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Abstract. Rollup technology today promises long-term solutions to the scalability of the blockchain.
Among a thriving ecosystem, Consensys has launched the Linea zkEVM Rollup network for Ethereum.
At a high level, the Ethereum blockchain can be seen as a state machine and its state transition can
be arithmetized carefully. Linea’s prover protocol uses this arithmetization, along with transactions on
layer two in order to compute a cryptographic proof that the state transition is performed correctly.
The proof is then sent over to the Ethereum layer, where the smart contract (verifier contract) on
Ethereum checks the proof and accepts the state transition if the proof is valid. The interaction between
layer two and Ethereum is costly, which imposes substantial limitations on the proof size. Therefore,
Linea’s prover aims to compress the proof via cryptographic tools such as list polynomial commitments
(LPCs), polynomial interactive oracle proofs (PIOPs), and Succinct Non-Interactive Arguments of
Knowledge (SNARKs).
We introduce Wizard-IOP, a cryptographic tool for handling a wide class of queries (such as range
checks, scalar products, permutations checks, etc.) needed to ensure the correctness of the executions
of the state machines efficiently and conveniently. Another cryptographic tool is the Arcane compiler,
which outputs standard PIOPs and is employed by Wizard-IOP to make different queries homogeneous.
After applying Arcane, all the queries constitute evaluation queries over the polynomials. We then apply
the Unique Evaluation compiler (UniEval), which receives the output of the Arcane and provides us
with a PIOP that requires only a single evaluation check.
At this point, we employ Vortex, a list polynomial commitment (LPC) scheme to convert the resulting
PIOP into an argument of knowledge. Since the proof size may not still be sufficiently succinct, we
apply different techniques such as self-recursion, standard recursion, and proof aggregations.
The security of different components and steps will be discussed in separate papers as we advance on
the final design of the Linea prover.

Keywords: Linea, zkEVM, SNARK, Ring-SIS, Self-Recursion, Arcane, Wizard-IOP, Range Checks,
Lookup Proofs, Permutation Proofs.

1 Introduction

Polynomial Commitments A polynomial commitment [37] is a cryptographic primitive in which a prover
commits to a polynomial P (X) and later proves the evaluation of P (X) at a given point x.

List Polynomial Commitments An LPC is a polynomial commitment with a relaxed security require-
ment: the commitment is not associated with a single polynomial but rather with a list of polynomials, where
the prover can open the commitment to any polynomial from the list. Thus the commitment is not binding
to one polynomial but to a list of polynomials.

Succinct Non-Interactive Arguments of Knowledge (SNARKs) Given a binary relation R(x,w),
SNARKs allow proving knowledge of a witness w such that the relationR (usually drawn from a large family)
is satisfied for a public input x. In particular, the verifier needs less time to verify the proof, generated by a
SNARK, rather than to re-do all the computations. In the last few years, an ever-growing number of SNARK
constructions have emerged, including Groth16 [32], Plonk [6], Halo [21], Halo2 [26], Marlin [24], Spartan
[42], Virgo [49], Brakedown [30], Orion [47], Libra [46], Aurora [15], Fractal [23], Sonic [39], Nova [35], and
Lasso [43] to cite a fraction of the existing works.



zk-VMs and zk-EVMs In a state machine, a transition is the process of moving from an old state to a
new state by reading a series of inputs and performing sets of opcodes which are a limited and low-level set
of instructions. Ethereum is, in essence, a transaction-based state machine, where the state contains all ac-
count addresses and their mapped account states. The Ethereum Virtual Machine (EVM) is the mechanism
responsible for performing the transitions as a succession of opcodes. zk-VMs (zk-Virtual Machines) and,
more specifically, the zk-EVM (Ethereum Virtual Machine) are complex and powerful cryptographic systems
that allow one party to generate proofs assessing the correct execution of a Virtual Machine using a SNARK
scheme. The proofs can be as short as a few hundred bytes and can be verified in a few milliseconds on any
platform (Groth16 [32]). For these reasons, zk-VMs have important applications in blockchain scalability and
interoperability. This is also the reason why this area of research has recently seen tremendous activity in
research and development: Linea [11], Cairo [28], Polygon-zkEVM [45], RISC [48], ScrollTech [1]. However,
building a system capable of proving arbitrary executions of the Ethereum Virtual Machine is no easy task.
To give an idea, the zk-EVM of Consensys [11] models execution traces of the Ethereum Virtual Machine
using hundreds of polynomials and thousands of arithmetic constraints of various types. In this setting, the
total witness size for proving the execution of a regular block consists of hundreds of millions of field elements.

Interactive Oracle Proofs Interactive Oracle Proofs (IOPs) are a family of abstract ideal protocols in
which the verifier is not required to read the prover’s messages in full. Instead, the verifier has oracle access
to the prover’s messages and may probabilistically query them at any positions [13]. IOP protocols can
be transformed into concrete secure argument systems using a Merkle tree. Later works have introduced
several variants of IOPs such as polynomial-IOPs or tensor-IOPs, where the prover can perform polynomial
evaluation queries [6] or tensor queries [20]. Similarly, these protocols can be converted into concrete argument
systems (including SNARKs) using functional extractable commitments. This type of approach for building
argument systems has led to an extensive line of works and has now become a standard.

Reed-Solomon Codes and Its Decoding Regimes Generally speaking, the Reed-Solomon encoding
receives the evaluations of a function over k points, considers them as the coefficients (or evaluations) of a
polynomial P (X), and then outputs the evaluation of such a P (X) over a fixed set D (usually the set of
roots of unity over the finite field Fq). The output is called a codeword of size |D|.

Considering the relative Hamming distance as the measure, a decoding algorithm receives the vector w
over D and outputs codewords close to w. For the Reed-Solomon code, one considers the unique decoding
regime and list decoding regime. In unique decoding, the radius of the ball around w (relative Hamming
distance) is small and there is only one codeword that can be that close to w, while in the list decoding
regime the radius is larger and there are many codewords that fall in the ball around w.

Recursion is a technique that consists of verifying a publicly verifiable non-interactive proof inside another
argument system. This technique can be used for building incrementally verifiable computation (IVC), proof-
carrying data (PCD), proof aggregation, or further compression of proof size. [18] specifies how to instantiate
proof-carrying data through recursion using a pairing-friendly cycle of elliptic curves. The works od Halo [21],
Halo2 [26] and Nova [35] present several techniques to implement PCD or IVC using a (possibly non-pairing-
friendly) cycle of elliptic curves. In [12] the authors present a recursion technique that specifically targets
recursion over the protocol of GKR [29] and more generally any interactive protocol whose Fiat-Shamir
transform involves hashing long string in the first round.

1.1 Our Contributions and Techniques

Arithmetization is a complex step that converts the state transition to some mathematical structure. In
Linea’s system, the structure of the arithmetization is a set of columns of fixed length. The correct state
transition is then verified by sending specific queries on these columns. The queries are usually from a wide
class: range checks, permutation checks, scalar-product checks, etc. Since working with different queries can
be prone to mistakes and more effort, we first homogenize the queries. For this purpose, we employ our
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Wizard-IOP, which receives the columns and different types of queries, and uses the Arcane compiler to
provide us with a set of columns and just one type of query. The previous columns (input of Arcane) are
technically a subset of a new set of columns (output of Arcane). The columns are treated as either the
coefficients or evaluations of corresponding polynomials and the homogenized query is the evaluation of
these polynomials.

Wizard-IOP In Section 4, we present the Wizard-IOP framework. It can be viewed as an extension
of the notion of (polynomial-)IOP [14] supporting more complex queries. In this framework, the prover is
allowed to send oracle-access to multiple vectors across several rounds of interactions and the verifier may
perform queries from a wide class. To give an idea, the verifier may send queries evaluating scalar-products
of committed vectors or polynomial evaluations. It may also send queries involving cyclic-shifts of committed
vectors or queries asserting that two vectors are permutations of each other.

Wizard-IOP allows designing protocols in a way that contrasts with the usual polynomial-IOP tech-
niques. Compared to polynomial-IOPs, Wizard-IOP offers a higher-level framework for designing protocols.
This makes Wizard-IOP suitable for designing protocols that would otherwise be more complex using solely
the framework of polynomial-IOP. Most of all, the fact that Wizard-IOP supports queries with this level of
abstraction makes it seamlessly compatible with the work of the zk-EVM specification of [11].

Arcane and UniEval compiler Thereafter, Section 5 introduces the Arcane Compiler, a tool that allows
transforming any secure protocol specified in the Wizard-IOP model into one secure in the polynomial-IOP
model. The UniEval compiler then turns this PIOP into a PIOP where the verifier queries the oracle only
on a single opening point for all polynomials. The techniques we use to build Arcane are derived from
known modular polynomial-IOPs from past works such as Plonk, Halo2, or Cairo [6, 19, 26, 28, 27]. As the
original goal of our work is to build a succinct proof system for the zk-EVM specified in [11], this compiler
approach has numerous benefits. An important one is that it allows specifying and implementing batching
and optimization techniques that would be significantly more complex otherwise. While the sub-protocols
we employ are not new, the succession of steps it follows is endemic to our work. The main feature of our
compilation steps (Arcane and UniEval) is that it yields a single-point evaluation PIOP, allowing us to use
the output of the compiler alongside a non-homomorphic polynomial commitment (i.e., Vortex) to create an
efficient argument system.

Vortex, a Batchable Polynomial Commitment (BPC) A polynomial commitment allows a prover to
open the committed polynomial over a given point. A Batchable Polynomial Commitment (BPC) allows the
same type of opening for a batch of committed polynomials on the same point. In Section 7, we present
Vortex, an adaptation of Ligero [5] into an BPC scheme inspired by the works of Brakedown [30], batch-FRI
[17], and RedShift [34].

