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Abstract

Indistinguishability Obfuscation (iO) is a highly versatile primitive implying a myriad advanced
cryptographic applications. Up until recently, the state of feasibility of iO was unclear, which changed
with works (Jain-Lin-Sahai STOC 2021, Jain-Lin-Sahai Eurocrypt 2022) showing that iO can be finally
based upon well-studied hardness assumptions. Unfortunately, one of these assumptions is broken in
quantum polynomial time. Luckily, the line work of Brakerski et al. Eurocrypt 2020, Gay-Pass STOC
2021, Wichs-Wee Eurocrypt 2021, Brakerski et al. ePrint 2021, Devadas et al. TCC 2021 simultaneously
created new pathways to construct iO with plausible post-quantum security from new assumptions,
namely a new form of circular security of LWE in the presence of leakages. At the same time, effective
cryptanalysis of this line of work has also begun to emerge (Hopkins et al. Crypto 2021).

It is important to identify the simplest possible conjectures that yield post-quantum iO and can
be understood through known cryptanalytic tools. In that spirit, and in light of the cryptanalysis of
Hopkins et al., recently Devadas et al. gave an elegant construction of iO from a fully-specified and
simple-to-state assumption along with a thorough initial cryptanalysis.

Our work gives a polynomial-time distinguisher on their “final assumption” for their scheme. Our
algorithm is extremely simple to describe: Solve a carefully designed linear system arising out of the
assumption. The argument of correctness of our algorithm, however, is nontrivial.

We also analyze the “T-sum” version of the same assumption described by Devadas et. al. and under
a reasonable conjecture rule out the assumption for any value of T that implies iO.

1 Introduction

Indistinguishability obfuscation (iO) for programs computable in polynomial-time [BGI+01] makes a pro-
gram as unintelligble as possible while preserving the functionality. Mathematically, iO(P ) is indistinguish-
able to iO(P ′) for any functionally equivalent programs P, P ′ of the same size. iO’s importance is evident in
its central position as a powerful and versatile primitive for building a wide variety of modern cryptographic
tools (see e.g., [BGJS16, BPR15, BFM14, CLTV15, CLP15, GGG+14, KRS15, SW14]). Up until recently,
the feasibility of iO from well-established assumptions was not known. In recent works, Jain, Lin, and
Sahai [JLS21b, JLS21a] constructed iO from three well-studied assumption: Decisional Linear assumption
(DLIN) over bilinear maps [BGdMM05], Learning Parity with Noise over general fields [IPS09], and Pseudo-
random Generators in NC0 [Gol00]. DLIN over bilinear maps, however, is an assumption broken in quantum
polynomial time.

In an effort to construct iO from conjectured post-quantum secure assumptions, specifically lattice-based
ones, an exciting line of works [BDGM20, GP21, WW21] construct iO based on new circular security type
assumptions of LWE in the presence of structured leakages of their errors. Typically there is a lot of room in
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how you can instantiate leakages that imply iO, and at the moment we do not have a stable understanding of
what constitutes an acceptable leakage. In fact, very recently [HJL21] showed that instantiations of several
assumptions of Gay-Pass and Wee-Wichs can be broken in classical polynomial time.

Ideally we would like to construct post-quantum iO based solely on well-studied post-quantum assump-
tions such as LWE/LPN. Unfortunately, however, our understanding of conjectures implying post-quantum
iO is severely limited, and our confidence in them is much lower than those in classical constructions (LPN,
DLIN and PRGs). Therefore, it is important that we strive to identify assumptions that are:

• Simple-to-state, and yet imply iO,

• Can be reasoned about with cryptanalytic study.

We believe that this symbiotic relationship between constructions and constructive cryptanalysis could fur-
ther understanding of how to securely instantiate assumptions. To be clear, we do not endorse an unchecked
break and repair cycle, but a cycle that identifies new conceptual pathways. In this spirit, following the
cryptanalysis of [HJL21], the work of Devadas et al. [DQV+21] recently gave an elegant construction from
a fully-specified and simple-to-state assumption implying iO. We emphasize that their construction has
all parameters fully-specified. This is unlike the previous assumption of [WW21] which was very general,
and required that for some implementation choices, such as the PRF scheme involved, that the resulting
assumption is secure. The same is true with the assumption of [GP21], where the circuit implementations
of the functions involved were not fully specified.

Moreover, Devadas et al. back their instantiation with a thorough (initial) cryptanalysis.

Lessons from our work. A major open area is constructing post-quantum iO. The most promising
approach currently being explored is formulating simple variations of LWE with certain leakage that are
sufficient. The recent work of [HJL21] shows the importance of fully specifying the assumption and crypt-
analysis (indeed, the attack of [HJL21] exploits freedom in the specification). Incorporating these insights,
the [DQV+21] assumption is fully specified, relatively simple, avoids [HJL21] attacks, Furthermore, the au-
thors of [DQV+21] performed cryptanalysis using existing techniques. The purpose of our work is to identify
and understand weaknesses in the approach of [DQV+21] so that these may be overcome in future work.

On a very high level, the intuition of [DQV+21] was that tensored polynomial systems derived from LWE
not only bypasses the previous two attacks (as far as we know, the parameters are set so that sum-of-squares
attacks of [BHJ+19] do not apply, and at the same time, the specifications are set so that the attacks of
[HJL21] do not apply). Our main result shows a new way to get around the apparent difficulties introduced
by tensoring. Therefore, we view our result contributing a new insight that will be useful in designing better
assumptions.

A key aspect in which our attacks differs from previous attacks [BHJ+19, HJL21] on the new
“LWE+Leakage” assumptions [AJL+19, JLMS19, BDGM20, GP21, WW21] is that all previous attacks
apply to part of the leakage that is obtained over integer/small-valued domains such as the error or the
polynomial evaluations. On the other hand, our attack applies to the leakage that is given out over the
prime fields (the leakage on the secret in the LWE sample). This points to a new vulnerability in designing
such assumptions towards the grand goal of achieving iO.

Our Technical Contributions. In this work, we give a polynomial-time distinguisher and recovery al-
gorithm on the “final assumption” of [DQV+21] (stated on page 7; also formulated as Conjecture 2 on page
25) with parameters as suggested (page 23, Section 4.3). Our attack is algorithmically simple to describe:
solve a carefully designed linear system of equations. Our analysis, on the other hand, requires a significant
amount of care. In particular, the techniques we present and introduce in our analysis are of general interest
to studying the usage of tensor products in cryptographic constructions. The work of DQVWW21 begins
by considering tensor products of the form [

A1 ⊗ I∥I⊗A2

]
,

which, if left unprocessed, are highly structured and allow an easy recovery of the matrices A1 and A2. To
hide A1 and A2, their construction instead outputs P ·

[
A1 ⊗ I∥I⊗A2

]
·R where the columns are mixed
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by right-multiplying by a random rank-preserving matrix R – referred to as Kilian randomization, and the
number of rows are compressed by left-multiplying by a random matrix P of dimension M × m2, where
M is slightly asymptotically smaller than m2. These types of randomization techniques are used widely
in cryptography, and we show that they are insufficient for hiding matrices A1,A2. In fact, we show that
from the Kilian randomized matrix, one can efficiently recover a unique representation of A1,A2, namely
Ui = Ai ·A−1

i,T . This is a crucial step in our attacks.

1. We first show that Kilian randomization on highly tensored matrices does not kill the tensor structure.
Consider positive integers m ≫ w and let Im denote a m × m square identity matrix. Suppose
Y ←−

[
A1 ⊗ Im∥Im ⊗A2

]
· R for some tall random matrices A1,A2 ∈ Zm×w

q and and some Kilian

matrix R ∈ Z2mw×2mw
q . We consider the problem of recovering A1, A2, and R from Y ∈ Zm2×2mw

q .
Intuitively, the Kilian matrixR is introduced to scramble the tensor structure in the hopes of preventing
the recovery of A1 and A2. Indeed, observe that there is no unique solution to A1, A2, and R. This
is because for any invertible matrices T1,T2 ∈ Zw×w

q , there exists a matrix R′ ∈ Z2mw×2mw
q such that[

A1 ·T1 ⊗ I∥I⊗A2 ·T2

]
·R′ = Y.

However, we show that this Kilian randomization turns out to be insufficient to prevent a meaningful
recovery of A1 and A2. We consider an alternative question: Can we recover A1,A2 up to a unique
representation? In particular, we consider the problem of recovering Ai · A−1

i,T where Ai,T ∈ Zw×w
q

is the top w × w block of Ai for i ∈ {1, 2}. These matrices are of the form

[
Iw
Ãi

]
for some matrix

Ãi ∈ Z(m−w)×w
q . Two questions naturally arise: (1) For unknowns Ũ1, Ũ2, R̃ and a known Y is there

a unique solution to the following equation?[[
Iw
Ũi

]
⊗ Im∥Im ⊗

[
Iw
Ũi

]]
· R̃ = Y

(2) Can we efficiently find a solution? Addressing the second question, we observe that the above is a
system of overdetermined quadratic equations where the number of unknowns and equations are in a
parameter regime with no efficient recovery algorithms. However, we can simply transform the above
quadratic equation into a linear equation which is efficiently solvable by Gaussian elimination:[[

Iw
Ũi

]
⊗ Im∥Im ⊗

[
Iw
Ũi

]]
= Y · R̃−1

where we consider the unknowns Ũ1, Ũ2, R̃
−1. Moreover, we address the first question and show that

any solution to Ũ1, Ũ2, R̃
−1 will result in Ũi = Ai ·A−1

i,T with overwhelming probability over the coins
used to generate Y. The analysis of this uniqueness is non-trivial and critically relies on analyzing the
non-overlap of the vectorspaces Colspan(A1 ⊗ I) and Colspan(I ⊗A2) and the usage of a reasonable
conjecture we introduce next.

2. Consider a random matrix P with M rows. We conjecture that, with overwhelming probability over
the choice of a random matrix P, for any set of vectors {v1, . . . ,vT } of linearly independent vectors,
where T ≪M , the set of vectors {P ·v1, . . . ,P ·vT } is linearly independent. We will demonstrate how
to use the conjecture to prove the uniqueness of solutions and compute the rank of relevant matrices.

The parameter settings relevant to the DQVWW construction consider matricesP that are only slightly
dimension shrinking and for which the conjecture is applicable (M is still sufficiently large with respect
to the sets of vectors we consider). In this setting, matrices P with a very small number of rows do
not satisfy the expansion properties necessary for iO.

3. Using the conjecture, we can show that left-multiplication by a random matrix P fails to destroy the
tensor structure present if it is insufficiently dimension shrinking. For example, we show that we can
still recover the matrices A1,A2 above up to a unique representation from the equation,

P ·
[[

Iw
Ũi

]
⊗ Im∥Im ⊗

[
Iw
Ũi

]]
= Y · R̃−1
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where P ∈ Zm3/2×m2

q is a known matrix, and where the matrix Y is generated as Y ←− P ·[
A1 ⊗ I∥I⊗A2

]
· R, differing from the above generation process only by the left-multiplication by

P. Our main observation here is that the linear independence of a small set of linearly independent
vectors identified above will be preserved by P, enabling a proof analogous to the one we will use to
show the recovery of a unique representation for A1 and A2 when P is absent.

While many previous linear-algebraic cryptanalytic works present attacks from a matrix point of view,
we show that considering column spans instead allows us to better analyze the tensor structure espe-
cially in the presence of the structure destroying matrix P and the randomizing matrix R.

4. Finally, we give a technique for proving the uniqueness of solutions to X (when such uniqueness exists)
in the equation

AX+BY = C

where A,B,C are known coefficient matrices such that the column span of A has a sufficient amount
of “non-overlap” with the column span of B, and X and Y are unknown matrices. By considering
the homogeneous version of the above equation, in which C = 0 and which corresponds to taking the
difference of two solutions for the inhomogeneous version, and by identifying how many columns in A
do not overlap with Colspan(B), we can isolate an equation of the form A′X = 0 for some matrix A′.
This allows us to use standard rank arguments that depend on the shape of A′ to show that the only
solution to X in the homogeneous equation is 0, which implies that there is a unique solution to X in
the inhomogeneous equation. Here, the conjecture above also extends our technique to the setting of
proving the uniqueness of solutions to X (when such uniqueness exists) in equations of the form

PAX+PBY = C.

In particular, if we can compute the size of the overlap of Colspan(A) and Colspan(B), then the
conjecture allows us to compute the size of the overlap of Colspan(PA) and Colspan(PB).

Related Works. There is a huge body of other works [Agr19, AP20, AS17, BMSZ16, BGK+14, BIJ+20,
BGH+15, BR14, CHL+15, CLR15, CLT15, CLT13, CGH+15, DGG+16, GGH+13b, GJK18, Hal15, HJ15,
Lin16, Lin17, LT17, MSZ16, JLMS19] that construct iO candidates from plausible post-quantum assumptions
(some of which are subject to prior cryptanalysis). This list includes constructions based on candidate multi-
linear maps [GGH13a, GGH+13b, GGH15], from noisy linear functional encryption [Agr19, AP20] and
affine determinant programs [BIJ+20]. Similarly, cryptanalysis was performed to better understand these
assumptions [BBKK17, BHJ+19, BWZ14, BGH+15, CHL+15, CLR15, CGH+15, Hal15, HJL21, HJ15, LV17,
MSZ16, MF15]. Our work does not consider these lines of constructions.

2 Technical Overview

We start by reviewing the construction idea of [DQV+21]. The work is built upon [WW21], which was a
follow up of [BDGM20]. The works [WW21, DQV+21] construct iO by constructing a non-trivial obfuscation
xiO. The works of [AJ15, BV15, BNPW16, LPST16] showed that, under a subexponential security loss, an
xiO scheme can be generically lifted to a construction of an indistinguishability obfuscation scheme further
assuming LWE. Recall that in an xiO scheme, the goal is to obfuscate circuits C : {0, 1}n → {0, 1}m, where
the size of the obfuscation must be marginally better than the size of the truth-table for C i.e. bounded by
2ϵ·n poly(λ, |C|) for some constant ϵ < 1, whereas the running time could be as large as 2n poly(λ, |C|).

The Overall Approach of [WW21, DQV+21] The main starting observation of the works [WW21,
DQV+21] is the following. Consider a function f : {0, 1}ℓ → {0, 1}M×K where M ·K = 2n ·m (the size of
the truth table for C). We intend the function f to take as input the bit description of a circuit C, and
output its truth table. Now consider ciphertexts encrypting bits of the circuit C, encrypted using the dual
GSW variant of homomorphic encryption scheme [GSW13] {CTi = ASi +Ei +CiG}i∈[ℓ] where A ∈ ZM×w

q
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and Si ∈ Zw×M log q
q and G is the gadget matrix defined by [MP13] and w ≪ M,K. Then the idea is that,

one can homomorphically evaluate on these ciphertexts to compute an encoding:

CTf = ASf +Ef +Mf

⌈q
2

⌉
where Sf ∈ Zw×K

q and Mf is a matrix of dimension M × K, that arranges outputs of f(C) in a matrix
form, and Ef is a matrix with ℓ2 norm much smaller than q. This is a ciphertext that has an opening that
is much shorter in size than M ·K. The opening is simply Sf which is of the size w ·K log q ≪M ·K.

Thus, a first candidate could be one in which the obfuscator gives out {CTi}i∈[ℓ] along with Sf . Unfor-
tunately, this is easily attackable, because this let’s one learn Ef , which lies in a linear subspace which is
some function of the circuit C. Thus given Ef one can test if the ciphertexts encrypt C0 or C1.

