [s_{vk}, y_1, \ldots, y_n,(x_1, d_1, \ldots, x_i, d_i, x_{k+1}), s]\), \(s \equiv \text{Sgn}(s_{sk}, s_{vk}||U||Z)\), \(U\) and \(Z\) are the expressions resulted from replacing \(y_i\) with \(y_i\), \(X_i\) with \(x_i\), \(d_i\) with \(d_i\) in the expressions of \(U\) and \(Z\). Obviously, \(\text{tr}\) and the real trace are in the same distribution.

Lemma 4 Suppose the protocol ZK AoK/R is \((\mu_1, \ldots, \mu_k)\)-special sound, then there exists an extractor \(\text{Ext}\) for protocol CNM-ZK AoK/R as specified in def.8. Let the event \(\text{EXT}\) be “\(\text{Ext}\) outputs a \(w'\) s.t. \((x', w') \in R\) for an accepting statement \(x'\)”, \(|E|\) be the cardinality of the space for the verifier to sample challenges, then:

\[
P[\text{EXT}] > \pi(P^*|\lambda) - \sum_{i=1}^{k} \mu_i/|E| - \text{Adv}_{\text{SC}}^{|V|}(\lambda) \prod_{i=1}^{k} \mu_i + \text{poly}(\lambda)\text{Adv}^{|V|}_{SG}(\lambda)
\]

(Adv^{|V|}_{SG} specified in def. 7, \(\pi(P^*|\lambda)\) in def. 8) and \(\text{Ext}\)’s running time is \(\text{poly}(\lambda)\).

Proof Let \(P^* = (P_1^*, P_2^*)\) be a P.P.T. algorithm which convinces the verifier with a statement \(x^*\) in the game \(\text{Exp}^*\) in definition 8, i.e:

\[
(x^*, \text{Tr}^*, b^*) = (\underbrace{S(\ell)}_{\text{S1}}, P_1^* | P_2^*, V)\rangle
\]

with \(b^* = 1\) \(\forall_{\text{Tr}^*} \text{Tr}^*\) is unmatched with any \(\text{Tr}\).

where \(\text{Tr}^* \equiv [s_{vk^*}, y_1^*, \ldots, y_n^*, (x_1^*, d_1^*, \ldots, x_i^*, d_i^*, x_{k+1}^*), s^*]\), \(S \equiv (S_1, S_2)\) be the simulator constructed in lemma 3’s proof. For presentational simplicity, let \(\mu_1 = \ldots = \mu_k = \mu\), otherwise for \(\mu = \max \mu_i\) the following argument is still valid.

We construct a P.P.T. extractor \(\text{Ext}\) which calls \(P^*\) and interacts with it both in the role of prover (via its component algorithm \(\text{Ext}:P\)) and the role of verifier (via the component algorithm \(\text{Ext}:V\)). Since \(\text{Ext}\) can rewind \(P^*\) (mainly \(P_2^*\) in the following) to any state, for presentational simplicity we take an equivalent view in concurrent environment that \(\text{Ext}\) can fork \(P^*\) instance at any state. The forked instance inherits its parent state and proceeds as specified in the protocol from that state on.

\(\text{Ext}\) executes the interactions with \(P^*\) in the follow way:

In the role of prover, \(\text{Ext}:P\) calls the simulator \(S\) to interact with \(P_1^*\). Note that \(S_1\) calls STSC’s key-generator TCGen to generate and output the public/secret key pair \((pk, sk)\) so \(\text{Ext}\) can obtain this key pair from \(S\).

In the role of verifier, each time right before \(\text{Ext}:V\) sends the first challenge \(e_1\) to \(P_2^*\), \(\text{Ext}\) forks it into \(\mu P_2^*\)-instances and sends randomly independent and pairwise distinct challenges \(e_i^{(1)}, i = 1, \ldots, \mu\) to each \(P_2^*\)-instance.

Every time right before \(\text{Ext}:V\) sends the second challenge \(e_2\) to some \(P_2^*\)-instance, \(\text{Ext}\) forks it into \(\mu P_2^*\)-instances, sends independent and pairwise distinct challenges \(e_i^{(2)}, i = 1, \ldots, \mu\) to each instance.

Every instance inherits its parent’s state and proceeds after receiving its chal-
Let $T(x^*)$ be a tree constructed as stated in definition 3 for the above interactions, with $[s_y, y_1^*, y_1^*]$ as its root. According to the above operation, $T(x^*)$ is a session tree and each path γ in the tree is a trace $T_\gamma \leq P_2^+ V(\gamma(x^*))$. Since the verifier generates k challenges in CNM-ZKAoK/R, i.e., each path in $T(x^*)$ has k edges along it, so in the tree:

- Total number of edges $N = \mu^1 t^1 + \ldots + \mu^k t^k < \mu^{k+1}$
- Total number of nodes $M = 1 + \mu^1 t^1 + \ldots + \mu^{k+1} < \mu^k$ (B.8)
- Total number of paths $K = \mu^k$

Define a event Succ as:

Tree $T(x^*)$ is accepting, i.e., $b^*(\gamma) = 1$ for every path γ in the tree.

Consider two subevents $P[\text{Succ} \wedge T^0(\gamma)]$ and $P[\text{Succ} \wedge \sim T^0(\gamma)]$.