Similarly to Brakedown, our BPC does not rely on the FRI protocol and it has a proximity check and an
evaluation check where the proximity check is indeed the Ligero test. The main difference from Brakedown is
the security regime we are dealing with. Based on encoding schemes, one can imagine two security regimes:
the unique decoding regime that is the counterpart for the standard binding and the list decoding regime
leading to a relaxed binding property where the commitment can be opened to a fixed list.

Working in the list decoding regime requires a new design. Indeed, the evaluation protocol of Vortex is
different from the one in Brakedown, where we combine the proximity check and evaluation check as the
evaluation protocol. More precisely, in Brakedown, the proximity check can be run independently of the
evaluation point, while in Vortex the proximity check is run after seeing the evaluation point.

Working in the list decoding regime can bring a trade-off of efficiency and soundness-error. Particularly, if
the field is large enough, the efficiency gain comparing to the loss in the soundness-error becomes of practical
interest.

We show that a polynomial commitment scheme in the list decoding regime (Vortex LPC) is sufficient
for the compilation of PIOP to an argument of knowledge (AoK).
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From the instantiation point of view, for hashing the columns, our Vortex scheme relies on a hash
function based on the Ring-SIS assumption [38] where we also apply an MIMC hash over the output of
the SIS-hash. The first instance of Ring-SIS-based hash functions was introduced in [38]. It is a SNARK-
friendly hash function with a linear structure defined over the ring of polynomials of degree less than d,
as Ha(s) =

∑
ai(x)si(x) ∈ R for R = Zq(X)/Xd + 1. Another advantage of using such a hash function

is the possibility of using lookup arguments if the hash computation is not computed on the verifier side.
To encode the rows, we use the (systematic) Reed-Solomon encoding [41]. Vortex commitments have size
O(

√
|M |), prover time O(|M | log |M |) and verification time O(

√
|M |). The reason our proving time is not

linear is due to the use of the Reed-Solomon erasure code (whose encoding algorithm requires FFT). Orion
and Brakedown [47, 30] achieve linear-time prover algorithms thanks to dedicated and optimized linear-time
encodable erasure codes. Although we believe our techniques could be adapted to their erasure codes, we
motivate our choice with the fact that Reed-Solomon codes are fast enough for our needs and easier to work
with for recursion. We leave this as an area of optimization to be explored in later versions of this work.

SNARK via Self-Recursion. Since Vortex is interactive and has verifier complexity and proof size O(
√
n),

using the above compilation technique does not yield immediately a SNARK. Indeed, obtaining a SNARK
requires polylogarithmic proof size and non-interactivity. To work around this problem, we use a self-recursion
technique; it works by arithmetizing the Vortex proof and returning it back to the Wizard protocol.

The self-recursion reduces the size of the proof to its square root every time it is applied. After O(log logn)
steps of recursion, we obtain a protocol with O(log logn) proof size and verification time. The proof can
then be made non-interactive in the random oracle model (ROM) using a suitably chosen hash function.
Thereafter, the resulting SNARK can optionally be compressed further to O(1) using existing proof systems
such as Groth16[32] or Plonk[6] whose concrete proof sizes are small and verification times are efficient. The
advantage of combining self-recursion together with simple recursion is that it greatly reduces the prover
time compared to going for a simple recursion with Groth16 or Plonk. One might say that self-recursion
compresses the proof loosely but fast, while recursion with pairing-based SNARKs compresses the proof
tightly but slowly.

1.2 Overview of Vortex and its Self-Recursion

Vortex Similarly to Brakedown [30] and Orion [47], the Vortex construction is simple and can be succinctly
described. Assume that P and V are the prover and the verifier. First, we elaborate on the commitment
procedure. The prover commits to a matrix W in two steps row-encoding and column-hashing. P starts
by encoding the rows of the matrix using a Reed-Solomon code to obtain a new matrix W ′ (namely, row-
encoding). The prover then hashes each column of W ′ and sends them to the verifier as its commitment
(namely, column hashing).

The protocol is then followed by two other phases, proximity check and evaluation check. In the proximity
check, the prover sends a vector u, then the prover and the verifier apply the Ligero proximity test over the
committed matrix and the encoding of vector u (the encoding is called u′). The Ligero test proves that if
the random linear combination of rows is close to codeword u′ then all the rows are close to a codeword.

Setting the distance to the unique decoding radius, there is only one polynomial close to the function
embedded in the matrix. Finally, the evaluation check guarantees that the evaluation of the polynomial
(obtained from the proximity check and unique decoding radius) over a given point x is correct.

The above description is the same as the polynomial commitment in Brakedown [30] and Orion [47]. The
main difference between Vortex and Brakedown is the evaluation protocol, where we combine the Proximity
check and evaluation check as the evaluation protocol. More precisely, in Brakedown, since we are in the
unique decoding regime, the proximity check can be run independently of the evaluation point, while in
Vortex the proximity check is run after seeing the evaluation point.

For the instantiation of the hash used on the columns, we use Ring-SIS hashing on the columns of W ′,
and we then apply MIMC over the SIS hash of the columns. Finally, a Merkle tree (based on MIMC) is used
to achieve a constant-size commitment. SIS hashing can be seen as a variant of the SWIFFT hash function
[38]. Its internal machinery is summed up in the following. Let v ∈ Fm be a vector to hash, and R be a
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polynomial ring. First, the bits of v are rearranged in a vector vb of limbs of log b bits each (b is a parameter
of the hash function). In turn, vb is embedded in a vector of polynomials w = (w1, w2, · · · , wm) ∈ Rm such
that each entry of vb corresponds to a coefficient in w in order. Given a randomly sampled public hashing
key A = (A0, A1, · · · , Am) ∈ Rm, the digest hv is obtained as the coefficients of the polynomial

hv(X) =
∑

i

Ai(X)wi(X)

.

Self-Recursion Vortex itself is transformed into a PIOP, and in order to convert this PIOP into a SNARK,
we develop a technique that we call self-recursion. At a very high level, we design a Wizard-IOP for verifying
Vortex proofs. This Wizard-IOP can be once again compiled through the Arcane compiler and Vortex. As
a result, we obtain a shorter proof at the cost of a small overhead on the prover time. This operation can
be repeated, and after O(log logn) iterations, we obtain a short interactive proof that can be compiled into
a SNARK using the Fiat-Shamir transform. Our self-recursion technique relies heavily on the fact that the
Vortex verifier uses the Ring-SIS hash for hashing the columns and the Reed-Solomon code to encode the
alleged evaluations u. Indeed, these two operations are amenable to cheap arithmetization and probabilistic
tests (due to their linear structures). Thus, they allow a very efficient recursion procedure.

2 Preliminaries

Here we define the syntax of our main building blocks; SNARKs and polynomial commitment schemes (PCS).

2.1 Argument of Knowledge

We define Rλ to be a relation generator (i.e., R ← Rλ) such that R is a polynomial time decidable binary
relation. For R(x,w), we call x as the statement and w as the witness. The set of true statements is denoted
by LR = {x : ∃ w s.t. R(x,w) = 1}. The definitions in this section are mainly borrowed from [32].

Definition 1 (Non-Interactive Arguments for Rλ). A Non-Interactive Argument for Rλ is a tuple of
three p.p.t. algorithms (Setup,Prove,Verify) defined as follows,

– σ ← Setup(R): on input R ← Rλ generates a reference string σ. All the other algorithms implicitly
receive the relation R.

– π ← Prove(σ, x, w): it receives the reference string σ, statement x and witness w. If R(x,w) = 1 it
outputs a proof π.

– 1/0 ← Verify(σ, x, π): it receives the reference string σ, the statement x and the proof π and returns 0
(reject) or 1 (accept).

Definition 2 (Completeness). Completeness says that given a true statement x ∈ LR, the prover can
convince the honest verifier; for all λ ∈ N, R ∈ Rλ, x ∈ LR:

Pr [1 = Verify(σ, x, π) : σ ← Setup(R), π ← Prove(σ, x, w)] = 1

Definition 3 (Soundness). An argument of knowledge is sound if it is not feasible to convince the verifier
of a wrong statement. More formally, for any non-uniform p.p.t. adversary A we have,

Pr[1 = Verify(σ, x, π) ∧ x /∈ LR : R ← Rλ, σ ← Setup(R), (x, π)← A(σ)] ≈ 0

Definition 4 (Knowledge-Soundness). Knowledge-soundness strengthens the notion of soundness by
adding an extractor that can compute a witness from a given valid proof. The extractor gets full access
to the adversary’s state, including any random coins. Formally, for any non-uniform p.p.t adversary A there
exists a non-uniform (expected polynomial time) extractor XA such that:
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Pr
[
1 = Verify(σ, x, π) ∧R(x;w) = 0 : R ← Rλ, σ ← Setup(R),

((x, π), w)← (A ∥ XA)(σ)

]
≈ 0

The advantage of the adversary in the knowledge-soundness game (the probability on the left side) is
called knowledge-error.1

Compared to a non-interactive argument of knowledge, a succinct non-interactive argument of knowledge,
or SNARKs, adds a requirement of succinctness. In short and informally, the proof and the verifier time must
be small compared with the witness of the relation being proven. We adopt a broad notion of succinctness
by only requiring the polylogarithmic proof size and verifier runtime in the witness size.

Definition 5 (Succinctness, SNARK). A non-interactive argument system X for a relation Rλ is suc-
cinct if the size of the proof π produced by the prover and the run-time of the verifier is O(polylog|w|), for
all relations R drawn from Rλ. A non-interactive argument system with this property is called SNARK.

2.2 Roots of Unity and Lagrange Polynomials
Let Fq be a finite field of prime order q. We call the roots of the polynomials Zk(X) = Xk − 1 the k-th
roots of unity. Together, they form a multiplicative subgroup Ωk of F∗

q , provided that k|q − 1. We say that
Zk(X) = Xk − 1 is the vanishing polynomial of Ωk.

We assume k is a power of 2, for each subgroup Ωk′ of Ωk (thus, k′|k), we have ω′ = ωk/k′ where ω and
ω′ are the generator of Ωk and Ωk′ (res.).