Relying on fresh LWE samples with large error. To address this issue, [BDGM20, WW21] observed
that access to fresh LWE samples D = AR + F where R ∈ Zw×K

q and F ∈ χM×K
flood from some distribution

χflood can drown out Ef . Then, one can give out Sf + R (in addition to D, {CTi}) which lets one learn
Ef + F +Mf⌈ q2⌉. In fact, this system can be proven secure under LWE. Unfortunately, now the problem
is that D is too big! We don’t obtain any compression if we give such a matrix out. To address this
issue, [WW21] suggested pseudorandomly generating LWE samples, motivating a source of new hardness
assumptions in [WW21] as well as the paper under consideration in our work [DQV+21].

Pseudorandomly sampling LWE To obtain compression, [WW21] suggested that we come up with a
way where one uses a small set of encryptions (encrypting say a PRF key) {CT′

i = AS′
i+E′

i+kiG}i∈[ℓ′] and
then using this compute a larger number of LWE samples of the same kind as D. The work showed that by
homomorphically evaluating PRF and relying on packing techniques, one could generate a larger sample of
the required form D = AR′ +F′. Now one could give out Sf +R′ and this could effectively replace the role
of a fresh LWE sample D. Unfortunately, this assumption is heuristic in nature, and is contingent on the
exact specification of the circuit implementation of the PRF used. The work of [HJL21] pointed out that for
every PRF, if the circuit implementation is not chosen carefully, the assumption could be attacked.

Simplifying Assumption. The main contribution of [DQV+21] is a significantly simpler scheme that
involves computation of a fully specified structured constant-degree polynomials rather than a PRF. The
purpose is to identify the simplest possible assumption that suffices to build iO, and can be reasoned with
respect to broad classes of cryptanalysis algorithms. In order to generate “LWE” type samples, the work of
[DQV+21] gives out d LWE matrices for some constant d ∈ N:

Bi = AiSi +Ei mod q,

for i ∈ [d] where Ai ← Zm×w
q and Si ← Zw×k

q and Ei ← χm×k. Here w ≪ m≪ k
The point of this is that now one can compute B′ = B1 ⊗ . . . ⊗ Bd given these matrices resulting in a

matrix of much larger dimension. This matrix can be expressed as:

B1 ⊗ . . .⊗Bd = A′ · S′ +E′,

where,

A′ =(A1 ⊗ Im ⊗ . . . Im∥Im ⊗A2 ⊗ . . . Im∥ . . . ∥Im ⊗ Im ⊗ . . .Ad),

S′ =


S1 ⊗B2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

E1 ⊗ S2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗ Sd

 ,

E′ =E1 ⊗ . . .⊗Ed.

At this point it is tempting to use B′ to instantiate the template above. Indeed the dimension of S′

is much smaller than the dimension of B′. Unfortunately, this can be attacked using the sum-of-squares
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algorithm. The sample E′ + Mf⌈ q2⌉ + Ef does not hide Ef . E′ consists of all degree d monomials of
E1, . . . ,Ed, and if ∥Ef∥2 ≪ ∥E′∥2, using ideas similar to [BHJ+19] we can recover {Ei} uniquely with high
probability in polynomial time. For ruling out such attacks, we require that for any system of polynomials
of degree d over n variables, the number of equations be less than nd/2, whereas in this case we are giving
out nd equations.

Thus, [DQV+21] suggested multiplying B′ by matrices P and P′ (which are both a part of some crs)

with integer Gaussian entries to compute B∗ = PB′P′ where P ∈ ZM×md

and P′ ∈ Zkd×K . This yields
B∗ = A∗ · S∗ +E∗ where S∗ = S′ ·P′ and E∗ = P(E1 ⊗ . . .⊗Ed)P

′. We can now use E∗ as the smudging
polynomial. The dimension M and K are set so that M ·K ≪ (m · k)d/2 to resist sum-of-squares attacks
and at the same time also give the compression needed to give rise to iO.

While this is the main idea, there are several additional ideas that are needed to turn the intuition above
into a scheme. Observe that in B∗ = PA′S′P′ + E∗, A′ and S′ are highly structured. Instead of releasing
matrices A

∗
= PA′ in the clear, one gives out Kilian randomized version of A

∗
, which we denote by A∗

with the same column span as that of PA′. Still, several issues remain: For example, the construction is in
the CRS model, and the assumption is associated with a CRS. We now describe the assumption below and
then give a sketch of our attack.

Succinct LWE Sampling Assumption. The assumption on a broad level roughly says that for some
constant d ∈ N:

({AiSi +Ei}i∈[d],A
∗, Q̄, Q̄(E1, . . . ,Ed) + Z0, aux0) ≈c

({AiSi +Ei}i∈[d],A
∗, Q̄, Q̄(E1, . . . ,Ed) + Z1, aux1)

where Q̄ is a fully specified degree-d polynomial map over the integers chosen at random from some distri-
bution which we will specify below. For b ∈ {0, 1}, Zb is a distribution that needs to be smudged and auxb
is auxiliary information about the distribution. On a very high level, the assumption has a structure that
is reminiscent of the assumptions made by [AJL+19, JLMS19]. However, there are differences in what set
of polynomials that Q̄ can be supported and the auxiliary information. As described above, the polynomial
map that [DQV+21] considers is of the form: Q̄(E1, . . . ,Ed) = P(E1 ⊗ . . .Ed)P

′ where the polynomial
first computes multilinear degree d monomials by computing E1 ⊗ . . . ⊗ Ed and then multiplies it on both
sides by matrices P,P′ of appropriately chosen dimensions where the entries are chosen from a discrete
Gaussian distribution. Our attacks do not apply to the assumptions made in [AJL+19, JLMS19], which are
structurally similar on a very high level. The reason for this is that our attack uses the structure of the
polynomial Q̄ in a crucial way. Our results, in fact, suggest that there are distributions of polynomials Q̄,
such that Q̄(E1, . . . ,Ed) may be secure to release (from the point of view of SoS, linearizations and other
attacks) but together with the LWE samples, might end up being invertible. This conclusion suggests that
these types of assumptions of LWE sampling with polynomial leakage on the errors need to be thoroughly
investigated.

We now describe the assumption in full specification below.

2.1 The DQVWW Assumption Implying iO
We now describe the assumption of [DQV+21] implying iO. The assumption appears as the “final assump-
tion” on page 7 as well as Conjecture 2 in [DQV+21]. We emphasize unlike previous works in this line, the
assumption of [DQV+21] is fully-specified, meaning all parameters/implementations are fully specified.

We first set some parameters that will be used to define the conjecture.

• d ≥ 3 is a constant integer.

• w is a security/dimension parameter,

• m,n, k,M,N,W are other dimension parameters which are polynomials in w.

• In their candidate, M = md−1/2 and K = md+1/2, m ≥ w3 and m3 ≤ k ≤ m2d−7/6.

• q is a prime, χ, χ̄, χflood are LWE error distributions with different parameters. We note that there is
a bound of q ≤ 2O(m) for LWE security to hold, a point which we expound on in Remark 2.1.
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The assumption is regarding indistinguishability of two distributions Db for b ∈ {0, 1}. We describe both
the distributions below.

Distribution Db.

• For i ∈ [d], sample Ai ← Zm×w
q , Si ← Zw×k

q , Ei ← χm×k. Set Bi = Ai · Si + Ei. Visually, the Ai’s
are tall, the Si’s are wide, and the Bi’s and the Ei’s are wide.

• Sample P← χM×md

and P′ ← χkd×K . Visually, P is a wide matrix and P′ is a tall matrix.

• Set Ā∗ = P ·
(
A1 ⊗ I

⊗(d−1)
m ∥Im ⊗A2 ⊗ I

⊗(d−2)
m ∥ . . . ∥I⊗(d−1)

m ⊗Ad

)
∈ ZM×dwmd−1

q . Visually, Ā∗ is a

tall matrix.

• Set S̄∗ =


S1 ⊗B2 ⊗B3 ⊗ . . .⊗Bd−1 ⊗Bd

E1 ⊗ S2 ⊗B3 ⊗ . . .⊗Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .⊗Ed−1 ⊗ Sd

 ·P′ ∈ Zdwmd−1×K
q Visually, S̄∗ is a wide matrix.

• (Killian Randomization) Find random full rank matrices A∗ ∈ ZM×W
q ,S∗ ∈ ZW×K

q such that A∗ ·S∗ =

Ā∗ · S̄∗. Visually, A∗ is a tall matrix and S∗ is a wide matrix.

• Observe that if one sets B∗ = P · (B1 ⊗ . . .⊗Bd) ·P′ and E∗ = P · (E1 ⊗ . . .⊗Ed) ·P′, then it holds
that B∗ −A∗S∗ = E∗. Set seed = {Bi}i∈[d],A

∗,S∗.

• Set B̂ = A∗S0 + F, where S0 ← ZW×K
q and F← χM×K

flood .

• Set C = A∗R+E− bG, where R← ZW×M log q
q and E← χ̄M×M log q.

Output of Db consists of the following tuple:

∆b = (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +EG−1(B̂)− bF)

We note that E∗ + EG−1(B̂) − bF let’s one derive A∗ · (S∗ + RG−1(B̂) − bS0). This is because

B∗ +CG−1(B̂) = A∗(S∗ +RG−1(B̂)− bS0) +E∗ +EG−1(B̂)− bF.

The Assumption of [DQV+21]. For the distribution D0,D1 defined above, D0 is computationally indis-
tinguishable to D1.

Remark 2.1. For simplicity, consider the LWE error distribution χ to be uniform over [0, B−1]. In general,
the security of LWE itself requires that B/q ≥ 2−w where w is the security parameter (It’s also the length
of the secret, observe that each matrix Si is of dimension w × k and every column, say si,j ∈ Zw

q of Si

defines a fresh LWE sample given by Aisi,j + ei,j, where ei,j ∈ Zk
q is the jth column of Ei). Moreover,

we know that the total entropy in a LWE matrix is upper bounded by wk log q + mk logB and this total
entropy must be upper bounded by the entropy in a truly random matrix of dimension m × k, so we have
mk log q ≥ wk log q + mk logB. Substituting the constraint on the noise-to-modulus ratio into the entropy
bound gives us that m ≥ log q, so q ≤ 2O(m) so that LWE security holds. An analogous constraint holds on
Gaussian distributions with respect to the width.

2.2 Overview of the Attack

We begin by describing a recovery algorithm for the error term E1 in the case that b = 0. To break the
assumption, the algorithm is given a tuple

(P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +EG−1(B̂)− bF)

for some b ∈ {0, 1}, and the algorithm needs to identify the value of b ∈ {0, 1}. We show that in the case of
b = 0, we can construct an algorithm A that recovers the matrices A1, . . . ,Ad up to a unique representation,
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and then recovers the secret S1 up to a unique representation. If we recover A1 and S1 up to a unique
representation, then we can recover E1 from B1. The same attack can then iteratively recover Ei for all
i ∈ [d]. This recovery algorithm for the case that b = 0 heuristically gives rise to a distinguisher which we
explain in Section 3.1.

A unique representation Observe that if one was to naively solve for Ai,Si, there could be many solu-
tions simultaneously satisfying all the constraints. In particular, there are many possible values ofUi,Vi that
satisfy Bi = Ui ·Vi + Ei where Ui ∈ Zm×w

q , Vi ∈ Zw×k
q and A∗ = P

[
U1 ⊗ I⊗(d−1)∥ · · · ∥I⊗(d−1) ⊗Ud

]
T

for a matrix T. This large solution space, for example, contains all solutions of the form Ui = AiR and
Vi = R−1Si for any invertible matrix R ∈ Zw×w

q . Any such choice of Ui and Vi also gives rise to a solution

of A∗S∗ = Ū∗V̄∗ where

Ū∗ = P
[
U1 ⊗ I⊗(d−1)∥ · · · ∥I⊗(d−1) ⊗Ud

]
V̄∗ =


V1 ⊗B2 ⊗B3 ⊗ . . .⊗Bd−1 ⊗Bd

E1 ⊗V2 ⊗B3 ⊗ . . .⊗Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .⊗Ed−1 ⊗Vd

 ·P′.

In order to make a unique search possible, we observe that for any LWE sample,

Bi = Ai · Si +Ei

for a planted Ai ∈ Zm×w
q , Si ∈ Zw×k

q and Ei ← χm×k, with high probability, can be uniquely written as:

Bi = Ui ·Vi +Ei

where we insist that Ui is uniquely structured, namely in its Hermite normal form (reduced echelon form).

That is, we set Ui =

[
Iw
Ãi

]
, by setting the top w×w submatrix of Ui to be identity. The purported solution

value of Ui is supposed to be Ai ·A−1
i,T where A−1

i,T is the top w×w submatrix of Ai. Similarly, the intended
solution for Vi is supposed to be Ai,T ·Si. Note that if this happens, then we still have the desired relation:

Ai · Si = Ui ·Vi

Our algorithm We now state our recovery algorithm that recovers E1 in two simple steps:

Main Recovery Algorithm A

Input: (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +EG−1(B̂).
Output: V1,E1.

1. Recover U1, . . . ,Ud: Solve the affine system of equations defined by

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
= A∗ ·M (1)

where Ui =

[
Iw
Ãi

]
, for i ∈ [d], and the variables are given by the entries of Ã1, . . . , Ãd ∈ Z(m−w)×w

q

and the entries of M ∈ ZW×dwmd−1

q . Even more precisely, every entry of the matrix

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
−A∗ ·M

defines an equation in the above described variables, where the coefficients are given by the entries
of A∗ and P. We will show there is a unique solution for {Ãi}i∈[d], namely the fact that there is

only one possible solution for all the entries of {Ãi}i∈[d] regardless of the solution found for the
entries of M.
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2. Recover V1: Having recovered the unique matrices {Ãi}i∈[d], our algorithm now aims to recover
V1 such that U1 ·V1 = A1 · S1. To do this, our algorithm computes

Y = A∗ · (S∗ +R ·G−1(B̂))

by subtracting off the error E∗+E·G−1(B̂) from B∗+C·G−1(B). Then it computes, via standard

linear algebra, a full rank annihilator matrix Q ∈ ZK×(K−M log q)
q such that G−1(B̂) · Q = 0,

obtaining the equation,

A∗ · S∗ ·Q = Y ·Q.

Finally, it solves the linear system of equations defined by

P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V1 ⊗B′
2

Z

]
P′ ·Q = Y ·Q (2)

where B′
2 = B2⊗ . . .⊗Bd and where the variables are the entries of V1 and Z and the coefficients

are given by the entries of P, P′, Q, Y, Ui, for i ∈ [d], and B′
2. We will show that V1 has

a unique solution, namely the fact that there is only one possible solution for the entries of V1

regardless of the solution found for the entries of Z. Finally, E1 is now recovered by computing
B1 −U1 ·V1.

Observe that in each of the two steps above, our algorithm sets up a simple, explicit affine (linear in
Step 2) system of equations. Correctness of the algorithm is entirely determined by showing, for Step 1, the
uniqueness of the solution to {Ãi}i∈[d], and showing, for Step 2, the uniqueness of the solution to V1. This
analysis is intricate and benefits from being viewed in a specific lens as we shortly explain.

Remark 2.2. We will place basic linear algebra facts and linear algebraic statements about the tensor
structure used in the DQVWW construction in a shaded box. This is done to minimize the number of
distractions the reader encounters. A reference to the corresponding statement in the Appendix will be
included. A compendium of these facts and their proofs is found in Appendix A and Appendix B.

2.3 The Importance of Column Spans

To show uniqueness in Step 1, we will analyze column spans instead of analyzing matrix equations. There
are two reasons for analyzing the column spans: First, reasoning about column spans allows us to disregard
the matrix M in Equation 1 by taking advantage of the fact that the column span of A∗ ·M is contained in
the column span of A∗, a fact which we will recall shortly.

Our second, and principal, reason for analyzing column spans is that it allows us to continue to see the
tensor structure even after left-multiplication by the matrix P. If P were not present, then we observe that
a straightforward linear independence argument, which uses the tensor structure of the matrix in the LHS
of the below equation, shows that there is a unique choice of {Ãi}i∈[d] that satisfies the equation[

U1 ⊗ I
⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
= A∗ ·M.

