
Forking Sums of Permutations for Optimally
Secure and Highly Efficient PRFs

Avijit Dutta1, Jian Guo2 and Eik List2

1 Institute for Advancing Intelligence, TCG-CREST, India
avirocks.dutta13(at)gmail.com

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

{guojian, eik.list}(at)ntu.edu.sg

Abstract. The desirable encryption scheme possesses high PRF security, high efficiency,
and the ability to produce variable-length outputs. Since designing dedicated secure
PRFs is difficult, a series of works was devoted to building optimally secure PRFs
from the sum of independent permutations (SoP), Encrypted Davies-Meyer (EDM),
its Dual (EDMD), and the Summation-Truncation Hybrid (STH) for variable output
lengths, which can be easily instantiated from existing permutations. For increased
efficiency, reducing the number of operations in established primitives has been
gaining traction: Mennink and Neves pruned EDMD to FastPRF, and Andreeva et al.
introduced ForkCiphers, which take an n-bit input, process it through a reduced-round
permutation, fork it into two states, and feed each of them into another reduced-round
permutation to produce a 2n-bit output. The constructions above can be used in
secure variable-length modes or generalizations such as MultiForkCiphers.
In this paper, we suggest a framework of those constructions in terms of the three
desiderata: we span the spectrum of (1) output length vs. PRF security, (2) full vs.
round-reduced primitives, and (3) fixed- vs. variable-length outputs. From this point
of view, we identify remaining gaps in the spectrum and fill them with the proposal
of several highly secure and efficient fixed- and variable-output-length PRFs.
We fork SoP and STH to ForkPRF and ForkSTH, extend STH to the variable-output-
length construction STHCENC, which bridges the gap between CTR mode and
CENC,and propose ForkCENC, ForkSTHCENC, ForkEDMD, as well as ForkEDM-CTR
as the variable-output-length and round-reduced versions of CENC, STH, FastPRF,
and FastPRF’s dual, respectively.
Using recent results on Patarin’s general Mirror Theory, we have proven that almost
all our proposed PRFs are optimally secure under the assumption that the permuta-
tions are pairwise independent and random and STH achieves the optimal security
depending on the output length. Our constructions can be highly efficient in practice.
We propose efficient instantiations from round-reduced AES and back it with the
cryptanalysis lessons learned from existing earlier analysis of AES-based primitives.
Keywords: Provable security · H-coefficient technique · sum of permutations ·
Encrypted Davies-Meyer · Summation and Truncation Hybrid · AES · Forkcipher

1 Introduction
Pseudorandom functions (PRFs) are important cryptographic primitives used in various
cryptographic algorithms for encryption and authentication. However, designing dedicated
pseudorandom functions is hard as one of the biggest challenges in designing PRFs is
to design a secure non-invertible length-preserving round function that can be iterated

2 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

multiple times to produce a secure PRF, as collision probabilities are amplified with each
iteration [20, 78].
On the other hand, designing a pseudorandom permutation (PRP) (a.k.a. a keyed block
cipher) is relatively easy. The general strategy to design a block cipher is to design
a weak invertible round function and to iterate it multiple times to produce a secure
pseudorandom permutation. There are primarily two paradigms for designing a block
cipher [69], namely the Luby-Rackoff paradigm [51, 74] and substitution-permutation
networks (SPN) [51, 88]. Informally, we call a collection of functions a PRF if, for any
computationally bounded adversary, it is infeasible to distinguish the collection from a
collection of random functions. Similarly, we call a collection of permutations a PRP if,
for any computationally bounded adversary, it is infeasible to distinguish the collection
from a collection of random permutations.
While myriads of block ciphers are available and thus many more than there are practical
candidates of pseudorandom functions, the usual security notion for encryption and
authentication modes of operation searches for the PRF rather than the PRP security. Due
to the PRP-PRF switching lemma [15, 17, 32], a block cipher is considered to be a good
PRF up to the birthday bound, i.e., if the block size of a block cipher Ek is n-bits, then it
is a secure PRF when the number of messages it processes is at most 2n/2. As a result, one
can instantiate the mode of operation with block ciphers which makes the resultant bound
of the construction up to the birthday limit. While the birthday bound is acceptable for
practical values of n such as 128 bits, the bound may not be useful for small values of
n, such as n = 64 bits. However, due to the ongoing trend of lightweight cryptographic
primitives, small-state block ciphers (e.g., PRINCE [23], PRESENT [22] etc.) are frequently
used in practice. Therefore, it is of utmost importance to disregard the idea of considering
a block cipher to be a secure PRF and focus on designing modes of operations that are
provably secure beyond the birthday bound (BBB) when instantiated with small-state
block ciphers. Hereafter, we use the terms permutation and block cipher interchangeably.
Before we can consider this long goal of designing highly secure and efficient variable-output-
length (VOL-)PRFs, we have to briefly recall and understand the existing fixed-output-length
(FOL-)PRFs first.

1.1 Designing PRFs with Beyond-birthday-bound Security
Designing PRFs with beyond-birthday security started from the proposal of Hall et al. [60],
who proposed to truncate the output from an n-bit permutation to s bits. This construction
was later proven secure for up to 2n−s/2 queries [14, 52], i.e., n− s/2-bit security. Bellare
et al. [16] have proposed the Sum of Permutations (SoP) which returns the XOR of the
outputs of two n-bit independent permutations Π1,Π2:

SoPΠ1,Π2(x) ∆= Π1(x)⊕Π2(x).

This construction was proven secure first for up to 22n/3 queries [75] and recently for up
to 2n queries [41, 49]. Guo et al. [59] proposed SUMPIP, a contender of SoP:

SUMPIPΠ(x) ∆= Π(x)⊕Π−1(x) .

In contrast to the single-permutation variant of SoP which takes (n−1)-bit inputs, SUMPIP
is the first single-permutation-based PRF that takes and returns n-bit values. In the same
paper, the authors also showed that a single-permutation-variant of EDM and EDMD
achieves O(2n/3)-bit security. Compared to just returning both outputs from Π1(x) and
Π2(x) (call it PRP2), the sum of permutation is a trade-off: On the one hand, it reduces
the efficiency of two permutation calls by generating only an n-bit output. At CRYPTO’20,
Gunsing and Mennink [58] proposed the Summation-Truncation Hybrid (STH) that filled

Avijit Dutta, Jian Guo and Eik List 3

the range between those extremes. STH outputs an a-bit part of each permutation call and
sums the n− a outputs of both permutations. More precisely, STH takes an (n− 1)-bit
input x, truncates the leftmost s bits of Π(x‖0) and Π(x‖1), and sums the discarded n− s
bits of Π(x‖0) and Π(x‖1) to produce an (n + s)-bit output. They showed that STH
provides security roughly up to 2n−s/2 queries. This trade-off is shown in the top of the
leftmost column of Figure 1.1.

While the constructions above are parallelizable PRFs, Cogliati and Seurin [37] initiated
the research direction on alternative candidates of beyond-birthday-bound secure PRFs
that use a sequential execution of permutations. They proposed the Encrypted Davis
Meyer (EDM) construction and have shown that EDM achieves 2n/3-bit security. EDM
orders the permutation calls to Π1 and Π2 in sequence and XORs the input to Π1 to the
output of Π1 before the XOR sum is processed by Π2:

EDMΠ1,Π2(x) ∆= Π2(Π1(x)⊕ x) .

Later in [77], Mennink and Neves showed the optimal security of the construction. In the
same paper, the authors also proposed a dual variant of EDM called EDMD.

EDMDΠ1,Π2(x) ∆= Π2(Π1(x))⊕Π1(x) ,

and showed its optimal PRF security. However, the proofs for the optimal bound of both
EDM and EDMD are inherently based on a debated result of Mirror Theory for general
ξmax [79, 84].1 While both (i.e., EDM and EDMD) are based on two independent n-bit
permutations, in [38], Cogliati and Seurin have shown 2n/3-bit security for EDM with a
single permutation. Concurrent to this work, Guo et al. [59] have also shown 2n/3-bit
PRF security for the single-permutation-based EDM and the EDMD constructions. While
those PRFs are useful when small size fixed in- and output lengths are needed, encryption
requires PRFs with variable output lengths in general. Recently, Chen et al. [34] have
shown that to design an n-to-n-bit PRF from the XOR of permutations with optimal
security, one needs to resort to the constructions whose structure is inherently based on
SoP, EDM, or EDMD. Thus, it makes perfect sense to consider possible extensions of these
constructions for VOL PRFs.

1.2 From Fixed- to Variable-output-length PRFs
A simple instantiation of PRF-based modes is to substitute each block-cipher call with
SoP or STH. For example, Iwata and Minematsu [64] replaced every block-cipher call for
encryption with a sum of permutations in GCM-SIV-2 and its generalization GCM-SIV-r.
Iwata [62] extended the SoP construction for a variable-output-length PRF, called XORP,
that takes an m-bit input and produces a sequence of w n-bit outputs as:

XORP(x) ∆= ‖wi=1Π(x‖〈0〉s)⊕Π(x‖〈j〉s) ,

where s = dlog2(w + 1)e, 〈j〉s denotes the s bit binary represenation of the integer j and
m + s = n. In [63], Iwata et al. proved optimal security of XORP and a nonce-based
encryption mode CENC [62] around it.

From EDM, Menning and Neves [78] defined a counter-mode PRF with optimal security.
Choi et al. derived per-message masks with a four-block chunk of CENC and encrypts in
an OCB-like manner in their proposal of the SCM AE scheme [35]. If the message length
is limited to � 2n/2 blocks, their scheme can provide up to optimal security. However, the
message lengths might be larger than that. In this work, we will strive for highly secure
PRFs whose security does not limit the message length to the birthday bound.

1Dutta et al. [39] have given a correct and verifiable proof of the Mirror-Theory result for general ξmax.

4 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

For permutation-based constructions, Farfalle [18] and Farasha [1] are variable-length
PRFs, although, with their security limited to the birthday bound of the primitive. In
a preprint of their Megafono and Hydra PRF constructions, Grassi et al. [55] employed
a variable-output-length variant of STH that summed the b-bit part of two consecutive
permutations each. Given w permutation calls for even w, this approach produced
wn− (w/2)b bits of output. In comparison, STHCENC outputs wn− b bits with almost
the same PRF security (reduced by a logarithmic factor in w). In [56], they replaced the
STH construction by a “feed-forward operation both in order to avoid wasting encryption
material and in order to increase the security with respect to guessing attacks”.

1.3 Round-reduced Primitives

While CENC and its generalization NEMO [72] constitute highly efficient modes with
close-to-optimal provably security, practical efficiency demands fostered additional research.
Motivated by the increased depth of understanding of established primitives (such as
the AES or Skinny), there is an ongoing trend to make schemes more efficient by using
round-reduced variants of them. For AEZ, Hoang et al. [61] proposed the prove-then-prune
approach, where a scheme is proven secure under assumptions on its primitive, and the
construction is instantiated with a downscaled primitive. For some variants of AEZ, later
cryptanalysis [26, 89] showed that the assumptions are violated with the used primitives.

ForkCipher. While one can simply reduce the number of rounds in AES instances inside
to eight or nine rounds (cf. [6]), this approach still needs 16 or 18 AES rounds per block.
Andreeva et al. [4] suggested a new kind of primitive that they coined ForkCipher with
the goal of higher efficiency for encryption or authentication. A ForkCipher maps an n-bit
message to a 2n-bit output. Instead of applying a single (full-size) permutation to each
block, it uses three permutations that can be more efficient in sum. More precisely, a
ForkCipher processes the input with a first permutation, before the resulting state is forked
(used simultaneously as input to both) to two further independent permutations at the
bottom whose outputs are returned. To instantiate a ForkCipher from a primitive’s round
function, the authors of [4] proposed the iterate-fork-iterate (IFI) paradigm for some r1 and
r2, where a plaintext is encrypted through an r1-round of the cipher at the top and further
processed through key-independent r2 rounds of the cipher in the bottom permutations.
Both outputs can be used, e.g. as a ciphertext block and its authentication tag for small
messages of at most a single block, or as a ciphertext block and a chaining value in modes,
respectively. Andreeva et al.’s [4] security notion of MultiForkCiphers (MFCs) represented
a natural extension of ForkCiphers. Similarly, the authors proposed their instantiation
from the extension of the IFI principle to iterate-fork-iterate-many (IFIM). IFIM uses the
forked state for more than two and potentially many more independent permutation calls.
As such, it can represent a more efficient variant of counter mode.

FastPRF. Menning and Neves [78] applied the prove-then-prune paradigm to EDM and
EDMD and the AES. Their proposal FastPRF was an n-bit-secure encryption scheme that
used a variant of EDM with round-reduced permutations in counter mode. While FastPRF
features a generic proof, it can also be analyzed with respect to the standard PRF notion.
As a concrete instance, they proposed AES-PRF, which is the AES-128 reduced to five
rounds in each permutation call. Thus, their instantiated encryption scheme had also only
10 AES rounds per encrypted message block, which inspired further research on pushing
the AES and the understanding of attacks on its round-reduced variants further.

