
Witness-Succinct
Universally-Composable SNARKs⋆

Chaya Ganesh1 , Yashvanth Kondi2, Claudio Orlandi2 , Mahak Pancholi2, Akira Takahashi3 , and
Daniel Tschudi4

1 Indian Institute of Science
chaya@iisc.ac.in

2 Aarhus University
{ykondi,orlandi,mahakp}@cs.au.dk

3 University of Edinburgh
takahashi.akira.58s@gmail.com

4 Concordium
dt@concordium.com

April 26, 2023

Abstract. Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs)
are becoming an increasingly fundamental tool in many real-world applications where the proof
compactness is of the utmost importance, including blockchains. A proof of security for SNARKs
in the Universal Composability (UC) framework (Canetti, FOCS’01) would rule out devastating
malleability attacks. To retain security of SNARKs in the UC model, one must show their
simulation-extractability such that the knowledge extractor is both black-box and straight-line,
which would imply that proofs generated by honest provers are non-malleable. However, existing
simulation-extractability results on SNARKs either lack some of these properties, or alternatively
have to sacrifice witness succinctness to prove UC security.

In this paper, we provide a compiler lifting any simulation-extractable NIZKAoK into a UC-
secure one in the global random oracle model, importantly, while preserving the same level of
witness succinctness. Combining this with existing zkSNARKs, we achieve, to the best of our
knowledge, the first zkSNARKs simultaneously achieving UC-security and constant sized proofs.

⋆ An extended abstract appeared at Eurocrypt 2023. This is the full version.

https://orcid.org/0000-0002-2909-9177
https://orcid.org/0000-0003-4992-0249
https://orcid.org/0000-0001-8556-3053
https://orcid.org/0000-0001-6188-1049

Table of Contents

1 Introduction . 3
1.1 Our Results . 5
1.2 Technical Overview . 6
1.3 Related Work . 8

2 Preliminaries . 9
2.1 UC Framework . 9
2.2 Succinct Non Interactive Zero-Knowledge Proof . 10
2.3 Succinct Polynomial Commitment Scheme . 12

3 Succinctness-Preserving UC NIZK Compiler . 14
3.1 Security Proof . 16

4 Instantiating our Compiler . 17
4.1 A Candidate PCS and PES Scheme . 19
4.2 Candidate NIZK Schemes . 20

A Omitted Proofs . 24

1 Introduction

The UC framework and UC Secure NIZKs. The Universal Composability (UC) framework [Can01]
allows for the modular design and analysis of complex cryptographic protocols, and guarantees security
in the presence of arbitrarily many sessions running concurrently. The environment Z (representing
everything that is external to the execution of the protocol of interest) interacts with the protocol, at
the conclusion of which it outputs a decision bit, indicating whether it thinks it has interacted with
a “real-life” adversary A and parties running the protocol, or with an “ideal-process” adversary (or
simulator) Sim and parties accessing the so-called ideal functionality F specifying the ideal outcome
of a given protocol.

This paper focuses on non-interactive zero-knowledge proofs (NIZK) [BFM90,BSMP91] in the UC
framework. In the standalone setting, security of NIZKs is guaranteed by showing standard proper-
ties separately such as completeness, zero-knowledge, and (knowledge) soundness under some setup
assumptions, like a common reference string (CRS) or the Random Oracle Model (ROM). However,
several restrictions and stronger properties come into play once the NIZK functionality is to be realized
in the UC model. A common methodology to design NIZKs in the ROM is to start with an interactive
argument which is proven ZK/knowledge sound, and then compile this interactive argument into a
non-interactive proof. This means that NIZKs that are proven secure using rewinding (either for ZK
or for extraction) are at odds with UC, because the environment Z is an interactive distinguisher be-
tween the real execution protocol and the ideal process, and therefore a simulator Sim in the security
proof cannot rewind Z. Thus, straight-line simulation and extraction are required for a NIZK to be
UC secure. Informally, a proof system is straight-line extractable if one can efficiently extract a valid
witness without interacting with any successful prover. On top of extraction being straight-line, by
definition, UC simulators must be able to obtain a witness having only black-box access to Z, i.e.,
without knowing the concrete code of Z.

Another important ingredient to realize UC security is non-malleability (NM) [DDN91], which is
often referred to as simulation-extractability in context of UC (NI)ZK [Sah99,DDO+01,PR05,GMY06,
JP14,FKMV12]. Essentially, a malleability attack allows an adversary to maul existing proofs observed
during the protocol execution, and to forge a proof on some statement for which they do not know the
corresponding witness. Preventing such attacks is crucial in the UC model: as Z may ask uncorrupted
provers or simulator to produce proofs on arbitrary statement-witness pairs, the ability to maul such
proofs will induce the simulation to fail (i.e., Sim fails to extract a witness) and thus helps Z distinguish
the real execution from the ideal one. The non-malleable NIZK construction of [DDO+01] was shown
to be UC secure in [CLOS02]. Subsequently, [GOS06, Gro06] constructed UC secure NIZKs in the
presence of adaptive adversaries, and [Gro06] proved that simulation-extractability is necessary for
UC. In sum, black-box extraction (BBE), straight-line extraction (SLE) and simulation-extractability
(SIMEXT) are the properties a NIZK must satisfy in order to be UC secure.

We now discuss UC security for SNARKs (succinct non-interactive arguments5 of knowledge)
where the communication is sublinear (ideally polylogarithmic or constant6) in the size of the non-
deterministic witness used to verify the relation. A SNARK is circuit-succinct if the proof size is
sublinear only in the size of the circuit representing the statement; if it is sublinear in the length of
the witness too, it is witness-succinct. Many SNARK constructions in the literature rely on knowledge
assumptions to prove witness extraction, i.e. their extractors rely on examining the concrete code of
the adversary in order to extract a witness. As discussed earlier, this is a barrier to achieving UC
security, as simulation in the UC framework can not depend on the code of the environment.

One simple folklore method to obtain UC-secure circuit-succinct NIZK given a SNARG (a SNARK
that only guarantees soundness, not proof-of-knowledge) and a (perfectly correct) public key encryption
scheme is the following: a public key pk serves as a common reference string, given which the prover
computes a ciphertext ct to encrypt the witness w under randomness r. The prover then computes
a SNARG π that proves that the message encrypted by ct is indeed a witness to the statement, and
outputs (ct, π). This tuple now constitutes a straight-line extractable NIZK, as the extractor (given
sk) can simply decrypt ct to obtain w—intuitively this w must be a valid witness since ct is a perfectly
binding commitment to w, and so if w is not a valid witness then π would be proving a false theorem.
Notice that this proof additionally inherits the circuit succinctness property of the SNARG, as ct is of
5 Argument systems are proofs where soundness is computational. For proofs to be shorter than the length of

the witness, restricting to arguments is necessary [GH98,GVW02].
6 Polynomial only in the security parameter.

3

size O(|w|) and π is the SNARG itself. This approach was described by De Santis et al. [DDO+01] in
the context of lifting ordinary NIZK to simulation-sound NIZK, and implemented as part of the C∅C∅
framework for circuit-succinct UC NIZK by Kosba et al. [KZM+15], with optimizations for concrete
efficiency using the state-of-the-art SNARKs at the time. C∅C∅ further proposed an optimized method
to obtain non-malleability, by additionally proving that the encrypted string is a valid signature on
the statement. Putting all these features together, C∅C∅ serves as the first generic UC lifting compiler
preserving circuit succinctness.

A major limitation of this technique is that it is inherently limited to producing proofs that are at
least as large as the witness, by virtue of the witness having to be ‘decryptable’ from the ciphertext.
Constructing witness-succinct proofs that enjoy black-box straight-line extraction appears to require
a fundamentally different approach. Indeed, Kosba et al. remarked that there is “no known UC-secure
zero-knowledge proof construction that is circuit and witness-succinct, even under non-standard as-
sumptions” [KZM+15, pg. 2], and left open the question of whether such an object is even feasible to
construct. Given this, one may ask:

Is it possible to obtain UC-secure witness-succinct NIZKs
under well-studied setup assumptions?

The requirement of “well-studied” setup assumptions is meant to capture those forms of setup that
have generally accepted realizations. In this work, we consider the common reference string (CRS)
model, and the random oracle model (ROM) to fall within the scope of well-studied setup. For SNARKs
in particular, there is already established infrastructure to generate the CRSs required (via so called
“powers of tau” ceremonies implemented by major blockchains such as ZCash, FileCoin, etc. [BGG19]).
There are also established heuristics to instantiate the ROM in practice with carefully chosen hash
functions, and the ROM itself is arguably amongst the oldest and most comprehensively studied
idealized models [BR93].
Models we do not consider. Several SNARK constructions are known to be secure with non-black-
box extraction under knowledge assumptions, or in idealized models such as the Generic Group Model
(GGM) or Algebraic Group Model (AGM). The UC-AGM framework [ABK+21] allows to model
the AGM and algebraic adversaries in a composable fashion. However, doing so requires the use of
algebraic environments making it incompatible with standard UC. The other related alternative model
is considered in [KKK21] where they formally define the concept of knowledge-respecting distinguishing
environments, enabling the usage of primitives relying on knowledge assumptions in larger protocols.
However, their entire formalization is built on top of a different compositional framework [Mau11]
than UC. Similar to the UC-AGM framework, distinguishers in their model are globally assumed to
explain how they computed each knowledge-implying object they output, making themselves weaker
than environments in the standard UC.
Succinct Arguments of Knowledge with a CRS alone. Folklore has long held that NIZKs in
the CRS model with black-box straight-line extraction cannot be witness-succinct, as the witness must
be ‘decryptable’ from the proof string as in the simple approach described earlier. Indeed, all pairing
based efficient SNARKs that are witness-succinct in the standard model with a CRS (like [GGPR13,
PHGR13]) are not black-box extractable7. The intuition is that for a language whose witnesses have
enough entropy, an argument that is too “short” cannot contain enough information about a witness:
this makes extraction impossible for an extractor that does not have any additional power, like access
to the prover’s randomness (like in non-black-box extractors) or the ability to rewind the prover (like
in interactive arguments and resulting NIZKs compiled in the ROM). We refer the reader to the recent
work of Campanelli et al. [CGKS22] for a formal treatment of this. Given that black-box extraction is
necessary for UC security, we consider it justified to consider UC security in the ROM in light of this
impossibility.
Succinct Arguments of Knowledge in the ROM. There are several witness-succinct proof sys-
tems in the ROM in the literature such as the classical Probabilistically Checkable Proofs (PCP)
based approach of Kilian [Kil92], Micali’s CS proofs [Mic00], and the recent works on Interactive
Oracle Proofs [BCS16]. However to our knowledge, there are no witness-succinct proof systems in
the ROM that have been formally analyzed in the UC framework. While some of these construc-
tions [Mic00, AHIV17, BSBHR18] are black-box straight-line extractable, simulation-extractability of
these has not been shown. SNARKs in the ROM that are logarithmic in the statement and wit-
7 Pairing based constructions like PLONK, Sonic, Marlin are not black-box extractable as well, but they are

also in the ROM in addition to requiring a CRS.

4

Scheme Assumption Model Transparent BBE SLE SIMEXT

STARK [BBHR18] ROM ROM ✓ ✓ ✓ unknown
Aurora [BCR+19] ROM ROM ✓ ✓ ✓ unknown
RedShift [KPV19] ROM ROM ✓ ✓ ✓ unknown
Bulletproofs [BBB+18] DLOG ROM ✓ ✓ ✗ ✓ [GOP+23]
SONIC [MBKM19] AGM & q-DLOG CRS & ROM ✗ ✗ ✓ ✓ [GKK+22]
PLONK [GWC19] AGM CRS & ROM ✗ ✗ ✓ ✓ [GKK+22]
Marlin [CHM+20] AGM CRS & ROM ✗ ✗ ✓ ✓ [GKK+22]
Groth16 [Gro16] GGM CRS(& ROM for NM) ✗ ✗ ✓ ✓ [BG18]
Groth-Maller [GM17] XPKE & Poly CRS ✗ ✗ ✓ ✓

LAMASSU [ARS20] q-MC & q-MK & BDH & DL CRS ✗ ✗ ✓ ✓

Ours + [GM17] + [KZG10] XPKE & Poly & SDH CRS & GROM ✗ ✓ ✓ ✓

Ours + [ARS20] + [KZG10] q-MC & q-MK & BDH & DL & SDH CRS & GROM ✗ ✓ ✓ ✓

Table 1: Known properties of existing (witness-succinct) zkSNARKs compared to example instanti-
ation of our compilation. “BBE” stands for black-box knowledge extraction; “SLE” for straight-line
knowledge extractor; “SIMEXT” for simulation-extractability. We say a proof system is “transparent”
if no trusted generation of CRS is required. Note that the assumptions for the last row are derived
from an example instantiation of [ARS20, Theorem 4] where they adapt [GKM+18] as an underlying
SNARK.

ness size are known from conservative computational assumptions such as the hardness of computing
discrete logarithms [BCC+16, BBB+18] in the standalone setting. Bulletproofs [BBB+18] are known
to be simulation-extractable, but currently only in the AGM+ROM [GOP+22] or in the ROM with
rewinding [GOP+23,DG23]. If a CRS is assumed in addition to ROM, then constructions like PLONK,
Sonic, and Marlin also provide constant sized (polynomial only in the security parameter) proofs, but
their simulation-extractability is only shown in AGM+ROM [GKK+22]. We indicate these properties
of existing SNARKs in Table 1. Given this state of affairs, we can refine our earlier question to the
following:

Is it possible to obtain UC-secure NIZKs with constant size proofs
in the random oracle model?

1.1 Our Results
In this work, we answer the above question in the affirmative. In particular, we give a compiler (in the
ROM) that lifts any SNARK from non-black-box to black-box straight-line extraction, with constant
(i.e. Oλ(1)) overhead.
Theorem 1.1. (Informal) Given a non-black-box simulation-extractable zkSNARK ΠR for a relation
R and a succinct polynomial commitment scheme, there exists a UC-secure, witness-succinct zkSNARK
ΠUC-R in the (global random oracle (GRO), local setup (FSetup))-hybrid model, where GRO is observable
but non-programmable as in [CJS14] and FSetup models the setup required by the original zkSNARK
ΠR (e.g., a trusted CRS generator or the local random oracle).
Plugging well-known SNARKs such as [GM17, ARS20] into our compiler gives us as a corollary the
first constant sized UC NIZKs in the (GRO,Fcrs)-hybrid model, from pairings under knowledge assump-
tions.
Remarks. There are a few qualifications to our main theorem:

– Knowledge Assumptions: Any output NIZK produced via our compiler inherits the knowledge as-
sumptions used by the input SNARK. However, as knowledge assumptions cannot be used directly
in the UC framework (as simulation cannot depend on the environment), the extraction strat-
egy for our compiled SNARK does not involve invoking the non-black-box extractor of the input
SNARK. Intuitively, we only make use of the input SNARK’s non-black-box extractor to argue the
indistinguishability of intermediate hybrid experiments (which can depend on the environment).