We will explicitly analyze this case without P later in this overview as a simple example to build intuition.
Under a reasonable conjecture about random matrices being injective on subspaces of small dimension, we
can directly extend this linear independence argument for the simple example to the general case when
we have left-multiplication by P. This extension reveals that left-multiplication by P does not sufficiently
destroy, nor scramble, the tensor structure of the LHS above. Yet, this observation is completely hidden
from view when considering the matrix view

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
9



Since P, in general, is not decomposable into a tensor product, directly analyzing the matrix product makes
the tensor structure appear to be completely lost!

From a column span view, however, this tensor structure is still very much accessible. Extending the
above mentioned linear independence argument to the general case, in which P is present, turns out to

exactly require analyzing the column span Colspan
(
P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
. A more detailed

overview is given below.

Framework for Column Spans To analyze the column span of the following matrix[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
.

where the matrices Ui ∈ Zm×w
q are of the stipulated form (with a top w×w identity block, so of full column

rank w), it is useful to make the following extension of each Ui to a full basis for Zm
q . The column span of

this matrix is some subspace of the vector space over Zm
q ⊗ · · · ⊗ Zm

q︸ ︷︷ ︸
d times

. Considering Zm
q as a vector space, we

consider the following bases for Zm
q . For i ∈ [d], let Bi be a basis for Zm

q obtained by extending the set of

column vectors in Ui =

[
Iw
Ãi

]
to the following full rank, lower-triangular matrix

Bi ≜
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Zm×m

q ,

and let (e
(i)
1 , . . . , e

(i)
m ) denote the columns (the basis vectors).

2.4 Correctness of Step 1

We aim to build simple intuition about the correctness of our algorithm in this overview and leave the full
details to the main technical content. Our overview first shows the existence of one solution to {Ui}i∈[d]

in Equation 1, namely a solution to Ui is the Hermite normal form of Ai ∈ Zm×w
q , which has full column

rank with overwhelming probability by property of random matrices. Then we explain why this is the only
solution with overwhelming probability.

• (Step 1) Existence of a structured solution: First, there exists at least one solution to {Ui}i∈[d]

and M in Equation 1 in which for all i ∈ [d], we have Ui ← Ai ·A−1
i,T , where we recall that Ai,T ∈ Zw×w

q

is defined to be the top w × w block of Ai. Put equivalently, a solution to Ui is the Hermite normal

form of Ai. To see why, for i ∈ [d], define the invertible matrix Ni = I
⊗(i−1)
m ⊗A−1

i,T ⊗ I
⊗(d−i)
m and use

the following two linear algebraic facts.

Lemma 2.3. For any matrices M1,M2, there exists a matrix N such that M1 ·N = M2 if
and only if Colspan(M2) ⊆ Colspan(M1).

Corollary 2.4. For any matrices M1,M2 and for any invertible matrices N1,N2 of the
appropriate dimensions, we have that

Colspan
([
M1∥M2

])
= Colspan

([
M1N1∥M2N2

])
.

These statements and their proofs can be found in Appendix A, under Lemma A.1 and Corol-
lary A.2.
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By Corollary 2.4 we have,

Colspan
(
P ·
[
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
= Colspan

(
P ·
[(

A1 ⊗ I
⊗(d−1)
m

)
·N1∥ · · · ∥

(
I
⊗(d−1)
m ⊗Ad

)
·Nd

])
= Colspan

(
P ·
[
A1 ·A−1

1,T ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad ·A−1
d,T

])
.

By definition of the scheme,

A∗ = P ·
[
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

]
·K

for some matrix K ∈ Zdwmd−1×W
q that preserves the column span of P ·[

A1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

]
. Since the column span is preserved by K,

Colspan(A∗) = Colspan
(
P ·
[
A1 ·A−1

1,T ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad ·A−1
d,T

])
which implies, by Lemma 2.3, that there exists some matrix M that satisfies Equation 1 when we
consider Ui ← Ai ·A−1

i,T for all i ∈ [d].

• (Step 1) Uniqueness when P is absent: To build intuition for the full uniqueness argument,
we present it in the simpler setting in which P is entirely absent from the scheme in the DQVWW
assumption. Let us also consider the simple case when d = 2. In this toy case, there is no matrix P
used to generate A∗, so for this simple case we instead consider when the algorithm is given a matrix
of the form T∗ =

[
A1 ⊗ Im∥Im ⊗A2

]
K for some column span preserving Kilian matrix K. We show

the following claim.

Lemma 2.5 (Simple case without P). For matrices U1 =

[
Iw
Ã1

]
,U2 =

[
Iw
Ã2

]
,U′

1 =

[
Iw
Ã′

1

]
,U′

2 =[
Iw
Ã′

2

]
∈ Zm×w

q , if

Colspan
([
U1 ⊗ Im∥Im ⊗U2

])
= Colspan

([
U′

1 ⊗ Im∥Im ⊗U′
2

])
. (3)

then Ãi = Ã′
i for i ∈ [2] so that U1 = U′

1 and U2 = U′
2.

Before we show how to prove Lemma 2.5, let us show that Lemma 2.5 implies uniqueness. In particular,
we now explain why it is reasonable to require in the statement of Lemma 2.5 that the column spans
are equal.

Recall that the algorithm finds a solution to {Ãi}i∈[2] and M in Equation 1 which is of the following
form in the simplified setting: [

U1 ⊗ Im∥Im ⊗U2

]
= T∗ ·M.

Then, by Lemma 2.3, any solution to {Ãi}i∈[2] satisfies the set containment

Colspan
([
U1 ⊗ Im∥Im ⊗U2

])
⊆ Colspan(

[
A1 ⊗ Im∥Im ⊗A2

]
).

Corollary 2.6. With overwhelming probability over the choice of random Ai ∈ Zm×w
q , for

i ∈ [d], if

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
⊆ Colspan

([
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
then

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= Colspan

([
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])

The proof sketch can be found in Appendix B under Corollary B.8.
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By Corollary 2.6, with overwhelming probability over the choice A1,A2, set containment in this setting
actually implies set equality : Colspan

([
U1 ⊗ Im∥Im ⊗U2

])
= Colspan(

[
A1 ⊗ Im∥Im ⊗A2

]
). There-

fore, any solution found for the simplified version of Equation 1 satisfies the above set equality, and
our new Lemma 2.5 implies that there is only one such choice of {Ãi}i∈[2] that satisfies this equality.

Proof of Lemma 2.5. Proving this fact is done by a linear independence argument enabled by the
structure of matrices Ui and by the tensor construction.

We now give a direct argument for uniqueness by showing that U1 = U′
1 column-by-column. To show,

for example, that the first column v = e
(1)
1 of U1 =

[
Iw
Ã1

]
is equal to the first column of v′ of

[
Iw
Ã′

1

]
,

we perform the following steps.

– We observe that v′ can expressed in the basis B1 in a special linear combination: v′ = e
(1)
1 +∑

j∈{w+1,...,m} α
′
je

(1)
j for some coefficients α′

j .

– We consider the vector v′ ⊗ e
(2)
m which is in both the LHS and RHS of Equation 3. Because it is

in both column spans, this vector can be written as

v′ ⊗ e(2)m =
∑

i≤w or j≤w

λi,j · e(1)i ⊗ e
(2)
j .

On the other hand, substituting for v′ and rearranging gives

0 = (λ1,m − 1) · e(1)1 ⊗ e(2)m −
∑

j∈{w+1,...,m}

α′
j · e

(1)
j ⊗ e(2)m +

∑
i≤w or j≤w

λi,j · e(1)i ⊗ e
(2)
j . (4)

– B1 ⊗B2 = {e(1)i ⊗ e
(2)
j }i,j∈[m] is a basis for Zm

q ⊗ Zm
q . Therefore, the vectors in each of the terms

above are linearly independent. This implies that for j ∈ {w + 1, . . . ,m}, α′
j = 0, and λ1,m = 1,

and for all other values of i, j we have λi,j = 0.

The same outline of steps can be repeated column-by-column.

While this argument suffices to handle the case when P is absent, when P is present we exploit the
following observation. In the argument above for the case of d = 2, we needed the linear independence
of m2− (m−w)2+(m−w)+1 many vectors (given by each of the terms in Equation 4, although note
that the first term will vary depending on which of the w columns we are considering) which is a much
smaller set of vectors than the total size of the basis for Zm

q ⊗ Zm
q , which is m2. For the argument to

continue to hold when P is present, P only needs to preserve the linear independence of this small set
of vectors. A formal statement and proof of this uniqueness is found in Theorem 3.12.

• (Step 1) Uniqueness in the general case: Having seen the uniqueness argument in the simple case
above without P, we now address the general case where P is present.

In the general case, we introduce a single, reasonable conjecture about P being rank preserving on
low-dimensional subspaces. Namely, we conjecture that with overwhelming probability over the choice
of P whose entries are sampled from χ where P has M rows, for T ≪M , and for any set of T linearly
independent vectors {vi}i∈[T ], the set {P · vi}i∈[T ] remains linearly independent. This conjecture
enables us to firstly show that all solutions satisfy a column span set equality and secondly enable the
same linear independence argument that shows that this set equality implies unique solutions.

We first note that the application of Lemma 2.3 on Equation 1, which we now restate,

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
= A∗ ·M

shows that any solution to {Ui}i∈[d] in Equation 1, satisfies the set containment

Colspan
(
P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
⊆ Colspan (A∗) . (5)
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To extend the uniqueness argument from above, we desire to show that any solution to {Ui}i∈[d] in
Equation 1 in fact satisfies the set equality :

Colspan
(
P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= Colspan(A∗). (6)

To see that the set containment implies set equality, we first observe that Corollary 2.6 gives us

rk
([

A1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
= rk

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
.

Then we use the assumption that P preserves the rank of low-dimensional subspaces. This assumption
implies firstly that

rk
(
P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= rk

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
and, recalling that A∗ = P ·

[
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

]
·K for some column span preserving

matrix K, the assumption implies secondly that

rk (A∗) = rk
([

A1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
Then we apply the following linear algebraic fact,

Lemma 2.7. For any matrices M,N with finitely many rows and columns such that
Colspan(M) ⊆ Colspan(N), if rk(M) = rk(N), then Colspan(M) = Colspan(N).

The proof can be found in Appendix A under Lemma A.3.

to see that any solution {Ui}i∈[d] that satisfies the set containment in Equation 5, also satisfies the set
equality found in Equation 6. A formal statement of the assumption on P and formal arguments are
made in the main technical content in Section 3.2.

Once we establish this set equality, we return to our previous linear independence argument.

Lemma 2.8 (Simple case with P). For matrices U1 =

[
Iw
Ã1

]
,U2 =

[
Iw
Ã2

]
,U′

1 =

[
Iw
Ã′

1

]
,U′

2 =

[
Iw
Ã′

2

]
∈

Zm×w
q , if

Colspan
(
P ·
[
U1 ⊗ Im∥Im ⊗U2

])
= Colspan

(
P ·
[
U′

1 ⊗ Im∥Im ⊗U′
2

])
. (7)

then Ãi = Ã′
i for i ∈ [2] so that U1 = U′

1 and U2 = U′
2.

We leave the formal proof to the technical section and instead take the opportunity to demonstrate
how the conjecture naturally extends the proof above (proof of Lemma 2.5) to this setting in which

P is present. To show, for example, that the first column v = e
(1)
1 of U1 =

[
Iw
Ã1

]
is equal to the first

column of v′ of

[
Iw
Ã′

1

]
, we perform the almost identical steps as done before. We observe that v′ can

expressed in the basis B1 in a special linear combination: v′ = e
(1)
1 +

∑
j∈{w+1,...,m} α

′
je

(1)
j for some

coefficients α′
j . Then, using the set equality we showed above, we see that the vector P · (v′ ⊗ e

(2)
m ), is

in both Colspan
(
P ·
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
and in Colspan(A∗) where A∗ was generated

in a process that left-multiplied by P. Therefore, it can also be expressed as

P · v′ ⊗ e(2)m = P ·
(
e
(1)
1 ⊗ e(2)m

)
+

∑
j∈{w+1,...,m}

α′
j ·P ·

(
e
(1)
j ⊗ e(2)m

)
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or as
P ·
(
v′ ⊗ e(2)m

)
=

∑
i≤w or j≤w

λi,j ·P ·
(
e
(1)
i ⊗ e

(2)
j

)
.

Taking the difference gives us the equation,

0 = (λ1,m − 1) ·P ·
(
e
(1)
1 ⊗ e(2)m

)
−

∑
j∈{w+1,...,m}

α′
j ·P ·

(
e
(1)
j ⊗ e(2)m

)
+

∑
i≤w or j≤w

λi,j ·P ·
(
e
(1)
i ⊗ e

(2)
j

)
.

For us to finish arguing that all the coefficients α′
j = 0, for j ∈ {w + 1, . . . ,m}, we need the linearly

independence of the following set of vectors{
P ·
(
e
(1)
1 ⊗ e(2)m

)}
∪
{
P ·
(
e
(1)
j ⊗ e(2)m

)}
j∈{w+1,...,m}

∪
{
P ·
(
e
(1)
i ⊗ e

(2)
j

)}
i≤w or j≤w

.

The proposed conjecture above that P preserves the linear independence of this small number of vectors
directly addresses this.

2.5 Correctness of Step 2

In Step 2, we assume that the algorithm has already recovered the unique solution for {Ãi}i∈[d] (therefore,
it has also recovered a unique solution for {Ui}i∈[d]) in Step 1. We claim that in Step 2 of the algorithm
above, there exists a unique solution for V1 in Equation 2, which is restated below:

P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V1 ⊗B′
2

Z

]
P′ ·Q = Y ·Q.

To show uniqueness in Step 2, we consider the homogeneous version (when the RHS is 0) of Equation 2:

P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V1 ⊗B′
2

Z

]
P′ ·Q = 0.

Any solution for V1 and Z in the homogeneous version is exactly the difference of two solutions for V1 and
Z in the inhomogeneous version. Therefore, by showing that the only solution for V1 in the homogeneous
system is the zero matrix, we show that there is a unique solution for inhomogeneous version.

Intuitively, one sees that uniqueness is possible by observing that in the block V1 ⊗B′
2 is linear in the

entries of V1 and there are only wk unknowns but many equations (as many as the number of entries in
V1⊗B′

2). On the other hand, in terms of uniqueness, one should be concerned about the unknown matrix Z
in Equation 2. However, we show how to isolate a linear equation in only V1 (removing Z) thereby revealing
that V1 must have a unique solution with high probability. The proof of uniqueness then proceeds by a rank
argument. We present an overview of this proof in three steps: firstly, we show that there always exists a
solution, secondly we give a simple observation for when P is not present, and finally we give the high level
argument for when P is present.

• (Step 2) Existence of a solution: By definition of the scheme,

A∗ · S∗ = Ā∗ · S̄∗,

where,

Ā∗ = P(A1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ad),

S̄∗ =


S1 ⊗B2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

E1 ⊗ S2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗ Sd

 ·P′
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Thus, due to the properties of tensor products:

A∗ · S∗ = L1 · L2,

where,

L1 = P(A1 ·A−1
1,T ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ad ·A−1

d,T ),

L2 =


A1,T · S1 ⊗B2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

E1 ⊗A2,TS2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗Ad,TSd

 ·P′

Therefore, there is a solution to Equation 2 where V1 = A1,T · S1.