Avijit Dutta, Jian Guo and Eik List 5

1.4 Filling the Gaps Towards Secure Highly Efficient VOL-PRFs
We ask if one could reduce the number of rounds of a cipher and prove a similar level of
security in a design of higher efficiency. The ForkCipher tries to increase efficiency compared
to two calls to a PRP, and the MultiForkCipher generalizes it to variable-output-length
constructions. Though, when limiting the number of independent permutations and not
imposing restrictions on the message length, they offer O(n/2)-bit PRFsecurity since
collisions are prohibited between 2n/2 short messages.
Thus, (1) the number of primitive calls per output block, (2) the number of output blocks,
and (3) the blockwise efficiency from forking span a spectrum that is visualized in Figure 1.1.
After locating the 20 existing constructions therein, we identify seven gaps. One can easily
observe that the round-reducing approach of ForkCiphers can also be applied to SoP and
STH to obtain more efficient variants ForkPRF and ForkSTH. Still, those constructions
are an intermediate step given their inferior efficiency compared to FastPRF and its dual.
In the second step, we observe that we can derive VOL extensions. The equivalent of
round-reduced counter mode is the MFC, i.e., the VOL extension ForkCipher.
This work proposes the additional VOL extensions ForkCENC, ForkSTHCENC, ForkEDMD,
and ForkEDM-CTR for ForkPRF, ForkSTH, FastPRF, and the dual of FastPRF, respectively.
Our constructions fork the output of a top permutation call in the middle for many bottom-
permutation calls and differ in their outputs. As a result, this work proposes a framework
of close-to-optimally secure and efficient VOL-PRFs built on reduced-round block ciphers.
Assuming r, rt, and rb rounds in a full, the top, and the bottom permutations, respectively,
ForkCENC can encrypt at a rate approaching r/rb > 1.We propose an instantiation based on
the AES that applies the knowledge from existing attacks and countermeasures. Figure 1.1
provides an overview of existing constructions and our proposals (the latter highlighted).

Instantiation. In the line of AES-PRF and Fork-AES, we propose an instantiation of
ForkCENC, called ForkCENC-AES, where we instantiate the permutations with reduced-
round tweaked AES that we believe to be more secure than AES-PRF or ForkAES. We adopt
the ElasticTweak approach from ESTATE [28, 29] to separate the individual permutations,
but introduce further refinements to increase the diffusion of the tweaks. As a consequence,
ForkCENC is more efficient than CENC and AES-PRF while it provides the security of
CENC of n bits of security, and benefits from the corpus of existing cryptanalysis.

Outline. The remainder of this work is structured as follows. Section 2 lists the notations
and defines the security notions for the rest of the paper. Section 3 provides formal
definitions for all of our proposed constructions. We provide a formal security argument
for all of the proposed constructions in section 4. Section 6 defines an instantiation
of our proposed scheme which is analyzed in depth in Section 7. Section 8 describes
software-implementation results.

Comparison to [3]. In a parallel work [3], Andreeva et al. proposed a variant of
ForkEDMD [4]. Theirs and our work share the idea that ForkEDMD is an excellent
candidate for reduced-round encryption. Further similarly to our work, they proposed
a highly efficient instantiation of it, called ButterKnife, from a round-reduced tweakable
variant of an AES-round-based TBC. More precisely, they proposed a highly efficient
instantiation 7+8-round Deoxys-BC with 256-bit tweakey before and after the forking
point, respectively. They further demonstrate its efficiency and usefulness in highly secure
deterministic authenticated encryption schemes.

Our work differs from [3] in several points: most notably, our work considers the
spectrum of schemes and not only one extreme. The ForkCipher series of coins new
paradigms for the individual variants: Iterate-Fork-Iterate [4], Iterate-MultiFork-Iterate
[4], and Masked-Iterate-Fork-Iterate (mIFI) [3]. In contrast, we map them to fixed- or

6 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

PRP2

M

C1 C2

Π1 Π2

CTR

M M + 1 M + 2 M + 3

C1 C2 C3 C4

Π Π Π Π

STH [58]

M

C1 C2

Π1 Π2

Y1,0 Y1,1 Y2,0 Y2,1

STHCENC [This work]

M

C1 C2 C3 C4

Π1 Π2 Π3 Π4

Y1,0 Y1,0
Y1,1 Y2,1 Y3,1 Y4,1Y1,0 Y2,0 Y3,0 Y4,0

SoP

M

C

Π1 Π2

Y1 Y2

CENC [62]

M‖0 M‖1 M‖2 M‖3

C1 C2 C3

Π Π Π Π

Y1 Y1
Y1 Y2 Y3 Y4

EDMD [77]

M

C

Π1

Π2

X

Y

EDMD [77]

M

C1

Π1

Π2

X1

Y1

M + 1

C2

Π1

Π2

X2

Y2

M + 2

C3

Π1

Π2

X3

Y3

M + 3

C4

Π1

Π2

X4

Y4

EDM [77]

M

C

Π1

Π2

X

EDM-CTR [77]

M

C1

Π1

Π2

X1

M + 1

C2

Π1

Π2

X2

M + 2

C3

Π1

Π2

X3

M + 3

C4

Π1

Π2

X4

O
ut
pu

t
le
ng

th
(b
its

)
PR

Fs
ec
ur
ity

(b
its

)
w
n

(w
−

1)
n

+
s

(w
−

1)
n

w
n

w
n

O
(n
/
2)

O
(n
−
s/

2)
O

(n
)

O
(n

)
O

(n
)

1 (FOL) w (VOL)

(a) Full-round primitives.

ForkCipher using IFI [4]

M

C1 C2

π0

π1 π2

X

MFC using IFIM [2]

M

C1 C2 C3 C4

π0

π1 π2 π3 π4

Xi

ForkSTH [This work]

M

C1 C2

π0

π1 π2

X

Y1,0 Y1,1 Y2,0 Y2,1

ForkSTHCENC [This work]

M

C1 C2 C3 C4

π0

π1 π2 π3 π4

Yi,1,1 Yi,1,1

Xi

Yi,1,1 Yi,2,1 Yi,3,1 Yi,4,1Yi,1,0 Yi,2,0 Yi,3,0 Yi,4,0

ForkPRF [This work]

M

C

π0

π1 π2

X

Y1 Y2

ForkCENC [This work]

M

C1 C2 C3

π0

π1 π2 π3 π4

Y0 Y0 Y0

Xi

Y1 Y2 Y3

FastPRF [78]

M

C

π1

π2

X

Y

ForkEDMD [This work] and [3]

M

C1 C2 C3 C3

π0

π1 π2 π3 π4

Y1 Y2 Y3 Y4

FastPRF-EDM [78] (*)

M

C

π1

π2

X

ForkEDM-CTR [This work]

M

C1 C2 C3 C3

π0

π1 π2 π3 π4

N 2N 22N 23N

Y1

O
ut
pu

t
le
ng

th
(b
its

)
PR

Fs
ec
ur
ity

(b
its

)
w
n

(w
−

1)
n

+
s

(w
−

1)
n

w
n

w
n

O
(n
/
2)

O
(n
−
s/

2)
O

(n
)

O
(n

)
O

(n
)

1 (FOL) w (VOL)

(b) Round-reduced primitives.

Figure 1.1: The spectrum of encryption schemes from PRP2 to SoP and their variable-
output-length and round-reduced constructions. The schemes in the colored boxes are
introduced in this work. (*) FastPRF-EDM was not proposed but considered in [78].

Avijit Dutta, Jian Guo and Eik List 7

Table 1: Comparison of the considered constructions. π̃t and π̃T = reduced tweakable
permutation;π̃t uses small tweaks that can cover only few domains, whereas π̃T allows
nonce/IV to be used in the tweak. Security is given for n-bit tweaks T . (*) The dual
variant of FastPRF was considered but not proposed by [78].

Calls/block Output PRF Sec.

Construction π̃t π̃T (bits) (bits) Reference

FIL, FOL, reduced permutations
ForkCipher 3 – 2n n/2 [4]
ForkSTH 3 – n+s n− s/2 [This work]
ForkPRF 3 – n n [This work]
FastPRF 2 – n n [78]
FastPRF-EDM 2 – n n [78] (*)

FIL, VOL, reduced permutations
MFC[w] w+1 – wn n/2 [2]
M̃FC[w] – w+1 wn n [2]
ForkSTHCENC[w] w+1 – (w−1)n+s n− s/2 [This work]
ForkCENC[w] w+1 – (w−1)n n [This work]
ButterKnife – w+1 wn n [3]
mIFI, ForkEDMD[w] w+1 – wn n [3], [This work]
ForkEDM-CTR[w] w+1 – wn n [This work]

variable-output-length PRFs. Viewing constructions as part of a spectrum of FOL- VOL-
PRFs allows us to identify the trade-off between security and output length from ForkCENC
and MultiForkCipher and intermediate constructions with variable output lengths, covered
by ForkSTHCENC. Extending the round-reduced variants of EDMD and EDM-CTR, we can
further identify ForkEDMD and ForkEDM-CTR as the most efficient VOL-PRFs with respect
to the number of calls to the internal primitives. Then, given the full classification of two-
permutation-based constructions from [34], we can finally identify ForkCENC, ForkEDMD,
and ForkEDM-CTR to be the set of all n-bit secure VOL-PRFs variants of the spectrum.

Our instantiation allows us to address a slightly different use case than does ButterKnife.
This is a property of the instantiation in mind and not of the construction. ForkEDMD and
also mIFI can consider a variant of ElasticTweak as a tweak schedule for very small tweaks
explicitly. Small tweaks suffice for separating the individual permutation calls and could
support more efficient tweak scheduling. Our motivation was to offer an advantage over a
tweakable MultiForkCipher [2]. The latter can be used as a variant of forked Counter-in-
Tweak [87] (as proposed e.g. as Variant 3 of [2]) and therefore already allowed to build an
n-bit-secure VOL-PRF. Though, it needs n-bit tweaks for n-bit security.

ButterKnife targets 256-bit tweakeys [3]. Thus, it would be interesting to compare
ButterKnife – which adds the final XOR to each block – to a tweakable MultiForkCipher
that uses CTRT mode also with a similar primitive as ButterKnife. We are aware that
practical x64 platforms such as 6-th or 12-th generation Intel i5 processors seem able to
execute the operations for the tweakey schedule in Deoxys-BC in parallel to the AES rounds.
Nevertheless, platforms vary over time and so may their efficiency.

2 Preliminaries
General Notation. We use uppercase characters for functions and variables, lower-
case characters for indices and lengths, and calligraphic uppercase characters for sets
and distributions. We indicate lists, vectors, and matrices, but also distinguishers and
adversaries in general by boldface characters. For non-negative integers x and y, we
write [x] = {1, . . . , x}, [0..x] = {0, 1, . . . , x}, and [x..y] = {x, x + 1, . . . , y}. We write

8 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

{0, 1}n for n-bit strings, and X‖Y for the concatenation of two bitstrings X and Y .
For integers x, n and bitstring X ∈ {0, 1}n, we use X1, . . . , Xm

x←− X for the unique
splitting of X into segments of ≤ x bit length, such that |X1| = · · · = |Xm−1| = x and
|Xm| ≤ x. Similarly, we use (X1, X2) x,n−x←−−−− X to indicate that |X1| = x, |X2| = n − x
and X1‖X2 = X. We write X1, X2, . . . � X for the uniform and pairwise independent
sampling with replacement of X1, X2, . . . from X . Thus, Xi � X , independent of the
values Xj for i 6= j. We use X1, X2, . . .�wor X for the uniform and pairwise independent
sampling with replacement in the order of X1 � X , then X2 � X \ {X1}, and so on. In
general, Xi � X \ {X1, X2, . . . , Xi−1}. For non-empty set or spaces T , X , and Y, we
write Perm(X) for the set of permutations over X and P̃erm(T ,X) for the set of tweakable
permutations over X with tweak space T .

Distinguishers. An adversary is an algorithm that interacts with a challenger. A
distinguisher D is an adversary that interacts with one of several worlds that it shall
distinguish between. Prior to the interaction, the challenger samples a random bit
b←$ {0, 1}n and presents D with one of two sets of oracles depending on the value of
b. Moreover, the challenger uses internal secrets such as keys. D can interact with the
individual oracles and collect the corresponding responses. At the end, D outputs a guess
b′ to the challenger; D wins if and only if (iff) b = b′. We write

∆D(RK ; I) = AdvRK
(D) ∆=

∣∣∣Pr
K

[
DRK = 1

]
− Pr

[
DI = 1

]∣∣∣
for the advantage of D in distinguishing a real keyed construction RK from an ideal
construction I, where the probability is over the key K, the randomness of I, the coins
of D and that of the challenger, if any. We use the convention of b = 1 for the real
world. W.l.o.g., we consider deterministic distinguishers and consider information-theoretic
advantages that are restricted under the assumption that all queries to the construction
and primitives are made through limited numbers of oracle queries. For two sets of oracles
I and RK , where I represents an ideal and RK a real world (usually a keyed construction),
we write the distinguishing advantage of D as ∆D(RK ; I).

PRF Security. PRF security refers to the maximal advantage of distinguishing the
outputs of a scheme from random bits of the expected length. For primitives and schemes
in general, we will often use the set K = Fn2 for keys, B = Fn2 for message blocks, N = Fν2
for nonces, and D = Fd2 for counters, where n, ν, d are small integers. Given two non-empty
sets or spaces X ,Y, let F : K ×X → Y be a function, ρ←$ Func(X ,Y) and K ←$K be a
secret key. Then, the PRF advantage of D is defined as

AdvPRF
FK

(D) ∆= ∆D(FK ; ρ).