In the event of $\text{Succ} \wedge T^0(\gamma)$, Succ occurs and all session variables x_i associated with nodes $y_i(\gamma)$ ($y_i(\gamma)$ stands for a node on path γ and at level i) in the accepting tree $T(x^*)$ are in consistency with each other, i.e., $x_i(\gamma) = x_i(\beta)$ for any path γ and β bifurcating at node $y_i(\gamma)$ (so $x_i(\gamma) = y_i(\beta) \equiv y_i$ for $i \geq 1$), so after replacing each node y_i with x_i one can obtain an accepting session tree of protocol ZK AoK/R, denoted as $T^0(\gamma)$.

Since ZK AoK/R is (μ_1, \ldots, μ_k)-special sound, its P.T.T. extractor Ext^0 can be called by Ext to output a w^* s.t. $(x^*, w^*) \in R$. In particular:

$$P[\text{Succ} \wedge T^0(\gamma)] \leq P[\text{Ext} \text{ outputs } a w^* \text{ s.t. } (x^*, w^*) \in R]$$ (B.9)

and note that the event on the right side is just Ext.

For arguments on the complimentary event $\text{Succ} \wedge \sim T^0(\gamma)$, i.e., no session tree for protocol ZK AoK/R can be successfully derived from $T(x^*)$ in the abovementioned way, we consider two further subcases.

Case 1: s_yk^i does not appear in any message output from S_2

We construct a P.T.T. algorithm A on basis of P^* to destroy SSTC’s simulation soundness in this case. A has SSTC’s public key pk as one of its inputs, has access to oracle-O(.|sk) and controls interactions of S (in role of prover) and V with P^* similarly as Ext does. During the interactions, whenever S_2 needs to generate the message Y_i or D_i in the protocol (see (B.1) and (B.2)), A queries its oracle-O(.|sk) with [“commit”, t_i] or [“decommit”, Y_i, X_i] and returns the oracle’s response to S_2.

In the event of $\text{Succ} \wedge \sim T^0(\gamma)$, there exist at least two paths γ^* and γ^* in $T(x^*)$ which bifurcate at some node $y_i(\gamma^*) = y_i(\gamma^*) \equiv y_i$ for $i \geq 1$ with the associated session variables unequal: $x_i(\gamma^*) \neq x_i(\gamma^*)$. On the other hand, $b(\gamma^*) = b(\gamma^*) = 1$ so

$$\text{TC}v_{\text{pk}}(y_i^*, x(\gamma^*), t_i, d(\gamma^*)) = 1 \wedge \text{TC}v_{\text{pk}}(y_i^*, x(\gamma^*), t_i, d(\gamma^*)) = 1$$

where $t_i = H(s_yk^i||i)$ is independent with any path.

In case I s_yk^i does not appear in any message output from S_2 and H is collision-resistant, no t_i can be in the set of tags once received by oracle-O(.|sk). As a result, the algorithm A generates a output destroying scheme SSTC’s simulation soundness with the probability

$$p_t = P[\text{Succ} \wedge \sim T^0(\gamma) \wedge \text{Case I}] \leq M \text{ Adv}_{SSTC}^S(\lambda) < \mu^k \text{ Adv}_{SSTC}^S(\lambda)$$ (B.10)
Case II: \(s \cdot v_k^* \) does appear in some message output from \(S_2 \)

On basis of \(P^* \), we construct a P.P.T. algorithm \(B \) to destroy strong unforgeability of the one-time signature scheme \(SG \) in this case. \(B \) has the signature verification key \(s \cdot v_k^* \) as one of its input and has access to the signing oracle-OSgn(\(|s \cdot v_k^*| \)) at most one-time.

Let \(T \) be total number of message sequences output from \(S_2 \) during interactions with \(P^* \). \(B \) selects a \(m \in \{1,2,\ldots,T\} \) uniformly, inserts \(s \cdot v_k^* \) into the \(m \)-th message sequence during the interactions between \(S_2 \) and \(P^*_1 \), and generates the signature of this trace required by CNM-ZKAoK/R via accessing oracle-OSgn(\(|s \cdot v_k^*| \)).

If the \(m \)-th sequence \(Tr_m \) is the one where \(s \cdot v_k^* \) appeared, then \(B \) makes \(P^* \) succeed in generating an accepting trace \(Tr \neq Tr_m \). The fact that \(Tr \) contains a signature \(s^* \) satisfying \(\forall(x \cdot v_k^*,Tr,x,s^*)=1 \) implies \(B \)'s success in destroying \(SG \)'s one-time unforgeability. Obviously:

\[
p_{II} = P[\text{Succ} \land \sim T^0(x^*) \land \text{Case II}] \leq TAdv^{UF(1)}_{SG}(\lambda)
\]
(B.11)

Since Case I and II are complementary, from (B.10) and (B.11) one obtains

\[
P[\text{Succ} \land \sim T^0(x^*)] = p_I + p_{II} \leq \mu^kAdv^{SS}\overline{\mu}_{SG}(\lambda) + TAdv^{UF(1)}_{SG}(\lambda)
\]
(B.12)

