Polynomial-Time Cryptanalysis of the Subspace Flooding Assumption for Post-Quantum $i \mathcal{O}$

Aayush Jain *

Huijia Lin ${ }^{\dagger}$

Paul Lou ${ }^{\ddagger}$
Amit Sahai ${ }^{\S}$
November 2022

Abstract

Indistinguishability Obfuscation $(i \mathcal{O})$ is a highly versatile primitive implying a myriad advanced cryptographic applications. Up until recently, the state of feasibility of $i \mathcal{O}$ was unclear, which changed with works (Jain-Lin-Sahai STOC 2021, Jain-Lin-Sahai Eurocrypt 2022) showing that $i \mathcal{O}$ can be finally based upon well-studied hardness assumptions. Unfortunately, one of these assumptions is broken in quantum polynomial time. Luckily, the line work of Brakerski et al. Eurocrypt 2020, Gay-Pass STOC 2021, Wichs-Wee Eurocrypt 2021, Brakerski et al. ePrint 2021, Devadas et al. TCC 2021 simultaneously created new pathways to construct $i \mathcal{O}$ with plausible post-quantum security from new assumptions, namely a new form of circular security of LWE in the presence of leakages. At the same time, effective cryptanalysis of this line of work has also begun to emerge (Hopkins et al. Crypto 2021).

It is important to identify the simplest possible conjectures that yield post-quantum $i \mathcal{O}$ and can be understood through known cryptanalytic tools. In that spirit, and in light of the cryptanalysis of Hopkins et al., recently Devadas et al. gave an elegant construction of $i \mathcal{O}$ from a fully-specified and simple-to-state assumption along with a thorough initial cryptanalysis.

Our work gives a polynomial-time distinguisher on their "final assumption" for their scheme. Our algorithm is extremely simple to describe: Solve a carefully designed linear system arising out of the assumption. The argument of correctness of our algorithm, however, is nontrivial.

We also analyze the "T-sum" version of the same assumption described by Devadas et. al. and under a reasonable conjecture rule out the assumption for any value of T that implies $i \mathcal{O}$.

1 Introduction

Indistinguishability obfuscation $(i \mathcal{O})$ for programs computable in polynomial-time [$\left.\mathrm{BGI}^{+} 01\right]$ makes a program as unintelligble as possible while preserving the functionality. Mathematically, $i \mathcal{O}(P)$ is indistinguishable to $i \mathcal{O}\left(P^{\prime}\right)$ for any functionally equivalent programs P, P^{\prime} of the same size. $i \mathcal{O}$'s importance is evident in its central position as a powerful and versatile primitive for building a wide variety of modern cryptographic tools (see e.g., [BGJS16, BPR15, BFM14, CLTV15, CLP15, GGG+ ${ }^{+} 14$, KRS15, SW14]). Up until recently, the feasibility of $i \mathcal{O}$ from well-established assumptions was not known. In recent works, Jain, Lin, and Sahai [JLS21b, JLS21a] constructed $i \mathcal{O}$ from three well-studied assumption: Decisional Linear assumption (DLIN) over bilinear maps [BGdMM05], Learning Parity with Noise over general fields [IPS09], and Pseudorandom Generators in NC_{0} [Gol00]. DLIN over bilinear maps, however, is an assumption broken in quantum polynomial time.

In an effort to construct $i \mathcal{O}$ from conjectured post-quantum secure assumptions, specifically lattice-based ones, an exciting line of works [BDGM20, GP21, WW21] construct $i \mathcal{O}$ based on new circular security type assumptions of LWE in the presence of structured leakages of their errors. Typically there is a lot of room in

[^0]how you can instantiate leakages that imply $i \mathcal{O}$, and at the moment we do not have a stable understanding of what constitutes an acceptable leakage. In fact, very recently [HJL21] showed that instantiations of several assumptions of Gay-Pass and Wee-Wichs can be broken in classical polynomial time.

Ideally we would like to construct post-quantum $i \mathcal{O}$ based solely on well-studied post-quantum assumptions such as LWE/LPN. Unfortunately, however, our understanding of conjectures implying post-quantum $i \mathcal{O}$ is severely limited, and our confidence in them is much lower than those in classical constructions (LPN, DLIN and PRGs). Therefore, it is important that we strive to identify assumptions that are:

- Simple-to-state, and yet imply $i \mathcal{O}$,
- Can be reasoned about with cryptanalytic study.

We believe that this symbiotic relationship between constructions and constructive cryptanalysis could further understanding of how to securely instantiate assumptions. To be clear, we do not endorse an unchecked break and repair cycle, but a cycle that identifies new conceptual pathways. In this spirit, following the cryptanalysis of [HJL21], the work of Devadas et al. [DQV^{+}21] recently gave an elegant construction from a fully-specified and simple-to-state assumption implying $i \mathcal{O}$. We emphasize that their construction has all parameters fully-specified. This is unlike the previous assumption of [WW21] which was very general, and required that for some implementation choices, such as the PRF scheme involved, that the resulting assumption is secure. The same is true with the assumption of [GP21], where the circuit implementations of the functions involved were not fully specified.

Moreover, Devadas et al. back their instantiation with a thorough (initial) cryptanalysis.
Lessons from our work. A major open area is constructing post-quantum $i \mathcal{O}$. The most promising approach currently being explored is formulating simple variations of LWE with certain leakage that are sufficient. The recent work of [HJL21] shows the importance of fully specifying the assumption and cryptanalysis (indeed, the attack of [HJL21] exploits freedom in the specification). Incorporating these insights, the $\left[\mathrm{DQV}^{+} 21\right]$ assumption is fully specified, relatively simple, avoids [HJL21] attacks, Furthermore, the authors of $\left[\mathrm{DQV}^{+} 21\right]$ performed cryptanalysis using existing techniques. The purpose of our work is to identify and understand weaknesses in the approach of $\left[\mathrm{DQV}^{+} 21\right]$ so that these may be overcome in future work.

On a very high level, the intuition of $\left[\mathrm{DQV}^{+} 21\right]$ was that tensored polynomial systems derived from LWE not only bypasses the previous two attacks (as far as we know, the parameters are set so that sum-of-squares attacks of $\left[\mathrm{BHJ}^{+} 19\right]$ do not apply, and at the same time, the specifications are set so that the attacks of [HJL21] do not apply). Our main result shows a new way to get around the apparent difficulties introduced by tensoring. Therefore, we view our result contributing a new insight that will be useful in designing better assumptions.

A key aspect in which our attacks differs from previous attacks [$\left.\mathrm{BHJ}^{+} 19, \mathrm{HJL} 21\right]$ on the new "LWE+Leakage" assumptions [AJL+ 19 , JLMS19, BDGM20, GP21, WW21] is that all previous attacks apply to part of the leakage that is obtained over integer/small-valued domains such as the error or the polynomial evaluations. On the other hand, our attack applies to the leakage that is given out over the prime fields (the leakage on the secret in the LWE sample). This points to a new vulnerability in designing such assumptions towards the grand goal of achieving $i \mathcal{O}$.

Our Technical Contributions. In this work, we give a polynomial-time distinguisher and recovery algorithm on the "final assumption" of $\left[\mathrm{DQV}^{+} 21\right]$ (stated on page 7 ; also formulated as Conjecture 2 on page 25) with parameters as suggested (page 23, Section 4.3). Our attack is algorithmically simple to describe: solve a carefully designed linear system of equations. Our analysis, on the other hand, requires a significant amount of care. In particular, the techniques we present and introduce in our analysis are of general interest to studying the usage of tensor products in cryptographic constructions. The work of DQVWW21 begins by considering tensor products of the form

$$
\left[\mathbf{A}_{1} \otimes \mathbf{I} \| \mathbf{I} \otimes \mathbf{A}_{2}\right]
$$

which, if left unprocessed, are highly structured and allow an easy recovery of the matrices \mathbf{A}_{1} and \mathbf{A}_{2}. To hide \mathbf{A}_{1} and \mathbf{A}_{2}, their construction instead outputs $\mathbf{P} \cdot\left[\mathbf{A}_{1} \otimes \mathbf{I} \| \mathbf{I} \otimes \mathbf{A}_{2}\right] \cdot \mathbf{R}$ where the columns are mixed
by right-multiplying by a random rank-preserving matrix \mathbf{R} - referred to as Kilian randomization, and the number of rows are compressed by left-multiplying by a random matrix \mathbf{P} of dimension $M \times m^{2}$, where M is slightly asymptotically smaller than m^{2}. These types of randomization techniques are used widely in cryptography, and we show that they are insufficient for hiding matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$. In fact, we show that from the Kilian randomized matrix, one can efficiently recover a unique representation of $\mathbf{A}_{1}, \mathbf{A}_{2}$, namely $\mathbf{U}_{i}=\mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$. This is a crucial step in our attacks.

1. We first show that Kilian randomization on highly tensored matrices does not kill the tensor structure. Consider positive integers $m \gg w$ and let \mathbf{I}_{m} denote a $m \times m$ square identity matrix. Suppose $\mathbf{Y} \leftarrow\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{A}_{2}\right] \cdot \mathbf{R}$ for some tall random matrices $\mathbf{A}_{1}, \mathbf{A}_{2} \in \mathbb{Z}_{q}^{m \times w}$ and and some Kilian matrix $\mathbf{R} \in \mathbb{Z}_{q}^{2 m w \times 2 m w}$. We consider the problem of recovering $\mathbf{A}_{1}, \mathbf{A}_{2}$, and \mathbf{R} from $\mathbf{Y} \in \mathbb{Z}_{q}^{m^{2} \times 2 m w}$. Intuitively, the Kilian matrix \mathbf{R} is introduced to scramble the tensor structure in the hopes of preventing the recovery of \mathbf{A}_{1} and \mathbf{A}_{2}. Indeed, observe that there is no unique solution to $\mathbf{A}_{1}, \mathbf{A}_{2}$, and \mathbf{R}. This is because for any invertible matrices $\mathbf{T}_{1}, \mathbf{T}_{2} \in \mathbb{Z}_{q}^{w \times w}$, there exists a matrix $\mathbf{R}^{\prime} \in \mathbb{Z}_{q}^{2 m w \times 2 m w}$ such that $\left[\mathbf{A}_{1} \cdot \mathbf{T}_{1} \otimes \mathbf{I} \| \mathbf{I} \otimes \mathbf{A}_{2} \cdot \mathbf{T}_{2}\right] \cdot \mathbf{R}^{\prime}=\mathbf{Y}$.
However, we show that this Kilian randomization turns out to be insufficient to prevent a meaningful recovery of \mathbf{A}_{1} and \mathbf{A}_{2}. We consider an alternative question: Can we recover $\mathbf{A}_{1}, \mathbf{A}_{2}$ up to a unique representation? In particular, we consider the problem of recovering $\mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$ where $\mathbf{A}_{i, T} \in \mathbb{Z}_{q}^{w \times w}$ is the top $w \times w$ block of \mathbf{A}_{i} for $i \in\{1,2\}$. These matrices are of the form $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ for some matrix $\tilde{\mathbf{A}}_{i} \in \mathbb{Z}_{q}^{(m-w) \times w}$. Two questions naturally arise: (1) For unknowns $\tilde{\mathbf{U}}_{1}, \tilde{\mathbf{U}}_{2}, \tilde{\mathbf{R}}$ and a known \mathbf{Y} is there a unique solution to the following equation?

$$
\left[\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right] \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right]\right] \cdot \tilde{\mathbf{R}}=\mathbf{Y}
$$

(2) Can we efficiently find a solution? Addressing the second question, we observe that the above is a system of overdetermined quadratic equations where the number of unknowns and equations are in a parameter regime with no efficient recovery algorithms. However, we can simply transform the above quadratic equation into a linear equation which is efficiently solvable by Gaussian elimination:

$$
\left[\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right] \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right]\right]=\mathbf{Y} \cdot \tilde{\mathbf{R}}^{-1}
$$

where we consider the unknowns $\tilde{\mathbf{U}}_{1}, \tilde{\mathbf{U}}_{2}, \tilde{\mathbf{R}}^{-1}$. Moreover, we address the first question and show that any solution to $\tilde{\mathbf{U}}_{1}, \tilde{\mathbf{U}}_{2}, \tilde{\mathbf{R}}^{-1}$ will result in $\tilde{\mathbf{U}}_{i}=\mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$ with overwhelming probability over the coins used to generate \mathbf{Y}. The analysis of this uniqueness is non-trivial and critically relies on analyzing the non-overlap of the vectorspaces Colspan $\left(\mathbf{A}_{1} \otimes \mathbf{I}\right)$ and Colspan $\left(\mathbf{I} \otimes \mathbf{A}_{2}\right)$ and the usage of a reasonable conjecture we introduce next.
2. Consider a random matrix \mathbf{P} with M rows. We conjecture that, with overwhelming probability over the choice of a random matrix \mathbf{P}, for any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}\right\}$ of linearly independent vectors, where $T \ll M$, the set of vectors $\left\{\mathbf{P} \cdot \mathbf{v}_{1}, \ldots, \mathbf{P} \cdot \mathbf{v}_{T}\right\}$ is linearly independent. We will demonstrate how to use the conjecture to prove the uniqueness of solutions and compute the rank of relevant matrices. The parameter settings relevant to the DQVWW construction consider matrices \mathbf{P} that are only slightly dimension shrinking and for which the conjecture is applicable (M is still sufficiently large with respect to the sets of vectors we consider). In this setting, matrices \mathbf{P} with a very small number of rows do not satisfy the expansion properties necessary for $i \mathcal{O}$.
3. Using the conjecture, we can show that left-multiplication by a random matrix \mathbf{P} fails to destroy the tensor structure present if it is insufficiently dimension shrinking. For example, we show that we can still recover the matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$ above up to a unique representation from the equation,

$$
\mathbf{P} \cdot\left[\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right] \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{U}}_{i}
\end{array}\right]\right]=\mathbf{Y} \cdot \tilde{\mathbf{R}}^{-1}
$$

where $\mathbf{P} \in \mathbb{Z}_{q}^{m^{3 / 2} \times m^{2}}$ is a known matrix, and where the matrix \mathbf{Y} is generated as $\mathbf{Y} \leftarrow \mathbf{P}$. $\left[\mathbf{A}_{1} \otimes \mathbf{I} \| \mathbf{I} \otimes \mathbf{A}_{2}\right] \cdot \mathbf{R}$, differing from the above generation process only by the left-multiplication by \mathbf{P}. Our main observation here is that the linear independence of a small set of linearly independent vectors identified above will be preserved by \mathbf{P}, enabling a proof analogous to the one we will use to show the recovery of a unique representation for \mathbf{A}_{1} and \mathbf{A}_{2} when \mathbf{P} is absent.
While many previous linear-algebraic cryptanalytic works present attacks from a matrix point of view, we show that considering column spans instead allows us to better analyze the tensor structure especially in the presence of the structure destroying matrix \mathbf{P} and the randomizing matrix \mathbf{R}.
4. Finally, we give a technique for proving the uniqueness of solutions to \mathbf{X} (when such uniqueness exists) in the equation

$$
\mathbf{A X}+\mathbf{B Y}=\mathbf{C}
$$

where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are known coefficient matrices such that the column span of \mathbf{A} has a sufficient amount of "non-overlap" with the column span of \mathbf{B}, and \mathbf{X} and \mathbf{Y} are unknown matrices. By considering the homogeneous version of the above equation, in which $\mathbf{C}=\mathbf{0}$ and which corresponds to taking the difference of two solutions for the inhomogeneous version, and by identifying how many columns in \mathbf{A} do not overlap with Colspan (\mathbf{B}), we can isolate an equation of the form $\mathbf{A}^{\prime} \mathbf{X}=\mathbf{0}$ for some matrix \mathbf{A}^{\prime}. This allows us to use standard rank arguments that depend on the shape of \mathbf{A}^{\prime} to show that the only solution to \mathbf{X} in the homogeneous equation is $\mathbf{0}$, which implies that there is a unique solution to \mathbf{X} in the inhomogeneous equation. Here, the conjecture above also extends our technique to the setting of proving the uniqueness of solutions to \mathbf{X} (when such uniqueness exists) in equations of the form

$$
\mathbf{P A X}+\mathbf{P B Y}=\mathbf{C} .
$$

In particular, if we can compute the size of the overlap of Colspan(A) and Colspan(B), then the conjecture allows us to compute the size of the overlap of Colspan $(\mathbf{P A})$ and $\operatorname{Colspan}(\mathbf{P B})$.

Related Works. There is a huge body of other works [Agr19, AP20, AS17, BMSZ16, $\mathrm{BGK}^{+} 14, \mathrm{BIJ}^{+} 20$, $\mathrm{BGH}^{+} 15$, BR14, CHL ${ }^{+} 15$, CLR15, CLT15, CLT13, $\mathrm{CGH}^{+} 15, \mathrm{DGG}^{+} 16, \mathrm{GGH}^{+} 13 \mathrm{~b}$, GJK18, Hal15, HJ15, Lin16, Lin17, LT17, MSZ16, JLMS19] that construct $i \mathcal{O}$ candidates from plausible post-quantum assumptions (some of which are subject to prior cryptanalysis). This list includes constructions based on candidate multilinear maps [GGH13a, GGH ${ }^{+}$13b, GGH15], from noisy linear functional encryption [Agr19, AP20] and affine determinant programs $\left[\mathrm{BIJ}^{+} 20\right]$. Similarly, cryptanalysis was performed to better understand these assumptions [BBKK17, $\mathrm{BHJ}^{+} 19, \mathrm{BWZ14}, \mathrm{BGH}^{+} 15, \mathrm{CHL}^{+} 15$, CLR15, $\mathrm{CGH}^{+} 15$, Hal15, HJL21, HJ15, LV17, MSZ16, MF15]. Our work does not consider these lines of constructions.

2 Technical Overview

We start by reviewing the construction idea of $\left[\mathrm{DQV}^{+} 21\right]$. The work is built upon [WW21], which was a follow up of [BDGM20]. The works [WW21, $\left.\mathrm{DQV}^{+} 21\right]$ construct $i \mathcal{O}$ by constructing a non-trivial obfuscation $x i \mathcal{O}$. The works of [AJ15, BV15, BNPW16, LPST16] showed that, under a subexponential security loss, an $x i \mathcal{O}$ scheme can be generically lifted to a construction of an indistinguishability obfuscation scheme further assuming LWE. Recall that in an $x i \mathcal{O}$ scheme, the goal is to obfuscate circuits $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, where the size of the obfuscation must be marginally better than the size of the truth-table for C i.e. bounded by $2^{\epsilon \cdot n} \operatorname{poly}(\lambda,|C|)$ for some constant $\epsilon<1$, whereas the running time could be as large as $2^{n} \operatorname{poly}(\lambda,|C|)$.

The Overall Approach of [WW21, DQV $^{+}$21] The main starting observation of the works [WW21, $\left.\mathrm{DQV}^{+} 21\right]$ is the following. Consider a function $f:\{0,1\}^{\ell} \rightarrow\{0,1\}^{M \times K}$ where $M \cdot K=2^{n} \cdot m$ (the size of the truth table for C). We intend the function f to take as input the bit description of a circuit C, and output its truth table. Now consider ciphertexts encrypting bits of the circuit C, encrypted using the dual GSW variant of homomorphic encryption scheme [GSW13] $\left\{\mathrm{CT}_{i}=\mathbf{A} \mathbf{S}_{i}+\mathbf{E}_{i}+C_{i} \mathbf{G}\right\}_{i \in[\ell]}$ where $\mathbf{A} \in \mathbb{Z}_{q}^{M \times w}$
and $\mathbf{S}_{i} \in \mathbb{Z}_{q}^{w \times M \log q}$ and \mathbf{G} is the gadget matrix defined by [MP13] and $w \ll M, K$. Then the idea is that, one can homomorphically evaluate on these ciphertexts to compute an encoding:

$$
\mathrm{CT}_{f}=\mathbf{A} \mathbf{S}_{f}+\mathbf{E}_{f}+\mathbf{M}_{f}\left\lceil\frac{q}{2}\right\rceil
$$

where $\mathbf{S}_{f} \in \mathbb{Z}_{q}^{w \times K}$ and \mathbf{M}_{f} is a matrix of dimension $M \times K$, that arranges outputs of $f(C)$ in a matrix form, and \mathbf{E}_{f} is a matrix with ℓ_{2} norm much smaller than q. This is a ciphertext that has an opening that is much shorter in size than $M \cdot K$. The opening is simply \mathbf{S}_{f} which is of the size $w \cdot K \log q \ll M \cdot K$.

Thus, a first candidate could be one in which the obfuscator gives out $\left\{\mathrm{CT}_{i}\right\}_{i \in[\ell]}$ along with \mathbf{S}_{f}. Unfortunately, this is easily attackable, because this let's one learn \mathbf{E}_{f}, which lies in a linear subspace which is some function of the circuit C. Thus given \mathbf{E}_{f} one can test if the ciphertexts encrypt C_{0} or C_{1}.

Relying on fresh LWE samples with large error. To address this issue, [BDGM20, WW21] observed that access to fresh LWE samples $\mathbf{D}=\mathbf{A R}+\mathbf{F}$ where $\mathbf{R} \in \mathbb{Z}_{q}^{w \times K}$ and $\mathbf{F} \in \chi_{\text {flood }}^{M \times K}$ from some distribution $\chi_{\text {flood }}$ can drown out \mathbf{E}_{f}. Then, one can give out $\mathbf{S}_{f}+\mathbf{R}$ (in addition to $\mathbf{D},\left\{\mathrm{CT}_{i}\right\}$) which lets one learn $\mathbf{E}_{f}+\mathbf{F}+\mathbf{M}_{f}\left\lceil\frac{q}{2}\right\rceil$. In fact, this system can be proven secure under LWE. Unfortunately, now the problem is that \mathbf{D} is too big! We don't obtain any compression if we give such a matrix out. To address this issue, [WW21] suggested pseudorandomly generating LWE samples, motivating a source of new hardness assumptions in [WW21] as well as the paper under consideration in our work $\left[\mathrm{DQV}^{+} 21\right]$.

Pseudorandomly sampling LWE To obtain compression, [WW21] suggested that we come up with a way where one uses a small set of encryptions (encrypting say a PRF key) $\left\{\mathrm{CT}_{i}^{\prime}=\mathbf{A S}_{i}^{\prime}+\mathbf{E}_{i}^{\prime}+k_{i} \mathbf{G}\right\}_{i \in\left[\ell^{\prime}\right]}$ and then using this compute a larger number of LWE samples of the same kind as \mathbf{D}. The work showed that by homomorphically evaluating PRF and relying on packing techniques, one could generate a larger sample of the required form $\mathbf{D}=\mathbf{A} \mathbf{R}^{\prime}+\mathbf{F}^{\prime}$. Now one could give out $\mathbf{S}_{f}+\mathbf{R}^{\prime}$ and this could effectively replace the role of a fresh LWE sample \mathbf{D}. Unfortunately, this assumption is heuristic in nature, and is contingent on the exact specification of the circuit implementation of the PRF used. The work of [HJL21] pointed out that for every PRF, if the circuit implementation is not chosen carefully, the assumption could be attacked.

Simplifying Assumption. The main contribution of $\left[\mathrm{DQV}^{+} 21\right]$ is a significantly simpler scheme that involves computation of a fully specified structured constant-degree polynomials rather than a PRF. The purpose is to identify the simplest possible assumption that suffices to build $i \mathcal{O}$, and can be reasoned with respect to broad classes of cryptanalysis algorithms. In order to generate "LWE" type samples, the work of $\left[\mathrm{DQV}^{+} 21\right]$ gives out d LWE matrices for some constant $d \in \mathbb{N}$:

$$
\mathbf{B}_{i}=\mathbf{A}_{i} \mathbf{S}_{i}+\mathbf{E}_{i} \quad \bmod q,
$$

for $i \in[d]$ where $\mathbf{A}_{i} \leftarrow \mathbb{Z}_{q}^{m \times w}$ and $\mathbf{S}_{i} \leftarrow \mathbb{Z}_{q}^{w \times k}$ and $\mathbf{E}_{i} \leftarrow \chi^{m \times k}$. Here $w \ll m \ll k$
The point of this is that now one can compute $\mathbf{B}^{\prime}=\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{d}$ given these matrices resulting in a matrix of much larger dimension. This matrix can be expressed as:

$$
\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{d}=\mathbf{A}^{\prime} \cdot \mathbf{S}^{\prime}+\mathbf{E}^{\prime}
$$

where,

$$
\begin{aligned}
& \mathbf{A}^{\prime}=\left(\mathbf{A}_{1} \otimes \mathbf{I}_{m} \otimes \ldots \mathbf{I}_{m}\left\|\mathbf{I}_{m} \otimes \mathbf{A}_{2} \otimes \ldots \mathbf{I}_{m}\right\| \ldots \| \mathbf{I}_{m} \otimes \mathbf{I}_{m} \otimes \ldots \mathbf{A}_{d}\right), \\
& \mathbf{S}^{\prime}=\left(\begin{array}{c}
\mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{S}_{d}
\end{array}\right), \\
& \mathbf{E}^{\prime}=\mathbf{E}_{1} \otimes \ldots \otimes \mathbf{E}_{d} .
\end{aligned}
$$

At this point it is tempting to use \mathbf{B}^{\prime} to instantiate the template above. Indeed the dimension of \mathbf{S}^{\prime} is much smaller than the dimension of \mathbf{B}^{\prime}. Unfortunately, this can be attacked using the sum-of-squares
algorithm. The sample $\mathbf{E}^{\prime}+\mathbf{M}_{f}\left\lceil\frac{q}{2}\right\rceil+\mathbf{E}_{f}$ does not hide \mathbf{E}_{f}. \mathbf{E}^{\prime} consists of all degree d monomials of $\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}$, and if $\left\|\mathbf{E}_{f}\right\|_{2} \ll\left\|\mathbf{E}^{\prime}\right\|_{2}$, using ideas similar to $\left[\mathrm{BHJ}{ }^{+} 19\right]$ we can recover $\left\{\mathbf{E}_{i}\right\}$ uniquely with high probability in polynomial time. For ruling out such attacks, we require that for any system of polynomials of degree d over n variables, the number of equations be less than $n^{d / 2}$, whereas in this case we are giving out n^{d} equations.

