
Powers of Tau in Asynchrony

Sourav Das∗, Zhuolun Xiang†, and Ling Ren∗
∗University of Illinois at Urbana-Champaign, †Aptos Labs

souravd2@illinois.edu, xiangzhuolun@gmail.com, renling@illinois.edu

Abstract—The q-Strong Diffie-Hellman (q-SDH) parameters
are foundational to efficient constructions of many cryptographic
primitives such as zero-knowledge succinct non-interactive argu-
ments of knowledge, polynomial/vector commitments, verifiable
secret sharing, and randomness beacon. The only existing method
to generate these parameters securely is highly sequential, re-
quires synchrony assumptions, and has very high communication
and computation costs. For example, to generate parameters for
any given q, each party incurs a communication cost of Ω(nq)
and requires Ω(n) rounds. Here n is the number of parties in
the secure multiparty computation protocol. Since q is typically
large, i.e., on the order of billions, the cost is highly prohibitive.

In this paper, we present a distributed protocol to generate q-
SDH parameters in an asynchronous network. In a network of n
parties, our protocol tolerates up to one-third of malicious parties.
Each party incurs a communication cost of O(q+n2 log q) and the
protocol finishes in O(log q+logn) expected rounds. We provide
a rigorous security analysis of our protocol. We implement
our protocol and evaluate it with up to 128 geographically
distributed parties. Our evaluation illustrates that our protocol is
highly scalable and results in a 2-6× better runtime and 4-13×
better per-party bandwidth usage compared to the state-of-the-
art synchronous protocol for generating q-SDH parameters.

I. INTRODUCTION

The q-Strong Diffie Hellman assumption, or q-SDH as-
sumption for short, refers to the cryptographic intractability
problem of computing a group element of the form (τ+ i)−1g
for any i ̸= −τ ∈ F, given {g, τ g, τ2g, . . . , τ qg}. Here, g is
a generator of a group G (typically an elliptic curve group),
and τ is a random field element from the scalar field F of G.
The vector {g, τ g, τ2g, . . . , τ qg} is referred to as the q-SDH
parameters, also known as the powers of τ .

The q-SDH assumption is used in many applications.
Boneh and Boyen [13] introduced the q-SDH assumption
to design a short signature scheme that does not rely on a
random oracle. Kate, Zaverucha, and Goldberg used the q-SDH
assumption to design a constant size polynomial commitment
scheme with constant size opening proofs [39]. This polyno-
mial commitment scheme and many of its follow-up schemes
have been used extensively in designing a variety of Succinct
Non-interactive Argument of Knowledge (SNARK) proto-
col [44], [53], [19], [33]. The q-SDH parameters have also been
used in designing efficient verifiable secret sharing [6], [5],
cryptographic accumulators [38], vector commitments [52],
distributed randomness beacon [11], etc.

For many applications, the degree q is typically very large.
For example, in vector commitment schemes, q is the size
of the committed vector, which can be very large [52]. In
SNARKs, q is proportional to the size of the SNARK circuit,
measured in the number of multiplication gates, which can
range from a few million to hundreds of millions [44].

For the q-SDH assumption to hold, it is critical to keep
τ hidden from an adversary A. Otherwise, A can trivially
break the q-SDH assumption and the security of the appli-
cations using it. One mechanism to generate such q-SDH
parameters is to rely on a trusted third party. Specifically,
a trusted party locally samples a random τ , computes and
publishes {g, τ g, τ2g, . . . , τ qg}, and then deletes τ . However,
this approach introduces a central trusted party and a single
point of failure, which is undesirable.

This paper studies the problem of distributed secure and
robust generation of q-SDH parameters in an asynchronous
network.

Existing works. Existing protocols [10], [41], [14], [46] for
generating q-SDH parameters follow the blueprint of [10].
These protocols assume a synchronous network plus a Byzan-
tine broadcast channel [43] and proceed in a round-robin
manner. Briefly, in these protocols, parties take turns to update
existing q-SDH parameters with a randomly chosen value and
broadcast the updated parameters to all other parties. Once
every party updates the q-SDH parameters with its private
randomness, the final output is obtained. Intuitively, as long
as one honest party updates the parameter and the protocol
terminates, the trapdoor τ remains hidden from the adversary.

Assuming the network is indeed synchronous and the
existence of a broadcast channel (or blockchain) with external
validity, the above protocols have several advantages. First,
the q-SDH parameters remain hidden from the adversary as
long as one honest party has contributed to it. Second, the set
of participants does not have to be fixed in advance, i.e., a
community can potentially decide on the fly to bring in more
parties to contribute to the parameter generation.

However, without assuming a broadcast channel, an honest
majority of parties are still needed in certain scenarios. More
specifically, we would like to distinguish two formulations of
the powers-of-tau: (i) all honest parties generate the q-SDH
parameters to use among themselves, (ii) any external party
can be convinced to use the generated q-SDH parameters. In
formulation (i), the fault tolerance is n − 1. However, such
formulation has limited practicality since all parties that require
q-SDH parameters must participate in the entire powers-of-tau
protocol. On the contrary, formulation (ii) is more suitable
for generating the setup for any external entities but has
a fault-tolerance of n/2; otherwise, an adversary corrupting

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24733
www.ndss-symposium.org

Table I: Comparison of protocols for generating secure q-SDH parameters. All of these protocols (including ours) generate updatable parameters
in the sense of [44]. We provide a detailed breakdown of our cost in Table III. We measure the computation cost as the number of elliptic
curve group multiplications.

Network
Model

Fault
Tolerance

Communication
Cost (Per Party)

Computation
Cost (Per Party)

Total Round
Complexity

Setup
Assumption

[10]∗, [41], [14], [46] sync. n− 1♠ Ω(nq)§ O(nq)‡ Ω(n) CRS, PKI†

This work async. n/3 O(q + n2 log q) O(q logn+ n2 log q)‡ O(logn+ log q) CRS PKI, RO
∗

[10], describe an protocol to generate CRS of the form C(α)g for some
random field element α and a circuit C from a family of F-arithmetic
circuits. Generating q-SDH parameters is a special case of [10].

† Existing protocols require PKI to implement a broadcast channel.
‡ State-of-the-art synchronous protocols [46] and our protocol require

parties to perform O(n) and O(n log q) bilinear pairing, respectively.
♠ The fault-tolerance n − 1 assumes a broadcast channel with external

validity.
§ The O(nq) per party communication cost is a lower bound as each

party needs to receive a message of length O(nq).

the majority parties can generate identically distributed q-
SDH parameters without using contributions from any honest
party. Indeed, all real-world deployments [1], [45], [2], [32],
[3] for generating q-SDH parameters assume an underlying
blockchain (such as Ethereum) which requires an honest
majority.

Synchrony assumption. The above protocols also have some
significant drawbacks, most notably, the reliance on the net-
work synchrony assumption. Briefly, if a party experiences
temporary network asynchrony, then other parties will time
out, skip that party, and move on. The fault tolerance is thus
reduced. If the network remains asynchronous for an extended
period of time, all honest parties may be skipped, and the
trapdoor τ will be fully controlled and known to the adversary,
as only adversarial parties will contribute randomness to the
final output.

Inefficiency and insecure deployments. Existing protocols
are inefficient and inherently sequential. They require running
O(n) sequential Byzantine broadcasts, once by each party,
where the party needs to send O(q) group elements through a
costly broadcast channel. Each party must wait for all previous
parties to update the q-SDH parameters. Moreover, each party
also needs to verify updates by all previous parties before
applying its own update.

To mitigate the inefficiencies, actual deployments of these
protocols often cut corners on robustness or security. For
example, one deployed version relies on a single party to act as
a broadcast channel [3]. Moreover, in most deployed versions,
parties skip verifying other parties’ updates during the protocol
and only verify the entire protocol transcript at the end. A
consequence is that a single malicious party can now make the
protocol produce invalid parameters by performing an invalid
update. If that happens, the only recourse is to restart the entire
protocol.

Even after cutting these corners on security and robustness,
existing protocols perform poorly. For example, according
to [32], to generate q-SDH parameters for q = 228, each
party needs to perform 24 hours of computation. Hence, with
n parties, the protocol would run for n days.

One might believe that a slow and costly q-SDH parameter
generation protocol is acceptable because it needs to be run
only once and can then be reused across all applications by all
organizations. This is not always the case. One reason is that
parameters generated by a set of parties may not be trusted
by another set of parties. For example, two startups Aztec [2]

and Semaphore [3] repeated the powers-of-tau ceremony for
the same elliptic curve BN254. Moreover, q-SDH parameters
are specific to an elliptic curve group and thus must be
generated from scratch if a system decides to adopt a new
curve. For example, very recently, Etherum [30] ran a powers-
of-tau ceremony for the BLS12381 elliptic curve, although
they have already run a powers-of-tau for the BN254 curve
before [2].

One might try to adapt the existing synchronous pro-
tocols [10], [41], [14], [46] to asynchrony, where parties
take turns to update the existing q-SDH parameters with
their private randomness and then broadcast the result. We
observe inherent difficulties in adapting these round-robin
approaches to asynchrony for the following reasons. First, it
is impossible to implement a Byzantine broadcast channel
in asynchrony. Intuitively, it is impossible to distinguish a
malicious broadcaster from an honest broadcaster with a slow
network. The standard broadcast definition under asynchrony,
namely reliable broadcast [15], does not require honest parties
to output in case of a malicious sender, which is clearly
insufficient for the previous constructions. Even for a stronger
asynchronous broadcast notion named atomic broadcast [17],
[16], it is impossible to output parties’ contributions in a round-
robin fashion due to the same reason that asynchrony makes
it impossible to distinguish malice from slowness.

Our contributions. In this paper, we present the first pro-
tocol for the distributed generation of q-SDH parameters in
asynchronous networks. Our protocol can tolerate up to t
malicious parties out of n ≥ 3t + 1 parties. Since the
powers-of-tau output are agreed upon, implying consensus,
one-third fault tolerance is optimal under asynchrony [29]. We
provide a detailed summary of the properties of our protocol
in Table I. The protocol finishes in O(log q + log n) rounds.
The per-party communication cost is O(q + n2 log q) group
elements, which improves the communication cost of prior best
synchronous protocols by a factor O(n). We also improve the
per-party computation cost to O(q log n) group multiplications
and O(n log q) pairings. Unlike existing protocols, our protocol
is also responsive, i.e., it makes progress at a rate of actual
network speed.

Evaluation. We implement our protocol in python with rust
for cryptographic operations. Our implementation is single-
threaded, supports the bls12381 elliptic curve, and is publicly
available*. We evaluate our protocol with a network of up

*https://github.com/sourav1547/qsdh-py

2

https://github.com/sourav1547/qsdh-py

Table II: Notations used in the paper

Notation Description

n Total number of parties
t Maximum number of malicious parties
κ Security parameter
G Group of order p with hard Discrete Logarithm
F Scalar field of group G
g, h Random and independent generators of G
q Maximum degree of the q-SDH parameters
τ q-SDH parameter trapdoor
JzK (n, t+ 1) Shamir secret sharing of z
JzK2t (n, 2t+ 1) Shamir secret sharing of z
JzKi, JzK2ti Shares received by party i
JzKg The set {JzK1g, JzK2g, . . . , JzKng}
[a, b] The set {a, a+ 1, a+ 2, . . . , b}
[a] The set {1, 2, . . . , a}

to 128 geographically distributed parties. We also compare
our protocol with the state-of-the-art synchronous protocol
as the baseline. We only implement the computation part of
the baseline and assume its networking to be instantaneous.
Our evaluation illustrates that our protocol gives 2-6× faster
runtime and 4-13× better per-party bandwidth usage. For
example, with n = 128 and q = 214, our protocol takes
515 seconds to generate the q-SDH parameters, whereas the
existing protocol takes at least 1805 seconds (3.5×). Similarly,
in the same experiment, each party in our protocol needs to
send 118.17 Megabytes of data, compared to 1536 Megabytes
of data (13×) in the existing protocol.