Combining (B.9) and (B.12) one has:

\[
P[\text{Succ}] = P[\text{Succ} \land \sim T^0(x^*)] + P[\text{Succ} \land T^0(x^*)] \\
\leq P[\text{EXT}] + \mu^kAdv^{SS}\overline{\mu}_{SG}(\lambda) + TAdv^{UF(1)}_{SG}(\lambda)
\]
(B.13)

On the other hand, one can apply an analysis similar as that in sec.3 in [13] (see lemma 5 there) to obtain a lower-bound of \(P[\text{Succ}] \) as:

\[
P[\text{Succ}] < \pi(P^*|\lambda) - k\mu|E|
\]
(B.14)

So

\[
P[\text{EXT}] > \pi(P^*|\lambda) - k\mu|E| - \mu^kAdv^{SS}\overline{\mu}_{SG}(\lambda) + TAdv^{UF(1)}_{SG}(\lambda)
\]
(B.15)

Note that \(n, T = \text{poly}(\lambda), \mu = O(1) \) and \(k = O(\log n) \) so the third and fourth terms in (B.15) are both negligible in \(\lambda \). According to Ext’s construction, its running time is \(\mu^k \text{poly}(n) = O(\text{poly}(n)) = O(\text{poly}(\lambda)) \). This completes the proof.

APPENDIX C. More about ZKA for Matrix Linear Relations

C.1 ZKA for Eigenvalue Relation: \(\lambda u = \lambda u \)

Consider the eigenvalue relation over residue ring \(Z_m \) for matrix \(\mathbf{A} \in Z_{m}^{n \times n} \), vector \(\mathbf{u} \in Z_{m}^{n} \) and eigenvalue \(\lambda \) in \(Z_{m} \): \(\mathbf{A}\mathbf{u} = \lambda \mathbf{u} \) where \(\mathbf{A} \) is the witness (otherwise the problem is trivial), \(\mathbf{u} \) and \(\lambda \) are public. \(n = \text{td} \) is a power of 2 and \(d \) is the extension degree

\(^{6} \) Event Succ implies that Ext successfully outputs a witness of \(x^* \) which probability’s lower bound established in lemma 5 in [13] is \(\varepsilon - \kappa \), where \(\varepsilon \) is the success probability of a dishonest prover \(P^* \) to cheat the verifier. By definitions and notations in this paper, \(\varepsilon \) is just \(\pi(P^*|\lambda) \) (see def.8 in sec.5). Furthermore the expression of \(M \) in our notations here is \(\kappa = 1 - \prod_{i=1}^{l}(1 - \mu)/|E| \). Since \(\kappa < \mu|E| \) so \(P[\text{Succ}] > \pi(P^*|\lambda) - k\mu|E| \).
of Galois ring \(S \equiv \text{GR}(m,d) = \mathbb{Z}_m[x]/(f(x)) \) which value is determined by the target knowledge-error.

Let \(A = \begin{bmatrix} A_1 \\ \vdots \\ A_i \end{bmatrix} \) with each \(A_i \in \mathbb{Z}_m^{d \times n} \), the equation \(Au = \lambda u \) is equivalent to

\[
A_i u = \lambda u^{(i)} = \lambda \begin{bmatrix} u_{1+i(1-1)d} \\ \vdots \\ u_{ld} \end{bmatrix}, \quad i = 1, \ldots, t \tag{C.1}
\]

For randomness \(\rho \) in \(E_5 \) the relation (C.1) is equivalent with probability \(> 1 - \frac{t}{p^d} \) to the relation:

\[
\sum_{i=1}^t A_i \rho^{i-1} u = \lambda \sum_{i=1}^t \rho^{i-1} u^{(i)} \equiv \lambda u_\rho \tag{C.2}
\]

i.e.,

\[
[A_1, \ldots, A_i] \begin{bmatrix} u \\ \rho u \\ \vdots \\ \rho^{i-1} u \end{bmatrix} = \lambda u_\rho \tag{C.2}
\]

This is a collection of \(d \) linear relations over \(S \). Let \(A^* \) and \(u_\rho^* \) be the matrix and vector on left side of (C.2), left-multiplying this equality by \([1, \delta, \delta^2, \ldots, \delta^{d-1}] \) furthermore equivalently reduces it to the following relation with probability \(> 1 - \frac{t}{p^d} \):

\[
[1, \delta, \delta^2, \ldots, \delta^{d-1}] A^* u_\rho^* = \lambda [1, \delta, \delta^2, \ldots, \delta^{d-1}] u_\rho^* \equiv \lambda \tilde{u}_{\rho, \delta}
\]

i.e.,

\[
a_d \in S^{d \times n} \in S^{n^t} \text{ and } \lambda \tilde{u}_{\rho, \delta} \text{ in } S \text{. Let } \sigma = [G, g, m] \text{ be the public-key for the commitment scheme with } m \text{ G-elements in } g \text{ and used as the c.r.s, } \lambda \text{ is the commitment to matrix } A:
\]

\[
G^d \exists A = \text{Cmt}(\sigma([A_1, \ldots, A_i]))
\]

\[
\begin{bmatrix}
\text{cmt}_\sigma(A_1(1,1), \ldots, A_1(1,n), \ldots, A_i(1,1), \ldots, A_i(1,n)) \\
\vdots \\
\text{cmt}_\sigma(A_1(d,1), \ldots, A_1(d,n), \ldots, A_i(d,1), \ldots, A_i(d,n))
\end{bmatrix}
\]