Thus, $\left[\mathrm{DQV}^{+} 21\right]$ suggested multiplying \mathbf{B}^{\prime} by matrices \mathbf{P} and \mathbf{P}^{\prime} (which are both a part of some crs) with integer Gaussian entries to compute $\mathbf{B}^{*}=\mathbf{P B}^{\prime} \mathbf{P}^{\prime}$ where $\mathbf{P} \in \mathbb{Z}^{M \times m^{d}}$ and $\mathbf{P}^{\prime} \in \mathbb{Z}^{k^{d} \times K}$. This yields $\mathbf{B}^{*}=\mathbf{A}^{*} \cdot \mathbf{S}^{*}+\mathbf{E}^{*}$ where $\mathbf{S}^{*}=\mathbf{S}^{\prime} \cdot \mathbf{P}^{\prime}$ and $\mathbf{E}^{*}=\mathbf{P}\left(\mathbf{E}_{1} \otimes \ldots \otimes \mathbf{E}_{d}\right) \mathbf{P}^{\prime}$. We can now use \mathbf{E}^{*} as the smudging polynomial. The dimension M and K are set so that $M \cdot K \ll(m \cdot k)^{d / 2}$ to resist sum-of-squares attacks and at the same time also give the compression needed to give rise to $i \mathcal{O}$.

While this is the main idea, there are several additional ideas that are needed to turn the intuition above into a scheme. Observe that in $\mathbf{B}^{*}=\mathbf{P A}^{\prime} \mathbf{S}^{\prime} \mathbf{P}^{\prime}+\mathbf{E}^{*}, \mathbf{A}^{\prime}$ and \mathbf{S}^{\prime} are highly structured. Instead of releasing matrices $\overline{\mathbf{A}}^{*}=\mathbf{P A}^{\prime}$ in the clear, one gives out Kilian randomized version of $\overline{\mathbf{A}}^{*}$, which we denote by \mathbf{A}^{*} with the same column span as that of $\mathbf{P A}^{\prime}$. Still, several issues remain: For example, the construction is in the CRS model, and the assumption is associated with a CRS. We now describe the assumption below and then give a sketch of our attack.

Succinct LWE Sampling Assumption. The assumption on a broad level roughly says that for some constant $d \in \mathbb{N}$:

$$
\begin{aligned}
& \left(\left\{\mathbf{A}_{i} \mathbf{S}_{i}+\mathbf{E}_{i}\right\}_{i \in[d]}, \mathbf{A}^{*}, \bar{Q}, \bar{Q}\left(\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}\right)+\mathrm{Z}_{0}, \text { aux }_{0}\right) \approx_{c} \\
& \quad\left(\left\{\mathbf{A}_{i} \mathbf{S}_{i}+\mathbf{E}_{i}\right\}_{i \in[d]}, \mathbf{A}^{*}, \bar{Q}, \bar{Q}\left(\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}\right)+\mathrm{Z}_{1}, \operatorname{aux}_{1}\right)
\end{aligned}
$$

where \bar{Q} is a fully specified degree- d polynomial map over the integers chosen at random from some distribution which we will specify below. For $b \in\{0,1\}, Z_{b}$ is a distribution that needs to be smudged and aux ${ }_{b}$ is auxiliary information about the distribution. On a very high level, the assumption has a structure that is reminiscent of the assumptions made by $\left[\mathrm{AJL}^{+} 19, \mathrm{JLMS19}\right]$. However, there are differences in what set of polynomials that \bar{Q} can be supported and the auxiliary information. As described above, the polynomial map that $\left[\mathrm{DQV}^{+} 21\right]$ considers is of the form: $\bar{Q}\left(\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}\right)=\mathbf{P}\left(\mathbf{E}_{1} \otimes \ldots \mathbf{E}_{d}\right) \mathbf{P}^{\prime}$ where the polynomial first computes multilinear degree d monomials by computing $\mathbf{E}_{1} \otimes \ldots \otimes \mathbf{E}_{d}$ and then multiplies it on both sides by matrices $\mathbf{P}, \mathbf{P}^{\prime}$ of appropriately chosen dimensions where the entries are chosen from a discrete Gaussian distribution. Our attacks do not apply to the assumptions made in [AJL ${ }^{+}$19, JLMS19], which are structurally similar on a very high level. The reason for this is that our attack uses the structure of the polynomial \bar{Q} in a crucial way. Our results, in fact, suggest that there are distributions of polynomials \bar{Q}, such that $\bar{Q}\left(\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}\right)$ may be secure to release (from the point of view of SoS, linearizations and other attacks) but together with the LWE samples, might end up being invertible. This conclusion suggests that these types of assumptions of LWE sampling with polynomial leakage on the errors need to be thoroughly investigated.

We now describe the assumption in full specification below.

2.1 The DQVWW Assumption Implying $i \mathcal{O}$

We now describe the assumption of $\left[\mathrm{DQV}^{+} 21\right]$ implying $i \mathcal{O}$. The assumption appears as the "final assumption" on page 7 as well as Conjecture 2 in $\left[\mathrm{DQV}^{+} 21\right]$. We emphasize unlike previous works in this line, the assumption of $\left[\mathrm{DQV}^{+} 21\right]$ is fully-specified, meaning all parameters/implementations are fully specified.

We first set some parameters that will be used to define the conjecture.

- $d \geq 3$ is a constant integer.
- w is a security/dimension parameter,
- m, n, k, M, N, W are other dimension parameters which are polynomials in w.
- In their candidate, $M=m^{d-1 / 2}$ and $K=m^{d+1 / 2}, m \geq w^{3}$ and $m^{3} \leq k \leq m^{2 d-7 / 6}$.
- q is a prime, $\chi, \bar{\chi}, \chi_{\text {flood }}$ are LWE error distributions with different parameters. We note that there is a bound of $q \leq 2^{O(m)}$ for LWE security to hold, a point which we expound on in Remark 2.1.

The assumption is regarding indistinguishability of two distributions \mathcal{D}_{b} for $b \in\{0,1\}$. We describe both the distributions below.

Distribution \mathcal{D}_{b}.

- For $i \in[d]$, sample $\mathbf{A}_{i} \leftarrow \mathbb{Z}_{q}^{m \times w}, \mathbf{S}_{i} \leftarrow \mathbb{Z}_{q}^{w \times k}, \mathbf{E}_{i} \leftarrow \chi^{m \times k}$. Set $\mathbf{B}_{i}=\mathbf{A}_{i} \cdot \mathbf{S}_{i}+\mathbf{E}_{i}$. Visually, the $\mathbf{A}_{i}{ }^{\prime}$ s are tall, the \mathbf{S}_{i} 's are wide, and the \mathbf{B}_{i} 's and the \mathbf{E}_{i} 's are wide.
- Sample $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$ and $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d} \times K}$. Visually, \mathbf{P} is a wide matrix and \mathbf{P}^{\prime} is a tall matrix.
- Set $\overline{\mathbf{A}}^{*}=\mathbf{P} \cdot\left(\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{A}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \ldots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right) \in Z_{q}^{M \times d w m^{d-1}}$. Visually, $\overline{\mathbf{A}}^{*}$ is a tall matrix.
- Set $\overline{\mathbf{S}}^{*}=\left(\begin{array}{c}\mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \otimes \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\ \mathbf{E}_{1} \otimes \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \otimes \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\ \vdots \\ \mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \otimes \mathbf{E}_{d-1} \otimes \mathbf{S}_{d}\end{array}\right) \cdot \mathbf{P}^{\prime} \in \mathbb{Z}_{q}^{d w m^{d-1} \times K}$ Visually, $\overline{\mathbf{S}}^{*}$ is a wide matrix.
- (Killian Randomization) Find random full rank matrices $\mathbf{A}^{*} \in \mathbb{Z}_{q}^{M \times W}, \mathbf{S}^{*} \in \mathbb{Z}_{q}^{W \times K}$ such that $\mathbf{A}^{*} \cdot \mathbf{S}^{*}=$ $\overline{\mathbf{A}}^{*} \cdot \overline{\mathbf{S}}^{*}$. Visually, \mathbf{A}^{*} is a tall matrix and \mathbf{S}^{*} is a wide matrix.
- Observe that if one sets $\mathbf{B}^{*}=\mathbf{P} \cdot\left(\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{d}\right) \cdot \mathbf{P}^{\prime}$ and $\mathbf{E}^{*}=\mathbf{P} \cdot\left(\mathbf{E}_{1} \otimes \ldots \otimes \mathbf{E}_{d}\right) \cdot \mathbf{P}^{\prime}$, then it holds that $\mathbf{B}^{*}-\mathbf{A}^{*} \mathbf{S}^{*}=\mathbf{E}^{*}$. Set seed $=\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \mathbf{A}^{*}, \mathbf{S}^{*}$.
- Set $\hat{\mathbf{B}}=\mathbf{A}^{*} \mathbf{S}_{0}+\mathbf{F}$, where $\mathbf{S}_{0} \leftarrow \mathbb{Z}_{q}^{W \times K}$ and $\mathbf{F} \leftarrow \chi_{\text {flood }}^{M \times K}$.
- Set $\mathbf{C}=\mathbf{A}^{*} \mathbf{R}+\mathbf{E}-b \mathbf{G}$, where $\mathbf{R} \leftarrow \mathbb{Z}_{q}^{W \times M \log q}$ and $\mathbf{E} \leftarrow \bar{\chi}^{M \times M \log q}$.

Output of \mathcal{D}_{b} consists of the following tuple:

$$
\Delta_{b}=\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})-b \mathbf{F}\right)
$$

We note that $\mathbf{E}^{*}+\mathbf{E G}{ }^{-1}(\hat{\mathbf{B}})-b \mathbf{F}$ let's one derive $\mathbf{A}^{*} \cdot\left(\mathbf{S}^{*}+\mathbf{R G}^{-1}(\hat{\mathbf{B}})-b \mathbf{S}_{0}\right)$. This is because $\mathbf{B}^{*}+\mathbf{C G}^{-1}(\hat{\mathbf{B}})=\mathbf{A}^{*}\left(\mathbf{S}^{*}+\mathbf{R} \mathbf{G}^{-1}(\hat{\mathbf{B}})-b \mathbf{S}_{0}\right)+\mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})-b \mathbf{F}$.

The Assumption of $\left[\mathbf{D Q V}^{+} \mathbf{2 1}\right]$. For the distribution $\mathcal{D}_{0}, \mathcal{D}_{1}$ defined above, \mathcal{D}_{0} is computationally indistinguishable to \mathcal{D}_{1}.

Remark 2.1. For simplicity, consider the LWE error distribution χ to be uniform over $[0, B-1]$. In general, the security of $L W E$ itself requires that $B / q \geq 2^{-w}$ where w is the security parameter (It's also the length of the secret, observe that each matrix \mathbf{S}_{i} is of dimension $w \times k$ and every column, say $\mathbf{s}_{i, j} \in \mathbb{Z}_{q}^{w}$ of \mathbf{S}_{i} defines a fresh LWE sample given by $\mathbf{A}_{i} \mathbf{s}_{i, j}+\mathbf{e}_{i, j}$, where $\mathbf{e}_{i, j} \in \mathbb{Z}_{q}^{k}$ is the j th column of $\left.\mathbf{E}_{i}\right)$. Moreover, we know that the total entropy in a LWE matrix is upper bounded by $w k \log q+m k \log B$ and this total entropy must be upper bounded by the entropy in a truly random matrix of dimension $m \times k$, so we have $m k \log q \geq w k \log q+m k \log B$. Substituting the constraint on the noise-to-modulus ratio into the entropy bound gives us that $m \geq \log q$, so $q \leq 2^{O(m)}$ so that LWE security holds. An analogous constraint holds on Gaussian distributions with respect to the width.

2.2 Overview of the Attack

We begin by describing a recovery algorithm for the error term \mathbf{E}_{1} in the case that $b=0$. To break the assumption, the algorithm is given a tuple

$$
\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})-b \mathbf{F}\right)
$$

for some $b \in\{0,1\}$, and the algorithm needs to identify the value of $b \in\{0,1\}$. We show that in the case of $b=0$, we can construct an algorithm \mathcal{A} that recovers the matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$ up to a unique representation,
and then recovers the secret \mathbf{S}_{1} up to a unique representation. If we recover \mathbf{A}_{1} and \mathbf{S}_{1} up to a unique representation, then we can recover \mathbf{E}_{1} from \mathbf{B}_{1}. The same attack can then iteratively recover \mathbf{E}_{i} for all $i \in[d]$. This recovery algorithm for the case that $b=0$ heuristically gives rise to a distinguisher which we explain in Section 3.1.

A unique representation Observe that if one was to naively solve for $\mathbf{A}_{i}, \mathbf{S}_{i}$, there could be many solutions simultaneously satisfying all the constraints. In particular, there are many possible values of $\mathbf{U}_{i}, \mathbf{V}_{i}$ that satisfy $\mathbf{B}_{i}=\mathbf{U}_{i} \cdot \mathbf{V}_{i}+\mathbf{E}_{i}$ where $\mathbf{U}_{i} \in \mathbb{Z}_{q}^{m \times w}, \mathbf{V}_{i} \in \mathbb{Z}_{q}^{w \times k}$ and $\mathbf{A}^{*}=\mathbf{P}\left[\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}^{\otimes(d-1)}\|\cdots\| \mathbf{I}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right] \mathbf{T}$ for a matrix \mathbf{T}. This large solution space, for example, contains all solutions of the form $\mathbf{U}_{i}=\mathbf{A}_{i} \mathbf{R}$ and $\mathbf{V}_{i}=\mathbf{R}^{-1} \mathbf{S}_{i}$ for any invertible matrix $\mathbf{R} \in \mathbb{Z}_{q}^{w \times w}$. Any such choice of \mathbf{U}_{i} and \mathbf{V}_{i} also gives rise to a solution of $\mathbf{A}^{*} \mathbf{S}^{*}=\overline{\mathbf{U}}^{*} \overline{\mathbf{V}}^{*}$ where

$$
\begin{aligned}
& \overline{\mathbf{U}}^{*}=\mathbf{P}\left[\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}^{\otimes(d-1)}\|\cdots\| \mathbf{I}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right] \\
& \overline{\mathbf{V}}^{*}=\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \otimes \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{V}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \otimes \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \otimes \mathbf{E}_{d-1} \otimes \mathbf{V}_{d}
\end{array}\right] \cdot \mathbf{P}^{\prime} .
\end{aligned}
$$

In order to make a unique search possible, we observe that for any LWE sample,

$$
\mathbf{B}_{i}=\mathbf{A}_{i} \cdot \mathbf{S}_{i}+\mathbf{E}_{i}
$$

for a planted $\mathbf{A}_{i} \in \mathbb{Z}_{q}^{m \times w}, \mathbf{S}_{i} \in \mathbb{Z}_{q}^{w \times k}$ and $\mathbf{E}_{i} \leftarrow \chi^{m \times k}$, with high probability, can be uniquely written as:

$$
\mathbf{B}_{i}=\mathbf{U}_{i} \cdot \mathbf{V}_{i}+\mathbf{E}_{i}
$$

where we insist that \mathbf{U}_{i} is uniquely structured, namely in its Hermite normal form (reduced echelon form). That is, we set $\mathbf{U}_{i}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$, by setting the top $w \times w$ submatrix of \mathbf{U}_{i} to be identity. The purported solution value of \mathbf{U}_{i} is supposed to be $\mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$ where $\mathbf{A}_{i, T}^{-1}$ is the top $w \times w$ submatrix of \mathbf{A}_{i}. Similarly, the intended solution for \mathbf{V}_{i} is supposed to be $\mathbf{A}_{i, T} \cdot \mathbf{S}_{i}$. Note that if this happens, then we still have the desired relation:

$$
\mathbf{A}_{i} \cdot \mathbf{S}_{i}=\mathbf{U}_{i} \cdot \mathbf{V}_{i}
$$

Our algorithm We now state our recovery algorithm that recovers \mathbf{E}_{1} in two simple steps:

Main Recovery Algorithm \mathcal{A}

Input: $\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})\right.$.
Output: $\mathbf{V}_{1}, \mathbf{E}_{1}$.

1. Recover $\mathbf{U}_{1}, \ldots, \mathbf{U}_{d}$: Solve the affine system of equations defined by

$$
\begin{equation*}
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]=\mathbf{A}^{*} \cdot \mathbf{M} \tag{1}
\end{equation*}
$$

where $\mathbf{U}_{i}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$, for $i \in[d]$, and the variables are given by the entries of $\tilde{\mathbf{A}}_{1}, \ldots, \tilde{\mathbf{A}}_{d} \in \mathbb{Z}_{q}^{(m-w) \times w}$ and the entries of $\mathbf{M} \in \mathbb{Z}_{q}^{W \times d w m^{d-1}}$. Even more precisely, every entry of the matrix

$$
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]-\mathbf{A}^{*} \cdot \mathbf{M}
$$

defines an equation in the above described variables, where the coefficients are given by the entries of \mathbf{A}^{*} and \mathbf{P}. We will show there is a unique solution for $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, namely the fact that there is only one possible solution for all the entries of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ regardless of the solution found for the entries of M.
2. Recover \mathbf{V}_{1} : Having recovered the unique matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, our algorithm now aims to recover \mathbf{V}_{1} such that $\mathbf{U}_{1} \cdot \mathbf{V}_{1}=\mathbf{A}_{1} \cdot \mathbf{S}_{1}$. To do this, our algorithm computes

$$
\mathbf{Y}=\mathbf{A}^{*} \cdot\left(\mathbf{S}^{*}+\mathbf{R} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})\right)
$$

by subtracting off the error $\mathbf{E}^{*}+\mathbf{E} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})$ from $\mathbf{B}^{*}+\mathbf{C} \cdot \mathbf{G}^{-1}(\mathbf{B})$. Then it computes, via standard linear algebra, a full rank annihilator matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ such that $\mathbf{G}^{-1}(\hat{\mathbf{B}}) \cdot \mathbf{Q}=\mathbf{0}$, obtaining the equation,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

Finally, it solves the linear system of equations defined by

$$
\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime} \tag{2}\\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

where $\mathbf{B}_{2}^{\prime}=\mathbf{B}_{2} \otimes \ldots \otimes \mathbf{B}_{d}$ and where the variables are the entries of \mathbf{V}_{1} and \mathbf{Z} and the coefficients are given by the entries of $\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{Q}, \mathbf{Y}, \mathbf{U}_{i}$, for $i \in[d]$, and \mathbf{B}_{2}^{\prime}. We will show that \mathbf{V}_{1} has a unique solution, namely the fact that there is only one possible solution for the entries of \mathbf{V}_{1} regardless of the solution found for the entries of \mathbf{Z}. Finally, \mathbf{E}_{1} is now recovered by computing $\mathbf{B}_{1}-\mathbf{U}_{1} \cdot \mathbf{V}_{1}$.

Observe that in each of the two steps above, our algorithm sets up a simple, explicit affine (linear in Step 2) system of equations. Correctness of the algorithm is entirely determined by showing, for Step 1, the uniqueness of the solution to $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, and showing, for Step 2 , the uniqueness of the solution to \mathbf{V}_{1}. This analysis is intricate and benefits from being viewed in a specific lens as we shortly explain.

Remark 2.2. We will place basic linear algebra facts and linear algebraic statements about the tensor structure used in the DQVWW construction in a shaded box. This is done to minimize the number of distractions the reader encounters. A reference to the corresponding statement in the Appendix will be included. A compendium of these facts and their proofs is found in Appendix A and Appendix B.

2.3 The Importance of Column Spans

To show uniqueness in Step 1, we will analyze column spans instead of analyzing matrix equations. There are two reasons for analyzing the column spans: First, reasoning about column spans allows us to disregard the matrix \mathbf{M} in Equation 1 by taking advantage of the fact that the column span of $\mathbf{A}^{*} \cdot \mathbf{M}$ is contained in the column span of \mathbf{A}^{*}, a fact which we will recall shortly.

Our second, and principal, reason for analyzing column spans is that it allows us to continue to see the tensor structure even after left-multiplication by the matrix \mathbf{P}. If \mathbf{P} were not present, then we observe that a straightforward linear independence argument, which uses the tensor structure of the matrix in the LHS of the below equation, shows that there is a unique choice of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ that satisfies the equation

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]=\mathbf{A}^{*} \cdot \mathbf{M}
$$

We will explicitly analyze this case without \mathbf{P} later in this overview as a simple example to build intuition. Under a reasonable conjecture about random matrices being injective on subspaces of small dimension, we can directly extend this linear independence argument for the simple example to the general case when we have left-multiplication by \mathbf{P}. This extension reveals that left-multiplication by \mathbf{P} does not sufficiently destroy, nor scramble, the tensor structure of the LHS above. Yet, this observation is completely hidden from view when considering the matrix view

$$
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]
$$

Since \mathbf{P}, in general, is not decomposable into a tensor product, directly analyzing the matrix product makes the tensor structure appear to be completely lost!

From a column span view, however, this tensor structure is still very much accessible. Extending the above mentioned linear independence argument to the general case, in which \mathbf{P} is present, turns out to exactly require analyzing the column span Colspan $\left(\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)$. A more detailed overview is given below.

Framework for Column Spans To analyze the column span of the following matrix

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]
$$

where the matrices $\mathbf{U}_{i} \in \mathbb{Z}_{q}^{m \times w}$ are of the stipulated form (with a top $w \times w$ identity block, so of full column rank w), it is useful to make the following extension of each \mathbf{U}_{i} to a full basis for \mathbb{Z}_{q}^{m}. The column span of this matrix is some subspace of the vector space over $\underbrace{\mathbb{Z}_{q}^{m} \otimes \cdots \otimes \mathbb{Z}_{q}^{m}}_{d \text { times }}$. Considering \mathbb{Z}_{q}^{m} as a vector space, we consider the following bases for \mathbb{Z}_{q}^{m}. For $i \in[d]$, let \mathcal{B}_{i} be a basis for \mathbb{Z}_{q}^{m} obtained by extending the set of column vectors in $\mathbf{U}_{i}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ to the following full rank, lower-triangular matrix

$$
\mathcal{B}_{i} \triangleq\left[\begin{array}{cc}
\mathbf{I}_{w} & \mathbf{0}_{w \times(m-w)} \\
\tilde{\mathbf{A}}_{i} & \mathbf{I}_{m-w}
\end{array}\right] \in \mathbb{Z}_{q}^{m \times m}
$$

and let $\left(\mathbf{e}_{1}^{(i)}, \ldots, \mathbf{e}_{m}^{(i)}\right)$ denote the columns (the basis vectors).

2.4 Correctness of Step 1

We aim to build simple intuition about the correctness of our algorithm in this overview and leave the full details to the main technical content. Our overview first shows the existence of one solution to $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ in Equation 1, namely a solution to \mathbf{U}_{i} is the Hermite normal form of $\mathbf{A}_{i} \in \mathbb{Z}_{q}^{m \times w}$, which has full column rank with overwhelming probability by property of random matrices. Then we explain why this is the only solution with overwhelming probability.

- (Step 1) Existence of a structured solution: First, there exists at least one solution to $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ and \mathbf{M} in Equation 1 in which for all $i \in[d]$, we have $\mathbf{U}_{i} \leftarrow \mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$, where we recall that $\mathbf{A}_{i, T} \in \mathbb{Z}_{q}^{w \times w}$ is defined to be the top $w \times w$ block of \mathbf{A}_{i}. Put equivalently, a solution to \mathbf{U}_{i} is the Hermite normal form of \mathbf{A}_{i}. To see why, for $i \in[d]$, define the invertible matrix $\mathbf{N}_{i}=\mathbf{I}_{m}^{\otimes(i-1)} \otimes \mathbf{A}_{i, T}^{-1} \otimes \mathbf{I}_{m}^{\otimes(d-i)}$ and use the following two linear algebraic facts.