Paper organization. We give notations, the system model,
and an overview of our protocol in §II. In §III, we discuss the
required preliminaries. We provide a detailed description of
our protocol in §IV and §V. We analyze the correctness and
security of our protocol in §VI. We present implementation and
evaluation details in §VII. We discuss related works in §VIII
and conclude with a discussion and open problems in §IX.

II. SYSTEM MODEL AND OVERVIEW

A. Notations and System Model

We use κ to denote the security parameter. For example,
when we use a collision-resistant hash function, κ denotes the
size of the hash function output. We use |S| to denote the size
of a set S. Let G be a group of prime order p with scalar field
F. We will be using the additive notation for elliptic curve
operations. For any x ∈ F and any group element g ∈ G, we
use xg to denote the group operations repeated x times. For any
integer a, we use [a] to denote the ordered set {1, 2, . . . , a}.
Also, for two integers a and b where a < b, we use [a, b] to
denote the ordered set {a, a+ 1, . . . , b}.

For any x ∈ F, we use JxK to denote the (n, t+ 1) secret
sharing of x, i.e., x is secret shared using a polynomial of
degree t. Also, we use JxKi to denote the share held by party
i, and JxK0 to denote x. For a vector x, we use JxK to denote
the element-wise secret sharing of x. Similarly, we use JxKi
to denote the element-wise share of x held by party i.

Threat model and network assumption. We consider a
network of n parties where every pair of parties are connected
via a pairwise authenticated channel. We consider the presence

of a probabilistic polynomial time (PPT) malicious adversary
A that can corrupt up to t out of the n ≥ 3t+1 parties in the
network. We assume the network is asynchronous, i.e., A can
arbitrarily delay any message but must eventually deliver all
messages sent between honest parties.

State-of-the-art solutions to two building blocks of our
protocol, specifically, asynchronous distributed key generation
and random double sharing, assume the existence of a public
key infrastructure (PKI) for efficiency [26]. Both building
blocks can be instantiated without PKI at higher costs [42],
so the PKI assumption can be removed at the cost of lowering
the efficiency of the protocol if the application calls for it.

B. Problem Definition

The q-Strong Diffie-Helmann (q-SDH for short) refers to
the cryptographic intractability problem defined below.

Definition 1 (q-SDH Hardness): Let κ be the security pa-
rameter. Let G and F be a group and field of size exponential
in κ, respectively. Let g ← Gen(1κ) be a uniform random
generator of group G and τ ∈ F be a trapdoor. For any
given q, which is polynomially bounded in κ, given the vector
{g, τg, τ2g, . . . , τ qg}, q-SDH is assumed to be hard with
respect to this vector if the following probability is negligible
for all PPT adversary A

Pr[(c, (τ + c)−1g), c ∈ F \ {−τ} :

A(g, τ g, τ2g, . . . , τ qg); g← Gen(1κ), τ
$← F] (1)

The vector {g, τ g, τ2g, . . . , τ qg} is referred to as the q-
SDH parameters.

The goal of this paper is to design a distributed protocol
to implement FqSDH, as defined in Figure 2, i.e., to generate
{g, τg, τ2g, . . . , τ qg} for τ ∈ F at all honest parties given a
uniformly random generator g ∈ G as the common random
string (CRS). The protocol is called t-secure for t < n/3 if
the following Correctness and Secrecy properties hold in the
presence of an adversary A that corrupts up to t parties.

• Correctness. If all honest parties start the protocol, every
honest party will eventually terminate and output an identi-
cal vector {g, τ g, τ2g, . . . , τ qg} for some τ ∈ F.

• Security. For every PPT adversary A that corrupts up to
t parties, there exists a PPT simulator SqSDH such that on
input {g, τg, τ2g, . . . , τ qg}, the q-SDH parameters output
by the ideal functionality FqSDH, produces a view which is
identical to the A’s view of a run in the real protocol and
ends with {g, τg, τ2g, . . . , τ qg} as the q-SDH parameters.

Our security definition immediately implies that if A
can break the q-SDH hardness (definition 1) with respect to
the parameters generated by our protocol, we can design a
reduction adversary, using SqSDH, that can use A to break the
q-SDH assumption for parameters generated by FqSDH.

Remark. We want to note that since our protocol assumes
t < n/3, the parties can trivially convince any external entity
about the correct q-SDH parameters. One such approach using
signatures is that the client only accepts q-SDH parameters that
are signed by more than 1/3 of the parties. It is also possible
to achieve such guarantees without signatures using techniques
from [27].

3

Party 1

Party 2

Party 3

Party 4

ADKG
and

Double
Sharing of
Random
Values

All Powers Phase

Computing
Powers-of-

two

Powers-of-two Phase

Computing
All powers

Setup Phase

Figure 1: Overview of our protocol in a network of 4 parties where party 4 is malicious.

Functionality FqSDH

• Let G be a elliptic curve group with scalar field F. Let
g be a uniformly random generator of G.
• Sample a uniformly random element τ ∈ F. Compute
{g, τg, τ2g, . . . , τ qg} and send it to all parties.

Figure 2: The ideal functionality for generating q-SDH parameters

C. Overview of Our Protocol

One approach to generate q-SDH parameters in asynchrony
is to use a generic asynchronous secure multiparty compu-
tation (MPC) protocol for a circuit C that outputs q-SDH
parameters. However, this approach is very costly, primarily
for the following reasons. First, the circuit C consists of O(q)
multiplication gates, which the parties need to evaluate using
MPC multiplication units, such as multiplication triples or
random double sharings. The best-known concretely efficient
protocol for generating multiplication units in asynchrony has a
per-party per-triple communication cost of O(n2) [26]. Thus, a
generic MPC approach will result in a protocol with a per-party
communication cost of O(n2q), which is prohibitively expen-
sive. Although asymptotically, these costs might be reduced
using threshold FHE or threshold additively homomorphic
encryptions. But that will require asynchronous distributed
key generation (ADKG) protocol for such primitives, whose
concretely efficient constructions are unknown. Second, the
circuit C needs to resolve the discrepancy between the scalar
and the base field of the underlying elliptic curve. We elaborate
on this in §VIII.

This paper presents a new approach to distributed q-
SDH parameter generation. Our first main idea is to securely
compute τg for a uniformly random τ ∈ F. Moreover, we want
to have τ secret shared among the parties using a (n, t + 1)
Shamir secret sharing. We will then find a way to use the public
value τg and the secret shares of τ to compute the remaining
powers of τ efficiently. We will first describe a naïve method
that is incomplete and inefficient but demonstrates a core idea
in our final protocol.

Naïve approach. Let JτKi be the secret share of party i. The
protocol proceeds in rounds, where in the k-th round, parties
generate τk+1g using τkg. Thus, at the end of round k, parties
generate the parameters {g, τ g, τ2g, . . . , τk+1g}. At the start
of k-th round, each party i locally computes JτKiτkg and then
multicasts JτKiτkg to all parties. Also, party i upon receiving

JτKjτkg from t+ 1 distinct parties, computes τk+1g as

τk+1g =
∑
i∈T

λiJτKiτkg (2)

where λi is the appropriate Lagrange coefficient. A approach
similar to the above was used to generate q-Bilinear Diffie
Hellman Exponentiation (q-BDHE) parameters [40] in a dis-
tributed manner.

This approach, however, has two major issues. First, the
protocol is not robust, as a malicious party can send different
and inconsistent messages to different parties, violating Cor-
rectness. Second, the protocol is very inefficient. It requires
O(q) rounds of interaction and O(nq) per-party communica-
tion. Since q can be quite large in practice, say millions, this
naïve approach is impractical.

Ensuring Correctness. Addressing the Correctness issue is
relatively standard. Specifically, we need a mechanism for
honest parties to validate the messages they receive from
other parties. To achieve this, at the start of the protocol,
we require that parties additionally hold JτKg, i.e., the vector
[JτK1g, JτK2g, . . . , JτKng]. Then, each party i, when sending
JτKiτkg, attaches a non-interactive zero knowledge (NIZK)
proof πi proving that JτKiτkg is correctly computed from τkg
and JτKig.

For this plan to work, the next natural question is how
we establish the initial condition that parties agree on group
elements τg and JτKg, and also hold their individual secret
shares JτKi. Our second observation is that the above initial
condition exactly matches the output of an Asynchronous
Distributed Key Generation (ADKG) protocol. An ADKG
protocol generates a uniformly random secret key τ ∈ F where
each party i receives its share JτKi of the secret key, the public
key τg and the threshold public keys JτKg.

Reducing round complexity. One approach to reducing the
round complexity is once again generic secure multiparty
computation (MPC). Let C be the arithmetic circuit that outputs
all powers of τ in the exponent. Using repeated squaring, the
depth of C will be O(log q). However, as we mentioned earlier,
generic MPC has prohibitive communication costs.

We give an efficient method to reduce the round complexity
to O(log q) by combining the idea of the naïve approach and
the MPC approach. Our method matches the round complexity
of the generic MPC without incurring high communication
costs. At a high level, parties first use a customized MPC
protocol to compute τ2

k

g and secret shares of Jτ2
k

K for

4

each k ∈ [log q] (referred to as powers-of-two). For each
k ∈ [log q], parties additionally output Jτ2

k

Kg. Parties then
use these values to efficiently compute the remaining powers
using only O(log q) rounds of interaction.

Computing powers-of-two. Let Fsq be a secure MPC func-
tionality for squaring defined as follows. Fsq takes as input the
secret sharing of a, i.e., each party i inputs JaKi, and a publicly
available list of group elements JaKg. Fsq then outputs to party
i secret sharing of a2, i.e., Ja2Ki, and additionally outputs Ja2Kg
to all parties. We can then invoke Fsq sequentially log q times
to compute the powers-of-two values.

Computing remaining powers. We generate the remaining
powers of τ using the following ideas. We observe that given
ταg, secret shares of τβ (i.e., JτβK), and public values JτβKg,
parties can compute τα+βg, using a generalization of our naïve
approach. Now consider any a ∈ [q], we can write a as a
sum of a subset of elements in {1, 2, 22, 23, . . . , 2log(q)−1}
according to its binary representation. Let Sa be the subset.
Then, τag = τ

∑
k∈Sa

kg. It is easy to see that, using the
idea of multiplication in the exponent, parties can compute the
subset sum using |Sa|≤ O(log q) multiplications. Furthermore,
parties can compute τag for every a ∈ [q] in parallel.

Further optimizations. The method above incurs a per-
party communication cost of O(nq log q) and a per-party
computation cost of O(nq log q) group multiplications. In §V,
we discuss how we reduce the communication cost to O(q +
n2 log q) and the computation cost to O(q log n) group multi-
plications and O(n log q) bilinear pairings using memoization
and batching.