Nonce-based Encryption. A nonce-based encryption scheme E = (E ,D) is a tuple
of algorithms for encryption and decryption with signatures E : K × N × F∗2 → F∗2 and
D : K×N ×F∗2 → F∗2, where N denotes a nonce space. The nonce N ∈ N must not repeat
over all encryption queries. The ciphertext expansion function may depend on only the
length of M (and also that of associated data for nonce-based authenticated encryption).
Distinguishers that obey this requirement are called nonce-respecting. We assume that
E is correct, i.e., for all K,N,M ∈ K × N × F∗2, it holds that DK(N, EK(N,M)) = M .
Let K � K and ρ : N × F∗2 → F∗2 be a function that, on input (N,M), computes
C ← EK(N,M) for random K � K and outputs C ′ � F|C|2 . The nE-security of a
nonce-respecting distinguisher D is defined as

AdvnE
EK

(D) ∆= ∆D(EK ; ρ) .

Avijit Dutta, Jian Guo and Eik List 9

3 Definitions of The Forking Zoo
This section describes our proposals and their evolution. We start from the existing
constructions with full-round keyed permutations, from PRP2 via STH to SoP and EDMD,
move to the slightly more efficient two-branch forked constructions and thereupon, show
how we can extend these. Throughout the following, we assume that n, s, t, w are (small)
positive integers. We write Π ∈ Perm({0, 1}n) to denote the secret (that is, keyed)
full-round n-bit permutation and π ∈ Perm({0, 1}n) to denote secret n-bit permutation
but assume that it is a reduced-round variant of the full-round permutation Π. In a
natural manner, we denote by Π̃ ∈ P̃erm({0, 1}t, {0, 1}n) tweakable permutation and by
π̃ ∈ P̃erm({0, 1}t, {0, 1}n) reduced-round variant thereof. Note that this does not imply a
certain tweak length.

3.1 The Baseline: From PRP2 over STH to SoP, EDM, and EDMD
PRP2. The concatenation of the outputs of two independent full-round n-bit secret
permutations Π1 and Π2, namely PRP2Π1,Π2 , is a trivial extension to generate a 2n output
from an n-bit input as follows:

PRP2Π1,Π2(x) = Π1(x)‖Π2(x) .

Since a PRP provides only n/2-bit PRF security from the switching lemma [15, 17, 32],
their sum had seen a vast amount of study, e.g. [75, 77, 82, 84].

SoP. The Sum of Permutations (SoP) construction is defined as follows. Let Π1 and Π2
be two independent full round n-bit secret permutations. Then,

SoPΠ1,Π2(x) ∆= Π1(x)⊕Π2(x) ,

where the input x to the construction is an n-bit binary string and the construction
produces an n-bit output with roughly O(n)-bit PRF security – an old result that had
been finally proven by [36, 49, 77].

STH. The Summation-Truncation-Hybrid (STH) by Gunsing and Mennink [58] general-
izes both PRP2 and SoP. It feeds the n-bit input x into two independent full round n-bit
secret permutations Π1 and Π2, and splits each of their outputs Yi, where Yi = Πi(x), into
an s-bit part Yi,0 and an (n− s)-bit part Yi,1, for i ∈ {1, 2}, i.e., (Yi,0, Yi,1) s,n−s←−−−− Yi, for
i ∈ {1, 2}. The (s)-bit parts Y1,0 and Y2,0 are output in plain; the (n − s)-bit parts are
summed and output as Y1,1 ⊕ Y2,1:

STHΠ1,Π2(x) ∆= Y1,0‖Y1,1 ⊕ Y2,1‖Y2,0 .

As a result, Gunsing and Mennink could show O(n− s/2)-bit security. Thus, it provides a
continuous trade-off between output length and security from two independent PRPs and
SoP, depending on s.

EDM. While the constructions above consider two parallelizable calls to two independent
PRPs, [37, 77] initiated a research direction with their proposal of Encrypted Davies Meyer
(EDM) and its dual EDMD construction. For the EDM construction, the n-bit input x
is fed into a full-round n-bit secret permutation Π1 whose output is masked with the

10 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

input and the resulting value is finally fed into another independent full round n-bit secret
permutation Π2. Formally, the construction is defined as follows:

EDMΠ1,Π2(x) ∆= Π2(Π1(x)⊕ x) .

EDMD. For the dual construction, i.e., EDMD, the n-bit input x is fed to a full round
n-bit secret permutation Π1 which is again fed to another independent full round n-bit
secret permutation Π2 whose output is masked with the output of Π1. Formally, the
construction is defined as follows:

EDMDΠ1,Π2(x) ∆= Π2(Π1(x))⊕Π1(x) .

[77] showed optimal PRFsecurity for both EDM and EDMD.

3.2 Forking: From ForkCipher to ForkPRF and ForkSTH
ForkCipher. Instead of using two full round n-bit independent secret permutations,
Andreeva et al. proposed ForkCipher [4] that uses three reduced-round n-bit secret
permutations. It forks an intermediate state, i.e. the output of a first reduced-round
permutation π0. This means it feeds the intermediate state into the other two reduced-
round permutations π1 and π2 for generating two n-bit outputs. Formally, a ForkCipher is
defined as

ForkCipherπ0,π1(x) ∆= (π0(x), π1(x)) ,

where x is an n-bit input string. However, in practice, the IFI instantiation uses three
smaller permutations

IFIπ0,π1,π2(x) ∆= (π1(π0(x)), π2(π0(x)) ,

Thus, it can be more efficient than the PRP2 construction with the help of three reduced-
round permutations. The IFI construction can be naturally viewed as the “forked and
reduced” derivative of PRP2 2. While elegant, it aims at a variant of PRP security and
provides “only” O(n/2)-bit PRF security.

ForkPRF. ForkPRF is derived from the SoP construction similarly as a ForkCipher has
been derived from PRP2. Instead of using two full n-bit secret permutations Π1 and Π2,
one can use three reduced-round permutations π0, π1, and π2. Given an n-bit input x, the
construction produces an n-bit output as follows:

ForkPRFπ0,π1,π2(x) ∆= π1(π0(x))⊕ π2(π0(x)) .

In contrast to a ForkCipher, a ForkPRF sums Y1 ⊕ Y2 and returns only a single output C,
where Y1 = π1(π0(x)), Y2 = π2(π0(x)). Thus, it tries to approximate SoP with smaller
permutations while maintaining O(n)-bit security by producing n-bits output under
the assumption that all the three n-bit secret permutations π0, π1 and π2 are pairwise
independent.

ForkSTH. The Summation-Truncation-Hybrid (STH) by Gunsing and Mennink [58]
generalized PRP2 and SoP. As our second proposal, we introduce a forked variant of
the STH construction, called ForkSTH, which generalizes the ForkCipher construction
in the sense of providing a continuous trade-off between security and output length.

2We call it a forked and reduced derivative because the construction is forked and it uses the permutations
whose number of rounds is reduced

Avijit Dutta, Jian Guo and Eik List 11

ForkSTH takes an n-bit input, and produces Y1 and Y2 exactly as ForkCipher, where
Y1 = π1(π0(x)), Y2 = π2(π0(x)) and π0, π1 and π2 are three reduced-round n-bit secret
permutations. As STH, ForkSTH splits Y1 and Y2 into Y1,0, Y1,1, Y2,0, Y2,1, where (Y1,0,
Y1,1) s,n−s←−−−− Y1 and (Y2,0, Y2,1) s,n−s←−−−− Y2, and produces Y1,1‖(Y1,0 ⊕ Y2,0)‖Y2,1 as an
(n+ s)-bit output. More formally, let π0, π1 and π2 are three reduced-round n-bit secret
permutations. Then

ForkSTHπ0,π1,π2(x) ∆= Y1,1‖(Y1,0 ⊕ Y2,0)‖Y2,1 ,

where Y1 = π1(π0(x)) and Y2 = π2(π0(x)) such that (Y1,0, Y1,1) s,n−s←−−−− Y1 and (Y2,0,
Y2,1) s,n−s←−−−− Y2. We have shown that ForkSTH achieves O(n− s/2)-bit PRF security under
the assumption that π0, π1 and π2 are pairwise independent n-bit secret permutations.

3.3 Reducing Numbers of Rounds: From EDMD and EDM to FastPRF
and FastPRF-EDM

FastPRF. In [78], Mennink and Neves proposed a more efficient derivative of EDMD,
called FastPRF. FastPRF replaces the full-round n-bit secret permutations of EDMD
with reduced-round variants. Formally, let π1, π2 be two reduced-round n-bit secret
permutations. On an n-bit input x, it returns the n-bit output as follows:

FastPRFπ1,π2(x) ∆= π2(π1(x))⊕ π1(x) .

Under the assumption that π1 and π2 are two independent n-bit permutations, FastPRF
achieves optimal PRFsecurity.

FastPRF-EDM. Similar to FastPRF, Mennink and Neves considered also a round-reduced
variant of EDM [37] that we call FastPRF-EDM. They preferred FastPRF in the sequel
of their work since it uses the hard-to-control intermediate value as a feed-forward value
whereas FastPRF-EDM XORs the (user-controlled) plaintext to the intermediate state.
Again, the full round n-bit secret permutations are replaced by their reduced-round variants.
Formally, let π1 and π2 be two reduced-round n-bit secret permutations. On an n-bit
input x, it returns the n-bit output as follows:

FastPRF-EDMπ1,π2(x) ∆= π2(π1(x)⊕ x) .

Again, FastPRF-EDM achieves the optimal PRF security under the assumption that π1
and π2 are two independent n-bit permutations.

3.4 Multiple Forks: From MFC to ForkCENC and ForkSTHCENC
The Multi-Fork-Cipher MFC[w] by Andreeva et al. [2] extended the ForkCipher from two
to w outputs. For a given parameter w ≥ 2, (w + 1) permutations π0, π1, . . . , πw and a
given n-bit input x, the multi-forkcipher produces w many n-bits output as follows:

MFC[w]π0,...,πw (x) ∆= ‖wi=1πi(x) .

The IFIM principle uses it to

IFIM[w]π0,...,πw (x) ∆= ‖wi=1πi(π0(x)) .

Note that it computes X ← π0(x) as the original IFI paradigm but produces w outputs
Ci ← πi(X), for all i ∈ [w]. Thus, it needs w+ 1 calls to permutations for a wn-bit output
with O(n/2) bits of PRF security under the assumption that all (w + 1) permutations are
pairwise independent. Note that, MFC[2] is actually the ForkCipher construction.

12 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

ForkCENC. Similarly to the extension that MFC represents for the ForkCipher, we can
extend ForkPRF by forking more blocks in the middle and adding the first output to each of
the other bottom-permutation outputs. We call the resulting construction ForkCENC since
it is a variant of CENC, where the full-round primitives are replaced by reduced-round
variants. We formally define the construction as follows: let w ≥ 2 be a parameter and
π0, π1, . . . , πw+1 be (w + 2) many n-bit permutations. Then, for an n-bit input x, it
produces wn-bits output as follows:

ForkCENC[w]π0,...,πw+1(x) ∆= ‖w+1
i=2 πi(π0(x))⊕ π1(π0(x)) .

In other words, it computes X ← π0(x), and Yi ← πi(X) for all i ∈ [w + 1], and
Ci ← Y1⊕Yi+1 for all i ∈ [w]. We have shown that the resulting scheme provides O(n)-bit
security under the assumption that all (w + 2) permutations are pairwise independent.
Note that it does not inherit a slight security degradation in terms of w as CENC, i.e.
O(n−log2(w2)), since the inputs in a w-block chunk in CENC differed pairwise and targeted
the same permutation. In contrast, the permutations in ForkCENC differ.

ForkSTHCENC. STH and ForkSTH generalize the spectrum between PRP2 and SoP and
between ForkCipher and ForkPRF, respectively. In a similar line, we introduce ForkSTHCENC
that covers the spectrum between MFC[w] and ForkCENC[w]. We formally define the
construction as follows. Let w ≥ 2 and t ≥ 1 be two given parameters. Then, for a given
sequence of (w+ 1) many reduced-round n-bit permutations π0, π1, . . . , πw and for a n− t
bit string x, we define the construction as

ForkSTHCENC[w]π0,π1,...,πw (x) ∆= Y1,1‖
(
‖wi=2((Y1,0 ⊕ Yi,0)‖Yi,1)

)
,

where Yi = πi(π0(x‖〈0〉t)) and (Yi,0, Yi,1) s,n−s←−−−− Yi. In particular, the construction
computes the values Yi, for all i ∈ [w], as by MFC[w]. Then, it splits them as STH and
ForkSTH did into (Yi,0, Yi,1) s,n−s←−−−− Yi. Next, it computes Ci ← (Y1,0 ⊕ Yi,0)‖Yi,1 for all
i ∈ [2, w] and finally output Y1,1‖wi=2Ci. Note that, this construction outputs s-bits in
addition to (w−1)n bits, and still provides O(n−s)-bit PRFsecurity under the assumption
that all (w + 1) permutations are pairwise independent.

3.5 Multiple Forks: From MFC to ForkEDMD and ForkEDM-CTR
ForkEDMD. Similar to ForkCENC and ForkSTHCENC, which are VOL extensions of
ForkPRF and ForkSTH, respectively, we introduce an extension of FastPRF by using the
intermediate value in the middle for more Davies-Meyer constructions in parallel with
pairwise independent permutations. We call this construction ForkEDMD[w], which is
formally defined as follows: let w ≥ 2 and s ≥ 1 be two given integer parameters. Then,
for a given sequence of (w+ 1) many reduced-round n-bit permutations π0, π1, . . . , πw and
for an n− s-bit binary string x, we define the construction as

ForkEDMD[w]π0,π1,...,πw
(x) ∆= ‖wi=1πi(π0(x‖〈0〉s))⊕ π0(x‖〈0〉s) .