– Unique Proofs: Our compiler requires polynomial commitments that support a new ‘unique proof’
property, i.e. it is hard for an adversary to produce two distinct proofs for the same evaluation
point. This is in fact an analogous notion to unique response defined for ROM-based NIZK proofs
to be simulation-extractable [FKMV12, GOP+22]. Although this is not a standard property in
the stand-alone setting, we show that it is a natural feature of common polynomial commitment
schemes such as KZG [KZG10].

5

1.2 Technical Overview

We begin with the observation that most SNARKs already have straight-line zero-knowledge simula-
tors—the verifier of a non-interactive object has no secrets and so there is nothing to be gained by
rewinding or looking at its code—and therefore simulating an honest prover’s SNARK string in the
UC context is straightforward. Moreover, a plethora of work suggest that many concretely efficient
SNARKs are already simulation extractable (see Table 1). The barrier to using existing SNARKs in
the UC context is that the only known extractors require either looking into the code of the prover
(i.e. non-black-box extraction) or rewinding the prover. Neither of these extraction techniques can be
directly used within the UC framework, as the simulator in the UC experiment can not rewind the
environment, nor depend on its code.

Previous works have recognized the fact that even though simulation must be straight-line in the
UC framework, their proofs of indistinguishability can make use of arguments that involve rewinding
the environment [DSW08, CDG+18]. The underlying principle is that even though the environment
can not be rewound during simulation for the UC experiment, rewinding the environment can still
be helpful as an analytical tool, for example in generating intermediate hybrid distributions between
the real and ideal experiments. To our knowledge, this principle has not been applied to the case
of non-black-box simulation, i.e. generating intermediate hybrid distributions using the code of the
environment.

Our insight is that the existence of a non-black-box extractor guarantees that in order to produce
a SNARK, the environment must fundamentally ‘know’ a witness—lifting the SNARK to a UC NIZK
is then a matter of forcing the environment to use this knowledge. We describe below how we leverage
this insight, by incrementally building upon the simple approach described earlier.
Commitments instead of encryption. Recall that the simple approach—where a proof consists of
ciphertext ct and proof π that ct encrypts a witness—is bottlenecked by the ciphertext having to be
‘decryptable’, which means that |ct| ∈ Ω(|w|). If we relax the decryptability requirement, we can have
ct be a commitment instead. This is helpful, because commitments can be independent of the size of
the message committed, and therefore succinct. Obtaining the witness from ct now becomes a matter
of extracting a committed message rather than simply decrypting a ciphertext, and forms the core of
the technical challenge.
Core Tool: Succinct, provable, straight-line extractable commitments. Straight-line extractable
commitments are typically straightforward to construct in the random oracle model—simply comput-
ing H(w, r) to commit to w with randomness r suffices [Pas03,CDG+18]. However H must be a random
oracle to enable straight-line extraction, meaning that one cannot prove statements about its input.
This is an issue as we need to prove that w committed to in ct is indeed a valid witness. This issue can
be solved by assuming that since H is instantiated with a concrete hash function, it will have a circuit
representation (as is common in the literature on recursive SNARKs [BCMS20, COS20]) however we
wish to avoid such heuristics.

We must therefore construct a ‘provable’ commitment scheme, i.e. one that has a meaningful
circuit representation while also supporting straight-line extraction of the committed message. Our
methodology for designing such a commitment involves two parts (cm, πcm), where cm is a commitment
string output by a standard model commitment algorithm Com, and πcm is a straight-line extractable
proof of knowledge of its opening—notice that now it is meaningful to prove via a SNARK that cm is
a commitment to a valid witness, as Com is a standard model algorithm. Since it is straightforward to
achieve |cm| ∈ Oλ(1), we will focus on the design of πcm.

Like much of the SNARK literature, in constructing πcm we leverage the fact that arithmetization
is conducive to succinct proofs. In particular, we instruct the prover to encode the witness w as the
coefficients of a polynomial f(x), and commit to f within cm (rather than committing to w directly).
Assuming a prime q ∈ ω(poly(λ)) is a parameter of the scheme, and d ∈ Z a parameter of the statement,
w is interpreted as a vector w ∈ Fd

q that characterize the coefficients of the degree8 d − 1 polynomial
f ∈ Fq[X]. Our straight-line extraction strategy will be to ensure that the prover queries at least d
evaluations of f to the random oracle (i.e. enough to reconstruct w), by having the verifier check a
subset of the evaluations. Importantly, this validation of f can be performed succinctly; the verifier
need only query Oλ(1) evaluations of f , and each evaluation can be authenticated at Oλ(1) cost. We
sketch our ideas behind these principles below.
8 We remark that the actual compiler needs to inflate the degree according to the number of revealed evalua-

tions in order to retain zero-knowledge, but we omit this technicality here for ease of exposition.

6

Oλ(1) Verifier Queries: The prover first evaluates f at n points and commits to each {f(i)}i∈[n]. The
prover is then instructed to reveal r of the committed evaluations—which are checked for correctness—
to guarantee that the commitments contain at least d−1 correct evaluations in total, with overwhelming
probability. Assuming that r ∈ [n] is chosen at random, the parameters can be fixed so that r ∈ Oλ(1),
due to the following rough analysis: the best adversarial assignment (for a cheating prover) of the n
committed evaluations consists of only d − 1 correct (and n − d + 1 ‘junk’) ones, to maximize the
number of subsets of size r that will satisfy a verifier—i.e.

(
d−1

r

)
. The total number of possible subsets

that the verifier could query is
(

n
r

)
, which brings the probability of success of the best possible cheating

strategy to: (
d−1

r

)(
n
r

) ≈ dr/r!
nr/r! =

(
d

n

)r

Now if we fix r as say, λ (so that r ∈ Oλ(1)), notice that for any d ∈ Z the above quantity can be
upper bounded by 2−λ by setting n ≈ 2d. In general, as long as r ∈ Ω(λ/ log λ), the same upper bound
can be achieved with n ∈ poly(d, λ).
Authenticating Evaluation Openings at Oλ(1) Cost via Fischlin’s Technique [Fis05]: We
framed our description above in a PCP-like model, where the prover writes down n evaluations of f ,
of which the verifier queries and checks r of them. As n is clearly not witness-succinct, we need a
method by which the prover can commit to the n evaluations, and succinctly reveal r of them upon
request. In the PCP/IOP literature [Mic00, BCS16], it is common to use Merkle trees for this task;
they provide Oλ(1) sized commitments with r short (Oλ(log n) sized) openings, and even natively
support straight-line extraction. This follows a ‘cut-and-choose’ paradigm, where the prover commits
to n objects, and the verifier checks r of them in order to guarantee that a total of at least d of the
committed objects are ‘good’. However the Oλ(log n) sized evaluation opening is a deal breaker (in the
context of achieving Oλ(1)-sized proofs) as it grows—albeit slowly—with the witness size, and appears
to be a fundamental hurdle with such techniques.

In the context of compiling Σ-protocols to NIZKs with straight-line extraction, Fischlin [Fis05]
presented a technique based on proofs of work that shed the Oλ(log n) cost of Merkle tree openings
when checking the validity of a subset of committed objects. At a very high level, Fischlin’s technique
emulates the combinatorial properties of the cut-and-choose approach, without the logistics of providing
explicit commitments/openings. Fischlin’s idea is that rather than challenging the prover to reveal a
(randomly chosen) r-sized subset of some committed xi values, the prover is challenged to provide any
r values {xi}i∈[r] such that H(xi) = 0 for each i, where H is a random oracle. This forces the prover
to query multiple ‘good’ xi values to H before finding r of them that hash to the zero string, and no
explicit decommitment information is necessary.

Applying Fischlin’s technique to our setting yields a protocol of the following form. Upon fixing
cm, for each i ∈ [r]: (1) the prover computes π

(i)
cm = (zi, f(zi)) with uniform zi and the corresponding

evaluation proof π
(i)
ev that ensures the polynomial f committed to in cm has been correctly evaluated at

zi, and (2) store (π(i)
cm, π

(i)
ev) and go to the next iteration if H(cm, i, π

(i)
cm, π

(i)
ev) = 0 for a random oracle H

with b-bit outputs, and go to step (1) otherwise. Thanks to the evaluation proof, π
(i)
cm is tied to a given

commitment cm. In practice, succinct evaluation proof can be easily implemented by naively invoking
the underlying SNARK prover9 or by instantiating cm with a dedicated polynomial commitment scheme
such as [KZG10], which usually minimizes the overhead in prover’s work. Computing such a proof is
easy for an honest prover, via rejection-sampling with random (zi, f(zi)) values until r of them that
hash to zero are found. As for an adversarial prover P ∗, the aim is to produce an accepting proof—by
finding r pre-images of 0—with d− 1 or fewer queries to the random oracle. As a loose upper bound,
the probability that P ∗ finds r successes within d− 1 queries is at most the probability that for every
i ∈ [r], P ∗ is able to find H(cm, i, ·) = 0 within d− 1 queries. For any given i, the probability that P ∗

finds H(cm, i, ·) = 0 within d queries is at most d/2b; therefore the probability that P ∗ finds H(cm, i,
·) = 0 within d− 1 queries for every i ∈ [r] simultaneously is at most (d/2b)r = 2−r(b−log d). The proof
sketch here are implicitly assuming that a valid evaluation proof is determined uniquely once cm, zi,
and f(zi) are fixed. Our formal analysis accounts for this subtlety and we show that [KZG10] indeed
satisfies this property.

Assuming that r = λ ∈ Oλ(1), the above quantity is bounded by 2−λ when b = 1+log d ∈ Oλ(log d).
The prover’s work is in expectation 2b · r = 21+log d ·λ which is in poly(λ) as well as Oλ(d), i.e. it scales
9 For this alternative instantiation, one must use a de-randomized version of the underlying SNARK to obtain

the unique proof property, as also required by our main compiler.

7

linearly in the witness size. Of course better parameters are possible; r can be improved by up to a log
factor, as we explore later in the ‘succinctness’ component of the proof of Theorem 3.1.
Putting it together: The prover produces an Oλ(1)-sized standard model commitment cm to a degree
d polynomial f that encodes the witness, and proves knowledge of its opening via πcm = (π(i)

cm)i∈[r] – this
proof is at the heart of forcing the environment to use the witness within the context of the protocol.
The proof πcm requires the prover to ‘work’ to find r ∈ Oλ(1) pre-images of 0 for random oracle H,
where each pre-image is an evaluation of f . The parameters for this proof-of-work are set so that (except
with negligible probability) the prover queries more than d−1 evaluations of f in its effort to find these
r pre-images of zero. Reading these d evaluations of f allows an extractor to reconstruct f—which is
an opening to cm. Finally, the prover gives a SNARK π to prove that it knows an opening to cm that
is the witness to a public statement (through a suitable witness-polynomial encoding function Enc). If
one were to hypothetically run the non-black-box SNARK extractor on the environment at this point,
the opening to cm that it finds should be exactly the same as the f reconstructed via the extractor
of πcm; if not, then one would obtain two openings to cm, in contradiction of the binding property
of the commitment scheme. Therefore, any knowledge that the environment uses in the production of
π—perhaps even outside the protocol—is extracted in a black-box, straight-line fashion via πcm within
the context of the protocol.

In sum, a proof generated as per our compiled NIZK consists of the following components (with
certain parameters omitted for readability):

– cm: commitment to an (encoded) witness.
– π: Input SNARK to prove knowledge of witness w satisfying (C(w) = 1 ∧ cm = Com(f) ∧ f =

Enc(w)).
– πcm = (zi, yi)i∈[r]: Evaluations of the witness-encoding polynomial f on r points.

– πev = (π(i)
ev)i∈[r]: Proofs of r correct evaluations, guaranteeing yi = f(zi) for all i ∈ [r] and

cm = Com(f).

An important additional constraint is that H(cm, i, π
(i)
cm, π

(i)
ev) = 0 for each i ∈ [r].

1.3 Related Work

Straight-line Extraction. Our UC-lifting technique is inspired by Fischlin’s transform [Fis05] based
on Proof-of-Work. Kondi and shelat [Ks22] gave an analysis for using Fischlin’s transformation for
compressing proofs in the context of signature aggregation, and showed how randomizing Fischlin’s
technique is conducive to zero-knowledge. Very recently, Lysyanskaya and Rosenbloom [LR22b,LR22a]
present compilers lifting Σ-protocols to UC-secure (adaptive) NIZKPoK in the global ROM, where
the straight-line extraction is realized via Fischlin’s transform. Canetti, Sarkar, and Wang [CSW20]
realized triply adaptive UC-secure NIZK using a straight-line extractable commitment in the CRS
model. Pass [Pas03] described a generic way to turn Σ-protocols with special soundness into straight-
line extractable proof systems using RO-based commitment. The technique is somewhat analogous to
the verifiable encryption of Camenisch and Damgård [CD00] where the commitment is instantiated
using public-key encryption and thus SLE holds in the CRS model (where the decryption key serves as a
private extraction key for the knowledge extractor). The transform of Unruh [Unr15] extended [Pas03]
to retain security against an adversary making superposition queries to the RO (the so-called quantum
random oracle model). Recently, Katsumata [Kat21] showed an efficient SLE transform in the QROM
tailored to lattice-based ZK proofs.
Lifting Transformations. Techniques for generically adding black-box simulation extractability to
any NIZK were first shown in the works of [Sah99, DDO+01, Gro06], optimized in the C∅C∅ frame-
work [KZM+15], and tailored to Groth16 in [AB19, Bag19]. These techniques augment the relation
to an OR language and the trapdoor for one of the OR clauses is used by the ZK simulator. Ex-
tractability is obtained by encrypting the witness under a public key that is part of the CRS and
additionally proving correct encryption. The LAMASSU [ARS20] framework extends the C∅C∅ lifting
technique to work with updatable SNARKs giving a generic compiler from updatable CRS SNARKS to
SE SNARKs. TIRAMISU [BS21] builds on these frameworks to additionally lift SNARKs into black-
box simulation extractable ones. However, all these lifting transformations yield SNARKs where one
of either witness succinctess or blackbox extraction is lost, unlike our compiler. There are works on
lifting specific SNARKs into SE; the work of Groth and Maller [GM17] presents an SE SNARK, but

8

the simulation extractability is non-black-box. There is a line of work on analysing the simulation ex-
tractability [BG18,BKSV21,BPR20] of Groth16; all of these are in idealized models like GGM/AGM,
in addition to ROM.