• (Step 2) Uniqueness when P is absent: Uniqueness is argued by considering the homogeneous
version of Equation 2 (obtained by taking the difference of two candidate solutions) and arguing that
the only solution is the zero solution (the difference is zero, so the two solutions are equal). Consider
the homogeneous equation when P is absent:[

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V′
1 ⊗B′

2

Z′

]
P′ ·Q = 0 (8)

where the entries of V′
1,Z

′ are the unknowns. In this case, it easy to see that V′
1 = 0 since we can

remove Z′ by left multiplying both sides of Equation 8 by the matrix

U⊥ ≜
[
Im ⊗U⊥

2 ⊗ · · ·U⊥
d

]
where U⊥

i ∈ Z(m−w)×m
q are full rank annihilators of Ui, that is U

⊥
i Ui = 0. Moreover, observe that if

Ui are the Hermite normal forms of Ai, then U⊥
i also annihilates Ai. Left multiplying both sides of

Equation 8 by U⊥ and expanding B′
2 = B2 ⊗ · · · ⊗Bd where Bi = AiSi +Ei gives:(

U1 ·V′
1 ⊗U⊥

2 ·E2 ⊗ · · · ⊗U⊥
d ·Ed

)
·P′ ·Q = 0. (9)

This equation implies that V′
1 = 0 with high probability. Observe that the error terms Ei, the matrix

P′, and the matrix Q are independently produced. Moreover, with high probability over the choice of
error terms Ei, we have U⊥

i · Ei ̸= 0. If V′
1 is non-zero then U1 ·V′

1 ̸= 0, since U1 has full column
rank, which would imply that the LHS of Equation 9 is non-zero, a contradiction. Therefore, V′

1 = 0
with high probability and we have uniqueness for a solution to V1 when P is absent. This simple
argument that left multiplies by an appropriate tensored matrix does not extend in the presence of P
because a random matrix P is not tensor decomposable as we explain

• (Step 2) Uniqueness when P is present: Now we consider the homogeneous equation with P:

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V′
1 ⊗B′

2

Z′

]
P′ ·Q = 0 (10)

where V′
1 and Z′ are the unknowns. Here, from the matrix point of view the tensor structure is

destroyed by the action of P, for example consider P · (U1 ⊗ I
⊗(d−1)
m ), obstructing us from using the

simple argument for uniqueness above. An argument using column spans is also inhibited because the

matrix of interest

[
V′

1 ⊗B′
2

Z′

]
is left-multiplied by the matrix P

[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
. The

key insight from the simple argument above is that it allowed us to isolate V′
1 in a simple homogeneous

equation where Z′ is absent. Therefore, we aim to again isolate V′
1 in a simple homogeneous equation

to prove uniqueness in this general setting, we first expand Equation 10:

P ·
[
U1 ⊗ I

⊗(d−1)
m

]
(V′

1 ⊗B′
2) ·P′ ·Q

+P ·
[
Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
Z′ ·P′ ·Q = 0
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Applying the principle of wishful thinking, if the columns of P ·
[
U1 ⊗ I

⊗(d−1)
m

]
were linearly indepen-

dent from those of P ·
[
Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
then the first term alone must satisfy

P ·
[
U1 ⊗ I

⊗(d−1)
m

]
(V′

1 ⊗B′
2) ·P′ ·Q = 0, thereby isolating V′

1 in a new homogeneous equation without

the presence of Z′. This independence, however, is false. The two column spans certainly overlap.

To make this approach work, a simple modification suffices: we can take a submatrix of P ·[
U1 ⊗ I

⊗(d−1)
m

]
and remove from consideration all the columns of P ·

[
U1 ⊗ I

⊗(d−1)
m

]
contained in

Colspan
(
P ·
[
Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
.

Moreover, we can compute the exact rank of this submatrix combinatorially as w(m−w)d−1. Leaving
the exact details to the main technical body, this observation leads us to an equation of the form

X1 · (V′
1 ⊗B′

2) ·P′ ·Q = 0.

for some matrix X1 that has a nullspace of dimension O(w2md−2). On the other hand, we will observe
that when V′

1 ̸= 0, V′
1 ⊗B′

2 has rank at least O(md−1). Therefore, it must be the case that V′
1 = 0

if m = ω(w2) and we observe that the initial work of [DQV+21] sets m ≥ w3. In a nutshell, the

significant amount of non-overlap of the column span of P ·
[
U1 ⊗ I

⊗(d−1)
m

]
with the column span

Colspan
(
P ·
[
Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
is still enough to argue uniqueness of V1. The

full details of this uniqueness claim can be found in Section 3.3.

3 Our Attack

Theorem 3.1. Under Conjecture 3.3, there exists a polynomial time probabilistic algorithm that recovers
{Ei}i∈[d] for i ∈ [d] when given an input from D0.

Proof. We construct an algorithm A that takes an input

∆0 = (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +E ·G−1(B̂)),

and outputs {Ei}i∈[d]. In a nutshell, the algorithm will be able to compute matrices V1 ∈ Zm×w
q and

U1 ∈ Zw×k
q such that B1 ∈ Zm×k

q such that B1 = U1 ·V1 + E1 ∈ Zm×k
q such that E1 ∈ Zm×k

q has a small
norm. Our attack recovers all the errors Ei for i ∈ [d], giving a full recovery algorithm.

As described in the overview, there are only two steps where each step only uses Gaussian Elimination
on polynomial sized systems of equations.

Algorithm for Recovery of E1

Input: (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +EG−1(B̂).

Output: {Ãi}i∈[d],V1,E1.

1. Recover U1, . . . ,Ud: Solve the affine system of equations defined by

P ·
[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
= A∗ ·M

where Ui =

[
Iw
Ãi

]
, for i ∈ [d], and the variables are given by the entries of Ã1, . . . , Ãd ∈ Z(m−w)×w

q

and the entries of M ∈ ZW×dwmd−1

q and the coefficients are given by the entries of A∗ and P. We
discuss this step in detail in Section 3.2.

2. Recover V1: Having recovered the unique matrices {Ãi}i∈[d], our algorithm now aims to recover
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V1 such that U1 ·V1 = A1 · S1. To do this, our algorithm computes

Y = A∗ · (S∗ +R ·G−1(B̂))

by subtracting off the error E∗+E·G−1(B̂) from B∗+C·G−1(B). Then it computes, via standard

linear algebra, a full rank annihilator matrix Q ∈ ZK×(K−M log q)
q such that G−1(B̂) · Q = 0,

obtaining the equation,

A∗ · S∗ ·Q = Y ·Q.

Finally, it solves the linear system of equations defined by

P
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

] [V1 ⊗B′
2

Z

]
P′ ·Q = Y ·Q

where B′
2 = B2⊗ . . .⊗Bd and where the variables are the entries of V1 and Z and the coefficients

are given by the entries of P, P′, Q, Y, Ui, for i ∈ [d], and B′
2. Finally, E1 is now recovered by

computing B1 −U1 ·V1. We discuss this step in Section 3.3.

The above two steps details the main step of the algorithm. Having recovered U1,V1, we can now recover
E1 from B1. We now describe how to extend the same recovery algorithm to E2, . . . ,Ed. First consider the
case of recovering E2.

• The algorithm described above allows us to learn recover V1 and E1 where B1 −U1V1 = E1. The
idea is that we can repeat this process to learn E2, . . . ,Ed. Note that in the equation

P(U1 ⊗ I⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud) ·
[
V1 ⊗B(2,...,d)

Z

]
P′Q = YQ,

once V1 is known, we can begin exploiting the structure of a candidate solution to Z. In particular,
there exists a solution for Z which is of the form:

Z̄ =

E1 ⊗A2,T · S2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗Ad,TSd

 ·P′.

This form allows us to solve for V2,Z2, once we have V1,E1, by setting up the system of affine
equations given by:

P(U1 ⊗ I⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud) ·

 V1 ⊗B(2,...,d)

E1 ⊗V2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

Z2

P′Q = YQ

for which we know a candidate solution for V2 is A2,TS2. Here the unknowns are the entries of V2,Z2

and the coefficients are given by all the other matrices’ entries. We solve for V2 as the equation is
now linear in V2. Proving that this solution is unique will use the exact same ideas as above, except
on a smaller system of equations which are affine instead of linear. We will continue this way for all
remaining indices i ∈ [d].

More formally, the following algorithm takes as additional input the values {Ãi}i∈[d] computed by the
main algorithm above and computes Ej given when given all Ei for i < j.

Algorithm for Recovery of Ej, for j ∈ {2, . . . , d}

Input: (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ +EG−1(B̂), {Ãi}i∈[d], j, {Vi,Ei}i∈[j−1]).
Output: Vj ,Ej .

1. Recover Vj : The unique matrices {Ãi}i∈[d] and the matrices obtained from the previous invo-
cations of the algorithm, {Vi,Ei}i∈[j−1], are given as input. Our algorithm now aims to recover
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Vj such that Uj ·Vj = Aj · Sj . To do this, our algorithm computes

Y = A∗ · (S∗ +R ·G−1(B̂))

by subtracting off the error E∗+E·G−1(B̂) from B∗+C·G−1(B). Then it computes, via standard

linear algebra, a full rank annihilator matrix Q ∈ ZK×(K−M log q)
q such that G−1(B̂) · Q = 0,

obtaining the equation,

P(I⊗(j−1)
m ⊗Uj ⊗ I⊗(d−j)

m ∥ · · · ∥I⊗(d−1)
m ⊗Ud) ·

[
E(1,...,j−1) ⊗Vj ⊗B(j+1,...,d)

Zj

]
P′Q = Y ·Q−N

(11)

where for k, ℓ ∈ [d], k < ℓ, B(k,...,ℓ) ≜ Bk ⊗Bk+1 ⊗ . . .⊗Bℓ, E
(k,...,ℓ) ≜ Ek ⊗Ek+1 ⊗ . . .⊗Eℓ and

where the variables are the entries of Vj and Zj and the coefficients are given by the entries of
all other matrices and where the entries of the matrix N, defined below, are completely known:

N ≜ P(U1 ⊗ I⊗(d−1)
m ∥ · · · ∥I⊗(j−2)

m ⊗Uj−1 ⊗ I⊗(d−j+1)
m ) ·


V1 ⊗B(2,...,d)

E1 ⊗V2 ⊗B(3,...,d)

...
E(1,...,j−2) ⊗Vj−1 ⊗B(j,...,d)

P′Q

Once the algorithm solves for Vj , it can recover Ej by computing Bj −Uj ·Vj .

Though the following notation is less lucid than what was used in the above algorithm, for completeness
we note that Equation 11 can equivalent be written, by block matrix multiplication, as

P(U1 ⊗ I⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud) ·


V1 ⊗B(2,...,d)

E1 ⊗V2 ⊗B(3,...,d)

...
E(1,...,j) ⊗Vj ⊗B(j+1,...,d)

Zj

P′Q = Y ·Q.

Uniqueness for this case is proven analogously to the case of recovering E1. In particular, the only requirement
for proving uniqueness is the same as in the previous case: Namely that E(1,...,j−1)⊗Vj⊗B(j+1,...,d) has rank
O(md−1) whenever Vj is non-zero. This is intuitively seen to be true since {Ei}i∈[d] are sampled from an
LWE friendly error distribution so are full rank with overwhelming probability and the Bj are LWE matrices
and computationally indistinguishable from uniform random matrices. We prove this uniqueness formally
for the case of j = 1 in Section 3.3 and remark here that uniqueness in the other cases follow similarly.

Remark 3.2. Theorem 3.1 shows a full recovery attack for the case that the input is from D0 and can be
extended via a heuristic argument to a distinguisher between D0 and D1 which we discuss in Section 3.1.

3.1 Distinguishing D0 from D0

To come up with a distinguisher which takes an instance from Db for some b ∈ {0, 1}, we follow the following
approach:

• We use the algorithm described in Theorem 3.1 to learn E1, . . . ,Ed. As a remark, we note that
equations solved for in the algorithm can be set up regardless of whether b = 0 or b = 1. What we
show is that the recovery will succeed with high probability when b = 0.

• Once we have E1, . . . ,Ed we can compute E∗ = P · (E1 ⊗ · · · ⊗ Ed) · P′. Then, we can use the error

leakage from the assumption E∗ + E · G−1(B̂) to learn E · G−1(B̂). We simply check that this is
annihilated by multiplying by Q. This will succeed in the case that b = 0.
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• In the case when b = 1, the check will not pass because of the presence of a random error matrix F,
namely the leakage term is given by E∗ +E ·G−1(B̂)− F and even if we solve for E∗ and attempt to

annihilate the remaining terms, the term E ·G−1(B̂)− F cannot be annihilated because heuristically

a random matrix F is unlikely to lie in the row span of G−1(B̂) (note that G−1(B̂) is a wide matrix
with a large right nullspace) .

3.2 Recovery of unique Ãi’s

Our first objective is to recover the matrices A1, . . . ,Ad up to a unique representation U1 =

[
Iw
Ã1

]
, . . . ,Ud =[

Iw
Ãd

]
.

3.2.1 Useful Claims and Conjectures

As one can observe, all we needed in the previous example was linear independence for a fixed number of
vectors (the number of vectors is much less than the dimension of the column span). For the proof to work
with P, we will require that P preserves linear independence of a fixed small set of linearly independent
vectors with high probability.

Conjecture 3.3 (Linear independence preservation under P). Let m,w, d, k,K,M, q, χ be parameters de-
fined previously. If v1, . . . ,vT are arbitrary linearly independent vectors in Z⊗d

q , where T = md− (m−w)d+

d ·m then with probability 1− q−Ω(w2m) over the choice of P← χM×md

, we have that P · v1, . . . ,P · vT are
linearly independent.

Remark 3.4 (Limit on Modulus Size). Naively using exponential modulus-to-noise ratios does not break the
conjecture because the hardness of LWE puts a limit on this ratio.

As a concrete attempt to break the conjecture, let us focus on the probability of sampling the zero-matrix,

P←− 0, given by B−md·M = B−m2d−(1/2)

. The zero-matrix is not injective on any non-trivial subspace so to
attempt to break the conjecture, we can set the modulus q such that the probability of sampling the zero-matrix

is larger than q−Ω(w2m). For this attempt to be succeed, we require the relation B−m2d−(1/2) ≥ q−Ω(w2m)

which implies that setting q ≥ BΩ(m2d−3/2/w2) ≥ 2Ω(m2d−3/2/w2) (since B ≥ 2) is enough to refute the
conjecture. Since d ≥ 3 and m ≥ w3, this setting of modulus q is much too large for LWE security to hold as
security requires q ≤ 2O(m). In other words, in this setting, the distribution χ is not an LWE-friendly error
distribution and is not an admissible choice of χ allowed in the original assumptions (see Section 2.1 and
Remark 2.1).

Remark 3.5. If P is a uniformly random matrix over ZM×md

q , a straightforward counting argument suffices
to prove the above conjecture. If P is random, then Pv1, . . . ,PvT are jointly distributed as random vectors
over ZM

q provided T ≪M . For random vectors, the probability that they are linearly independent is at least

1−O(T · q
T−1

qM
) = 1−O(q−M/2) when T ≪M .

Now we use conjecture and express it in a notation useful to our proofs.

Corollary 3.6 (Linear independence preservation under P, Useful Notation). Let m,w, d, k,K,M, q, χ be

parameters defined previously. For i ∈ [d], let {e(i)1 , e
(i)
2 , . . . , e

(i)
m } be a basis for Zm

q . Then define

B ≜
{
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w,
}

∪
d⋃

k=1

{
e(1)m ⊗ · · · ⊗ e(k−1)

m ⊗ e
(k)
ℓ ⊗ e(k+1)

m ⊗ · · · ⊗ e(d)m : ℓ ∈ [m]
}
.

Assuming Conjecture 3.3, P is sampled from χM×md

the vectors in the set, with probability 1− q−Ω(w2m),

BP ≜ {P · v : v ∈ B}

are linearly independent.
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Proof. Set v1, . . . ,vT to the vectors in B.