Like FastPRF, it computes X ← π0(x‖〈0〉s); thereupon, it derives and outputs Ci ←
πi(X)⊕X, for all i ∈ [w]. We have shown that the construction achieves O(n)-bit PRF
security under the assumption that all w+ 1 permutations are pairwise independent. Thus,
it combines the efficiency of MFC[w] with the PRF security of ForkPRF.

ForkEDM-CTR. We introduce an extension of FastPRF-EDM similarly as ForkEDMD
extends ForkEDMD. Again, we use the intermediate value in the middle for more parallel

Avijit Dutta, Jian Guo and Eik List 13

Davies-Meyer constructions with pairwise independent permutations. Though, we have
to multiply the feed-forward value by the power of a generator in the field. We call
the resulting construction ForkEDM-CTR[w]: let w ≥ 2 and s ≥ 1 be two given integer
parameters. Then, for (w + 1) reduced-round n-bit permutations π0, π1, . . . , πw, and for a
given n− s bit string x, the construction is defined as

ForkEDM-CTR[w]π0,π1,...,πw (x) ∆= ‖wi=1πi(π0(x‖〈0〉s)⊕ 2i−1(x‖〈0〉s)) .

In other words, it computes X = π0(x‖〈0〉s). Then, the inputs to the i-th primitive call
in the bottom row is given by Yi = X ⊕ 2i−1(x‖〈0〉s), for all i ∈ [w]. The results are
computed as Ci = πi(Yi), for all i ∈ [w]. We emphasize that Mennink and Neves explicitly
proposed the variant of FastPRF based on EDMD and not on EDM [78] as a heuristic.
The latter variant – we name it FastPRF-EDM – might provide the adversary with too
much freedom over differentials up to the point after π0. Thus, one may have to choose a
stronger permutation for π0 here.
Remark 1. We emphasize that the field multiplications in the middle layer of ForkEDM-CTR
is crucial for its security. Let ForkEDM[w] be the construction without the multiplications,
which is defined analogously as:

ForkEDM[w]π0,π1,...,πw
(x‖〈0〉s)

∆= ‖wi=1πi(π0(x‖〈0〉s)⊕ (x‖〈0〉s)) .

ForkEDM[w] provides only birthday-bound security, which can be illustrated easily. Let
X = π0(x‖〈0〉s) ⊕ (x‖〈0〉s) and Yi = πi(X) for i ∈ [w]. Now, whenever two queries of
Xk = X` for xk 6= x` collide, which happens at the birthday bound, all outputs Y ki = Y `i
will collide. Thus, whenever w ≥ 2, this will yield a distinguisher that is absent in the
original EDM construction (which coincides with ForkEDM[1]).

3.6 Comparison to M̃FC
In [2], Andreeva et al. used MFC as a primitive to define and analyze many variants
of CTR modes, instantiated with tweakable secret permutations. We denote tweaked
MultiForkCiphers as M̃FC. Therein, an instance can use a random IV or a nonce as its
tweak. The resulting construction can also provide optimal PRF security. However, it also
needs a tweakable keyed primitive with a sufficiently large tweak space that can absorb
the IV or nonce of the mode.

In contrast, this work considers designs that remain secure when instantiated with
few untweaked secret independent permutations, or – to address practice – with a single
tweakable permutation with a very small tweak space for domain separation. As a result,
our constructions avoid the requirement of [2] of larger tweaks, which can save hardware
area or computational effort since it can imply a simpler tweak schedule or more efficient
precomputation and cache management of round tweaks. Thus, our proposal uses a slightly
different but potentially more efficient primitive, where the precise efficiency impacts
depend on the concrete primitive and platform. Note that our constructions could also be
instantiated from tweakable permutations with larger tweaks when the tweak could be
used for even higher security (if it contains a nonce or random IV) or for authenticating
associated data during encryption.

3.7 Are Those All Optimally Secure Constructions?
In [34], Chen et al. conducted a systematic study of PRFs and MACs of the secure variants
from the sum of independent permutations. They showed that among schemes with two
permutation calls, only six constructions provided optimal PRF security: SoP, EDM, and
EDMD, as well as their variants with the input summed to the output. We can safely

14 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

disregard the latter variants since they solely add a redundant and reversible operation.
Since a highly secure MAC should be based upon a highly secure PRF, the former three
constructions comprise the set of constructions that are relevant for our studies of how to
reduce, fork, and extend them. Thus, we propose ForkCENC as a forked extension of SoP,
ForkEDMD as the extension of EDMD, and ForkEDM-CTR as the extension of EDM to
cover all constructions with n-bit security.

4 Security Proofs
In this section, we prove the security of our proposed constructions. Note that in all
the security proofs we assume that the underlying primitives are ideal permutations, i.e.,
the block ciphers used in the construction are replaced by their ideal counterparts, i.e.,
random permutations, at the cost of the PRP advantage of the block cipher. As a result,
we study the indistinguishability advantage of the resulting constructions with respect to
a computationally unbounded (a.k.a information-theoretic) distinguisher.

4.1 H-coefficient Technique
Prior, we set up the general framework for proving the security of the constructions
in this work. We consider an information-theoretic deterministic distinguisher D that
interacts with oracles in either a real or an ideal world: in the former, it interacts with
the construction oracle Oreal of our concern, and in the ideal world, with an ideal oracle
Oideal. For nonce-encryption security, we consider an ideal oracle to be a random function
over an appropriate domain and space. We summarize the interaction of the distinguisher
with the oracle in a transcript τ = {(x1, y1), . . . , (xq, yq)}, where q is the total number of
queries that D can make to the oracle and (xi, yi) represent the i-th query of D and the
corresponding response, respectively. We assume that D never makes any pointless queries
and the transcript does not contain any duplicate elements. To simplify the proofs, we
modify the experiment by releasing internal information S to the distinguisher after D
has finished its interaction with the oracle, but before it has output its decision bit. In
the real world, the actual internal state generated in the construction is revealed as the
additional information, whereas in the ideal world, dummy states S are sampled closely
following the distribution of S generated in the real world and revealed to the distinguisher.
In the following, the complete transcript is τ = {(x1, y1), (x2, y2), . . . , (xq, yq),S}. Note
that the modified experiment only makes the distinguisher more powerful and hence the
distinguishing advantage of D in this experiment is at least that of in the former one.
Let Xreal be a random variable for transcripts τ in the real world and Xideal be a random
variable for transcripts τ in the ideal world. The probability of realizing a transcript τ in
the ideal (resp. real) world is called ideal (resp. real) interpolation probability. A transcript
τ is said to be attainable with respect to D if its ideal interpolation probability is non-zero.
Let Θ denote the set of all attainable transcripts. Following these notations, we now state
a combinatorial result, called the H-Coefficient technique by Patarin [83], which is used to
establish an upper bound on the distinguishing advantage of two random systems.

Theorem 1 (H-Coefficient Technique). Let Θ = GoodT t BadT be some partition of the
set of attainable transcripts. Suppose there exists εratio ≥ 0 such that for any τ ∈ GoodT,

pre(τ)
pid(τ) := Pr[Xreal = τ]

Pr[Xideal = τ] ≥ 1− εratio ,

and there exists εbad ≥ 0 such that Pr[Xideal ∈ BadT] ≤ εbad. Then,

∆D(Oreal;Oideal) ≤ εratio + εbad . (1)

Avijit Dutta, Jian Guo and Eik List 15

In this paper, we mainly prove the PRF security of all the proposed constructions using the
H-Coefficient technique, where the ideal oracle will be simply a uniform random function.
Due to the application of the H-Coefficient technique, we need to properly identify the bad
events, upper bounding their probabilities in the ideal world, and finally lower bounding
the ratio of the real-to-ideal interpolation probability for good transcripts. Moreover, in
this paper, the additional information S, which will be revealed to the distinguisher after
the interaction, will be some internal states generated in the construction. We once again
remind the reader that we will carry out the proofs in the information-theoretic setting,
where all the block ciphers of the construction will be replaced by n-bit independent
permutations at the cost of the PRP advantage of the underlying block ciphers.

4.2 Security Proof for ForkPRF
Theorem 2. Let π0, π1, π2 � Perm({0, 1}n) be independent random permutations and
n ≥ 7 and q ≤ 2n/17 be positive integers. Let D be a PRF distinguisher on ForkPRFπ0,π1,π2 .
Then

AdvPRF
ForkPRF(D) ≤ 19q2

22n + 8n3

22n .

Proof. Before we begin the proof of the construction, let X := π0(M) be the intermediate
variable of the construction which is released to the distinguisher as additional information,
i.e., when the distinguisher D has interacted with the oracle in the real world, we release
X1, X2, . . . , Xq to D after the interaction is over, but before it has output its decision bit.
In contrast, in the ideal world, we sample X1, X2, . . . , Xq �wor {0, 1}n and release it to D
after the interaction is over, but before it has output its decision bit. Thus, we represent
the overall transcript of the distinguisher D as

τ = {(M1, C1, X1), (M2, C2, X2), . . . , (Mq, Cq, Xq)}.

In this proof, we identify the set of bad transcripts as the empty set; hence εbad = 0.
Therefore, it remains now to lower bound the ratio of real to ideal interpolation probability.
As each Ci is uniformly and independently distributed over {0, 1}n, each Xi is uniformly
distributed over {0, 1}n \ {X1, X2, . . . , Xi−1}, and each Xi is independently distributed
over all Ci, the ideal interpolation probability becomes:

Pr[Xideal = τ] = 1
2nq ·

1
(2n)q

.

To compute the real interpolation probability, we need to count the number of permutations
π0 such that π0(Mi) = Xi for all i ∈ [q] and count the number of permutations (π1, π2)
such that they satisfy the following system of equations:

E =


π1(X1)⊕ π2(X1) = C1

π1(X2)⊕ π2(X2) = C2
...

...
...

π1(Xq)⊕ π2(Xq) = Cq .

It is easy to see that the number of permutations π0 that map Mi to Xi for all i ∈ [q] is
(2n − q)!. However, from the result of Mirror Theory by Dutta et al. [49], one can see that
the number of permutation tuples (π1, π2) satisfying E is at least

(2n)q · (2n)q
2nq ·

(
1− 19q2

22n −
8n3

22n

)
,

16 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

provided n ≥ 7 and q ≤ 2n/17. Therefore, the real interpolation probability becomes:

Pr[Xreal = τ] = 1
2nq ·

1
(2n)q

·
(

1− 19q2

22n −
8n3

22n

)
.

The result follows by taking the ratio of the real-to-ideal interpolation probability, where
εratio = 19q2/22n + 8n3/22n.

4.3 Security Proof for ForkCENC
Theorem 3. Let w, n, and q be positive integers with n ≥ 30 and q ≤ 2n/12(w + 1)2,
and let π0, π1, . . ., πw+1 � Perm({0, 1}n) be independent random permutations. Let D
be a PRF distinguisher on the construction ForkCENCπ0,π1,...,πw+1 . Then

AdvPRF
ForkCENC(D) = 0 .

Proof. Let Xi := π0(N) be the intermediate variable of the construction corresponding to
the i-th query which is released to the distinguisher as additional information, i.e. when the
distinguisher D has interacted with the oracle in the real world, we release X1, X2, . . . , Xq

to D after the interaction is over, but before it has output its decision bit. In contrast,
in the ideal world, we sample X1, X2, . . . , Xq �wor {0, 1}n and release it to D after the
interaction is over, but before it has output its decision bit. Thus, we represent the overall
transcript of the distinguisher D as

τ = {(N1, (C1[1], C1[2], . . . , C1[w]), X1), . . . , (Nq, (Cq[1], Cq[2], . . . , Cq[w]), Xq)} .

In this proof, we identify the set of bad transcripts as an empty set, and hence εbad = 0.
Therefore, it remains to lower bound the ratio of the real-to-ideal interpolation probability.
As each Ci is uniformly and independently distributed over {0, 1}n, each Xi is uniformly
distributed over {0, 1}n \ {X1, X2, . . . , Xi−1}, and each Xi is independently distributed
over all Ci, the ideal interpolation probability becomes:

Pr[Xideal = τ] = 1
2wnq ·

1
(2n)q

.

To compute the real interpolation probability, we need to count the number of permu-
tations π0 such that π0(Ni) = Xi for all i ∈ [q] and count the number of permutations
(π1, π2, . . . , πw) such that they satisfy the following system of equations for each i ∈ [q]:

Ei =


π1(Xi)⊕ π2(Xi) = Ci[1]
π1(Xi)⊕ π3(Xi) = Ci[2]

...
...

...
π1(Xi)⊕ πw(Xi) = Ci[w] .

Note that Ei is a system of bivariate affine equations over w + 1 variables with block maxi-
mality w+ 1. Therefore, to lower bound the number of permutation tuples (π1, π2, . . . , πw)
that satisfy Ei for all i ∈ [q], we require the result of Mirror theory for general ξmax.
Therefore, from the Mirror theory result for general ξmax [39] with ξmax = w + 1, one can
see that the number of permutation tuples (π1, π2, . . . , πw) satisfying Ei for all i ∈ [q] is at
least

w∏
i=1

(2n)q
2nq ,

Avijit Dutta, Jian Guo and Eik List 17

provided n ≥ 30 and q ≤ 2n/12(w + 1)2. Moreover, it is easy to see that the number
of permutation π0 that maps Ni to Xi for all i ∈ [q] is (2n − q)!. Therefore, the real
interpolation probability becomes:

Pr[Xreal = τ] = 1
2wnq ·

1
(2n)q

.

The result follows by taking the ratio of the real-to-ideal interpolation probability.