\[
\text{(C.4)}
\]

then (C.3) is a linear relation over \(S \) with witness \(a_d \in S^{n^t} \) which commitment can be computed from the commitment to matrix \(A \) by (see (2.7)–(2.7)):

\[
\text{Cmt}(\sigma | a_d^*) = A^{G^d} \text{ (C.5)}
\]

where \(A^d \in \mathbb{Z}_m^{d \times d} \) is the coefficient matrix of polynomials \(1, \delta, \delta^2, \ldots, \delta^{d-1} \) in \(S \):

\[
\begin{bmatrix}
1 \\
\delta \\
\vdots \\
\delta^{d-1}
\end{bmatrix} = \Gamma_d \begin{bmatrix}
1 \\
X \\
\vdots \\
X^{d-1}
\end{bmatrix} \mod f(X)
\]

\[
\text{(C.6)}
\]

In summary, if the eigenvalue relation over \(\mathbb{Z}_m \) is defined as:

\[
\text{SEVR}(\sigma | A, u; \lambda; \gamma) \text{: (C.7)}
\]

\[
A = \text{Cmt}(\sigma | A; \gamma) \land Au = \lambda u
\]
where \(\mathbf{A} \in \mathbb{Z}_m^{n \times n}, \mathbf{u} \in \mathbb{Z}_m^n, \lambda \in \mathbb{Z}_m \) and \(\text{Cmt}(\sigma|\mathbf{A}) \) is specified by (C.4), then for independent randomness \(\mu, \delta \) in \(\mathbb{E}_3 \) it is probabilistic-equivalent to the linear relation (C.3) over Galois ring \(S \) with witness \(\mathbf{a}^\omega \in S^n \) which commitment is computed by (C.5) from \(\mathbf{A} \) and the reduction soundness factor is \(t + d = n + d \). The compressed ZKA protocol constructed for (C.3) has \(4 \log n - 2 \log d - 1 \) rounds, \((4 \log n - 2 \log d - 3) \) \(d \)-elements and totally \(6 \log n - 3 \log d \) \(S \)-elements in its messages, reducing the costs of vector-oriented approach by the amounts similar as indicated in table 2.

C.2 ZKA for Linear Matrix Relation: \(\mathbf{AUB}^T = \mathbf{C} \)

Consider the linear relation over residue ring \(\mathbb{Z}_m \) for matrix \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{U} \in \mathbb{Z}_m^{n \times n} \) where \(\mathbf{U} \) is the witness, \(n = td \) is a power of 2 and \(d \) is the extension degree of Galois ring \(S \equiv \text{GR}(m, d) \) which value is determined by the target knowledge-error. Let

\[
\mathbf{U} = [\mathbf{U}_1, \ldots, \mathbf{U}_t], \quad \mathbf{C} = [\mathbf{C}_1, \ldots, \mathbf{C}_t] \quad \text{with each} \quad \mathbf{U}_i, \mathbf{C}_i \in \mathbb{Z}_m^{n \times d}
\]

Both \(\mathbf{U}^r \) and \(\mathbf{C}^r \) can be regarded as the matrices with row-index \((kl)\) and column-index \(h \) for \(k=1, \ldots, n, \; l=1, \ldots, t, \; h=1, \ldots, d \):

\[
\mathbf{U}^r_{k,l,h} = \mathbf{U}_{k,(l-1)d+h}, \quad \mathbf{C}^r_{k,l,h} = \mathbf{C}_{k,(l-1)d+h}
\]

By reformulating the indices, the component-wise form of the equation \(\mathbf{AUB}^T = \mathbf{C} \) can be represented as:

\[
\mathbf{C}_{i,j} = \sum_{k=1}^n \sum_{l=1}^t \sum_{h=1}^d A_{ik}B_{(j-1)d+q,(l-1)d+h}\mathbf{U}_{k,(l-1)d+h} \quad i=1, \ldots, n, \; j=1, \ldots, t, \; q=1, \ldots, d
\]

i.e., \(\mathbf{\tilde{C}} = \mathbf{\Omega}(\mathbf{A}, \mathbf{B})\mathbf{U}^r \) (C.8)

where \(\mathbf{\tilde{C}} \in \mathbb{Z}_m^{n \times d} \) has entries \(\tilde{C}_{ij} = \sum_{k=1}^n \sum_{l=1}^t \sum_{h=1}^d A_{ik}B_{(j-1)d+q,(l-1)d+h} \mathbf{U}_{k,(l-1)d+h} \) and \(\mathbf{\Omega}(\mathbf{A}, \mathbf{B}) \in \mathbb{Z}_m^{n \times n} \) has entries:

\[
\mathbf{\Omega}(\mathbf{A}, \mathbf{B})_{ij} = A_{ik}B_{(j-1)d+q,(l-1)d+h} \quad i, k=1, \ldots, n; \; j, l=1, \ldots, t
\]

(C.9)

In summary, the relation \(\mathbf{AUB}^T = \mathbf{C} \) with witness \(\mathbf{U} \in \mathbb{Z}_m^{n \times n} \) is equivalent to the relation (C.8) with witness \(\mathbf{U}^r \in \mathbb{Z}_m^{n \times d} \). The ZKA protocol for the former can be equivalently constructed for the latter with the method presented in sec.3.1~3.2, with performance indicated in the second column in tab.2.