Lemma 2.3. For any matrices $\mathbf{M}_{1}, \mathbf{M}_{2}$, there exists a matrix \mathbf{N} such that $\mathbf{M}_{1} \cdot \mathbf{N}=\mathbf{M}_{\mathbf{2}}$ if and only if $\operatorname{Colspan}\left(\mathbf{M}_{2}\right) \subseteq \operatorname{Colspan}\left(\mathbf{M}_{\mathbf{1}}\right)$.

Corollary 2.4. For any matrices $\mathbf{M}_{1}, \mathbf{M}_{2}$ and for any invertible matrices $\mathbf{N}_{1}, \mathbf{N}_{2}$ of the appropriate dimensions, we have that

$$
\text { Colspan }\left(\left[\mathbf{M}_{1} \| \mathbf{M}_{2}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{M}_{1} \mathbf{N}_{1} \| \mathbf{M}_{2} \mathbf{N}_{2}\right]\right)
$$

These statements and their proofs can be found in Appendix A, under Lemma A. 1 and Corollary A.2.

By Corollary 2.4 we have,

$$
\begin{aligned}
& \operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right) \\
&=\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\left(\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right) \cdot \mathbf{N}_{1}\|\cdots\|\left(\mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right) \cdot \mathbf{N}_{d}\right]\right) \\
&=\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}\right]\right) .
\end{aligned}
$$

By definition of the scheme,

$$
\mathbf{A}^{*}=\mathbf{P} \cdot\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right] \cdot \mathbf{K}
$$

for some matrix $\mathbf{K} \in \mathbb{Z}_{q}^{d w m^{d-1} \times W}$ that preserves the column span of \mathbf{P}. $\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]$. Since the column span is preserved by \mathbf{K},

$$
\operatorname{Colspan}\left(\mathbf{A}^{*}\right)=\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}\right]\right)
$$

which implies, by Lemma 2.3, that there exists some matrix \mathbf{M} that satisfies Equation 1 when we consider $\mathbf{U}_{i} \leftarrow \mathbf{A}_{i} \cdot \mathbf{A}_{i, T}^{-1}$ for all $i \in[d]$.

- (Step 1) Uniqueness when \mathbf{P} is absent: To build intuition for the full uniqueness argument, we present it in the simpler setting in which \mathbf{P} is entirely absent from the scheme in the DQVWW assumption. Let us also consider the simple case when $d=2$. In this toy case, there is no matrix \mathbf{P} used to generate \mathbf{A}^{*}, so for this simple case we instead consider when the algorithm is given a matrix of the form $\mathbf{T}^{*}=\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{A}_{2}\right] \mathbf{K}$ for some column span preserving Kilian matrix \mathbf{K}. We show the following claim.
Lemma 2.5 (Simple case without \mathbf{P}). For matrices $\mathbf{U}_{1}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right], \mathbf{U}_{2}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{2}\end{array}\right], \mathbf{U}_{1}^{\prime}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}^{\prime}\end{array}\right], \mathbf{U}_{2}^{\prime}=$ $\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{2}^{\prime}\end{array}\right] \in \mathbb{Z}_{q}^{m \times w}$, if

$$
\begin{equation*}
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}\right]\right)=\text { Colspan }\left(\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}^{\prime}\right]\right) \tag{3}
\end{equation*}
$$

then $\tilde{\mathbf{A}}_{i}=\tilde{\mathbf{A}}_{i}^{\prime}$ for $i \in[2]$ so that $\mathbf{U}_{1}=\mathbf{U}_{1}^{\prime}$ and $\mathbf{U}_{2}=\mathbf{U}_{2}^{\prime}$.
Before we show how to prove Lemma 2.5, let us show that Lemma 2.5 implies uniqueness. In particular, we now explain why it is reasonable to require in the statement of Lemma 2.5 that the column spans are equal.
Recall that the algorithm finds a solution to $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[2]}$ and \mathbf{M} in Equation 1 which is of the following form in the simplified setting:

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}\right]=\mathbf{T}^{*} \cdot \mathbf{M}
$$

Then, by Lemma 2.3, any solution to $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[2]}$ satisfies the set containment $\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}\right]\right) \subseteq \operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{A}_{2}\right]\right)$.

Corollary 2.6. With overwhelming probability over the choice of random $\mathbf{A}_{i} \in \mathbb{Z}_{q}^{m \times w}$, for $i \in[d]$, if
$\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right) \subseteq \operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)$
then
$\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)$

The proof sketch can be found in Appendix B under Corollary B.8.

By Corollary 2.6, with overwhelming probability over the choice $\mathbf{A}_{1}, \mathbf{A}_{2}$, set containment in this setting actually implies set equality: Colspan $\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{A}_{2}\right]\right)$. Therefore, any solution found for the simplified version of Equation 1 satisfies the above set equality, and our new Lemma 2.5 implies that there is only one such choice of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[2]}$ that satisfies this equality.

Proof of Lemma 2.5. Proving this fact is done by a linear independence argument enabled by the structure of matrices \mathbf{U}_{i} and by the tensor construction.
We now give a direct argument for uniqueness by showing that $\mathbf{U}_{1}=\mathbf{U}_{1}^{\prime}$ column-by-column. To show, for example, that the first column $\mathbf{v}=\mathbf{e}_{1}^{(1)}$ of $\mathbf{U}_{1}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]$ is equal to the first column of \mathbf{v}^{\prime} of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}^{\prime}\end{array}\right]$, we perform the following steps.

- We observe that \mathbf{v}^{\prime} can expressed in the basis \mathcal{B}_{1} in a special linear combination: $\mathbf{v}^{\prime}=\mathbf{e}_{1}^{(1)}+$ $\sum_{j \in\{w+1, \ldots, m\}} \alpha_{j}^{\prime} \mathbf{e}_{j}^{(1)}$ for some coefficients α_{j}^{\prime}.
- We consider the vector $\mathbf{v}^{\prime} \otimes \mathbf{e}_{m}^{(2)}$ which is in both the LHS and RHS of Equation 3. Because it is in both column spans, this vector can be written as

$$
\mathbf{v}^{\prime} \otimes \mathbf{e}_{m}^{(2)}=\sum_{i \leq w \text { or } j \leq w} \lambda_{i, j} \cdot \mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)}
$$

On the other hand, substituting for \mathbf{v}^{\prime} and rearranging gives

$$
\begin{equation*}
0=\left(\lambda_{1, m}-1\right) \cdot \mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)}-\sum_{j \in\{w+1, \ldots, m\}} \alpha_{j}^{\prime} \cdot \mathbf{e}_{j}^{(1)} \otimes \mathbf{e}_{m}^{(2)}+\sum_{i \leq w \text { or } j \leq w} \lambda_{i, j} \cdot \mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)} \tag{4}
\end{equation*}
$$

$-\mathcal{B}_{1} \otimes \mathcal{B}_{2}=\left\{\mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)}\right\}_{i, j \in[m]}$ is a basis for $\mathbb{Z}_{q}^{m} \otimes \mathbb{Z}_{q}^{m}$. Therefore, the vectors in each of the terms above are linearly independent. This implies that for $j \in\{w+1, \ldots, m\}, \alpha_{j}^{\prime}=0$, and $\lambda_{1, m}=1$, and for all other values of i, j we have $\lambda_{i, j}=0$.
The same outline of steps can be repeated column-by-column.
While this argument suffices to handle the case when \mathbf{P} is absent, when \mathbf{P} is present we exploit the following observation. In the argument above for the case of $d=2$, we needed the linear independence of $m^{2}-(m-w)^{2}+(m-w)+1$ many vectors (given by each of the terms in Equation 4, although note that the first term will vary depending on which of the w columns we are considering) which is a much smaller set of vectors than the total size of the basis for $\mathbb{Z}_{q}^{m} \otimes \mathbb{Z}_{q}^{m}$, which is m^{2}. For the argument to continue to hold when \mathbf{P} is present, \mathbf{P} only needs to preserve the linear independence of this small set of vectors. A formal statement and proof of this uniqueness is found in Theorem 3.12.

- (Step 1) Uniqueness in the general case: Having seen the uniqueness argument in the simple case above without \mathbf{P}, we now address the general case where \mathbf{P} is present.
In the general case, we introduce a single, reasonable conjecture about \mathbf{P} being rank preserving on low-dimensional subspaces. Namely, we conjecture that with overwhelming probability over the choice of \mathbf{P} whose entries are sampled from χ where \mathbf{P} has M rows, for $T \ll M$, and for any set of T linearly independent vectors $\left\{\mathbf{v}_{i}\right\}_{i \in[T]}$, the set $\left\{\mathbf{P} \cdot \mathbf{v}_{i}\right\}_{i \in[T]}$ remains linearly independent. This conjecture enables us to firstly show that all solutions satisfy a column span set equality and secondly enable the same linear independence argument that shows that this set equality implies unique solutions.
We first note that the application of Lemma 2.3 on Equation 1, which we now restate,

$$
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]=\mathbf{A}^{*} \cdot \mathbf{M}
$$

shows that any solution to $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ in Equation 1, satisfies the set containment

$$
\begin{equation*}
\operatorname{Colspan}\left(\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right) \subseteq \operatorname{Colspan}\left(\mathbf{A}^{*}\right) \tag{5}
\end{equation*}
$$

To extend the uniqueness argument from above, we desire to show that any solution to $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ in Equation 1 in fact satisfies the set equality:

$$
\begin{equation*}
\operatorname{Colspan}\left(\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{Colspan}\left(\mathbf{A}^{*}\right) \tag{6}
\end{equation*}
$$

To see that the set containment implies set equality, we first observe that Corollary 2.6 gives us

$$
\operatorname{rk}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)=\operatorname{rk}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)
$$

Then we use the assumption that \mathbf{P} preserves the rank of low-dimensional subspaces. This assumption implies firstly that

$$
\operatorname{rk}\left(\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{rk}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)
$$

and, recalling that $\mathbf{A}^{*}=\mathbf{P} \cdot\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right] \cdot \mathbf{K}$ for some column span preserving matrix \mathbf{K}, the assumption implies secondly that

$$
\operatorname{rk}\left(\mathbf{A}^{*}\right)=\operatorname{rk}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)
$$

Then we apply the following linear algebraic fact,

Lemma 2.7. For any matrices \mathbf{M}, \mathbf{N} with finitely many rows and columns such that $\operatorname{Colspan}(\mathbf{M}) \subseteq \operatorname{Colspan}(\mathbf{N})$, if $\operatorname{rk}(\mathbf{M})=\operatorname{rk}(\mathbf{N})$, then $\operatorname{Colspan}(\mathbf{M})=\operatorname{Colspan}(\mathbf{N})$.

The proof can be found in Appendix A under Lemma A.3.
to see that any solution $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ that satisfies the set containment in Equation 5, also satisfies the set equality found in Equation 6. A formal statement of the assumption on \mathbf{P} and formal arguments are made in the main technical content in Section 3.2.
Once we establish this set equality, we return to our previous linear independence argument.
Lemma 2.8 (Simple case with \mathbf{P}). For matrices $\mathbf{U}_{1}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right], \mathbf{U}_{2}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{2}\end{array}\right], \mathbf{U}_{1}^{\prime}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}^{\prime}\end{array}\right], \mathbf{U}_{2}^{\prime}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{2}^{\prime}\end{array}\right] \in$ $\mathbb{Z}_{q}^{m \times w}$, if

$$
\begin{equation*}
\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}\right]\right)=\text { Colspan }\left(\mathbf{P} \cdot\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m} \| \mathbf{I}_{m} \otimes \mathbf{U}_{2}^{\prime}\right]\right) \tag{7}
\end{equation*}
$$

then $\tilde{\mathbf{A}}_{i}=\tilde{\mathbf{A}}_{i}^{\prime}$ for $i \in[2]$ so that $\mathbf{U}_{1}=\mathbf{U}_{1}^{\prime}$ and $\mathbf{U}_{2}=\mathbf{U}_{2}^{\prime}$.
We leave the formal proof to the technical section and instead take the opportunity to demonstrate how the conjecture naturally extends the proof above (proof of Lemma 2.5) to this setting in which \mathbf{P} is present. To show, for example, that the first column $\mathbf{v}=\mathbf{e}_{1}^{(1)}$ of $\mathbf{U}_{1}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]$ is equal to the first column of \mathbf{v}^{\prime} of $\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}^{\prime}\end{array}\right]$, we perform the almost identical steps as done before. We observe that \mathbf{v}^{\prime} can expressed in the basis \mathcal{B}_{1} in a special linear combination: $\mathbf{v}^{\prime}=\mathbf{e}_{1}^{(1)}+\sum_{j \in\{w+1, \ldots, m\}} \alpha_{j}^{\prime} \mathbf{e}_{j}^{(1)}$ for some coefficients α_{j}^{\prime}. Then, using the set equality we showed above, we see that the vector $\mathbf{P} \cdot\left(\mathbf{v}^{\prime} \otimes \mathbf{e}_{m}^{(2)}\right)$, is in both Colspan $\left(\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)$ and in Colspan $\left(\mathbf{A}^{*}\right)$ where \mathbf{A}^{*} was generated in a process that left-multiplied by \mathbf{P}. Therefore, it can also be expressed as

$$
\mathbf{P} \cdot \mathbf{v}^{\prime} \otimes \mathbf{e}_{m}^{(2)}=\mathbf{P} \cdot\left(\mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right)+\sum_{j \in\{w+1, \ldots, m\}} \alpha_{j}^{\prime} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{j}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right)
$$

or as

$$
\mathbf{P} \cdot\left(\mathbf{v}^{\prime} \otimes \mathbf{e}_{m}^{(2)}\right)=\sum_{i \leq w \text { or } j \leq w} \lambda_{i, j} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)}\right)
$$

Taking the difference gives us the equation,

$$
\begin{aligned}
0=\left(\lambda_{1, m}-1\right) \cdot \mathbf{P} \cdot\left(\mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right) & -\sum_{j \in\{w+1, \ldots, m\}} \alpha_{j}^{\prime} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{j}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right) \\
& +\sum_{i \leq w \text { or } j \leq w} \lambda_{i, j} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)}\right)
\end{aligned}
$$

For us to finish arguing that all the coefficients $\alpha_{j}^{\prime}=0$, for $j \in\{w+1, \ldots, m\}$, we need the linearly independence of the following set of vectors

$$
\left\{\mathbf{P} \cdot\left(\mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right)\right\} \cup\left\{\mathbf{P} \cdot\left(\mathbf{e}_{j}^{(1)} \otimes \mathbf{e}_{m}^{(2)}\right)\right\}_{j \in\{w+1, \ldots, m\}} \cup\left\{\mathbf{P} \cdot\left(\mathbf{e}_{i}^{(1)} \otimes \mathbf{e}_{j}^{(2)}\right)\right\}_{i \leq w \text { or } j \leq w}
$$

The proposed conjecture above that \mathbf{P} preserves the linear independence of this small number of vectors directly addresses this.

2.5 Correctness of Step 2

In Step 2, we assume that the algorithm has already recovered the unique solution for $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ (therefore, it has also recovered a unique solution for $\left.\left\{\mathbf{U}_{i}\right\}_{i \in[d]}\right)$ in Step 1. We claim that in Step 2 of the algorithm above, there exists a unique solution for \mathbf{V}_{1} in Equation 2, which is restated below:

$$
\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

To show uniqueness in Step 2, we consider the homogeneous version (when the RHS is $\mathbf{0}$) of Equation 2:

$$
\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}
$$

Any solution for \mathbf{V}_{1} and \mathbf{Z} in the homogeneous version is exactly the difference of two solutions for \mathbf{V}_{1} and \mathbf{Z} in the inhomogeneous version. Therefore, by showing that the only solution for \mathbf{V}_{1} in the homogeneous system is the zero matrix, we show that there is a unique solution for inhomogeneous version.

Intuitively, one sees that uniqueness is possible by observing that in the block $\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime}$ is linear in the entries of \mathbf{V}_{1} and there are only $w k$ unknowns but many equations (as many as the number of entries in $\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime}$). On the other hand, in terms of uniqueness, one should be concerned about the unknown matrix \mathbf{Z} in Equation 2. However, we show how to isolate a linear equation in only \mathbf{V}_{1} (removing \mathbf{Z}) thereby revealing that \mathbf{V}_{1} must have a unique solution with high probability. The proof of uniqueness then proceeds by a rank argument. We present an overview of this proof in three steps: firstly, we show that there always exists a solution, secondly we give a simple observation for when \mathbf{P} is not present, and finally we give the high level argument for when \mathbf{P} is present.

- (Step 2) Existence of a solution: By definition of the scheme,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*}=\overline{\mathbf{A}}^{*} \cdot \overline{\mathbf{S}}^{*}
$$

where,

$$
\begin{aligned}
& \overline{\mathbf{A}}^{*}=\mathbf{P}\left(\mathbf{A}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{A}_{d}\right), \\
& \overline{\mathbf{S}}^{*}=\left(\begin{array}{c}
\mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{S}_{d}
\end{array}\right) \cdot \mathbf{P}^{\prime}
\end{aligned}
$$

Thus, due to the properties of tensor products:

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*}=\mathbf{L}_{1} \cdot \mathbf{L}_{2}
$$

where,

$$
\begin{aligned}
& \mathbf{L}_{1}=\mathbf{P}\left(\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}\right), \\
& \mathbf{L}_{2}=\left(\begin{array}{c}
\mathbf{A}_{1, T} \cdot \mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{A}_{2, T} \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{A}_{d, T} \mathbf{S}_{d}
\end{array}\right) \cdot \mathbf{P}^{\prime}
\end{aligned}
$$

Therefore, there is a solution to Equation 2 where $\mathbf{V}_{1}=\mathbf{A}_{1, T} \cdot \mathbf{S}_{1}$.

- (Step 2) Uniqueness when \mathbf{P} is absent: Uniqueness is argued by considering the homogeneous version of Equation 2 (obtained by taking the difference of two candidate solutions) and arguing that the only solution is the zero solution (the difference is zero, so the two solutions are equal). Consider the homogeneous equation when \mathbf{P} is absent:

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime} \tag{8}\\
\mathbf{Z}^{\prime}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}
$$

where the entries of $\mathbf{V}_{1}^{\prime}, \mathbf{Z}^{\prime}$ are the unknowns. In this case, it easy to see that $\mathbf{V}_{1}^{\prime}=\mathbf{0}$ since we can remove \mathbf{Z}^{\prime} by left multiplying both sides of Equation 8 by the matrix

$$
\mathbf{U}^{\perp} \triangleq\left[\mathbf{I}_{m} \otimes \mathbf{U}_{2}^{\perp} \otimes \cdots \mathbf{U}_{d}^{\perp}\right]
$$

where $\mathbf{U}_{i}^{\perp} \in \mathbb{Z}_{q}^{(m-w) \times m}$ are full rank annihilators of \mathbf{U}_{i}, that is $\mathbf{U}_{i}^{\perp} \mathbf{U}_{i}=\mathbf{0}$. Moreover, observe that if \mathbf{U}_{i} are the Hermite normal forms of \mathbf{A}_{i}, then \mathbf{U}_{i}^{\perp} also annihilates \mathbf{A}_{i}. Left multiplying both sides of Equation 8 by \mathbf{U}^{\perp} and expanding $\mathbf{B}_{2}^{\prime}=\mathbf{B}_{2} \otimes \cdots \otimes \mathbf{B}_{d}$ where $\mathbf{B}_{i}=\mathbf{A}_{i} \mathbf{S}_{i}+\mathbf{E}_{i}$ gives:

$$
\begin{equation*}
\left(\mathbf{U}_{1} \cdot \mathbf{V}_{1}^{\prime} \otimes \mathbf{U}_{2}^{\perp} \cdot \mathbf{E}_{2} \otimes \cdots \otimes \mathbf{U}_{d}^{\perp} \cdot \mathbf{E}_{d}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0} \tag{9}
\end{equation*}
$$

This equation implies that $\mathbf{V}_{1}^{\prime}=\mathbf{0}$ with high probability. Observe that the error terms \mathbf{E}_{i}, the matrix \mathbf{P}^{\prime}, and the matrix \mathbf{Q} are independently produced. Moreover, with high probability over the choice of error terms \mathbf{E}_{i}, we have $\mathbf{U}_{i}^{\perp} \cdot \mathbf{E}_{i} \neq \mathbf{0}$. If \mathbf{V}_{1}^{\prime} is non-zero then $\mathbf{U}_{1} \cdot \mathbf{V}_{1}^{\prime} \neq \mathbf{0}$, since \mathbf{U}_{1} has full column rank, which would imply that the LHS of Equation 9 is non-zero, a contradiction. Therefore, $\mathbf{V}_{1}^{\prime}=\mathbf{0}$ with high probability and we have uniqueness for a solution to \mathbf{V}_{1} when \mathbf{P} is absent. This simple argument that left multiplies by an appropriate tensored matrix does not extend in the presence of \mathbf{P} because a random matrix \mathbf{P} is not tensor decomposable as we explain

- (Step 2) Uniqueness when \mathbf{P} is present: Now we consider the homogeneous equation with \mathbf{P} :

$$
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime} \tag{10}\\
\mathbf{Z}^{\prime}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}
$$

where \mathbf{V}_{1}^{\prime} and \mathbf{Z}^{\prime} are the unknowns. Here, from the matrix point of view the tensor structure is destroyed by the action of \mathbf{P}, for example consider $\mathbf{P} \cdot\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)$, obstructing us from using the simple argument for uniqueness above. An argument using column spans is also inhibited because the matrix of interest $\left[\begin{array}{c}\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime} \\ \mathbf{Z}^{\prime}\end{array}\right]$ is left-multiplied by the matrix $\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]$. The key insight from the simple argument above is that it allowed us to isolate \mathbf{V}_{1}^{\prime} in a simple homogeneous equation where \mathbf{Z}^{\prime} is absent. Therefore, we aim to again isolate \mathbf{V}_{1}^{\prime} in a simple homogeneous equation to prove uniqueness in this general setting, we first expand Equation 10:

$$
\begin{aligned}
& \mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q} \\
& \quad+\mathbf{P} \cdot\left[\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right] \mathbf{Z}^{\prime} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}
\end{aligned}
$$

Applying the principle of wishful thinking, if the columns of $\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]$ were linearly independent from those of $\mathbf{P} \cdot\left[\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]$ then the first term alone must satisfy $\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}$, thereby isolating \mathbf{V}_{1}^{\prime} in a new homogeneous equation without the presence of \mathbf{Z}^{\prime}. This independence, however, is false. The two column spans certainly overlap.
To make this approach work, a simple modification suffices: we can take a submatrix of \mathbf{P}. $\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]$ and remove from consideration all the columns of $\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]$ contained in

$$
\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)
$$

Moreover, we can compute the exact rank of this submatrix combinatorially as $w(m-w)^{d-1}$. Leaving the exact details to the main technical body, this observation leads us to an equation of the form

$$
\mathbf{X}_{1} \cdot\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=0
$$

for some matrix \mathbf{X}_{1} that has a nullspace of dimension $O\left(w^{2} m^{d-2}\right)$. On the other hand, we will observe that when $\mathbf{V}_{1}^{\prime} \neq \mathbf{0}, \mathbf{V}_{1}^{\prime} \otimes \mathbf{B}_{2}^{\prime}$ has rank at least $O\left(m^{d-1}\right)$. Therefore, it must be the case that $\mathbf{V}_{1}^{\prime}=\mathbf{0}$ if $m=\omega\left(w^{2}\right)$ and we observe that the initial work of $\left[\mathrm{DQV}^{+} 21\right]$ sets $m \geq w^{3}$. In a nutshell, the significant amount of non-overlap of the column span of $\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right]$ with the column span $\operatorname{Colspan}\left(\mathbf{P} \cdot\left[\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)$ is still enough to argue uniqueness of \mathbf{V}_{1}. The full details of this uniqueness claim can be found in Section 3.3.

3 Our Attack

Theorem 3.1. Under Conjecture 3.3, there exists a polynomial time probabilistic algorithm that recovers $\left\{\mathbf{E}_{i}\right\}_{i \in[d]}$ for $i \in[d]$ when given an input from \mathcal{D}_{0}.

Proof. We construct an algorithm \mathcal{A} that takes an input

$$
\Delta_{0}=\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E} \cdot G^{-1}(\hat{\mathbf{B}})\right)
$$

and outputs $\left\{\mathbf{E}_{i}\right\}_{i \in[d]}$. In a nutshell, the algorithm will be able to compute matrices $\mathbf{V}_{1} \in \mathbb{Z}_{q}^{m \times w}$ and $\mathbf{U}_{1} \in \mathbb{Z}_{q}^{w \times k}$ such that $\mathbf{B}_{1} \in \mathbb{Z}_{q}^{m \times k}$ such that $\mathbf{B}_{1}=\mathbf{U}_{1} \cdot \mathbf{V}_{1}+\mathbf{E}_{1} \in \mathbb{Z}_{q}^{m \times k}$ such that $\mathbf{E}_{1} \in \mathbb{Z}_{q}^{m \times k}$ has a small norm. Our attack recovers all the errors \mathbf{E}_{i} for $i \in[d]$, giving a full recovery algorithm.