For any subgroup Ωk, the collection of polynomials given by (Lω,Ωk
(X))ω∈Ωk

forms the Lagrange basis
for polynomials of degree k − 1 where,

∀ω ∈ Ωk : Lω,Ωk
(X) = ω(Xk − 1)

k(X − ω)
Let v = (v1, · · · , vk) be a vector of Fk. We call v(X) the polynomial encoding v and we will often implicitly

refer to a vector and its polynomial encoding with the same notation.

v(X) =
∑
i∈[k]

viLωi,Ωk
(X) = Xk − 1

k

∑
i∈[k]

vi ·
ωi

X − ωi

When k is implicit, we use ω,Ω and Lω instead of ωk, Ωk or Lω,Ωk
for convenience in our notations.

Definition 6 (Domain Selector). We define the (sub)domain-selector as the polynomial Zn,kn(X) that is
1 over the subgroup Ωn of Ωnk, and zero everywhere else. Namely, we have Zn,kn(X) =

∑n−1
j=0 Lωkj ,Ωkn

(X)
and ω (res. ωk) being the generator of Ωnk (res. Ωn).

2.3 Polynomial Commitments
Definition 7. A polynomial commitment is a tuple of p.p.t. algorithms (Setup, Commit, Open) where,

– pp← Setup(1λ, t) generates the public parameters pp suitable to commit to polynomials of degree < k.
– C ← Commit(pp, P (X)) outputs a commitment C to a polynomial P (X) of degree at most k using pp.
– 1/0 ← Open(pp, C, x, y;P (X)) is a (public-coin) protocol between the prover and the verifier where the

prover aims to prove the relation;

R = {(x, y, C;P (X)) : P (x) = y, C = Commit(pp, P (X))}

In this protocol, the prover’s input is (P (X), x, y, C, pp) and the verifier’s input is (x, y, C, pp). The output
of the protocol is 1 if the verifier accepts the proof and 0 otherwise.

We use the definition of the correctness and the knowledge-soundness from [6].
1 Although we only use the notion of knowledge-soundness throughout this work, a more general notion exists:

witness-extended emulation where the extractor outputs an (indistinguishable) transcript of the protocol.
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2.4 IOPs and Polynomial-IOPs

An interactive oracle proof (IOP) for a relation R(x,w) is an interactive proof in which the verifier is not
required to read the prover’s messages in their entirety; rather, the verifier has oracle access to the prover’s
messages, and may probabilistically query them. In polynomial IOP (PIOP) the messages are polynomials
and the verifier has oracle access to the evaluation of polynomials on the queried points.

2.5 Reed-Solomon Codes

Definition 8 (Linear Code [47]). A linear error-correcting code with message length k and codeword
length n with k < n is a linear subspace C ⊂ Fn, such that there exists an injective mapping from message to
codeword EC : Fk → C which is called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as ρ := k/n. The distance between two codewords u, v is the number
of coordinates on which they differ, denoted as the Hamming distance ∆(u, v). The relative (or fractional
Hamming distance) is defined as δ(u, v) = ∆(u, v)/n. The minimum distance is d := minu,v ∆(u, v).

Definition 9 (Reed-Solomon Code). Consider positive integers n, k, a finite field F, and a set D ⊆ F∗

with |D| = n (the set D will be referred to as the domain). The Reed-Solomon code over F with domain D
and the message space of size k is defined as:

RS[F, D, k] := {p(x)|x∈D : p(X) ∈ F[X],deg(p) ≤ k},

By p(x)|x∈D, we denote the set of evaluations of p over the set D and n = |D| is called the codeword
size. For v ∈ D and p ∈ RS[F, D, k], we will also use the notation p|v to refer to p(v).

By F<n[X], we denote the set of polynomials of degree less than or equal to k, i.e.

F<k := {p(X) ∈ F[X] : deg(p) ≤ k},

Distance to a Reed-Solomon Code Consider arbitrary f ∈ F|D|. The distance of f from the set V =
RS[F, D, k] is defined as ∆(f, V ) := minv∈V ∆(f, v) (and similarly for relative distance).

2.5.1 Reed-Solomon Codes over Roots of Unity In this work, we choose the domain set D = Ωn as
the set of nth roots of unity. Consider a fixed generator ω of Ωk. Then D = {ωi}n−1

i=0 and we will associate
polynomial evaluations p(x)|D, called codeword space, with vectors (p(ω0), p(ω1) . . . p(ωn−1)), ordered by
the natural ordering induced by the exponents of generator ω.

2.6 A General Security Proof for Sub-Protocols

Apart from the security of Vortex that would be discussed in a separate work, all the sub-protocols that
we use (particularly the one for the self-recursion) are secure following the same reasoning. This reasoning
heavily depends on Schwartz-Zippel Lemma.

Lemma 1 (Schwartz-Zippel Lemma). Let P (X) be a non-zero polynomial of degree d over a field F. Let
S be a finite subset of F and let r be selected at random from S. Then

Pr
r∈F

[P (r) = 0] ≤ d/|F|

Throughout the paper, we always represent the sub-protocols in the PIOP framework. This would allow
us to argue their security in a general manner.
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PIOP and its Knowledge-Soundness. The PIOP is knowledge-sound if there exists a probabilistic
polynomial time algorithm E (called the extractor) which interacts with the prover on a statement x and it
has the capability: to run the prover for a specified number of steps, inspect its state and rewind it repeatedly
to a previous state. If the prover interaction would cause the verifier to accept, the extractor is able to recover
a witness w such that R(x,w) = 1.
Remark Generally, in many other protocols (and the ones we employ) the PIOP relation is reduced to global
constraints which are evaluated at random points. The resulting protocol is secure if the global constraints
are satisfied over the random points and if the size of the finite field is large enough (to have negligible
probability d/|F| in the Schwartz-Zippel Lemma, |F| should be large).

It is well-known that a PIOP can be transformed into a concrete AOK by replacing the oracle with a
polynomial commitment. For such a resulting protocol, we have:

Lemma 2 (Knowledge-Soundness of AOK). If the PIOP and the polynomial commitment are knowledge-
sound, then the AOK is knowledge-sound.

Putting everything together, all the sub-protocols can be proven to be knowledge-sound through this
general approach: first the reduction of relations to some global constraints, then the Schwartz-Zippel lemma
is applied to guarantee that the constraints are satisfied, and finally the oracle of the PIOP is replaced by a
polynomial commitment.

2.7 List Polynomial Commitment

We now present the syntax and security of the list polynomial commitment. The definitions here follow the
ones from Redshift ([34]) but extended to a batched setting. Our presentation closely follows the formalization
of [19, 6]. We considered batched openings of multiple polynomials. One difference is that we only consider
openings of all these polynomials at the same evaluation point.

The list polynomial commitment has a relaxed binding property, each commitment corresponding to a
list of polynomials that is determined by a distance parameter. The commitment can be opened to any of
the polynomials belonging to the list. Moreover, the polynomials in the list will jointly agree on the same
agreement set.

Definition 10 ((Batched) List Polynomial Commitment). A list polynomial commitment scheme is
a triplet (Setup,Commit,OpenEval) that is defined w.r.t. a linear code, distance parameter θ and domain D.
It satisfies:

– Setup(1λ, k) generates public parameters pp (a structured reference string) suitable to commit to polyno-
mials of degree < k. Implicitly, the parameters for encoding are included in pp.

– Commit(pp, f1(X) . . . fn(X)) outputs a commitment C to functions f1(X) . . . fn(X) ∈ F[X]
– OpenEval is an IOP between a prover PPC and a verifier VPC, where the prover is given n functions
f1(X) . . . fn(X) ∈ F[X] and attempts to convince the verifier of the following relation:

∃A ⊂ D s.t |A| ≥ (1− θ) · |D| and ∃(P1 . . . Pn) ∈ (F<k[X])n s.t.(
Pi(x) = yi ∧ fi(a) = Pi(a)|a∈A for all i ∈ [n]

)
∧

∧ C = Commit(pp, f1 . . . fn)

where both parties receive the following:
• security parameter λ, degree bound k and batch size n, such that k, n = poly(λ).
• The public parameters pp, where pp = Setup(1λ, k).
• An evaluation point x and alleged openings y = (y1 . . . yn).
• Alleged commitment C for functions f1(X) . . . fn(X).

In addition, the verifier receives oracle access to evaluations of fi over D.
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Definition 11 (Completeness of a List Polynomial Commitment Scheme). We say that a polyno-
mial commitment scheme has (perfect) completeness if for any security parameter λ, any integers k, n =
poly(λ), any polynomials P1(X) . . . Pn(X) ∈ F<k[X], arbitrary evaluation point x and alleged opening y, if
C = Commit(pp, P1(X) . . . Pn(X)) and Pi(x) = yi for all i ∈ [n] then an interaction of (PPC, VPC) where
PPC runs on the aforementioned parameters will result in the verifier accepting with probability one.

Definition 12 (Knowledge Soundness in the Random Oracle Model). There must exist a PPT
extractor E such that for every PPT adversary A and arbitrary degree k = poly(λ), the probability that A
wins the following game is negligible, where the probability is taken over the coins of Setup, A and VPC.
Moreover, the extractor has access to the random oracle queries of A:

– A receives degree k and pp = Setup(1λ, k). A outputs C.
– E receives the commitment C and inspects the random oracle queries made by A in the previous step

and recovers f1(X) . . . fn(X) ∈ [X].
– E applies the efficient list-decoding algorithm on all fi simultaneously to obtain list L, defined as:

L =
{

(P1(X), . . . , Pn(X)) ∈ (F<k[X])n s.t. ∃A ⊂ D, s.t. |A| ≥ |D| · (1− θ)
and fi(a) = Pi(a)|a∈A

}
– A outputs an evaluation point x and claimed openings y := (yi)i.
– A interacts with the VPC verifier of the OpenEval algorithm. The inputs of A for this subprotocol are C,
x and y.

– The extractor may check consistency and output a set S of witnesses, where S ⊆ L.
– A succeeds if VPC accepts and there exists no tuple (P1(X) . . . Pn(X)) ∈ L such that Pi(x) = yi for all
i ∈ [n].