2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer interval notation [a, b] to
denote {a, a + 1, . . . , b}. We also use [b] as shorthand for [1, b]. If S is a set we write s←$ S to indicate
sampling s from the uniform distribution defined over S; if A is a randomized (resp. deterministic)
algorithm we write s ← A (resp. s := A) to indicate assigning an output from A to s. The security
parameter λ is 1λ in unary. A function f(λ) is said to be negligible in λ if for any polynomial poly(λ)
it holds that f(λ) < 1/poly(λ) for sufficiently large λ > 0. We write “f(λ) < negl(λ)” to indicate f(λ)
is negligible in λ. F[X] denotes polynomials over a finite field F. For an integer d ≥ 1, F<d[X] ⊆ F[X]
denotes polynomials of degree less than d.

2.1 UC Framework

In this work, we use the Universal Composability (UC) framework [Can01] for security proofs. UC
follows the simulation-based paradigm where the security of a protocol is defined with respect to an
ideal world where a trusted party, the functionality F, does the all of the computation. Informally, a
protocol securely realizes F in the real world if for any real world adversary there exist an equivalent
ideal world adversary (the simulator). Equivalent meaning that any outside observer (the environment)
cannot distinguish between the real protocol execution and the ideal execution. UC’s composition
theorem ensures that one can safely compose protocols that have been proven UC-secure.
Global Random Oracle. More precisely, we use the generalized UC (GUC) framework [CDPW07]
which allows to model global functionalities that are shared between different protocol instances. We
consider a hybrid-model where parties have access to a (non-programmable) global random oracle GRO
as introduced in [CJS14]. We follow the simplified description from [CDG+18]. The GRO functionality
can be queried by any party and the ideal adversary with two commands: query and observe. The
environment can query GRO by spawning additional dummy parties outside the context of the current
protocol execution. GRO answers all new query command by lazy sampling from the domain and stores
them locally in a list Q. A repeated query requires a simple lookup in Q. Some query queries are
marked “illegitimate” and can be observed via observe command. Next we explain which query counts
as an illegitimate one. Each party is associated with its party identifier pid and a session identifier sid.
When a party queries GRO with the command (query, x), the query is parsed as (s, x′) where s denotes
the session identifier associated with the party. A query is marked as illegitimate if the sid field of the
query differs from the sid associated to the party making the query. In other words, these are the
queries made outside the context of the current session execution. We formally define the functionality
GRO in Fig. 1.

Remark 2.1. In [CJS14] the random oracle allows ideal functionalities to obtain the list of illegitimate
queries. In order for the adversary to fetch those queries there needs to be a (dummy) functionality that
forwards those queries. In [CDG+18] this is simplified by allowing the adversary to directly query the
random oracle for illegitimate queries. Thus, functionalities no longer need to forward the illegitimate
queries.

Intuitively, these illegitimate queries are required for proving security of our protocols. The ideal
adversary (or the simulator) works by observing GRO queries made by the corrupt party during the
protocol execution. However, the environment can bypass this by querying GRO via additional dummy
parties outside the current session. The simulator remains oblivious to these additional parties and
thus fails in proving security. However, this behavior of the environment is accounted for in [CDG+18]
by marking such queries as illegitimate and disclosing them to the simulator via observe command.
Note that any GRO query for session id sid made by a party (or the simulator) participating in the
session identified by sid will never be marked as illegitimate. Thus, any query made the simulator itself
is not recorded by the functionality and hence cannot be observed by anyone. This is crucial for proving
indistinguishability between the ideal and the real world and we elaborate in the proof of Theorem 3.1.

9

Functionality 1: GRO

GRO is parametrized by the output length ℓ(λ).
– Query Upon receiving a query (query, x), from some party P = (pid, sid) or from the adversary

Sim do:
• Look up v if there is a pair (x, v) for some v ∈ {0, 1}ℓ(λ) in the (initially empty) list Q of past

queries. Else, choose uniformly v ∈ {0, 1}ℓ(λ) and store the pair (x, v) in Q.
• Parse x as (s, x′). If sid ̸= s then add (s, x′, v) to the (initially empty) list of illegitimate queries

for SID s, that is denoted by Q|s.
• Return v to P.

– Observe Upon receiving a request (observe, sid) from the adversary Sim, return the list Q|sid of
illegitimate queries for SID sid to the adversary.

Fig. 1: Functionality for Global Random Oracle GRO [CDG+18]

Definition 2.2 (UC Security in the Global ROM [CDPW07, CJS14]). Let F,F ′ be m-party
functionalities and Π be a protocol. We say that Π UC-realizes F in the GRO,F ′-hybrid model if for any
hybrid-model PPT adversary A, there exists an ideal process PPT adversary Sim such that for every
PPT environment Z, it holds that:

{IDEALGRO
F,Sim,Z(x, λ, z)}x,λ,z ≈ {REALGRO

F ′,Π,A,Z(x, λ, z)}x,λ,z

where REAL is the outputs of the honest parties and the adversary A after a real execution of protocol Π
with input x = (x1, . . . , xm) for parties P1, . . . , Pm where each xi ∈ {0, 1}∗, z ∈ {0, 1}∗ is the auxiliary
input for A and λ is the security parameter. IDEAL is the analogous distribution in an ideal execution
with a trusted party that computes F for the parties and hands the output to the designated players.

2.2 Succinct Non Interactive Zero-Knowledge Proof

A non-interactive proof system for relation R, denoted by ΠR, consists a tuple of algorithms (PGen,
OSetup,P,V).

– pp← PGen(1λ): Takes as input the security parameter λ and outputs public parameters pp. Once
PGen is invoked we assume that all of the following algorithms take pp as an implicit input.

– out← OSetup(in): A stateful setup oracle that takes an input string in and outputs out.
– π ← POSetup(x, w): Takes as input a statement x and witness w, and outputs a proof π if (x, w) ∈ R.
– b← VOSetup(x, π): Takes as input a statement x and proof π, and outputs a bit b, indicating “accept”

or “reject”.
We introduce the setup oracle OSetup to the notation of NIZKs to capture the two typical setup

assumptions in an abstract manner. That is, if a proof system is instantiated in the CRS model, then
OSetup internally generates crs upon receiving a query with any input for the first time, and keeps
outputting the same crs regardless of the input. When instantiating the RO model, OSetup is initialized
with an empty query-response table and proceeds as follows. On receiving in ∈ {0, 1}∗, if in has never
been queried, sample uniform out ∈ {0, 1}ℓ(λ), store (in, out) in the table, and return out. Otherwise,
look up the table to find out associated with in, and return out.

We define three basic security properties for ΠR in the stand-alone setting.

Definition 2.3 (Completeness). ΠR satisfies completeness if for every (x, w) ∈ R, it holds that

Pr
[
b = 1 : pp← PGen(1λ); π ← POSetup(x, w); b← VOSetup(x, π)

]
= 1.

We define zero-knowledge by following the syntax of [FKMV12, GOP+22]. A zero-knowledge sim-
ulator S is defined as a stateful algorithm with initial state st = pp that operates in two modes. The
first mode, (out, st′) ← S(1, st, in) takes care of handling calls to the oracle OSetup on input in. The
second mode, (π, st′) ← S(2, st, x) simulates a proof for the input statement x. For convenience we

10

Functionality 2: FSetup

FSetup is parametrized by a security parameter λ and a degree bound D > 0 and runs with parties
P1, . . . , PN and an ideal process adversary Sim.

– Parameters Upon receiving input (genparams, sid) from a party Pi, if no pp has been stored, run
pp← PGen(1λ), initialize oracle OSetup with pp, and store pp. Send (params, sid, pp) to Pi.

– Commitment Key Upon receiving input (genkey, sid) from a party Pi, if no ck has been stored,
run ck← KGen(1λ, D) and store ck. Send (comkey, sid, ck) to Pi.

– Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if OSetup has not been initialized
with pp. Otherwise run out ← OSetup(in) using the current state of OSetup and send (setup, sid, out)
to Pi.

Fig. 2: N -party functionality for setup FSetup

define three “wrapper” oracles. These oracles are stateful and share the internal state st, which initially
contains an empty string.

– S1(in) to denote the oracle that returns the first output of S(1, st, in);
– S2(x, w) that returns the first output of S(2, st, x) if (x, w) ∈ R and ⊥ otherwise;
– S ′

2(x) that returns the first output of S(2, st, x).

Definition 2.4 ((Unbounded) Zero-Knowledge). Let ΠR = (PGen,OSetup,P,V) be a non-interactive
proof system for relation R. ΠR is unbounded non-interactive zero-knowledge (NIZK), if there exists
a PPT simulator S with wrapper oracles S1 and S2 such that for all PPT adversaries A it holds that∣∣∣∣∣Pr

[
b = 1 :

pp← PGen(1λ);
b← AOSetup,P(pp)

]
− Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,S2(pp)

]∣∣∣∣∣ < negl(λ).

Next, we define simulation extractability, which essentially guarantees that proofs are non-malleable.
We stress that the present definition is weaker than what is necessary for realizing UC security, because
the extractor algorithm here is non-black-box, i.e., it requires looking into the code of the adversary.
The definition is an abstracted version of [GM17] and the schemes satisfying their definition clearly
meet the version below by instantiating S with trapdoor’d CRS generator in mode 1 and ZK simulator
in mode 2.10

Definition 2.5 ((Non-black-box) Simulation Extractability). Consider a non-interactive proof
system ΠR = (PGen,OSetup,P,V) for relation R with an NIZK simulator S. Let (S1,S ′

2) be wrapper
oracles for S as defined above. ΠR is non-black-box simulation-extractable (SIM-EXT) with respect to
S, if for any PPT adversary A, there exists a PPT extractor EA such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);
b← VS1(x, π); w ← EA(x, π, stateA, st)

]
< negl(λ)

where st is the final state of the simulator S, stateA is a string containing all inputs and outputs of
A, including random coins, and Q is a set of statement-proof pairs (x, π) with x being a statement
queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding simulated proof,
respectively.

The ideal functionality FSetup that provides the setup and oracle for non-interactive proof system
ΠR = (PGen,OSetup,P,V) is described in Fig. 2.

Our final goal is to compile ΠR with the above basic security properties into a UC-secure NIZK
protocol ΠUC-R. The ideal functionality for Non-interactive Zero-Knowledge FNIZK is defined in Fig. 3.
The functionality is taken from [GOS12] with a minor difference being that FNIZK explicitly informs
Sim of the associated session ID.
10 Following [GM17], we also assume the relation R (which may potentially contain auxiliary inputs) is benign,

i.e. it is distributed in such a way that the SNARKs for R can be simulation extractable.

11

Functionality 3: FNIZK

FNIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗ × {0, 1}∗, and runs with parties
P1, . . . , PN and an ideal process adversary Sim. It stores proof table Q which is initially empty.

– Proof Upon receiving input (prove, sid, ssid, x, w) from a party Pi, ignore if (x, w) /∈ R. Otherwise,
send (prove, sid, x) to Sim. Upon receiving (proof, π) from Sim, store (x, π) in Q and send (proof,
sid, ssid, π) to Pi.

– Verification Upon receiving input (verify, sid, ssid, x, π) from a party Pi, if (x, π) is not stored in
Q, then send (verify, sid, x, π) to Sim. Upon receiving (witness, w) from Sim, if (x, w) ∈ R, store
(x, π) in Q. Finally, return (verification, sid, ssid, (x, π) ∈? Q) to Pi.

Fig. 3: N -party functionality for non-interactive zero-knowledge FNIZK

2.3 Succinct Polynomial Commitment Scheme

The following definition is adapted from the full version of [CHM+20]. The difference is that we omit
the commitment key trimming algorithm as it is only necessary for concrete optimization.

Definition 2.6 (Polynomial Commitment Scheme). A polynomial commitment scheme over
field F, denoted by PCS, is a tuple of algorithms (KGen, Com, Eval, Check):
1. ck← KGen(1λ, D): Takes as input the security parameter λ and the maximum degree bound D and

generates commitment key ck as output.
2. c ← Com(ck, f, d; ρc): Takes as input ck, the polynomial f ∈ F<d[X], the degree bound d ≤ D,

randomness ρc and outputs a commitment c. In case the commitment scheme is deterministic
ρc = ⊥.

3. π ← Eval(ck, c, d, z, y, f ; ρc): Takes as input ck, the commitment c, degree bound d ≤ D, evaluation
point z ∈ F, claimed polynomial evaluation y ∈ F, the polynomial f , and outputs a non-interactive
proof of evaluation π. The randomness ρc must equal the one previously used in Com.

4. b ← Check(ck, c, d, z, y, π): Takes as input statement (ck, c, d, z, y) and the proof of evaluation π
and outputs a bit b.
satisfying the following properties:

Completeness. For any integer 1 ≤ d ≤ D, for all polynomials f ∈ F<d[X], for all evaluation points
z ∈ F, and any randomness ρc

Pr

b = 1 :
ck← KGen(1λ, D); c← Com(ck, f, d; ρc);
y := f(z); π ← Eval(ck, c, d, z, y, f ; ρc);
b← Check(ck, c, d, z, y, π)

 = 1.

Evaluation Binding. For any integer 1 ≤ d ≤ D, for all PPT adversaries A,

Pr

 y ̸= y′

∧ b = 1
∧ b′ = 1

:
ck← KGen(1λ, D); (c, d, z, y, y′, π, π′)← A(ck);

b← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y′, π′)

 ≤ negl(λ).

Succinctness. A PCS is said to be succinct if both the size of commitment c and evaluation proof π

is of size Oλ(1).

In addition to standard properties above, we need a few more special properties for our compiler
to work. In a later section we show that the widely used scheme of [KZG10] indeed satisfy these.

Definition 2.7 (Unique Proof). For all PPT adversaries A,

Pr

π ̸= π′

∧ b = 1
∧ b′ = 1

:

ck← KGen(1λ, D);
(c, d, z, y, π, π′)← A(ck);

b← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y, π′)

 ≤ negl(λ).