As described in the overview, there are only two steps where each step only uses Gaussian Elimination on polynomial sized systems of equations.

Algorithm for Recovery of \mathbf{E}_{1}

Input: $\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})\right.$.
Output: $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}, \mathbf{V}_{1}, \mathbf{E}_{1}$.

1. Recover $\mathbf{U}_{1}, \ldots, \mathbf{U}_{d}$: Solve the affine system of equations defined by

$$
\mathbf{P} \cdot\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]=\mathbf{A}^{*} \cdot \mathbf{M}
$$

where $\mathbf{U}_{i}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$, for $i \in[d]$, and the variables are given by the entries of $\tilde{\mathbf{A}}_{1}, \ldots, \tilde{\mathbf{A}}_{d} \in \mathbb{Z}_{q}^{(m-w) \times w}$ and the entries of $\mathbf{M} \in \mathbb{Z}_{q}^{W \times d w m^{d-1}}$ and the coefficients are given by the entries of \mathbf{A}^{*} and \mathbf{P}. We discuss this step in detail in Section 3.2.
2. Recover \mathbf{V}_{1} : Having recovered the unique matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, our algorithm now aims to recover
\mathbf{V}_{1} such that $\mathbf{U}_{1} \cdot \mathbf{V}_{1}=\mathbf{A}_{1} \cdot \mathbf{S}_{1}$. To do this, our algorithm computes

$$
\mathbf{Y}=\mathbf{A}^{*} \cdot\left(\mathbf{S}^{*}+\mathbf{R} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})\right)
$$

by subtracting off the error $\mathbf{E}^{*}+\mathbf{E} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})$ from $\mathbf{B}^{*}+\mathbf{C} \cdot \mathbf{G}^{-1}(\mathbf{B})$. Then it computes, via standard linear algebra, a full rank annihilator matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ such that $\mathbf{G}^{-1}(\hat{\mathbf{B}}) \cdot \mathbf{Q}=\mathbf{0}$, obtaining the equation,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

Finally, it solves the linear system of equations defined by

$$
\mathbf{P}\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2}^{\prime} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

where $\mathbf{B}_{2}^{\prime}=\mathbf{B}_{2} \otimes \ldots \otimes \mathbf{B}_{d}$ and where the variables are the entries of \mathbf{V}_{1} and \mathbf{Z} and the coefficients are given by the entries of $\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{Q}, \mathbf{Y}, \mathbf{U}_{i}$, for $i \in[d]$, and \mathbf{B}_{2}^{\prime}. Finally, \mathbf{E}_{1} is now recovered by computing $\mathbf{B}_{1}-\mathbf{U}_{1} \cdot \mathbf{V}_{1}$. We discuss this step in Section 3.3.

The above two steps details the main step of the algorithm. Having recovered $\mathbf{U}_{1}, \mathbf{V}_{1}$, we can now recover \mathbf{E}_{1} from \mathbf{B}_{1}. We now describe how to extend the same recovery algorithm to $\mathbf{E}_{2}, \ldots, \mathbf{E}_{d}$. First consider the case of recovering \mathbf{E}_{2}.

- The algorithm described above allows us to learn recover \mathbf{V}_{1} and \mathbf{E}_{1} where $\mathbf{B}_{1}-\mathbf{U}_{1} \mathbf{V}_{1}=\mathbf{E}_{1}$. The idea is that we can repeat this process to learn $\mathbf{E}_{2}, \ldots, \mathbf{E}_{d}$. Note that in the equation

$$
\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \mathbf{Q}
$$

once \mathbf{V}_{1} is known, we can begin exploiting the structure of a candidate solution to \mathbf{Z}. In particular, there exists a solution for \mathbf{Z} which is of the form:

$$
\overline{\mathbf{Z}}=\left(\begin{array}{c}
\mathbf{E}_{1} \otimes \mathbf{A}_{2, T} \cdot \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{A}_{d, T} \mathbf{S}_{d}
\end{array}\right) \cdot \mathbf{P}^{\prime}
$$

This form allows us to solve for $\mathbf{V}_{2}, \mathbf{Z}_{2}$, once we have $\mathbf{V}_{1}, \mathbf{E}_{1}$, by setting up the system of affine equations given by:

$$
\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{E}_{1} \otimes \mathbf{V}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{Z}_{2}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \mathbf{Q}
$$

for which we know a candidate solution for \mathbf{V}_{2} is $\mathbf{A}_{2, T} \mathbf{S}_{2}$. Here the unknowns are the entries of $\mathbf{V}_{2}, \mathbf{Z}_{2}$ and the coefficients are given by all the other matrices' entries. We solve for \mathbf{V}_{2} as the equation is now linear in \mathbf{V}_{2}. Proving that this solution is unique will use the exact same ideas as above, except on a smaller system of equations which are affine instead of linear. We will continue this way for all remaining indices $i \in[d]$.
More formally, the following algorithm takes as additional input the values $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ computed by the main algorithm above and computes \mathbf{E}_{j} given when given all \mathbf{E}_{i} for $i<j$.

$$
\text { Algorithm for Recovery of } \mathbf{E}_{j}, \text { for } j \in\{2, \ldots, d\}
$$

Input: $\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}\right\}_{i \in[d]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}}),\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}, j,\left\{\mathbf{V}_{i}, \mathbf{E}_{i}\right\}_{i \in[j-1]}\right)$.
Output: $\mathbf{V}_{j}, \mathbf{E}_{j}$.

1. Recover \mathbf{V}_{j} : The unique matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ and the matrices obtained from the previous invocations of the algorithm, $\left\{\mathbf{V}_{i}, \mathbf{E}_{i}\right\}_{i \in[j-1]}$, are given as input. Our algorithm now aims to recover
\mathbf{V}_{j} such that $\mathbf{U}_{j} \cdot \mathbf{V}_{j}=\mathbf{A}_{j} \cdot \mathbf{S}_{j}$. To do this, our algorithm computes

$$
\mathbf{Y}=\mathbf{A}^{*} \cdot\left(\mathbf{S}^{*}+\mathbf{R} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})\right)
$$

by subtracting off the error $\mathbf{E}^{*}+\mathbf{E} \cdot \mathbf{G}^{-1}(\hat{\mathbf{B}})$ from $\mathbf{B}^{*}+\mathbf{C} \cdot \mathbf{G}^{-1}(\mathbf{B})$. Then it computes, via standard linear algebra, a full rank annihilator matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ such that $\mathbf{G}^{-1}(\hat{\mathbf{B}}) \cdot \mathbf{Q}=\mathbf{0}$, obtaining the equation,

$$
\mathbf{P}\left(\mathbf{I}_{m}^{\otimes(j-1)} \otimes \mathbf{U}_{j} \otimes \mathbf{I}_{m}^{\otimes(d-j)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{E}^{(1, \ldots, j-1)} \otimes \mathbf{V}_{j} \otimes \mathbf{B}^{(j+1, \ldots, d)} \tag{11}\\
\mathbf{Z}_{j}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}-\mathbf{N}
$$

where for $k, \ell \in[d], k<\ell, \mathbf{B}^{(k, \ldots, \ell)} \triangleq \mathbf{B}_{k} \otimes \mathbf{B}_{k+1} \otimes \ldots \otimes \mathbf{B}_{\ell}, \mathbf{E}^{(k, \ldots, \ell)} \triangleq \mathbf{E}_{k} \otimes \mathbf{E}_{k+1} \otimes \ldots \otimes \mathbf{E}_{\ell}$ and where the variables are the entries of \mathbf{V}_{j} and \mathbf{Z}_{j} and the coefficients are given by the entries of all other matrices and where the entries of the matrix \mathbf{N}, defined below, are completely known:

$$
\mathbf{N} \triangleq \mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(j-2)} \otimes \mathbf{U}_{j-1} \otimes \mathbf{I}_{m}^{\otimes(d-j+1)}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{E}_{1} \otimes \mathbf{V}_{2} \otimes \mathbf{B}^{(3, \ldots, d)} \\
\vdots \\
\mathbf{E}^{(1, \ldots, j-2)} \otimes \mathbf{V}_{j-1} \otimes \mathbf{B}^{(j, \ldots, d)}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}
$$

Once the algorithm solves for \mathbf{V}_{j}, it can recover \mathbf{E}_{j} by computing $\mathbf{B}_{j}-\mathbf{U}_{j} \cdot \mathbf{V}_{j}$.
Though the following notation is less lucid than what was used in the above algorithm, for completeness we note that Equation 11 can equivalent be written, by block matrix multiplication, as

$$
\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{E}_{1} \otimes \mathbf{V}_{2} \otimes \mathbf{B}^{(3, \ldots, d)} \\
\vdots \\
\mathbf{E}^{(1, \ldots, j)} \otimes \mathbf{V}_{j} \otimes \mathbf{B}^{(j+1, \ldots, d)} \\
\mathbf{Z}_{j}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

Uniqueness for this case is proven analogously to the case of recovering \mathbf{E}_{1}. In particular, the only requirement for proving uniqueness is the same as in the previous case: Namely that $\mathbf{E}^{(1, \ldots, j-1)} \otimes \mathbf{V}_{j} \otimes \mathbf{B}^{(j+1, \ldots, d)}$ has rank $O\left(m^{d-1}\right)$ whenever \mathbf{V}_{j} is non-zero. This is intuitively seen to be true since $\left\{\mathbf{E}_{i}\right\}_{i \in[d]}$ are sampled from an LWE friendly error distribution so are full rank with overwhelming probability and the \mathbf{B}_{j} are LWE matrices and computationally indistinguishable from uniform random matrices. We prove this uniqueness formally for the case of $j=1$ in Section 3.3 and remark here that uniqueness in the other cases follow similarly.

Remark 3.2. Theorem 3.1 shows a full recovery attack for the case that the input is from \mathcal{D}_{0} and can be extended via a heuristic argument to a distinguisher between \mathcal{D}_{0} and \mathcal{D}_{1} which we discuss in Section 3.1.

3.1 Distinguishing \mathcal{D}_{0} from \mathcal{D}_{0}

To come up with a distinguisher which takes an instance from \mathcal{D}_{b} for some $b \in\{0,1\}$, we follow the following approach:

- We use the algorithm described in Theorem 3.1 to learn $\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}$. As a remark, we note that equations solved for in the algorithm can be set up regardless of whether $b=0$ or $b=1$. What we show is that the recovery will succeed with high probability when $b=0$.
- Once we have $\mathbf{E}_{1}, \ldots, \mathbf{E}_{d}$ we can compute $\mathbf{E}^{*}=\mathbf{P} \cdot\left(\mathbf{E}_{1} \otimes \cdots \otimes \mathbf{E}_{d}\right) \cdot \mathbf{P}^{\prime}$. Then, we can use the error leakage from the assumption $\mathbf{E}^{*}+\mathbf{E} \cdot G^{-1}(\hat{\mathbf{B}})$ to learn $\mathbf{E} \cdot G^{-1}(\hat{\mathbf{B}})$. We simply check that this is annihilated by multiplying by \mathbf{Q}. This will succeed in the case that $b=0$.
- In the case when $b=1$, the check will not pass because of the presence of a random error matrix \mathbf{F}, namely the leakage term is given by $\mathbf{E}^{*}+\mathbf{E} \cdot G^{-1}(\hat{\mathbf{B}})-\mathbf{F}$ and even if we solve for \mathbf{E}^{*} and attempt to annihilate the remaining terms, the term $\mathbf{E} \cdot G^{-1}(\hat{\mathbf{B}})-\mathbf{F}$ cannot be annihilated because heuristically a random matrix \mathbf{F} is unlikely to lie in the row span of $G^{-1}(\hat{\mathbf{B}})$ (note that $G^{-1}(\hat{\mathbf{B}})$ is a wide matrix with a large right nullspace).

3.2 Recovery of unique $\tilde{\mathbf{A}}_{i}$'s

Our first objective is to recover the matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$ up to a unique representation $\mathbf{U}_{1}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right], \ldots, \mathbf{U}_{d}=$ $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{d}\end{array}\right]$.

3.2.1 Useful Claims and Conjectures

As one can observe, all we needed in the previous example was linear independence for a fixed number of vectors (the number of vectors is much less than the dimension of the column span). For the proof to work with \mathbf{P}, we will require that \mathbf{P} preserves linear independence of a fixed small set of linearly independent vectors with high probability.

Conjecture 3.3 (Linear independence preservation under \mathbf{P}). Let $m, w, d, k, K, M, q, \chi$ be parameters defined previously. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}$ are arbitrary linearly independent vectors in $\mathbb{Z}_{q}^{\otimes d}$, where $T=m^{d}-(m-w)^{d}+$ $d \cdot m$ then with probability $1-q^{-\Omega\left(w^{2} m\right)}$ over the choice of $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$, we have that $\mathbf{P} \cdot \mathbf{v}_{1}, \ldots, \mathbf{P} \cdot \mathbf{v}_{T}$ are linearly independent.

Remark 3.4 (Limit on Modulus Size). Naively using exponential modulus-to-noise ratios does not break the conjecture because the hardness of LWE puts a limit on this ratio.

As a concrete attempt to break the conjecture, let us focus on the probability of sampling the zero-matrix, $\mathbf{P} \leftarrow \mathbf{0}$, given by $B^{-m^{d} \cdot M}=B^{-m^{2 d-(1 / 2)}}$. The zero-matrix is not injective on any non-trivial subspace so to attempt to break the conjecture, we can set the modulus q such that the probability of sampling the zero-matrix is larger than $q^{-\Omega\left(w^{2} m\right)}$. For this attempt to be succeed, we require the relation $B^{-m^{2 d-(1 / 2)}} \geq q^{-\Omega\left(w^{2} m\right)}$ which implies that setting $q \geq B^{\Omega\left(m^{2 d-3 / 2} / w^{2}\right)} \geq 2^{\Omega\left(m^{2 d-3 / 2} / w^{2}\right)}$ (since $B \geq 2$) is enough to refute the conjecture. Since $d \geq 3$ and $m \geq w^{3}$, this setting of modulus q is much too large for LWE security to hold as security requires $q \leq 2^{O(m)}$. In other words, in this setting, the distribution χ is not an LWE-friendly error distribution and is not an admissible choice of χ allowed in the original assumptions (see Section 2.1 and Remark 2.1).

Remark 3.5. If \mathbf{P} is a uniformly random matrix over $\mathbb{Z}_{q}^{M \times m^{d}}$, a straightforward counting argument suffices to prove the above conjecture. If \mathbf{P} is random, then $\mathbf{P}_{1}, \ldots, \mathbf{P}_{\mathbf{v}}$ are jointly distributed as random vectors over \mathbb{Z}_{q}^{M} provided $T \ll M$. For random vectors, the probability that they are linearly independent is at least $1-O\left(T \cdot \frac{q^{T-1}}{q^{M}}\right)=1-O\left(q^{-M / 2}\right)$ when $T \ll M$.

Now we use conjecture and express it in a notation useful to our proofs.
Corollary 3.6 (Linear independence preservation under \mathbf{P}, Useful Notation). Let $m, w, d, k, K, M, q, \chi$ be parameters defined previously. For $i \in[d]$, let $\left\{\mathbf{e}_{1}^{(i)}, \mathbf{e}_{2}^{(i)}, \ldots, \mathbf{e}_{m}^{(i)}\right\}$ be a basis for \mathbb{Z}_{q}^{m}. Then define

$$
\begin{aligned}
\mathcal{B} \triangleq & \left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}: i_{1}, \ldots, i_{d} \in[m] \wedge \exists j \in[d], i_{j} \leq w,\right\} \\
& \cup \bigcup_{k=1}^{d}\left\{\mathbf{e}_{m}^{(1)} \otimes \cdots \otimes \mathbf{e}_{m}^{(k-1)} \otimes \mathbf{e}_{\ell}^{(k)} \otimes \mathbf{e}_{m}^{(k+1)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}: \ell \in[m]\right\} .
\end{aligned}
$$

Assuming Conjecture 3.3, \mathbf{P} is sampled from $\chi^{M \times m^{d}}$ the vectors in the set, with probability $1-q^{-\Omega\left(w^{2} m\right)}$,

$$
\mathcal{B}^{\mathbf{P}} \triangleq\{\mathbf{P} \cdot \mathbf{v}: \mathbf{v} \in \mathcal{B}\}
$$

are linearly independent.

Proof. Set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}$ to the vectors in \mathcal{B}.
Notation Let \mathbf{I}_{k} denote the $k \times k$ identity matrix for $k \geq 0$. For $\tilde{\mathbf{A}}_{i} \in \mathbb{Z}_{q}^{(m-w) \times w}$ for $i \in[d]$, let $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right] \in \mathbb{Z}_{q}^{m \times w}$ denote a block matrix whose top block is \mathbf{I}_{w} and bottom block is $\tilde{\mathbf{A}}_{i}$. For a fixed set of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ for $\tilde{\mathbf{A}}_{i} \in \mathbb{Z}_{q}^{(m-w) \times w}$, we consider the set of extended bases for $i \in[d]$ given by $\left\{\mathcal{B}_{i}\right\}_{i \in[d]}$ where

$$
\mathcal{B}_{i} \triangleq\left[\begin{array}{cc}
\mathbf{I}_{w} & \mathbf{0}_{w \times(m-w)} \\
\tilde{\mathbf{A}}_{i} & \mathbf{I}_{m-w}
\end{array}\right] \in \mathbb{Z}_{q}^{m \times m}
$$

For any $i \in[d]$, the columns of \mathcal{B}_{i} form a basis for \mathbb{Z}_{q}^{m}. Let $\mathbf{e}_{j}^{(i)}$ denote the j th column in \mathcal{B}_{i} and consider the set

$$
\begin{aligned}
\mathcal{B}=\{ & \left.\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}: i_{1}, \ldots, i_{d} \in[m] \wedge \exists j \in[d], i_{j} \leq w,\right\} \\
& \cup \bigcup_{k=1}^{d}\left\{\mathbf{e}_{m}^{(1)} \otimes \cdots \mathbf{e}_{m}^{(k-1)} \otimes \mathbf{e}_{\ell}^{(k)} \otimes \mathbf{e}_{m}^{(k+1)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}: \ell \in[m]\right\}
\end{aligned}
$$

Define $\mathcal{B}^{\mathbf{P}}=\{\mathbf{P} \cdot \mathbf{v}: \mathbf{v} \in \mathcal{B}\}$.
We now show that under Conjecture 3.3, for a random choice of \mathbf{P} from χ, with overwhelming probability there is no choice of matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ for which \mathbf{P} does not preserve the linear independence of the set \mathcal{B}.
Lemma 3.7. Let $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$ and for $i \in[d]$, let $\tilde{\mathbf{A}}_{i} \in \mathbb{Z}_{q}^{(m-w) \times w}$. Assuming Conjecture 3.3,

$$
\underset{\mathbf{P}}{\operatorname{Pr}}\left[\exists\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]} \text { s.t. } \mathcal{B}^{\mathbf{P}} \text { not linearly independent }\right]=q^{-\Omega\left(w^{2} m\right)}=\operatorname{negl}(w)
$$

Proof. By Corollary 3.6, the probability over choice of \mathbf{P} that \mathbf{P} preserves the linear independence of \mathcal{B} defined with respect to a fixed set of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ is $1-q^{-\Omega\left(w^{2} m\right)}$. Taking a union bound over all possible values of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, for which there are $q^{d w(m-w)}$ many, we have

$$
\underset{\mathbf{P}}{\operatorname{Pr}}\left[\exists\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]} \text { s.t. } \mathcal{B}^{\mathbf{P}} \text { not linearly independent }\right]=q^{-\Omega\left(w^{2} m\right)+d w(m-w)}=q^{-\Omega\left(w^{2} m\right)} .
$$

Lemma 3.8. For $i \in[d]$, let $\mathbf{L}_{i} \triangleq \mathbf{I}_{m}^{\otimes(i-1)} \otimes\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-i)}$ and let $\tilde{\mathbf{A}} \triangleq\left[\mathbf{L}_{1}\left\|\mathbf{L}_{2}\right\| \cdots \| \mathbf{L}_{d}\right]$. Under Conjecture 3.3, with overwhelming probability over the choice of $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$, we have that the following holds for any set of matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$.

$$
\begin{gathered}
\forall i \in[d], \operatorname{dim}\left(\mathbf{P} \cdot \mathbf{L}_{i}\right)=w m^{d-1} \\
\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{1}\left\|\mathbf{P} \cdot \mathbf{L}_{2}\right\| \ldots \| \mathbf{P} \cdot \mathbf{L}_{d}\right]\right)\right)=m^{d}-(m-w)^{d}=d w m^{d-1}-O\left(w^{2} m^{d-2}\right) \\
\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{P} \cdot \mathbf{L}_{1}\right) \cap \operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{2}\|\ldots\| \mathbf{P} \cdot \mathbf{L}_{d}\right]\right)\right)=w m^{d-1}-w(m-w)^{d-1}
\end{gathered}
$$

Proof. By Corollary 3.6 and Lemma 3.7, the following vectors are linearly independent

$$
\begin{aligned}
\mathcal{B}^{\mathbf{P}}=\{ & \left.\mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right): i_{1}, \ldots, i_{d} \in[m] \wedge \exists j \in[d], i_{j} \leq w\right\} \\
& \cup \bigcup_{k=1}^{d}\left\{\mathbf{P} \cdot\left(\mathbf{e}_{m}^{(1)} \otimes \cdots \mathbf{e}_{m}^{(k-1)} \otimes \mathbf{e}_{\ell}^{(k)} \otimes \mathbf{e}_{m}^{(k+1)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right): \ell \in[m]\right\} .
\end{aligned}
$$

Because of this, the first claim trivially holds.
For the second claim, observe that the following set of $m^{d}-(m-w)^{d}$ vectors

$$
\left\{\mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right): i_{1}, \ldots, i_{d} \in[m] \wedge \exists j \in[d], i_{j} \leq w\right\}
$$

$\operatorname{spans} \operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}})$, therefore it is also a basis so $\operatorname{dim}(\operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}}))=m^{d}-(m-w)^{d}$.
For the third claim, we first claim that $\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{P L}_{2}\|\cdots\| \mathbf{P L}_{d}\right)\right)=\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{L}_{2}\|\cdots\| \mathbf{L}_{d}\right)\right)=$ $m^{d}-m(m-w)^{d-1}$. The first equality is due to Lemma 3.7.

For the second equality follows from the proof of the following Lemma.

Lemma 3.9. The set

$$
\begin{array}{r}
\mathcal{B} \triangleq\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{\forall j \in[d], i_{j} \in[m] \wedge \exists j^{*} \in[d]} \text { s.t. } i_{j^{*}} \in[w] \\
\text { forms a basis for the vector space Colspan }\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)
\end{array}
$$

The proof can be found in Appendix B under Lemma B.4.

Now we have that

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{P} \cdot \mathbf{L}_{1}\right) \cap \operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{2}\|\ldots\| \mathbf{P} \cdot \mathbf{L}_{d}\right]\right)\right) \\
& \quad=\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{1}\right]\right)\right)+\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{2}\|\cdots\| \mathbf{P} \cdot \mathbf{L}_{d}\right]\right)\right) \\
& \quad \quad-\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{P} \cdot \mathbf{L}_{1}\left\|\mathbf{P} \cdot \mathbf{L}_{2}\right\| \ldots \| \mathbf{P} \cdot \mathbf{L}_{d}\right]\right)\right) \\
& =w m^{d-1}-w(m-w)^{d-1}
\end{aligned}
$$

Remark 3.10 (Solution spans entire column space). As thoroughly explained in overview of our attack, in general, solving for matrices $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ only guarantees that the solution satisfies Colspan $(\mathbf{P} \tilde{\mathbf{A}}) \subseteq$ Colspan ($\left.\mathbf{A}^{*}\right)$. However, observe that

$$
\tilde{\mathbf{A}} \triangleq\left[\left[\begin{array}{l}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{1}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes\left[\begin{array}{l}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{2}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes\left[\begin{array}{l}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{d}
\end{array}\right]\right]
$$

will always be of maximal rank due to the structure of the matrices which have a top $w \times w$ identity matrix. This is shown formally in Corollary B.5, which is restated as follows.

Corollary 3.11. For any choice of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, $\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)\right)=$ $m^{d}-(m-w)^{d}$.

The proof can be found in Appendix B under Corollary B. 5

Then, Lemma 3.7 also guarantees that with overwhelming probability over the choice of \mathbf{P}, there are no values of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ that result in $\operatorname{dim}(\operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}}))<\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{A}^{*}\right)\right)$. Therefore with overwhelming probability over the choice of \mathbf{P} any solution found to $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ gives equality: Colspan $(\mathbf{P} \tilde{\mathbf{A}})=$ Colspan (A*). See also Corollary B.8.