Notation Let Ik denote the k×k identity matrix for k ≥ 0. For Ãi ∈ Z(m−w)×w
q for i ∈ [d], let

[
Iw
Ãi

]
∈ Zm×w

q

denote a block matrix whose top block is Iw and bottom block is Ãi. For a fixed set of {Ãi}i∈[d] for

Ãi ∈ Z(m−w)×w
q , we consider the set of extended bases for i ∈ [d] given by {Bi}i∈[d] where

Bi ≜
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Zm×m

q .

For any i ∈ [d], the columns of Bi form a basis for Zm
q . Let e

(i)
j denote the jth column in Bi and consider

the set

B =
{
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w,
}

∪
d⋃

k=1

{
e(1)m ⊗ · · · e(k−1)

m ⊗ e
(k)
ℓ ⊗ e(k+1)

m ⊗ · · · ⊗ e(d)m : ℓ ∈ [m]
}
.

Define BP = {P · v : v ∈ B}.

We now show that under Conjecture 3.3, for a random choice of P from χ, with overwhelming probability
there is no choice of matrices {Ãi}i∈[d] for which P does not preserve the linear independence of the set B.

Lemma 3.7. Let P← χM×md

and for i ∈ [d], let Ãi ∈ Z(m−w)×w
q . Assuming Conjecture 3.3,

Pr
P

[
∃{Ãi}i∈[d] s.t. BP not linearly independent

]
= q−Ω(w2m) = negl(w)

Proof. By Corollary 3.6, the probability over choice of P that P preserves the linear independence of B
defined with respect to a fixed set of {Ãi}i∈[d] is 1−q−Ω(w2m). Taking a union bound over all possible values

of {Ãi}i∈[d], for which there are qdw(m−w) many, we have

Pr
P
[∃{Ãi}i∈[d] s.t. BP not linearly independent] = q−Ω(w2m)+dw(m−w) = q−Ω(w2m).

Lemma 3.8. For i ∈ [d], let Li ≜ I
⊗(i−1)
m ⊗

[
Iw
Ãi

]
⊗ I

⊗(d−i)
m and let Ã ≜

[
L1∥L2∥ · · · ∥Ld

]
. Under Conjec-

ture 3.3, with overwhelming probability over the choice of P← χM×md

, we have that the following holds for
any set of matrices {Ãi}i∈[d].

∀i ∈ [d],dim (P · Li) = wmd−1

dim
(
Colspan

([
P · L1∥P · L2∥ . . . ∥P · Ld

]))
= md − (m− w)d = dwmd−1 −O

(
w2md−2

)
dim

(
Colspan(P · L1) ∩ Colspan

([
P · L2∥ . . . ∥P · Ld

]))
= wmd−1 − w(m− w)d−1

Proof. By Corollary 3.6 and Lemma 3.7, the following vectors are linearly independent

BP =
{
P ·
(
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

)
: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w

}
∪

d⋃
k=1

{
P ·
(
e(1)m ⊗ · · · e(k−1)

m ⊗ e
(k)
ℓ ⊗ e(k+1)

m ⊗ · · · ⊗ e(d)m

)
: ℓ ∈ [m]

}
.

Because of this, the first claim trivially holds.
For the second claim, observe that the following set of md − (m− w)d vectors{

P ·
(
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

)
: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w

}
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spans Colspan(PÃ), therefore it is also a basis so dim
(
Colspan(PÃ)

)
= md − (m− w)d.

For the third claim, we first claim that dim (Colspan (PL2∥ · · · ∥PLd)) = dim (Colspan (L2∥ · · · ∥Ld)) =
md −m(m− w)d−1. The first equality is due to Lemma 3.7.

For the second equality follows from the proof of the following Lemma.

Lemma 3.9. The set

B ≜ {e(1)i1
⊗ e

(2)
i2
⊗ · · · ⊗ e

(d)
id
}∀j∈[d],ij∈[m]∧∃j∗∈[d] s.t. ij∗∈[w]

forms a basis for the vector space Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
.

The proof can be found in Appendix B under Lemma B.4.

Now we have that

dim
(
Colspan(P · L1) ∩ Colspan

([
P · L2∥ . . . ∥P · Ld

]))
= dim(Colspan(

[
P · L1

]
)) + dim(Colspan(

[
P · L2∥ · · · ∥P · Ld

]
))

− dim
(
Colspan

([
P · L1∥P · L2∥ . . . ∥P · Ld

]))
= wmd−1 − w(m− w)d−1.

Remark 3.10 (Solution spans entire column space). As thoroughly explained in overview of our attack,

in general, solving for matrices {Ãi}i∈[d] only guarantees that the solution satisfies Colspan
(
PÃ

)
⊆

Colspan (A∗). However, observe that

Ã ≜

[[
Iw
Ã1

]
⊗ I

⊗(d−1)
m ∥Im ⊗

[
Iw
Ã2

]
⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗
[
Iw
Ãd

]]
will always be of maximal rank due to the structure of the matrices which have a top w×w identity matrix.
This is shown formally in Corollary B.5, which is restated as follows.

Corollary 3.11. For any choice of {Ãi}i∈[d], dim
(
Colspan

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]))
=

md − (m− w)d.

The proof can be found in Appendix B under Corollary B.5

Then, Lemma 3.7 also guarantees that with overwhelming probability over the choice of P, there are

no values of {Ãi}i∈[d] that result in dim
(
Colspan

(
PÃ

))
< dim (Colspan (A∗)). Therefore with over-

whelming probability over the choice of P any solution found to {Ãi}i∈[d] gives equality: Colspan
(
PÃ

)
=

Colspan (A∗). See also Corollary B.8.
Moreover, the solution space is non-empty, as explained thoroughly in the attack overview in Section 2.4,

since Ãi set as the bottom (m−w)×w block of the the Hermite normal form (HNF) of the matrices Ai for
i ∈ [d] is a solution.

3.2.2 Main Theorem for the Recovery of Ãi’s

The following theorem immediately gives rise to our recovery algorithm.
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Theorem 3.12 (Unique solutions for Ãi). Let M,m,w, k, d, q, χ be parameters as defined previously. Sample

P ← χM×md

. Then with probability 1 − negl(m), over the choice of P we have that for any choice of

Ãi ∈ Z(m−w)×w
q for i ∈ [d] and Ã′

i, we have the following where we define

Ã ≜

[[
Iw
Ã1

]
⊗ I

⊗(d−1)
m ∥Im ⊗

[
Iw
Ã2

]
⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗
[
Iw
Ãd

]]
Ã′ ≜

[[
Iw
Ã′

1

]
⊗ I

⊗(d−1)
m ∥Im ⊗

[
Iw
Ã′

2

]
⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗
[
Iw
Ã′

d

]]
.

1. If,

Colspan
(
PÃ′

)
⊆ Colspan

(
PÃ

)
,

then
Colspan

(
PÃ′

)
= Colspan

(
PÃ

)
.

2. Furthermore, if

Colspan
(
PÃ′

)
= Colspan

(
PÃ

)
for all i ∈ [d], then Ãi = Ã′

i.

Proof. The proof of the first claim is addressed by Remark 3.10.

We now address the second claim. The proof proceeds column-by-column of

[
Iw
Ã′

i

]
for i ∈ [d] and shows

that each column of

[
Iw
Ãi

]
is equal to its corresponding column in

[
Iw
Ãi

]
. We’ll show that the first column of[

Iw
Ã′

1

]
, say d

(1)
1 , is equal to the first column of

[
Iw
Ã1

]
.

First, for every i ∈ [d] extend the columns of

[
Iw
Ãi

]
to a basis for Zm

q given by the columns of the matrix

Bi below:

Bi ≜
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Zm×m

q .

Let e
(i)
j denote the jth column in Bi and observe that for all the jth columns of Bi for j ∈ [w+ 1,m] are all

elementary vectors. That is, for i ∈ [d] and for j ∈ {w + 1, . . . , d}, e(i)j = ej where ej is the jth elementary

vector. Now we aim to show that d
(1)
1 = e

(1)
1 .

Take a carefully chosen column of PÃ′, namely P ·
(
d
(1)
1 ⊗ e

(2)
m ⊗ · · · ⊗ e

(d)
m

)
∈ Colspan

(
PÃ′

)
=

Colspan
(
PÃ

)
.

Therefore, we can write an equation:

P ·
(
d
(1)
1 ⊗ e(2)m ⊗ · · · ⊗ e(d)m

)
=

∑
i1,i2,...,id∈[m]∃j∈[d] s.t. ij∈[w]

λi1,...,id ·P · (e
(1)
i1
⊗ · · · ⊗ e

(d)
id

) (*)

Now observe that, d
(1)
1 has a special form. Namely, the first column d

(1)
1 must be of the form d

(1)
1 =

e
(1)
1 +

∑
w<j≤m α

(1)
j e

(1)
j for some coefficients α

(1)
j ∈ Zq, j ∈ {w + 1, . . . ,m}. If we show that α

(1)
j = 0 for all

j ∈ {w + 1, . . . ,m}, then d
(1)
1 = e

(1)
1 and e

(1)
1 is the first column of

[
Iw
Ã1

]
.

Substituting for d
(1)
1 , we have

P ·
(
d
(1)
1 ⊗ e(2)m ⊗ · · · ⊗ e(d)m

)
= P ·

e
(1)
1 +

∑
j>w

α
(1)
j e

(1)
j

⊗ e(2)m ⊗ · · · e(d)m


= P ·

(
e
(1)
1 ⊗ e(2)m ⊗ · · · e(d)m

)
+
∑
j>w

α
(1)
j P ·

(
e
(1)
j ⊗ e(2)m ⊗ · · · e(d)m

)
(**)
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Taking the difference of equation (*) and (**), we see that we have

0 =(λ1,m,m,...,m − 1) ·P · (e(1)1 ⊗ e(2)m ⊗ · · · e(d)m ) +
∑

i1∈{w+1,...,m}

α
(1)
j ·P · (e

(1)
i1
⊗ e(2)m ⊗ · · · ⊗ e(d)m )

+
∑

i1,i2,...,id∈[m]∃j∈[d] s.t. ij∈[w]

λi1,...,id ·P · (e
(1)
i1
⊗ · · · ⊗ e

(d)
id

)

Now observe that every vector in this linear combination is linearly independent by Lemma 3.7 which states
that

BP =
{
P ·
(
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

)
: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w,

}
∪

d⋃
k=1

{
P ·
(
e(1)m ⊗ · · · e(k−1)

m ⊗ e
(k)
ℓ ⊗ e(k+1)

m ⊗ · · · ⊗ e(d)m

)
: ℓ ∈ {w + 1, . . . ,m}

}
is a linearly independent set of vectors. Therefore, λ1,m,m,...,m = 1 and α

(1)
j = 0 for all j ∈ {w + 1, . . . , d}.

Therefore, d
(1)
1 = e

(1)
1 . To show that the ℓth column of

[
Iw
Ã′

i

]
, denoted d

(i)
ℓ , is the the ℓth column of

[
Iw
Ãi

]
,

denoted e
(i)
ℓ , apply the same argument on the vector P ·

(
e
⊗(i−1)
m ⊗ d

(i)
ℓ ⊗ e

⊗(d−i)
m

)
.

3.3 Recovery of a unique V1

Having recovered matrices U1 =

[
Iw
Ã1

]
= A1A

−1
1,T , . . . ,Ud =

[
Iw
Ãd

]
= AdA

−1
d,T , we now aim to recover a

secret matrix up to uniqueness V1 = A1,T · S1 such that B1 = U1 ·V1 + E1 where E1 is a low-norm error
matrix. We argue correctness for this procedure for b = 0. We reason about the case b = 1 in Section 3.1.

Observe that when b = 0, the algorithm can compute the matrix Y = A∗(S∗+RG−1(B̂)) from its inputs

and then it can annihilate the term RG−1(B̂) by computing a full rank matrix Q ∈ ZK×(K−M log q)
q from

the right nullspace of G−1(B̂). Now we have,

A∗ · S∗ ·Q = Y ·Q

By definition of the scheme,

A∗ · S∗ = Ā∗ · S̄∗,

where,

Ā∗ = P(A1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ad),

S̄∗ =


S1 ⊗B2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

E1 ⊗ S2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗ Sd

 ·P′

Thus, due to the properties of tensor products:

A∗ · S∗ = L1 · L2,

where,

L1 = P(A1 ·A−1
1,T ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ad ·A−1

d,T ),

L2 =


A1,T · S1 ⊗B2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

E1 ⊗A2,TS2 ⊗B3 ⊗ . . .Bd−1 ⊗Bd

...
E1 ⊗E2 ⊗E3 ⊗ . . .Ed−1 ⊗Ad,TSd

 ·P′
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Therefore, there is a solution to the equation

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud)︸ ︷︷ ︸
defined to be M

·
[
V1 ⊗B2 ⊗ · · · ⊗Bd

Z

]
P′Q = YQ (12)

Where everything is known except the variables V1 and Z and M is a known quantity obtained from the
previous step of recovering Ãi’s. Essentially, what we show is that when seen as equation over just V1, the
equations are actually uniquely solvable. There may be many solutions to Z but this is irrelevant to solving
for V1.

For b = 1, observe that we will be solving

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud)︸ ︷︷ ︸
defined to be M

·
[
V1 ⊗B2 ⊗ · · · ⊗Bd

Z

]
P′Q = YQ (13)

where YQ = (L1L2 − S′
0)Q where S′

0 = KS0 for a Kilian matrix K. If S′
0 was completely random and

independent of everything else, then, we won’t be able to recover A1,TS1 because S′
0 will completely hide

any information about A1,TS1. However, S′
0 is correlated with Q and therefore we give a heuristic reason

why the recovery will fail when b = 1, thereby giving a distinguisher.
The above approach explains how to setup a system of equations in the unknowns V1 and Z and it

remains to explain why solving this system will give you a unique solution for V1.
To show uniqueness, we consider the following homogeneous equation and show that the only solution is

V′
1 = 0 (we treat V′

1,Z
′ as the variables for the homogeneous equation).

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud) ·
[
V′

1 ⊗B(2,...,d)

Z

]
P′Q = 0

where B(2,...,d) = B2⊗· · ·⊗Bd. We proceed in three steps. In any proofs corresponding to these three steps,
we’ll assume that the equations were setup with B2, . . . ,Bd, B̂ are sampled uniform randomly as opposed to
LWE matrices. If multiple solutions for this homogeneous equation exist when they are LWE matrices, then
we have a distinguisher between LWE matrices and random matrices because the homogeneous equation
does not require any secret information.

• Step 1: First, we expand the above equation.

M1 ·V′
1 ⊗B(2,...,d) ·P′ ·Q+M2 · Z′ ·P′ ·Q = 0

where M1 = P · (U1 ⊗ I⊗(d−1)) and M2 = P · (I⊗U2 ⊗ I⊗(d−2)∥ · · · ∥ ⊗ I⊗(d−1) ⊗Ud).

• Step 2: In the second step, find Γ2 as linearly independent columns of M2 that span its column space.
Then find additional linearly independent vectors from from columns of M1 so that

[
Γ1∥Γ2

]
have full

column rank and generate the column space of
[
M1∥M2

]
. Observe that, by Lemma 3.8, Γ1 will have

at least w(m−w)d−1 columns. Moreover, by the properties of column spans (see Lemma 2.3), we can
write M1 = Γ1X1 + Γ2X2 and M2 = Γ2X3 for some X1,X2,X3. In particular, the matrix X1 will
be a permutation matrix that simply selects, or places, the columns of Γ1 into the their corresponding
column in M1. Our equation becomes:

Γ1(X1 · (V′
1 ⊗B(2,...,d)) ·P′ ·Q) + Γ2(X2 · (V′

1 ⊗B(2,...,d)) +X3 · Z′)P′Q = 0

Now we use the linear independence of Γ1 and Γ2 to see that each of the terms must be equal to 0.
Therefore,

X1 · (V′
1 ⊗B(2,...,d)) ·P′ ·Q = 0.