12

We define a polynomial encoding scheme, which takes a vector of field elements and outputs an
appropriate randomized polynomial. An important property, sometimes referred to as bounded inde-
pendence in the literature [CHM+20, §2.3]11, guarantees that a bounded number of evaluations do not
leak any information about the original polynomial.

Definition 2.8 (Polynomial Encoding Scheme). A polynomial encoding scheme, denoted by PES,
is a tuple of algorithms (Enc, Dec) defined over an evaluation domain DEnc (which also determines the
forbidden domain SEnc = F \ DEnc).

– f ← Enc(w, n, ℓ; ρ): Takes as inputs w ∈ Fn, dimension of the vector n > 0, evaluation bound
ℓ > 0, and randomness ρ ∈ Fℓ, and outputs a polynomial f ∈ F<n+ℓ[X].

– w′ ← Dec(f, n, ℓ): Takes as inputs f ∈ F<n+ℓ[X], n > 0, and ℓ > 0, and deterministically outputs
w′ ∈ Fn.

We say PES is correct if w = Dec(Enc(w, n, ℓ; ρ), n, ℓ) for any n > 0, ℓ > 0, w ∈ Fn, and ρ ∈ Fℓ. PES
satisfies bounded independence if for any n > 0, ℓ > 0, and w ∈ Fn, and for ρ sampled uniformly from
Fℓ, any set of ℓ evaluations of f ← Enc(w, n, ℓ; ρ) in DEnc are independently and uniformly distributed
in F.

In this work, we only consider polynomial encoding schemes where the size of the evaluation domain
is exponential in the security parameter, i.e. |DEnc| ∈ O(2λ). Below we recall some candidate encoding
schemes that are implicitly employed in many SNARK constructions.

– Coefficient Encoding PES1 = (Enc1, Dec1): PES can be instantiated using simple coefficient
encoding as in [MBKM19]. Here DEnc = F \ {0} and Enc1 outputs

f(X) =
n∑

i=1
wiX

i−1 +
ℓ∑

i=1
ρiX

n+i−1

where w = (wi)i∈[n] and ρ = (ρi)i∈[ℓ]. The decoding algorithm Dec1 outputs the first n coefficients
of f . It satisfies bounded independence because any set of ℓ evaluations of f are independent of
the encoded vector.

– Lagrange Encoding PES2 = (Enc2, Dec2): This encoding method has been used in e.g. [GWC19,
CHM+20,CFF+21]. Suppose a subset H ⊂ F of cardinality n and an evaluation domain DEnc = F\
(H∪{0}). Assume that an input w ∈ Fn is indexed by H, i.e., w = (w(a))a∈H . Let La,H ∈ F<n[X]
for a ∈ H be the Lagrange polynomials corresponding to H and ZH(X) =

∏
a∈H(X − a) be a

vanishing polynomial of H. Then using ρ = (ρi)i∈[ℓ] as randomness, Enc2(w, n, ℓ; ρ) outputs

f(X) =
∑
a∈H

w(a) · La,H(X) +
(

ℓ∑
i=1

ρiX
i−1

)
· ZH(X).

The decoding algorithm Dec2 outputs (f(a))a∈H . On the one hand, PES2 satisfies correctness since
f agrees with w over the forbidden domain SEnc = H. On the other hand, up to ℓ evaluations of
f in DEnc reveal nothing about the encoded vector w. Typically, the evaluation bound ℓ should
be set strictly larger than the number of evaluation proofs the prover explicitly reveals, because a
commitment to the polynomial itself may leak information about one evaluation (as in the KZG
scheme). It turns out that this property helps us show the hiding property below once combined
with a suitable polynomial commitment scheme.

Evaluation Hiding. We now define evaluation hiding. Note that this is a stronger property than the
usual hiding definition (such as the ones in [KZG10,CHM+20]): essentially, evaluation hiding guarantees
that the joint distribution of commitment, evaluation proof, and polynomial evaluations leaks nothing
about the committed polynomial, whereas the usual PCS hiding property does allow evaluations to
be associated with the committed polynomials. Clearly, if Enc is deterministic PCS can never be
evaluation hiding. This is why the definition only makes sense with respect to a specific encoding
scheme. Recent IOP-based SNARKs such as [GWC19, MBKM19, CHM+20, CFF+21] in fact exploit
this property (albeit without formal definition tailored to PCS) to hide evaluations of a polynomial
encoding secret witness and thus to retain perfect zero knowledge. The definition is parameterized by
a function ϕ : Z+ → Z+ calculating the expansion factor for encoding randomness: given the number
11 This property is also know as k-knowledge bound in [BCGV16].

13

of evaluated points ℓ′ > 0, it determines ℓ > ℓ′ the total number of random field elements necessary
for hiding the committed polynomial even after outputting a commitment, ℓ′ evaluation proofs, and ℓ′

evaluations.

Definition 2.9 (ϕ-Evaluation Hiding). Let PCS = (KGen, Com, Eval, Check) be a polynomial com-
mitment scheme and PES = (Enc, Dec) be a polynomial encoding scheme. We say PCS is ϕ-evaluation
hiding with respect to PES if for all PPT adversaries A = (A1,A2),

Pr

b = b′ ∧ z ∈ D|z|

Enc :

ck← KGen(1λ, D); (w, z)← A1(ck);
n := |w|; ℓ := ϕ(|z|); d := n + ℓ;

ρw ←$ Fℓ; b←$ {0, 1};
f ← Enc(b ·w, n, ℓ; ρw);

c← Com(ck, f, d; ρc);
y := f(z);

π ← Eval(ck, c, d, z, y, f ; ρc);
b′ ← A2(c, y, π)

≤ 1

2 + negl(λ)

where A1,A2 share the internal states, y := f(z) denotes setting yi := f(zi) for all i ∈ [|z|], and
π ← Eval(ck, c, d, z, y, f ; ρc) denotes setting πi ← Eval(ck, c, d, zi, yi, f ; ρc) for all i ∈ [|z|].
Non-Extrapolation. We define a new property related to ϕ-evaluation hiding of a PCS scheme with
respect to a PES scheme. We require that, given a polynomial commitment and ℓ′ > 0 evaluations and
proofs for an encoding of all-zero vector, no adversary can compute a valid proof for a new evaluation
point. In other words, it is hard for an adversary to extrapolate a new evaluation given ℓ′ evaluations
even when the polynomial is fixed to be the encoding of all-zero vector. Non-extrapolation naturally
follows from evaluation hiding and binding for many PCS plus PES schemes for the right choice of ϕ.
We show this explicitly for the KZG polynomial commitment scheme in Section 4.

Definition 2.10 (ϕ-Non-Extrapolation). Let PCS = (KGen, Com, Eval, Check) be a polynomial
commitment scheme and PES = (Enc, Dec) be a polynomial encoding scheme. We say PCS supports
ϕ-non-extrapolation with respect to PES if for all PPT adversaries A = (A1,A2), and

Pr

v = 1 ∧ z ∈ D|z|
Enc

∧ z∗ ∈ DEnc ∧ z∗ /∈ z
:

ck← KGen(1λ, D); (n, z)← A1(ck);
ℓ := ϕ(|z|); d := n + ℓ;

ρw ←$ Fℓ;
f ← Enc(0n, n, ℓ; ρw);
c← Com(ck, f, d; ρc);

y := f(z);
π ← Eval(ck, c, d, z, y, f ; ρc);

(z∗, y∗, π∗)← A2(c, y, π);
v ← Check(ck, c, d, z∗, y∗, π∗)

≤ negl(λ)

where A1 and A2 share the internal states, y := f(z), π are as before.

3 Succinctness-Preserving UC NIZK Compiler

In this section, we describe a generic, succinctness-preserving compiler that takes as inputs: (1) a
SIM-EXT NIZK proof system ΠR = (PGen,OSetup,P,V) for the arithmetic circuit satisfiability relation
R =

{
(C, w) : C(w) = 1

}
, and (2) a PCS = (KGen, Com, Eval, Check) that is succinct, evaluation

binding, unique proof, ϕ-evaluation hiding, and ϕ-non-extrapolation with respect to some encoding
scheme PES = (Enc, Dec). The resulting protocol, denoted by ΠUC-R, UC-realizes FNIZK in the (GRO,
FSetup)-hybrid model, where FSetup is described in Fig. 2.

14

Protocol 1: ΠUC-R

The protocol ΠUC-R is parameterized by: security parameter λ, finite field F, evaluation domain DEnc
for PES, evaluation hiding expansion factor ϕ : Z+ → Z+, number of parallel repetitions r = r(λ) > 0,
proof-of-work parameter b(λ) > 0, bound T (λ) > 0, and maximum degree bound D > 0 for PCS.

– Proof Upon receiving input (prove, sid, ssid, C, w), ignore if C(w) ̸= 1. Otherwise, Pi does:
1. Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).
2. Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).
3. Parse w = w ∈ Fn. Let ℓ := ϕ(r) and d := n + ℓ. If d > D, abort by outputting (proof, sid,

ssid,⊥).
4. Generate a polynomial encoding of the witness vector: f ← Enc(w, n, ℓ; ρw), where ρw ←$ Fℓ.
5. Generate a commitment to the polynomial encoding: c← Com(ck, f, d; ρc), where the random-

ness ρc is sampled uniformly from the domain specified in PCS.
6. Define the circuit C′ such that it outputs 1 on input w′ = (w, ρw, ρc) if and only if the following

conditions are met:

C(w) = 1 ∧ c = Com(ck, Enc(w, n, ℓ; ρw), d; ρc)

7. Run ΠR.P on input pp, C′, and w′ to obtain a proof π′. Whenever P makes a call to OSetup
with input in, send (setup, sid, in) to receive a response (setup, sid, out) and forward out to P.

8. Initialize empty sets z, y, and πPCS.
9. For each iteration i ∈ [r] do:

(a) Initialize counter ctr := 0 and an empty set of used evaluation points Di.
(b) If ctr = T , abort by outputting (proof, sid, ssid, runout_eval).
(c) Sample an evaluation point: zi ←$ DEnc \Di. Update ctr := ctr +1. Update Di := Di∪{zi}.

(d) Compute yi = f(zi) and evaluation proof πi ← Eval(ck, c, d, zi, yi, f ; ρc).
(e) Send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO. Upon receiving v from GRO, if the first b bits

of v are not 0b, go to step 9b. Otherwise, store zi, yi, and πi in z, y, and πPCS, respectively.
10. Output (proof, sid, ssid, ϖ), where ϖ := (π′, c, z, y, πPCS).

– Verification Upon receiving input (verify, sid, ssid, C, ϖ), Pi does:
1 Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).
2 Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).
3 Parse ϖ = (π′, c, z, y, πPCS). Derive the witness size n from the description of C. Compute ℓ

and d as Proof would and if d > D abort by outputting (verification, sid, ssid, 0).
4 Define the circuit C′ as Proof would.
5 Parse z = (zi)i∈[r], y = (yi)i∈[r], and πPCS = (πi)i∈[r].
6 Output (verification, sid, ssid, 1) if all of the following checks pass, otherwise output

(verification, sid, ssid, 0):
(a) ΠR.V on input pp, C′, and π′ outputs 1. Calls to OSetup by V are handled similar to the

above.
(b) For all i ∈ [r]: 1 = Check(ck, c, d, zi, yi, πi).
(c) For all i ∈ [r]: send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO, and the first b bits of the return

value vi are 0b .

Fig. 4: Protocol for UC-secure non-interactive proof in the (GRO,FSetup)-hybrid model. ΠUC-R internally
runs ΠR, PCS, and PES.

15

3.1 Security Proof

Theorem 3.1. Let ΠR be a SIM-EXT NIZK proof system (Definition 2.5), for the arithmetic circuit
satisfiability relation R, with Oλ(1) size proofs. Let PCS be a polynomial commitment scheme with
Oλ(1) size commitments and evaluation proofs, evaluation binding, unique proofs (Definition 2.6), ϕ-
evaluation hiding (Definition 2.9), and supports ϕ-non-extrapolation (Definition 2.10) with respect to
the encoding scheme PES = (Enc, Dec) (Definition 2.8). Then, ΠUC-R described in Fig. 4 UC-realizes
FNIZK in the (GRO,FSetup)-hybrid model for relation R and has proofs of size Oλ(1).

Proof. We prove the following properties.
Completeness. For a given commitment c and circuit C′, an honest prover fails to generate a valid
proof if, after trying at most T distinct evaluation points zi’s ∈ DEnc, it fails to find any preimage
such that it hashes to 0b. As we will see, T is required to be only polynomially big in λ and so the
prover is guaranteed to stop in polynomial time. For each iteration i, after fixing c, C′, zi, the values
yi = f(zi) and πi are derived uniquely. Thus, the honest prover fails in this iteration only if for all
the T number of evaluation points GRO(query, (sid, (C′, c, zi, yi, πi, i))) ̸= 0b. The prover fails overall if
it fails in at least one of the iterations. Let the event of failing in iteration i be denoted by faili. For
T = (λ + log(r)) · 2b, the probability of the honest prover failing can be bounded as below.

Pr[fail] ≤
r∑

i=1
Pr[faili] = r ·

(
1− 1

2b

)T

≈ elog(r) · 1
e(λ+log(r)) ≤ 2−λ

Thus, an honest prover manages to find a preimage of 0b in polynomial time except with probability
2−λ.

Remark 3.2. Notice that the completeness error increases only additively even if the underlying proof
system ΠR is statistically complete.12 This is because the proof-of-work part is only executed after
the NIZK proof π′ is generated, and therefore an imperfect NIZK prover does not interfere with it.
Concretely, if the probability that ΠR.P fails to produce a valid proof is ε(λ), the overall probability
that ΠUC-R prover fails is at most ε(λ) +

∑r
i=1 Pr[faili] by the union bound.