III. PRELIMINARIES

A. Threshold Secret Sharing

A (n, k) threshold secret sharing scheme allows a secret
s ∈ F to be shared among n parties such that any k of
them can come together to recover the original secret, but
any subset of k − 1 shares does not reveal any information
about the secret [49], [12]. We use the common Shamir
secret sharing [49] scheme, where the secret is embedded in
a random degree k− 1 polynomial in the field F. Specifically,
to share a secret s ∈ F, a polynomial p(·) of degree k − 1 is
chosen such that s = p(0). The remaining coefficients of p(·),
p1, p2, · · · , pk−1 are chosen uniformly randomly from F. The
resulting polynomial p(x) is defined as:

p(x) = s+ p1x+ p2x
2 + · · ·+ pk−1x

k−1

Each party is then given a single evaluation of p(·) evaluation.
In particular, the ith party is given p(i), i.e., the polynomial
evaluated at i. Observe that given k points on the polynomial
p(·), one can efficiently reconstruct the polynomial using
Lagrange Interpolation. Also, s is information-theoretically
hidden from an adversary that knows any subset of k − 1 or
fewer evaluation points on the polynomial other than p(0).

B. Asynchronous Distributed Key Generation

Our protocol uses asynchronous distributed key gener-
ation (ADKG) functionality FADKG, defined in Figure 10.
Concretely, we run ADKG protocol from [26]. At the end of
the ADKG protocol, parties output a (n, t+ 1) Shamir secret

sharing of a random value τ (i.e., JτK), the ADKG public
key τ g, and threshold public keys of every party, i.e., JτKg.
The ADKG protocol of [26] assumes the hardness of Discrete
Logarithm, has per-party communication cost of O(n2), and
terminates in expected O(log n) rounds.

C. Asynchronous Double Sharing of Random Values

Our realization of Fsq uses double sharing of uniformly
random field elements [23]. Specifically, we will use secret
shares of a random field element z with both degree t and
degree 2t polynomials, denoted as JzK and JzK2t, respectively.
Here z is uniformly random and independent of τ .

Looking ahead, each invocation of Fsq will use double
sharing of one random field element. Since we invoke Fsq log q
times, we need log q double sharing of independent random
field elements. Our realization of Fsq additionally require
publicly available JzKg and JzK2tg to publicly reconstruct
Jτ2

k

Kg for each k ∈ [log q].

To generate double sharing of log q random elements and
their corresponding public keys, we use the functionality FDou

defined in Figure 8. We use the random double sharing protocol
of [26, §6.1] but make minor modifications to facilitate a
simulation-based security proof (described in Appendix C).
Our modifications maintain their O(n2) per-party communi-
cation cost and O(log n) round complexity.

D. Bilinear Pairing

Definition 2 (Bilinear Pairing): Let G1,G2 and GT be
three cyclic groups of prime order p where g1 ∈ G1 and
g2 ∈ G2 are generators. A pairing is an efficiently computable
function e : G1×G2 → GT satisfying the following properties.

1) bilinear: For all u, u′ ∈ G1 and v, v′ ∈ G2 we have

e(u · u′, v) = e(u, v) · e(u′, v), and
e(u, v · v′) = e(u, v) · e(u, v′)

2) non-degenerate: gT := e(g1, g2) is a generator of GT .

We refer to G1 and G2 as the pairing groups or source groups,
and refer to GT as the target group.

E. Equality of Discrete Logarithm

Our protocol requires parties to produce zero-knowledge
proofs about the equality of discrete logarithms for a tuple of
publicly known values. In particular, given a group G with
scalar field F of prime order p, two elements g, h ∈ G with
unknown discrete logarithm relations and a tuple (g, a, h, b) ∈
G4, a prover P wants to prove to a probabilistic polynomial
time verifier V , in zero-knowledge, the knowledge of a witness
α ∈ F such that a = αg and b = αh.

We use the Chaum-Pedersen "Σ-protocol" [18] (see Ap-
pendix B), which assumes the hardness of the Discrete Loga-
rithm in G. This protocol guarantees completeness, knowledge
soundness, and zero knowledge. The knowledge soundness im-
plies that if P convinces the V with non-negligible probability,
there exists an efficient (polynomial time) extractor that can
extract α from P non-negligible probability.

5

Algorithm 1 Our protocol ΠqSDH for party i

INPUT: g, ski, {pkj} for each j ∈ [n]
OUTPUT: {g, τg, τ2g, . . . , τ qg}

SETUP PHASE:
// Run the ADKG and the Double sharing protocol

11: Let τg, JτKg, JτKi ← ΠADKG()
12: Let {JzkKg, JzkK2tg, JzkKi, JzkK2ti }∀k∈[log q] ← ΠDou(log q)

POWERS-OF-TWO PHASE:
21: for each k ∈ [log q] do
22: // Use double sharing of zk to run Πsq

23: Let Jτ2kK; Jτ2kKg = Πsq(Jτ2k−1

K; Jτ2k−1

Kg)
24: Compute τ2kg by interpolating Jτ2kKg and output τ2kg

ALL POWERS PHASE:
31: Compute all remaining powers as
{τag}∀a∈[q] := Πall({Jτ2kK; τ2kg, Jτ2kKg}∀k∈[log q])

The Chaum-Pedersen protocol can be made non-interactive
in the Random Oracle model using the Fiat-Shamir heuris-
tic [31]. We use the non-interactive variant of the protocol. For
any given tuple (g, a, h, b) ∈ G4 where a = αg and b = αh,
P uses dleq.Prove(α, g, a, h, b) to generate the non-interactive
zero-knowledge proof π. The proof π is O(κ) bits long. Given
a proof π and (g, a, h, b), V uses the dleq.Verify(π, g, a, h, b)
to verify the proof.

Remark. Alternatively, one could also use bilinear pairing to
check the equality of discrete logarithms. The advantage of the
bilinear pairing-based check is that it removes the need for the
Random Oracle from our protocol, assuming the underlying
ADKG does not require a Random Oracle. We use the Chaum-
Pedersen “Σ”-protocol due to its better efficiency.

IV. GENERATING POWERS-OF-TWO

Fsq is the secure multiparty computation (MPC) function-
ality for squaring that takes as input JaK, i.e., (n, t+1) secret
shares of a field element a ∈ F and outputs Ja2Ki to party i.
Fsq additionally takes the publicly available JaKg as input and
outputs threshold public keys of a2, i.e., Ja2Kg. Formally, we
write the functionality Fsq as:

Ja2K; Ja2Kg = Fsq (JaK; JaKg) (3)

Our protocol uses Fsq to compute τ2
k

g for each k ∈ [log q].
In this process, parties also receive secret shares of τ2

k

, i.e.,
Jτ2

k

K, and Jτ2
k

Kg, which they later use to compute ταg for
any arbitrary α ∈ [q].

A. Design of Fsq

We next describe our protocol Πsq for realizing Fsq. Its
pseudocode is given in Algorithm 2. Πsq could be designed
using various techniques, such as multiplication triples [8],
degree reduction [9], and random double sharing [24]. We
adopt the random double sharing approach.

Πsq assumes that parties hold double shares of a uniform
random z ∈ F using (n, t + 1) and (n, 2t + 1) Shamir secret

Algorithm 2 Πsq protocol at party i

INPUT: JaKi and JaKg
SETUP: JzKi, JzK2ti , JzKg, JzK2tg
OUTPUT: Ja2Ki and Ja2Kg

1: Let ai = JaKiJaKi + JzK2ti
2: Let πi := dleq.Prove(JaKi, g, JaKig, JaKig, JaKiJaKig)
3: Send ⟨SQ, JaKiJaKig, ai, πi⟩ to all
4: Let K = {}
5: upon receiving ⟨SQ, âjg, ãj , πj⟩ from party j do
6: Check πj is a valid proof
7: Check âjg+ JzK2tj g = ãg
8: if both checks are successful then
9: K := K ∪ {j, ãj}

10: if |K|≥ 2t+ 1 then
11: Compute a2 + z by interpolating the values of K
12: Let Ja2Ki := (a2 + z)− JzKi
13: Let Ja2Kjg := (a2 + z)g− JzKjg
14: Compute Ja2Kg by interpolating Ja2Kjg for all j ∈ K.
15: output Ja2Ki and Ja2Kg

sharing, denoted as JzKi and JzK2ti , respectively. Also, Πsq

assumes that JzKg and JzK2tg are public.

Each party i, locally multiplies its shares of a to get
JaKiJaKi. Parties then publicly reconstruct the a2 + z. In
particular, each party i locally computes the non-interactive
zero-knowledge (NIZK) proof πi of equality of discrete loga-
rithm (dleq) between {g, JaKig, JaKig, JaKiJaKig}, i.e.,

πi = dleq.Prove(JaKi, g, JaKig, JaKig, JaKiJaKig)

Party i then multicasts the message ⟨SQ, JaKiJaKi +
JzK2ti , JaKiJaKig, πi⟩ to every party. Upon receiving the mes-
sage ⟨SQ, ãj , gj , πj⟩, party i checks that ãj is computed
correctly, i.e.,

dleq.Verify(g, JaKjg, JaKjg, gj , πj) = 1; and
ãjg = gj + JzK2tj g

Upon receiving 2t+1 valid SQ messages, parties reconstruct
a2 + z by interpolating ãj , i.e.,

a2 + z =
∑
j

λj ãj (4)

where λj is the appropriate Lagrange coefficients.

Upon reconstructing a2 + z, party i computes its share of
a2 as Ja2Ki = a2 + z − JzKi. Furthermore, for each j ∈ [n],
party i computes Ja2Kjg as:

Ja2Kjg := (a2 + z)g− JzKjg (5)

In Appendix A, we prove that Πsq securely realizes Fsq

with a total communication cost of O(n2) per invocation.

B. Using Fsq for Generating Powers-of-two.

We now describe how parties use Πsq to compute τ2
k

g for
every k ∈ [log q], i.e., the powers-of-two. While computing the
powers-of-two, parties also output auxiliary values that they
later use to compute the remaining powers.

6

Algorithm 3 Πall protocol at party i

INPUT: {Jτ2kKi; τ2kg, Jτ2kKg} for each k ∈ [log q]
OUTPUT: {τag} for each a ∈ [q]

1: Create a binary tree with u0
0 as its root and val(u0

0) = τ0g.
2: for each depth d = 1, ..., log q do
3: Create 2d nodes labeled ud

0, u
d
1, ..., u

d
2d−1

4: Let {val(ud
2j)} := {val(ud−1

2j)}, ∀j ∈ [0, 2d−1 − 1].
5: Let α := τ2d−1

6: Let {val(ud
2j+1)} := ΠBatMul(JαKi, JαKg, {val(ud−1

2j+1)})
∀j ∈ [0, 2d−1 − 1].

7: output val(ulog q
0), val(ulog q

1), . . . , val(ulog q
q−1).

Parties start by running an ADKG protocol to secret share
a uniformly random secret τ using a (n, t+ 1) Shamir secret
sharing. In our implementation, we use the ADKG protocol
from [26] with a reconstruction threshold of t. As a result,
parties also output the threshold public keys JτKg.

While running the ADKG protocol, parties concurrently
run ΠDou, the protocol to generate random double sharing of
log q uniform secrets {z1, z2, . . . , zlog q}. Once the ADKG and
random double sharing protocol terminate, parties compute
powers-of-two by repeated invocations of the Πsq protocol
log q times in sequence, i.e.,

Jτ2K; Jτ2Kg = Πsq (JτK; JτKg)
Jτ4K; Jτ4Kg = Πsq

(
Jτ2K; Jτ2Kg

)
...