3 Overview of compilation

In this section, we present the set of techniques we use for proving the execution of a zk-EVM. Namely, the
zk-EVM of Linea[11] is formalized in a high-level constraint language, and we translate it into a concrete
proof system producing proofs that are verifiable on the Ethereum network. As outlined in Fig. 1, we organize
this transpilation process around four major axis: the Wizard-IOP model, the Arcane compiler (including
UniEval), the Vortex commitment scheme, and a self-recursion technique.

4 Wizard IOP

The prover P of an IOP protocol[14] provides oracle access to (possibly large) messages to a verifier V.
The verifier can then send certain kinds of queries (from a small family) to the oracle. Several variants of
IOP exist in the literature. In particular, polynomial-IOPs [39], [24], [6] specify a model in which all prover
messages are viewed as polynomials and the verifier may make queries to evaluations of these polynomials
at random points of the verifier’s choice. More recent works study tensor-IOP [20] protocols in which the
verifier is granted the right to query scalar-products of the prover’s messages (seen as vectors over a field)
by random vectors with the restriction that these vectors must have a tensor structure.

Wizard-IOPs specify a model that extends this perspective on IOPs. The prover sends oracle access to
vectors over a given field and the verifier is allowed to perform queries chosen from a wide class. As we
explain later in this section, these queries can involve several polynomials or “abstract references” to them.
We elaborate on the notion of “abstract references” later, but to give an initial idea: taking the “cyclic shift”
of a vector v would be considered an “abstract reference”. The backbone idea behind Wizard-IOP is that it
allows us to specify ever more complex protocols in the simplest possible way, while intermediate protocol
design techniques (such as proving a lookup relation or a permutation relation) are treated as automatable
compilation steps. Subsequently, instead of mentally building modular protocols from the bottom up using
the notion of univariate queries as atoms of a more complex system, the framework of Wizard-IOP allows
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Fig. 1. Global structure of the prover

specifying protocols with a top-down approach. We start from an abstract protocol, and we work out an
optimized polynomial-IOP throughout the steps of the Arcane compiler Section 5. While this simplifies
protocol specification and security analysis, it also allows to automate optimizations and batching techniques.

The zk-EVM arithmetization specified in [11] involves hundreds of polynomials and thousands of con-
straints. It would be unthinkable to manually unfold all the sub-protocols and optimization techniques
required in order to present a concrete polynomial-IOP for this arithmetization. However, since their de-
scription is written in a formalism closely matching the Wizard-IOP model, we can directly transpile their
arithmetization into a Wizard-IOP.

Another advantage to reasoning in terms of compilation steps rather than sub-protocols is that it facili-
tates maintenance processes. Assume that a new (purely hypothetical) batching technique for “range-check”
is discovered and improves the prover’s runtime by a factor of 2, then we could simply add it to the compiler
and this will propagate on every Wizard-specified protocol. Similarly, if a vulnerability is found in one of the
techniques, fixing a compiler step will fix all protocols using it without any risk to forget any part.

4.1 Available queries

In the following, we list and describe the queries available to V.

Range Check Let B be a bound known beforehand. The query is made over a vector v, and the oracle
responds with 1 if and only if all the entries vi of v satisfy 0 ≤ vi < B. We denote the range checks as,
“Range” : v < B.

Inclusion Check Given two lists of vectors (seen as matrices) S and T , we check that all rows in S should be
included among the rows of T , ignoring multiplicity. We denote the inclusion query as, “Inclusion” : S ⊂ T .

Fixed Permutation Check Given two lists of vectors (seen as matrices) and any (imposed) fixed permu-
tation σ, we check that the ith row in S must equal the row at index σ(i) in T . If that is the case, the oracle
returns 1, otherwise 0. Matrices S and T are expected to have the same number of rows. We denote a fixed
permutation check as, “FixedPermutation” : S ∼σ T .

Permutation Check Given two lists of vectors (seen as matrices) S and T , all rows in S should be included
among the rows of T (and vice-versa), accounting for multiplicities. Thus, S and T are expected to have the
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same number of rows (note that in fixed permutation queries, σ is imposed. Here we just want to prove that
a permutation σ exists). We denote a permutation query as, “Permutation”: S ∼ T .

Scalar-Product Given two vectors a and b, as well as a scalar c, the oracle returns 1 if and only if ⟨a|b⟩ = c.
For the scalar-product check ⟨a|b⟩ = c, we use the notation, “ScalarProduct” : ⟨a|b⟩ = c.

Local Constraint The verifier queries several vectors at potentially different points. The oracle returns
the values for the queried positions and the verifier expects that these values satisfy a specific relation (this
relation represents the local constraint).

As an example, let u, v be two vectors to which we have oracle access. We may send the local constraint
query “Local”: u[0]−2v[1] == 0 to ask the oracle if the first entry of u equals the double of the second entry
of v. We may conveniently express local constraints over polynomials (rather than vectors) over fixed points.

Global Constraint Given a k-variate arithmetic expression C whose (total) degree should be reasonably
low and a list of k vectors v1, · · · , vk of the same size n. The oracle returns 1 if and only if for all i,
C(v1,i, · · · , vk,i) = 0.

For instance, the global constraint “Global”: Shift(u, 1) − u = 0 asserts that “all” the entries of u are
equal to the next consecutive entry of u. Thus, this constraint asserts that all entries of u are equal. Again,
we may express a Global constraint based on polynomials (rather than vectors) when it is more convenient.

A global constraint is always defined over a domain of the same size as the polynomials involved (the one
with the maximum size), Namely, for polynomials of degree d, the global constraint should be satisfied over
the domain Xd−1. Using this convention, we may not explicitly mention the domain for a global constraint.

Univariate Evaluations (UniEval) For a vector vi of size n, let the polynomial v(X) evaluate to vi on a
subgroup of n-roots of unity. The oracle returns a univariate evaluation of v(X) over a random point (random
but possibly related to other steps of the underlying protocol) chosen by the verifier. For convenience, we will
usually talk about one univariate query for multiple polynomials to let the compiler know these are queried
at the same point.

4.2 Abstract references

Abstract references are a useful way to refer to vectors that are directly derived from pre-existing committed
vectors. These operators can be combined with one another and can be used as the object of a query. For
instance, one might send a range check query for a subsample of a committed vector v rather than on the
entirety of the positions of v. Note that abstract references are neither queries nor are they committed vectors
but they can be seen as a way to make queries about committed vectors more expressive.

Subsampling The procedure is given access to a vector v of size n, and as inputs an offset i and a sampling
period k such that k|n and i < k. The object returned is a vector of size n/k obtained by taking all the
elements vjk+i for all j < n/k. We use the notation Subsample(v; i, k) to denote the subsampling from v with
offset i and period k.

Interleaving Given access to k committed vectors v1, · · · , vk, we return a reference to the vector ob-
tained by interleaving them (e.g., for the vector a = (a0, . . . , an) and b of the same size, the interleaving is
(a0, b0, a1, b1, . . . , an, bn)). We use the notation Interleaving(a, b) to designate the obtained vector.

Cyclic Shifting Given a vector v and an integer k (possibly negative), we return a cyclically-shifted version
of v by k elements. We may use the notation Shift(v; k) to refer to the resulting vector.

Repeating Returns a k fold repetition of the input vector v.
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5 The Arcane Compiler, Polynomial IOP from Wizard IOP

The Arcane compiler transforms Wizard IOPs into Polynomial IOPs. Arcane is organized as a sequence
of compilation steps, each of them responsible for a small transformation. A transformation can be either
a small optimization or a reduction technique that transforms an “abstract” query into “simpler” queries.
Applying these compilations steps one after the other produces step after step a Wizard-IOP that uses fewer
types of queries.

To provide a more tangible idea, Arcane starts by removing the range checks and converting them into
inclusion checks. Then, in their turn, the inclusion checks are converted into local, global constraints and
permutation checks and so on. In the end, Arcane outputs a polynomial-IOP where the verifier performs
one (univariate evaluation) query on each message, all at the same point. Hence, we call the resulting
protocol a single-query Polynomial-IOP. This section discusses the compilation steps of the Arcane compiler
in sequential order. To give a brief overview, the steps happen in the following order:

1. reduction of the range checks
2. reduction of the inclusion checks
3. reduction of the fixed-permutation checks
4. reduction of the permutation checks
5. reduction of the scalar-product checks
6. merging of the global constraints
7. reduction of the abstract references
8. single-point univariate queries from multiple univariate queries and local constraints

The techniques we present are essentially borrowed from previous works [26], [6] and [28].

5.1 Reduction of the Range Checks

Although a number of more optimized techniques for range-checks are known, we opt for the simplest possible
one in our settings. During a preprocessing phase, we send oracle access to a vector b = (0, 1, 2, · · · , B − 1)
for each bound B appearing in the input protocol. Then, all range-checks, “Range” v < B, are converted
into inclusion checks, assessing if all entries of v are entries of b regardless of the positions or multiplicity.

5.2 Reduction of the Inclusion Checks

The technique we present is borrowed from the work of Halo2 [26] and is given in Fig. 2. Let {Ri}i∈[m] and
{Ii}i∈[m] be two sets of columns such that all have the same size and Ii is included in the corresponding
reference column Ri. As a convention, we use v(X) to designate the polynomial which is encoding the
associated vector v in Lagrange basis. For example, by Ri(X) we mean the polynomial encoding of Ri

obtained by interpolating the entries of Ri on a domain of m-roots of unity.
As one can see, the above construction converts an inclusion constraint to permutation, local and global

queries.