C.3 ZKA for Linear Matrix Relation: \(\mathbf{AU} + \mathbf{UB}^T = \mathbf{C} \)

Consider the linear relation over residue ring \(\mathbb{Z}_m \) for matrix \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{U} \in \mathbb{Z}_m^{n \times n} \) where \(\mathbf{U} \) is the witness, \(n = td \) is a power of 2 and \(d \) is the extension degree of Galois ring \(S \equiv \text{GR}(m, d) \) which value is determined by the target knowledge-error.

Let \(\mathbf{U}^r \) and \(\mathbf{C}^r \) be specified as in C.2, obviously in the same way as that in C.2 \(\mathbf{AU} + \mathbf{UB}^T = \mathbf{C} \) is equivalent to the equation

\[
\mathbf{\tilde{C}} = (\mathbf{\Omega}(\mathbf{A}, \mathbf{B}) + \mathbf{\Omega}(\mathbf{B}, \mathbf{C}))\mathbf{U}^r
\]

(C.10)
where $\Omega(A,B)$ is specified in (C.9) for any given matrix A and B. The ZKA protocol for $AU + UB^T = C$ can be equivalently constructed for (C.10) with the method presented in sec.3.1-3.2. The performance is indicated in the second column in tab.2.

C.4 Some Special Cases

Matrix-oriented approach can have some additional advantages in some special cases. Consider two linear matrix relations $AU = B$ and $CV = D$ where A, $C \in \mathbb{Z}_m^{\times n}$ and B, $D \in \mathbb{Z}_m^{d \times d}$. Of course they can be proved independently by running the proof protocols over $\text{GR}(m,d)$ established in sec.3.1-3.2., each with knowledge-error $\approx p^n \log n$. However, under some conditions there is more efficient way to prove $AU=B \land CV=D$ by running a single protocol instance with significantly lower knowledge-error $\approx p^{2d} \log n$ over the ring $\text{GR}(m,2d)$.

Let $M \in \mathbb{Z}_m^{d \times d}$ be a non-singular matrix such that $C = MA$. In this case the above two linear matrix equations are equal to just one equation:

$$AW = Y \quad \text{where} \quad W = [U, V] \in \mathbb{Z}_m^{n \times 2d}, \quad Y = [B, M^{-1}D] \in \mathbb{Z}_m^{l \times 2d} \quad \text{(C.11)}$$

If the ring $S=\text{GR}(m,2d)$ instead of $\text{GR}(m,d)$ is used to generate the commitment to W:

$$\text{Cmt}(\sigma|W) = \begin{bmatrix} u_1(1) & \cdots & u_d(1) & v_1(1) & \cdots & v_d(1) \\ \vdots & & \vdots & \vdots & & \vdots \\ u_1(n) & \cdots & u_d(n) & v_1(n) & \cdots & v_d(n) \end{bmatrix}$$

The relation (C.11) can be proved via the compressed ZKA protocol with knowledge error $\approx p^{2d} \log n$ approximately squaring the knowledge-error over the ring $\text{GR}(m,d)$) and message complexity $\approx 2d \log n$ (same as the total message complexity of independent running two proofs over $\text{GR}(m,d)$).

In particular, if $l = d$ and there exists a matrix $M \in \mathbb{Z}_m^{d \times d}$ associated with some element $e(X)$ in the exceptional set E of $\text{GR}(m,d) = \mathbb{Z}_m[X]/(g(X))$ such that $C = MA$, then the above method is feasible since in this case M is always non-singular (in fact M^{-1} is the matrix associated with e^{-1}).

Now we present a more explicit formulism about the condition $C = MA$ where M is associated with some element $e(X)$ in E. Note that $C = MA$ in \mathbb{Z}_m if and only if in $\text{GR}(m,d)$:

$$\sum_{i=1}^d c_i X^{-i} = \sum_{i=1}^d \left(\sum_{k=1}^d M_{ik} a_{kj} \right) X^{-i} = e(X) \sum_{j=1}^d a_j X^{-i} \mod g(X), \quad j=1,\ldots,d$$

i.e.,

$$\left(1.X.X^2,\ldots,X^{d-1}\right) C^T = e(X)\left(1.X.X^2,\ldots,X^{d-1}\right) A^T \mod g(X) \quad \text{(C.12)}$$

Let $(1.X.X^2,\ldots,X^{d-1}) C^T=(c_1(X),\ldots,c_d(X))$ and $(1.X.X^2,\ldots,X^{d-1}) A^T=(a_1(X),\ldots,a_d(X))$, the above condition is just the existence of some $e(X)$ in E such that

$$c_j(X) = e(X) a_j(X) \mod g(X) \quad \text{for} \quad j=1,\ldots,d$$

(C.13)

For $m = p^i$, let $\bar{c}_j(X) = c_j(X) \mod p$, $\bar{a}_j(X) = a_j(X) \mod p$. Since $\text{GR}(m,d)/(p)$ is isomorphic to $E \cup \{0\}$ and also isomorphic to Galois field F_{p^d} (Fact 2 in sec.2.3), $\bar{c}_j(X)$ and $\bar{a}_j(X)$ are polynomials over the field F_p. If (C.13) holds in $\text{GR}(m,d)$ then obviously it also holds in Galois field F_{p^d}, i.e., as polynomials over F_p.
\[\bar{\epsilon}(X) = \bar{e}(X) \bar{a}(X) \text{ for all } j = 1, \ldots, d \]

(C.14)

On the other hand, it can be proved by Hensel’s lemma (fact 4 in sec.2.3) that (C.14) implies (C.13) and \(\epsilon(X) \) can be efficiently computed for properly large \(d \).