The first and second steps hold with high probability over the choice of P,A1, . . . ,Ad. Notably, they
do not depend on P′ nor Q.
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• Step 3: Our main theorem is that, with high probability over a random choice of P′,B2, . . . ,Bd, B̂,
V′

1 must be 0. If V′
1 ̸= 0 and satisfies the equation, then this implies X1 has a nullspace of dimension

at least O(md−1). Namely, all columns of V′
1⊗B(2,...,d) ·P′ ·Q are in the nullspace, and this matrix has

column rank O(md−1) when V′
1 ̸= 0. On the other hand, we know that X1 ∈ Zw(m−w)d−1×wmd−1

q from
step 2 is of rank w(m−w)d−1. This rank is due to the fact that if a given column γi of Γ1 appears as
ith column of M1 then it also appears as the ith column in Γ1X1, therefore X1 is a permutation matrix
of rank w(m−w)d−1 because Γ1 is of rank w(m−w)d−1, ensuring that the rank of X1 is at least this
much. We know the rank of Γ1 because Lemma 3.8 tells us there are w(m−w)d−1 many such columns
not in the column span of M2 with overwhelming probability over the choice of P,A1, . . . ,Ad.

Therefore, the right nullity of X1 is at most wmd−1 − w(m − w)d−1 = O(w2md−2) by rank-nullity.
Therefore, the only way that the rank of V′

1⊗B(2,...,d) ·P′ ·Q can be consistent with the nullity of X1

is if m ≤ O(w2). This parameter setting is in contrast to that in the paper which asks that m ≥ w3.
This is what our main theorem attempts to prove.

3.3.1 Useful Claims and Conjectures

We begin by proving multiple lemmas about rank of certain distributions of matrices in order to obtain a
lower bound on the column rank of V1 ⊗B(2,...,d) ·P′ ·Q.

Lemma 3.13. For n, k ∈ N such that n ≤ k, a uniform random matrix R ∈ Zn×k
q has rank at least r with

probability:

Pr
R

[rk(R) ≤ r] ≤ q(n+k)r

qnk

Proof. Note that if a matrix M has rank r it can be factored also as M = M′
1 ·M′

2 where M′
1 ∈ Zn×ℓ

q ,M′
2 ∈

Zℓ×k
q for any ℓ ≥ r. Therefore, the number of matrices of rank at most r is loosely bounded by q(n+k)r.

Then,

Pr
R

[rk(R) ≤ r] ≤ q(n+k)r

qnk

Lemma 3.14. For any n, k ∈ N such that n ≥ k, if M ∈ Zn×n
q is a full rank square matrix and F ∈ Zk×n

q

is a (wide) matrix sampled uniform randomly, then F ·M is uniform randomly distributed.

Proof. Let M ∈ Zn×n
q be any full rank square matrix. Observe that for any fixed matrix Y ∈ Zk×n

q , the
probability over the choice of F that F ·M = Y is uniform since M is invertible:

Pr
F
[F ·M = Y] = Pr

F

[
F = Y ·M−1

]
= q−kn.

Corollary 3.15. For any n, k, ℓ ∈ N such that n ≥ k, n ≥ ℓ, if N ∈ Zn×ℓ
q is a full column rank matrix and

F ∈ Zk×n
q is a (wide) matrix sampled uniform randomly, then F ·N is uniform randomly distributed.

Proof. Let N ∈ Zn×ℓ
q be any full rank column matrix. If ℓ = n, then Lemma 3.14 already gives our desired

statement. If ℓ < n, then fix N′ ∈ Zn×(n−ℓ)
q to be any matrix such that

[
N∥N′] is a full rank square matrix

(in other words, extend the columns of N to a basis for Zn
q ). Then for any matrix Y ∈ Zk×ℓ

q

Pr
F
[F ·N = Y] =

∑
Y′∈Zk×(n−ℓ)

q

Pr
F

[
F ·
[
N∥N′] = [Y∥Y′]]

=
∑

Y′∈Zk×(n−ℓ)
q

q−kn (by Lemma 3.14)

= q−kℓ
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Lemma 3.16. Consider a fixed matrix Q ∈ ZK×D
q be of rank D = K −M log q and a uniform random

matrix F ∈ Zmd−1×K
q where M = md−1/2, and K = md+1/2. For all constants c < 1,

Pr
F

[
rk(F ·Q) ≤ c ·md−1

]
< q−Ω(K·md−1)

Proof. By Corollary 3.15, F ·Q ∈ Zmd−1×D
q is a uniform randomly distributed matrix. By Lemma 3.13,

Pr
F

[
rk(F ·Q) ≤ c ·md−1

]
≤ q(m

d−1+D)(c·md−1)

qmd−1·D = qm
d−1(c·md−1−(1−c)D) = q−Ω(K·md−1).

.

Lemma 3.17. 1 Consider a fixed matrix Q ∈ ZK×D
q of full rank D where D = K −M log q, M = md−1/2,

and K = md+1/2. Then let Fi ∈ Zmd−1×K
q for i ∈ [k] denote uniform random matrices. Let s ∈ Zk

q where

m3 ≤ k ≤ m2d−7/6. Then for all constants c < 1 such that

Pr
Fi

[
∃s ̸= 0 such that rk

((
k∑

i=1

si · Fi

)
·Q

)
≤ c ·md−1

]
< q−Ω(K·md−1)

Proof. For a fixed non-zero s ∈ Zk
q ,

Pr
{Fi}k

i=1

[
rk

((
k∑

i=1

si · Fi

)
·Q

)
≤ cmd−1

]
= Pr

F

[
rk (F ·Q) ≤ cmd−1

]
≤ q−Ω(K·md−1)

where the inequality above is given by Lemma 3.16. Then there are qk possible s so by the union bound,

Pr
{Fi}k

i=1

[
∃s ̸= 0 such that rk

((
k∑

i=1

si · Fi

)
·Q

)
≤ c ·md−1

]
< qk · q−Ω(K·md−1) = q−Ω(K·md−1)

Remark 3.18. We require that a uniform matrix F ∈ Zm×k
q extracts m random field elements from χk. A

uniform matrix F is a 2-universal hash function because for a fixed non-zero vector x the probability over
a random choice of F that F · x = 0 is exactly q−m. To apply the Leftover Hash Lemma and obtain the
extraction property, we require that k ·H∞(χ) ≥ m log q + 2 log(ϵ−1) where H∞(·) denotes min-entropy. For
a discrete Gaussian, H∞(χ) is some constant c. Therefore, we require that c · k ≥ m log q + 2 log(ϵ−1). Per
Remark 2.1, for the security of LWE to hold we require that q ≤ 2O(m), so log q = O(m). Then since k ≥ m3,
there exists some ϵ that is negligible in k such that this condition is satisfied.

Lemma 3.19. Assume parameters for m, k, ϵ, q,H∞(χ) are as stated in Remark 3.18. Let Fi ∈ Zm×k
q for

i ∈ {1, . . . , d} be sampled uniformly at random. Define F(1,...,d) ≜ F1 ⊗ . . . ⊗ Fd. Let P′ ← χkd×1. Then

F(1,...,d) ·P′ is
(
kO(d2) · ϵ

)
-statistically close to uniform.

Proof. The induction is on the index d. In the base case, d = 1, we have that F1 ·P′ for P′ ← χk×1 is ϵ-close
to uniform from Remark 3.18. Assume the statement holds for d − 1, we show the statement holds for d.

Let P′ ← χkd×1. Split P′ into k blocks of dimension kd−1 × 1:

P′ =

P
′
1
...

P′
k

 .

1In Lemma 3.17, the values of (lowercase) k are specified on page 24 of [DQV+21].
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Observe that

F(1,...,d) ·P′ =

F1[1, 1] · F(2,...,d) · · · F1[1, k] · F(2,...,d)

...
. . .

...
F1[m, 1] · F(2,...,d) · · · F1[m, k] · F(2,...,d)

 ·P′

=


∑

j∈[k] F1[1, j] · F(2,...,d) ·P′
j

...∑
j∈[k] F1[m, j] · F(2,...,d) ·P′

j

 .

where Fℓ[i, j] denotes the (i, j)th entry of Fℓ. Now apply the induction hypothesis on so that for i ∈ [k],

{F(2,...,d) ·P′
i}i∈[k] is k · ϵd−1 statistically close to k random vectors {vi}i∈[k] where vi ∈ Zkd−1×1

q . Therefore
∑

j∈[k] F1[1, j] · F(2,...,d) ·P′
j

...∑
j∈[k] F1[m, j] · F(2,...,d) ·P′

j

 ≈k·ϵd−1


∑

j∈[k] F1[1, j] · vj

...∑
j∈[k] F1[m, j] · vj

 .

Now observe that the entries of the above matrix are equivalently a rearrangement of the following quantities:

F1 ·
[
v[1] v[2] · · · v[kd−1]

]
where for i ∈ [kd−1], we define the column vector v[i] ≜ (v1[i], . . . ,vk[i])

⊤ ∈ Zk×1
q . Apply the leftover hash

lemma kd−1 times to replace every column with a random vector in Zm
q . This implies a further statistical

distance of kd−1ϵ. Therefore we have that ϵd ≤ ϵd−1 · k + kd−1ϵ = O(kd−1 · ϵd−1). Setting ϵ1 = ϵ, we have

that ϵd = kO(d2)ϵ.

3.3.2 Recovering V1

We now use the above rank lemmas to show that the only solution for V′
1 in the homogeneous equation

above is 0. This is step 3 in the outline described above.

Theorem 3.20. Let X1 ∈ Zw(m−w)d−1×wmd−1

q be of rank w(m−w)d−1. Let B2, . . . ,Bd be uniform randomly

sampled from Zm×k
q . Let B(2,...,d) ≜ B2 ⊗ · · · ⊗Bd and let P′ ← χkd−1×K and let Q ∈ ZK×(K−M log q)

q be of
full rank K −M log q. Then with probability 1 − negl(w) over the choice of P′, B2, . . . ,Bd, if m = ω(w2)
and X1 · (V′

1 ⊗B(2,...,d)) ·P′ ·Q = 0,then V′
1 = 0.

Proof. If V′
1 is non-zero than it has a non-zero row. Suppose WLOG that the first row of V′

1 is some
non-zero vector v1 = (v1,1, . . . , v1,k) ̸= 0. Split

P′ =

P
′
1
...

P′
k

 ,

into k blocks of shape P′
i ∈ Zkd−1×K

q , for i ∈ [k]. Then observe that the top md−1 × (K −M log q) block of

(V′
1 ⊗B(2,...,d)) ·P′ ·Q ∈ Zwmd−1×(K−M log q)

q is given by(
k∑

i=1

v1,i ·B(2,3,...,d) ·P′
i

)
·Q

where v1,i denotes the (1, i)th entry of V1. Lemma 3.19 argues that B(2,3,...,d) extracts a row vector from
a single column of P′

i that is some ϵ′ = negl(w)-statistically close to uniform. Applying Lemma 3.19 on K
columns of k many fresh P′

i, we have(
k∑

i=1

v1,i ·B(2,3,...,d) ·P′
i

)
·Q ≈stat,k·K·ϵ′

(
k∑

i=1

v1,i · Fi

)
·Q.
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where kKϵ′ remains negligible in w. P′
i having K column Then by Lemma 3.17,

Pr
Fi

[
∃v1 ̸= 0 such that rk

((
k∑

i=1

v1,i · Fi

)
·Q

)
≤ md−1/2

]
< q−Ω(Kmd−1).

Therefore with probability 1−q−Ω(Kmd−1)−kKϵ′ over the choice of P′ and B1, . . . ,Bd, (V
′
1⊗B(2,...,d))·P′ ·Q

is of rank at least md−1/2 since the top md−1 × (K −M log q) block already has rank above md−1/2.
On the other hand, the right nullity of X1 is wmd−1−w(m−w)d−1 = O

(
w2md−2

)
. This is only possible

if m ≤ O(w2). In the parameter regime proposed by [DQV+21], m ≥ w3.

Note that Theorem 3.20 is the key ingredient in Step 3.

Corollary 3.21 (Uniqueness of V1). Let d,m,w, k,K,M, q, χ be parameters as defined in Section 2.1. Then
the homogeneous system of equations

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud) ·
[
V′

1 ⊗B(2,...,d)

Z

]
P′Q = 0

has a unique solution V′
1 = 0 with 1− negl(w) probability over the choice of randomness used in generating

the distribution D0.

Proof. As specified, m = w3 = ω(w2). Setting up the matrix X1 ∈ Zw(m−w)d−1×wmd−1

q exactly as specified

in Step 2 in Section 3.3, and assuming that the equations were set up with B2, . . . ,Bd, B̂ that are sampled
uniform randomly as opposed to being LWE matrices, Theorem 3.12 implies that there is a unique solution
V′

1 = 0 with 1 − negl(w) probability over the choice of randomness used in generating the distribution D0.

If multiple solutions for this homogeneous equation exist when this equation is set up where B2, . . . ,Bd, B̂
as LWE matrices, then we have a distinguisher between LWE matrices and random matrices because setting
up the the homogeneous equation does not require any secret information. Therefore, we have the intended
statement.

4 Extending the Attack to the T-sum Candidate

On page 26 of [DQV+21], an alternate candidate construction that builds upon the previous candidate is
proposed. In particular, this alternate candidate fixes a single set of matrices {Ai}di=1, and reuses them to
build T copies of the original candidate, and sums the T copies. More specifically we have the following
candidate:

Distribution Db.

• Let d,m,w, k, χ,M,K, q be the same parameters as defined in Section 2.1.

• For i ∈ [d], sample Ai ← Zm×w
q . For i ∈ [d], j ∈ [T ], sample S

(j)
i ← Zw×k

q , E
(j)
i ← χm×k. Compute

B
(j)
i = Ai ·S(j)

i +E
(j)
i ∈ Zm×k

q . Visually, the Ai’s are tall, the Si’s are wide, and the Bi’s and the Ei’s
are wide.

• Sample P← χM×md

and P′ ← χkd×K . Visually, P is a wide matrix and P′ is a tall matrix.

• Set Ā∗ = P ·(A1 ⊗ Im ⊗ . . . Im∥Im ⊗A2 ⊗ . . . Im∥ . . . ∥Im ⊗ Im ⊗ . . .Ad) ∈ ZM×dwmd−1

q . Visually, Ā∗

is a tall matrix.

• For j ∈ [T ], set S̄∗(j)

=


S
(j)
1 ⊗B

(j)
2 ⊗B

(j)
3 ⊗ . . .B

(j)
d−1 ⊗B

(j)
d

E
(j)
1 ⊗ S

(j)
2 ⊗B

(j)
3 ⊗ . . .B

(j)
d−1 ⊗B

(j)
d

...

E
(j)
1 ⊗E

(j)
2 ⊗E

(j)
3 ⊗ . . .E

(j)
d−1 ⊗ S

(j)
d

 ·P′ ∈ Zdwmd−1×K
q . Then set

S̄∗ =

T∑
j=1

S̄∗(j)

·P′.
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Visually, S̄∗ is a wide matrix.

• (Killian Randomization) Find random full rank matrices A∗ ∈ ZM×W
q ,S∗ ∈ ZW×K

q such that A∗ ·S∗ =

Ā∗ · S̄∗. Visually, A∗ is a tall matrix and S∗ is a wide matrix.

• SetB∗ = P·(
∑T

j=1 B
(j)
1 ⊗. . .⊗B

(j)
d )·P′ andE∗ = P·(

∑T
j=1 E

(j)
1 ⊗. . .⊗E

(j)
d )·P′, so thatB∗−A∗S∗ = E∗.

Set seed = {B(j)
i }i∈[d],j∈[T ],A

∗,S∗.

• Set B̂ = A∗S0 + F, where S0 ← ZW×K
q and F← χM×K

flood .