5.3 Reduction of the Fixed-Permutation Checks

The technique we present is inspired by the work of [26] and [6]. Let n,m be integers and let σ be a
permutation of [n] and A = {Ai}i∈[m] and B = {Bi}i∈[m] such that B is obtained by permuting the rows of
A according to σ. As σ is known beforehand, we give oracle-access to a signature of σ in an offline phase.
This signature consists of two vectors s = (1, ω, · · · , ωn−1) and s′ = (ωσ(1)−1, · · · , ωσ(n−1)−1). Naturally, the
same s and s′ can be reused for different queries and since the polynomial encoding of s is s(X) = X there
is implicitly no need to send it to the oracle. The compiler then replaces every fixed permutation query on
A and B by a permutation query on A′ = (A∥s) and B′ = (B∥s′).
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Inclusion({Ii, Ri}i∈[m])

1. if m > 1 :
– Verifier samples r ← F and sends it to the oracle.
– Prover and Oracle set R′(X) =

∑
i
riRi(X) and I ′(X) =

∑
i
riIi(X)

else : They set R′(X) = R1(X) and I(X) = I1(X)
2. Prover sends two polynomials R∗(x) and I∗(X) to the oracle defined as follows:

– “Permutation” : {I∗, R∗} is a permutation of {I ′, R′}
– “Local” : I∗[0] = R∗[0]
– “Global” : (I∗(ωX)− I(X))(R∗(ωX)− I∗(ωX)) = 0 (∗)

Fig. 2. Reduction of the Inclusion Check.

5.4 Reduction of the Permutation Checks

Here we use the polynomial notation to denote what would be understood as vectors in the Wizard-IOP
framework. Let P1 and P2 be polynomials that are computed as an interpolation of the same vectors up to
a permutation. Namely, P1 and P2 are interpolations of v1 and v2, which are allegedly permutations of one
another (the vectors are assumed to be of the same length l). The technique we present is borrowed from a
series of works including [28], [6], [26] originating from the work of [10]. The intuition behind the protocol
is as follows: a polynomial P1(X) is the permutation of P2(X) if and only if the grand-product associated
with the first polynomial as

∏
i∈[l](X + v1,i) and the one from the second polynomial i.e.,

∏
i∈[l](X + v2,i)

are equal at a random point X = α. Or equivalently

Z(α) :=
∏

i∈[l](α+ v1,i)∏
i∈[l](α+ v2,i)

= 1

The pseudocode is given in Fig. 3 where the permutation function receives two sets of vectors {Ai}i∈[m] and
{Bi}i∈[m] and highlights how Arcane converts a permutation checks into local and global constraints.

Permutation({Ai, Bi}i∈[m])

1. if m > 1 :
– Verifier samples r ← F and sends it to the oracle
– Prover and Oracle set A′(X) =

∑
i
riAi(X) and B′(X) =

∑
i
riBi(X)

else : they set A′(X) = A1(X) and B(X) = B1(X)
2. Prover sends Z(X), the unique polynomial such that

– “Local” : Z(1) = 1
– “Global” : Z(ωX)(B′(X) + α) = Z(X)(A′(X) + α) (*)

Fig. 3. Reduction of a Permutation Check.

As one can see, the above construction converts permutation constraints into local and global constraints.

5.5 Reduction of the Scalar-Product Checks

As a reminder, Scalar-Product queries allow the verifier to query the scalar product of two committed
polynomials (seen in Lagrange basis). We describe a technique to efficiently reduce a batch of scalar product
queries into local and global constraints. This technique is derived from the univariate sumcheck described

13



in [15]. Let a(X) =
∑

i<nH
aiLωi(X) and b(X) =

∑
i<nH

biLωi(X) be two polynomials of degree nH = |H|.
We also introduce:

p(X) = a(X)b(X) mod XnH − 1 =
∑

i<nH

piX
i

then we have that
∑

i<nH
a(ωi)b(ωi) =

∑
i<nH

aibi = nHp0 = nHp(0) (due to the relation
∑

i ω
k
i = 0 for

k ̸= 0 mod nH).
This naturally gives us a technique for compiling at once a batch of k scalar-product queries on (a1(X), · · · ak(X))

and (b1(X), · · · bk(X)) into global and local constraints. In Fig. 4, the reader can assume that the verifier
already has oracle access to (a1(X), · · · ak(X)) and (b1(X), · · · bk(X)) and alleged scalar-product value c• for
each pair (a•(X), b•(X)) from the prover.

ScalarProduct(a1, . . . , ak; b1, . . . , bk; c1, . . . , ck)

1. the prover sends the polynomials aj(X) and bj(X) to the oracle.
2. The verifier sends a random challenge r ←$ F
3. The prover computes P (X) =

∑
j<k

rjai(X)bi(X) mod Xn − 1. Then, she sends oracle access to P (X) to the
verifier.

4. “Local” : sends query for P (0) and expects nH

∑
j<k

rjcj

5. “Global” : P (X)−
∑

j<k
rjaj(X)bj(X) = 0

Fig. 4. Reduction of the Scalar-Product Check

5.6 Merging the Global Constraints
This simple compiler step essentially captures all the global constraints of the input Wizard-IOP. From then
on, the compiler will group these queries into buckets according to the size of the associated domain. Coming
back to the compiler description, once all queries have been grouped in buckets, the compiler generates a
single global query per bucket by taking a random linear combination of the queries. The main objective of
this step is to reduce the overhead of the next query.

5.7 Reduction of the Global Constraints
We present a standard technique from the work of Plonk [6]. Let v1, · · · , vk be k vectors of Fn and a k-variate
arithmetic circuit C(X1, · · · , Xk) of degree d. We denote by v•(X) the polynomials encoding v• in Lagrange
basis. We have that the global constraint is satisfied if and only if there exists a polynomial Q(X) of degree
(d− 1)n such that,

C(v1(X) · · · vk(X)) = (Xn − 1)Q(X)
Starting from this observation, the Arcane compiler runs the following procedure separately for each global
query.

5.7.1 Global Constraint Over Subsampled Vectors We may encounter the case where one of the
vectors subject to a global constraint query, say, v• is subsampled from an oracle-given vector w. In this case,
we apply a variant of the above-described procedure. Let us assume v• = Subsample(i, p, w) where i, f, w are
respectively the offset, the period and the original subsampled vector. We know that p = |w|/n because the
global constraint requires its “inputs” to be of size n. If we set w′ = Shift(w, i) (cyclic-shift w by i), then we
have that v• = Subsample(0, f, w′). Now, using the fact that the polynomial encoding of w′(X) agrees with
v•(X) over the n-th roots of unity, we simply use it instead of v•(X) in the above-described procedure. As a
result, the polynomial Q(X) has degree > (d− 1)n (because w′(X) has a larger degree than v•(X)). Thus,
a drawback of this technique is that it increases the oracle complexity.
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ReduceGlobalConstraint(C, v1, · · · , vk)

1. The prover computes and sends oracle access to Q(X) computed as follows,

Q(X) = C(v1(X) · · · vk(X))
Xn − 1

2. The verifier samples a random coin α←$ F
3. The verifier makes the following query

– “Univariate” : v1(α) . . . vk(α), Q(α)
And checks C(v1(α) . . .) ?= (αn − 1)Q(α)

Fig. 5. Reduction of the Global Constraints

5.8 Reduction of the Abstract References

From this point on, the partially compiled Wizard-IOP only uses local constraints or univariate queries,
possibly involving abstract references. We now discuss how to “eliminate” these abstract references from
the protocol. For local constraints, it is quite straightforward. Since a local constraint involves opening a
vector at a specific point agreed in an offline phase, we may simply shift the fixed opening position accordingly.

On the other hand, it remains to discuss how to convert univariate queries on abstract references into
univariate queries “directly” on oracle-given polynomials (shown by P here). In the following, we summarize
the possible conversions in a list of equivalence. Since abstract references can be composed with each other,
the implicit conversion procedure must be repeated recursively.

CyclicShift(P, k)(x) = y ⇐⇒ P (ωkx) = y

Repeat(P, k)(x) = y ⇐⇒ P (xk) = y

Interleave(P1, · · · , Pk)(x) = y ⇐⇒
∑
i∈[k]

P (ω−ix)Zn,nk(ω−ix)

In the latter, n is the degree of each polynomial and Zk,nk(X) is the domain-selector (defined in Sec-
tion 2.2). Note that if the domain for Repeat(P, k) is Ωnk, then the domain for P (X) is Ωn, the subgroup of
Ωnk.

Regarding the “Subsampling”, the verifier could in theory build the polynomial associated with the subsam-
pling via Lagrange interpolation, but this requires many queries to the original polynomial. Instead, we play
with the form of global constraints and follow the procedure of Section 5.7.1. Therefore, in the current state
of this work, there is a small restriction: subsampling can only be used “at the top”. Namely, “subsampling”
may only be used at the “top” and cannot be used in univariate queries directly. When we have global
constraints over a subsampled vector, we use the variant mentioned above (Section 5.7.1 by changing the
domain of the global constraint.

6 UniEval Compiler: from PIOP to UniEval PIOP

Let P be a PIOP protocol, where for i ∈ [n], j ∈ Si, the verifier queries a polynomial Pi over a point xj .
The aim of the compiler, presented here, is to reduce the initial PIOP to a PIOP where the oracle-given

polynomials are all queried at a single random point. We will call such a PIOP scheme a UniEval PIOP,
and the single query is denoted “Grail query”. For any evaluation Pi(x) where x is not the Grail query, the
verifier gets Pi(x) directly from the prover.
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In this model, replacing the oracle with a polynomial commitment scheme requires a proof of the eval-
uation for all the polynomials at the same point i.e., over the Grail query. The gained advantage is that
batching at the polynomial commitment level is now more straightforward as all the polynomials are queried
on the same evaluation point.

Indeed, due to this compiler, batching over different points is done at the PIOP level. At the polynomial
commitment level, we only need batching over the same point.

To build our compiler, we first present a batching technique of multiple polynomials over multiple points.
We then use this protocol to compile any PIOP into a UniEval PIOP.