Moreover, the solution space is non-empty, as explained thoroughly in the attack overview in Section 2.4, since $\tilde{\mathbf{A}}_{i}$ set as the bottom $(m-w) \times w$ block of the the Hermite normal form (HNF) of the matrices \mathbf{A}_{i} for $i \in[d]$ is a solution.

3.2.2 Main Theorem for the Recovery of $\tilde{\mathbf{A}}_{i}$'s

The following theorem immediately gives rise to our recovery algorithm.

Theorem 3.12 (Unique solutions for $\left.\tilde{\mathbf{A}}_{i}\right)$. Let M, m, w, k, d, q, χ be parameters as defined previously. Sample $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$. Then with probability $1-\operatorname{negl}(m)$, over the choice of \mathbf{P} we have that for any choice of $\tilde{\mathbf{A}}_{i} \in \mathbb{Z}_{q}^{(m-w) \times w}$ for $i \in[d]$ and $\tilde{\mathbf{A}}_{i}^{\prime}$, we have the following where we define

$$
\begin{aligned}
& \tilde{\mathbf{A}} \triangleq\left[\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{1}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{2}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{d}
\end{array}\right]\right] \\
& \tilde{\mathbf{A}}^{\prime} \triangleq\left[\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{1}^{\prime}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{2}^{\prime}
\end{array}\right] \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes\left[\begin{array}{c}
\mathbf{I}_{w} \\
\tilde{\mathbf{A}}_{d}^{\prime}
\end{array}\right]\right] .
\end{aligned}
$$

1. If,

$$
\operatorname{Colspan}\left(\mathbf{P} \tilde{\mathbf{A}}^{\prime}\right) \subseteq \operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}})
$$

then

$$
\operatorname{Colspan}\left(\mathbf{P} \tilde{\mathbf{A}}^{\prime}\right)=\operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}})
$$

2. Furthermore, if

$$
\operatorname{Colspan}\left(\mathbf{P} \tilde{\mathbf{A}}^{\prime}\right)=\operatorname{Colspan}(\mathbf{P} \tilde{\mathbf{A}})
$$

for all $i \in[d]$, then $\tilde{\mathbf{A}}_{i}=\tilde{\mathbf{A}}_{i}^{\prime}$.
Proof. The proof of the first claim is addressed by Remark 3.10.
We now address the second claim. The proof proceeds column-by-column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}^{\prime}\end{array}\right]$ for $i \in[d]$ and shows that each column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ is equal to its corresponding column in $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$. We'll show that the first column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}^{\prime}\end{array}\right]$, say $\mathbf{d}_{1}^{(1)}$, is equal to the first column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]$.

First, for every $i \in[d]$ extend the columns of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ to a basis for \mathbb{Z}_{q}^{m} given by the columns of the matrix \mathcal{B}_{i} below:

$$
\mathcal{B}_{i} \triangleq\left[\begin{array}{cc}
\mathbf{I}_{w} & \mathbf{0}_{w \times(m-w)} \\
\tilde{\mathbf{A}}_{i} & \mathbf{I}_{m-w}
\end{array}\right] \in \mathbb{Z}_{q}^{m \times m}
$$

Let $\mathbf{e}_{j}^{(i)}$ denote the j th column in \mathcal{B}_{i} and observe that for all the j th columns of \mathcal{B}_{i} for $j \in[w+1, m]$ are all elementary vectors. That is, for $i \in[d]$ and for $j \in\{w+1, \ldots, d\}, \mathbf{e}_{j}^{(i)}=\mathbf{e}_{j}$ where \mathbf{e}_{j} is the j th elementary vector. Now we aim to show that $\mathbf{d}_{1}^{(1)}=\mathbf{e}_{1}^{(1)}$.

Take a carefully chosen column of $\mathbf{P} \tilde{\mathbf{A}}^{\prime}$, namely $\mathbf{P} \cdot\left(\mathbf{d}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right) \in \operatorname{Colspan}\left(\mathbf{P} \tilde{\mathbf{A}}^{\prime}\right)=$ Colspan ($\mathbf{P} \tilde{\mathbf{A}}$).

Therefore, we can write an equation:

$$
\begin{equation*}
\mathbf{P} \cdot\left(\mathbf{d}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{d} \in[m] \exists j \in[d] \text { s.t. } i_{j} \in[w]} \lambda_{i_{1}, \ldots, i_{d}} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right) \tag{*}
\end{equation*}
$$

Now observe that, $\mathbf{d}_{1}^{(1)}$ has a special form. Namely, the first column $\mathbf{d}_{1}^{(1)}$ must be of the form $\mathbf{d}_{1}^{(1)}=$ $\mathbf{e}_{1}^{(1)}+\sum_{w<j \leq m} \alpha_{j}^{(1)} \mathbf{e}_{j}^{(1)}$ for some coefficients $\alpha_{j}^{(1)} \in \mathbb{Z}_{q}, j \in\{w+1, \ldots, m\}$. If we show that $\alpha_{j}^{(1)}=0$ for all $j \in\{w+1, \ldots, m\}$, then $\mathbf{d}_{1}^{(1)}=\mathbf{e}_{1}^{(1)}$ and $\mathbf{e}_{1}^{(1)}$ is the first column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]$.

Substituting for $\mathbf{d}_{1}^{(1)}$, we have

$$
\begin{align*}
\mathbf{P} \cdot\left(\mathbf{d}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right) & =\mathbf{P} \cdot\left(\left(\mathbf{e}_{1}^{(1)}+\sum_{j>w} \alpha_{j}^{(1)} \mathbf{e}_{j}^{(1)}\right) \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \mathbf{e}_{m}^{(d)}\right) \\
& =\mathbf{P} \cdot\left(\mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \mathbf{e}_{m}^{(d)}\right)+\sum_{j>w} \alpha_{j}^{(1)} \mathbf{P} \cdot\left(\mathbf{e}_{j}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \mathbf{e}_{m}^{(d)}\right) \tag{**}
\end{align*}
$$

Taking the difference of equation $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, we see that we have

$$
\begin{aligned}
& 0=\left(\lambda_{1, m, m, \ldots, m}-1\right) \cdot \mathbf{P} \cdot\left(\mathbf{e}_{1}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \mathbf{e}_{m}^{(d)}\right)+\sum_{i_{1} \in\{w+1, \ldots, m\}} \alpha_{j}^{(1)} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{m}^{(2)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right) \\
& \\
& +\sum_{i_{1}, i_{2}, \ldots, i_{d} \in[m] \exists j \in[d] \text { s.t. } i_{j} \in[w]} \lambda_{i_{1}, \ldots, i_{d}} \cdot \mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right)
\end{aligned}
$$

Now observe that every vector in this linear combination is linearly independent by Lemma 3.7 which states that

$$
\begin{aligned}
\mathcal{B}^{\mathbf{P}}= & \left\{\mathbf{P} \cdot\left(\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right): i_{1}, \ldots, i_{d} \in[m] \wedge \exists j \in[d], i_{j} \leq w,\right\} \\
& \cup \bigcup_{k=1}^{d}\left\{\mathbf{P} \cdot\left(\mathbf{e}_{m}^{(1)} \otimes \cdots \mathbf{e}_{m}^{(k-1)} \otimes \mathbf{e}_{\ell}^{(k)} \otimes \mathbf{e}_{m}^{(k+1)} \otimes \cdots \otimes \mathbf{e}_{m}^{(d)}\right): \ell \in\{w+1, \ldots, m\}\right\}
\end{aligned}
$$

is a linearly independent set of vectors. Therefore, $\lambda_{1, m, m, \ldots, m}=1$ and $\alpha_{j}^{(1)}=0$ for all $j \in\{w+1, \ldots, d\}$. Therefore, $\mathbf{d}_{1}^{(1)}=\mathbf{e}_{1}^{(1)}$. To show that the ℓ th column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}^{\prime}\end{array}\right]$, denoted $\mathbf{d}_{\ell}^{(i)}$, is the the ℓ th column of $\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$, denoted $\mathbf{e}_{\ell}^{(i)}$, apply the same argument on the vector $\mathbf{P} \cdot\left(\mathbf{e}_{m}^{\otimes(i-1)} \otimes \mathbf{d}_{\ell}^{(i)} \otimes \mathbf{e}_{m}^{\otimes(d-i)}\right)$.

3.3 Recovery of a unique V_{1}

Having recovered matrices $\mathbf{U}_{1}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]=\mathbf{A}_{1} \mathbf{A}_{1, T}^{-1}, \ldots, \mathbf{U}_{d}=\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{d}\end{array}\right]=\mathbf{A}_{d} \mathbf{A}_{d, T}^{-1}$, we now aim to recover a secret matrix up to uniqueness $\mathbf{V}_{1}=\mathbf{A}_{1, T} \cdot \mathbf{S}_{1}$ such that $\mathbf{B}_{1}=\mathbf{U}_{1} \cdot \mathbf{V}_{1}+\mathbf{E}_{1}$ where \mathbf{E}_{1} is a low-norm error matrix. We argue correctness for this procedure for $b=0$. We reason about the case $b=1$ in Section 3.1.

Observe that when $b=0$, the algorithm can compute the matrix $\mathbf{Y}=\mathbf{A}^{*}\left(\mathbf{S}^{*}+\mathbf{R} G^{-1}(\hat{\mathbf{B}})\right)$ from its inputs and then it can annihilate the term $\mathbf{R} G^{-1}(\hat{\mathbf{B}})$ by computing a full rank matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ from the right nullspace of $G^{-1}(\hat{\mathbf{B}})$. Now we have,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q}
$$

By definition of the scheme,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*}=\overline{\mathbf{A}}^{*} \cdot \overline{\mathbf{S}}^{*}
$$

where,

$$
\begin{aligned}
& \overline{\mathbf{A}}^{*}=\mathbf{P}\left(\mathbf{A}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{A}_{d}\right), \\
& \overline{\mathbf{S}}^{*}=\left(\begin{array}{c}
\mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{S}_{d}
\end{array}\right) \cdot \mathbf{P}^{\prime}
\end{aligned}
$$

Thus, due to the properties of tensor products:

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*}=\mathbf{L}_{1} \cdot \mathbf{L}_{2}
$$

where,

$$
\begin{aligned}
& \mathbf{L}_{1}=\mathbf{P}\left(\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}\right), \\
& \mathbf{L}_{2}=\left(\begin{array}{c}
\mathbf{A}_{1, T} \cdot \mathbf{S}_{1} \otimes \mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\mathbf{E}_{1} \otimes \mathbf{A}_{2, T} \mathbf{S}_{2} \otimes \mathbf{B}_{3} \otimes \ldots \mathbf{B}_{d-1} \otimes \mathbf{B}_{d} \\
\vdots \\
\mathbf{E}_{1} \otimes \mathbf{E}_{2} \otimes \mathbf{E}_{3} \otimes \ldots \mathbf{E}_{d-1} \otimes \mathbf{A}_{d, T} \mathbf{S}_{d}
\end{array}\right) \cdot \mathbf{P}^{\prime}
\end{aligned}
$$

Therefore, there is a solution to the equation

$$
\underbrace{\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right)}_{\text {defined to be } \mathbf{M}} \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2} \otimes \cdots \otimes \mathbf{B}_{d} \tag{12}\\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \mathbf{Q}
$$

Where everything is known except the variables \mathbf{V}_{1} and \mathbf{Z} and \mathbf{M} is a known quantity obtained from the previous step of recovering $\tilde{\mathbf{A}}_{i}$'s. Essentially, what we show is that when seen as equation over just \mathbf{V}_{1}, the equations are actually uniquely solvable. There may be many solutions to \mathbf{Z} but this is irrelevant to solving for \mathbf{V}_{1}.

For $b=1$, observe that we will be solving

$$
\underbrace{\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right)}_{\text {defined to be } \mathbf{M}} \cdot\left[\begin{array}{c}
\mathbf{V}_{1} \otimes \mathbf{B}_{2} \otimes \cdots \otimes \mathbf{B}_{d} \tag{13}\\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \mathbf{Q}
$$

where $\mathbf{Y Q}=\left(\mathbf{L}_{1} \mathbf{L}_{2}-\mathbf{S}_{0}^{\prime}\right) \mathbf{Q}$ where $\mathbf{S}_{0}^{\prime}=\mathbf{K} \mathbf{S}_{0}$ for a Kilian matrix \mathbf{K}. If \mathbf{S}_{0}^{\prime} was completely random and independent of everything else, then, we won't be able to recover $\mathbf{A}_{1, T} \mathbf{S}_{1}$ because \mathbf{S}_{0}^{\prime} will completely hide any information about $\mathbf{A}_{1, T} \mathbf{S}_{1}$. However, \mathbf{S}_{0}^{\prime} is correlated with \mathbf{Q} and therefore we give a heuristic reason why the recovery will fail when $b=1$, thereby giving a distinguisher.

The above approach explains how to setup a system of equations in the unknowns \mathbf{V}_{1} and \mathbf{Z} and it remains to explain why solving this system will give you a unique solution for \mathbf{V}_{1}.

To show uniqueness, we consider the following homogeneous equation and show that the only solution is $\mathbf{V}_{1}^{\prime}=\mathbf{0}$ (we treat $\mathbf{V}_{1}^{\prime}, \mathbf{Z}^{\prime}$ as the variables for the homogeneous equation).

$$
\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=0
$$

where $\mathbf{B}^{(2, \ldots, d)}=\mathbf{B}_{2} \otimes \cdots \otimes \mathbf{B}_{d}$. We proceed in three steps. In any proofs corresponding to these three steps, we'll assume that the equations were setup with $\mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$ are sampled uniform randomly as opposed to LWE matrices. If multiple solutions for this homogeneous equation exist when they are LWE matrices, then we have a distinguisher between LWE matrices and random matrices because the homogeneous equation does not require any secret information.

- Step 1: First, we expand the above equation.

$$
\begin{gathered}
\mathbf{M}_{1} \cdot \mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}+\mathbf{M}_{2} \cdot \mathbf{Z}^{\prime} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0} \\
\text { where } \mathbf{M}_{1}=\mathbf{P} \cdot\left(\mathbf{U}_{1} \otimes \mathbf{I}^{\otimes(d-1)}\right) \text { and } \mathbf{M}_{2}=\mathbf{P} \cdot\left(\mathbf{I} \otimes \mathbf{U}_{2} \otimes \mathbf{I}^{\otimes(d-2)}\|\cdots\| \otimes \mathbf{I}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right)
\end{gathered}
$$

- Step 2: In the second step, find $\boldsymbol{\Gamma}_{2}$ as linearly independent columns of \mathbf{M}_{2} that span its column space. Then find additional linearly independent vectors from from columns of \mathbf{M}_{1} so that $\left[\boldsymbol{\Gamma}_{1} \| \boldsymbol{\Gamma}_{2}\right]$ have full column rank and generate the column space of $\left[\mathbf{M}_{1} \| \mathbf{M}_{2}\right]$. Observe that, by Lemma $3.8, \boldsymbol{\Gamma}_{1}$ will have at least $w(m-w)^{d-1}$ columns. Moreover, by the properties of column spans (see Lemma 2.3), we can write $\mathbf{M}_{1}=\boldsymbol{\Gamma}_{1} \mathbf{X}_{1}+\boldsymbol{\Gamma}_{2} \mathbf{X}_{2}$ and $\mathbf{M}_{2}=\boldsymbol{\Gamma}_{2} \mathbf{X}_{3}$ for some $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$. In particular, the matrix \mathbf{X}_{1} will be a permutation matrix that simply selects, or places, the columns of $\boldsymbol{\Gamma}_{1}$ into the their corresponding column in \mathbf{M}_{1}. Our equation becomes:

$$
\boldsymbol{\Gamma}_{1}\left(\mathbf{X}_{1} \cdot\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}\right)+\boldsymbol{\Gamma}_{2}\left(\mathbf{X}_{2} \cdot\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right)+\mathbf{X}_{3} \cdot \mathbf{Z}^{\prime}\right) \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{0}
$$

Now we use the linear independence of $\boldsymbol{\Gamma}_{1}$ and $\boldsymbol{\Gamma}_{2}$ to see that each of the terms must be equal to $\mathbf{0}$. Therefore,

$$
\mathbf{X}_{1} \cdot\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}
$$

The first and second steps hold with high probability over the choice of $\mathbf{P}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$. Notably, they do not depend on \mathbf{P}^{\prime} nor \mathbf{Q}.

- Step 3: Our main theorem is that, with high probability over a random choice of $\mathbf{P}^{\prime}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$, \mathbf{V}_{1}^{\prime} must be $\mathbf{0}$. If $\mathbf{V}_{1}^{\prime} \neq \mathbf{0}$ and satisfies the equation, then this implies \mathbf{X}_{1} has a nullspace of dimension at least $O\left(m^{d-1}\right)$. Namely, all columns of $\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ are in the nullspace, and this matrix has column rank $O\left(m^{d-1}\right)$ when $\mathbf{V}_{1}^{\prime} \neq \mathbf{0}$. On the other hand, we know that $\mathbf{X}_{1} \in \mathbb{Z}_{q}^{w(m-w)^{d-1} \times w m^{d-1}}$ from step 2 is of rank $w(m-w)^{d-1}$. This rank is due to the fact that if a given column γ_{i} of $\boldsymbol{\Gamma}_{1}$ appears as i th column of \mathbf{M}_{1} then it also appears as the $i^{t h}$ column in $\boldsymbol{\Gamma}_{1} \mathbf{X}_{1}$, therefore \mathbf{X}_{1} is a permutation matrix of rank $w(m-w)^{d-1}$ because $\boldsymbol{\Gamma}_{1}$ is of rank $w(m-w)^{d-1}$, ensuring that the rank of \mathbf{X}_{1} is at least this much. We know the rank of $\boldsymbol{\Gamma}_{1}$ because Lemma 3.8 tells us there are $w(m-w)^{d-1}$ many such columns not in the column span of \mathbf{M}_{2} with overwhelming probability over the choice of $\mathbf{P}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$.
Therefore, the right nullity of \mathbf{X}_{1} is at most $w m^{d-1}-w(m-w)^{d-1}=O\left(w^{2} m^{d-2}\right)$ by rank-nullity. Therefore, the only way that the rank of $\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ can be consistent with the nullity of \mathbf{X}_{1} is if $m \leq O\left(w^{2}\right)$. This parameter setting is in contrast to that in the paper which asks that $m \geq w^{3}$. This is what our main theorem attempts to prove.

3.3.1 Useful Claims and Conjectures

We begin by proving multiple lemmas about rank of certain distributions of matrices in order to obtain a lower bound on the column rank of $\mathbf{V}_{1} \otimes \mathbf{B}^{(2, \ldots, d)} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$.
Lemma 3.13. For $n, k \in \mathbb{N}$ such that $n \leq k$, a uniform random matrix $\mathbf{R} \in \mathbb{Z}_{q}^{n \times k}$ has rank at least r with probability:

$$
\underset{\mathbf{R}}{\operatorname{Pr}}[\operatorname{rk}(\mathbf{R}) \leq r] \leq \frac{q^{(n+k) r}}{q^{n k}}
$$

Proof. Note that if a matrix \mathbf{M} has rank r it can be factored also as $\mathbf{M}=\mathbf{M}_{1}^{\prime} \cdot \mathbf{M}_{2}^{\prime}$ where $\mathbf{M}_{1}^{\prime} \in \mathbb{Z}_{q}^{n \times \ell}, \mathbf{M}_{2}^{\prime} \in$ $\mathbb{Z}_{q}^{\ell \times k}$ for any $\ell \geq r$. Therefore, the number of matrices of rank at most r is loosely bounded by $q^{(n+k) r}$. Then,

$$
\underset{\mathbf{R}}{\operatorname{Pr}}[\operatorname{rk}(\mathbf{R}) \leq r] \leq \frac{q^{(n+k) r}}{q^{n k}}
$$

Lemma 3.14. For any $n, k \in \mathbb{N}$ such that $n \geq k$, if $\mathbf{M} \in \mathbb{Z}_{q}^{n \times n}$ is a full rank square matrix and $\mathbf{F} \in \mathbb{Z}_{q}^{k \times n}$ is a (wide) matrix sampled uniform randomly, then $\mathbf{F} \cdot \mathbf{M}$ is uniform randomly distributed.

Proof. Let $\mathbf{M} \in \mathbb{Z}_{q}^{n \times n}$ be any full rank square matrix. Observe that for any fixed matrix $\mathbf{Y} \in \mathbb{Z}_{q}^{k \times n}$, the probability over the choice of \mathbf{F} that $\mathbf{F} \cdot \mathbf{M}=\mathbf{Y}$ is uniform since \mathbf{M} is invertible:

$$
\underset{\mathbf{F}}{\operatorname{Pr}}[\mathbf{F} \cdot \mathbf{M}=\mathbf{Y}]=\underset{\mathbf{F}}{\operatorname{Pr}}\left[\mathbf{F}=\mathbf{Y} \cdot \mathbf{M}^{-1}\right]=q^{-k n} .
$$

Corollary 3.15. For any $n, k, \ell \in \mathbb{N}$ such that $n \geq k$, $n \geq \ell$, if $\mathbf{N} \in \mathbb{Z}_{q}^{n \times \ell}$ is a full column rank matrix and $\mathbf{F} \in \mathbb{Z}_{q}^{k \times n}$ is a (wide) matrix sampled uniform randomly, then $\mathbf{F} \cdot \mathbf{N}$ is uniform randomly distributed.
Proof. Let $\mathbf{N} \in \mathbb{Z}_{q}^{n \times \ell}$ be any full rank column matrix. If $\ell=n$, then Lemma 3.14 already gives our desired statement. If $\ell<n$, then fix $\mathbf{N}^{\prime} \in \mathbb{Z}_{q}^{n \times(n-\ell)}$ to be any matrix such that $\left[\mathbf{N} \| \mathbf{N}^{\prime}\right]$ is a full rank square matrix (in other words, extend the columns of \mathbf{N} to a basis for \mathbb{Z}_{q}^{n}). Then for any matrix $\mathbf{Y} \in \mathbb{Z}_{q}^{k \times \ell}$

$$
\begin{align*}
\underset{\mathbf{F}}{\operatorname{Pr}}[\mathbf{F} \cdot \mathbf{N}=\mathbf{Y}] & =\sum_{\mathbf{Y}^{\prime} \in \mathbb{Z}_{q}^{k \times(n-\ell)}} \operatorname{Pr}_{\mathbf{F}}\left[\mathbf{F} \cdot\left[\mathbf{N} \| \mathbf{N}^{\prime}\right]=\left[\mathbf{Y} \| \mathbf{Y}^{\prime}\right]\right] \\
& =\sum_{\mathbf{Y}^{\prime} \in \mathbb{Z}_{q}^{k \times(n-\ell)}} q^{-k n} \tag{byLemma3.14}\\
& =q^{-k \ell}
\end{align*}
$$

Lemma 3.16. Consider a fixed matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times D}$ be of rank $D=K-M \log q$ and a uniform random matrix $\mathbf{F} \in \mathbb{Z}_{q}^{m^{d-1} \times K}$ where $M=m^{d-1 / 2}$, and $K=m^{d+1 / 2}$. For all constants $c<1$,

$$
\underset{\mathbf{F}}{\operatorname{Pr}}\left[\operatorname{rk}(\mathbf{F} \cdot \mathbf{Q}) \leq c \cdot m^{d-1}\right]<q^{-\Omega\left(K \cdot m^{d-1}\right)}
$$

Proof. By Corollary 3.15, $\mathbf{F} \cdot \mathbf{Q} \in \mathbb{Z}_{q}^{m^{d-1} \times D}$ is a uniform randomly distributed matrix. By Lemma 3.13,

$$
\operatorname{Pr}_{\mathbf{F}}\left[\operatorname{rk}(\mathbf{F} \cdot \mathbf{Q}) \leq c \cdot m^{d-1}\right] \leq \frac{q^{\left(m^{d-1}+D\right)\left(c \cdot m^{d-1}\right)}}{q^{m^{d-1} \cdot D}}=q^{m^{d-1}\left(c \cdot m^{d-1}-(1-c) D\right)}=q^{-\Omega\left(K \cdot m^{d-1}\right)}
$$

Lemma 3.17. ${ }^{1}$ Consider a fixed matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times D}$ of full rank D where $D=K-M \log q, M=m^{d-1 / 2}$, and $K=m^{d+1 / 2}$. Then let $\mathbf{F}_{i} \in \mathbb{Z}_{q}^{m^{d-1} \times K}$ for $i \in[k]$ denote uniform random matrices. Let $\mathbf{s} \in \mathbb{Z}_{q}^{k}$ where $m^{3} \leq k \leq m^{2 d-7 / 6}$. Then for all constants $c<1$ such that

$$
\underset{\mathbf{F}_{i}}{\operatorname{Pr}}\left[\exists \mathbf{s} \neq \mathbf{0} \text { such that } \mathrm{rk}\left(\left(\sum_{i=1}^{k} s_{i} \cdot \mathbf{F}_{i}\right) \cdot \mathbf{Q}\right) \leq c \cdot m^{d-1}\right]<q^{-\Omega\left(K \cdot m^{d-1}\right)}
$$

Proof. For a fixed non-zero $\mathbf{s} \in \mathbb{Z}_{q}^{k}$,

$$
\begin{aligned}
\operatorname{Pr}_{\left\{\mathbf{F}_{i}\right\}_{i=1}^{k}}\left[\operatorname{rk}\left(\left(\sum_{i=1}^{k} s_{i} \cdot \mathbf{F}_{i}\right) \cdot \mathbf{Q}\right) \leq c m^{d-1}\right] & =\underset{\mathbf{F}}{\operatorname{Pr}}\left[\operatorname{rk}(\mathbf{F} \cdot \mathbf{Q}) \leq c m^{d-1}\right] \\
& \leq q^{-\Omega\left(K \cdot m^{d-1}\right)}
\end{aligned}
$$

where the inequality above is given by Lemma 3.16. Then there are q^{k} possible \mathbf{s} so by the union bound,

$$
\operatorname{Pr}_{\left\{\mathbf{F}_{i}\right\}_{i=1}^{k}}\left[\exists \mathbf{s} \neq \mathbf{0} \text { such that } \operatorname{rk}\left(\left(\sum_{i=1}^{k} s_{i} \cdot \mathbf{F}_{i}\right) \cdot \mathbf{Q}\right) \leq c \cdot m^{d-1}\right]<q^{k} \cdot q^{-\Omega\left(K \cdot m^{d-1}\right)}=q^{-\Omega\left(K \cdot m^{d-1}\right)}
$$

Remark 3.18. We require that a uniform matrix $\mathbf{F} \in \mathbb{Z}_{q}^{m \times k}$ extracts m random field elements from χ^{k}. A uniform matrix \mathbf{F} is a 2-universal hash function because for a fixed non-zero vector \mathbf{x} the probability over a random choice of \mathbf{F} that $\mathbf{F} \cdot \mathbf{x}=0$ is exactly q^{-m}. To apply the Leftover Hash Lemma and obtain the extraction property, we require that $k \cdot \mathbb{H}_{\infty}(\chi) \geq m \log q+2 \log \left(\epsilon^{-1}\right)$ where $\mathbb{H}_{\infty}(\cdot)$ denotes min-entropy. For a discrete Gaussian, $\mathbb{H}_{\infty}(\chi)$ is some constant c. Therefore, we require that $c \cdot k \geq m \log q+2 \log \left(\epsilon^{-1}\right)$. Per Remark 2.1, for the security of LWE to hold we require that $q \leq 2^{O(m)}$, so $\log q=\bar{O}(m)$. Then since $k \geq m^{3}$, there exists some ϵ that is negligible in k such that this condition is satisfied.
Lemma 3.19. Assume parameters for $m, k, \epsilon, q, \mathbb{H}_{\infty}(\chi)$ are as stated in Remark 3.18. Let $\mathbf{F}_{i} \in \mathbb{Z}_{q}^{m \times k}$ for $i \in\{1, \ldots, d\}$ be sampled uniformly at random. Define $\mathbf{F}^{(1, \ldots, d)} \triangleq \mathbf{F}_{1} \otimes \ldots \otimes \mathbf{F}_{d}$. Let $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d} \times 1}$. Then $\mathbf{F}^{(1, \ldots, d)} \cdot \mathbf{P}^{\prime}$ is $\left(k^{O\left(d^{2}\right)} \cdot \epsilon\right)$-statistically close to uniform.