• Set C = A∗R+E− bG, where R← ZW×M log q
q and E← χ̄M×M log q.

The output of Db consists of the following tuple:

∆b = (P,P′,A∗, {B(j)
i }i∈[d],j∈[T ], B̂,C,E∗ +EG−1(B̂)− bF)

Remark 4.1. Note that the number of field elements in the seed is T ·m · k. This seed is expanded to M ·K
elements by the tensor construction above. Per the parameters proposed in [DQV+21], we have M ·K = m2d.
Therefore if T < m2d−1/k, then there is sufficient expansion to be useful for construction iO.

4.1 Extending the attack

We show that our attack on the original candidate directly extends to all interesting settings of T that imply
iO under a reasonable assumption about the randomness of certain matrix distributions. Namely, we will
show that for all the same algorithm extends to the T -sum case for T = O(m2d−(1/2) · w/k).

Our attack proceeds in the same main overall steps as the original T = 1 case. We detail the algorithm
in two steps below.

• Step 1: Exactly as before, the algorithm recovers matrices A1, . . . ,Ad up to unique representation

U1 =

[
Iw
Ã1

]
= A1 ·A−1

1,T , . . .U1 =

[
Iw
Ã1

]
= Ad ·A−1

d,T where Ui ∈ Zm×w
q for i ∈ [d].

• Step 2: Having recovered U1, . . . ,Ud, the algorithm now aims to recover the secrets up to unique

representation {V(j)
1 = A1,T · S(j)

1 }j∈[T ] where V
(j)
i ∈ Zw×k

q for j ∈ [T ], i ∈ [d].

The algorithm now sets up a system of equations to solve for {V(j)
1 }j∈[T ]. As in the original setting, an

algorithm given the inputs from the distribution Db can compute the matrix Y = A∗(S∗+R·G−1(B̂)−
b · S0) ∈ ZM×K

q . An algorithm can then annihilate the term R ·G−1(B̂) ∈ ZW×K
q by computing a full

column rank matrix Q ∈ ZK×(K−M log q)
q from its right nullspace. Now we have,

A∗(S∗ − b · S0) ·Q = Y ·Q.

As in the original setting, when b = 1, the matrix S0 heuristically hides information about A1,T · S(j)
1

for all j ∈ [T ] so no recovery is possible of these matrices. We refer the reader to Section 3.3 for a
longer discussion about the case where b = 1.

From now on we focus on the case where b = 0 so that

A∗ · S∗ ·Q = Y ·Q.

By the definition of the T -sum scheme and properties of the tensor product we have,

A∗ · S∗ = Ā∗ · S̄∗ = L1 · L2
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where

L1 = P(A1 ·A−1
1,T ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ad ·A−1

d,T ),

L2 =



∑
j∈[T ]

(
A1,T · S(j)

1 ⊗B
(j)
2 ⊗B

(j)
3 ⊗ . . .B

(j)
d−1 ⊗B

(j)
d

)
∑

j∈[T ]

(
E

(j)
1 ⊗A2,T · S(j)

2 ⊗B
(j)
3 ⊗ . . .B

(j)
d−1 ⊗B

(j)
d

)
...∑

j∈[T ]

(
E

(j)
1 ⊗E

(j)
2 ⊗E

(j)
3 ⊗ . . .E

(j)
d−1 ⊗Ad,T · S(j)

d

)

 ·P
′.

Therefore, when b = 0, there is a solution to the equation

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud)︸ ︷︷ ︸
defined to be M

·

[∑
j∈[T ]

(
V

(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
Z

]
P′Q = YQ

where all values are known except for the variables {V(j)
1 }j∈[T ] and Z. Here M is a known quantity

computed in Step 1. We show that when this equation is viewed as an equation over just the variables

{V(j)
1 }j∈[T ], the equation is uniquely solvable. Again, there may be many solutions to Z, but this will

be irrelevant to solving for {V(j)
1 }j∈[T ].

Arguing uniqueness At this point, the overall algorithm has not changed at all. Having set up a linear

system of equations in the variables {V(j)
1 }j∈[T ] and Z, and having observed there is at least one solution, it

remains to argue that with high probability over the choice of matrices P,P′, {B(j)
i }j∈[T ],i∈[d], B̂ that there

is a unique solution to the variables {V(j)
1 }j∈[T ]. To argue uniqueness, we again consider the homogeneous

equation where the unknowns are denoted {V′(j)
1 }j∈[T ] and Z′ and need to show that V

′(j)
1 = 0 for j ∈ [T ].

P(U1 ⊗ I⊗ . . .⊗ I| . . . |I⊗ I⊗ . . .⊗Ud)︸ ︷︷ ︸
defined to be M

·

[∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
Z′

]
P′Q = 0

This overall argument is effectively identical except for a single step that differs from the original T = 1
case. We outline these steps in detail for analyzing the attack on the T -sum candidate analogously to what
has been outlined for the original setting.

• Step 1 (for uniqueness): As done in the original setting, expand the above equation to obtain:

M1 ·
∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′Q+M2Z

′P′Q = 0

where M1 = P · (U1 ⊗ I⊗(d−1)) and M2 = P · (I⊗U2 ⊗ I⊗(d−2)∥ · · · ∥ ⊗ I⊗(d−1) ⊗Ud).

• Step 2 (for uniqueness): The second step here is identical to that in the uniqueness analysis for
the attack on the original scheme. In the second step, set Γ2 as linearly independent columns of M2

that span its column space. Then set Γ1 as additional linearly independent columns of M1 so that[
Γ1∥Γ2

]
has full column rank and generate the column space of M. Observe that Γ1 will have at least

w(m− w)d−1 columns by Lemma 3.8 which allows us to compute

dim
(
Colspan(

[
M1∥M2

]
)
)
−dim (Colspan(M2))+dim (Colspan(M1) ∩ Colspan(M2)) = w(m−w)d−1.

As a consequence, we can write this equation as M1 = Γ1X1 + Γ2X2 and M2 = Γ2X3 for some
X1,X2,X3. Our equation becomes:

Γ1

X1 ·
∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q


+ Γ2

X2 ·

∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)+X3 · Z′

P′Q = 0
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Now we use the linear independence of Γ1 and Γ2 to see that each of the terms must be equal to 0.
Therefore,

X1 ·
∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q = 0. (***)

The first and second steps hold with high probability over the choice of P,A1, . . . ,Ad. Notably, they
do not depend on P′ nor Q.

• Step 3 (for uniqueness): Our main theorem is that, with high probability over a random choice of

P′,B2, . . . ,Bd, B̂, the matrices V
′(j)
1 = 0 for j ∈ [T ], if there exists any j ∈ [T ] such that V

′(j)
1 ̸= 0,

then
∑

j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q is of rank O(md−1).

Namely, all columns of V′
1 ⊗B(2,...,d) ·P′ ·Q has column rank O(md−1) when V′

1 ̸= 0 and are in the

nullspace of X1. On the other hand, we know that X1 ∈ Zw(m−w)d−1×wmd−1

q from step 2 is of rank at
least w(m−w)d−1. This rank is due to the fact that if a given column γi of Γ1 appears as ith column
of M1 then it also appears as the ith column in Γ1X1, therefore X1 is a permutation sub-matrix of
rank w(m − w)d−1 because Γ1 is of rank w(m − w)d−1, ensuring that the rank of X1 is at least this
much. We know the rank of Γ1 because Lemma 3.8 tell us there are w(m − w)d−1 many columns of
M1 not in the column span of M2 with overwhelming probability over the choice of P,A1, . . . ,Ad.

Therefore, the right nullity of X1 is at most wmd−1 − w(m − w)d−1 = O(w2md−2) by rank-nullity.

Therefore, the only way that the rank of
∑

j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q can be consistent

with the nullity of X1 is if m ≤ O(w2). This parameter setting is in contrast to that in the paper
which asks that m ≥ w3. This is what our main theorem attempts to prove.

Preparing a rank computation In Step 3, we determined that analyzing the rank of∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q

for some non-zero V
′(j)
1 for j ∈ [T ] suffices to obtain a uniqueness theorem. To analyze this rank, we will

massage the form of this matrix so that the rank is easier to analyze. We now describe how to rewrite this
expression.

For convenience, for j ∈ [T ], define

B′(j) ≜ B
(j)
2 ⊗ · · · ⊗B

(j)
d ∈ Zmd−1×kd−1

q .

1. Rewrite the following expression:

T∑
j=1

V
′(j)
1 ⊗B′(j) =

[
V

′(1)
1 ⊗ Imd−1∥V′(2)

1 ⊗ Imd−1∥ · · · ∥V′(T )
1 ⊗ Imd−1

]
·


Ik ⊗B′(1)

Ik ⊗B′(2)

...
Ik ⊗B′(T )



=
([

V
′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
⊗ Imd−1

)
·


Ik ⊗B′(1)

Ik ⊗B′(2)

...
Ik ⊗B′(T )
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2. Then open up the tensor structure of


Ik ⊗B′(1)

Ik ⊗B′(2)

...
Ik ⊗B′(T )

 to see that for j ∈ [T ],

Ik ⊗B′(j) =


B′(j) 0md−1×kd−1 0md−1×kd−1 · · · 0md−1×kd−1

0md−1×kd−1 B′(j) 0md−1×kd−1 · · · 0md−1×kd−1

...
...

. . .
...

0md−1×kd−1 0md−1×kd−1 0md−1×kd−1 · · · B′(j)

 ∈ Zkmd−1×kd

q .

3. Then partition P′ into k blocks as before: P′ =

P
′
1
...

P′
k

 so that P′ ·Q =

P
′
1 ·Q
...

P′
k ·Q

 where P′
i ∈ Zkd−1×K

q

is a tall matrix.

4. Then multiplying gives 
Ik ⊗B′(1)

Ik ⊗B′(2)

...
Ik ⊗B′(T )

 ·P′ ·Q =


W1

W2

...
WT

 ∈ ZkTmd−1×(K−M log q)
q

where for j ∈ [T ] we define

Wj ≜


B′(j) ·P′

1 ·Q
B′(j) ·P′

2 ·Q
...

B′(j) ·P′
k ·Q

 ∈ Zkmd−1×(K−M log q)
q .

Working with only the top block We now recap the progress made so far in the analysis for Step 3
(for uniqueness). At this point, we can rewrite∑

j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q

=
([

V
′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
⊗ Imd−1

)
·


W1

W2

...
WT

 ∈ Zwmd−1×(K−M log q)
q

Recall that for our uniqueness argument to proceed in Step 3, we need that this matrix is of relatively large

rank, say O(md−1), with high probability for any non-zero matrix
[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
. The following

key observation simplifies analyzing the rank of this matrix: If
[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
is non-zero, then

there is some row that is non-zero.
Without loss of generality, suppose that this non-zero row is the first row. This first row of

[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
defines a submatrix of

([
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
⊗ Imd−1

)
·


W1

W2

...
WT

 formed by its

first md−1 rows. If this submatrix has large rank O(md−1), then the whole matrix has rank O(md−1).
This top block is of a substantially simpler form amenable to rank analysis as we will show below. We

now identify this submatrix.

32



1. First observe that we can rewrite one of the multiplicands as follows:[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
⊗ Imd−1 =

[
Top
∗

]
∈ Zwmd−1×kTmd−1

q

where Top ∈ Zmd−1×k·T ·md−1

q is of the form

Top = [R1,1∥R2,1∥R3,1∥ · · · ∥Rk,1∥R1,2∥ · · · ∥Rk,2∥ · · · ∥R1,T ∥ · · · ∥Rk,T ]

where for i ∈ [k], j ∈ [T ], (V
′(j)
1 )[1,i] denotes the (1, i)th entry of V

′(j)
1 and where we define the following

matrix to be a scalar multiple of the identity matrix:

Ri,j ≜
[
(V

′(j)
1 )[1,i] · Imd−1

]
.

2. Then the top block Top′ ∈ Zmd−1×(K−M log q)
q of

([
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
⊗ Imd−1

)
·


W1

W2

...
WT

 =

[
Top′

∗

]

satisfies the following equation

Top′ = Top ·


W1

W2

...
WT

 =
∑
j∈[T ]

∑
i∈[k]

Ri,j ·B′(j) ·P′
i ·Q



=
∑
j∈[T ]

∑
i∈[k]

(V
′(j)
1 )[1,i] ·B′(j) ·P′

i ·Q



4.1.1 Recovering secrets up to uniqueness for T > 1

Having rewritten our expression, to finish Step 3 of our uniqueness argument, it suffices to show that with

high probability over the choice of P′,B
(j)
2 , . . . ,B

(j)
d , B̂ for j ∈ [T ], the matrix

Top′ =
∑
j∈[T ]

∑
i∈[k]

(V
′(j)
1 )[1,i] ·B′(j) ·P′

i ·Q


has rank O(md−1) for all non-zero vectors of the form

(
(V

′(j)
1 )[1,i]

)
i∈[k],j∈[T ]

∈ ZkT×1
q . Moreover, the form

of the summation above gives rise to the following conjecture about the randomness of the matrices Wj for
j ∈ [T ] defined above during the simplification.

Previously for the case T = 1, we were dealing with a single copy (B2 ⊗B3 ⊗ · · · ⊗Bd)P
′
iQ for i ∈ [k].

We then replaced (B2⊗B3⊗ · · · ⊗Bd)P
′
i with a random matrix Fi, due to Lemma 3.19. The homogeneous

equation we worked implies that all the columns of
∑

i viFiQ, where v = (v1, . . . , vk) ∈ Zk
q is any non-zero

vector, will be in the null-space of X1 . We ruled this out by using a union bound. Unfortunately, this
approach won’t be enough for us to handle large T . Indeed, in Lemma 3.16, the probability of error grows
as q−O(K) restricting the dimension of v and hence T to be O(K) = O(md+1/2). For ruling out iO, we need
to rule out T at least m2d−1.

We take a different approach. We will conjecture that {B′(j) ·P′
i ·Q}i∈[k],j∈[T ] are close {Fi,j}i∈[k],j∈[T ]

where Fi,j are uniform. This conjecture is heuristically feasible because each B′(j) can be viewed as a
randomness extractor who extracts md−1 field from kd−1 field elements. Therefore, T such extractors can be
equivalently viewed as extracting T ·md−1 field elements from kd−1 χ elements. This is heuristically possible

if T ≪ ( k
m )d−1H∞(χ)

log q . If k ≥ m3 as suggested by [DQV+21], our attack can extend to T = O(m2d−2/(log q)).
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Conjecture 4.2. Let m, k,w, q, χ,M,K be as specified in Section 2.1. For T ≤ m2d−3, there exists ϵ =

ϵ(w) = negl(w) such that for uniform randomly sampled matrices B
(j)
2 ,B

(j)
3 , . . .B

(j)
d ∈ Zm×k

q for j ∈ [T ],

P′ ← χkd×K , and Q ∈ ZK×(K−M log q)
q a random full column rank matrix generated from the right nullspace

of G−1(B̂) where B̂ ∈ ZM×K
q is uniform randomly sampled, we have(

B′(j) ·P′
i ·Q

)
i∈[k],j∈[T ]

≈stat,ϵ (Fi,j)i∈[k],j∈[T ]

where Fi,j ∈ Zmd−1×(K−M log q)
q for i ∈ [k], j ∈ [T ] are uniformly sampled random matrices, and where for

j ∈ [T ]

B′(j) ≜ B
(j)
2 ⊗B

(j)
3 ⊗ · · · ⊗B

(j)
d ∈ Zmd−1×kd−1

q

and define P′
i ∈ Zkd−1×K

q for i ∈ [k] such that P′ =

P
′
1
...
P′

k

.
Theorem 4.3. Let d,m,w, k, q,M,K, χ be as defined in Section 2.1. Assume Conjecture 3.3 and Conjec-

ture 4.2. Let X1 ∈ Zw(m−w)d−1×wmd−1

q be of rank at least w(m − w)d−1. For j ∈ [T ], let B
(j)
2 , . . . ,B

(j)
d be

uniformly sampled from Zm×k
q . Let P′ ← χkd−1×K . Let Q ∈ ZK×K−M log q

q be of full column rank generated

randomly from the right nullspace of G−1(B̂) where B̂ ∈ ZM×K
q is uniform randomly sampled.