6.1 Multiple-Point to Single-Point Reduction

We assume a set of points T and a set of n polynomials {i ∈ [n] : Pi(X)}, each of degree di ≤ d. Each Pi(X)
is queried on a set of evaluation points Si ⊂ T . Define Ri(X) as the alleged evaluations of Pi(X) over the set
Si, namely, Ri(X) agrees with purported Pi(X) over Si (and Ri(X) is of degree |Si|). The aim is to present
a protocol for the relation;

R := {(Si, Ri(X);Pi(X))i ∀i Pi(X)|Si = Ri(X)|Si} (1)

Claim. The relation R holds if and only if:

∀i ∈ [n] : (Pi(X)−Ri(X))
∏

x∈T \Si

(X − x) is divided by
∏
x∈T

(X − x). (2)

Knowing this fact, in Fig. 6 we present our batching protocol for the relation Eq. (1). The protocol is
inspired by the batching approach presented in [19].

MPSP(S1, · · ·Sn, R1, · · · , Rn; P1, · · · , Pn)

1. the prover sends oracle access to Pi.
2. The verifier samples α←$ F.
3. The prover computes and sends oracle-access to:

Q(X) =
∑
i∈[n]

αi Pi(X)−Ri(X)∏
x∈Si

(X − x)

4. The verifier samples z ←$ F and queries P1(z), · · ·Pn(z), Q(z).
5. Finally, the verifier checks that: relation in 3 is satisfied for X = z i.e.,

Q(z)
∏

x′∈T

(z − x′) =
∑
i∈[n]

(
αi(Pi(z)−Ri(z))

∏
x′′ /∈Si

(z − x′′)
)

Fig. 6. Multi-point to single-point reduction procedure.

6.2 Compiler: PIOP to UniEval PIOP

We are now ready to compile a PIOP to its UniEval version.

– For any PIOP, define its associated protocol PIOP′ as follows; we let all the queries in PIOP be sent
directly to the prover, and let the prover respond to these queries (the prover replies with alleged values
for the evaluations, without providing a proof at this stage, as that would be handled later in the
protocol). Indeed PIOP′ is the same as PIOP where the prover also plays the role of the oracle by itself.
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– By the end of an execution of PIOP′, we get the trace of the polynomial queries issued during PIOP′;
the set of polynomials Pi, the points Si, and the alleged evaluations of Pi(X) over Si which we denote
by Ri(X) (prover’s responses).

– Now, we consider our multi-point to the single-point protocol in Fig. 6, for the statement (Ri, Si) and
the witness Pi(X) from the trace. Call this protocol MPSP(Ri, Si;Pi(X))i.

The compiler first runs PIOP′, get the trace, and then runs MPSP(Ri, Si;Pi(X))i. The resulting PIOP is
what we call UniEval-PIOP, denoted by UniEval-PIOP.

Knowledge-Soundness. Let ϵUniEval, ϵPIOP′ and ϵMPSP be, respectively, the soundness-error of protocols
UniEval-PIOP, protocol PIOP′ and MPSP(Ri, Si;Pi(X))i. Then, we have, ϵUniEval ≤ ϵPIOP′ + ϵMPSP.

7 Vortex, List Polynomial Commitment

Vortex is a variant of the commitment scheme proposed in Orion [47] and Brakedown [30], and it relies on
MIMC [4], also a lattice-based hash which we describe in Section 7.1, and an erasure-code. In this work,
we use the systematic version of the Reed-Solomon code which has encoding time O(N logN), where N is
the size of the codeword. Vortex allows to perform a batched argument of multiple committed polynomials
evaluated over the same given point x. One of the main differences here is the way we treat not just one
polynomial but a batch of polynomials. In Breakdown and Orion, they assume a large degree polynomial and
fold it into a matrix, while here we assume each row of the matrix is a separate polynomial. This is beneficial
for our use case (zkEVM) where we have to deal with many polynomials at once. Another difference is, that
we discuss the security not in the unique decoding regime, but in the list decoding regime. This point helps
us to improve the efficiency of the scheme but brings some challenges regarding the security proof and for the
PIOP transformation into AoK (PIP) through the Vortex commitment which we will address later. Vortex
is described in Section 7.2.

For a matrix of size m · n = N , the Vortex commitments and opening arguments have size O(
√
N).

Moreover, the opening arguments have verification time O(
√
N). In Section 9, we present our self-recursion

technique to achieve succinctness.

7.1 Lattice-Based Hash

The lattice-based hash function we present relies on the Ring-SIS assumption to achieve collision resistance.
The design of our hash function is essentially the same as the SWIFFT [38] hash function. The only concrete
difference is that the design of SWIFFT restricts the input set of the Ring-SIS inputs to be {0, 1} while our
hash function accepts an input set of the form [0, 2n − 1] (for small n).

Let q be a prime, Fq be the finite-field, b a power of two such that b < q and d,m two positive integers
such that d is a power of 2 and m > log q

log b . We consider the ring R = Fq [X]
Xd+1 of polynomials whose coefficients

lie in Fq modulo Xd + 1. To instantiate the hash function, we need first to go through a transparent setup
phase where a Ring-SIS key is sampled. We set N = md log b

log q . A description of the procedure is given in Fig. 7
Collision and preimage resistance are derived from the Ring-SIS and the Ring-ISIS2 problems respective

to the instances (q, m, b).
If (q− 1)|(n+ 1), the scalar product of L ·A may be computed with the following procedure. Let ω̄ ∈ Fq

such that ω̄n = −1. Note that {ω̄2i+1} forms a coset of the n-th roots of unity that all vanishes under Xn +1.
We can efficiently compute the evaluations of Li and precompute the one for Ai using the Cooley-Tuckey
algorithm (also known as FFT, or NTT in the literature). In this basis, the multiplication of polynomials
coincides with the Hadamard (entry-wise) product, and we can get h directly in evaluation before switching
back to coefficient basis in the end. Overall, the complexity of the hashing procedure is O(mn logn). For
2 Inhomogeneous SIS
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Setup(q, m, d, b)→ pp

1. A = (Ai)i<m ←$Rm

2. return pp = A

Hash(x ∈ FN
q )

1. Encode each element of x in log q/ log b limbs li, such that ∥li∥ < b for all i.
2. Arrange the limbs li as coefficients of polynomials to obtain a vector L = (Li)i<m ∈ Rm

3. Compute the scalar product h = A · L (requiring polynomial multiplication in R)
4. return h by returning its coefficients

Fig. 7. Description of the lattice-based hash

small values of n and b, other techniques such as Tom-Cook are known to be efficient as well. In Appendix A
we recap the security analysis of this hash function and give concrete parameters for a target bits of security.

7.2 Description of Vortex

In this subsection, we expand on the details of Vortex. We will first assume two integers m and k, denoting
the number of rows and columns.

Let H be our hash function (Section 7.1) parameterized to be able to hash vectors of size (at least) m.
We also use a systematic3 Reed-Solomon L with message size k and codeword-size n > k. We denote its
encoding algorithm encodeL.

Vortex consists of three algorithms: Setup, Commit, and OpenEval.

1. Setup is a transparent offline phase run by both the prover and verifier. During this phase, they perform
precomputations involving sampling the parameters for the hash and the encoding scheme used as the
public parameters.

2. The Commit algorithm: Let W , be the matrix whose ith row is wi ∈ Fk. Thus, W has m rows and k
columns. The prover encodes each row of W (noted by wi) using the encoding function and obtains W ′

(which has n columns).4 The prover then computes the hash of the columns. The value H = h1, · · · , hn

forms the commitment.
3. The batch-opening phase or OpenEval is an interactive protocol where the prover runs the ProveOpening

algorithm and the verifier runs the VerifyOpening. At the beginning of this phase, the prover holds W,W ′

and the verifier holds the final commitment as input. Both hold the statement x, y. The prover’s goal is to
convince the verifier that for ∀i < m,wi · l = yi if W is a batch of polynomials, for l := (1, x, x2, · · · , xk).
The verifier then sends the random scalar β, and the prover responds with u claimed to be u := B⊤W , if
W is polynomial, where B = (1, β, β2, . . . , βm−1). Then, the verifier samples t columns q1, · · · qt (qi ≤ n)
uniformly at random, and the prover responds with (s1 · · · st) chosen columns of W ′. The verifier computes
u′ as the Reed-Solomon encoding of u and performs the following checks for all opened columns:

– Proximity Check: the scalar-product B⊤si
?= u′

qi

– the hash of si is correct and consistent with hqi .
– Evaluation Check: the relation u(x) ?= B⊤ · y where the vector u is considered as the coefficient of

polynomial u(x)
The first check (the random combination over random columns), is used for checking the proximity of a
batch in [5]. Fig. 8 sums up the above.

3 This means the original block should be a sub-vector of the corresponding codeword. By “checksum”, we refer to
the part of a codeword, that is added beside the original block.

4 Observe that, since the encoding procedure encodeL is systematic, we have that all columns W are also columns
of W ′.
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Setup(n, m,L, λ)→ pp

1. Setup an instance of hash, Hash, corresponding to the security level λ
2. Choose t (the number of columns that should be opened later) to reach the security level λ
3. Runs pre-computations relative to encodeL (e.g., finding D ⊂ Fq and relevant parameters for the security level

λ)
4. Collect all the computed parameters in pp and return it.

Commit(pp, W )→ (h1 · · ·hn)

1. Encode each row of W and obtain W ′

2. Hash each column of W ′ to obtain (h1 · · ·hn)
3. Return (h1 · · ·hn)

OpenEval with statement (l, y)
ProveOpening(pp, W ′, x, y) VerifyOpening(pp, H, x, y)

← β

u = B⊤W
u→

q←$ [n]t
← q

(s1, · · · , st)→
u′ ← encodeL(u)
for 0 < i ≤ t:

W ′ = encodeL(W )
Denote the columns of W ′ as (s1 · · · sn′ )

⟨si|B⟩
?= u′

qi

Hash(si)
?= hqi

u(x) ?= B · y.

Fig. 8. Vortex Polynomial commitment

Constant Size Commitment. As a simple optimization over the commitment size, we apply a SNARK-
friendly hash function (e.g., MiMC hash or Poseidon) over each hi and then compute a Merkle tree over the
results.