Proof. The induction is on the index d. In the base case, $d=1$, we have that $\mathbf{F}_{1} \cdot \mathbf{P}^{\prime}$ for $\mathbf{P}^{\prime} \leftarrow \chi^{k \times 1}$ is ϵ-close to uniform from Remark 3.18. Assume the statement holds for $d-1$, we show the statement holds for d. Let $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d} \times 1}$. Split \mathbf{P}^{\prime} into k blocks of dimension $k^{d-1} \times 1$:

$$
\mathbf{P}^{\prime}=\left[\begin{array}{c}
\mathbf{P}_{1}^{\prime} \\
\vdots \\
\mathbf{P}_{k}^{\prime}
\end{array}\right] .
$$

[^1]Observe that

$$
\begin{aligned}
\mathbf{F}^{(1, \ldots, d)} \cdot \mathbf{P}^{\prime} & =\left[\begin{array}{ccc}
\mathbf{F}_{1}[1,1] \cdot \mathbf{F}^{(2, \ldots, d)} & \ldots & \mathbf{F}_{1}[1, k] \cdot \mathbf{F}^{(2, \ldots, d)} \\
\vdots & \ddots & \vdots \\
\mathbf{F}_{1}[m, 1] \cdot \mathbf{F}^{(2, \ldots, d)} & \ldots & \mathbf{F}_{1}[m, k] \cdot \mathbf{F}^{(2, \ldots, d)}
\end{array}\right] \cdot \mathbf{P}^{\prime} \\
& =\left[\begin{array}{c}
\sum_{j \in[k]} \mathbf{F}_{1}[1, j] \cdot \mathbf{F}^{(2, \ldots, d)} \cdot \mathbf{P}_{j}^{\prime} \\
\vdots \\
\sum_{j \in[k]} \mathbf{F}_{1}[m, j] \cdot \mathbf{F}^{(2, \ldots, d)} \cdot \mathbf{P}_{j}^{\prime}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{F}_{\ell}[i, j]$ denotes the (i, j) th entry of \mathbf{F}_{ℓ}. Now apply the induction hypothesis on so that for $i \in[k]$, $\left\{\mathbf{F}^{(2, \ldots, d)} \cdot \mathbf{P}_{i}^{\prime}\right\}_{i \in[k]}$ is $k \cdot \epsilon_{d-1}$ statistically close to k random vectors $\left\{\mathbf{v}_{i}\right\}_{i \in[k]}$ where $\mathbf{v}_{i} \in \mathbb{Z}_{q}^{k^{d-1} \times 1}$. Therefore

$$
\left[\begin{array}{c}
\sum_{j \in[k]} \mathbf{F}_{1}[1, j] \cdot \mathbf{F}^{(2, \ldots, d)} \cdot \mathbf{P}_{j}^{\prime} \\
\vdots \\
\sum_{j \in[k]} \mathbf{F}_{1}[m, j] \cdot \mathbf{F}^{(2, \ldots, d)} \cdot \mathbf{P}_{j}^{\prime}
\end{array}\right] \approx_{k \cdot \epsilon_{d-1}}\left[\begin{array}{c}
\sum_{j \in[k]} \mathbf{F}_{1}[1, j] \cdot \mathbf{v}_{j} \\
\vdots \\
\sum_{j \in[k]} \mathbf{F}_{1}[m, j] \cdot \mathbf{v}_{j}
\end{array}\right]
$$

Now observe that the entries of the above matrix are equivalently a rearrangement of the following quantities:

$$
\mathbf{F}_{1} \cdot\left[\begin{array}{llll}
\mathbf{v}[1] & \mathbf{v}[2] & \cdots & \mathbf{v}\left[k^{d-1}\right]
\end{array}\right]
$$

where for $i \in\left[k^{d-1}\right]$, we define the column vector $\mathbf{v}[i] \triangleq\left(\mathbf{v}_{1}[i], \ldots, \mathbf{v}_{k}[i]\right)^{\top} \in \mathbb{Z}_{q}^{k \times 1}$. Apply the leftover hash lemma k^{d-1} times to replace every column with a random vector in \mathbb{Z}_{q}^{m}. This implies a further statistical distance of $k^{d-1} \epsilon$. Therefore we have that $\epsilon_{d} \leq \epsilon_{d-1} \cdot k+k^{d-1} \epsilon=O\left(k^{d-1} \cdot \epsilon_{d-1}\right)$. Setting $\epsilon_{1}=\epsilon$, we have that $\epsilon_{d}=k^{O\left(d^{2}\right)} \epsilon$.

3.3.2 Recovering V_{1}

We now use the above rank lemmas to show that the only solution for \mathbf{V}_{1}^{\prime} in the homogeneous equation above is $\mathbf{0}$. This is step 3 in the outline described above.
Theorem 3.20. Let $\mathbf{X}_{1} \in \mathbb{Z}_{q}^{w(m-w)^{d-1} \times w m^{d-1}}$ be of rank $w(m-w)^{d-1}$. Let $\mathbf{B}_{2}, \ldots, \mathbf{B}_{d}$ be uniform randomly sampled from $\mathbb{Z}_{q}^{m \times k}$. Let $\mathbf{B}^{(2, \ldots, d)} \triangleq \mathbf{B}_{2} \otimes \cdots \otimes \mathbf{B}_{d}$ and let $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d-1} \times K}$ and let $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ be of full rank $K-M \log q$. Then with probability $1-\operatorname{negl}(w)$ over the choice of $\mathbf{P}^{\prime}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{d}$, if $m=\omega\left(w^{2}\right)$ and $\mathbf{X}_{1} \cdot\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\mathbf{0}$, then $\mathbf{V}_{1}^{\prime}=\mathbf{0}$.
Proof. If \mathbf{V}_{1}^{\prime} is non-zero than it has a non-zero row. Suppose WLOG that the first row of \mathbf{V}_{1}^{\prime} is some non-zero vector $\mathbf{v}_{1}=\left(v_{1,1}, \ldots, v_{1, k}\right) \neq \mathbf{0}$. Split

$$
\mathbf{P}^{\prime}=\left[\begin{array}{c}
\mathbf{P}_{1}^{\prime} \\
\vdots \\
\mathbf{P}_{k}^{\prime}
\end{array}\right]
$$

into k blocks of shape $\mathbf{P}_{i}^{\prime} \in \mathbb{Z}_{q}^{k^{d-1} \times K}$, for $i \in[k]$. Then observe that the top $m^{d-1} \times(K-M \log q)$ block of $\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q} \in \mathbb{Z}_{q}^{w m^{d-1} \times(K-M \log q)}$ is given by

$$
\left(\sum_{i=1}^{k} v_{1, i} \cdot \mathbf{B}^{(2,3, \ldots, d)} \cdot \mathbf{P}_{i}^{\prime}\right) \cdot \mathbf{Q}
$$

where $v_{1, i}$ denotes the $(1, i)$ th entry of \mathbf{V}_{1}. Lemma 3.19 argues that $\mathbf{B}^{(2,3, \ldots, d)}$ extracts a row vector from a single column of \mathbf{P}_{i}^{\prime} that is some $\epsilon^{\prime}=\operatorname{negl}(w)$-statistically close to uniform. Applying Lemma 3.19 on K columns of k many fresh \mathbf{P}_{i}^{\prime}, we have

$$
\left(\sum_{i=1}^{k} v_{1, i} \cdot \mathbf{B}^{(2,3, \ldots, d)} \cdot \mathbf{P}_{i}^{\prime}\right) \cdot \mathbf{Q} \approx_{\text {stat }, k \cdot K \cdot \epsilon^{\prime}}\left(\sum_{i=1}^{k} v_{1, i} \cdot \mathbf{F}_{i}\right) \cdot \mathbf{Q}
$$

where $k K \epsilon^{\prime}$ remains negligible in $w . \mathbf{P}_{i}^{\prime}$ having K column Then by Lemma 3.17,

$$
\underset{\mathbf{F}_{i}}{\operatorname{Pr}}\left[\exists \mathbf{v}_{1} \neq \mathbf{0} \text { such that } \mathrm{rk}\left(\left(\sum_{i=1}^{k} v_{1, i} \cdot \mathbf{F}_{i}\right) \cdot \mathbf{Q}\right) \leq m^{d-1} / 2\right]<q^{-\Omega\left(K m^{d-1}\right)}
$$

Therefore with probability $1-q^{-\Omega\left(K m^{d-1}\right)}-k K \epsilon^{\prime}$ over the choice of \mathbf{P}^{\prime} and $\mathbf{B}_{1}, \ldots, \mathbf{B}_{d},\left(\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ is of rank at least $m^{d-1} / 2$ since the top $m^{d-1} \times(K-M \log q)$ block already has rank above $m^{d-1} / 2$.

On the other hand, the right nullity of \mathbf{X}_{1} is $w m^{d-1}-w(m-w)^{d-1}=O\left(w^{2} m^{d-2}\right)$. This is only possible if $m \leq O\left(w^{2}\right)$. In the parameter regime proposed by $\left[\mathrm{DQV}^{+} 21\right], m \geq w^{3}$.

Note that Theorem 3.20 is the key ingredient in Step 3.
Corollary 3.21 (Uniqueness of \mathbf{V}_{1}). Let $d, m, w, k, K, M, q, \chi$ be parameters as defined in Section 2.1. Then the homogeneous system of equations

$$
\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right) \cdot\left[\begin{array}{c}
\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=0
$$

has a unique solution $\mathbf{V}_{1}^{\prime}=0$ with $1-\operatorname{negl}(w)$ probability over the choice of randomness used in generating the distribution \mathcal{D}_{0}.
Proof. As specified, $m=w^{3}=\omega\left(w^{2}\right)$. Setting up the matrix $\mathbf{X}_{1} \in \mathbb{Z}_{q}^{w(m-w)^{d-1} \times w m^{d-1}}$ exactly as specified in Step 2 in Section 3.3, and assuming that the equations were set up with $\mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$ that are sampled uniform randomly as opposed to being LWE matrices, Theorem 3.12 implies that there is a unique solution $\mathbf{V}_{1}^{\prime}=0$ with $1-\operatorname{neg}(w)$ probability over the choice of randomness used in generating the distribution \mathcal{D}_{0}. If multiple solutions for this homogeneous equation exist when this equation is set up where $\mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$ as LWE matrices, then we have a distinguisher between LWE matrices and random matrices because setting up the the homogeneous equation does not require any secret information. Therefore, we have the intended statement.

4 Extending the Attack to the T-sum Candidate

On page 26 of $\left[\mathrm{DQV}^{+} 21\right]$, an alternate candidate construction that builds upon the previous candidate is proposed. In particular, this alternate candidate fixes a single set of matrices $\left\{\mathbf{A}_{i}\right\}_{i=1}^{d}$, and reuses them to build T copies of the original candidate, and sums the T copies. More specifically we have the following candidate:

Distribution \mathcal{D}_{b}.

- Let $d, m, w, k, \chi, M, K, q$ be the same parameters as defined in Section 2.1.
- For $i \in[d]$, sample $\mathbf{A}_{i} \leftarrow \mathbb{Z}_{q}^{m \times w}$. For $i \in[d], j \in[T]$, sample $\mathbf{S}_{i}^{(j)} \leftarrow \mathbb{Z}_{q}^{w \times k}, \mathbf{E}_{i}^{(j)} \leftarrow \chi^{m \times k}$. Compute $\mathbf{B}_{i}^{(j)}=\mathbf{A}_{i} \cdot \mathbf{S}_{i}^{(j)}+\mathbf{E}_{i}^{(j)} \in \mathbb{Z}_{q}^{m \times k}$. Visually, the \mathbf{A}_{i} 's are tall, the \mathbf{S}_{i} 's are wide, and the \mathbf{B}_{i} 's and the \mathbf{E}_{i} 's are wide.
- Sample $\mathbf{P} \leftarrow \chi^{M \times m^{d}}$ and $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d} \times K}$. Visually, \mathbf{P} is a wide matrix and \mathbf{P}^{\prime} is a tall matrix.
- Set $\overline{\mathbf{A}}^{*}=\mathbf{P} \cdot\left(\mathbf{A}_{1} \otimes \mathbf{I}_{m} \otimes \ldots \mathbf{I}_{m}\left\|\mathbf{I}_{m} \otimes \mathbf{A}_{2} \otimes \ldots \mathbf{I}_{m}\right\| \ldots \| \mathbf{I}_{m} \otimes \mathbf{I}_{m} \otimes \ldots \mathbf{A}_{d}\right) \in Z_{q}^{M \times d w m^{d-1}}$. Visually, $\overline{\mathbf{A}}^{*}$ is a tall matrix.
\bullet For $j \in[T], \operatorname{set} \overline{\mathbf{S}}^{*^{(j)}}=\left(\begin{array}{c}\mathbf{S}_{1}^{(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \mathbf{B}_{3}^{(j)} \otimes \ldots \mathbf{B}_{d-1}^{(j)} \otimes \mathbf{B}_{d}^{(j)} \\ \mathbf{E}_{1}^{(j)} \otimes \mathbf{S}_{2}^{(j)} \otimes \mathbf{B}_{3}^{(j)} \otimes \ldots \mathbf{B}_{d-1}^{(j)} \otimes \mathbf{B}_{d}^{(j)} \\ \vdots \\ \mathbf{E}_{1}^{(j)} \otimes \mathbf{E}_{2}^{(j)} \otimes \mathbf{E}_{3}^{(j)} \otimes \ldots \mathbf{E}_{d-1}^{(j)} \otimes \mathbf{S}_{d}^{(j)}\end{array}\right) \cdot \mathbf{P}^{\prime} \in \mathbb{Z}_{q}^{d w m^{d-1} \times K}$. Then set

$$
\overline{\mathbf{S}}^{*}=\sum_{j=1}^{T} \overline{\mathbf{S}}^{*^{(j)}} \cdot \mathbf{P}^{\prime}
$$

Visually, $\overline{\mathbf{S}}^{*}$ is a wide matrix.

- (Killian Randomization) Find random full rank matrices $\mathbf{A}^{*} \in \mathbb{Z}_{q}^{M \times W}, \mathbf{S}^{*} \in \mathbb{Z}_{q}^{W \times K}$ such that $\mathbf{A}^{*} \cdot \mathbf{S}^{*}=$ $\overline{\mathbf{A}}^{*} \cdot \overline{\mathbf{S}}^{*}$. Visually, \mathbf{A}^{*} is a tall matrix and \mathbf{S}^{*} is a wide matrix.
- $\operatorname{Set} \mathbf{B}^{*}=\mathbf{P} \cdot\left(\sum_{j=1}^{T} \mathbf{B}_{1}^{(j)} \otimes \ldots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime}$ and $\mathbf{E}^{*}=\mathbf{P} \cdot\left(\sum_{j=1}^{T} \mathbf{E}_{1}^{(j)} \otimes \ldots \otimes \mathbf{E}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime}$, so that $\mathbf{B}^{*}-\mathbf{A}^{*} \mathbf{S}^{*}=\mathbf{E}^{*}$. Set seed $=\left\{\mathbf{B}_{i}^{(j)}\right\}_{i \in[d], j \in[T]}, \mathbf{A}^{*}, \mathbf{S}^{*}$.
- Set $\hat{\mathbf{B}}=\mathbf{A}^{*} \mathbf{S}_{0}+\mathbf{F}$, where $\mathbf{S}_{0} \leftarrow \mathbb{Z}_{q}^{W \times K}$ and $\mathbf{F} \leftarrow \chi_{\text {flood }}^{M \times K}$.
- Set $\mathbf{C}=\mathbf{A}^{*} \mathbf{R}+\mathbf{E}-b \mathbf{G}$, where $\mathbf{R} \leftarrow \mathbb{Z}_{q}^{W \times M \log q}$ and $\mathbf{E} \leftarrow \bar{\chi}^{M \times M \log q}$.

The output of \mathcal{D}_{b} consists of the following tuple:

$$
\Delta_{b}=\left(\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{A}^{*},\left\{\mathbf{B}_{i}^{(j)}\right\}_{i \in[d], j \in[T]}, \hat{\mathbf{B}}, \mathbf{C}, \mathbf{E}^{*}+\mathbf{E G}^{-1}(\hat{\mathbf{B}})-b \mathbf{F}\right)
$$

Remark 4.1. Note that the number of field elements in the seed is $T \cdot m \cdot k$. This seed is expanded to $M \cdot K$ elements by the tensor construction above. Per the parameters proposed in [$D Q V^{+}$21], we have $M \cdot K=m^{2 d}$. Therefore if $T<m^{2 d-1} / k$, then there is sufficient expansion to be useful for construction $i \mathcal{O}$.

4.1 Extending the attack

We show that our attack on the original candidate directly extends to all interesting settings of T that imply $i \mathcal{O}$ under a reasonable assumption about the randomness of certain matrix distributions. Namely, we will show that for all the same algorithm extends to the T-sum case for $T=O\left(m^{2 d-(1 / 2)} \cdot w / k\right)$.

Our attack proceeds in the same main overall steps as the original $T=1$ case. We detail the algorithm in two steps below.

- Step 1: Exactly as before, the algorithm recovers matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$ up to unique representation $\mathbf{U}_{1}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]=\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1}, \ldots \mathbf{U}_{1}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{1}\end{array}\right]=\mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}$ where $\mathbf{U}_{i} \in \mathbb{Z}_{q}^{m \times w}$ for $i \in[d]$.
- Step 2: Having recovered $\mathbf{U}_{1}, \ldots, \mathbf{U}_{d}$, the algorithm now aims to recover the secrets up to unique representation $\left\{\mathbf{V}_{1}^{(j)}=\mathbf{A}_{1, T} \cdot \mathbf{S}_{1}^{(j)}\right\}_{j \in[T]}$ where $\mathbf{V}_{i}^{(j)} \in \mathbb{Z}_{q}^{w \times k}$ for $j \in[T], i \in[d]$.
The algorithm now sets up a system of equations to solve for $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$. As in the original setting, an algorithm given the inputs from the distribution \mathcal{D}_{b} can compute the matrix $\mathbf{Y}=\mathbf{A}^{*}\left(\mathbf{S}^{*}+\mathbf{R} \cdot G^{-1}(\hat{\mathbf{B}})-\right.$ $\left.b \cdot \mathbf{S}_{0}\right) \in \mathbb{Z}_{q}^{M \times K}$. An algorithm can then annihilate the term $\mathbf{R} \cdot G^{-1}(\hat{\mathbf{B}}) \in \mathbb{Z}_{q}^{W \times K}$ by computing a full column rank matrix $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ from its right nullspace. Now we have,

$$
\mathbf{A}^{*}\left(\mathbf{S}^{*}-b \cdot \mathbf{S}_{0}\right) \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q} .
$$

As in the original setting, when $b=1$, the matrix \mathbf{S}_{0} heuristically hides information about $\mathbf{A}_{1, T} \cdot \mathbf{S}_{1}^{(j)}$ for all $j \in[T]$ so no recovery is possible of these matrices. We refer the reader to Section 3.3 for a longer discussion about the case where $b=1$.
From now on we focus on the case where $b=0$ so that

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*} \cdot \mathbf{Q}=\mathbf{Y} \cdot \mathbf{Q} .
$$

By the definition of the T-sum scheme and properties of the tensor product we have,

$$
\mathbf{A}^{*} \cdot \mathbf{S}^{*}=\overline{\mathbf{A}}^{*} \cdot \overline{\mathbf{S}}^{*}=\mathbf{L}_{1} \cdot \mathbf{L}_{2}
$$

where

$$
\begin{aligned}
& \mathbf{L}_{1}=\mathbf{P}\left(\mathbf{A}_{1} \cdot \mathbf{A}_{1, T}^{-1} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{A}_{d} \cdot \mathbf{A}_{d, T}^{-1}\right), \\
& \mathbf{L}_{2}=\left(\begin{array}{c}
\sum_{j \in[T]}\left(\mathbf{A}_{1, T} \cdot \mathbf{S}_{1}^{(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \mathbf{B}_{3}^{(j)} \otimes \ldots \mathbf{B}_{d-1}^{(j)} \otimes \mathbf{B}_{d}^{(j)}\right) \\
\sum_{j \in[T]}\left(\mathbf{E}_{1}^{(j)} \otimes \mathbf{A}_{2, T} \cdot \mathbf{S}_{2}^{(j)} \otimes \mathbf{B}_{3}^{(j)} \otimes \ldots \mathbf{B}_{d-1}^{(j)} \otimes \mathbf{B}_{d}^{(j)}\right) \\
\vdots \\
\sum_{j \in[T]}\left(\mathbf{E}_{1}^{(j)} \otimes \mathbf{E}_{2}^{(j)} \otimes \mathbf{E}_{3}^{(j)} \otimes \ldots \mathbf{E}_{d-1}^{(j)} \otimes \mathbf{A}_{d, T} \cdot \mathbf{S}_{d}^{(j)}\right)
\end{array}\right) \cdot \mathbf{P}^{\prime} .
\end{aligned}
$$

Therefore, when $b=0$, there is a solution to the equation

$$
\underbrace{\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right)}_{\text {defined to be } \mathbf{M}} \cdot\left[\begin{array}{c}
\sum_{j \in[T]}\left(\mathbf{V}_{1}^{(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \\
\mathbf{Z}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{Y} \mathbf{Q}
$$

where all values are known except for the variables $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$ and \mathbf{Z}. Here \mathbf{M} is a known quantity computed in Step 1. We show that when this equation is viewed as an equation over just the variables $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$, the equation is uniquely solvable. Again, there may be many solutions to \mathbf{Z}, but this will be irrelevant to solving for $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$.