If T < m2d−1/k = O(m2d−3), m = ω(w2), then with probability 1 − negl(w) over the choice of P′ and

B
(j)
2 , . . . ,B

(j)
d for j ∈ [T ] we have that X1 ·

∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
· P′ · Q = 0 implies that

V
′(j)
1 = 0 for all j ∈ [T ].

Proof. If
[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
has a non-zero element it has a non-zero row. WLOG assume that it is

the first one. The top block of
∑

j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
·P′ ·Q was computed above to be

k∑
i=1

T∑
j=1

(V′(j))[1,i]B
′(j)P′

i ·Q

where
(
(V

′(j)
1 )[1,i]

)
i∈[k],j∈[T ]

∈ ZkT×1
q is the first row of

[
V

′(1)
1 ∥V

′(2)
1 ∥ · · · ∥V

′(T )
1

]
. Conjecture 4.2 gives

ϵ = negl(w) such that this sum is ϵ-statistically close to

k∑
i=1

T∑
j=1

(V′(j))[1,i]Fi,j

for uniform random Fi,j ∈ Zmd−1×(K−M log q)
q . For a fixed vector

(
(V

′(j)
1 )[1,i]

)
i∈[k],j∈[T ]

∈ ZkT×1
q ,∑k

i=1

∑T
j=1(V

′(j))[1,i]Fi,j is uniformly distributed over Zmd−1×(K−M log q)
q . Therefore, by the proof of

Lemma 3.16, for this fixed vector we have that

Pr
Fi,j

rk
 k∑

i=1

T∑
j=1

(V′(j))[1,i]Fi,j

 ≥ md−1/2

 ≥ 1− q−Ω(K·md−1).

Then by union bound over all vectors
(
(V

′(j)
1 )[1,i]

)
i∈[k],j∈[T ]

∈ ZkT×1
q , the probability that there exists any

non-zero vector over the choice of random matrices Fi,j is

Pr
Fi,j

∃((V′(j)
1 )[1,i]

)
i∈[k],j∈[T ]

̸= 0 s.t. rk

 k∑
i=1

T∑
j=1

(V′(j))[1,i] · Fi,j

 ≤ md−1/2

 < q−Ω(Kmd−1)
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as long as T = O(m2d−3). Therefore with probability 1 − q−Ω(Kmd−1) − ϵ over the choice of P′ and

B
(j)
2 , . . . ,B

(j)
d for j ∈ [T ], and B̂, the matrix

∑
j∈[T ]

(
V

′(j)
1 ⊗B

(j)
2 ⊗ · · · ⊗B

(j)
d

)
· P′ · Q = 0, is of rank

at least md−1/2 since the top md−1 × (K −M log q) block already has rank above md−1/2.
On the other hand, the right nullity of X1 is wmd−1−w(m−w)d−1 = O

(
w2md−2

)
. This is only possible

if m ≤ O(w2). In the parameter regime proposed by [DQV+21], m ≥ w3.

Remark 4.4. As mentioned before, iO needs some expansion which is only possible if T < m2d−1/k ≤
m2d−4. If m = w3, then for some T = Ω(m2d−3) the attack proceeds, ruling out any value of T for which
there is meaningful expansion.

Remark 4.5. As mentioned before, in any proofs corresponding to these the three steps described for proving
uniqueness, we assumed that the equations were set up with B2, . . . ,Bd, B̂ that are sampled uniform randomly
as opposed to being LWE matrices. If multiple solutions for this homogeneous equation exist when they
are LWE matrices, then we have a distinguisher between LWE matrices and random matrices because the
homogeneous equation does not require any secret information so any adversary can set up the homogeneous
equation.
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A Useful Linear Algebraic Facts

First, we recall several useful linear algebraic facts used in the uniqueness analysis in both Step 1 and Step
2. While it is not necessary, we encourage the reader to review the following section to facilitate their
understanding of the above algorithm’s correctness.

Lemma A.1. For any matrices M1,M2, there exists a matrix N such that M1 ·N = M2 if and only if
Colspan(M2) ⊆ Colspan(M1).

Proof. This fact immediately follows by the definition of column span and matrix multiplication.

Corollary A.2. For any matrices M1,M2 and for any invertible matrices N1,N2 of the appropriate di-
mensions, we have that

Colspan
([
M1∥M2

])
= Colspan

([
M1N1∥M2N2

])
.

Proof. Observe that
[
M1∥M2

]
=
[
M1N1∥M2N2

]
·
[
N−1

1 0
0 N−1

2

]
where

[
N1 0
0 N2

]−1

=

[
N−1

1 0
0 N−1

2

]
and

apply Lemma A.1.

Lemma A.3. For any matrices M,N with finitely many rows and columns such that Colspan(M) ⊆
Colspan(N), if rk(M) = rk(N), then Colspan(M) = Colspan(N).

Proof. Recall that column and row ranks are always equivalent (consider the reduced echelon form) and
recall that the dimension of the vector space Colspan(A) satisfies dim(Colspan(A)) = rk(A). Therefore, we
have

dim(Colspan(M)) = rk(M) = rk(N) = dim(Colspan(N)).

Combining this equivalence with Colspan(M) ⊆ Colspan(N), implies Colspan(M) = Colspan(N).

Lemma A.4. For any matrices M,N with finitely many rows and columns, Colspan(M ⊗ N) =
Colspan(M)⊗ Colspan(N).

Proof. Let s be the number of columns of M and let t be the number of columns of N and observe that
M⊗N has st columns. For i ∈ [s], let mi denote the ith column of M and for j ∈ [t], let nj denote the jth
column of N.

For ℓ ∈ [st], we can express ℓ uniquely as ℓ = (k − 1) · t + r for k ∈ [s] and r ∈ [t]. By definition
of the tensor product, for ℓth column of M ⊗ N is exactly mk ⊗ nr. This relation establishes a direct
equality between a spanning set for Colspan(M⊗N) given by the columns of M⊗N and a spanning set for
Colspan(M)⊗ Colspan(N) given by {mi ⊗ nj}i∈[s],j∈[t] so we obtain the desired set equality.

Finally, we recall the standard fact without proof.

Lemma A.5. Let I,J be index sets. If {bi : i ∈ I} is a basis for some vector space W1 and {cj : j ∈ J }
is a basis for some vector space W2, then {bi ⊗ cj}i∈I,j∈J is a basis for the vector space W1 ⊗W2.

B Analyzing the Tensor Structure in the Construction

Having recalled certain linear algebraic facts, we first analyze the column span of the following matrix[
U1 ⊗ I

⊗(d−1)
m ∥Im ⊗U2 ⊗ I

⊗(d−2)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
.

where the matrices Ui ∈ Zm×w
q are of the stipulated form (with a top w × w identity block, so of full

column rank w). The column span of this matrix is some subspace of the vector space over Zm
q ⊗ · · · ⊗ Zm

q︸ ︷︷ ︸
d times

.

Considering Zm
q as a vector space, we consider the following bases for Zm

q . For i ∈ [d], let Bi be a basis for

40



Zm
q obtained by extending the set of column vectors in Ui =

[
Iw
Ãi

]
to the following full rank, lower-triangular

matrix

Bi ≜
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Zm×m

q ,

and let (e
(i)
1 , . . . , e

(i)
m ) denote the columns (the basis vectors). We make the following straightforward obser-

vations:

Lemma B.1. The set {e(1)i1
⊗ e

(2)
i2
⊗ · · ·⊗ e

(d)
id
}i1∈[w],i2,i3,...,id∈[m] forms a basis for Colspan

(
U1 ⊗ I

⊗(d−1)
m

)
.

Proof. Lemma A.4 implies that

Colspan
(
U1 ⊗ I⊗(d−1)

m

)
= Colspan (U1)⊗ Colspan (Im)

⊗(d−1)
= Colspan (U1)⊗ Z⊗(d−1)

q .

Then observe that {e(1)i }i∈[w] forms a basis for Colspan (U1) and for each j ∈ [d], the set {e(j)i }i∈[m] forms
a basis for Zm

q . Now apply Lemma A.5 repeatedly with the above bases to obtain the desired result.

Lemma B.1 readily implies the following two corollaries.

Corollary B.2. For all j∗ ∈ [d], the set {e(1)i1
⊗ e

(2)
i2
⊗ · · · ⊗ e

(d)
id
}ij∗∈[w],∀ j∈[d]\{j∗},ij∈[m] forms a basis for

Colspan
(
I
⊗(j∗−1)
m ⊗Uj∗ ⊗ I

⊗(d−j∗)
m

)
.

Proof. The proof follows exactly as that for Lemma B.1.

Corollary B.3. dim
(
Colspan

(
U1 ⊗ I

⊗(d−1)
m

))
= wmd−1.

Proof. The dimension is the number of elements in the basis.

Moreover, using the above corollaries, we can analyze the column space of the blockwise concatenation
of these tensor matrices which we state in the following lemma.

Lemma B.4. The set

B ≜ {e(1)i1
⊗ e

(2)
i2
⊗ · · · ⊗ e

(d)
id
}∀j∈[d],ij∈[m]∧∃j∗∈[d] s.t. ij∗∈[w]

forms a basis for the vector space Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
.

Proof. For convenience, we use the shorthand notation

M ≜
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
V ≜ Colspan (M)

A subset of vectors in a linearly independent set of vectors is linearly independent. Therefore, the set B is
linearly independent because it is a subset of

{e(1)i1
⊗ e

(2)
i2
⊗ · · · ⊗ e

(d)
id
}∀j∈[d],ij∈[m]

which is a basis for (Zm
q )⊗d by Lemma A.5. Finally, we observe that V = span(B).

1. (V ⊆ span(B)) By the definition of column span, the columns of M form a spanning set for V .
Therefore it suffices to show that each column c in M belongs in span(B). This is easy to see because
every column c is a column in some block of the form

I⊗(j∗−1)
m ⊗Uj∗ ⊗ I⊗(d−j∗)

m

where j∗ ∈ [d]. By Corollary B.2, Bblkj∗ ≜ {e(1)i1
⊗e

(2)
i2
⊗· · ·⊗e

(d)
id
}ij∗∈[w],∀j∈[d]\{j∗},ij∈[m] is a basis for

this block and therefore c ∈ span(Bblkj∗ ). Finally, observe that span(Bblkj∗ ) ⊆ span(B) by construction
of B. This concludes showing the containment in this direction since every column of M is in span(B).
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2. (V ⊇ span(B)) It suffices to show that every element of B is contained in V . Pick any element of B, say
e
(1)
i1
⊗ · · · ⊗ e

(d)
id

. By construction of B, we know that at least one of the indices i1, . . . , id is at most w.

Without loss of generality assume that the first index i1 ≤ w. Then for 1 < j ≤ d we can express e
(j)
ij

=∑
kj∈[m] β

(j)
kj

ekj
where β

(j)
kj
∈ Zq is some scalar and ekj

∈ Zm
q (without any superscripts) denotes the

kj-th standard elementary vector for kj ∈ [m]. Observe that {e(1)i1
⊗ei2 ⊗· · · eid}i1∈[w],i2,...,id∈[m] forms

a basis for Colspan
(
U1 ⊗ I

⊗(d−1)
m

)
. Substitute for e

(j)
ij

, for 2 ≤ j ≤ d, in the element e
(1)
i1
⊗ · · · ⊗ e

(d)
id

to obtain the expression:

e
(1)
i1
⊗ · · · ⊗ e

(d)
id

= e
(1)
i1
⊗
∑

k2∈[m]

β
(j)
k2

ek2 ⊗ · · · ⊗
∑

kd∈[m]

β
(j)
kd

ekd

=
∑

k2,...,kd∈[m]

 ∏
j∈{2,...,d}

β
(j)
kj

 e
(1)
i1
⊗ ek2

⊗ · · · ⊗ ekd

The above expression shows that e
(1)
i1
⊗ · · · ⊗ e

(d)
id
∈ Colspan

(
U1 ⊗ I

⊗(d−1)
m

)
. Finally, we observe that

Colspan
(
U1 ⊗ I

⊗(d−1)
m

)
⊆ V by construction of V . Therefore, e

(1)
i1
⊗ · · ·⊗ e

(d)
id
∈ V . We conclude that

B ⊆ V .

Corollary B.5. For any choice of {Ãi}i∈[d], dim
(
Colspan

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]))
= md −

(m− w)d.

Proof. The dimension is the number of elements in the basis given by Lemma B.4. Straightforward counting
gives md − (m− w)d many elements.

Remark B.6. As a result of Corollary B.5, we observe a rank deficiency of O(w2md−2) in[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
.

Namely, the number of columns in
[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
is exactly dwmd−1, but the rank is

md − (m− w)d = dwmd−1 −O(w2md−2).

The following corollary demonstrates why the special structure of the Ui’s is so useful for proving unique-
ness, and it plays a critical role in proving the uniqueness of the solution for {Ãi}i∈[d]. In particular, we
observed in Corollary B.5 that the dimension of the concatenated blockwise tensor matrix is fixed regardless
of the choice of matrices for {Ãi}i∈[d]. This implies the following corollary.

Corollary B.7. For i ∈ [d], let Ui ≜

[
Iw
Ãi

]
and let U′

i ≜

[
Iw
Ã′

i

]
. For any choice of {Ãi}i∈[d] and {Ã′

i}i∈[d],

if

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
⊆ Colspan

([
U′

1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗U′
d

])
then

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= Colspan

([
U′

1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗U′
d

])
Proof. By Corollary B.5,

dim
(
Colspan

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]))
= md − (m− w)d

= dim
(
Colspan

([
U′

1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗U′
d

]))
.
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Therefore, by Lemma A.3,

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= Colspan

([
U′

1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗U′
d

])

Corollary B.8. With overwhelming probability over the choice of random Ai ∈ Zm×w
q , for i ∈ [d], if

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
⊆ Colspan

([
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
then

Colspan
([

U1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
= Colspan

([
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
Proof Sketch. For brevity, we provide a short proof sketch that shows the relationship between[
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

]
and

[
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]
for some matrices Ui that are in

a normal form with a top w × w identity block.
Note, that with overwhelming probability the matrices Ai ∈ Zm×w

q generated in the scheme are of full
column rank w. Since they are of full column rank, for each i ∈ [d], there exists a well-defined invertible linear
transformation T ′

i : Colspan(Ai)→ Colspan(Ai) that maps the columns of Ai to the columns of its reduced
echelon form (the matrix form is exactly A−1

i,T ). Every such invertible linear transformation T ′
i can be ex-

tended to a invertible linear transformation Ti : Zm
q → Zm

q by acting as the identity on a set of m−w vectors
in Zm

q that extend the columns ofAi to a basis for Zm
q . Observe that Ti(Zm

q ) = Zm
q . Then we observe that ap-

plying the invertible linear transformation T1⊗T2⊗· · ·⊗Td on Colspan
([

A1 ⊗ I
⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

])
gives us a vector space that is expressible as Colspan

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

])
for some matrices

{Ui}i∈[d] of the desired form. By Corollary B.5,

dim
(
Colspan

([
U1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ud

]))
= md − (m− w)d.

Invertible linear transformations preserve the overall dimension, therefore, the original column span has the
same dimension:

dim
(
Colspan

([
A1 ⊗ I

⊗(d−1)
m ∥ · · · ∥I⊗(d−1)

m ⊗Ad

]))
= md − (m− w)d.

Finally if a subspace has the same dimension as the ambient space, then the subspace as a set must be
equivalent to the ambient space (see Lemma A.3).
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