Simulation. We begin by sketching the overall simulation strategy. First, consider simulation for
an uncorrupted prover. We simulate the behaviors of FSetup and π′ component of real-world proofs
produced by honest provers using the underlying NIZK simulator ΠR.S. After the first r queries
to GRO are programmed to be 0b, commitments to witness-encoding polynomials are replaced with
simulated commitments to randomized polynomials encoding a dummy witness (i.e., 0-vector). This
transition is justified by the evaluation hiding property (Definition 2.9). Then we stop programming
the GRO responses in the next hybrid. At this stage, simulation of uncorrupted provers is essentially
done.
Next, we describe simulation for an uncorrupted verifier. The requirement here is to extract a witness
from whatever (C̃, ϖ̃ = (π̃′, c̃, z̃, ỹ, π̃PCS)) submitted by uncorrupted verifiers unless they have been
created during the simulation of uncorrupted provers. Here, we first rule out the case where at least
one of (z̃, ỹ, π̃PCS) differs from previously simulated (z, y, πPCS) for the same statement C̃ and c̃. This
can be shown by constructing a reduction to evaluation binding, evaluation hiding, or unique proof.
Finally, the extraction algorithm interpolates the witness-encoding polynomial f for c̃ by observing
GRO queries and decodes f to a candidate witness w = w ∈ Fn. The analysis concludes by bounding
the probability that extracted w is invalid as follows. We run a non-black-box SIM-EXT extractor EZ
of the underlying proof system against successful Z on statement the extended circuit C̃′, and proof
π̃′ to obtain another candidate witness w′ = (w∗, ρw, ρc). This fails in the case that π̃′ is a previously
simulated proof. However, we rule this case out by relying on non-extrapolation property. Given this,
the event C̃′(w′) = 0 happens only with negligible probability thanks to the simulation-extractability
property. Hence, assuming C̃′(w′) = 1, it also holds that C̃(w∗) = 1 by the definition of C̃′. Then
we show that w = w∗. Otherwise, one can construct another witness-encoding polynomial f∗ ̸= f
that “explains” the same commitment c̃, breaking evaluation binding. With this we conclude that the
extracted witness w is a valid witness as w = w∗ and C̃(w∗) = 1.
The above proof sketch describes simulation strategy for a single prover and verifier. In the formal
proof, this is extended to incorporate multiple uncorrupted provers and verifiers in a session.
12 We thank an anonymous reviewer for bringing this observation to our attension.

16

Let us turn to formal proof. Complete simulation algorithm is given in Fig. 5. The environment
Z starts a session by initializing a certain number of parties and adversary A. In a particular session
sid, the environment Z instructs the parties with two commands: prove and verify. The real world
behavior is as follows. An honest party Pi on input (prove, sid, ssid, C, w) from Z executes the honest
prover’s algorithm in ΠUC-R to generate the proof. And on receiving (verify, sid, ssid, C, ϖ), it verifies
by running the honest verifier’s algorithm. In the ideal world, the honest parties forward their inputs
to the functionality FNIZK. The corrupt parties’ behavior is controlled by A in both the worlds. Within
a session sid, we assume that Z issues s1 queries of the type (prove, sid, ssid, C, w) meant for an honest
party, and s2 of the type (verify, sid, ssid, C, ϖ) for either honest or corrupt party. Let s = s1 + s2.
Proofs for indistinguishability of hybrids are deferred to Appendix A.

– Hyb0 : This is the real world.
– Hyb1: Replace all the honest parties with a single party B. This party is responsible for simulating

the view of the adversary and the environment for the rest of the protocol. In particular, B acts on
behalf of the honest parties and does exactly what an honest party would do in the real world. In
addition, it intercepts the GRO queries made by any corrupt party Pi within the session, forwards
it the GRO and relays the response back to Pi. Similarly, it intercepts all FSetup queries made by Pi

in the session and relays it back and forth between FSetup and Pi.
– Hyb2: Instead of forwarding Pi’s calls to FSetup functionality, B answers them by executing steps

in Simulation of FSetup in Sim. The rest of the execution remains the same as before, i.e., the B
executes on behalf of the honest parties by executing the honest algorithm.

– For j ∈ [s1], Hyb2+j : For the j-th prove command with input (C, w) for an honest party Pi from
Z, replace honest prover’s algorithm with Step 1-7 in Simulation of uncorrupted prover (in
Sim) for input C.

– For j ∈ [s2], Hyb2+s1+j : For the j-th verify command with input (C, ϖ) for an honest party
Pi from Z, replace honest verifier’s algorithm with Step 1-12 in Simulation of uncorrupted
verifier (in Sim). We assume that all the verify commands are made only by the honest parties.
This is without loss of generality as any query that a corrupt party wants to make can instead be
routed through an honest party via the environment.

– Hyb3+s: This is the ideal world execution. Replace B with Sim, where the steps in Sim are executed
for each (prove, sid, ssid, C, w), and (verify, sid, ssid, C, ϖ) command (as explained in the above
hybrids), and sends corresponding (proof, sid, ssid, Pi, ϖ) and (witness, sid, ssid, Pi, w) to FNIZK.

Succinctness. From completeness and simulation analysis we obtain the following constraints for
parameters r, b, T : T = (λ + log(r)) · 2b and λ = r(b − log(d)). Consider the simple parameter choice
r = λ. This gives, b = log(d) + 1 and T = 2d(λ + log(λ)). More generally, the parameter choices,
r = O(λ/ log(λ)) = Oλ(1), b = O(log(d) + log(λ)) = Oλ(log(d)), and T = O((λ + log(λ/ log(λ)))λd) =
Oλ(d) satisfies the conditions.
Assume that PCS produces constant size (Oλ(1)) commitments and evaluation proofs, and ΠR produces
Oλ(1) size proofs. Later in Section 4 we discuss candidate schemes satisfying these constraints. The
total size of the proof ϖ is one commitment c of size Oλ(1), vectors z, y consisting of r field elements, r
evaluation proofs πi of size Oλ(1), and one NIZK proof π′ for statement C′. Recall that C′ is composed
of C and the circuit that describes the Com and Enc operations. Thus, C′ is only O(poly(λ, n)) bigger
than C, where n is the witness size. Since ΠR produces constant size proofs, proof for C′ is also of size
Oλ(1). Finally, since, r = Oλ(1), the size of ϖ remains Oλ(1).

Remark 3.3. Here, r is independent of the degree of the polynomial. The proof size only grows with
the number of repetitions and thus remains independent of the degree, assuming constant size PCS
and NIZK ΠR proofs. However, the prover’s computational effort increases with the increase in degree
d.

4 Instantiating our Compiler

In this section, we discuss a few candidates for PCS, PES and NIZK schemes for instantiating our
compiler.

17

Simulator: Sim

Sim is parameterized by λ,F,DEnc, ϕ, T, r, b, D and has access to the global functionality GRO as ΠUC-R does.
It simulates real prover’s proof for arbitrary (C, w) ∈ R, extracts a witness from a valid proof (C, ϖ) chosen
by the environment (as long as it hasn’t been recorded by FNIZK), and simulates the local setup functionality
FSetup. It internally keeps track of the state information st of the underlying NIZK simulator ΠR.S, which
is initially set to ε.

– Initialization follows [Gro06]: We use the notation P̃i for a dummy party in the ideal process, which
simply forwards inputs and outputs between the environment Z and the ideal functionality FNIZK, and
Pi for a simulated party. Sim starts by invoking a copy of a PPT adversary A. It will run a simulated
interaction of A, the parties, and the environment. In particular, whenever A communicates with Z, Sim
just passes this information along. And whenever A corrupts a party Pi, Sim corrupts the corresponding
dummy party P̃i.

– Simulation of FSetup

• Parameters Upon receiving input (genparams, sid) from a party Pi, if no pp has been stored, run
pp← PGen(1λ), let st := pp, and store pp. Send (params, sid, pp) to Pi.

• Commitment Key This is identical to FSetup.
• Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if st has never been initialized

with pp. Otherwise run (out, st)← ΠR.S(1, st, in) using the current state and send (setup, sid, out)
to Pi.

– Handling GRO queries
1. Initialize empty set Qro.
2. Upon receiving input (query, x) from a party Pi, forward it to the GRO and forward the response

v back to Pi.
3. Record x in Qro.

– Simulation of uncorrupted prover Upon receiving input (prove, sid, C) from FNIZK:
1. Derive the witness size n from the description of C. Compute ℓ and d as Proof of ΠUC-R would and

if d > D abort by outputting (proof,⊥).
2. Generate a polynomial encoding of dummy witness: f ← Enc(0n, n, ℓ; ρw), where ρw ←$ Fℓ.
3. Generate a commitment to the polynomial encoding as Proof of ΠUC-R would: c← Com(ck, f, d; ρc).

4. Define the circuit C′ as Proof of ΠUC-R would.
5. Run ΠR.S(2, st, C′) to obtain a proof-state pair (π′, st).
6. Create z, y, and πPCS as Proof of ΠUC-R would.
7. Send (proof, ϖ) to FNIZK, where ϖ := (π′, c, z, y, πPCS)

– Simulation of uncorrupted verifier Upon receiving input (verify, sid, C, ϖ) from FNIZK:
1 Perform verification checks similar to Verification of ΠUC-R, but use pp and ck generated during

the simulation of FSetup. Calls to OSetup made by ΠR.V are handled by running (out, st)← ΠR.S(1,
st, in) and forwarding out to V. If invalid, send (witness,⊥1) to FNIZK. This will eventually cause
FNIZK to output (verification, sid, ssid, 0) to a dummy party P̃i.

2 Parse proof ϖ as (π′, c, z, y, πPCS).
3 Query GRO on (observe, sid) and receive the set of illegitimate queries Q|sid.
4 Update Qro = Qro ∪Q|sid.
5 Define circuit C′ as Verification of ΠUC-R would.
6 Define Qc as the set of queries in Qro of the form (query, (sid, (C′, c, ·, ·, ·, ·))) such that evaluation

proof is valid. If there are more than one queries with the same evaluation point z then, irrespective
of the iteration i, include only the very first such query in Qc.

7 In the set Qc, if for the same (c, z), there exists (y, π) and (y′, π′) such that y ̸= y′ or π ̸= π′, then
set w := ⊥2 and go to 12.

8 If (C′, π′) was previously generated by ΠR.S then set w := ⊥3 and go to 12.
9 If |Qc| < d then set w := ⊥4 and go to 12.

10 Otherwise, parse Qc as tuples {(C′, c, zj , yj , πj , ij)}, where each zj is distinct. Collect polynomial
evaluations (zj , yj) and interpolate the polynomial f of degree d−1 such that for j ∈ [d], yj = f(zj).

11 If (C, Dec(f)) /∈ R set w := ⊥5; Else, set w := Dec(f).
12 Send (witness, w) to FNIZK.

Fig. 5: Simulator for ΠUC-R.
18

4.1 A Candidate PCS and PES Scheme

We show that using KZG commitments [KZG10] as the PCS scheme along with Coefficient (PES1) or
Lagrange (PES2) encoding scheme (§ 2.3) satisfies all necessary conditions required to instantiate our
compiler, i.e., it is succinct, has evaluation binding, has unique proofs, is evaluation hiding, and has
non-extrapolation.

We describe the polynomial commitment scheme PCSKZG = (KGen, Com, Eval, Check). The formal-
ization below follows the deterministic scheme of [CHM+20, §C.2] supporting multiple degree bounds
up to the maximum degree D. Note that if d = D, one can skip computing/checking ĉ, π̂, and ŷ.

– KGen(1λ, D): Generate the parameters of a bilinear group G = (G1,G2,GT , q, g, h, e) where |G1| =
|G2| = |GT | = q is prime, ⟨g⟩ = G1, ⟨h⟩ = G2, and e : G1 ×G2 → GT is an efficiently computable,
non-degenerate bilinear map. The group order q also determines F := Fq and a set of supported
polynomials F<D[X]. Sample α ∈ F uniformly, and compute σ = (g, gα, . . . , gαD−1

, h, hα). Output
ck = (G, σ).

– Com(ck, f, d): On input ck, a polynomial f ∈ F<d[X], and a degree bound d ≤ D, compute a
shifted polynomial f̂ = XD−d · f , and generate a commitment as c = (gf(α), gf̂(α)) and output c.

– Eval(ck, c, d, z, f(z), f): Compute ω(X) = (f(X)−f(z))/(X−z) and ω̂(X) = (f̂(X)−f̂(z))/(X−z)
where f̂ is computed as above. Output π = (gω(α), gω̂(α), f̂(z)).

– Check(ck, c, d, z, y, π): Parse c = (c, ĉ) and π = (π, π̂, ŷ). Accept if and only if e(c/gy, h) = e(π,
hα/hz), e(ĉ/gŷ, h) = e(π̂, hα/hz), and ŷ = zD−d · y.
The security of PCSKZG relies on the SDH assumption [BB04].

Definition 4.1 (SDH Assumption). The strong Diffie-Hellman assumption (SDH) holds with re-
spect to a bilinear group generator BGen if for all PPT adversaries A and degree bound D > 0,

Pr
[
t = g

1
α+c : G ← BGen(1λ); α←$ F; σ := ({gαi

}D−1
i=0 , hα); (t, c)← A(G, σ)

]
≤ negl(λ)

Lemma 4.2. PCSKZG is perfectly unique (Definition 2.7), computationally evaluation binding un-
der the SDH assumption, perfectly ϕ-evaluation hiding (Definition 2.9), and computationally ϕ-non-
extrapolation (Definition 2.10) with respect to any polynomial encoding scheme PES with bounded
independence (Definition 2.8), where ϕ(r) := r + 1.

Proof. Unique Proof. We prove there exists unique π = (π, π̂, ŷ) for a fixed c = (c, ĉ), d, z, and y.
Due to the pairing equation, a valid π is uniquely determined by (c/gy)

1
α−z . The same holds for π̂.

Finally, a valid ŷ is uniquely determined by zD−dy.
Evaluation Binding. Suppose the adversary outputs c = (c, ĉ), d, z, y, y′ ̸= y, π = (π, π̂, ŷ), π = (π′,
π̂′, ŷ′) such that both proofs verify. If gz = gα, then SDH is broken with solution (g1/z, 0). Otherwise,
we have (π/π′)

1
y′−y = g

1
α−z thanks to the pairing equation and thus SDH is broken with solution

((π/π′)
1

y′−y ,−z).13

Evaluation Hiding. Let r = |z| be the number of evaluations requested by the adversary. Due to the
bounded independence of PES, any set of ϕ(r) = r + 1 evaluations of encoded polynomial f in DEnc
are independently and uniformly distributed in F. The commitment c = (c, ĉ) leaks at most a single
evaluation f(α). For i ∈ [r], each proof (πi, π̂i, ŷi) leaks at most f(α) and f(zi). Overall, the adversary
observes at most r + 1 evaluations of f , whose distribution is independent and uniform in F.
Non-Extrapolation. For KZG polynomial commitment scheme used with PES, ϕ(r) := r + 1. We
show the following hybrids to prove non-extrapolation.
1. Hyb0: The same as the game defined in Definition 2.10, i.e., an all-zero vector of length n is encoded

as a polynomial and the adversary A = (A1,A2) is provided with up to r distinct evaluations plus
proofs.