Jτ2
k

K; Jτ2
k

Kg = Πsq

(
Jτ2

k−1

K; Jτ2
k−1

Kg
)

V. GENERATING ALL POWERS

Using the protocol described in §IV, parties obtain secret
shares of powers-of-two of τ , i.e., Jτ, τ2, τ4, . . . , τ qK, as well
as τ2

k

g and Jτ2
k

Kg for each k ∈ [log q]. In this section, we will
describe how parties compute τag for all remaining a ∈ [q].
Formally, the interface of this functionality Πall is:

{τag}∀a∈[q] = Πall

({
Jτ2

k

K; τ2
k

g, Jτ2
k

Kg
}
∀k∈[log q]

)

A. Main Idea

Given the powers-of-two, for any given a ∈ [q], we use the
binary encoding of a to compute τag. Let a =

∑log q
k=1 bk2

k−1

with bk being the k-th bit in the binary representation of a.
Then, we can write τag as;

τag =

 ∏
k∈[log q]

τ bk2
k−1

 g (6)

Next, we use the idea, referred to as the multiplication in
the exponent, that given secret shares of τα, JταKg, and τβg,
parties can compute τα+βg using O(n) per party communica-
tion cost and only one round of interaction. In particular, each
party i, locally computes JταKiτβg and the NIZK proof πi of

''

'0' '1'

'10''00' '11''01'

'0..0' '1..1'

'00..0' '10..0' '01..1' '11..1''01..0' '11..0'

Figure 3: The memoization protocol to compute all powers using a
total O(q) multiplications in the exponent.

its correctness. Party i then sends the tuple ⟨JταKiτβg, πi⟩ to
all parties. Also, upon receiving ⟨gj , πj⟩ from party j, party i
validates gj for correctness using JταKig, τβg and πj . Finally,
upon receiving t+ 1 such valid tuples T , it computes τα+βg
as

τα+βg = τατβg ==
∑
i∈T

λigi (7)

Thus, for any given a ∈ [q], parties can easily compute
τag by repeating this technique for log q iterations, as per
the bit representation of a and equation 6. This requires per-
party communication cost of O(n log q) and O(log q) rounds
of interactions. Hence, the per-party communication cost for
computing τag for all a ∈ [q] is O(nq log q) and each party
performs O(nq log q) group multiplications.

We will next reduce the per-party communication cost to
O(nq) and computation cost to O(nq) group multiplications
using memoization. In §V-C, we will further reduce the com-
munication cost to O(q + n log q) and computation cost to
O(q log n) group multiplications and O(n log q) pairings using
appropriate batching.

B. Memoization

We first use the standard memoization technique to reduce
the per-party communication cost to O(nq) and computation
cost to O(nq) group multiplications. Note that many of the
O(log q) multiplications in the exponent are redundant. Con-
sider two integers a, b that differ only in their most significant
bit, i.e., a = 0∥s and b = 1∥s for some binary string s. Then,
once we compute τag (which equals τsg), we can directly
compute τ bg as τ2

|s|
τag, using only one more multiplication

in the exponent.

We remove all such redundancies from our protocol based
on a generalization of the above idea. Specifically, we create
a binary tree of height log q where each node is associated
with a binary string as illustrated in Figure 3. We place the
binary representations of each a = 0, 1, ..., q at the leaves of
the binary tree. Any path in the tree from the root r to a
leaf node a consists of internal nodes r = a0, a1, a2, ..., and
alog q = a. Stated differently, the left child and the right child
of a node with the binary string s are binary strings 0∥s and
1∥s, respectively. To each node in the tree with bit string s,
we associate a value, val(s) = τsg. The root of the tree is
initialized with the empty string and the value τ0g.

To compute τag for a ∈ [q], we only need to traverse the
tree from the root to the leaves (in parallel) and compute τxg
for each internal node with the binary string x. As mentioned,
if a node x is the left child of a node s, then τxg = τsg;

7

Algorithm 4 ΠBatMul protocol for party i

INPUT: g, JαKi, JαKg, {β1g, β2g, . . . , βmg}
OUTPUT: {αβ1g, αβ2g, . . . , αβmg}.

11: Let ℓ = ⌈m/(n− t)⌉ be the number of batches.
12: Let β(1)

1 , . . . , β
(1)
n−t, . . . , β

(ℓ)
1 , . . . , β

(ℓ)
n−t denote β1, β2, . . . , βm

13: for each batch k ∈ [ℓ] do
14: Let β(k)(x) = β

(k)
1 + β

(k)
2 x+ · · ·+ β

(k)
n−tx

n−t−1

15: Compute JαKiβ(k)(j)g, ∀j ∈ [n] using NTT
// Derive shared randomness using random oracle

16: Let γ1, γ2, . . . , γℓ = RO({β1g, β2g, . . . , βmg})
17: for each j ∈ [n] do
18: Let aj :=

∑
k∈[ℓ] γkβ

(k)(j)
19: Let bi,j = JαKiaj
20: Let πi,j = dleq.Prove(JαKi, g, JαKig, aj , bi,j) ▷ Batching
21: Send ⟨SHARE, {JαKiβ(k)(j)g, }∀k∈[ℓ], πi,j⟩ to party j
22: Let Tk = {} for each k ∈ [ℓ]

23: upon receiving ⟨SHARE, {g̃(k)j }∀k∈[ℓ], πj,i⟩ from party j do
24: Let b̃j,i :=

∑
k∈[ℓ] γkg̃

(k)
j

25: if dleq.Verify(g, JαKjg, ai, b̃j,i, πj,i) then
26: Tk := Tk ∪ {(j, g̃(k)j)} for each k ∈ [ℓ]

27: if |Tk|≥ t+ 1 then
28: Compute αβ(k)(i)g using Lagrange interpolation
29: Send ⟨EVAL, {αβ(k)(i)g}∀k∈[ℓ]⟩ to all parties
30: Let Sk = {} for each k ∈ [ℓ]

31: upon receiving ⟨EVAL, {ĝ(k)j }∀k∈[ℓ]⟩ from party j do
32: Locally sample χk ∈ F for each k ∈ [ℓ]

33: if e(
∑

k∈[ℓ] χkβ
(k)(j)g, αg) = e(

∑
k∈[ℓ] χkĝ

(k)
j , g) then

34: Sk := Sk ∪ {(j, ĝ(k)j }, for each k ∈ [ℓ]
35: if |Sk|≥ n− t, ∀k ∈ [ℓ] then
36: Compute {αβ(k)

a g}∀a∈[n−t] using NTT for k ∈ [ℓ]
37: output {αβag}∀a∈[m]

if x is the right child, then τxg = τ2
|s|
τsg. Finally, the τag

for a ∈ [q] can be computed at all the leaves. Parties now
compute one multiplication in the exponent per internal node
of the tree, leading to a total of O(q) multiplication in the
exponent. The per-party communication and computation (in
group multiplications) using this approach are both O(nq).

C. Batched Multiplication in the Exponent

In this section, we will describe how to further reduce
the communication cost of our protocol to O(q + n log q)
using batching. Our batching uses an efficient solution to the
following problem.

Problem definition and the naïve approach. We
seek to design a protocol ΠBatMul where parties input
{β1g, β2g, . . . , βmg}, JαK, and publicly available JαKg, and
each party outputs {αβ1g, αβ2g, . . . , αβmg}. Formally,

{αβkg}∀k∈[m] = ΠBatMul

(
JαK; JαKg, {βkg}∀k∈[m]

)
(8)

One naïve approach is to compute αβkg for each k ∈ [m]
separately. This would result in a per-party communication cost
of O(nm) and a per-party computation cost of O(nm) group
multiplications.

Our approach. We will next describe protocol ΠBatMul, where
each party incurs a communication cost of O(n+m) and a per-
party computation cost of O(m log n) group multiplications. It

does add a per-party computation cost of O(n) (independent
of m) bilinear pairing operations. We provide the pseudocode
of ΠBatMul in Algorithm 3 and describe it next.

For simplicity, we will assume that m = n − t. For m >
n− t, we can divide the inputs into batches of size n− t and
run ΠBatMul in parallel (with minor modifications) for each
batch.

Let β(·) be the polynomial of degree n− t− 1 defined as

β(x) = β1 + β2x+ β3x
2 + · · ·+ βn−tx

n−t−1 (9)

Given {βkg} for k ∈ [n − t], each party i locally computes
β(j)g for each j ∈ [n], i.e., evaluate the polynomial β(·)
at all indices in [n]. Parties can compute these values using
O(n log n) group multiplications using the Number Theo-
retic Transform (NTT). Additionally, party i locally computes
JαKβ(j)g for each j ∈ [n] along with the dleq proof πi,j given
as

πi,j = dleq.Prove (JαKi, g, JαKig, β(j)g, JαKiβ(j)g)

Party i then sends a message ⟨SHARE, JαKiβ(j)g, πi,j⟩ to
party j. Upon receiving ⟨SHARE, gj , πj,i⟩ from party j, party
i validates its correctness using dleq.Verify. Upon receiving
t + 1 valid SHARE messages, party i computes αβ(i)g by
interpolating in the exponent, i.e.,

αβ(i)g =
∑
j∈T

λjgj (10)

where λj is the appropriate Lagrange coefficient.

Party i then sends a message ⟨EVAL, αβ(i)g⟩ to all parties.
Each party, upon receiving ⟨EVAL, g̃j⟩ from party j, validates
its correctness by checking:

e(β(j)g, αg) = e(g̃j , g) (11)

where e(·, ·) is the bilinear pairing operation. Note that every
party can locally compute αg and β(j)g using the inputs of
ΠBatMul. Upon receiving n − t valid EVAL messages, party i
computes {αβ1g, αβ2g, . . . , αβn−tg} using inverse NTT.

Handling m > n− t. For m > n− t, parties divide the inputs
into batches of size n−t each. Let there be ℓ batches, i.e., ℓ =
⌈m/(n − t)⌉, where β(k)(·) is the polynomial corresponding
to the k-th batch. Parties then run ΠBatMul for each chunk in
parallel with the following changes.

Batching dleq proofs of SHARE messages. Each party i, in-
stead of sending ℓ dleq proofs to every party j, sends only one
dleq proof πi,j attesting the correctness of SHARE messages for
all batches by taking their random linear combination. More
specifically, for each recipient j, party i computes aj and bi,j
as

aj =
∑
k∈[ℓ]

γkβ
(k)(j)g; and bi,j = JαKiaj (12)

here γk are uniformly random elements in F generated by
querying a random oracle on the input {β1g, β2g, . . . , βmg}.
Let πi,j be the dleq proof given by

πi,j = dleq.Prove (JαKi, g, JαKig, aj , bi,j) (13)

Each party i then sends ⟨SHARE, {JαKiβ(k)(j)g}k∈[ℓ], πi,j⟩
to party j as its SHARE message.

8

Party i, upon receiving ⟨SHARE, {g̃(k)j }k∈[ℓ], πi,j⟩ message
from party j, locally computes ai using the publicly available
information. Party i additionally computes b̃j,i as:

b̃j,i =
∑
k∈[ℓ]

γkg̃
(k)
j

Party i then validates the correctness of the SHARE message
by checking that

dleq.Verify(g, JaKjg, ai, bj,i, πj,i) = 1 (14)

Intuitively, in equation (13), we use the observation that
the prover (party i) needs to prove the equality of discrete
logarithm of different statements, one for each β(k)(j)g, that
shares the same witness JαiK. This enables us to batch all
the statements into a single statement by taking their random
linear combination. The check in equation (14) has a negligible
error probability of 1/|F| for each batch.