4.4 Security Proof for FastPRF and FastPRF-EDM
Theorem 4. Let π1 and π2 � Perm({0, 1}n) be two independent random permutations
and n ≥ 7 and q ≤ 2n/17 be positive integers. Let D be a PRF distinguisher on the
construction FastPRF. Then

AdvPRF
FastPRF(D) ≤ 19q2

22n + 8n3

22n . (2)

Moreover, let ξmax ≥ 1, and q ≤ 2n/12ξ2
max, as long as n ≥ 30, be two given integer

parameters. Let D be a PRF distinguisher on the construction FastPRF-EDM. Then

AdvPRF
FastPRF-EDM(D) ≤

(
q

ξmax+1
)

2nξmax
. (3)

Note that the constructions FastPRF and FastPRF-EDM actually get boils down to the
EDMD and EDM construction respectively under the assumption that π1 and π2 are
two independent n-bit permutations. As a result, the security proof of FastPRF and
FastPRF-EDM under the standard model is exactly the same as that of EDMD and EDM
respectively. Therefore, by following the proof of Theorem 6 of [77], we obtain the security
bound of FastPRF and by following the proof of Theorem 4 of [77], we obtain the security
bound of FastPRF-EDM. Note that, the bound for EDMD as shown in [77] differs from
Eqn. (2) as the earlier version of Mirror theory result for ξmax = 2 [85, 84] was used in [77]
to derive the bound of EDMD, whereas we have used the correct bound of Mirror theory
from [49]. In particular, the ratio of real to ideal interpolation probability in the proof of
EDM uses the earlier bound of Mirror theory result for ξmax = 2 which is (1−q/2n) [85, 84],
whereas we are using Theorem 3 of [49] that yields (1− 19q2/22n − 8n3/22n) bound to the
ratio of real to ideal interpolation probability of FastPRF. Similarly, the bound for EDM as
shown in [77] differs from Eqn. (3) as the earlier version of Mirror theory result for general
ξmax [84, 79] was used in [77] to derive the bound of EDM, whereas we have used the
correct bound of Mirror theory result for general ξmax from [39]. In particular, Mennink
and Neves have used the earlier bound of Mirror theory result for general ξmax [84, 79]
that yields (1− q/2n) bound to the ratio of real to ideal interpolation probability of EDM,
whereas we are using Theorem 1 of [39] that yields that the real interpolation probability
is close to the ideal interpolation probability of FastPRF-EDM.

4.5 Security Proof for ForkEDMD
Theorem 5. Let w, n, and q be positive integers with n ≥ 30 and q ≤ 2n/12(w + 1)2,
and let π0, π1, . . . , πw � Perm({0, 1}n) be independent random permutations. Let D be a
PRF distinguisher on the construction ForkEDMDπ0,π1,...,πw

. Then

AdvPRF
ForkEDMD(D) = 0 .

Proof. Let π′1, π′2, . . . π′w←$ Perm({0, 1}n) such that each π′1 is independent from π0 and
each π′i is independent from each πj . Let D be a distinguisher that distinguishes the

18 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

real oracle Ore = (π1 ◦ π0 ⊕ π0, π2 ◦ π0 ⊕ π0, . . . , πw ◦ π0 ⊕ π0) from the ideal oracle
Oid = (RF1,RF2, . . . ,RFw), where each RFi is a uniform random function from n-bits to
n-bits that are independently sampled over all RFj . Now, we consider an another real
oracle O′re = (π0 ⊕ π′1, π0 ⊕ π′2, . . . , π0 ⊕ π′w). Now, we can rewrite

AdvPRF
ForkEDMD(D) = |Pr[DOre ⇒ 1]− Pr[DOid ⇒ 1]|

≤ |Pr[DOre ⇒ 1]− Pr[DO
′
re ⇒ 1]|+ |Pr[DO

′
re ⇒ 1]− Pr[DOid ⇒ 1]|

(1)= |Pr[DO
′
re ⇒ 1]− Pr[DOid ⇒ 1]| ,

where (1) holds due to the fact that the distinguishing advantage of D in distinguishing the
oracle Ore from O′re equals to 0, as one can easily see that revealing the permutation π0 to
the distinguisher prior to the experiment effectively boils down to distinguish permutation
πi from π′i for all i ∈ [w]. Therefore, it boils down to upper bound the distinguishing
advantage of D in distinguishing the output of O′re from Oid. For this purpose, we first
note that the q evaluations of the construction O′re can be translated to an equivalent
system as follows:

Ei =


π0(Ni)⊕ π′1(Ni) = Ci[1]
π0(Ni)⊕ π′2(Ni) = Ci[2]

...
...

...
π0(Ni)⊕ π′w(Ni) = Ci[w] .

for all i ∈ [q]. Now, to upper bound the distinguishing advantage of D in distinguishing
the output of O′re from Oid using the H-coefficient technique, we identify the set of bad
transcripts to be an empty set and hence εbad = 0. Therefore, it remains to lower bound the
ratio of real to ideal interpolation probability. As each Ci[α] is uniformly and independently
distributed over {0, 1}n, the ideal interpolation probability becomes:

Pr[Xideal = τ] = 1
2wnq .

To compute the real interpolation probability, we need to count the number of permutation
tuples (π0, π

′
1, . . . , π

′
w) that satisfy the above system of equations Ei for each i ∈ [q]. Note

that Ei is a system of bivariate affine equations over w+ 1 variables with block maximality
w + 1. Therefore, to lower bound the number of permutation tuples (π0, π

′
1, π
′
2, . . . , π

′
w)

that satisfy Ei for all i ∈ [q], we require the result of Mirror theory for general ξmax.
Therefore, from the Mirror theory result for general ξmax [39], one can see that the number
of permutations (π0, π

′
1, π
′
2, . . . , π

′
w) satisfying Ei for all i ∈ [q] is at least

w∏
i=1

(2n)q
2nq ,

provided n ≥ 30 and q ≤ 2n/12(w + 1)2. Therefore, the real interpolation probability
becomes:

Pr[Xreal = τ] = 1
2wnq ·

1
(2n)q

.

The result follows by taking the ratio of the real to ideal interpolation probability.

4.6 Security Proof for ForkEDM-CTR
Theorem 6. Let w, n, and q be positive integers with n ≥ 30 and q ≤ 2n/12(w+ 1)2 and
let π0, π1, . . . , πw � Perm({0, 1}n) be independent random permutations. Let D be a PRF
distinguisher on the construction ForkEDM-CTRπ0,π1,...,πw

. Then

AdvPRF
ForkEDM-CTR(D) ≤ qw2

2n .

Avijit Dutta, Jian Guo and Eik List 19

Proof. To prove its security, we consider a slightly different construction, where each πi is
replaced by its inverse π−1

i for each i ∈ [w]. As π0, π1, . . . , πw are all mutually independent,
these two constructions are provably equally secure. However, it is more convenient to
establish the security proof for the latter construction as one can view an evaluation

Ci[α] = π−1
α (π0(Ni)⊕ 2α−1Ni)

as the xor of two permutations in the middle of the function

π0(Ni)⊕ πα(Ci[α]) = 2α−1Ni,

for all 1 ≤ α ≤ w. Therefore, q evaluations of the latter construction can be translated to
an equivalent system as follows:

Ei =


π0(Ni)⊕ π1(Ci[1]) = N

π0(Ni)⊕ π2(Ci[2]) = 2N
...

...
...

π0(Ni)⊕ πw(Ci[w]) = 2w−1N .

Let τ denote the summary of the interaction between the distinguisher D and the oracle,
where τ is represented as

τ = {(N1, (C1[1], C1[2], . . . , C1[w])), . . . , (Nq, (Cq[1], Cq[2], . . . , Cq[w]))} .

We call a transcript τ bad if it satisfies either of the following events:

• ∃i ∈ [q], α 6= β ∈ [w] such that Ci[α] = Ci[β].

• ∃i, j ∈ [q], i 6= j, α, β ∈ [w] such that Ci[α] = Cj [β], 2α−1Ni = 2β−1Nj .

As each Ci[α] is uniformly and independently distributed over all Cj [β], we upper bound
the probability of the first bad event to q

(
w
2
)
/2n. To upper bound the probability of the

second bad event, we would first like to note that for a fixed choice of index i, there is at
most one choice of j such that Nj = 2α−βNi. Therefore, for a fixed choice of indices, the
probability of the event is upper bounded to at most 2−n using the randomness of Ci[α].
Note that the choice of i is at most q, the choice of j is at most 1, and the choice of α, β is
at most

(
w
2
)
. Therefore, the probability of the last bad event is upper bounded to at most

q
(
w
2
)
/2n. Hence, we have

εbad = qw2

2n .

Now, it remains now to lower bound the ratio of real to ideal interpolation probability. As
each Ci is uniformly and independently distributed over {0, 1}n, the ideal interpolation
probability becomes:

Pr[Xideal = τ] = 1
2wnq .

To compute the real interpolation probability, we need to count the number of permutation
tuples (π0, π1, π2, . . . , πw) such that they satisfy the above system of equations Ei for
each i ∈ [q]. Note that Ei is a system of bivariate affine equations over w + 1 variables
with block maximality w + 1. Therefore, to lower bound the number of permutations
(π0, π1, π2, . . . , πw) that satisfies Ei for all i ∈ [q], we require the result of Mirror theory
for general ξmax. Therefore, from the Mirror theory result for general ξmax [39], one can
see that the number of permutation tuples (π0, π1, π2, . . . , πw) satisfying Ei for all i ∈ [q]
is at least

w∏
i=1

(2n)q
2nq ,

20 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

provided n ≥ 30 and q ≤ 2n/12(w + 1)2. Therefore, the real interpolation probability
becomes:

Pr[Xreal = τ] = 1
2wnq ·

1
(2n)q

.

The result follows by taking the ratio of the real to ideal interpolation probability.

4.7 Security Proof for ForkSTH
Theorem 7. Let r, n, a, b and q be positive integers with r ≥ 3, a+ b = n, and q < 2b−2

and q ≤ 2n/(3r). Let π0, π1, . . . , πr � Perm({0, 1}n) be independent random permutations.
Let D be a PRF distinguisher on the construction ForkSTHa[π0, π1, . . . , πr]. Then

AdvPRF
ForkSTHa[r](D) ≤

(
4
3

)r (rq

2n−a/3
)3/2

+ 2a−1 ·
(

16rq
2n

)2b−2

+ AdvPRF
trunca

(rq) .

Proof. The general proof strategy will follow that by [58]. Let π0, π1, . . . πr � Perm(Fn2)
such that all permutations πj are pairwise independent. We consider two oracles, Oideal
and Oreal. Let D be a distinguisher that is given access to one of them, chosen uniformly
at random. D shall distinguish between both worlds, given the transcript τ of queries of
D to the oracle, the corresponding responses, and intermediate variables. We define by In
the identity permutation over Fn2 . For integers n = a+ b and X ∈ Fn2 with X = V ‖Y and
V ∈ Fa2 , Y ∈ Fb2, we define msba(X) = V to always return the leftmost a bits of X and
lsbb(X) = Y to return the b least significant b bits of X, and (V, Y) a,n−a←−−−− X denotes the
splitting of X into an a-bit part V and an n− a-bit part Y .

On message inputM i, the real world Oreal uses ForkSTHa[π0, . . . , πr](M i) and produces
and outputs V i1 , V i2 ,W i

2, . . . , V
i
r ,W

i
r , where W i

j = Y i1 ⊕ Y ij for all j ∈ [2..r]. The values are
collected in vectors V = (V1, . . . ,Vq) and Y = (Y1, . . . ,Yq) with Vi = (V i1 , . . . , V ir) and
Yi = (Y i1 , . . . , Y ir), for all i ∈ [q]. Let τ = (V,W) be the transcript. Over all queries, we
define the short-hand notation Vj = (V 1

j , . . . , V
q
j) for some j ∈ [r].

The ideal world Oideal samples all outputs V ij � Fa2 , for all i ∈ [q] and j ∈ [r]
and samples W i

2, . . . ,W
i
r � Fb2, for all i ∈ [q]. We denote Wi = (W i

2, . . . ,W
i
r) and

W = (W1, . . . ,Wq). We denote the real-world oracle as O1 since we will modify it
stepwise in the following. It holds that

AdvPRF
ForkSTHa

(A) ≤ ‖Pr[Oideal]− Pr[O1]‖ .