In summary, in order to check the condition that there exists a matrix \(MeZ_m^{d \times d} \) associated with some \(e \) in the exceptional set \(E \) of ring \(GR(m,d) \) such that \(C = MA \), it is sufficient to check (C.12) modulo \(p \).

More generally, in case that there exist \(A \in Z_m^{k \times n} \) and non-singular matrices \(M_i \in Z_m^{d \times d} \), \(k = 1, \ldots, q \) such that \(A_k = M_iA \) for each \(k \), then \(k \) linear matrix equations

\[\bigwedge_{k=1}^{q} A_kU_k = B_k \]

can be equivalently proved for just one linear equation

\[AW = Y \text{ where } W = [U_1, \ldots, U_d] \in Z_m^{n \times qd}, \ Y = [M_1^{-1}B_1, \ldots, M_q^{-1}B_q] \in Z_m^{1 \times qd} \]

over the ring \(GR(m,qd) \) with the commitment to \(W \):

\[\text{Cmt}(\sigma|W) = \begin{bmatrix} cmt_1(u_{1,1}(1), \ldots, u_{1,d}(1), \ldots, u_{q,1}(1), \ldots, u_{q,d}(1)) \\ \vdots \\ cmt_d(u_{1,1}(n), \ldots, u_{1,d}(n), \ldots, u_{q,1}(n), \ldots, u_{q,d}(n)) \end{bmatrix} \]

The proof has knowledge error \(\approx p^{qd} \log n \) (approximately \(q \)-th power of the knowledge-error over the ring \(GR(m,d) \)) and message complexity \(\approx dq \log n \) (same as the total message complexity of running \(q \) independent proofs over \(GR(m,d) \)). The number of \(G \)-elements for commitment is \(dq \).

APPENDIX D: Generalized Compression via Dimension-Reduction Chain

In this section we introduce a class of mapping-sequence acting on witness space which maps high dimensional space into lower dimensional subspaces while reversible on basis of multi-images. This notion is an abstraction of constructing efficient ZKA protocols in current approach.

D.1 Dimension-Reduction Chain in Witness Space

Let \(\{W_j\} \) be a family of witness spaces where \(\lambda \) is the security parameter, \(\{J_j\} \) be a family of Abel groups, \(\{\Sigma\} \) be a family of common reference strings (c.r.s.), \(\{E_i\} \) be a family of random variables. For notation simplification, parameter \(\lambda \) is usually omitted.

\(F: \Sigma \times W \rightarrow W \times J \) is a function which output can be efficiently computed from its input. For \(X \in J, w \in W \) and \(\sigma \in \Sigma \), define the pre-image relation \(R_{\sigma,f} \) with \(\sigma \) as the c.r.s. as:

\[F(\sigma, w) = (w, X) \]

(D.1)

And let \(F_\sigma \) be the function \(F(\sigma, \cdot) : W \rightarrow W \times J \) with \(\sigma \) fixed.

Definition D.1 (Dimension-reduction chain) Let \(\gamma > 1 \) be a real number, \(\mu \) and \(m \) be positive integers. A finite sequence of \(4 \)-tuples \(\Pi_{\mu,\gamma}[W] = \{[W_i, \Omega_i, \Psi_i, \Phi]; i = 1, 2, \ldots, m\} \)
in linear space W is called a dimension-reduction chain (DRC) with reduction factor γ, soundness factor μ for relation family $\{R_{e,f}\}$, if they hold the following properties:

1. $\{W_i\}$ is a decreasing sequence for subspaces, i.e., $W=W_1 \supseteq W_2 \supseteq \ldots \supseteq W_n$ and $\dim W \geq \gamma \dim W_1 \geq \gamma \dim W_2 \geq \ldots \geq \gamma \dim W_n$.

2. For each i, the associated input/output algorithms for function Ψ_j: $\sum \times E \times W \times J \rightarrow \sum \times J$, function Φ: $\sum \times E \rightarrow \sum$ and function Ω: $E \times W_i \rightarrow W_{i+1}$ are all of polynomial time complexity.

 For any $e \in E$, let $\Omega_{e,w}$ represent the function $\Omega(e,w): W_i \rightarrow W_{i+1}$. $\Psi_{i,e,w}$ represent the function $\Psi_{(\sigma,e),i}: W \times J \rightarrow W_{i+1} \times J$ and $f \circ g$ represent function composition.