2. Hyb1: The challenger’s code is changed as: Instead of encoding an all-0 vector, sample d random
evaluations yi ←$ F. Recall, degree of the encoded polynomial is denoted by d− 1. Let |z|u denote

13 Since the reduction only relies on the first component of the proof the scheme even satisfies a slightly
stronger variant of evaluation binding where the adversary gets to choose distinct degree bounds for different
evaluation proofs.

19

the number of distinct values in z. Let r′ := |z|u and n′ := d − r′. Note that, when there are no
repeat elements in z, r = r′. Sample n′ evaluation points from Dn′

Enc and interpolate the polynomial
f defined by d points (zi, yi), where the first r′ zi’s are from A1, and the rest are sampled by the
challenger. Computing commitments and evaluation proofs is same as before.
This hybrid remains indistinguishable from the previous one because of ϕ-evaluation hiding of the
PCS scheme. In particular, up to r+1 distinct evaluations and proofs do not reveal anything about
the underlying committed polynomial. For i ∈ [r], each proof leaks at most one evaluation f(zi)
and f(α). Thus, overall the adversary learns at most r + 1 distinct evaluations only.
Now, after the execution of Hyb1, A2 outputs a valid evaluation proof for a new point (z∗, y∗, π∗).
Let ỹ = f(z∗). Since, the committed polynomial f is random and has degree d− 1 = n + r, and A
learns at most r + 1, there is at least one degree of freedom corresponding to which the evaluation
of f is uniformly distributed in F. This implies that the probability of y∗ = ỹ is 1/|F|, which is
negligible. In case, y∗ ̸= ỹ, the challenger obtains two different evaluations and valid proof for
the same point which contradicts evaluation binding for the PCS scheme. Thus, A wins only with
negligible probability.

4.2 Candidate NIZK Schemes

Our compiler lifts any simulation extractable SNARK (SE-SNARK) to a UC NIZK. Plugging in any
SE-SNARK therefore yields a UC NIZK under the same assumptions. However, the security analyses
of many SNARKs in the literature are in idealized models like the Generic Group Model (GGM) or
Algebraic Group Model (AGM) [FKL18], and such analyses do not provide any guarantees outside of
those models. As we wish to prove composition with respect to any environment (not just algebraic
ones, for instance), the most meaningful candidates to plug into our compiler are those that provide
guarantees about any adversary, even by making use of (non-black-box) knowledge assumptions.
Immediately Compatible SE-SNARKs. Groth and Maller [GM17] construct an SE-SNARK from
a knowledge assumption that they formulate, called the eXtended Power Knowledge of Exponent
(XPKE) assumption. Lipmaa [Lip19] presents SE-SNARKs under ‘hash-algebraic’ knowledge assump-
tions. Abdolmaleki et al. [ARS20] show how to lift any zk-SNARK to an SE-SNARK (with non-
black-box extraction), and present a concrete instantiation based on the zk-SNARK of Groth et
al. [GKM+18], which in turn relies on knowledge assumptions that they introduce. One could of
course apply Abdolmaleki et al.’s approach to any Oλ(1)-sized zk-SNARK to obtain a Oλ(1)-sized
SE-SNARK under the same knowledge assumptions. All of these SE-SNARKs are Oλ(1)-sized and can
be plugged into our compiler to obtain Oλ(1)-sized UC NIZKs with provably secure composition with
respect to any environment, under the same knowledge assumptions.

Remark 4.3. Note that, a typical UC-security definition does not pose any constraint on the auxiliary
string z provided to the environment. However, when the above mentioned SNARKs are plugged
into our compiler, the compiled SNARK is UC-secure assuming that the auxiliary string provided
to the environment come from a benign distribution, i.e., it is benign with respect to the knowledge
assumption under which the underlying SNARK is proven to be secure. This is a necessary assumption
as otherwise extraction is known to be impossible [BCPR14,BP15].

Future Work: Alternative Instantiations. While we have been focused on obtaining Oλ(1)-sized
UC NIZKs in this paper, our compiler can be more widely applicable. In general, given a NIZK that
produces proofs of sizeOλ(f(|C|+|w|)) and a polynomial commitment scheme that produces evaluation
proofs of sizeOλ(g(|w|)) for some functions f, g, our compiler produces a UC NIZK (in the ROM) where
the proofs are of size Oλ(f(|C|+ |w|) + g(|w|)), under the same setup and knowledge assumptions as
the NIZK and polynomial commitment. With the right input SNARKs, we can obtain witness-succinct
UC NIZKs that have benefits orthogonal to Oλ(1)-sized proofs. Consider the following:

– One interesting question here is regarding ‘transparent’ input SNARK— one that does not require
a structured common reference string—would result in a transparent UC NIZK with the same
succinctness upon applying our compiler. For instance, the recent work of Arun et al. [AGL+22]
gives such a constant sized transparent SNARK using class groups, however their analysis is in the
generic group model, and simulation extractability of their construction has yet to be analyzed.

– If one were to plug in a SNARK that does not require non-black-box knowledge assumptions, we
would obtain a UC NIZK that does not either. For instance, plugging in Bulletproofs [BBB+18]

20

into our compiler with a transparent polynomial commitment scheme (in the ROM) would result
in a Oλ(log(|C| + |w|)) sized transparent NIZK in the ROM alone, that does not rely on any
knowledge assumptions, and only assumes the hardness of computing discrete logarithms. Although
Bulletproofs was recently shown to satisfy simulation-extractability only in the random oracle
model [GOP+23, DG23], a caveat is that zero-knowledge simulator of Fiat-Shamir Bulletproofs
requires a programmable random oracle, which either requires non-global random oracle [Nie02] or
the programmable variant of GRO [CDG+18].
The scope of this paper is limited to the design and analysis of our general compiler, and so we

leave such custom instantiations to future work.

Acknowledgment

The authors would like to thank abhi shelat for helpful discussions about an early version of this work.
We thank Markulf Kohlweiss for his suggestions on presentation of our result. We thank anonymous
reviewers of Eurocrypt 2023 for valuable comments and suggestions.

The work described in this paper has received funding from: the Concordium Blockhain Research
Center, Aarhus University, Denmark; the Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Hori-
zon 2020 research and innovation programme under grant agreement No 803096 (SPEC); Core Research
Grant CRG/2020/004488, SERB, Department of Science and Technology; Infosys Young Investigator
Award, Infosys Foundation, Bangalore; the Protocol Labs Research Grant Program PL-RGP1-2021-
064.

References

AB19. S. Atapoor and K. Baghery. Simulation extractability in groth’s zk-SNARK. Cryptology ePrint
Archive, Report 2019/641, 2019. https://eprint.iacr.org/2019/641.

ABK+21. M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. Algebraic adversaries in the universal
composability framework. In ASIACRYPT 2021, Part III, vol. 13092 of LNCS, pp. 311–341.
Springer, Heidelberg, 2021.

AGL+22. A. Arun, C. Ganesh, S. Lokam, T. Mopuri, and S. Sridhar. Dew: Transparent constant-sized
zkSNARKs. Cryptology ePrint Archive, Report 2022/419, 2022. https://eprint.iacr.org/2022/
419.

AHIV17. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In ACM CCS 2017, pp. 2087–2104. ACM Press, 2017.

ARS20. B. Abdolmaleki, S. Ramacher, and D. Slamanig. Lift-and-shift: Obtaining simulation extractable
subversion and updatable SNARKs generically. In ACM CCS 2020, pp. 1987–2005. ACM Press,
2020.

Bag19. K. Baghery. Subversion-resistant simulation (knowledge) sound NIZKs. In 17th IMA International
Conference on Cryptography and Coding, vol. 11929 of LNCS, pp. 42–63. Springer, Heidelberg,
2019.

BB04. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In EUROCRYPT 2004, vol. 3027 of LNCS, pp. 223–238. Springer, Heidelberg, 2004.

BBB+18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs
for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pp.
315–334. IEEE Computer Society Press, 2018.

BBHR18. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https://
eprint.iacr.org/2018/046.

BCC+16. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In EUROCRYPT 2016, Part II, vol. 9666 of LNCS,
pp. 327–357. Springer, Heidelberg, 2016.

BCGV16. E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza. Quasi-linear size zero knowledge from linear-
algebraic PCPs. In TCC 2016-A, Part II, vol. 9563 of LNCS, pp. 33–64. Springer, Heidelberg,
2016.

BCMS20. B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. Recursive proof composition from accumulation
schemes. In TCC 2020, Part II, vol. 12551 of LNCS, pp. 1–18. Springer, Heidelberg, 2020.

BCPR14. N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable one-way
functions. In 46th ACM STOC, pp. 505–514. ACM Press, 2014.

21

https://eprint.iacr.org/2019/641
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

BCR+19. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent
succinct arguments for R1CS. In EUROCRYPT 2019, Part I, vol. 11476 of LNCS, pp. 103–128.
Springer, Heidelberg, 2019.

BCS16. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In TCC 2016-B, Part II, vol.
9986 of LNCS, pp. 31–60. Springer, Heidelberg, 2016.

BFM90. M. Blum, P. Feldman, and S. Micali. Proving security against chosen cyphertext attacks. In
CRYPTO’88, vol. 403 of LNCS, pp. 256–268. Springer, Heidelberg, 1990.

BG18. S. Bowe and A. Gabizon. Making groth’s zk-snark simulation extractable in the random oracle
model. Cryptology ePrint Archive, Paper 2018/187, 2018. https://eprint.iacr.org/2018/187.

BGG19. S. Bowe, A. Gabizon, and M. D. Green. A multi-party protocol for constructing the public pa-
rameters of the pinocchio zk-SNARK. In FC 2018 Workshops, vol. 10958 of LNCS, pp. 64–77.
Springer, Heidelberg, 2019.

BKSV21. K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov. Another look at extraction and randomization
of groth’s zk-snark. In FC 2021, vol. 12674 of Lecture Notes in Computer Science, pp. 457–475.
Springer, 2021.

BP15. E. Boyle and R. Pass. Limits of extractability assumptions with distributional auxiliary input. In
ASIACRYPT 2015, Part II, vol. 9453 of LNCS, pp. 236–261. Springer, Heidelberg, 2015.

BPR20. K. Baghery, Z. Pindado, and C. Ràfols. Simulation extractable versions of groth’s zk-SNARK
revisited. In CANS 20, vol. 12579 of LNCS, pp. 453–461. Springer, Heidelberg, 2020.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS 93, pp. 62–73. ACM Press, 1993.

BS21. K. Baghery and M. Sedaghat. Tiramisu: Black-box simulation extractable nizks in the updatable
CRS model. In CANS 2021, vol. 13099 of Lecture Notes in Computer Science, pp. 531–551. Springer,
2021.

BSBHR18. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Paper 2018/046, 2018. https:
//eprint.iacr.org/2018/046.

BSMP91. M. Blum, A. D. Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM J.
Comput., 20(6):1084–1118, 1991.

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pp. 136–145. IEEE Computer Society Press, 2001.

CD00. J. Camenisch and I. Damgård. Verifiable encryption, group encryption, and their applications to
separable group signatures and signature sharing schemes. In ASIACRYPT 2000, vol. 1976 of
LNCS, pp. 331–345. Springer, Heidelberg, 2000.

CDG+18. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The wonderful world of
global random oracles. In EUROCRYPT 2018, Part I, vol. 10820 of LNCS, pp. 280–312. Springer,
Heidelberg, 2018.

CDPW07. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup.
In TCC 2007, vol. 4392 of LNCS, pp. 61–85. Springer, Heidelberg, 2007.

CFF+21. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar: A toolbox for more effi-
cient universal and updatable zkSNARKs and commit-and-prove extensions. In ASIACRYPT 2021,
Part III, vol. 13092 of LNCS, pp. 3–33. Springer, Heidelberg, 2021.

CGKS22. M. Campanelli, C. Ganesh, H. Khoshakhlagh, and J. Siim. Impossibilities in succinct arguments:
Black-box extraction and more. Cryptology ePrint Archive, Report 2022/638, 2022. https://
eprint.iacr.org/2022/638.

CHM+20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zk-
SNARKs with universal and updatable SRS. In EUROCRYPT 2020, Part I, vol. 12105 of LNCS,
pp. 738–768. Springer, Heidelberg, 2020.

CJS14. R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In ACM
CCS 2014, pp. 597–608. ACM Press, 2014.

CLOS02. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-
party secure computation. In 34th ACM STOC, pp. 494–503. ACM Press, 2002.

COS20. A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent recursive proofs from
holography. In EUROCRYPT 2020, Part I, vol. 12105 of LNCS, pp. 769–793. Springer, Heidelberg,
2020.

CSW20. R. Canetti, P. Sarkar, and X. Wang. Triply adaptive UC NIZK. Cryptology ePrint Archive, Report
2020/1212, 2020. https://eprint.iacr.org/2020/1212.

DDN91. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In 23rd ACM
STOC, pp. 542–552. ACM Press, 1991.

DDO+01. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In CRYPTO 2001, vol. 2139 of LNCS, pp. 566–598. Springer, Heidelberg, 2001.

DG23. Q. Dao and P. Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). Cryptology
ePrint Archive, Paper 2023/494, 2023. https://eprint.iacr.org/2023/494.

22

https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2022/638
https://eprint.iacr.org/2022/638
https://eprint.iacr.org/2020/1212
https://eprint.iacr.org/2023/494

DSW08. Y. Dodis, V. Shoup, and S. Walfish. Efficient constructions of composable commitments and
zero-knowledge proofs. In CRYPTO 2008, vol. 5157 of LNCS, pp. 515–535. Springer, Heidelberg,
2008.

Fis05. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In CRYPTO 2005, vol. 3621 of LNCS, pp. 152–168. Springer, Heidelberg, 2005.

FKL18. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In
CRYPTO 2018, Part II, vol. 10992 of LNCS, pp. 33–62. Springer, Heidelberg, 2018.

FKMV12. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of the Fiat-Shamir
transform. In INDOCRYPT 2012, vol. 7668 of LNCS, pp. 60–79. Springer, Heidelberg, 2012.