Arguing uniqueness At this point, the overall algorithm has not changed at all. Having set up a linear system of equations in the variables $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$ and \mathbf{Z}, and having observed there is at least one solution, it remains to argue that with high probability over the choice of matrices $\mathbf{P}, \mathbf{P}^{\prime},\left\{\mathbf{B}_{i}^{(j)}\right\}_{j \in[T], i \in[d]}, \hat{\mathbf{B}}$ that there is a unique solution to the variables $\left\{\mathbf{V}_{1}^{(j)}\right\}_{j \in[T]}$. To argue uniqueness, we again consider the homogeneous equation where the unknowns are denoted $\left\{\mathbf{V}_{1}^{\prime(j)}\right\}_{j \in[T]}$ and \mathbf{Z}^{\prime} and need to show that $\mathbf{V}_{1}^{\prime(j)}=0$ for $j \in[T]$.

$$
\underbrace{\mathbf{P}\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}|\ldots| \mathbf{I} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{U}_{d}\right)}_{\text {defined to be } \mathbf{M}} \cdot\left[\begin{array}{c}
\sum_{j \in[T]}\left(\begin{array}{c}
\left.\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \\
\mathbf{Z}^{\prime}
\end{array}\right] \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{0}=\mathbf{0}, \ldots
\end{array}\right.
$$

This overall argument is effectively identical except for a single step that differs from the original $T=1$ case. We outline these steps in detail for analyzing the attack on the T-sum candidate analogously to what has been outlined for the original setting.

- Step 1 (for uniqueness): As done in the original setting, expand the above equation to obtain:

$$
\mathbf{M}_{1} \cdot \sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \mathbf{Q}+\mathbf{M}_{2} \mathbf{Z}^{\prime} \mathbf{P}^{\prime} \mathbf{Q}=0
$$

where $\mathbf{M}_{1}=\mathbf{P} \cdot\left(\mathbf{U}_{1} \otimes \mathbf{I}^{\otimes(d-1)}\right)$ and $\mathbf{M}_{2}=\mathbf{P} \cdot\left(\mathbf{I} \otimes \mathbf{U}_{2} \otimes \mathbf{I}^{\otimes(d-2)}\|\cdots\| \otimes \mathbf{I}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right)$.

- Step 2 (for uniqueness): The second step here is identical to that in the uniqueness analysis for the attack on the original scheme. In the second step, set $\boldsymbol{\Gamma}_{2}$ as linearly independent columns of \mathbf{M}_{2} that span its column space. Then set $\boldsymbol{\Gamma}_{1}$ as additional linearly independent columns of \mathbf{M}_{1} so that $\left[\boldsymbol{\Gamma}_{1} \| \boldsymbol{\Gamma}_{2}\right]$ has full column rank and generate the column space of \mathbf{M}. Observe that $\boldsymbol{\Gamma}_{1}$ will have at least $w(m-w)^{d-1}$ columns by Lemma 3.8 which allows us to compute
$\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{M}_{1} \| \mathbf{M}_{2}\right]\right)\right)-\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{M}_{2}\right)\right)+\operatorname{dim}\left(\operatorname{Colspan}\left(\mathbf{M}_{1}\right) \cap \operatorname{Colspan}\left(\mathbf{M}_{2}\right)\right)=w(m-w)^{d-1}$.
As a consequence, we can write this equation as $\mathbf{M}_{1}=\boldsymbol{\Gamma}_{1} \mathbf{X}_{1}+\boldsymbol{\Gamma}_{2} \mathbf{X}_{2}$ and $\mathbf{M}_{2}=\boldsymbol{\Gamma}_{2} \mathbf{X}_{3}$ for some $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$. Our equation becomes:

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{1}\left(\mathbf{X}_{1} \cdot \sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}\right) \\
& \quad+\boldsymbol{\Gamma}_{2}\left(\mathbf{X}_{2} \cdot\left(\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right)\right)+\mathbf{X}_{3} \cdot \mathbf{Z}^{\prime}\right) \mathbf{P}^{\prime} \mathbf{Q}=\mathbf{0}
\end{aligned}
$$

Now we use the linear independence of $\boldsymbol{\Gamma}_{1}$ and $\boldsymbol{\Gamma}_{2}$ to see that each of the terms must be equal to $\mathbf{0}$. Therefore,

$$
\begin{equation*}
\mathbf{X}_{1} \cdot \sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=0 \tag{***}
\end{equation*}
$$

The first and second steps hold with high probability over the choice of $\mathbf{P}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$. Notably, they do not depend on \mathbf{P}^{\prime} nor \mathbf{Q}.

- Step 3 (for uniqueness): Our main theorem is that, with high probability over a random choice of $\mathbf{P}^{\prime}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$, the matrices $\mathbf{V}_{1}^{\prime(j)}=\mathbf{0}$ for $j \in[T]$, if there exists any $j \in[T]$ such that $\mathbf{V}_{1}^{\prime(j)} \neq \mathbf{0}$, then $\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ is of rank $O\left(m^{d-1}\right)$.
Namely, all columns of $\mathbf{V}_{1}^{\prime} \otimes \mathbf{B}^{(2, \ldots, d)} \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ has column rank $O\left(m^{d-1}\right)$ when $\mathbf{V}_{1}^{\prime} \neq \mathbf{0}$ and are in the nullspace of \mathbf{X}_{1}. On the other hand, we know that $\mathbf{X}_{1} \in \mathbb{Z}_{q}^{w(m-w)^{d-1} \times w m^{d-1}}$ from step 2 is of rank at least $w(m-w)^{d-1}$. This rank is due to the fact that if a given column γ_{i} of $\boldsymbol{\Gamma}_{1}$ appears as $i^{t h}$ column of \mathbf{M}_{1} then it also appears as the $i^{t h}$ column in $\boldsymbol{\Gamma}_{1} \mathbf{X}_{1}$, therefore \mathbf{X}_{1} is a permutation sub-matrix of rank $w(m-w)^{d-1}$ because $\boldsymbol{\Gamma}_{1}$ is of rank $w(m-w)^{d-1}$, ensuring that the rank of \mathbf{X}_{1} is at least this much. We know the rank of $\boldsymbol{\Gamma}_{1}$ because Lemma 3.8 tell us there are $w(m-w)^{d-1}$ many columns of \mathbf{M}_{1} not in the column span of \mathbf{M}_{2} with overwhelming probability over the choice of $\mathbf{P}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{d}$.
Therefore, the right nullity of \mathbf{X}_{1} is at most $w m^{d-1}-w(m-w)^{d-1}=O\left(w^{2} m^{d-2}\right)$ by rank-nullity. Therefore, the only way that the rank of $\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ can be consistent with the nullity of \mathbf{X}_{1} is if $m \leq O\left(w^{2}\right)$. This parameter setting is in contrast to that in the paper which asks that $m \geq w^{3}$. This is what our main theorem attempts to prove.

Preparing a rank computation In Step 3, we determined that analyzing the rank of

$$
\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}
$$

for some non-zero $\mathbf{V}_{1}^{\prime(j)}$ for $j \in[T]$ suffices to obtain a uniqueness theorem. To analyze this rank, we will massage the form of this matrix so that the rank is easier to analyze. We now describe how to rewrite this expression.

For convenience, for $j \in[T]$, define

$$
\mathbf{B}^{\prime(j)} \triangleq \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)} \in \mathbb{Z}_{q}^{m^{d-1} \times k^{d-1}}
$$

1. Rewrite the following expression:

$$
\begin{aligned}
\sum_{j=1}^{T} \mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}^{\prime(j)} & =\left[\mathbf{V}_{1}^{\prime(1)} \otimes \mathbf{I}_{m^{d-1}}\left\|\mathbf{V}_{1}^{\prime(2)} \otimes \mathbf{I}_{m^{d-1}}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)} \otimes \mathbf{I}_{m^{d-1}}\right] \cdot\left[\begin{array}{c}
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(1)} \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(2)} \\
\vdots \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(T)}
\end{array}\right] \\
& =\left(\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right] \otimes \mathbf{I}_{m^{d-1}}\right) \cdot\left[\begin{array}{c}
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(1)} \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(2)} \\
\vdots \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(T)}
\end{array}\right]
\end{aligned}
$$

2. Then open up the tensor structure of $\left[\begin{array}{c}\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(1)} \\ \mathbf{I}_{k} \otimes \mathbf{B}^{\prime(2)} \\ \vdots \\ \mathbf{I}_{k} \otimes \mathbf{B}^{\prime(T)}\end{array}\right]$ to see that for $j \in[T]$,

$$
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(j)}=\left[\begin{array}{ccccc}
\mathbf{B}^{\prime(j)} & \mathbf{0}_{m^{d-1} \times k^{d-1}} & \mathbf{0}_{m^{d-1} \times k^{d-1}} & \cdots & \mathbf{0}_{m^{d-1} \times k^{d-1}} \\
\mathbf{0}_{m^{d-1} \times k^{d-1}} & \mathbf{B}^{\prime(j)} & \mathbf{0}_{m^{d-1} \times k^{d-1}} & \cdots & \mathbf{0}_{m^{d-1} \times k^{d-1}} \\
\vdots & \vdots & \ddots & \vdots & \\
\mathbf{0}_{m^{d-1} \times k^{d-1}} & \mathbf{0}_{m^{d-1} \times k^{d-1}} & \mathbf{0}_{m^{d-1} \times k^{d-1}} & \cdots & \mathbf{B}^{\prime(j)}
\end{array}\right] \in \mathbb{Z}_{q}^{k m^{d-1} \times k^{d}} .
$$

3. Then partition \mathbf{P}^{\prime} into k blocks as before: $\mathbf{P}^{\prime}=\left[\begin{array}{c}\mathbf{P}_{1}^{\prime} \\ \vdots \\ \mathbf{P}_{k}^{\prime}\end{array}\right]$ so that $\mathbf{P}^{\prime} \cdot \mathbf{Q}=\left[\begin{array}{c}\mathbf{P}_{1}^{\prime} \cdot \mathbf{Q} \\ \vdots \\ \mathbf{P}_{k}^{\prime} \cdot \mathbf{Q}\end{array}\right]$ where $\mathbf{P}_{i}^{\prime} \in \mathbb{Z}_{q}^{k^{d-1} \times K}$ is a tall matrix.
4. Then multiplying gives

$$
\left[\begin{array}{c}
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(1)} \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(2)} \\
\vdots \\
\mathbf{I}_{k} \otimes \mathbf{B}^{\prime(T)}
\end{array}\right] \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{T}
\end{array}\right] \in \mathbb{Z}_{q}^{k T m^{d-1} \times(K-M \log q)}
$$

where for $j \in[T]$ we define

$$
\mathbf{W}_{j} \triangleq\left[\begin{array}{c}
\mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{1}^{\prime} \cdot \mathbf{Q} \\
\mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{2}^{\prime} \cdot \mathbf{Q} \\
\vdots \\
\mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{k}^{\prime} \cdot \mathbf{Q}
\end{array}\right] \in \mathbb{Z}_{q}^{k m^{d-1} \times(K-M \log q)}
$$

Working with only the top block We now recap the progress made so far in the analysis for Step 3 (for uniqueness). At this point, we can rewrite

$$
\begin{aligned}
\sum_{j \in[T]} & \left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q} \\
& =\left(\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right] \otimes \mathbf{I}_{m^{d-1}}\right) \cdot\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{T}
\end{array}\right] \in \mathbb{Z}_{q}^{w m^{d-1}} \times(K-M \log q)
\end{aligned}
$$

Recall that for our uniqueness argument to proceed in Step 3, we need that this matrix is of relatively large rank, say $O\left(m^{d-1}\right)$, with high probability for any non-zero matrix $\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right]$. The following key observation simplifies analyzing the rank of this matrix: If $\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right]$ is non-zero, then there is some row that is non-zero.

Without loss of generality, suppose that this non-zero row is the first row. This first row of $\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right]$ defines a submatrix of $\left(\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right] \otimes \mathbf{I}_{m^{d-1}}\right) \cdot\left[\begin{array}{c}\mathbf{W}_{1} \\ \mathbf{W}_{2} \\ \vdots \\ \mathbf{W}_{T}\end{array}\right]$ formed by its first m^{d-1} rows. If this submatrix has large rank $O\left(m^{d-1}\right)$, then the whole matrix has rank $O\left(m^{d-1}\right)$.

This top block is of a substantially simpler form amenable to rank analysis as we will show below. We now identify this submatrix.

1. First observe that we can rewrite one of the multiplicands as follows:

$$
\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right] \otimes \mathbf{I}_{m^{d-1}}=\left[\begin{array}{c}
\mathrm{Top} \\
*
\end{array}\right] \in \mathbb{Z}_{q}^{w m^{d-1} \times k T m^{d-1}}
$$

where Top $\in \mathbb{Z}_{q}^{m^{d-1} \times k \cdot T \cdot m^{d-1}}$ is of the form

$$
\text { Top }=\left[\mathbf{R}_{1,1}\left\|\mathbf{R}_{2,1}\right\| \mathbf{R}_{3,1}\|\cdots\| \mathbf{R}_{k, 1}\left\|\mathbf{R}_{1,2}\right\| \cdots\left\|\mathbf{R}_{k, 2}\right\| \cdots\left\|\mathbf{R}_{1, T}\right\| \cdots \| \mathbf{R}_{k, T}\right]
$$

where for $i \in[k], j \in[T],\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}$ denotes the $(1, i)$ th entry of $\mathbf{V}_{1}^{\prime(j)}$ and where we define the following matrix to be a scalar multiple of the identity matrix:

$$
\mathbf{R}_{i, j} \triangleq\left[\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]} \cdot \mathbf{I}_{m^{d-1}}\right]
$$

2. Then the top block Top $^{\prime} \in \mathbb{Z}_{q}^{m^{d-1} \times(K-M \log q)}$ of

$$
\left(\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right] \otimes \mathbf{I}_{m^{d-1}}\right) \cdot\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{T}
\end{array}\right]=\left[\begin{array}{c}
\text { opp }^{\prime} \\
*
\end{array}\right]
$$

satisfies the following equation

$$
\begin{aligned}
\text { Top }^{\prime}=\text { Top } \cdot\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{T}
\end{array}\right] & =\sum_{j \in[T]}\left(\sum_{i \in[k]} \mathbf{R}_{i, j} \cdot \mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}\right) \\
& =\sum_{j \in[T]}\left(\sum_{i \in[k]}\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]} \cdot \mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}\right)
\end{aligned}
$$

4.1.1 Recovering secrets up to uniqueness for $T>1$

Having rewritten our expression, to finish Step 3 of our uniqueness argument, it suffices to show that with high probability over the choice of $\mathbf{P}^{\prime}, \mathbf{B}_{2}^{(j)}, \ldots, \mathbf{B}_{d}^{(j)}, \hat{\mathbf{B}}$ for $j \in[T]$, the matrix

$$
\mathrm{Top}^{\prime}=\sum_{j \in[T]}\left(\sum_{i \in[k]}\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]} \cdot \mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}\right)
$$

has rank $O\left(m^{d-1}\right)$ for all non-zero vectors of the form $\left(\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}\right)_{i \in[k], j \in[T]} \in \mathbb{Z}_{q}^{k T \times 1}$. Moreover, the form of the summation above gives rise to the following conjecture about the randomness of the matrices \mathbf{W}_{j} for $j \in[T]$ defined above during the simplification.

Previously for the case $T=1$, we were dealing with a single copy $\left(\mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \cdots \otimes \mathbf{B}_{d}\right) \mathbf{P}_{i}^{\prime} \mathbf{Q}$ for $i \in[k]$. We then replaced $\left(\mathbf{B}_{2} \otimes \mathbf{B}_{3} \otimes \cdots \otimes \mathbf{B}_{d}\right) \mathbf{P}_{i}^{\prime}$ with a random matrix \mathbf{F}_{i}, due to Lemma 3.19. The homogeneous equation we worked implies that all the columns of $\sum_{i} v_{i} \mathbf{F}_{i} \mathbf{Q}$, where $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{Z}_{q}^{k}$ is any non-zero vector, will be in the null-space of \mathbf{X}_{1}. We ruled this out by using a union bound. Unfortunately, this approach won't be enough for us to handle large T. Indeed, in Lemma 3.16, the probability of error grows as $q^{-O(K)}$ restricting the dimension of \mathbf{v} and hence T to be $O(K)=O\left(m^{d+1 / 2}\right)$. For ruling out $i \mathcal{O}$, we need to rule out T at least $m^{2 d-1}$.

We take a different approach. We will conjecture that $\left\{\mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}\right\}_{i \in[k], j \in[T]}$ are close $\left\{\mathbf{F}_{i, j}\right\}_{i \in[k], j \in[T]}$ where $\mathbf{F}_{i, j}$ are uniform. This conjecture is heuristically feasible because each $\mathbf{B}^{\prime(j)}$ can be viewed as a randomness extractor who extracts m^{d-1} field from k^{d-1} field elements. Therefore, T such extractors can be equivalently viewed as extracting $T \cdot m^{d-1}$ field elements from $k^{d-1} \chi$ elements. This is heuristically possible if $T \ll\left(\frac{k}{m}\right)^{d-1} \frac{\mathcal{H} \infty(\chi)}{\log q}$. If $k \geq m^{3}$ as suggested by $\left[\mathrm{DQV}^{+} 21\right]$, our attack can extend to $T=O\left(m^{2 d-2} /(\log q)\right)$.

Conjecture 4.2. Let m, k, w, q, χ, M, K be as specified in Section 2.1. For $T \leq m^{2 d-3}$, there exists $\epsilon=$ $\epsilon(w)=\operatorname{negl}(w)$ such that for uniform randomly sampled matrices $\mathbf{B}_{2}^{(j)}, \mathbf{B}_{3}^{(j)}, \ldots \overline{\mathbf{B}}_{d}^{(j)} \in \mathbb{Z}_{q}^{m \times k}$ for $j \in[T]$, $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d} \times K}$, and $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times(K-M \log q)}$ a random full column rank matrix generated from the right nullspace of $G^{-1}(\hat{\mathbf{B}})$ where $\hat{\mathbf{B}} \in \mathbb{Z}_{q}^{M \times K}$ is uniform randomly sampled, we have

$$
\left(\mathbf{B}^{\prime(j)} \cdot \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}\right)_{i \in[k], j \in[T]} \approx_{s t a t, \epsilon}\left(\mathbf{F}_{i, j}\right)_{i \in[k], j \in[T]}
$$

where $\mathbf{F}_{i, j} \in \mathbb{Z}_{q}^{m^{d-1} \times(K-M \log q)}$ for $i \in[k], j \in[T]$ are uniformly sampled random matrices, and where for $j \in[T]$

$$
\mathbf{B}^{\prime(j)} \triangleq \mathbf{B}_{2}^{(j)} \otimes \mathbf{B}_{3}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)} \in \mathbb{Z}_{q}^{m^{d-1} \times k^{d-1}}
$$

and define $\mathbf{P}_{i}^{\prime} \in \mathbb{Z}_{q}^{k^{d-1} \times K}$ for $i \in[k]$ such that $\mathbf{P}^{\prime}=\left[\begin{array}{c}\mathbf{P}_{1}^{\prime} \\ \vdots \\ \mathbf{P}_{k}^{\prime}\end{array}\right]$.
Theorem 4.3. Let $d, m, w, k, q, M, K, \chi$ be as defined in Section 2.1. Assume Conjecture 3.3 and Conjecture 4.2. Let $\mathbf{X}_{1} \in \mathbb{Z}_{q}^{w(m-w)^{d-1} \times w m^{d-1}}$ be of rank at least $w(m-w)^{d-1}$. For $j \in[T]$, let $\mathbf{B}_{2}^{(j)}, \ldots, \mathbf{B}_{d}^{(j)}$ be uniformly sampled from $\mathbb{Z}_{q}^{m \times k}$. Let $\mathbf{P}^{\prime} \leftarrow \chi^{k^{d-1} \times K}$. Let $\mathbf{Q} \in \mathbb{Z}_{q}^{K \times K-M \log q}$ be of full column rank generated randomly from the right nullspace of $G^{-1}(\hat{\mathbf{B}})$ where $\hat{\mathbf{B}} \in \mathbb{Z}_{q}^{M \times K}$ is uniform randomly sampled.

If $T<m^{2 d-1} / k=O\left(m^{2 d-3}\right)$, $m=\omega\left(w^{2}\right)$, then with probability $1-\operatorname{negl}(w)$ over the choice of \mathbf{P}^{\prime} and $\mathbf{B}_{2}^{(j)}, \ldots, \mathbf{B}_{d}^{(j)}$ for $j \in[T]$ we have that $\mathbf{X}_{1} \cdot \sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=0$ implies that $\mathbf{V}_{1}^{\prime(j)}=\mathbf{0}$ for all $j \in[T]$.
Proof. If $\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right]$ has a non-zero element it has a non-zero row. WLOG assume that it is the first one. The top block of $\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}$ was computed above to be

$$
\sum_{i=1}^{k} \sum_{j=1}^{T}\left(\mathbf{V}^{\prime(j)}\right)_{[1, i]} \mathbf{B}^{\prime(j)} \mathbf{P}_{i}^{\prime} \cdot \mathbf{Q}
$$

where $\left(\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}\right)_{i \in[k], j \in[T]} \in \mathbb{Z}_{q}^{k T \times 1}$ is the first row of $\left[\mathbf{V}_{1}^{\prime(1)}\left\|\mathbf{V}_{1}^{\prime(2)}\right\| \cdots \| \mathbf{V}_{1}^{\prime(T)}\right]$. Conjecture 4.2 gives $\epsilon=\operatorname{negl}(w)$ such that this sum is ϵ-statistically close to

$$
\sum_{i=1}^{k} \sum_{j=1}^{T}\left(\mathbf{V}^{\prime(j)}\right)_{[1, i]} \mathbf{F}_{i, j}
$$

for uniform random $\mathbf{F}_{i, j} \in \mathbb{Z}_{q}^{m^{d-1} \times(K-M \log q)}$. For a fixed vector $\left(\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}\right)_{i \in[k], j \in[T]} \in \mathbb{Z}_{q}^{k T \times 1}$, $\sum_{i=1}^{k} \sum_{j=1}^{T}\left(\mathbf{V}^{\prime(j)}\right)_{[1, i]} \mathbf{F}_{i, j}$ is uniformly distributed over $\mathbb{Z}_{q}^{m^{d-1} \times(K-M \log q) \text {. Therefore, by the proof of }}$ Lemma 3.16, for this fixed vector we have that

$$
\underset{\mathbf{F}_{i, j}}{\operatorname{Pr}}\left[\operatorname{rk}\left(\sum_{i=1}^{k} \sum_{j=1}^{T}\left(\mathbf{V}^{\prime(j)}\right)_{[1, i]} \mathbf{F}_{i, j}\right) \geq m^{d-1} / 2\right] \geq 1-q^{-\Omega\left(K \cdot m^{d-1}\right)}
$$

Then by union bound over all vectors $\left(\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}\right)_{i \in[k], j \in[T]} \in \mathbb{Z}_{q}^{k T \times 1}$, the probability that there exists any non-zero vector over the choice of random matrices $\mathbf{F}_{i, j}$ is

$$
\underset{\mathbf{F}_{i, j}}{\operatorname{Pr}}\left[\exists\left(\left(\mathbf{V}_{1}^{\prime(j)}\right)_{[1, i]}\right)_{i \in[k], j \in[T]} \neq \mathbf{0} \text { s.t. rk }\left(\sum_{i=1}^{k} \sum_{j=1}^{T}\left(\mathbf{V}^{\prime(j)}\right)_{[1, i]} \cdot \mathbf{F}_{i, j}\right) \leq m^{d-1} / 2\right]<q^{-\Omega\left(K m^{d-1}\right)}
$$

as long as $T=O\left(m^{2 d-3}\right)$. Therefore with probability $1-q^{-\Omega\left(K m^{d-1}\right)}-\epsilon$ over the choice of \mathbf{P}^{\prime} and $\mathbf{B}_{2}^{(j)}, \ldots, \mathbf{B}_{d}^{(j)}$ for $j \in[T]$, and $\hat{\mathbf{B}}$, the matrix $\sum_{j \in[T]}\left(\mathbf{V}_{1}^{\prime(j)} \otimes \mathbf{B}_{2}^{(j)} \otimes \cdots \otimes \mathbf{B}_{d}^{(j)}\right) \cdot \mathbf{P}^{\prime} \cdot \mathbf{Q}=0$, is of rank at least $m^{d-1} / 2$ since the top $m^{d-1} \times(K-M \log q)$ block already has rank above $m^{d-1} / 2$.

On the other hand, the right nullity of \mathbf{X}_{1} is $w m^{d-1}-w(m-w)^{d-1}=O\left(w^{2} m^{d-2}\right)$. This is only possible if $m \leq O\left(w^{2}\right)$. In the parameter regime proposed by [$\left.\mathrm{DQV}^{+} 21\right], m \geq w^{3}$.
Remark 4.4. As mentioned before, $i \mathcal{O}$ needs some expansion which is only possible if $T<m^{2 d-1} / k \leq$ $m^{2 d-4}$. If $m=w^{3}$, then for some $T=\Omega\left(m^{2 d-3}\right)$ the attack proceeds, ruling out any value of T for which there is meaningful expansion.