3. For any $\sigma \in \sum$, $e \in E$ and each j there always hold:

\[
F_{\Phi(\sigma,e)} \circ \Omega_{e,w} = \Psi_{i,e,w} \circ F_{\sigma}
\]

i.e.,

\[
F_{\Phi(\sigma,e)}(\Omega(e,w)) = \Psi_{i,e,w}(F_{\sigma}(w))
\]

4. There exists a P.P.T algorithm Ext such that for any i and $(w, X) \in W_i \times J$, if there are $(e_i, w_i) \in E \times W_{i+1}$, $j = 1, \ldots, \mu$ satisfying

\[
F_{\Phi(\sigma,e)}(w_i) = \Psi_{i,e,w_i}(w, X), \quad j = 1, \ldots, \mu
\]

then $\text{Ext}(\sigma, i, X, \{e_i, w_i: j = 1, \ldots, \mu\})$ outputs a $w^* \in W_i$ satisfying

\[
F(\sigma, w^*) = (w^*, X)
\]

with probability $\geq 1 - \varepsilon(\lambda)$ where $\varepsilon(\lambda)$ is a negligible function in λ.

According to property (1) the chain $\Pi_j[W]$’s length m always has the inequality

\[\log_{\lambda}(\dim W / \dim W_m) \leq m \leq \log_{\lambda} \dim W.\]

For a dimension-reduction chain $\Pi_j[W]$, property (3) implies relation $R_{e,f}$’s invariance under the mappings $\{\Omega, \Psi\}$ along the chain, i.e., if $R_{e,f}$ is true in space W_i then $R_{\Phi(\sigma,e),i} \circ F_{\Phi(\sigma,e)}$ is true in its subspace W_{i+1}. This property ensures completeness in ZKA protocol’s construction. Property (4) implies the reversibility of mappings $\{\Omega, \Psi\}$, i.e., as long as there are sufficient number of e and the associated relation instances $R_{\Phi(\sigma,e),i} \circ F_{\Phi(\sigma,e)}$ are true in subspace W_{i+1}, then a relation $R_{e,f}$’s instance is
true in super-space W_i and its witness can be efficiently computed from the witnesses of $R_{\Psi(\sigma,e)\rightarrow \Psi(\sigma,e)}$. This property ensures special-soundness for constructing ZKA protocol.

D.2 General Compressive Protocol’s Construction

In proof protocol’s construction, we can assign the operations specified by Ω_{ψ} (on the left side of Fig.1) to the verifier, the operations specified by Ψ_{ψ} (on the right side) to the prover and use challenges e’s to relate the operations on both sides. In this view, the fact that dimension-reduction chain’s properties (3) and (4) hold for every neighbor subspace pair W_i/W_{i+1} implies that the proof can be recursively constructed along the subspace chain from $W(=W_1)$ to the terminal subspace W_m. Since $m \approx \log_{d}(\dim W/\dim W_m)$, if the message is almost constant-size in each recursion, then the total message complexity is $O(\log(\dim W))$.

Let $\pi(.)$ be the projection to the set J. With this notation, for the function $\Psi: \sum \times \exists W_i \times J \rightarrow W_{i+1} \times J: \Psi(\sigma,e,w^{(i)},\Delta^{(i)}) \rightarrow (\omega^{(i+1)},\Delta^{(i+1)})$ we have

$$\Delta^{(i+1)} = \pi\Psi(\sigma,e,w^{(i)},\Delta^{(i)}) \quad \text{(D.5)}$$

In order to make the above ideas practical, the chain $\Pi_{\psi}[W]$ must have some additional properties specified in the following.

Definition D.2 In a dimension-reduction chain, function Ψ_i is called separable if there exist efficiently computable functions Θ_i, Δ_i and Γ_i such that

$$\pi_i\Psi_i(\sigma,e,w^{(i)},\Delta^{(i)}) = \Theta(\sigma,e,\Delta^{(i)}) \quad \text{(D.6)}$$

$$\Delta^{(i)} = \Gamma(\sigma,e,w^{(i)}) \quad \text{(D.7)}$$

Usually $\Delta^{(i+1)}$ and $\omega^{(i)}$ are some derived commitments or parameters necessary for recursive computations in protocol. Separable Ψ_i makes it feasible for the verifier to compute $\Delta^{(i+1)}$ from $\omega^{(i)}$ via two parts of information: one part is $[\sigma,e,\Delta^{(i)}]$ which is public so can be directly obtained, the other part is Δ_i which depends on witness $w^{(i)}$ so can be only obtained through the results computed by the prover via $\Gamma_i(\sigma,e,w^{(i)})$ and then sent to the verifier.

One of the effective approach to constructing the compressed protocol from the original π-protocol for relation $R_{\psi,F}$ (D.1) is to recursively expand its last message. Since the first message in π-protocol hides the witness perfectly, the expanded protocol is unnecessarily zero-knowledge. Based on the dimension-reduction chain’s properties including separability (D.6) and (D.7), the basic module for proving relation $R_{\psi,F}$ in space W is constructed in the following. The whole proof protocol can be obtained by combining the first two rounds in the original π-protocol and all the module instances here along the subspace chain.

The i-th session module of non-zero knowledge proof protocol for relation $R_{\psi,F}$ is:

$P \rightleftharpoons V$: V’s current input is $X^{(i)} \in J$, $\sigma^{(i)} \in \Sigma$, and $\Delta_i, 1 \leq j \leq i$.