This is particularly useful for compiling PIOP to AoK via Vortex since the Vortex commitment phase
will not be offline anymore and will be part of the proof. It is important to note, however, that the hash
function used in the construction of the Merkle tree needs to be modeled as a random oracle for the scheme
to retain extractability.

Security of Vortex. Vortex satisfies the knowledge-soundness of (batched) list polynomial commitment
given in Definition 12.

Vortex List Polynomial Commitment for Long Polynomials Here we show how to build a polynomial
commitment from Vortex.

The prover P can send a polynomial P whose degree is larger than the number of columns in W . The
polynomial can be folded in several chunks P (X) = P0(X) +XnP1(X) + · · · . Each one of the chunks Pi(X)
is then inserted into W as an entire row. To commit and open the polynomials P (X) via Vortex, set W as
above. The verifier can then recombine the Pi(X) evaluations to obtain the P (X) evaluation.

This provides us with a way to switch between the definitions of batched polynomial commitments to a
version that only commits to one polynomial.
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8 AOK from PIOP and Vortex

In [22, appendix E], combining a knowledge-sound polynomial commitment with knowledge-sound PIOP
results in a knowledge-sound argument system. This can not be applied directly to our setting. Particularly,
since we are working with polynomial commitments in the list decoding regime (LPC), the knowledge-
soundness of Vortex is not defined w.r.t a standard relation for a PC scheme.

In KVP22 [34], they show that Batch-FRI in the list-decoding regime (as an LPC) can be combined with
PLONK-PIOP resulting in an argument system. Here we generalize their result and show that any PIOP
can be combined with a LPC.

There is some evidence that shows that such a transformation can still be possible for special PIOP and
with the cost of losing a factor |L| of the soundness of PIOP [34, 16].

Slightly more formal, let (PO, VO) be a PIOP for the relation R that is transformed to a AoK (P, V ) via
a list polynomial commitment (Pc, Vc). Then it is conjectured that the soundness of AoK follows from the
following,

|L|.ϵPIOP + ϵLPC ≈ O(|L|.kc/|F|+ ϵLPC)

where k is the degree of polynomials involved in PIOP and |L| is the maximum size of the list associated
with LPC. If the size of the field is big compared to |L| working in the list decoding regime can be beneficial.

Here we give our proof intuition asserting the above conjecture is true.
Note that for LPC, a cheating prover can leverage the list decoding property to commit to a list and

later decide which one to evaluate. This means for each round, the prover may use a different agreement set
(or visually a different list index), this would increase the soundness loss to |L|r/|F|. We force the prover
to use the same agreement set over all the rounds by applying the evaluation protocol of Vortex over the
concatenation of all the matrices from different rounds. This means that while for each round the commitment
is applied over the relevant matrix, the opening is applied over a bigger matrix which is the concatenation
of all the matrices. By this technique, we succeed in keeping the soundness loss to |L|r/|F|.

9 Self-Recursion of Vortex

As Vortex proofs are large, to obtain a SNARK, we compress the proof via a self-recursion technique where
instead of opening the chosen columns (s1, . . . , st) and sending them to the verifier, the prover computes
the hashes and the scalar-products itself (while the verifier has oracle access to u′ and the hash outputs). It
sends proofs for the following facts:

– The hash values over the chosen columns are computed correctly
– The scalar-product of chosen columns and the vector B are computed correctly.
– The encoding encodeL(u) is correctly computed as u′.
– The opened columns are the right ones.

For each of the above relation, a dedicated PIOP protocol is designed. Concretely, the process of self-recursion
transforms Vortex into a Wizard-IOP in which the prover sends oracle access to the relevant messages instead
of sending them to the verifier directly (including the columns, all hash values and vector u of the Vortex
commitment).

The verifier is then tasked to perform a few queries so that he can convince himself that the prover’s
messages add up to an accepting transcript. The resulting protocol can then be recompiled again using the
Arcane compiler (developed in Section 5) and Vortex Section 7 and we can reiterate this process by reusing
different instances of Ring-SIS and Reed-Solomon codes. This technique allows us to play with the tradeoff
that we have when choosing the Ring-SIS parameters and the erasure code. Typically, Ring-SIS instances
that use a large modulus degree compress poorly but are very fast to run while, on the other hand, Ring-SIS
instances with a small modulus degree compress very well but are slower to run. This creates a trade-off
between the prover time on one side and the verifier time and proof size on the other. The self-recursion
strategy allows us to use Ring-SIS instances with a large degree for the initial steps and progressively reduce
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the degree. Similarly, we can use an erasure-code with a large rate (and small relative distance) at the be-
ginning and progressively decrease the rate as we loop into more applications of the self-recursion process.

The dedicated PIOP protocols for self-recursion would be discussed in future works as we advance on the
final design.

SNARKs from Arguments of Knowledge Consider the AOK presented in Section 8. After applying
multiple steps of self-recursion on Vortex, the proof achieves succinctness, and it is possible to finalize it into
a SNARK using the Fiat-Shamir transform.

Shorter Proof Size Optionally, it is possible to further compress the proof by a final standard recursion
(e.g., PLONK or Groth16 over the output of our scheme) for non-interactive proof systems. At a high level,
we wrap the verifier’s computations inside an arithmetic circuit. Since the self-recursed protocol is a public-
coin protocol, we compile it into a non-interactive protocol using the Fiat-Shamir transform. The random
oracle is instantiated using a SNARK-friendly hash function, such as Poseidon or RC-Concrete [31, 9]. The
underlying field of the arithmetization can differ from the underlying field of the self-recursed protocol.
Doing so comes with a multiplicative overhead in the size of the arithmetic circuit. Fortunately, the prior
self-recursion strategy already ensures that the proof to verify is already somewhat small. As a result, we get
a very short proof with a better prover time. We leave for future work the details of the concrete SNARK
scheme that we may use and of how we implement the verifier in the circuit.
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A Selecting ring-SIS Instances

In Section 7.1, we specify a generalized version of the SWIFFT hash function. In the current section, we
provide an overview of the existing attacks and their costs. As for SWIFFT, our hash function is directly an
instantiation of ring-SIS. The hash function, or rather, the family of hash functions we analyze hashes into
prime fields and support several norm bounds instead of {0, 1} for Ajtai [2] and SWIFFT [38]. The instances
that we analyze span over a large range of parameters, and this requires evaluating both lattice reduction
attacks and combinatorial attacks. Finally, the scope of this work is restricted to the classical setting.

A.1 The Short-Integer-Solution and Its “Ring” Variant

Let m > n be integers, q a prime and b < q.

Definition 13 (Short-Integer-Solution Problem (SIS)). Given random A ∈ Zn×m
q , find x such that

Ax = 0n ∧ ∥x∥∞ < b

Definition 14 (Inhomogeneous-SIS (ISIS)). Given random A ∈ Zn×m
q and t ∈ Zn

q , find x such that
Ax = t
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We start with a few observations on SIS:

– SIS (and ISIS) cannot become harder by increasing m. That is because an attacker can always restrict the
search space to m′ < m by arbitrarily forcing some entries of x to zero.

– The problem only becomes harder as we increase n, this corresponds to adding more constraints on what
can be a valid x.

– It can only become harder as we restrict to smaller b. That is because it is equivalent to restricting the
search space.

– b ≥ q makes the problem trivial, as it can be solved by Gaussian elimination in polynomial-time.

Remark 1. The work of [25] uncovered an efficient procedure for solving γ-ideal-SVP in polynomial time, a
problem closely related to ring-SIS. We argue that they do not apply to the scope of our analysis. Indeed,

– They are in the quantum setting
– The approximation factor they apply the attack on is exponential. This is not what we typically use for

cryptographic applications
– Ring-SIS is not exactly an ideal lattice problem (it is therefore not currently known if an efficient reduction

from ring-SIS to Ideal-SVP actually exists).

Now we define the ring version of the SIS problem.

Definition 15 (The Ring-(Inhomogeneous)SIS Problem). Given A ∈ Rm drawn randomly, following
the uniform distribution (for its coefficients) and b < q, the ring-ISIS problem is to find x ∈ Rm, non-zero,
such that ∥x∥∞ < b ∧Ax = 0R.

The ring-(I)SIS assumptions can be seen as special cases of SIS where A is drawn from a restricted set of
matrices representing the polynomial multiplication module Xn +1. One should note that m means different
things in our definitions of SIS and ring-SIS. For clarity “mSIS = nmRSIS”. Working with ring-SIS has several
practical benefits compared to SIS: the space taken to represent A is n times smaller, and the product Ax
can be computed much faster using FFT algorithms in nm logn instead of mn2.

A.2 Security properties

We require our hash function (as specified in Section 7.1 to have preimage resistance and collision resistance.

Definition 16 (Preimage Resistance). Given y, find x such that H(x) = y

The definition of preimage resistance coincides with the InhomogenousSIS problem. We attack it by
solving SIS (y,A) · (1, x) = 0. This is equivalently as hard as solving SIS with input size m.

Definition 17 (Collision Resistance). Find x, x′ such that H(x) = H(x′)

An attack against collision-resistance is obtained by breaking SIS for the matrix (A∥ − A), under the
constraint that a solution s = (s1∥s2)T satisfies s1 ̸= s2. This is equivalent to multiplying m by 2. From
that, we can deduce the fact that collisions are easier to find than preimages. Thus, in the following, we will
restrict our attention to attacks for finding collisions.

A.3 Overview of the cryptanalysis report

To estimate the hardness of ring-SIS instances, we consider two classes of attacks: combinatorial and lattice
reductions. In practice, no attack is known to work significantly better on ring-SIS rather than an equivalent
SIS instance. Additionally, in practice the security of our hash function is bottlenecked by attacks on collision
resistance. Thus, we will only consider the equivalent (not-ring)-SIS instance with parameters q, n,m′ =
nm, b.
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A.4 Lattice Reduction Techniques (BKZ2.0)

Foremost, we note that solving an SIS instance is the same as finding a short vector in the kernel lattice.