Remark 4.5. As mentioned before, in any proofs corresponding to these the three steps described for proving uniqueness, we assumed that the equations were set up with $\mathbf{B}_{2}, \ldots, \mathbf{B}_{d}, \hat{\mathbf{B}}$ that are sampled uniform randomly as opposed to being LWE matrices. If multiple solutions for this homogeneous equation exist when they are LWE matrices, then we have a distinguisher between LWE matrices and random matrices because the homogeneous equation does not require any secret information so any adversary can set up the homogeneous equation.

Acknowledgement

Aayush Jain is supported by the Computer Science Department, CMU and a seed grant from the CYLAB security and the privacy institute, CMU. Amit Sahai was supported in part from a Simons Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024. Huijia Lin was supported by NSF grants CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI research Award, a Cisco research award, and a Simons Collaboration on the Theory of Algorithmic Fairness. This work was done (in part) while Paul Lou was visiting the Simons Institute for the Theory of Computing.

We gratefully thank Hoeteck Wee for several extended technical discussions which greatly developed the presentation of our attack. We are also grateful to the anonymous TCC reviewers for graciously providing a thorough review process and giving us very useful feedback about our presentation.

References

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191-225. Springer, Heidelberg, May 2019.
[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of $L N C S$, pages 308-326. Springer, Heidelberg, August 2015.
$\left[\mathrm{AJL}^{+} 19\right] \quad$ Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguishability obfuscation without multilinear maps: New paradigms via low degree weak pseudorandomness and security amplification. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of $L N C S$, pages 284-332. Springer, Heidelberg, August 2019.
[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 110-140. Springer, Heidelberg, May 2020.
[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 152-181. Springer, Heidelberg, April / May 2017.
[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on low-degree pseudorandom generators (or: Sum-of-squares meets program obfuscation). Electronic Colloquium on Computational Complexity (ECCC), 24:60, 2017.
[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomorphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 79-109. Springer, Heidelberg, May 2020.
[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation and UCEs: The case of computationally unpredictable sources. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188-205. Springer, Heidelberg, August 2014.
[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417, 2005. https://eprint.iacr.org/2005/417.
$\left[\mathrm{BGH}^{+} 15\right] \quad$ Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai, and Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845, 2015. http://eprint.iacr.org/.
[BGI ${ }^{+}$01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of $L N C S$, pages 1-18. Springer, Heidelberg, August 2001.
[BGJS16] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifiable functional encryption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of $L N C S$, pages 557-587. Springer, Heidelberg, December 2016.
$\left[\mathrm{BGK}^{+} 14\right]$ Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221-238. Springer, Heidelberg, May 2014.
[BHJ+19] Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit Sahai. Sum-ofsquares meets program obfuscation, revisited. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of $L N C S$, pages 226-250. Springer, Heidelberg, May 2019.
$\left[\right.$ BIJ $\left.^{+} 20\right] \quad$ James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry. Affine determinant programs: A framework for obfuscation and witness encryption. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1-82:39. LIPIcs, January 2020.
[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in Cryptology EUROCRYPT, pages 764-791, 2016.
[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to obfustopia through secret-key functional encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of $L N C S$, pages 391-418. Springer, Heidelberg, October / November 2016.
[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages 1480-1498. IEEE Computer Society Press, October 2015.
[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via generic graded encoding. In $T C C$, pages $1-25,2014$.
[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171-190. IEEE Computer Society Press, October 2015.
[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014.
$\left[\mathrm{CGH}^{+} 15\right]$ Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO, 2015.
$\left[\mathrm{CHL}^{+} 15\right]$ Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In $E U R O C R Y P T, 2015$.
[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-knowledge from indistinguishability obfuscation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 287-307. Springer, Heidelberg, August 2015.
[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new clt multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http://eprint.iacr.org/.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of $L N C S$, pages 476-493. Springer, Heidelberg, August 2013.
[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267-286. Springer, Heidelberg, August 2015.
[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 468-497. Springer, Heidelberg, March 2015.
[DGG $\left.{ }^{+} 16\right]$ Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Obfuscation from low noise multilinear maps. IACR Cryptology ePrint Archive, 2016:599, 2016.
$\left[\mathrm{DQV}^{+} 21\right]$ Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Succinct LWE sampling, random polynomials, and obfuscation. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II, volume 13043 of Lecture Notes in Computer Science, pages 256-287. Springer, 2021.
$\left[\mathrm{GGG}^{+} 14\right]$ Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578-602. Springer, Heidelberg, May 2014.
[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 1-17. Springer, Heidelberg, May 2013.
[GGH ${ }^{+}$13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40-49. IEEE Computer Society Press, October 2013.
[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 498-527. Springer, Heidelberg, March 2015.
[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor products. Electronic Colloquium on Computational Complexity (ECCC), 25:149, 2018.
[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. IACR Cryptol. ePrint Arch., 2000:63, 2000.
[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736749, 2021.
[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75-92. Springer, Heidelberg, August 2013.
[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology ePrint Archive, 2015:866, 2015.
[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint Archive, 2015:301, 2015.
[HJL21] Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new circular security assumptions underlying iO. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 673-700, Virtual Event, August 2021. Springer, Heidelberg.
[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority. In Theory of Cryptography Conference, pages 294-314. Springer, 2009.
[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constantdegree expanding polynomials overa \mathbb{R} to build $i \mathcal{O}$. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251-281. Springer, Heidelberg, May 2019.
[JLS21a] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over f_p, dlin, and prgs in nc^0. IACR Cryptol. ePrint Arch., page 1334, 2021.
[JLS21b] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 60-73. ACM, 2021.
[KRS15] Dakshita Khurana, Vanishree Rao, and Amit Sahai. Multi-party key exchange for unbounded parties from indistinguishability obfuscation. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of $L N C S$, pages 52-75. Springer, Heidelberg, November / December 2015.
[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of $L N C S$, pages 28-57. Springer, Heidelberg, May 2016.
[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599-629. Springer, Heidelberg, August 2017.
[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of $L N C S$, pages 447-462. Springer, Heidelberg, March 2016.
[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and blockwise local PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of $L N C S$, pages 630-660. Springer, Heidelberg, August 2017.
[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom generators and applications to indistinguishability obfuscation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 119-137. Springer, Heidelberg, November 2017.
[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map over the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://eprint.iacr.org/.
[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 21-39. Springer, Heidelberg, August 2013.
[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances in Cryptology - CRYPTO, 2016.
[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In David B. Shmoys, editor, $46 t h ~ A C M S T O C$, pages 475-484. ACM Press, May / June 2014.
[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of $L N C S$, pages 127-156. Springer, Heidelberg, October 2021.

A Useful Linear Algebraic Facts

First, we recall several useful linear algebraic facts used in the uniqueness analysis in both Step 1 and Step 2. While it is not necessary, we encourage the reader to review the following section to facilitate their understanding of the above algorithm's correctness.

Lemma A.1. For any matrices $\mathbf{M}_{1}, \mathbf{M}_{2}$, there exists a matrix \mathbf{N} such that $\mathbf{M}_{1} \cdot \mathbf{N}=\mathbf{M}_{2}$ if and only if Colspan $\left(\mathbf{M}_{2}\right) \subseteq$ Colspan $\left(\mathbf{M}_{\mathbf{1}}\right)$.

Proof. This fact immediately follows by the definition of column span and matrix multiplication.
Corollary A.2. For any matrices $\mathbf{M}_{1}, \mathbf{M}_{2}$ and for any invertible matrices $\mathbf{N}_{1}, \mathbf{N}_{2}$ of the appropriate dimensions, we have that

$$
\operatorname{Colspan}\left(\left[\mathbf{M}_{1} \| \mathbf{M}_{2}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{M}_{1} \mathbf{N}_{1} \| \mathbf{M}_{2} \mathbf{N}_{2}\right]\right)
$$

Proof. Observe that $\left[\mathbf{M}_{1} \| \mathbf{M}_{2}\right]=\left[\mathbf{M}_{1} \mathbf{N}_{1} \| \mathbf{M}_{2} \mathbf{N}_{2}\right] \cdot\left[\begin{array}{cc}\mathbf{N}_{1}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_{2}^{-1}\end{array}\right]$ where $\left[\begin{array}{cc}\mathbf{N}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_{2}\end{array}\right]^{-1}=\left[\begin{array}{cc}\mathbf{N}_{1}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_{2}^{-1}\end{array}\right]$ and apply Lemma A.1.

Lemma A.3. For any matrices \mathbf{M}, \mathbf{N} with finitely many rows and columns such that $\operatorname{Colspan}(\mathbf{M}) \subseteq$ $\operatorname{Colspan}(\mathbf{N})$, if $\operatorname{rk}(\mathbf{M})=\operatorname{rk}(\mathbf{N})$, then $\operatorname{Colspan}(\mathbf{M})=\operatorname{Colspan}(\mathbf{N})$.

Proof. Recall that column and row ranks are always equivalent (consider the reduced echelon form) and recall that the dimension of the vector space $\operatorname{Colspan}(\mathbf{A})$ satisfies $\operatorname{dim}(\operatorname{Colspan}(\mathbf{A}))=r k(\mathbf{A})$. Therefore, we have

$$
\operatorname{dim}(\operatorname{Colspan}(\mathbf{M}))=\operatorname{rk}(\mathbf{M})=\operatorname{rk}(\mathbf{N})=\operatorname{dim}(\operatorname{Colspan}(\mathbf{N}))
$$

Combining this equivalence with Colspan $(\mathbf{M}) \subseteq \operatorname{Colspan}(\mathbf{N})$, implies Colspan $(\mathbf{M})=\operatorname{Colspan}(\mathbf{N})$.
Lemma A.4. For any matrices \mathbf{M}, \mathbf{N} with finitely many rows and columns, $\operatorname{Colspan}(\mathbf{M} \otimes \mathbf{N})=$ $\operatorname{Colspan}(\mathbf{M}) \otimes \operatorname{Colspan}(\mathbf{N})$.

Proof. Let s be the number of columns of \mathbf{M} and let t be the number of columns of \mathbf{N} and observe that $\mathbf{M} \otimes \mathbf{N}$ has $s t$ columns. For $i \in[s]$, let \mathbf{m}_{i} denote the i th column of \mathbf{M} and for $j \in[t]$, let \mathbf{n}_{j} denote the j th column of \mathbf{N}.

For $\ell \in[s t]$, we can express ℓ uniquely as $\ell=(k-1) \cdot t+r$ for $k \in[s]$ and $r \in[t]$. By definition of the tensor product, for ℓ th column of $\mathbf{M} \otimes \mathbf{N}$ is exactly $\mathbf{m}_{k} \otimes \mathbf{n}_{r}$. This relation establishes a direct equality between a spanning set for Colspan $(\mathbf{M} \otimes \mathbf{N})$ given by the columns of $\mathbf{M} \otimes \mathbf{N}$ and a spanning set for $\operatorname{Colspan}(\mathbf{M}) \otimes \operatorname{Colspan}(\mathbf{N})$ given by $\left\{\mathbf{m}_{i} \otimes \mathbf{n}_{j}\right\}_{i \in[s], j \in[t]}$ so we obtain the desired set equality.

Finally, we recall the standard fact without proof.
Lemma A.5. Let \mathcal{I}, \mathcal{J} be index sets. If $\left\{\mathbf{b}_{i}: i \in \mathcal{I}\right\}$ is a basis for some vector space \mathbf{W}_{1} and $\left\{\mathbf{c}_{j}: j \in \mathcal{J}\right\}$ is a basis for some vector space \mathbf{W}_{2}, then $\left\{\mathbf{b}_{i} \otimes \mathbf{c}_{j}\right\}_{i \in \mathcal{I}, j \in \mathcal{J}}$ is a basis for the vector space $\mathbf{W}_{1} \otimes \mathbf{W}_{2}$.

B Analyzing the Tensor Structure in the Construction

Having recalled certain linear algebraic facts, we first analyze the column span of the following matrix

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\left\|\mathbf{I}_{m} \otimes \mathbf{U}_{2} \otimes \mathbf{I}_{m}^{\otimes(d-2)}\right\| \cdots \| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]
$$

where the matrices $\mathbf{U}_{i} \in \mathbb{Z}_{q}^{m \times w}$ are of the stipulated form (with a top $w \times w$ identity block, so of full column rank w). The column span of this matrix is some subspace of the vector space over $\underbrace{\mathbb{Z}_{q}^{m} \otimes \cdots \otimes \mathbb{Z}_{q}^{m}}_{d \text { times }}$.
Considering \mathbb{Z}_{q}^{m} as a vector space, we consider the following bases for \mathbb{Z}_{q}^{m}. For $i \in[d]$, let \mathcal{B}_{i} be a basis for
\mathbb{Z}_{q}^{m} obtained by extending the set of column vectors in $\mathbf{U}_{i}=\left[\begin{array}{l}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ to the following full rank, lower-triangular matrix

$$
\mathcal{B}_{i} \triangleq\left[\begin{array}{cc}
\mathbf{I}_{w} & \mathbf{0}_{w \times(m-w)} \\
\tilde{\mathbf{A}}_{i} & \mathbf{I}_{m-w}
\end{array}\right] \in \mathbb{Z}_{q}^{m \times m}
$$

and let $\left(\mathbf{e}_{1}^{(i)}, \ldots, \mathbf{e}_{m}^{(i)}\right)$ denote the columns (the basis vectors). We make the following straightforward observations:
Lemma B.1. The set $\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{i_{1} \in[w], i_{2}, i_{3}, \ldots, i_{d} \in[m]}$ forms a basis for Colspan $\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)$.
Proof. Lemma A. 4 implies that

$$
\operatorname{Colspan}\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)=\operatorname{Colspan}\left(\mathbf{U}_{1}\right) \otimes \operatorname{Colspan}\left(\mathbf{I}_{m}\right)^{\otimes(d-1)}=\operatorname{Colspan}\left(\mathbf{U}_{1}\right) \otimes \mathbb{Z}_{q}^{\otimes(d-1)}
$$

Then observe that $\left\{\mathbf{e}_{i}^{(1)}\right\}_{i \in[w]}$ forms a basis for Colspan $\left(\mathbf{U}_{1}\right)$ and for each $j \in[d]$, the set $\left\{\mathbf{e}_{i}^{(j)}\right\}_{i \in[m]}$ forms a basis for \mathbb{Z}_{q}^{m}. Now apply Lemma A. 5 repeatedly with the above bases to obtain the desired result.

Lemma B. 1 readily implies the following two corollaries.
Corollary B.2. For all $j^{*} \in[d]$, the set $\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{i_{j^{*}} \in[w], \forall j \in[d] \backslash\left\{j^{*}\right\}, i_{j} \in[m]}$ forms a basis for $\operatorname{Colspan}\left(\mathbf{I}_{m}^{\otimes\left(j^{*}-1\right)} \otimes \mathbf{U}_{j^{*}} \otimes \mathbf{I}_{m}^{\otimes\left(d-j^{*}\right)}\right)$.
Proof. The proof follows exactly as that for Lemma B.1.
Corollary B.3. dim $\left(\operatorname{Colspan}\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)\right)=w m^{d-1}$.
Proof. The dimension is the number of elements in the basis.
Moreover, using the above corollaries, we can analyze the column space of the blockwise concatenation of these tensor matrices which we state in the following lemma.

Lemma B.4. The set

$$
\mathcal{B} \triangleq\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{\forall j \in[d], i_{j} \in[m] \wedge \exists j^{*} \in[d] \text { s.t. } i_{j^{*}} \in[w]}
$$

forms a basis for the vector space Colspan $\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)$.
Proof. For convenience, we use the shorthand notation

$$
\begin{aligned}
\mathbf{M} & \triangleq\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right] \\
V & \triangleq \operatorname{Colspan}(\mathbf{M})
\end{aligned}
$$

A subset of vectors in a linearly independent set of vectors is linearly independent. Therefore, the set \mathcal{B} is linearly independent because it is a subset of

$$
\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{\forall j \in[d], i_{j} \in[m]}
$$

which is a basis for $\left(\mathbb{Z}_{q}^{m}\right)^{\otimes d}$ by Lemma A.5. Finally, we observe that $V=\operatorname{span}(\mathcal{B})$.

1. $(V \subseteq \operatorname{span}(\mathcal{B}))$ By the definition of column span, the columns of \mathbf{M} form a spanning set for V. Therefore it suffices to show that each column \mathbf{c} in \mathbf{M} belongs in $\operatorname{span}(\mathcal{B})$. This is easy to see because every column \mathbf{c} is a column in some block of the form

$$
\mathbf{I}_{m}^{\otimes\left(j^{*}-1\right)} \otimes \mathbf{U}_{j^{*}} \otimes \mathbf{I}_{m}^{\otimes\left(d-j^{*}\right)}
$$

where $j^{*} \in[d]$. By Corollary B. $2, \mathcal{B}_{\mathrm{blk}_{j^{*}}} \triangleq\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}\right\}_{i_{j^{*}} \in[w], \forall j \in[d] \backslash\left\{j^{*}\right\}, i_{j} \in[m]}$ is a basis for this block and therefore $\mathbf{c} \in \operatorname{span}\left(\mathcal{B}_{\mathrm{blk}_{j^{*}}}\right)$. Finally, observe that $\operatorname{span}\left(\mathcal{B}_{\mathrm{blk}_{j^{*}}}\right) \subseteq \operatorname{span}(\mathcal{B})$ by construction of \mathcal{B}. This concludes showing the containment in this direction since every column of \mathbf{M} is in $\operatorname{span}(\mathcal{B})$.
2. $(V \supseteq \operatorname{span}(\mathcal{B}))$ It suffices to show that every element of \mathcal{B} is contained in V. Pick any element of \mathcal{B}, say $\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}$. By construction of \mathcal{B}, we know that at least one of the indices i_{1}, \ldots, i_{d} is at most w. Without loss of generality assume that the first index $i_{1} \leq w$. Then for $1<j \leq d$ we can express $\mathbf{e}_{i_{j}}^{(j)}=$ $\sum_{k_{j} \in[m]} \beta_{k_{j}}^{(j)} \mathbf{e}_{k_{j}}$ where $\beta_{k_{j}}^{(j)} \in \mathbb{Z}_{q}$ is some scalar and $\mathbf{e}_{k_{j}} \in \mathbb{Z}_{q}^{m}$ (without any superscripts) denotes the k_{j}-th standard elementary vector for $k_{j} \in[m]$. Observe that $\left\{\mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}} \otimes \cdots \mathbf{e}_{i_{d}}\right\}_{i_{1} \in[w], i_{2}, \ldots, i_{d} \in[m]}$ forms a basis for Colspan $\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)$. Substitute for $\mathbf{e}_{i_{j}}^{(j)}$, for $2 \leq j \leq d$, in the element $\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)}$ to obtain the expression:

$$
\begin{aligned}
\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)} & =\mathbf{e}_{i_{1}}^{(1)} \otimes \sum_{k_{2} \in[m]} \beta_{k_{2}}^{(j)} \mathbf{e}_{k_{2}} \otimes \cdots \otimes \sum_{k_{d} \in[m]} \beta_{k_{d}}^{(j)} \mathbf{e}_{k_{d}} \\
& =\sum_{k_{2}, \ldots, k_{d} \in[m]}\left(\prod_{j \in\{2, \ldots, d\}} \beta_{k_{j}}^{(j)}\right) \mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{k_{2}} \otimes \cdots \otimes \mathbf{e}_{k_{d}}
\end{aligned}
$$

The above expression shows that $\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)} \in \operatorname{Colspan}\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right)$. Finally, we observe that $\operatorname{Colspan}\left(\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\right) \subseteq V$ by construction of V. Therefore, $\mathbf{e}_{i_{1}}^{(1)} \otimes \cdots \otimes \mathbf{e}_{i_{d}}^{(d)} \in V$. We conclude that $\mathcal{B} \subseteq V$.

Corollary B.5. For any choice of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$, $\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)\right)=m^{d}-$ $(m-w)^{d}$.

Proof. The dimension is the number of elements in the basis given by Lemma B.4. Straightforward counting gives $m^{d}-(m-w)^{d}$ many elements.

Remark B.6. As a result of Corollary B.5, we observe a rank deficiency of $O\left(w^{2} m^{d-2}\right)$ in

$$
\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]
$$

Namely, the number of columns in $\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]$ is exactly dwm ${ }^{d-1}$, but the rank is $m^{d}-(m-w)^{d}=d w m^{d-1}-O\left(w^{2} m^{d-2}\right)$.

The following corollary demonstrates why the special structure of the \mathbf{U}_{i} 's is so useful for proving uniqueness, and it plays a critical role in proving the uniqueness of the solution for $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$. In particular, we observed in Corollary B. 5 that the dimension of the concatenated blockwise tensor matrix is fixed regardless of the choice of matrices for $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$. This implies the following corollary.

Corollary B.7. For $i \in[d]$, let $\mathbf{U}_{i} \triangleq\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}\end{array}\right]$ and let $\mathbf{U}_{i}^{\prime} \triangleq\left[\begin{array}{c}\mathbf{I}_{w} \\ \tilde{\mathbf{A}}_{i}^{\prime}\end{array}\right]$. For any choice of $\left\{\tilde{\mathbf{A}}_{i}\right\}_{i \in[d]}$ and $\left\{\tilde{\mathbf{A}}_{i}^{\prime}\right\}_{i \in[d]}$, if

$$
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right) \subseteq \operatorname{Colspan}\left(\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}^{\prime}\right]\right)
$$

then

$$
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}^{\prime}\right]\right)
$$

Proof. By Corollary B.5,

$$
\begin{aligned}
\operatorname{dim} & \left(\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)\right) \\
& =m^{d}-(m-w)^{d} \\
& =\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}^{\prime}\right]\right)\right)
\end{aligned}
$$

Therefore, by Lemma A.3,

$$
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{U}_{1}^{\prime} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}^{\prime}\right]\right)
$$

Corollary B.8. With overwhelming probability over the choice of random $\mathbf{A}_{i} \in \mathbb{Z}_{q}^{m \times w}$, for $i \in[d]$, if

$$
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right) \subseteq \operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)
$$

then

$$
\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)=\operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)
$$

Proof Sketch. For brevity, we provide a short proof sketch that shows the relationship between $\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]$ and $\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]$ for some matrices \mathbf{U}_{i} that are in a normal form with a top $w \times w$ identity block.

Note, that with overwhelming probability the matrices $\mathbf{A}_{i} \in \mathbb{Z}_{q}^{m \times w}$ generated in the scheme are of full column rank w. Since they are of full column rank, for each $i \in[d]$, there exists a well-defined invertible linear transformation $T_{i}^{\prime}: \operatorname{Colspan}\left(\mathbf{A}_{i}\right) \rightarrow \operatorname{Colspan}\left(\mathbf{A}_{i}\right)$ that maps the columns of \mathbf{A}_{i} to the columns of its reduced echelon form (the matrix form is exactly $\mathbf{A}_{i, T}^{-1}$). Every such invertible linear transformation T_{i}^{\prime} can be extended to a invertible linear transformation $T_{i}: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{q}^{m}$ by acting as the identity on a set of $m-w$ vectors in \mathbb{Z}_{q}^{m} that extend the columns of \mathbf{A}_{i} to a basis for \mathbb{Z}_{q}^{m}. Observe that $T_{i}\left(\mathbb{Z}_{q}^{m}\right)=\mathbb{Z}_{q}^{m}$. Then we observe that applying the invertible linear transformation $T_{1} \otimes T_{2} \otimes \cdots \otimes T_{d}$ on Colspan $\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)$ gives us a vector space that is expressible as Colspan $\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)$ for some matrices $\left\{\mathbf{U}_{i}\right\}_{i \in[d]}$ of the desired form. By Corollary B.5,

$$
\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{U}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{U}_{d}\right]\right)\right)=m^{d}-(m-w)^{d}
$$

Invertible linear transformations preserve the overall dimension, therefore, the original column span has the same dimension:

$$
\operatorname{dim}\left(\operatorname{Colspan}\left(\left[\mathbf{A}_{1} \otimes \mathbf{I}_{m}^{\otimes(d-1)}\|\cdots\| \mathbf{I}_{m}^{\otimes(d-1)} \otimes \mathbf{A}_{d}\right]\right)\right)=m^{d}-(m-w)^{d}
$$

Finally if a subspace has the same dimension as the ambient space, then the subspace as a set must be equivalent to the ambient space (see Lemma A.3).

[^0]: *CMU. Email: aayushja@andrew.cmu.edu
 †UW. Email: rachel@cs.washington.edu
 \ddagger UCLA. Email: pslou@cs.ucla.edu
 §UCLA. Email: sahai@cs.ucla.edu

[^1]: ${ }^{1}$ In Lemma 3.17, the values of (lowercase) k are specified on page 24 of $\left[\mathrm{DQV}^{+} 21\right]$.