Next, we separate the a-bit values, (V i1 , . . . , V ir), given out in clear from the results of the
sums, (W i

2, . . . ,W
i
r). This yields the modified real world O2. Internally, O2 uses a function

PTrunc[r] that samples the values V = (V1, . . . , Vr) as a-bit values sampled independently
uniformly at random from Fa2 each. This is given in Algorithm 1. Moreover, we define
PSoP[r], which takes (V1, . . . , Vr) and samples r− 1 permutations compatible to it (if they
exist) and computes the vector of sum values, W = (W i

2, . . . ,W
i
r), from it. A bad event

will be defined when no such compatible permutation exists. We say a transcript τ is bad
if bad occurs in τ . We partition the set of all attainable transcripts into a set BadT that
consists of exactly all bad transcripts and GoodT of all attainable transcripts that are not
bad. For all j ∈ [r] and given vectors of a-bit strings Vj = (V 1

j , . . . , V
q
j) ∈ (Fa2)q, we define

Permcomp(Vj) ⊆ Perm(Fn−a2) as the set of all n-bit permutations that would produce Vj

in their most significant a-bit outputs for the inputs in Vj . The difference between both
worlds is upper bounded by

‖Pr[O1]− Pr[O2]‖ ≤ Pr
O2

[τ ∈ bad] + AdvPRF
trunca

(rq)

Avijit Dutta, Jian Guo and Eik List 21

Algorithm 1 Real-world oracles used in the proof of ForkSTHa[π0, π1, . . . , πr].
11: function O1(M)
12: π0, π1, . . . πr ←$ Perm(Fn2)
13: M1, . . . ,Mq ←M
14: for i← 1 to q do
15: Xi ← π0(M i)
16: for j ← 1 to r do
17: (V ij , Y ij) a,b←−− πj(Xi)
18: W i

j ← Y i1 ⊕ Y ij
19: Vi ← (V i2 , . . . , V ij)
20: Wi ← (W i

2, . . . ,W
i
j)

21: V← (V1, . . . ,Vq)
22: W← (W1, . . . ,Wq)
23: τ ← (V,W)
24: return τ

31: function O2(M)
32: V← PTrunc[r](M)
33: W← PSoP[r](M,V)
34: return τ = (V,W)
41: function PTrunc[r](M)
42: for i← 1 to q do
43: for j ← 1 to r do
44: V ij ←$ Fa2
45: Vi ← (V i1 , . . . , V ir)
46: return V = (V1, . . . ,Vq)
51: function PSoP[r](M,V)
52: for j ← 1 to r do
53: if Permcomp(Vj) = ∅ then
54: bad← true
55: πj ←$ In
56: else
57: πj ←$ Permcomp(Vj)
58: for i← 1 to q do
59: for j ← 1 to r do
60: Y ij ← lsbb(πj(〈i〉))
61: W i

j ← Y i1 ⊕ Y ij
62: Wi ← (W i

2, . . . ,W
i
r)

63: return W = (W1, . . . ,Wq)

From the triangle inequality, the difference in the setting is at most

‖Pr[Oideal]− Pr[O1]‖ ≤ ‖Pr[Oideal]− Pr[O2]‖+ Pr
O2

[τ ∈ bad] + AdvPRF
trunca

(rq) .

We want to upper bound the distance between the multi-sum of pairwise independent
permutations and the function that produces random bits. For the values V1, V2, . . . , Vr,
we define counters

CV,j(i)
def=
∣∣∣{V i′j : V i

′

j = V ij

}∣∣∣ , for all j ∈ [r] .

Those counters will later have to remain below 2b−2. For the case that one of them
exceeds this amount, we define a set bad of vectors V such that there exists k ∈ [r] with
CV,k(i) ≥ 2b−2. Given a transcript τ that contains V, we see that

Eτ [Pr[Oideal = τ]− Pr[O2 = τ]]
≤ Eτ [Pr[Oideal = τ]− Pr[O2 = τ |τ 6∈ BadT]] + Pr[τ ∈ BadT] .

Multi-Collision. We can upper bound Pr[τ ∈ BadT] first, which requires a (2b−2)-
collision of values V i1j = · · · = V

i2b−2
j inside any one of r vectors Vj in V. Since the

values V ij are chosen independently and uniformly at random each, the probability for a
t-collision is upper bounded by

(rq)t

2a(t−1) · t!

where Stirling’s approximation can be used for

t! ≥
√

2π ·
(

1
23/2 · t

)t
.

22 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

We can rewrite it and substitute t = 2b−2

Pr[Oideal ∈ bad] ≤ 1√
2π
· (rq)t

2a(t−1) ·
(

1
23/2 · t

)t
≤ 2a√

2π
·
(rq

2a−3/2 · t

)t
≤ 2a√

2π
·
(rq

2a−2 · 2b−2

)2b−2

≤ 2a−1 ·
(

16rq
2n

)2b−2

.

It remains to upper bound the good transcripts. Since for good transcripts, the vectors V
are sampled equally in both worlds, we can concentrate on the vectors W.

Theorem 8. Let a, b, q, r be positive integers and τ = (V,W) be a good transcript such
that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/(3r). Then, for r ≥ 3, it
holds that

Eτ [|Pr [O2 = τ]− Pr [Oideal = τ]|] ≤
(

4
3

)r
·
(rq

2n−a/3
)3/2

.

For the sake of space limitation, we defer the proof of Theorem 8 to Appendix B.

5 From VOL-PRF To Nonce-based Mode
We define a simple conversion of ForkSTHCENC, ForkCENC, ForkEDMD, and ForkEDM-CTR
into nonce-based encryption schemes, similar to the conversion from XORP into CENC. Let
n, ` be the block length in bits and the maximal number of blocks per message. We define
a nonce space N = {0, 1}ν , an index space I = {0, 1}ι, such that ν, ι > 0, ι ≥ log2(`), and
ν+ι = n. Then, we Let Π[w]π be a VOL-PRF instantiated with a set of secret permutations
π = (π1, . . . , πw+1). We write Π as a short form in the following. Let ω = F (w, n) be
the number of message bits that Π can output at most. Then, we define the conversion
of Π[w]π into a nonce-based encryption scheme Π̂[Π[w]π] as follows. Π̂[Π[w]π] takes a
nonce N ∈ {N }, and the input message M ∈ {0, 1}∗ and to encrypt M to the ciphertext
C = (C1‖ . . . ‖Cm) as

(M1, . . . ,Mm) ω←−M
Si = Π[w]π(N‖〈i− 1〉ι) for i ∈ [1..m]
Ci = Mi ⊕ trunc|Mi|(Si) for i ∈ [1..m] .

That is, it splits the message into chunks of at most ω bits each, where the final chunk
Mm may be smaller and XORs it with the output of Π[w]π(N‖〈i− 1〉ι).

Theorem 9. Let Π̂[Π[w]π] be a VOL-PRF instantiated with a set of pairwise independent
secret permutations π = (π1, . . . , πw+1), i.e., π1, . . . , πw+1←$ (Perm({0, 1}n)w+1. Let D′
be an adversary on the PRFsecurity of Π[w]π. Then, for any distinguisher D on the nE
security of

AdvnE
Π[w]π (D) ≤

⌈ q
w

⌉
·AdvPRF

Π[w]π (D′) .

The result follows from replacing Π[w]π by a random function and taking the gap between
both as the upper bound.

Avijit Dutta, Jian Guo and Eik List 23

Algorithm 2 Definition of TweAES’.
11: function TweAES’K [w](M)
12: (K0, . . . ,Krt+rb)← KeySchedule(K)
13: T0 ← ExpandTweak(0)
14: S0 ←M
15: for i← 1..rt do
16: Si ← R[Ki ⊕ T0](Si−1)
17: for t← 1..w do
18: T t ← ExpandTweak(t)
19: St,rt ← St,rt

⊕ BCt
20: for i← rt + 1..rt + rb − 1 do
21: St,i ← R[Ki ⊕ T t](St,i−1)
22: St,r ← R[0](St,r−1)
23: return S1,r, · · · , Sw,r

31: function R[K](S)
32: return MC(SR(SB(S)))⊕K

41: function KeySchedule(K)
42: K0[0..15]← K
43: for i← 1..rt + rb do
44: Ki[0, 1]← Sbox(Ki−1[13]),Sbox(Ki−1[14])
45: Ki[2, 3]← Sbox(Ki−1[15]),Sbox(Ki−1[12])
46: Ki[4..7]← Ki[0..3]⊕Ki−1[4..7]
47: Ki[8..11]← Ki[0..3]⊕Ki−1[8..11]
48: Ki[12..15]← Ki[0..3]⊕Ki−1[12..15]

51: function ExpandTweak(T)
52: (t0, t1, t2, t3)← T
53: (t4, t5, t6, t7)← J · (t0, t1, t2, t3)>
54: for i← 0..7 do
55: R[i]← (07‖ti)

return (07‖t0, . . . , 07‖t7, 0, 0, 0, 0, 0, 0, 0, 0)

6 Instantiation
6.1 Requirements
Compared to SoP and STH, we want to design more efficient PRFs by using round-
reduced instead of full primitive calls and forking from an intermediate state. Thus,
we need a primitive that renders our constructions (1) highly efficient, (2) single-key,
(3) single-primitive, and (4) sufficiently secure against fixed-key standard attacks. We
consider differential, linear, boomerang, impossible-differential, integral, and meet-in-the-
middle attacks but will detail what types are particularly relevant in the context of our
constructions. By sufficiently secure, we target a security margin of at least two rounds
compared to the best known attacks.
Since our VOL-PRFs aim at optimal security, constructions based on public permutations
are not fully fit for instantiations since the security of sums of two public permutations
is usually capped by O(2n/3) bits. Moreover, they demand multiple keys (cf. [19, 31,
33, 50]). Given classical block ciphers, the use of multiple independent primitives as in
our constructions would demand either multiple keys or sacrificing parts of the input for
encoding the domain.
Tweakable block ciphers (TBCs) allow efficient and effective domain separation of the
individual primitive calls without expanding the key material excessively. As a disadvantage,
tweak inputs represent additional degrees of freedom to adversaries: the usual tweak(ey)
sizes of n, or 2n bit, for ciphers with n-bit block size, as e.g. in Skinny [13] or Deoxys-BC [67],
exceed what we need for domain separation. The n/2-bit tweak in Kiasu-BC [66] suffices,
but its diffusion was improved recently by the dedicated small-tweak constructions of the
ElasticTweak framework [28, 30]. We employ the latter with the AES round function as a
natural choice for instantiations efficient on off-the-shelf processors, as in the ElasticTweak
instance TweAES.

The ElasticTweak Framework and TweAES. The ElasticTweak framework [28, 30]
can produce large diffusion from very small tweaks by expanding it to larger round tweakeys
with a simple code. The authors proposed two concrete instances, TweAES and TweGIFT,
which are tweakable variants of AES-128 and GIFT-64, respectively. Those were employed
in the NIST LwC second-round candidate EState [27, 29]. The main strategy takes a small
four-bit tweak and expands it to affect wide parts of the state using a code M = [I|J] with
the identity I and a binary matrix J that is the element-wise sum of J = I + 1, with 1
being the all-one matrix. More precisely, the four-bit tweak T = (t0, t1, t2, t3) is expanded

24 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

S0

.

.

.

Srt

K0

R[K1 ⊕ T 0]

R[K2 ⊕ T 0]

R[Krt−1]

.

.

.

S1,r

BC1

R[Krt+1 ⊕ T 1]

R[Krt+2 ⊕ T 1]

R[Kr−1 ⊕ T 1]

R

.

.

.

S2,r

BC2

R[Krt+1 ⊕ T 2]

R[Krt+2 ⊕ T 2]

R[Kr−1 ⊕ T 2]

R

· · ·

.

.

.

Sw,r

BCw

R[Krt+1 ⊕ Tw]

R[Krt+2 ⊕ Tw]

R[Kr−1 ⊕ Tw]

R

Figure 6.1: Schematic illustration of our AES-based instance TweAES’. The dashed lines
and XORs are the feed-forwards that ForkEDMD adds.

to eight bits as (t4, t5, t6, t7) = J ·T>:
t4
t5
t6
t7

 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ·

t0
t1
t2
t3

 .
In TweAES, the bits are XORed one at a time to the least significant bit of the bytes in
the two top rows, i.e., the first bytes in the topmost row are XORed with t0, t1, t2, t3,
respectively. The bytes in the second row are XORed with t4, t5, t6, and t7, respectively:

t0 t1 t2 t3
t4 t5 t6 t7
0 0 0 0
0 0 0 0

 .
J ensures at least four active bits for any nonzero input tweak difference. In combination
with the XOR into the second row and the ShiftRows operation after a tweak addition, a
non-zero tweak difference will affect at least three pairwise distinct columns of the state.
Moreover, TweAES injects the tweak after Round 2, 4, 6, and 8. Our instance will differ by
using the tweak injection after every round except the final one.

6.2 Definition of TweAES’
Let K = B = F4×4

28 be key and block space and T = {0, 1}4 the tweak space, respectively.
Both state and key are arranged in a 4× 4-byte matrix in the AES, indexed as

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .
We employ the AES round function R[Ki] which is composed of SubBytes, ShiftRows,
MixColumns, and AddRoundKey[Ki]. SubBytes applies the AES S-box to each byte in
the state. ShiftRows rotates Row i by i byte positions to the left, for i ∈ {0, 1, 2, 3}.
MixColumns multiplies each column by the AES MDS matrix. AddRoundKey[Ki] XORs

Avijit Dutta, Jian Guo and Eik List 25

the round key Ki to the state. Additionally, after almost every call to AddRoundKey[Ki],
and AddRoundTweak[T] adds an expanded tweak T is added to the state. The rounds i
are indexed as 1 through r.
We denote the states as S0 through Sr, where S0 is the plaintext and Si the state after the
i-th round, i.e., Sr is identical to the ciphertext. Before the first round, AddRoundKey[K0]
and AddRoundTweak[T 0] are performed, i.e., K0 and T 0 are XORed to the S0. We
write SiSB, SiSR, SiMC, SiAK, Si for the state directly after the application of SubBytes,
ShiftRows, MixColumns, AddRoundKey and AddRoundTweak of the i-th round. The cells
are indexed as usually in the AES. Compared to the AES, the final round of TweAES’
employs the MixColumns operation. TweAES’ adopts the key schedule of AES-128 and
iterates it further (as did ForkAES) when more round keys are necessary. TweAES’ is a
variant of TweAES[4, 8, 8, 2] that takes and expands a four-bit tweak T = (t0, t1, t2, t3) to
T = (t0, . . . , t7) and adds the bits to the least significant bits of the topmost two rows
before the first and after every round except the final round, as in TweAES.