Batching checks of EVAL messages. Instead of checking
equation (11) independently for every batch, parties combine
them into a single check below:

e

∑
k∈[ℓ]

χkβ
(k)(j)g, αg

 = e

∑
k∈[ℓ]

χkg̃
(k)
j , g

 (15)

Here, χk for each k ∈ [ℓ] are uniformly random field elements
samples from F.

Intuitively, in equation (15), party i, instead of individually
checking the correctness of each EVAL message received from
party j, takes a random linear combination of the values and
checks them all at once. Similar to equation (14), the check in
equation (15) also has a negligible error probability of 1/|F|
for each batch.

Analysis of ΠBatMul. For each batch of size n− t, each party
sends a single SHARE and EVAL message to every other party.
Hence, the per-party communication cost for a batch of size
n− t is O(n). This implies that the per-party communication
for a batch of size m is O(n+m). Also, for each batch of size
n−t, each party performs O(n log n) group multiplication due
to NTT [51]. Hence, the total per-party computation cost for a
batch of size m is O(m log n) group multiplications. Finally,
due to the batch checking of all EVAL messages from a party,
each party needs to perform only O(n) pairing operations per
batch. We reiterate that the number of pairing operations is
independent of the batch size.

Using ΠBatMul to compute all powers. Recall from §V-B
that, for any height h of the binary tree, we multiply with the
identical τ2

h

to the values of every node at height h. Hence,
our protocol computes them using ΠBatMul with α = τ2

h

and
the values at the nodes as {βkg} for k = 1, 2, . . . , 2h.

Since parties need to compute a total of q multiplications
in the exponent, the total per-party communications cost is
O(q + n log q). Also, each party performs O(q log n) group
multiplications along with O(n log q) pairings in total.

D. Putting Things Together

In Algorithm 1, we present the full protocol for generating
the q-SDH parameters. As mentioned in §II, the entire protocol
consists of the Setup Phase where the parties run the ADKG
protocol and the Double Sharing protocol, the Powers-of-two
Phase where the parties run the MPC functionality Fsq to
compute the powers-of-two parameters given the ADKG and
Double Sharing outputs, and finally the All Powers Phase
where the parties run the MPC functionality Πall to generate
the remaining powers-of-tau from the powers-of-two.

VI. ANALYSIS

We prove the security of our protocol ΠqSDH assuming
Πsq securely implements Fsq. In Appendix A, we analyze the
correctness and security of Πsq.

A. Correctness

Lemma 1 (Correctness): If all honest parties start the pro-
tocol, then every honest party will output correct q-SDH
parameters, i.e., there exists a τ ∈ F such that parties output
{g, τg, τ2g, . . . , τ qg}, except with negl(κ) probability.

Proof: We will prove correctness in FADKG and FDou hy-
brid model. FADKG guarantees that parties agree on a common
public key τg, JτKg, and each party i has JτKi. FDou guarantees
that parties output double shares of log q random field elements
{z1, z2, . . . , zlog q} along with JzkKg and JzkK2tg. With this
setup, we will argue that all honest parties agree and output
{g, τg, τ2g, . . . , τ qg}.

In Appendix A, we prove that Πsq securely realize Fsq.
This implies that during the squaring phase, parties output and
agree on τ2

k

g and Jτ2
k

Kg for each k ∈ [log q]. Moreover,
each party i outputs Jτ2

k

Ki. Finally, while computing the
remaining powers of τ , parties only accept valid SHARE and
EVAL messages, except with probability O(1/|F|). Since |F|
is super-polynomial in κ, the security parameter, this implies
that all honest parties agree and output {g, τg, τ2g, . . . , τ qg},
except with negligible probability.

B. Security

We prove the security of our protocol ΠqSDH using sim-
ulatibility. Specifically, we prove that for every PPT static
adversary A that corrupts up to t parties, there exists a PPT
simulator SqSDH such that on input {g, τg, τ2g, . . . , τ qg}, the
q-SDH parameters output by the ideal functionality FqSDH,
produces a view which is identical to the A’s view of a run in
the real protocol and ends with {g, τg, τ2g, . . . , τ qg} as the q-
SDH parameters. This immediately implies that if the q-SDH
assumption holds for parameters generated by FqSDH, then the
q-SDH assumption holds for parameters generated by ΠqSDH.
We summarize the simulator SqSDH in Figure 4 and describe
it next.

Let {g, τg, τ2g, . . . , τ qg} be the parameters generated
by FqSDH. SqSDH, upon receiving these parameters, sim-
ulates an execution of our protocol for A that outputs
{g, τg, τ2g, . . . , τ qg} as the q-SDH parameters.

Let C be the set of parties corrupted by A. For each k ∈
[0, log q], SqSDH samples uniformly random shares Jτ2

k

Ki for

9

Simulator SqSDH

Inputs. q-SDH parameters {g, τg, τ2g, . . . , τ qg}
1) Sample uniform random JτKi for each i ∈ C where C is the

set of corrupted parties.
2) For each k ∈ [log q], sample uniformly at random Jτ2kKi

for each i ∈ C.
3) Run the input generation phase of SSq on inputs

Jτ2k−1

Ki, Jτ2kKi for each i ∈ C, and public values
Jτ2k−1

Kg, Jτ2kKg for every k ∈ [log q].
4) Run the ADKG simulator SADKG on input g, τg, JτKg, and
{JτKi} for each i ∈ C.

5) Run SDou to simulate a protocol to generate double sharing
of log q values, with inputs computed during the input
generation phase of SSq.

6) While computing powers-of-two, run steps 2 and 3 of the
simulation phase of SSq.

7) During all powers phase, follow the honest protocol, except,
whenever needed, generate the NIZK proof of equality of
discrete logarithm using Sdleq.

Figure 4: Simulator for the protocol ΠqSDH simulating FqSDH

each i ∈ C. SqSDH then runs the input generation phase of SSq
on inputs Jτ2

k−1

Ki, Jτ2
k

Ki for each i ∈ C and public values
Jτ2

k−1

Kg and Jτ2
k

Kg for every k ∈ [log q]. Intuitively, by doing
so, SqSDH generates the inputs of the SDou.

SqSDH then runs the ADKG simulator SADKG on input
g, τg and JτKi for each i ∈ C. SADKG guarantees that parties
output secret share of τ where adversarial shares matches the
input to SADKG. Simultaneously, SqSDH runs SDou on inputs
generated by the input generation phase of SSq. This concludes
the simulation of the setup phase of our protocol. Next, while
computing powers-of-two, SqSDH simply runs steps (2) and
(3) of SSq. Lastly, to compute all remaining powers of τ ,
SqSDH follows the honest protocol, except, whenever needed,
generates the NIZK proof of equality of discrete logarithm
using the Sdleq.

Remark. The fact that A outputs {g, τg, τ2g, . . . , τ qg} as a
result of its interaction with SqSDH and Lemma 2 immediately
implies that if A outputs a valid tuple that breaks the q-
SDH assumption with probability ε, SqSDH breaks the q-SDH
assumption with probability ε as well.

Lemma 2: For any PPT adversary A that corrupts up to
t parties, the view of A during its interaction with SqSDH is
identically distributed to its view in the real protocol.

Proof: We will prove this by defining a series of hybrids,
with hybrid 0 identical to the real protocol and hybrid 4
identical to the simulated protocol.

Hybrid 0. This corresponds to the real-world execution.

Hybrid 1. In this hybrid, we simulate the NIZK proofs of
equality of discrete logarithms for each statement of the form
{g, JaKig, JaKig, JaKiJaKig} in the all powers phase. Since
the Chaum-Pedersen Σ protocol for proving the equality of
discrete logarithm is perfect zero-knowledge, Hybrid 1 is
identically distributed as Hybrid 0.

Hybrid 2. Sample a uniformly random polynomial p(x) of
degree t. Swap out the real execution of the ADKG protocol
with the ADKG simulator SADKG. The input to SADKG are p(i)

Table III: Cost of each phases in our protocol for any given n and q.

Protocol Phase Communication
(Per Party)

Computation
(Per Party)

Expected
Latency

Setup O(n2 log q) O(n2 log q) O(logn)
Powers-of-two O(n log q) O(n log q) O(log q)
All powers O(q + n log q) O(q logn) O(log q)

Overall O(q + n2 log q) O(n2 log q + q logn) O(log(nq))

for all adversarial parties i and the commitments p(j)g for all
j ∈ [n]. The perfect simulatability of the SADKG guarantees
that Hybrid 3 is identically distributed as Hybrid 2.

Hybrid 3. Replace the real execution of the Πsq with the sim-
ulator SSq with input consistent with p(0) for the polynomial
p(x) sampled in Hybrid 2. The perfect simulatability of the SSq
guarantees that Hybrid 2 is identically distributed as Hybrid 1.

Hybrid 4. Change the ADKG public key part of the input to
the SADKG to τ g while keeping its shares of the adversarial
parties the same. Compute the commitments to honest parties’
shares by interpolating in the exponent. Accordingly, change
the input to SSq as per q-SDH parameters output by the FqSDH.
Keep shares of malicious parties the same and update the
commitment to honest parties’ input. Since FqSDH samples
τ uniformly at random and Pedersen commitment is perfectly
hiding, Hybrid 4 is identically distributed as Hybrid 3.

C. Performance

Round complexity. The ADKG protocol and the protocol for
generating double sharing of random values takes expected
O(log n) rounds of interaction [26]. Computing the powers-
of-two takes O(log q) rounds. Finally, using memoization,
computation of all remaining powers takes O(log q) additional
rounds. Thus, the total expected round complexity of our
protocol is O(log q + log n).

Communication cost. The ADKG protocol generates secret
shares of τ and publicly outputs τg and JτKg with per
party expected per-party communication cost of O(n2) [28].
The per-party communication cost of generating the double
shares of log q random elements is O(n2 log q). The commu-
nication cost of generating the powers-of-two is O(n log q)
(ref. §IV). Finally, using memoization and batching (ref. §V),
the communication cost of computing the remaining powers is
O(q + n log q). Combining all the above, our protocol’s total
per-party communication cost is O(q+n2 log q). When q ≫ n,
the total communication cost is O(q), i.e., linear in the highest
power of the q-SDH parameters. For example, with n = 128
and q = 220 i.e., about 1 Million, q > n2 log q.

Computation cost. We measure the computation cost as
the number of group multiplications and pairing operations
each party needs to perform in the entire protocol. Dur-
ing the ADKG protocol, each party performs O(n2) group
multiplications [26]. Also, each party performs O(n2 log q)
group multiplications to compute the double-sharing of random
values. While computing the powers-of-two, each party per-
forms O(n log q) group multiplications in total. Finally, while
computing all remaining powers of τ , for every height h in
the memoization tree, each party performs O(2h log n) group

10

multiplications and O(n) pairings. This implies that the per-
party computation cost in our protocol is O(q log n) group
multiplications and O(n log q) pairings.

External verification. Let V be an external verifier that wishes
to verify the correctness and security of the q-SDH parameters
generated by our protocol. Since we assume PKI, this is
relatively straightforward. Each party signs the output using
its signing key and sends the signature to V . The V waits for
t+ 1 valid signature on the matching output.

VII. IMPLEMENTATION

A. Implementation Details

We have implemented our protocol in python 3.7.13
on top of the open-source asynchronous DKG codebase
of [26]. We use rust libraries for elliptic curve operations
and asyncio for concurrency, though our prototype is single-
threaded at each party. We implement the random double-
sharing protocol we describe in Appendix C.