GGPR13. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In EUROCRYPT 2013, vol. 7881 of LNCS, pp. 626–645. Springer, Heidelberg,
2013.

GH98. O. Goldreich and J. Håstad. On the complexity of interactive proofs with bounded communication.
Inf. Process. Lett., 67(4):205–214, 1998.

GKK+22. C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zajac. What makes fiat-shamir
zksnarks (updatable SRS) simulation extractable? In SCN 2022, vol. 13409 of Lecture Notes in
Computer Science, pp. 735–760. Springer, 2022.

GKM+18. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common
reference strings with applications to zk-SNARKs. In CRYPTO 2018, Part III, vol. 10993 of LNCS,
pp. 698–728. Springer, Heidelberg, 2018.

GM17. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs. In CRYPTO 2017, Part II, vol. 10402 of LNCS, pp. 581–612. Springer,
Heidelberg, 2017.

GMY06. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signa-
tures. Journal of Cryptology, 19(2):169–209, 2006.

GOP+22. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir bulletproofs are
non-malleable (in the algebraic group model). In EUROCRYPT 2022, Part II, vol. 13276 of LNCS,
pp. 397–426. Springer, Heidelberg, 2022.

GOP+23. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-shamir bulletproofs are
non-malleable (in the random oracle model). Cryptology ePrint Archive, Paper 2023/147, 2023.
https://eprint.iacr.org/2023/147.

GOS06. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In EURO-
CRYPT 2006, vol. 4004 of LNCS, pp. 339–358. Springer, Heidelberg, 2006.

GOS12. J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-knowledge. J. ACM,
59(3):11:1–11:35, 2012.

Gro06. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signa-
tures. In ASIACRYPT 2006, vol. 4284 of LNCS, pp. 444–459. Springer, Heidelberg, 2006.

Gro16. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Part II,
vol. 9666 of LNCS, pp. 305–326. Springer, Heidelberg, 2016.

GVW02. O. Goldreich, S. Vadhan, and A. Wigderson. On interactive proofs with a laconic prover. Compu-
tational Complexity, 11(1):1–53, 2002.

GWC19. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953.

JP14. A. Jain and O. Pandey. Non-malleable zero knowledge: Black-box constructions and definitional
relationships. In SCN 14, vol. 8642 of LNCS, pp. 435–454. Springer, Heidelberg, 2014.

Kat21. S. Katsumata. A new simple technique to bootstrap various lattice zero-knowledge proofs to QROM
secure NIZKs. In CRYPTO 2021, Part II, vol. 12826 of LNCS, pp. 580–610, Virtual Event, 2021.
Springer, Heidelberg.

Kil92. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pp. 723–732. ACM Press, 1992.

KKK21. T. Kerber, A. Kiayias, and M. Kohlweiss. Composition with knowledge assumptions. In
CRYPTO 2021, Part IV, vol. 12828 of LNCS, pp. 364–393, Virtual Event, 2021. Springer, Heidel-
berg.

KPV19. A. Kattis, K. Panarin, and A. Vlasov. RedShift: Transparent SNARKs from list polynomial com-
mitment IOPs. Cryptology ePrint Archive, Report 2019/1400, 2019. https://eprint.iacr.org/
2019/1400.

Ks22. Y. Kondi and a. shelat. Improved straight-line extraction in the random oracle model with ap-
plications to signature aggregation. Cryptology ePrint Archive, Report 2022/393, 2022. https:
//eprint.iacr.org/2022/393.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In ASIACRYPT 2010, vol. 6477 of LNCS, pp. 177–194. Springer, Heidelberg, 2010.

23

https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2022/393
https://eprint.iacr.org/2022/393

KZM+15. A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, a. shelat, and E. Shi.
C∅c∅: A framework for building composable zero-knowledge proofs. Cryptology ePrint Archive,
Report 2015/1093, 2015. https://eprint.iacr.org/2015/1093.

Lip19. H. Lipmaa. Simulation-extractable SNARKs revisited. Cryptology ePrint Archive, Report
2019/612, 2019. https://eprint.iacr.org/2019/612.

LR22a. A. Lysyanskaya and L. N. Rosenbloom. Efficient and universally composable non-interactive zero-
knowledge proofs of knowledge with security against adaptive corruptions. Cryptology ePrint
Archive, Paper 2022/1484, 2022. https://eprint.iacr.org/2022/1484.

LR22b. A. Lysyanskaya and L. N. Rosenbloom. Universally composable sigma-protocols in the global
random-oracle model. Cryptology ePrint Archive, Report 2022/290, 2022. https://eprint.iacr.
org/2022/290.

Mau11. U. Maurer. Constructive cryptography - A new paradigm for security definitions and proofs. In
Theory of Security and Applications - Joint Workshop, TOSCA 2011,, vol. 6993 of LNCS, pp.
33–56. Springer, 2011.

MBKM19. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings. In ACM CCS 2019, pp. 2111–2128. ACM
Press, 2019.

Mic00. S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.
Nie02. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-

committing encryption case. In CRYPTO 2002, vol. 2442 of LNCS, pp. 111–126. Springer, Heidel-
berg, 2002.

Pas03. R. Pass. On deniability in the common reference string and random oracle model. In
CRYPTO 2003, vol. 2729 of LNCS, pp. 316–337. Springer, Heidelberg, 2003.

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society
Press, 2013.

PR05. R. Pass and A. Rosen. New and improved constructions of non-malleable cryptographic protocols.
In 37th ACM STOC, pp. 533–542. ACM Press, 2005.

Sah99. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In 40th FOCS, pp. 543–553. IEEE Computer Society Press, 1999.

Unr15. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In EU-
ROCRYPT 2015, Part II, vol. 9057 of LNCS, pp. 755–784. Springer, Heidelberg, 2015.

A Omitted Proofs

In this part we prove sub-claims for proving Theorem 3.1.

Lemma A.1. Hyb0 and Hyb1 are indistinguishable.

Proof. In Hyb1, B simulates the behavior of the honest parties in the real world identically. Additionally
it only intercepts all GRO and FSetup queries and does not tamper them in any way. Thus, the view of
Z is identical in the two hybrids.

Lemma A.2. Hyb1 and Hyb2 are indistinguishable.

Proof. Indistinguishability with the previous hybrids is guaranteed by zero-knowledge property of
ΠR.S. In particular, since ΠR satisfies zero-knowledge (Definition 2.4), output of ΠR.S(1, st, in) is
distributed indistinguishably from that of OSetup.

Lemma A.3. For j = 0, . . . , s1 − 1, Hyb2+j and Hyb2+j+1 are indistinguishable.

Proof. Recall that ΠR is a NIZK with straight-line simulation in the FSetup- hybrid model. The differ-
ence between two consecutive hybrids is that in Hyb2+j the j-th prove command for an honest party
is performed by executing the honest prover’s algorithm in ΠUC-R, while in Hyb2+j+1, this is done by
executing the simulator Sim’s steps in Simulation of uncorrupted prover (Step 1 to 7). We argue
indistinguishability via a series of sub-hybrids. In these sub-hybrids, we only describe execution with
respect to the j-th prove command for an honest party.
1. Hybj,0: This is the same as Hyb2+j .
2. Hybj,1: This is the same as Hybj,0 except the following differences. For the j-th prove command

for an honest party Pi, generate a simulated proof π′ instead of an honest proof. In particular,
execute steps 1 through 6 in ΠUC-R for input C, w and compute C′, w′ as the honest prover would.

24

https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/290
https://eprint.iacr.org/2022/290

Then in place of step 7 (i.e., ΠR.P(pp, C′, w′)), implement step 5 from Sim (i.e., ΠR.S(2, st, C′))
to generate proof π′.
The only difference between Hybj,0 and Hybj,1 is in the way π′ is computed. We argue that this
difference is indistinguishable because of zero-knowledge property (Definition 2.4) of ΠR. In par-
ticular, a distinguisher for the two hybrids can be used to build a distinguisher who breaks zero-
knowledge property of ΠR.
Let AH be the adversary who distinguishes between Hybj,0 and Hybj,1 with advantage ε. Note that
since ΠR is a NIZK it implies that the following indistinguishability holds:∣∣∣∣∣Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,P(pp)

]
− Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,S2(pp)

]∣∣∣∣∣ < negl(λ). (1)

The only difference with respect to the original NIZK definition is that, here in the “real-world”
experiment, A runs with access to S1 and P instead of OSetup and P. Given AH, we construct an
efficient distinguishing adversary ANIZK that succeeds in distinguishing the two events in Equa-
tion. 1 with advantage ε.
ANIZK receives as input the set of commands issued by Z, and black-box access to the adversary
AH. It starts an experiment with the NIZK challenger. It simulates the view of AH with respect to
the commands issued by Z by running the simulated code for the first j − 1 prove commands,
and running the honest prover’s algorithm for the j + 1, . . . , s1 commands. All the FSetup com-
mands are forwarded to the NIZK challenger who answers them by running S1. ANIZK simulates
the view for GRO queries by creating an instance of the functionality locally and behaving just as
the functionality. For the j-th command prove, ANIZK does the following.

– Run steps 1 to 6 honestly as described in ΠUC-R(Proof). During this execution, ANIZK queries
GRO directly whenever necessary.

– Defines an input statement C′ from C and c.
– Query NIZK challenger on input C′ and w′ = (w, ρw, ρc), and receive a proof π′ which is either

real or simulated.
– Embed the challenge distribution as the step 7 message π′.
– When AH outputs bit b′, ANIZK outputs the same bit.

When ANIZK receives the real world distribution, π′ is generated according to ΠR. This correctly
emulates Hybj,0. Similarly, when ANIZK receives the ideal world distribution, π′ is generated with
the help of a simulator ΠR.S. Thus, the distinguishing probability of ANIZK is the same as that of
AH.

3. Hybj,2: This is the same as Hybj,1 except that, in the j-th command to an honest party Pi, the first
r GRO queries made by Pi are programmed to be 0b. Formally, this hybrid executes the following
steps for the j-th command. The simulation for the rest of the commands are handled as before.

– Implement steps 1 to 6 from ΠUC-R(Proof).
– Implement step 7 as in Hybj,1, i.e., by computing ΠR.S(2, ·, ·).
– For each i ∈ [r], pick an evaluation point zi at random from DEnc.
– Evaluate evaluation proofs for each of these points and program GRO output at points (sid, (C′,

c, zi, yi, πi, i)) to be 0b.
There are two differences here compared to the last hybrid. First, here, an honest will always break
out of the loop successfully (right after r runs), while in the previous hybrid an honest prover
might fail to find a satisfying prefix. The latter event is bounded by the completeness error, which
as shown earlier is negligible. The second difference is that the GRO outputs are programmed at r
points. We will argue that, assuming that the prover does not fail in the previous hybrid, the view
generated by programming the RO in this experiment is statistically indistinguishable from that
of the last hybrid. The difference in the view in the two hybrids is with respect to (C′, c, zi, yi, πi, i)
and queries to GRO (both query and observe). Recall that GRO queries made in the session are not
recorded by the functionality and cannot be observed. Thus queries to GRO on observe command
remain the same in the two hybrids. Now, consider the distribution of tuple (C′, c, zi, yi, πi, i). C′, c
are generated honestly in both hybrids and given zi, the values yi, πi are unique. Hence, the only
difference is in the way the honest prover obtains the evaluation points zi. In Hybj,1 it finds zi by

25

sampling the challenge space randomly and querying the GRO till it finds one of the preimage of
0b. Thus, each zi is distributed uniformly in DEnc. z is clearly uniformly random in Hybj,2 as the
prover picks them at random. This implies that the tuple (C′, c, zi, yi, πi, i) is distributed identically
in both hybrids. Finally, we argue indistinguishability for GRO responses on command query. The
difference between the two hybrids lies in the programming of GRO in Hybj,2. First we note that a
distinguisher is successful if it is able to query GRO on a point that is later programmed to output
0. As c is generated honestly and has high min-entropy (see Remark A.4 below), the probability of
this event occurring is negligible. Next, we argue that (conditioned on no points being queried prior
to programming) the distribution of the responses of GRO is not noticeably different between the
hybrids. Let zc1 and zc2 be random variables that count the number of queries of the form (query,
(sid, (C′, c, zi, yi, πi, i))) (∀zi ∈ DEnc) that result in 0 as a response, in Hybj,1 and Hybj,2 respectively.
Observe that zc2 is effectively zc1 shifted by (at most) r, to account for the r programmed points.
Since zc1 follows the Binomial distribution with parameters |DEnc| = O(2λ) tries and probability
2−b ∈ 1/poly(λ) of success—meaning that zc1 ∈ O(2λ)—and r ∈ poly(λ), the statistical distance
between zc1 and zc2 is negligible. This suffices to show the indistinguishability of the responses
of GRO, as queries that are not of this form and the remaining non-zero responses are unaffected.
Thus, GRO responses on query command are indistinguishable as well.

Remark A.4. We note that evaluation hiding for a polynomial commitment scheme already implies
high min-entropy. To see why this is true, suppose that the commitment scheme does not have
high min-entropy. Then, there exists a value w∗, a commitment value c∗, and a polynomial poly(λ)
such that Pr[Com(ck, Enc(w∗, n, ℓ; ρw), d; ρc) = c∗] ≥ 1/poly(λ), where the probability is taken
over choice of coins ρw, ρc, and ck, n, ℓ, d are defined according to Definition 2.9. Let Aev = (A1,
A2) be the adversary against evaluation hiding game. Aev on receiving ck outputs w∗ and in
response receives a commitment corresponding to either w∗ or to an all-0 vector. If A2 receives
the commitment value c∗, it outputs its decision bit as 1, and otherwise, 0. If the commitment
corresponding to the all-0 vector takes value c∗ only with negligible probability (which we argue
below), Aev succeeds in distinguishing with non-negligible probability.
Observe that a commitment for the encoding of all-0 vector will take the value c∗ only with
negligible probability as otherwise there exists an adversary Aeb against the evaluation binding
property for the commitment scheme. Aeb fixes commitment c∗, and messages w∗, 0n. It then
finds opening information (w∗, ρ) by sampling random coins, encoding w∗, committing to the
encoded polynomial, and checking if this is equal to c∗. Aeb does the same for 0n to obtain opening
information (0n, ρ′). Since the commitment takes value c∗ with non-negligible probability, it is
efficient to find this opening information. Thus, for the same commitment c∗, Aeb can now produce
two sets of valid evaluations and proofs (one each for the polynomial encoding w∗ and 0n).