6.3 Aspects of TweAES’ in ForkCENC-AES and ForkEDM-AES
We need to consider two aspects when using our instantiation in the constructions:
numbers of rounds, derivation of round keys, and branch constants. We define rt and rb
for the number of rounds in the top and bottom permutations, respectively, in our forked
constructions. We fix rt = 5 and rb = 7 for TweAES’ as a result of cryptanalysis and our
requirements. To obtain more round keys, we use the keys K0, . . . , Krt+rb−1 from the
(further-iterated) AES key schedule, with K0, . . . , Krt in the top permutation and Krt+1,
. . . , Krt+rb−1 in the bottom-permutation calls. We deviate from the simplest composition
of two independent instances of TweAES’ in our constructions as follows:

• We can omit the tweaks in the top permutation since it does not increase security.
Since we use an all-zero tweak in the top permutation, we spare any operations there.

• We avoid iterating the key schedule further on than r rounds compared to the
ForkCipher proposal [4]. The overhead of the schedule does not scale well beyond two
branches. Instead, we use the same round keys in the bottom-permutation calls. At
the start, each bottom-permutation call associated with Tweak T i XORs a branch-
dependent constant BCi to the state, for i ∈ {1, . . . , w}. The branch constants
provide efficient differential diffusion through the bottom-call permutations; thus, we
do not need additional tweaks at the beginning of them.

• Since Krt protects the state after the top-permutation call, we avoid a key addition
before the first round of each bottom-permutation call.

• Since ForkCENC-AES employs a sum of branches at the bottom, we can omit the
final round-key addition since the keys would cancel.

• Similarly, we can omit the tweak addition at the end of all bottom permutations
since it does not affect the security.

We define the branch constants that employ the sequential digits of π encoded as integers
as nothing-up-my-sleeve branch constants. For completeness, the 15 constants are listed in
Table 2. Note that we limit our interest to constructions with at most 15 bottom branches.
In use cases, where more branches are required, the tweak space can be easily extended to
take longer tweaks, e.g., 16-bit tweak inputs as in AES[16, 32, 8, 2] [28, 30]. Though, we do
not propose such instances.

26 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

Table 2: Branch constants for Branches i.
i Constant

0 0x9d7b8175 f0fec5b2 0ac020e6 4c708406
1 0x17f7082f a46b0f64 6ba0f388 e1b4668b
2 0x1491029f 609d02cf 9884f253 2dde0234
3 0x794f5bfd afbcf3bb 084f7b2e e6ead60e

4 0x447039be 1ccdee79 8b447248 cbb0cfcb
5 0x7b058a2b ed35538d b732906e eecdea7e
6 0x1bef4fda 612741e2 d07c2e5e 438fc267
7 0x3b0bc71f e2fd5f67 07cccaaf b0d92429

i Constant

8 0xee65d4b9 ca8fdbec e97f86e6 f1634dab
9 0x337e03ad 4f402a5b 64cdb7d4 84bf301c
10 0x0098f68d 2e8b0269 bf231794 b90bccb2
11 0x8a2d9d5c c89eaa4a 72556fde a67804fa

12 0xd49f1229 2e4ffa0e 122a776b 2b9fb4df
13 0xee126abb ae11d632 36a249f4 4403a11e
14 0xa6eca89c c900965f 8400054b 884904af
15 0xec93e527 e3c7a278 4f9c199d d85e0221

7 Cryptanalysis of TweAES’ in ForkCENC and ForkEDM
In this section, we provide a preliminary discussion of the security of TweAES’ in ForkCENC.
We call those instances ForkCENC-AES and ForkEDM-AES, respectively.

7.1 Rationale
In Appendix D, we summarize lessons from the community’s cryptanalysis efforts on
earlier AES-round-based primitives. We further summarize a collection of the best existing
key-recovery attacks and distinguishers in Table 5 there. To conclude, our instantiation

• uses five rounds in each top-permutation call against differential attacks.

• uses seven rounds in each bottom-permutation call against rectangle, mixture, and
impossible-differential attacks.

• adopts the branch-constant approach of ForkAES as an effective means to make
inter-branch differentials harder to exploit.

• uses the tweak injection after each round to ensure sufficiently many active S-boxes for
two- to four-round differentials against rectangles and to destroy mixture properties.

• injects the tweak directly at the start of the bottom-permutation calls to increase
security.

In the following, we give brief details on the individual types of attacks we consider.
Throughout this section, we consider three settings for attacks with tuples, such as pairs
or integral sets, from

• Setting (1): different bottom-permutation branches (distinct branch indices i and
j, with i, j ∈ {1..15} of the same chunk.

• Setting (2): equal branches i from different chunks, i.e. different input messages.

• Setting (3): different branches i and j from different chunks.

7.2 Differential Bounds
Among top-permutation calls, it is well-known that four rounds of AES activate at least
25 S-boxes. Thus, any differential characteristic has a probability of at most 2−150 on
average. Without concerning tweaks, the full top and bottom permutation are at least as
secure as the full-round AES. For the bottom-permutation calls, we have to lower bound
the number of active S-boxes in differentials.
For Setting (1), the differences result from the branch constant differences and the tweak
differences. The branch constants ensure almost fully active differences and hence at least
28 active S-boxes in five rounds and 25 without branch constants, as given in Table 3.

Avijit Dutta, Jian Guo and Eik List 27

Table 3: Lower bounds on the number of active S-boxes in small-tweak AES-based TBCs
with difference only in the tweak.

Constr. 1 2 3 4 5 6 7 8 9 10

Active plaintext or tweak
TweAES’ 0 4 8 14 18 22 26 30 34 38
TweAES [30] 0 0 4 15 19 20 27 30 34 40
Kiasu-BC [66] 0 1 4 8 18 22 25 28 33 38

Active tweak
TweAES’ 4 11 18 21 25 29 34 38 42 46
TweAES [30] 4 15 20 20 27 30 34 40 44 50
Kiasu-BC [66] 1 4 17 23 25 26 29 37 44 50

From branch constants
TweAES’ 14 15 19 23 28 32 36 40 44 48
TweAES [30] 14 20 21 21 25 35 39 45 48 51
Kiasu-BC [66] 14 15 18 20 24 32 36 40 43 48

For Setting (2), between the i-th branch of two distinct chunks, we can assume that a
certain non-zero difference to happen with probability roughly at most 2−128 after the
top permutation. This setting can be reduced to tracing differential trails through the
sequence of the top- and a bottom-permutation branch of the cipher, which implies tracing
them through (rt + rb)-round AES. Our construction is likely to provide more security
since partial decryptions are unavailable.
Moreover, between different branches from different chunks, we can assume any non-zero
difference to happen with probability roughly at most 2−128 after the top permutation.
Then, the bottom-permutation calls represent a conditional differential. We have at least
36 active S-boxes through seven rounds of the bottom permutation, which should prevent
such differential characteristics.

7.3 Linear Attacks
Concerning standard linear attacks, similar results as for the differential analysis can be
applied against linear attacks. Since the tweak schedule is linear, the tweak does not
introduce additional linear trails compared to a non-tweaked cipher [71]. For the AES, four
rounds are known to activate at least 25 S-boxes. Thus, we expect that resistance against
linear attacks for the sequence of top- and any bottom-permutation branches should suffice
to thwart them. Moreover, we expect the sum in ForkEDM and ForkCENC to render attacks
even harder than for the plain AES since makes key recovery harder at the ciphertext side.

7.4 Integral Cryptanalysis
Regarding integral attacks, we have to consider again the three settings. We believe that
Cases (2) and (3) are hard to exploit and thwarted by the presence of the top permutation:
there are no integral attacks over five-round AES [91] without related tweaks.
Related-tweak differences can generate a balanced property over only two rounds of
TweAES [29] before it is destroyed. We can formulate a similar statement for the bottom
permutations when we inject tweaks in every round. If an attacker wants to exploit a
blank round with zero difference, it has to hit the difference induced by different branch
constants, which renders such attacks harder. Moreover, key guessing at the ciphertext
side is thwarted or made harder due to the sum. Such attacks seem to be more of a threat
to TweAES.

7.5 Impossible-differential and Zero-correlation Distinguishers
Impossible-differential attacks exploit differentials with probability zero. Zero-correlation
distinguishers represent a corresponding attack in the linear setting, i.e., they are linear

28 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

attacks with correlation zero. As shown by Derbez et al. on AES-PRF [45], both types
can be strong on EDM and AES-PRF and cover up to four rounds. There, an attacker can
exploit a zero difference or a zero-correlation mask cannot occur in the ciphertext output.
The upper bounds on the length of impossible differentials for the AES and TweAES are also
upper bounds for the top and bottom parts of our constructions. For the AES, there exist
impossible-differential distinguishers on up to four rounds and no impossible differentials
for five-round AES even when taking the key schedule into account [25]. Hence, longer
distinguishers need to exploit tweak differences. For TweAES, impossible differentials
cover at most six rounds but only when the former or latter two rounds are inactive. In
Setting (1), we expect the branch numbers to thwart long distinguishers. For ForkCENC-
AES and ForkEDM-AES, we can derive that impossible-differential distinguishers cover at
most five rounds in Setting (1). Moreover, Setting (2) and (3) correspond to an attack
on 12-round AES; Setting (3) with an additional fixed tweak in the bottom permutation,
which should not provide the adversary with better distinguishers.
Zero-correlation distinguishers are expected to hold also for only up to four rounds of the
AES. Here, the presence of tweaks should not allow longer distinguishers [71]. Derbez et al.
[45] exploited a four-round zero-correlation distinguisher on EDM. Given a zero-correlation
trail with mask α→ α through the bottom permutation, the adversary can evaluate α for
all ciphertexts. We expect that there exist no zero-correlation distinguishers that map onto
themselves through more than four rounds of the bottom permutation in ForkCENC-AES
and ForkEDM-AES.

7.6 Meet-in-the-Middle (MitM) Distinguishers
Demirci-Selçuk-(DS)-MitM attacks [42, 43] trace an input set of partial sets to their
corresponding output sets through parts of a cipher. The adversary guesses parts of those
internal states and builds a table of all possible transitions from a partial start state to a
partial end state through the cipher. If the number of computations of this offline step
is significantly smaller than that of an exhaustive search, it can then use the table in an
attack. For keyed ciphers, the adversary guesses the keys to obtain knowledge about the
partial start and end states. It traces related texts and looks up if the sequence obtained
for the current key guess is among the possible transitions. If it is not, the adversary can
discard the current key guess.

In Settings (2) and (3), we can employ the same heuristic argument from Derbez et al.
[45] that EDM and its dual seem at least as resistant as the sequence of top and bottom
permutation. For both cases, an attacker would have to either work its way through 12
rounds of AES or have to predict a certain truncated difference in the middle. In those
cases, we assume that 12-round TweAES’ offers sufficient resistance against DS-MitM
distinguishers. In particular, Sun showed in [90], that the length of such distinguishers
for ciphers with n-bit state and key is limited by at most twice the number of operations
necessary for full diffusion, taking the maximum number of operations in for- or backward
direction. Given that the AES achieves full diffusion after two rounds and designs with
short tweak achieves full diffusion after three rounds, the length of DS-MitM distinguishers
is limited to at most six rounds in our construction. We emphasize that this is already
a conservative estimate. Works on Kiasu-BC, whose larger and simpler tweak injection
provides the adversary with strictly more freedom than our proposal, managed five-round
distinguishers and eight-round attacks yet [73, 93]).
Differentials between different branches of the same chunk in Setting (1) may pose a
considerable threat to constructions such as ours. The state-of-the-art DS-MitM attacks
exploit the differential-enumeration technique [48]: they wait for a pair of texts that follow
a certain differential through the distinguishing part of the cipher. The advantage over
value-based guessing is that a pair of texts allows deriving the state in a round without
the need for guessing the value inside the middle of the differential trail.

Avijit Dutta, Jian Guo and Eik List 29

In contrast to DS-MitM attacks on block ciphers, tweak-induced differentials in Set-
ting (1) for our construction prohibit guessing the key until the forking point and derive
further texts from new plaintexts. However, the other branches allow us to derive a few
further texts automatically without the need to guess keys from the start. What remains
is to consider the composition of a distinguisher and key guessing from the end. We
consider distinguishers to cover at most six rounds. We can further adopt an argument
from TweAES [29]: The large weight of differences induced by expanded related tweaks
and the branch constants in our constructions prohibits sparse trails and limits the lengths
of distinguishers to at most five rounds. The additional sum at the end further strengthens
the resistance since it blinds the output values and renders key recovery impossible or
highly expensive. Therefore, we expect seven rounds in the bottom-permutation calls to
thwart such attacks.

7.7 Differential-linear and Rectangle Distinguishers
Differential-linear distinguishers combine a short differential with a short linear hull and a
middle phase. We consider them inapplicable to TweAES’ in Settings (2) and (3) due to
the strong diffusion properties and the high complexity of p2rε4 – given a differential with
probability p, a middle-phase transition with probability r, and a linear approximation
with correlation ε – no such attacks are known for even a few rounds of the AES.
Regarding related tweaks from the same chunks in Setting (1), we see that key guessing at
the ciphertext side is made substantially harder by the sum at the end and attacks will
have to exploit at least six-round distinguishers. Since any combination of r = 4 rounds
activate at least 22 and r = 5 rounds activate at least 25 active S-boxes, we assume that
no distinguishers over six or seven rounds (plus a middle round for the transition phase)
exist in the bottom part.
A similar argument as for differential-linear distinguishers follows for chosen-plaintext
related-tweak rectangle attacks. Related-tweak differences in TweAES’ and TweAES activate
more S-boxes than for Kiasu-BC or TNT-AES [12]. Distinguishers over seven rounds seem
unlikely. We note that Chakraborti et al. showed a longer distinguisher on up to seven
rounds of the TweAES [29], which exploited two consecutive inactive rounds in both top
and bottom difference. Since TweAES injects the tweak difference in every second round,
this distinguisher is not directly applicable to our construction. Furthermore, the tool by
Yang et al. refined the study of multiple consecutive S-boxes in boomerangs and found
that the seven-round distinguisher on TweAES had probability zero [94].