Our implementation uses the bls12381 elliptic curve and
the implementation from Zcash [34] (with a python wrapper)
for primitive elliptic curve operations. Recall that a pairing-
friendly curve involves three groups G1,G2, and GT. We
generate the q-SDH parameters in G1 as it is more efficient
than G2 [37]. The size of each G1 and G2 group element after
point compression is 48 Bytes and 96 Bytes, respectively.

For equality of discrete logarithm, we use Chaum-
Pedersen’s "Σ"-protocol. We choose the Chaum-Pedersen “Σ”
protocol over the pairing-based check, as while benchmarking,
we found that the Chaum-Pedersen’s Σ protocol is approxi-
mately 2.75× computationally more efficient than the pairing-
based check.

Recall from §V that parties need to compute coefficients
of polynomials of degree n− t−1, given any arbitrary subsets
of n − t points (EVAL messages) on the polynomial. One
approach to compute these coefficients is to first compute
the evaluations at all points and then apply the inverse NTT
transform to get the coefficients. However, this requires each
party to perform O(n2) group multiplications for every poly-
nomial. An asymptotically superior method is the FNT-based
NTT implementation due to Soro and Lacan [51]. The latter
runs in O(n log n) time. We implement both approaches, and
our microbenchmark illustrates that the quadratic approach
performs better for a smaller number of parties.

B. Evaluation Setup

We evaluate our implementation with a varying number of
parties: 16, 32, 64, and 128. We evaluate with different values
of q: 214, 216, and 218. We run all parties on Amazon Web
Services (AWS) t3x.large virtual machines with one party per
virtual machine. Each virtual machine has 4 vCPUs and 16GB
RAM and runs Ubuntu 20.04.

We place parties evenly across eight different AWS regions:
Canada, Ireland, N. California, N. Virginia, Oregon, Ohio,
Singapore, and Tokyo. We create an overlay network in which
all parties are pair-wise connected, i.e., they form a complete
graph.

Table IV: Runtime of different phases, for any (n, q), of our protocol
(in % of total runtime). The setup phase represents the combined
runtime of both ADKG and the random double-sharing phase.

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 4.3 0.4 41.0 5.6
Powers-of-two 1.4 0.1 1.3 0.2
All powers 94.3 99.5 57.7 94.2

With this evaluation setup, we measure the runtime and
per-party bandwidth usage. The runtime is measured from the
start of the protocol to the time a party outputs the q-SDH
parameters. Per-party bandwidth usage is the amount of data
in Bytes sent by a party in the entire protocol.

Baselines. Our baseline is the sequential protocol with a
synchronous broadcast channel we describe in §I. In the
baseline, we implement the state-of-the-art update verification
mechanism from [46], which reduces the verification cost of
each update from 2q pairings to 2q group multiplications and
2 pairings.

The runtime of the baseline includes the time a sequence of
n parties takes turns to update existing q-SDH parameters and
verify all previous updates. Since the deployed versions skip
verifications during the protocol, we implemented a pipelined
verification step where every party verifies the update by
party i as soon as party i finishes its update. This ensures
the runtime of the baseline is the time it takes to perform
3nq group multiplications. Here, nq group multiplications for
computing the q-SDH parameters and an additional 2nq group
multiplications for verifying the parameters.

We approximate the bandwidth usage of the baseline as nq
group elements. Note that this favors the baseline protocol, as
in the synchronous protocol, each party will need to broadcast
q group elements. Hence, each party will need to send at least
nq group elements in the entire protocol.

Remark. The actual running time or bandwidth usage of the
baseline will be higher than what we reported in the figures,
as we only measure sub-components for the baseline.

C. Evaluation Results

Our evaluation demonstrates that our protocol scales well
with the number of parties n and q and has reasonable runtime
and bandwidth usage.

Runtime. We report the median runtime of our protocol and
baseline, computed across the parties for a single run of each
experiment, in Figure 6. The solid and dashed lines represent
the runtime of our protocol and baseline, respectively. We also
report the runtime breakdown by the phases of our protocol in
Table IV.

Our evaluation results corroborate our analysis in §VI-C.
Specifically, for any fixed q, the runtime of our protocol grows
logarithmically with the number of parties. Also, for any given
n, the runtime grows linearly with q. Note that although the
runtime should grow logarithmically for n = 16 and n = 32,
we see a linear growth because, for n = 16 and n = 32, we
implement a protocol with asymptotic runtime of O(nq), but
with smaller constants.

Our evaluation illustrates that our protocol is significantly
more efficient than the baseline protocol. For example, with

11

16 32 64 128
0

50

100

150

200

250

300

350

400

Number of parties

B
an

dw
id

th
(i

n
M

B
)

q = 214 q = 216 q = 218, This work. q = 214 q = 216 q = 218, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(i
n

se
co

nd
s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4× faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1× faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during
the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7× reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13× less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as κnq bytes, where κ = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
phase is significant compared to the bandwidth usage of the all-
powers phase. This is because the ratio between the bandwidth
usage of the setup and the all-powers phase is greater, by
a factor of log n, than the ratio between the computation
cost of the setup and the all-powers phase. Specifically, the
former is approximately O((n2 log q)/q) while the latter is

12

O((n2 log q)/q log n). For this same reason, for large n = 128
and small q = 214, the bandwidth usage of the setup phase is
more than 95% of the total bandwidth usage.

Finally, we conclude that the computation cost is the
primary bottleneck of our protocol. With n = 128, the setup
phase, despite contributing 95.2% and 68.8% of the bandwidth
usage for q = 214 and q = 218, respectively, contributes only
41% and 5.5% of the total runtime.

VIII. RELATED WORK

Ben-Sasson et al. [10] proposed the first distributed pro-
tocol for securely sampling arbitrary structured public pa-
rameters. The protocol of [10] lays the foundation for the
round-robin-style protocols for generating secure structured
public parameters. Briefly, in [10], parties take turns to up-
date intermediate parameters with local randomness. Bowe et
al. [14] adopt the approach of [10] and present a protocol
for generating q-SDH parameters. Their protocol, however,
relied on a publicly verifiable, unpredictable, and bias-resistant
randomness beacon for security. Kohlweiss et al. [41] illus-
trated that the parameters generated by [14] are secure even
without a randomness beacon. Very recently, Nikolaenko et
al., [46] designed a protocol to generate q-SDH parameters
using Ethereum as the underlying sequential broadcast channel.
Their protocol demonstrates how to use a smart contract
to eliminate the central coordinator in existing round-robin
protocol and achieve censorship resistance.

All these protocols assume a synchronous network, have
high communication and computation costs, and require n
sequential broadcasts. We refer the reader to §I and Table I for
a detailed comparison of these schemes with our construction.
Very recently, Cohen et al. [22] presented a generic compiler
to reduce the round complexity of these protocols to O(

√
n)

sequential broadcasts. However, their construction is very
theoretical and has very high constants. They also present
a compiler with better constants but O(

√
n log q) sequential

broadcasts.

Practical deployments. The round-robin style protocols for
generating q-SDH parameters have been already deployed
in practice [1], [45], [2], [32], [3] All these deployments
implement variants of [10]. However, as deployed, parties skip
verifying the intermediate protocol transcript and verify the
entire transcript only at the end. Despite these insecurities, they
scale very poorly. For example, according to Semaphore [3],
to generate q-SDH parameters for q = 228, each party needs
to perform a 24-hour long computation. Hence, with n parties,
the protocol would run for at least n days.

Comparison with generic MPC. An alternate approach to
generate q-SDH parameters in asynchronous networks is to
use generic MPC. However, this has many disadvantages.

Let C be the circuit that outputs the q-SDH parameters,
then C will consist of O(q) multiplication gates. For large q,
evaluating O(q) multiplication gates in an asynchronous MPC
can be prohibitively expensive. For example, asynchronous
MPC protocols that rely on pre-processing either require
threshold additive homomorphic encryptions [35], [36], [20]
or can tolerate only n/4 malicious parties [21]. We want
to emphasize that while generating q-SDH parameters, we

also have to include the cost of the pre-processing phase
in the cost of the overall protocol. Alternatively, protocols
that do not rely on a pre-processing step require running
O(n) asynchronous complete secret sharing protocol for every
multiplication gate [9], [4].

Another issue of using generic MPC is due to the difference
between the scalar and based field of elliptic curve groups.
Typically, MPC protocols are defined over a single finite field,
whereas q-SDH parameter generation involves working with
both the scalar field F, from where τ is sampled, and the base
field, which is used to define the elliptic curve group elements.
Since the scalar F is different from the base field; the MPC
protocol needs to support operations across two distinct fields,
which can be prohibitively expensive [25].

Other related works. The multiplication in the exponent
approach we adopt bears similarity with [50], [47]. However,
there are crucial differences. Both [50] and [47] consider
security-with-abort, albeit differently. For example, [47] does
not verify shares from parties while computing the KZG
evaluation proof and uses properties of the KZG polynomial
commitment to check the correctness of the final proof. Simi-
larly, [50] validates the reconstructed values using MACs and
outputs a default value upon unsuccessful verification. More-
over, [50] assumes synchrony as it uses a broadcast channel
to verify the MACs. Contrary to both, our approach ensures
guaranteed output delivery in asynchrony with 1/3 failures.
Also, we use publicly available threshold public keys and
bilinear pairings to verify the shares of each party efficiently.

IX. DISCUSSION AND CONCLUSION

In this paper, we presented our protocol, a distributed
protocol to generate secure parameters for q-Strong Diffie-
Hellman, also known as the q-SDH, interactability problem. In
an asynchronous network of n parties, our protocol tolerates
up to one-third of malicious parties. Our protocol is also
very efficient. For any given q, the highest degree of the q-
SDH parameters, each party incurs a communication cost of
O(q + n2 log q), which is optimal whenever q ≥ n2 log q.
Moreover, our protocol only requires O(log q + log n) rounds
of interaction. Furthermore, in the entire protocol, each party
performs only O(q log n) group multiplications and O(n log q)
bilinear pairings. We have implemented all parts of our
protocol and evaluated it using up to 128 geographically
distributed AWS instances. Our evaluation results corroborate
the practicality of our approach and its significant improvement
over the state-of-the-art protocol.

Extending our protocol with the round-robin approach.
As we mention in §I, the existing round-robin synchronous
protocol has several nice properties that our protocol does
not have. To reiterate, in the round-robin protocol, the set of
participants need not be known in advance, and parties can join
on the fly. Additionally, the round-robin protocol has a you-
only-speak-once flavor, as each party uses its secret only once.
Some applications of powers-of-tau might seek to preserve
these properties. Although we do not know how to achieve
these properties in asynchrony, applications can potentially
achieve these properties in practice by feeding the output of our
protocol into a synchronous round-robin protocol. Intuitively,
this provides the best of both world guarantees. We leave the
rigorous security analysis of this approach as future work.

13

Open problems. In addition to improving the performance
metrics, there are many other interesting future research di-
rections to consider. One research direction is to design a
protocol that achieves similar performance results with weaker
assumptions, such as without bilinear pairing or random oracle.
Another research direction is to generate the parameters for
the multi-variate generalization of the q-SDH parameters [48].
Another interesting research direction is to design a network
agnostic protocol for generating q-SDH parameters, i.e., a
protocol that can gracefully tolerate 1/3 failures in asynchrony
and up to 1/2 failures in synchrony. Very recently, Bacho et
al. [7] presented such a protocol for distributed key generation.

ACKNOWLEDGMENTS

The authors would like to thank Amit Agarwal and Atsuki
Momose for many helpful discussions related to the paper. This
work is funded in part by a Chainlink Labs Ph.D. fellowship
and the National Science Foundation award #2240976.