(where $X^{(i)} = X$ is the commitment specified in $R_{\psi,F}$, $X^{(i)}$’s and $\sigma^{(i)}$'s were computed by V and Δ_i's were received from P in last sessions)
IF $i + 1 = m$
THEN($\Delta_m = w^{(m)}$ is the last message received by V)
V verifies $F(\sigma^{(m)}, w^{(m)}) = (w^{(m)}, X^{(m)})$
ELSE
V samples $e \leftarrow R$ and send e to P;
V computes $X^{(i+1)} = \Theta(\sigma^{(i)}, e, X^{(i)}, \Delta_i)$; $\sigma^{(i+1)} = \Phi(\sigma^{(i)}, e)$; $i = i + 1$;
ENDIF

$P \rightarrow V$: P’s current input is $X^{(j)} \in J$, $\sigma^{(j)} \in \Sigma$ and $w^{(j)} \in W$, $1 \leq j \leq i$ (where $w^{(1)} = w$ is the initial witness in $R_{\sigma,F}$).
P receives e from V;
P computes $\sigma^{(i+1)} = \Phi(\sigma^{(i)}, e)$ and $w^{(i+1)} = \Omega(e, w^{(i)})$;
IF $i + 1 = m$ (the last session)
THEN P sends $w^{(m)}$ to V;
ELSE P computes $\Delta^{(i+1)} = \Gamma(\sigma^{(i+1)}, e, w^{(i+1)})$;
P sends $\Delta^{(i+1)}$ to V;
$i = i + 1$;
ENDIF

Let NoZKA/R$\sigma,F[W]$ be the protocol constructed by combining all the module instances along the subspace chain, then we have:

Theorem D.1 If all the messages are in constant-size (independent of dimensions of witness spaces), then NoZKA/R$\sigma,F[W]$ is of $O(\log \dim W)$ message complexity, completeness and (μ_1, \ldots, μ_m)-special soundness.

Remark Combining the (μ_1, \ldots, μ_m)-special soundness and the results proved in [13], we have the conclusion that the whole proof protocol constructed via dimension-reduction chain, for instance all those in this paper, are ZKA protocols.

D.3 An Example

The concept of dimension-reduction chain covers all current compressed protocols’ constructions, among which the case of linear relation’s protocol is the simplest example. Here we present the construction in sec.4 as a relatively more complicated example, where:

- W_j is the vector space of witness $w \equiv (r, s, u, v)$ over the ring S.
- $J_j \equiv G^r \times G^s$ where G is a commitment-friendly group.
- $E_j \equiv E_2$, the exceptional set in ring S.
- $\sigma \equiv \{G, g, m\}$.

Given diagonal matrix Q and witness $w = (r, s, u, v)$, function $F(\sigma, w)$ is defined as:

$$F(\sigma, w) = (w, \text{Cmt}(\sigma_1[u]; r), \text{Cmt}(\sigma_2[v]; s))$$

For $X = (U, V) \in J_1$, $R_{\sigma,F}$ is the relation specified in (4.25).
For $\sigma \equiv \{G, g, m\}$ and $g \equiv (g_1, \ldots, g_n)$, the function Φ is defined as

$$\Phi(\sigma, e) \equiv \{G, g, m\}$$
where \(g_e \) is specified in (4.28).

For \(w = (r,s,u,v) \in W_i \), \(u = u_e + u_r \), \(v = v_e + v_r \), the function \(\Omega_i \) is defined as

\[
\Omega_i(e,w) = u_e + v_e
\]

where \(u_e = e(u_L + e^{-1}u_R) \), \(v_e = e(v_L + e^{-1}v_R) \).

For \(w = (r,s,u,v) \in W_i \) and \(X = (U,V) \in I \), the function \(\Psi_i \) is defined as :

\[
\Psi_i(\sigma,e,w,X) = (\Omega_i(e,w),U_e,V_e)
\]

where \(U_e = A_1^{-1} U^e B_1^3 \), \(V_e = A_2^{-1} V^e B_2^3 \) (i.e., (4.33)). All the coefficients \(A_1, A_2, B_1, B_2 \) are computed according to (4.31-4.32).

According to these formulas, \(\pi_i(\Omega_i(e,w,X) = (U_e,V_e) \) as the component of output of \(\Psi_i(\sigma,e,w,X) \) only depends on public information and the coefficients \(A_1, A_2, ..., D_1, D_2 \). These coefficients are completely determined by witness \(w \) and algorithms (4.31-4.32) defines \(\Gamma_i(\sigma,e,w^0) \) in definition D.2. As a result, function \(\Psi_i \) is separable.

In this dimension-reduction chain, each subspace has 1/2-dimension of its upstream neighbor, so the reduction factor \(\gamma = 2 \).

Property (3) for this chain, i.e., \(F_{\Phi \sigma}^{\Omega_i}(e,w) = \Psi_i(\sigma,e,w) \), can be verified straightforwardly which is just the homomorphic property of the commitment scheme. Property (4) is essentially proved in Theorem 5, i.e., the efficient algorithm Ext specified in definition 5 exists and the related soundness factor \(\mu \leq 5 \).

This example also shows that the dimension-reduction chain is not unique, e.g., there exists the chain with reduction factor \(\gamma = 4 \) or any \(\gamma = 2^i(<m) \). Protocol’s construction needs reasonable balance in selecting the appropriate chain. The higher the value of \(\gamma \) is, the fewer the number of rounds in the proof protocol while the higher the extractor’s complexity and the value of soundness factors will be.