4. Hybj,3: This is the same as Hybj,2 except that instead of encoding the actual witness w, encode a
dummy witness 0n during execution of the j-th prove command to honest part Pi. Suppose there
is an adversary who can distinguish between two hybrids then we can build a distinguisher against
the ϕ-Evaluation Hiding property (Definition 2.9).
Let AH be the adversary who can distinguish between Hybj,2 and Hybj,3 with advantage ε. We
build an adversary Aev for the evaluation hiding property with the same advantage. Let PCS, PES
be the schemes used in the protocol (and by the simulator), and proceed as follows for the j-th
prove command.

– Aev receives as input witness w, chooses evaluation points z at random and sends (w, z) to the
challenger.

– Aev receives (c, y, πPCS) in return and parses πPCS as a list of evaluation proofs (π1, . . . , πr).
– Define C′ given C as an honest prover would.
– For each i ∈ [r], Aev program GRO output at points (C′, c, zi, yi, πi, i) to be 0b.
– Run the underlying simulator ΠR.S on input C′ to obtain proof π′.
– Define ϖ = (π′, c, z, y, πPCS), invokes AH internally and sends ϖ to A.
– AH ouptuts a bit b′, Aev outputs the same bit.

View of AH consists of ϖ, queries to FSetup and to GRO. Queries to FSetup and GRO are handled
exactly the same in the two hybrids. Otherwise, there are two difference between the views: (i) the

26

proof ϖ is with respect to a witness w or 0n, and (ii) proof π′ is for a different statement (and
potentially for a wrong statement in Hybj,3). If the challenger’s bit b = 1, the view ϖ correctly
emulates Hybj,2, where w is encoded and π′ is simulated proof for an honest statement. Otherwise
it emulates Hybj,3, where 0n is encoded and π′ is simulated proof for a potentially false statement.
Thus, the distinguishing advantage of Aev is the same as that of AH.

Remark A.5. Note that, the ability of ΠR.S to generate proofs for a false statements, which is
required in the correctness of indistinguishability argument above, is guaranteed by simulation-
extractability for underlying ΠR.

5. Hybj,4: This is the same as Hyb3+j . The difference from Hybj,3 is that here the preimage of 0b

is obtained by making repeated queries to the GRO, while in Hybj,3, they are programmed ac-
cording to the challenge received in the evaluation hiding game. By a reasoning similar to the
indistinguishability argument between Hybj,1 and Hybj,2 we can conclude that Hybj,3 and Hybj,4
are indistinguishable. Specifically, assuming that the algorithm in Hybj,4 does not fail in finding
appropriate preimages, the view of the distinguisher consists of ϖ, queries to GRO, and to FSetup.
The simulator fails in finding preimages with negligible probability corresponding to the correct-
ness error. Queries to FSetup are handled in the same way. Once again, recall that any GRO for a
session sid by a party participating in the same session is not recorded by the functionality. Thus,
GRO queries made in the execution of Hybj,4 are not recorded and so responses to observe com-
mand behave indistinguishably. Now, we argue the same for responses to query command. c, C′ is
computed in exactly the same way, and given c, zi, the values yi and πi are unique. Thus the only
difference is in the way zi’s are found. In Hybj,3, zi’s are distributed uniformly random as they are
picked at random. This is also the case for Hybj,4 since zi’s are found by querying the GRO. Finally,
a distinguisher can distinguish if he queries GRO on a point that is later programmed to output 0b.
However, since c is generated honestly and is assumed to have high min-entropy, the probability
of this event occurring is negligible.

Lemma A.6. For j = 0, . . . , s2 − 1, Hyb2+s1+j and Hyb2+s1+j+1 are indistinguishable.

Proof. In these hybrids we replace the j-th verify command to an honest party Pi with the code in
Simulation of uncorrupted verifier (in Sim). In particular, all the FSetup queries are implemented
by executing Simulation of FSetup. All the s1 prove commands are executing by steps Simulation
of uncorrupted prover. The first j − 1 verify commands are implemented by running steps in
Simulation of uncorrupted verifier, and the last {j + 1, . . . , s2} verify commands are done by
running honest verifier’s algorithm in ΠUC-R. For the j-th verify command to an honest party Pi,
in Hyb2+s1+j the honest verifier’s code is executed, while in Hyb2+s1+j+1 code in Simulation of
uncorrupted verifier is implemented. We prove indistinguishability between consecutive hybrids
using the following sub-hybrids.
1. Hyb′

j,0: The same as Hyb2+s1+j

2. Hyb′
j,1: Same the previous hybrid except that, for the j-th query the honest verifier’s algorithm

is replaced by steps 1 to 7 in Simulation for uncorrupted verifier are additionally executed.
The difference in the two hybrids is the abort probability introduced by ⊥2. This happens with
negligible probability as otherwise it violates either evaluation binding (when y ̸= y′ for the same
c, z) or unique proofs (when π ̸= π′ for the same c, z, y).

3. Hyb′
j,2: Same as the previous hybrid except that, for the j-th query, execute step 8 in Simulation

for uncorrupted verifier in addition to the previous steps. The difference with the previous
hybrid is that, here, there is an additional abort probability introduced by the event that (C′, π′)
in ϖ was previously generated by ΠR.S execution. We argue that this happens with negligible
probability, otherwise, we break non-extrapolation for the PCS scheme.
Suppose, there exists an environment Z and adversary A such that Hyb′

j,2 results in ⊥3 with
probability ε. Z sees s1 simulated proofs ϖ for its choice of statements, and later comes up with
a proof ϖ̃ = (π̃′, c̃, z̃, ỹ, π̃PCS) such that (C̃′, π̃′) appears in one of the simulated proofs, where C̃′

is computed as usual given C and c. We construct an adversary Ane who breaks non-extrapolation
with probability ε/s1.

– Ane starts the ϕ-non-extrapolation game and receives ck from the challenger. It starts simulating
the view for Z for Hyb′

j,2. It creates an instance for GRO functionality to simulate queries to

27

GRO. All FSetup queries are answered by running the steps in Simulating FSetup except that
when queried for Commitment Key send ck.

– Recall, Z issues s1 prove commands. These are answered as: Ane picks an index k ∈ [s1] at
random and answers all but the k-th prove command by generating simulated proofs as in
previous hybrids. For the k-th command prove, Ane invokes the non-extrapolation challenger
by sending (n, z), where n is the size of witness and each zi is sampled randomly from Di.

– The challenger returns proofs (c, y, πPCS), where c corresponds to a commitment to a polyno-
mial encoding 0n. Ane programs the GRO at points corresponding to this proof to 0b. Note that,
since Ane invokes Z internally and simulates the entire view for Z, it is allowed to program
the GRO. Ane computes C′, simulates its proof π′ by running ΠR.S , and forwards ϖ = (π′, c,
z, y, πPCS) to Z.
The commitment c and evaluation proofs correspond to an encoding of 0n, the view obtained
by Z is exactly as in Hyb′

j,2.
– Recall, Z issues s2 verify commands. For the first j − 1 verify commands are implemented

by running steps in Simulation of uncorrupted verifier, and the last {j +1, . . . , s2} verify
commands are done by running honest verifier’s algorithm in ΠUC-R. During this execution, Z
issues a command verify such that (C̃′, π̃′) was previously simulated. With probability 1/s1,
this corresponds to the k-th prove command, i.e., C̃′ = C′ and π̃′ was simulated by Ane for
input C′. Then, since ϖ̃ differs from all previous proofs and (π′, c, C) = (π̃′, c̃, C̃), it must be
that (z, y, πPCS) ̸= (z̃, ỹ, π̃PCS). And since (because of the previous hybrid), if z = z̃, then
y = ỹ and πPCS = π̃PCS, it must be that z ̸= z̃. Thus, Ane obtains at least one more evaluation
(z̃i, ỹi) with proof π̃i from ϖ̃ in addition to the r evaluations from ϖ. Ane forwards (z̃i, ỹi, π̃i) to
the non-extrapolation challenger. If Z reuses a simulated proof with probability ε, Ane breaks
non-extrapolation with probability ε/s1.

4. Hyb′
j,3: Same as the previous hybrid except that, for the j-th verify command with some input

(C, ϖ), step 9 in Simulation for uncorrupted verifier is additionally executed. The difference
from the previous hybrid is that an additional abort condition is introduced by ⊥4. Note that if
⊥4 is not the output then the simulator succeeds in interpolating the polynomial and decoding a
witness.
Let the event where ⊥4 is output be denoted by X1. We define the event X2 as: there exists a pair
(C∗, c∗) for which GRO queries of the form (sid, (C∗, c∗, ·, ·, ·, i)), for each i ∈ {1, . . . , r}, were made
and |Qc∗ | < d. Observe that X1 happens only if X2 happens. Note that, in X2, we can ignore the
pairs (C∗, c∗) for which no H query was made for some iteration. This is because such queries can
never be the part of final proof. Now we bound the probability of X2 which will bound also the
probability of X1 happening.
Let the total number of GRO queries made be Q. Fix some tuple (sid, (C∗, c∗, ·, ·, ·, ·)), and now we
bound the probability that |Qc∗ | < d for this specific tuple (again assuming that there is at least
one query per iteration). As argued in the previous hybrid, for a given (c∗, z∗), the evaluation and
the evaluation proof are unique. Thus, there is only one query in the set Qro corresponding to any
commitment, evaluation point pair (c∗, z∗). This means that the condition |Qc∗ | < d happens if
there are less than d distinct z for the same c∗ in the query set Qro.
Each iteration i is independent as the evaluation points come from a separate sub-domain. Consider
the event that there is no iteration in which the adversary takes more that d queries to find a
preimage for 0b. Let goodk denote the event that the k-th RO query is a good query, i.e. hashes to
0b. Then the probability that, in iteration i, the adversary A wins, i.e., finds a preimage for 0b in
less than d queries to the GRO can be bounded as follows.

Pr[A wins in iteration i] ≤
d−1∑
k=1

Pr[goodk] <
d

2b

For the pair (C∗, c∗), |Qc∗ | < d, if A wins in each iteration. Thus,

Pr[|Qc∗ | < d] ≤
(

d

2b

)r

=
(

2r log(d)

2rb

)

28

For r(b− log(d)) = λ, we get negligible probability for |Qc∗ | < d for a fixed pair (C∗, c∗).

Pr[|Qc∗ | < d] ≤ 1
2λ

Taking a union bound over all tuples (C∗, c∗) among Q GRO queries, we get,

Pr[X1] ≤ Pr[X2] ≤ Q

2λ

Since the number of GRO queries can only be polynomially many, the probability of event X1 hap-
pening is negligible. Thus, the simulator outputs ⊥4 only with negligible probability and otherwise
succeeds in extracting a witness.

5. Hyb′
j,4: Implement all the steps in Simulation for uncorrupted verifier (steps 1 to 12). This

hybrid differs from Hyb′
j,3 in the additional abort condition introduced by ⊥5. We argue that this

happens only with negligible probability.
For a given configuration of A and Z, we construct an adversary Aeb that breaks evaluation
binding for the PCS scheme if ⊥5 happens. Aeb internally runs the following cheating prover B
against SIM-EXT of ΠR which further invokes A and Z inside.
(a) B simulates the view of A and Z in Hyb′

j,4, except that it forwards setup queries in to S1 to
receive out, and queries C′ (derived from queried C and self-produced c) to S ′

2 to receive π′,
respectively.

(b) When Z outputs accepting (C, (π′, c, z, y, πPCS)), B constructs the corresponding extended
circuit C′ and outputs (C′, π′)

Aeb then answers queries made by B by running S1 and S ′
2. Thanks to the abort conditions defined

in previous hybrids, the output (C′, π′) of B differs from any of previously generated statement-proof
pairs recorded during queries to S ′

2. Thus, the SIM-EXT property suggests there exists a (non-black-
box) extractor EB such that it successfully outputs a valid witness w′ satisfying C′(w′) = 1 except
with negligible probability.
Let us describe how Aeb proceeds to break evaluation binding assuming C′(w′) = 1 (otherwise it
aborts). Parse w′ as (w∗, ρ∗

w, ρ∗
c). It holds that c = Com(ck, Enc(w∗, n, ℓ; ρ∗

w), d; ρ∗
c) and C(w∗) = 1.

Recall that w (interpreted as vector w) is the witness extracted by Hyb′
j,4 by observing GRO queries.

To cause the event ⊥5 while (C′, w′) ∈ R, it must be that w∗ ̸= w. Aeb recomputes the encoding
with respect to (w∗, ρ∗

w) as f∗ ← Enc(w∗, n, ℓ; ρ∗
w) of degree less than d. Since w ̸= w∗, we also have

f ̸= f∗ as otherwise it contradicts correctness of the encoding function. Then Aeb evaluates f∗ over
all zi found in Qc to obtain y∗

i , and honestly computes new evaluation proofs π∗
i ← Eval(ck, c, d, zi,

y∗
i , f∗; ρ∗

c). Obviously, completeness of PCS ensures all these proofs pass the verification check. Note
that the size of Qc is at least d, so we are guaranteed to get d valid evaluation proofs both from the
RO queries and f∗ as constructed above. Because f and f∗ are distinct polynomials of degree less
than d, it must be that yj ̸= y∗

j for some j. Therefore, for such j, the tuple (c, zj , yj , y∗
j , d, πj , π∗

j)
is indeed an instance breaking the evaluation binding.
Overall, we get

Pr[⊥5] ≤ Pr[(C′, w′) /∈ R] + Pr
[
w ̸= w∗ ∣∣ (C′, w′) ∈ R

]
≤ εse + εeb ≤ negl(λ)

where εse is the SIM-EXT knowledge error of ΠR and εeb is the advantage of breaking evaluation
binding property of PCS.

Lemma A.7. Hyb2+s and Hyb3+s are indistinguishable.

Proof. The change here is merely syntactic, i.e., replacing B in hybrid Hyb2+s with Sim. Hyb3+s runs
in exactly the same way as Hyb2+s, except that the outputs (simulated proofs and extracted witness
in response to prove and verify commands, resp.) produced in the hybrid experiment are forwarded
to the FNIZK functionality.

29

	Introduction
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	UC Framework
	Succinct Non Interactive Zero-Knowledge Proof
	Succinct Polynomial Commitment Scheme

	Succinctness-Preserving UC NIZK Compiler
	Security Proof

	Instantiating our Compiler
	A Candidate PCS and PSE Scheme
	Candidate NIZK Schemes

	Omitted Proofs