REFERENCES

[1] “Plumo ceremony,” https://celo.org/plumo, 2017.
[2] “Universal crs setup,” https://docs.zksync.io/userdocs/security/

#universal-crs-setup, 2020.
[3] “Perpetual powers of tau,” https://github.com/weijiekoh/

perpetualpowersoftau, 2021.
[4] I. Abraham, G. Asharov, and A. Yanai, “Efficient perfectly secure

computation with optimal resilience,” in Theory of Cryptography Con-
ference. Springer, 2021, pp. 66–96.

[5] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern,
“Bingo: Adaptively secure packed asynchronous verifiable secret shar-
ing and asynchronous distributed key generation,” in Annual Interna-
tional Cryptology Conference. Springer, 2023.

[6] N. Alhaddad, M. Varia, and H. Zhang, “High-threshold avss with
optimal communication complexity,” in International Conference on
Financial Cryptography and Data Security. Springer, 2021, pp. 479–
498.

[7] R. Bacho, D. Collins, C.-D. Liu-Zhang, and J. Loss, “Network-agnostic
security comes for free in dkg and mpc,” 2023.

[8] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’88, New York, NY, USA, 1988, p. 1–10.

[10] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
287–304.

[11] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–
reconfiguration-friendly random beacons with quadratic communica-
tion,” in Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, 2021, pp. 3502–3524.

[12] G. R. Blakley, “Safeguarding cryptographic keys,” in 1979 International
Workshop on Managing Requirements Knowledge (MARK). IEEE,
1979, pp. 313–318.

[13] D. Boneh and X. Boyen, “Short signatures without random oracles and
the sdh assumption in bilinear groups,” Journal of cryptology, vol. 21,
no. 2, pp. 149–177, 2008.

[14] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computation
for zk-snark parameters in the random beacon model,” Cryptology
ePrint Archive, 2017.

[15] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[16] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Annual International Cryptology
Conference. Springer, 2001, pp. 524–541.

[17] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[18] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Annual International Cryptology Conference. Springer, 1992, pp. 89–
105.

[19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward,
“Marlin: preprocessing zksnarks with universal and updatable srs,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2020, pp. 738–768.

[20] A. Choudhury and A. Patra, “Optimally resilient asynchronous mpc
with linear communication complexity,” in Proceedings of the 2015
International Conference on Distributed Computing and Networking,
2015, pp. 1–10.

[21] ——, “An efficient framework for unconditionally secure multiparty
computation,” IEEE Transactions on Information Theory, vol. 63, no. 1,
pp. 428–468, 2016.

[22] R. Cohen, J. Doerner, Y. Kondi, and A. Shelat, “Guaranteed output in
O(

√
n) rounds for round-robin sampling protocols,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2022, pp. 241–271.

[23] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith, “Scal-
able multiparty computation with nearly optimal work and resilience,”
in Annual International Cryptology Conference. Springer, 2008, pp.
241–261.

[24] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure mul-
tiparty computation,” in Annual International Cryptology Conference.
Springer, 2007, pp. 572–590.

[25] I. Damgard and R. Thorbek, “Efficient conversion of secret-shared
values between different fields,” Cryptology ePrint Archive, 2008.

[26] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren, “Practical asyn-
chronous high-threshold distributed key generation and distributed poly-
nomial sampling,” in To appear at the 32st USENIX Security Symposium
(USENIX Security 23), 2023.

[27] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and
its applications,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021.

[28] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren,
“Practical asynchronous distributed key generation,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022.

[29] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[30] Ethereum, “Powers of tau specification,” https://github.com/ethereum/
kzg-ceremony-specs, 2022.

[31] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186–194.

[32] A. Gabizon, “Perpetual powers of tau (for bls381),” https://github.com/
arielgabizon/perpetualpowersoftau, 2020.

[33] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, 2019.

[34] J. Grigg and S. Bowe, “zkcrypto/pairing,”
https://github.com/zkcrypto/pairing.

[35] M. Hirt, J. B. Nielsen, and B. Przydatek, “Cryptographic asynchronous
multi-party computation with optimal resilience,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2005, pp. 322–340.

[36] ——, “Asynchronous multi-party computation with quadratic commu-
nication,” in International Colloquium on Automata, Languages, and
Programming. Springer, 2008, pp. 473–485.

[37] Y. E. Housni, “Benchmarking pairing-friendly elliptic curves libraries,”
https://hackmd.io/@gnark/eccbench, 2020.

[38] I. Karantaidou and F. Baldimtsi, “Efficient constructions of pairing

14

https://celo.org/plumo
https://docs.zksync.io/userdocs/security/#universal-crs-setup
https://docs.zksync.io/userdocs/security/#universal-crs-setup
https://github.com/weijiekoh/perpetualpowersoftau
https://github.com/weijiekoh/perpetualpowersoftau
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/arielgabizon/perpetualpowersoftau
https://github.com/arielgabizon/perpetualpowersoftau
https://hackmd.io/@gnark/eccbench

based accumulators,” in 2021 IEEE 34th Computer Security Founda-
tions Symposium (CSF). IEEE, 2021, pp. 1–16.

[39] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in International con-
ference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177–194.

[40] A. Kiayias, O. Oksuz, and Q. Tang, “Distributed parameter generation
for bilinear diffie hellman exponentiation and applications,” in Infor-
mation Security: 18th International Conference, ISC 2015, Trondheim,
Norway, September 9-11, 2015, Proceedings 18. Springer, 2015, pp.
548–567.

[41] M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov, “Snarky cere-
monies,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2021, pp. 98–127.

[42] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness, con-
sensus, and threshold signatures.” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 1751–1767.

[43] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” in Concurrency: the works of leslie lamport, 2019, pp. 203–
226.

[44] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updatable structured
reference strings,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 2111–2128.

[45] A. Miller and S. Bowe, “Announcing the world’s
largest multi-party computation ceremony,” https://zfnd.org/
announcing-the-worlds-largest-multi-party-computation-ceremony/,
2017.

[46] V. Nikolaenko, S. Ragsdale, J. Bonneau, and D. Boneh, “Powers-of-
tau to the people: Decentralizing setup ceremonies,” Cryptology ePrint
Archive, 2022.

[47] A. Ozdemir and D. Boneh, “Experimenting with collaborative {zk-
SNARKs}:{Zero-Knowledge} proofs for distributed secrets,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 4291–
4308.

[48] C. Papamanthou, E. Shi, and R. Tamassia, “Signatures of correct
computation,” in Theory of Cryptography Conference. Springer, 2013,
pp. 222–242.

[49] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[50] N. P. Smart and Y. Talibi Alaoui, “Distributing any elliptic curve based
protocol,” in Cryptography and Coding: 17th IMA International Confer-
ence, IMACC 2019, Oxford, UK, December 16–18, 2019, Proceedings.
Springer, 2019, pp. 342–366.

[51] A. Soro and J. Lacan, “Fnt-based reed-solomon erasure codes,” in
2010 7th IEEE Consumer Communications and Networking Conference.
IEEE, 2010, pp. 1–5.

[52] S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, and
Y. Zhang, “Hyperproofs: Aggregating and maintaining proofs in vector
commitments,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, 2022, pp. 3001–3018.

[53] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,” in
Annual International Cryptology Conference. Springer, 2019, pp. 733–
764.

APPENDIX A
ANALYSIS OF THE SQUARING PROTOCOL

In this subsection, we will assume that parties start with
correct double sharing of uniform random value z.

Correctness. The verification of SQ messages ensures that
honest parties only accept valid SQ messages. This implies
that honest parties only interpolate correct shares and hence
will correctly output a2 + z. Finally, a2 + z − JzKi is a valid

Simulator SSq
Inputs. Set of malicious parties C, secret shares JaKi, Ja2Ki for
all i ∈ C, set of threshold public keys JaKg and Ja2Kg.
INPUT GENERATION PHASE:
1) Sample a random polynomial r(·) of degree 2t.
2) Compute JzK2ti = r(i)− JaKiJaKi, JzKi = r(0)− Ja2Ki for

each i ∈ C. Also, compute JzK2tj g = (r(j)− JaKjJaKj)g
and JzKjg = (r(0)− Ja2Kj)g for each j ∈ [0, n], where
JaK0 = a.

SIMULATION PHASE:
1) Run SDou on input JzKi, JzK2ti for each i ∈ [t], and

JzKg, JzK2tg.
2) For each emulated honest party j, compute JaKjJaKjg using

equation (17). Let πj = Sdleq(g, JaKjg, JaKjg, JaKjJaKjg) be
the simulated proof of equality of discrete logarithm.

3) On behalf of each emulated honest party j, send
⟨SQ, JaKjJaKjg, r(j), πj⟩ to every party.

Figure 7: Simulator for the protocol Πsq for functionality Fsq.

secret share of a2 i.e., Ja2K since∑
j

λj(a
2 + z − JzKj) = a2 + z −

∑
j

λjJzKj = a2 (16)

Security. We will prove the security of Πsq by showing its
simulatability. Specifically, we will illustrate that, for any
static PPT adversary A, that corrupts up to t parties and
additionally observes JaKg and Ja2Kg, there exists a simulator
SSq, that takes as input only the adversarial shares and the
publicly available JaKg and Ja2Kg, and simulates a view that
is indistinguishable from A’s view in the real execution of the
protocol.

In our proof, we assume the existence of a simulator
SDou for the protocol ΠDou, that securely realizes the ideal
functionality FDou shown in figure 8. SDou takes as inputs
JzKi, JzK2ti for each corrupt party i, along with public values
zg, JzKg, and JzK2tg. SDou then simulates one invocation of
ΠDou such that at the end of the protocol parties output double
shares of z where the shares of the adversarial parties matches
the input to SDou. The double sharing protocol of [26] does
not immediately admits such a simulator. However, as we
illustrate in Appendix C, their protocol can be modified with
minor overhead to admit such a simulator. We summarize our
simulator SSq in Figure 7 and describe it next.

Without loss of generality, we assume that A corrupts the
first t parties. Thus, SSq will receive the shares JaKi and Ja2Ki
for each i ∈ [t], along with public values JaKg and Ja2Kg. With
these inputs, SSq emulates the remaining n− t honest parties
and generates the protocol transcript as follows.

SSq first computes JaKjJaKjg for every j ∈ [n] using its
knowledge of JaKi for each i ∈ [t], JaKg, and the following
identity

JaKjJaKj =

(
t∑

k=0

Lk(j)JaKk

)(
t∑

k=0

Lk(j)JaKk

)
(17)

SSq then samples a random polynomial r(·) of degree 2t

15

https://zfnd.org/announcing-the-worlds-largest-multi-party-computation-ceremony/
https://zfnd.org/announcing-the-worlds-largest-multi-party-computation-ceremony/

and computes:

JzK2tj g = (r(j)− JaKjJaKj)g ∀j ∈ [0, n];

JzK2ti = r(i)− JaKiJaKi ∀i ∈ [t]

JzKi = r(0)− Ja2Ki ∀i ∈ [t]

SSq then runs SDou using the values computed above. Also,
for each emulated honest party j, SSq uses the NIZK simulator
Sdleq of the dleq protocol to compute the simulated proof
πj = Sdleq(g, JaKjg, JaKjg, JaKjJaKjg). Finally, on behalf of
each emulated honest party j, SSq multicasts the message
⟨SQ, JaKjJaKjg, r(j), πj⟩ to every party.