L = Λ⊥(A) = {z ∈ Zm′

q : Az = 0}

We are always free to pick m0 < m′ if that is convenient. The best-known algorithm to do so is BKZ2.0, a
generalization of the seminal LLL algorithm. This algorithm works by repeatedly calling an SVP oracle which
optimally reduces lattices to smaller dimension k < m0. The BKZ algorithm will output, with overwhelming
probability, a vector of size b2 = ∥v∥2 = δm0vol(L)1/m0 and thus we need to set,

b2 = δm0qn/m0 ∧ b
√
m0 < q (3)

The second term comes from the fact that if m0 is too big, then the smallest L2-ball containing the L∞
ball of SIS candidate contains the whole space. This does not necessarily mean the instance is broken, but it
means our estimations are irrelevant. Therefore, we will reject those cases. We recall that for random lattices,
kernels vol(L) = qn with overwhelming probability.

There are two strategies to choose b2.

– Pessimistic Pick b2 to be the radius of the smallest ball (not centered at 0) that contains [0; b[m0 . In that
case, from the Minkowski bound,

b2 =
√
m0

b

2
.

– Heuristic Pick b2 to be the radius of a ball whose volume equals bm. This gives us

b2 = b
Γ (m0/2 + 1)1/m0

√
π

For our parameters, we pick the heuristic approach.

Here, we have two free parameters: m0 and δ. δ is what we call the root Hermite factor. It can be inter-
preted as the “output quality” that you can expect from BKZ. For the most part, it depends on the BKZ
block-size k (and also a little on m0).

A comprehensive choice of the oracle, along with a model for their runtime can be found in the work of
[3]. All oracles and models come with different tradeoffs. The most efficient ones (in runtime) are sieve ones,
while enumeration ones require smaller space. Finally, based on the work of [44], we take that LD Sieve is
the fastest sieve algorithm. This gives us the following heuristic runtime formula (in CPU cycles) for a single
call to the SVP oracle.

log toracle = 0.292k + 16.4 (4)

In a recent work, [36] gives a refined estimation of the overall runtime of BKZ2.0 (number of calls to the
oracle) alongside a lower-bound of the achieved root-Hermite factor. In [36], they give a lower bound for the
L2 norm of the first vector of the output basis, but we worked out the root-Hermite factor. We present their
result in the two equations below. ρ gives the total number of calls to the oracle and the second expression
is a lower-bound on the obtained δ.

ρ = m0
3

k2 logm0

log δ = 1
2m0(k − 1)(m0 − 1 + k(k − 2)

m0
) log γk (5)
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γk is a mathematical constant: the k-th Hermite constant. We do not have a closer formula for it. It is
related to the density achieved by optimal sphere packing in dimension k. LN20 [36] uses it because they
wanted an upper-bound in the running time of an SIS instance for all existing lattices with given dimension
k. In practice, we use random lattice instances, and we instead use estimations of the density of a random
lattice instance. Thus, we use a term obtained using the Gaussian heuristic instead (as it is advised by the
authors of LN20) and this will give us Eq. (6):

log δ = 1
4m0(k − 1)

(
m0 − 1 + k(k − 2)

m0

) (
log k

2πe + 1
k

log πk
)

(6)

One should note that Eq. (6) is only asymptotically correct. Thus, we will only use it for k > 36. This is
to avoid inaccuracies from using values out of the range. This value was obtained from an experiment where
we increased k and m0 with k = m0. The values of log δ we obtained were growing for k < 36 (which led to
the decision to discard them) and decreasing for k > 36. In practice, we have only retained parameters-values
for which k > 200 thus the latter is not a concern here.

A.5 Combinatorial Attack

In addition to lattice reduction techniques, an important class of attacks for SIS and ISIS stems from the
field of attacks against the subset-sum problem.

A.5.1 Camion-Patarin and Wagner attacks The course [40] describes the basic version of these
attacks and gives an easy procedure to determine their efficiency. The attack is also known as CPW. In [7],
the authors present several improved methods over the former method, and they achieve a 10-bit reduction
on SWIFFT. Those improvements have been obtained by generalizing the initial attack for which they used
careful manual-tuning of its parameters.

As in [7] suggests, once we have found the optimal list-tree depth k, we can reduce the value of m to the
smallest value that verifies

2k

k + 1 <
m log(b)
n log q

We remind the reader that we are looking for collisions in the input space x ∈ [0; b[m which differs from
∥x∥∞ < b. This explains why our formula uses b in place of 2b − 1 as it can be sometimes found in the
literature. The above attack can, in fact, be generalized to a setting where the output space is split in k
chunks of size l1, l2, . . . , lk such that

∑
i li = n. By tweaking the size of each li we can optimize the attack.

Methodology We will consider two cases:

– If n ≤ 50, we exhaustively try every possible combination of li such that
∑

i li = n for k < log2 m.
And we simulate the attack by counting all operations. To reduce the cost of the exhaustive search, we
restrict the search space to li ≤ li+1.

– If n > 50, then we apply the simplified analysis given in [40]. From [40], the cost this will give us is an
overly pessimistic result, but in practice, these SIS instances are better attacked using lattice reduction
techniques. Thus, this fact is without consequence on our estimations.

In our estimation, for values of n (i.e., the dimension of the output space), we considered a refinement of
the technique to account for the fact that different tunings are possible (splitting the output space in “non-
equals” chunks). We exhaustively search the best set of parameters when n < 50. Otherwise, the exhaustive
search of parameters is too computationally heavy, and we fall back to the method of [40]. This is without
consequence for our estimations. Indeed, in practice, for our choices of q, we observe that SIS instances with
n < 50 are typically bottlenecked by the BKZ attack—for our choices of q—in practice.

To estimate the cost of the attack:
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– In the basic case, we use the formula
– In the exhaustive case, we simply count all operations. We assume the running time of merging two lists

is linear in the size of the resulting merged list. We consider that the running time of creating the initial
leaves lists is roughly equal to enumerating all possibilities.

A.5.2 On the HGJ and BCJ refinements Howgrave-Graham and Joux introduced these techniques
in 2010, [33]. This class of attacks is somewhat similar to CPW, in the sense that it relies on recursively
splitting the initial problem and merging the partial solutions. As an outline, the difference there is that it
relies on splitting the problem in “weight” rather than in space.

Definition 18 (Density of a SIS instance). These techniques have proven to be more effective when
the problem has a low-density of solutions, while CPW is more effective for higher-density instances. In
our case, we seek to pick instances of SIS which maximize the “compression ratio” and hence the density.
Typically, our instances have densities that are above the range of effectiveness of these attacks. Thus, we
do not consider them in this work.

A.5.3 On Optimizations for Ring-SIS In [8], the authors present a technique to reduce the cost of the
attack when the set of *acceptable* input polynomials is preserved by multiplication by the transformation
ψ : s(X) → Xs(X). This is the case when either the ring modulus is Xn − 1 or the input space has sign
symmetry (meaning B = −B) and the modulus is Xn + 1. We stress that neither is our case, and we recall
that we use the modulus Xn + 1 with B = [0; b[.

It is however possible to reduce to a case where this technique is applicable nonetheless. Let 1m =
(1, 1, 1, . . .),, instead of directly trying to find s such that As = 0 we seek s′ ∈ B′ =′ B − b−1

2 such that
A(s′ + b−1

2 (1, 1, 1, · · · )) = 0. If b is even (our case), then the solution space for s′ has sign symmetry. We
note that although B′ is not a set of short integers, this does not affect the runtime of CPW.

We do not expand on the technical details of the techniques. At a high-level, these techniques decrease
the size of each list by a factor of 2n, where n is the degree of the ring-modulus. Thus, it achieves a speed-up
of 2n.

However, as the work of [8] points out, this optimization is incompatible with the following one, based
on the Hermite Normal Form (HNF).

A.5.4 Optimization using the Hermite Normal Form (HNF) The Hermite Normal Form of a
matrix is an equivalent representation of the (I)-SIS problem. If A = (A0∥A1∥ . . . ∥An−1) is the SIS matrix,
then we call H = (I∥A−1

0 A1∥A−1
0 A1∥ · · · ) = (I∥A′) its normal form. The (I)SIS can then be equivalently

rephrased as, what we call, the approximate (I)SIS problem.

Definition 19 (Approximate (I)SIS problem). Find s, e ∈ B, such that Ax + e = R, where R = 0 in
the homogeneous case.

Based on this, we can adapt the CPW algorithm to turn it into an attack for the approximate (I)SIS
problem. [8] expands on the details of the algorithm.

Some notes on the costs estimates We note that both estimates are missing some hidden costs,

– The attacks we consider are typically as memory intensive as they cost in terms of computation.
– We do not account for the evaluation costs of each partial candidate solution. This would in practice add

a few bits of security.
– The storage of each candidate is not “1”. On top of impacting the memory complexity (which we chose

not to account for anyway), it has an impact on the costs of the memory accesses as well.

For these reasons, we believe the costs are somewhat over-pessimistic. Nonetheless, we prefer to go with
the initial approach and leave it as a future task to evaluate the concrete cost in CPU cycles of these attacks.
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A.6 Concrete parameters

Based on the above analysis, we have run a parameter selection. The table below gives a set of parameters
for the ring-SIS instance. Here, q denotes the order of the underlying prime field, b is the bound of the SIS
instance, and n is the degree of the ring modulus Xn + 1.

log2(q) log2(β) n BKZ attack CPW attack
64 2 32 182.17 144.0
64 4 64 147.31 305.57
64 6 128 166.13 598.14
64 10 256 149.93 1272.31
64 16 512 136.4 2741.67
64 22 1024 160.7 5967.82
254 2 7 157.7 259.03
254 4 16 146.1 270.0
254 6 32 164.73 637.0
254 10 64 148.63 1262.46
254 16 128 135.18 2720.33
254 24 256 133.28 5921.27
254 32 512 164.03 13013.8
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