We now prove that the view of A in the simulated protocol
is identical to A’s view in the real execution of the protocol.
In particular, we define a series of hybrids, with Hybrid 0
identical to the real protocol and Hybrid 3 identical to the
simulated protocol, to argue that no PPT distinguisher can
distinguish between the real and ideal world.

Hybrid 0. This corresponds to the real-world execution.

Hybrid 1. In this hybrid, we simulate the NIZK proofs of
equality of discrete logarithms for each statement of the form
{g, JaKig, JaKig, JaKiJaKig}. Since Chaum-Pedersen Σ protocol
for proving equality of discrete logarithm is perfect zero-
knoweledge Hybrid 1 is identically distributed as Hybrid 0.

Hybrid 2. Swap out the real execution of the ΠDou with
its simulator SDou whose inputs are adversarial shares of a
double sharing of a random value z and the corresponding
commitments JzKg and JzK2tg. The perfect simulatability of
the SDou guarantees that Hybrid 2 is identically distributed as
Hybrid 1.

Hybrid 3. Same as Hybrid 2 except the following changes.
Sample a uniform random polynomial r(·) of degree 2t as per
step 1 of INPUT GENERATION PHASE of Figure 7. Compute
new input for SDou as step 2 of INPUT GENERATION PHASE of
Figure 7. Run SDou on input JzKi and JzK2ti for each malicious
party i, and remaining inputs JzKg, and JzK2tg. Also, for each
honest party j, send r(j) as a part of SQ message.

In Hybrid 3, since r(·) is a random polynomial of degree
2t, the probability of r(·) taking a certain value is 1/|F|2t+1,
as there are |F|2t+1 such polynomials in total. Furthermore,
in Hybrid 3, by construction, r(·) is consistent with the
output of SDou. In Hybrid 2, each honest party j reveals
JaKjJaKj + JzK2t. Note that JaKj is fixed for all j ∈ [n],
hence, the probability that JaKjJaKj + JzK2t = r(j) is same
as the probability of JzK2t = r(j) − JaKjJaKj . Since, JzK2t
in Hybrid 2 is a uniform random polynomial of degree 2t,
Pr[JzK2t = r(j) − JaKjJaKj] = 1/|F|2t+1. This implies that
Hybrid 3 is identically distributed as Hybrid 2.

APPENDIX B
ZERO KNOWLEDGE PROOF OF EQUALITY OF DISCRETE

LOGARITHM

Given a group G with scalar field F of prime order p, two
uniformly random generators g, h ∈ G and a tuple (g, a, h, b) ∈
G4, a prover P wants to prove to a probabilistic polynomial
time verifier V , in zero-knowledge, the knowledge of a witness
α ∈ F such that a = αg and b = αh.

Functionality FDou

• Let G be a elliptic curve group with scalar field F and
let g be a uniformly random generator of G.

• Wait for C, the set of adversarial parties and the
(start, q) message from A.

• Wait for (init, q) from all honest parties.
• Sample a uniformly random element z ∈ F. Generate

(n, t+1) and (n, 2t+1) shares of z, denoted with JzK
and JzK2t, respecitvely.

• Compute JzKg and JzK2tg and send the tuple
(g, JzKi, JzK2ti , JzKg, JzK2tg) to party i.

Figure 8: The functionality for random double sharing

Protocol for equality of discrete logarithm. We use the
Chaum-Pedersen Σ-protocol [18], that assumes the hardness
of the Discrete Logarithm in G and proceeds as follows.

1) P samples a random element β ← F and sends (a1, a2)
to V where a1 = βg and a2 = βg.

2) V sends a challenge e← F.
3) P sends a response z = β − αe to V .
4) V checks whether a1 = zg + ea and a2 = zh + eb and

accepts if and only if both the equality holds.

The Chaum-Pedersen Σ-protocol guarantees completeness,
knowledge soundness, and zero-knowledge. The knowledge
soundness implies that if P convinces the V with non-
negligible probability, there exists an efficient (polynomial
time) extractor that can extract α from P non-negligible
probability.

This protocol can be made non-interactive in the Ran-
dom Oracle model using the Fiat-Shamir heuristic [31].
For any given tuple (g, a, h, b) where a = αg and b =
αh, dleq.Prove(α, g, a, h, b) generates the non-interactive zero
proof π. The proof π is O(κ) bits long. Given a proof π and
(g, a, h, b), dleq.Verify(π, g, a, h, b) verifies the proof.

Simulating a proof without the secret. We will use pro-
grammability of random oracle to generate an convincing
NIZK proof without having access to the corresponding secret.
Given the tuple (g, a, h, b) ∈ G4 where a = αg and b = αh,
the simulator works as follows.

1) Sample uniformly random z, e ∈ F.
2) Compute a1 = zg+ ea and a2 = zh+ eb.
3) Program the random oracle such that RO(a1, a2) := e.
4) Output π = (a1, a2, z)

where RO(·) denotes query to the random oracle.

Note that the distribution of the simulated proof is identical
to the distribution of the proof generated by an honest prover.

APPENDIX C
ASYNCHRONOUS RANDOM DOUBLE SHAIRNG

Our protocol uses log q double sharing of random values as
per the ideal functionality FDou in Figure 8. We make minor
modifications to the double sharing protocol of [26] to admit
a simulation based security proof. We want to note that the
double sharing protocol of [26] is secure in the context they

16

Simulator SDou

Inputs. Set of adversarial parties C, JzKi, JzK2ti for all
i ∈ C, and threshold public keys JzKg, JzK2tg.
1) Sample a random α ∈ F and let h = αg.
2) Let H = [n] \ C be the set of emulated honest parties.

For each j ∈ H, run the Sharing and Agreement phase
as per the protocol specification.

3) Sample two random polynomials ẑ(·) and z(·) of
degree t and 2t, respectively, such that:
• ẑ(0)g = z(0)g = zg
• ẑ(i) = JzKi and z(i) = JzK2ti , for each i ∈ C,
• JzKjg = ẑ(j)g and JzK2tj g = z(j)g

4) Use α and the extractability of the Sharing phase to
emulate a Randomness extraction phase such that each
malicious party i ∈ C outputs JzKi and JzK2ti as its
random double share.

5) Use Sdleq to compute the NIZK proofs required during
the key derivation phase.

Figure 9: Simulator for the protocol for random double sharing.

consider in their paper. Let ΠDou be our protocol. Before we
describe our modifications, we provide a brief overview of the
double sharing protocol of [26].

Double sharing protocol of [26]. The main observation in [26]
is that double sharing of a random element z is equivalent
to sampling two random polynomials of degree t and 2t,
respectively, that have the same constant term z. Let ẑ(·) and
z(·) be the polynomials defined as:

ẑ(x) = z + ẑ1x+ ẑ2x
2 + · · ·+ ẑtx

t

z(x) = z + z1x+ z2x
2 + · · ·+ z2tx

2t

where all z, ẑj , zk are uniformly random element in F. Each
party i then receives z(i) and ẑ(i).

Difficulty in proving simulation security of [26]. The
protocol of [26] samples the polynomials ẑ(·) and z(·) using
different approaches. Their protocol has four phases: Sharing,
Agreement and Randomness Extraction, and Key Derivation.
They sample the polynomial z(·) in a way such that A learns
no information about z(i) for adversarial parties i until the
Agreement phase finishes at least one honest party. However,
for polynomial ẑ(·), A learns ẑ(i) during the sharing phase.

Our approach. At a high-level, we modify the protocol
such that both ẑ(·) and z(·) are sampled such that A learns
no information its shares on both ẑ(·) and z(·) before the
agreement phase terminates. This enables the simulator SDou

to match the shares of the adversarial parties with the shares
received from the FDou. Specifically, we make the following
changes:

1) During Sharing phase, each party secret shares three ran-
dom values instead of two as in [26].

2) During the Randomness Extraction phase, in addition to
JzK and JzjK for j ∈ [2t], parties also generate JẑkK for
each k ∈ [t] using the random extractor. Parties assist each
party i to additionally compute ẑ(i).

3) During the Key Derivation phase, parties additionally out-
put ẑ(i)g for all i ∈ [n].

Analysis. We describe the simulator SDou in Figure 9, that on
inputs adversarial double shares of a random value from FDou

simulates the protocol ΠDou.

We now prove that the simulated transcript is identically
distributed to the real execution transcript. We will prove this
by defining a series of hybrids, with hybrid 0 identical to the
real protocol and hybrid 4 identical to the simulated protocol.

Hybrid 0. This corresponds to the real-world execution.

Hybrid 1. Same as Hybrid 0 except that the common random
string element h is sampled as gα for a known uniform random
α ∈ F. Hybrid 1 is indistinguishable from Hybrid 0 as the
distribution of h is identical in both hybrids.

Hybrid 2. Same as Hybrid 1, except we simulate the NIZK
proofs of equality of discrete logarithms used during the
key-derivation phase. Since Chaum-Pedersen Σ-protocol for
proving the equality of discrete logarithm is perfect zero-
knowledge Hybrid 2 is identically distributed as Hybrid 1.

Hybrid 3. Change the randomness extraction messages of all
honest parties based on the output of FDou as per step 4 of
Figure 9. Also, update the randomness of Pedersen’s com-
mitment of commitments of honest parties using knowledge
of trapdoor α and knowledge of shares of malicious nodes
computed during the randomness extraction phase.

Hybrid 3 is identically distributed as Hybrid 2 due to the
perfect hiding of the Pedersen commitment scheme, the perfect
secrecy of Shamir secret sharing and the fact that the output of
the randomness extractor are uniformly random. The perfect
hiding property of the Pedersen commitment scheme reveals
no information about the underlying message. The security
of the (n, t + 1) Shamir secret sharing scheme ensures that
less than or equal to t shares reveal no information about the
remaining shares. Thus, when we change the output of the
randomness extractor with uniformly random shares received
from FDou while ensuring consistency of the randomness
extraction messages, Hybrid 3 maintains the same distributed
as Hybrid 2.

APPENDIX D
ASYNCHRONOUS DISTRIBUTED KEY GENERATION

Functionality FADKG

• Let n ≥ 3t + 1 be the total number of parties. Let G
be a elliptic curve group with a random generator g.

• Wait for (d, C), the degree of the secret sharing and the
set of adversarial parties and the (start, q) message
from A. Check that d > |C| and |C|≤ t.

• Wait for (init, q) from all honest parties.
• Sample a uniformly random element z ∈ F. Generate

(n, d+ 1) shares of z, denoted with JzK.
• Compute JzKg and send (g, zg, JzKi, JzKg) to party i.

Figure 10: Asynchronous Distributed Key Generation functionality

17

	Introduction
	System Model and Overview
	Notations and System Model
	Problem Definition
	Overview of Our Protocol

	Preliminaries
	Threshold Secret Sharing
	Asynchronous Distributed Key Generation
	Asynchronous Double Sharing of Random Values
	Bilinear Pairing
	Equality of Discrete Logarithm

	Generating Powers-of-two
	Design of Fsq
	Using Fsq for Generating Powers-of-two.

	Generating All Powers
	Main Idea
	Memoization
	Batched Multiplication in the Exponent
	Putting Things Together

	Analysis
	Correctness
	Security
	Performance

	Implementation
	Implementation Details
	Evaluation Setup
	Evaluation Results

	Related Work
	Discussion and Conclusion
	References
	Appendix A: Analysis of the Squaring Protocol
	Appendix B: Zero knowledge Proof of Equality of Discrete Logarithm
	Appendix C: Asynchronous Random Double Shairng
	Appendix D: Asynchronous Distributed Key Generation