7.8 Mixtures
Mixture-differential attacks [53, 54] are a variant of conditional differentials. Given a
pair with a certain input difference and at least two different components (e.g. bytes)
therein, further pairs with the same input difference can be constructed by mixing the
components from the first pair. If the first pair follows a differential, a distinguisher exploits
that the further pairs follow the differential with higher probability than random. The
attack represents a potential threat when given AES-based permutations with adversary-
controllable inputs or when tweak differences can be used for creating mixed pairs.
We found mixture-differential distinguishers on ForkCENC[w] if it would use TweAES-4,
that is, four-round TweAES with injecting tweaks after every two rounds. Preventing
such attacks was also a factor for using tweak injections in every round. We argue that
ForkAES [5] as well as our proposals ForkCENC-AES, and ForkEDM-AES thwart them due
to branch constants. ForkAES also employs the effective but costly countermeasure of
using independent round keys for each branch. In our proposals, we choose the number of
bottom rounds more conservatively and expect that the sum in our proposals thwarts key
recovery at the ciphertext side.

30 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

Table 4: Performance in cycles per byte for our instantiations with selected number of
branches w and up to 16 chunks with AES-NI, SSE4.1, and AVX2.

(a) ForkCENC-AES-5-7[w].

#Chunks of 16w bytes
w 1 2 3 4 8 12 16

i5-6300U
4 1.15 0.89 0.93 0.78 0.76 0.75 0.74
5 0.96 0.80 0.81 0.71 0.69 0.68 0.68
8 0.79 0.70 0.68 0.59 0.58 0.58 0.58

15 0.67 0.59 0.58 0.54 0.53 0.53 0.52

Intel i5-1240P
4 0.91 0.83 0.88 0.81 0.64 0.62 0.62
5 0.81 0.81 0.80 0.70 0.55 0.54 0.54
8 0.82 0.68 0.60 0.49 0.45 0.45 0.45

15 0.64 0.49 0.45 0.43 0.41 0.40 0.40

(b) ForkEDM-AES-5-7[w].

#Chunks of 16w bytes
w 1 2 3 4 8 12 16

Intel i5-1240P
4 0.71 0.75 0.66 0.62 0.49 0.47 0.47
5 0.62 0.67 0.63 0.54 0.45 0.44 0.43
8 0.73 0.65 0.54 0.46 0.44 0.43 0.43

15 0.58 0.47 0.42 0.42 0.41 0.41 0.39

7.9 Reflection, Yoyo, and Boomerang Attacks
The feed-forward in ForkCENC-AES renders backward queries difficult or impossible. As
a result, boomerang or yoyo key-recovery attacks that need both plain- and ciphertext
queries seem unlikely to be applicable – at least, they seem costlier than exhaustive search.
Compared to ForkCiphers, the feed-forward would also allow discarding chosen-ciphertext
reflection differentials, which were the most effective attacks on ForkAES.

7.10 Others
We assume that techniques like slide attacks [21], rotational attacks [70], or internal-
difference attacks [65, 86] are prevented by adopting the AES key schedule and its constants.
Multiple-of-n attacks [57] exploit probability-1 conditional differences of related pairs after
a few rounds. Grassi et al. showed that for a set of all texts in a diagonal, if a pair has
a specific set of inactive anti-diagonals after almost five-round AES (without the final
MixColumns operation), then, the number of pairs with this property in the set of texts is
a multiple of eight. Though, no such properties are known over more than five rounds [24]
AES. Plus, we see that the sum operation in our constructions can thwart key-recovery
attacks such as the six-round attack by Bar-On et al. [9] on six-round AES-128.

8 Implementation
We implemented ForkCENC-AES in C using SSE4.2 and AES-Native instructions and
benchmarked it on an Intel Skylake i5-6300U (6th-generation) and an Intel Alder Lake i5-
1240P (12-th generation) both with adaptive power policy, TurboBoost and HyperThreading
disabled. Table 4 lists the benchmark results for selected numbers of branches per chunk,
where the message lengths are given in multiples of 16w-byte chunks for varying numbers
of words w. The measurements are the medians of 1 024 runs each after 1 024 warm-up
runs.
The senior (pre-AVX-512) Skylake CPU allows for simpler comparison, where the usual
optimum for 10-round AES-128 was simply one cycle per round, i.e. 10/16 = 0.625 cycles
per bytes (c/b) without input-specific optimizations. There remains a tiny gap to the
theoretical optimum of about 0.49 c/b for ForkCENC-AES-5-7[15] on Skylake that could be
further closed. Though, we note that our implementation is still conservative. We did not
include the counter-specific optimizations by Park and Lee yet [81] that exploit unchanged
parts of the input in counter mode and could spare effectively the equivalent of three AES

Avijit Dutta, Jian Guo and Eik List 31

rounds. We could employ a similar optimization for the nonce in our proposals, but, to be
fair, we would save that amount only in the top permutation calls, which are computed
only for 1/w of the blocks.
We note that Intel removed its performance-boosting AVX-512 instructions from most of its
off-the-shelf platforms of the 12th-generation CPUs. We provide the results for ForkCENC
and ForkEDM both instantiated with TweAES’-5-7 on this platform as an example of a
recent platform at the time of writing the paper for a broader overview to the reader.

9 Conclusion
This work combines the knowledge from designing optimally secure fixed-output-length
PRFs and the generalized Mirror Theory. We proposed a spectrum view of constructions
from forked constructions that cover (1) output-length vs. PRF security, (2) full vs
reduced primitives, and (3) fixed- vs. variable-length outputs. We forked and reduced
the sum of permutations and the Summation-Truncation Hybrid, and extended them to
variable-output-length constructions. Given the insights about attacks on the growing
corpus of primitives from reduced-round AES, e.g. AES-PRF, ForkAES, TweAES, we could
propose efficient instantiations. Our instantiation based on 5 + 7 AES rounds serves as
an initial proposal of what is possible at least. We can envision the search for even more
secure and more efficient instantiations as interesting future works. We also motivate
third-party cryptanalysis to further increase the understanding of such settings. Moreover,
there probably exist possible more lightweight instantiations from GIFT or SKINNY. We
acknowledge the parallel and independent work by Andreeva et al. [3] who had focused
on ForkEDMD, proved its security, derived a highly performant instantiation and highly
secure deterministic AE schemes.

Acknowledgments. We are highly thankful to the reviewers and editors of ToSC 2022(4)
for their very fruitful comments and suggestions.

References
[1] Najwa Aaraj, Emanuele Bellini, Ravindra Jejurikar, Marc Manzano, Raghvendra

Rohit, and Eugenio Salazar. Farasha: A Provable Permutation-based Parallelizable
PRF. IACR Cryptol. ePrint Arch., page 1150, 2022.

[2] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3, Fork:
Counter Mode Variants based on a Generalized Forkcipher. IACR Trans. Symmetric
Cryptol., 2021(3):1–35, 2021.

[3] Elena Andreeva, Benoit Cogliati, Virginie Lallemand, Marine Minier, Antoon Purnal,
and Arnab Roy. Masked Iterate-Fork-Iterate: A new Design Paradigm for Tweakable
Expanding Pseudorandom Function. Cryptology ePrint Archive, Paper 2022/1534,
2022.

[4] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy,
and Damian Vizár. Forkcipher: A New Primitive for Authenticated Encryption of
Very Short Messages. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT
II, volume 11922 of LNCS, pages 153–182. Springer, 2019.

[5] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. ForkAES: a
Tweakable Forkcipher. Cryptology ePrint Archive, Report 2018/916, 2018.

[6] Jean-Philippe Aumasson. Too Much Crypto. IACR Cryptol. ePrint Arch., 2019:1492,
2019.

32 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

[7] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi Meier,
Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis of ForkAES. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors,
ACNS, volume 11464 of LNCS, pages 43–63. Springer, 2019.

[8] Zhenzhen Bao, Jian Guo, and Eik List. Extended Truncated-differential Distinguishers
on Round-reduced AES. IACR Trans. Symmetric Cryptol., 2020(3):197–261, 2020.

[9] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. Im-
proved Key Recovery Attacks on Reduced-Round AES with Practical Data and Mem-
ory Complexities. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO II,
volume 10992 of LNCS, pages 185–212. Springer, 2018.

[10] Navid Ghaedi Bardeh and Sondre Rønjom. The Exchange Attack: How to Distinguish
Six Rounds of AES with 288.2 Chosen Plaintexts. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT III, volume 11923 of LNCS, pages 347–370. Springer,
2019.

[11] Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of Forkciphers.
IACR Trans. Symmetric Cryptol., 2020(1):233–265, 2020.

[12] Augustin Bariant and Gaëtan Leurent. Truncated Boomerang Attacks and Application
to AES-based Ciphers. Cryptology ePrint Archive, Paper 2022/701, 2022.

[13] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of
Block Ciphers and Its Low-Latency Variant MANTIS. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO II, volume 9815 of LNCS, pages 123–153. Springer,
2016. Full version at https://eprint.iacr.org/2016/660.

[14] M. Bellare and R. Impagliazzo. A tool for obtaining tighter security analyses of
pseudorandom function based constructions, with applications to prp to prf conversion.
Cryptology ePrint Archive, Report 1999/024, 1999. http://eprint.iacr.org/1999/024.

[15] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher Block Chaining.
In Yvo Desmedt, editor, CRYPTO, volume 839 of LNCS, pages 341–358. Springer,
1994.

[16] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff Backwards: In-
creasing Security by Making Block Ciphers Non-invertible. In Kaisa Nyberg, editor,
EUROCRYPT, volume 1403 of LNCS, pages 266–280. Springer, 1998.

[17] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, EUROCRYPT,
volume 4004 of LNCS, pages 409–426. Springer, 2006.

[18] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR Trans.
Symmetric Cryptol., 2017(4):1–38, 2017.

[19] Arghya Bhattacharjee, Avijit Dutta, Eik List, and Mridul Nandi. CENCPP∗:
beyond-birthday-secure encryption from public permutations. Des. Codes Cryptogr.,
90(6):1381–1425, 2022.

[20] Ritam Bhaumik, Nilanjan Datta, Avijit Dutta, Nicky Mouha, and Mridul Nandi. The
Iterated Random Function Problem. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT II, volume 10625 of LNCS, pages 667–697. Springer, 2017.

Avijit Dutta, Jian Guo and Eik List 33

[21] Alex Biryukov and David A. Wagner. Slide Attacks. In Lars R. Knudsen, editor, FSE,
volume 1636 of LNCS, pages 245–259. Springer, 1999.

[22] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of LNCS, pages 450–466. Springer, 2007.

[23] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of LNCS,
pages 208–225. Springer, 2012.

[24] Christina Boura, Anne Canteaut, and Daniel Coggia. A General Proof Framework for
Recent AES Distinguishers. IACR Trans. Symmetric Cryptol., 2019(1):170–191, 2019.

[25] Christina Boura and Daniel Coggia. Efficient MILP Modelings for Sboxes and Linear
Layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–361, 2020.

[26] Colin Chaigneau and Henri Gilbert. Is AEZ v4.1 Sufficiently Resilient Against
Key-Recovery Attacks? IACR Trans. Symmetric Cryptol., 2016(1):114–133, 2016.

[27] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul
Nandi, and Yu Sasaki. ESTATE Authenticated Encryption Mode: Hardware Bench-
marking and Security Analysis. National Institute of Standards and Technology
(NIST), 2019.

[28] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul
Nandi, and Yu Sasaki. Elastic-Tweak: A Framework for Short Tweak Tweakable
Block Cipher. IACR Cryptol. ePrint Arch., 2019:440, 2019.

[29] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul
Nandi, and Yu Sasaki. ESTATE: A Lightweight and Low Energy Authenticated
Encryption Mode. IACR Trans. Symmetric Cryptol., 2020(S1):350–389, 2020.

[30] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul
Nandi, and Yu Sasaki. Elastic-Tweak: A Framework for Short Tweak Tweakable Block
Cipher. In Avishek Adhikari, Ralf Küsters, and Bart Preneel, editors, INDOCRYPT,
volume 13143 of LNCS, pages 114–137. Springer, 2021.

[31] Avik Chakraborti, Mridul Nandi, Suprita Talnikar, and Kan Yasuda. On the Compo-
sition of Single-Keyed Tweakable Even-Mansour for Achieving BBB Security. IACR
Trans. Symmetric Cryptol., 2020(2):1–39, 2020.

[32] Donghoon Chang and Mridul Nandi. A short proof of the PRP/PRF switching lemma.
IACR Cryptol. ePrint Arch., page 78, 2008.

[33] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to Build Pseudorandom
Functions from Public Random Permutations. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO I, volume 11692 of LNCS, pages 266–293. Springer,
2019.

[34] Yu Long Chen, Bart Mennink, and Bart Preneel. Categorization of Faulty Nonce
Misuse Resistant Message Authentication. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT III, volume 13092 of LNCS, pages 520–550. Springer, 2021.

34 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

[35] Wonseok Choi, ByeongHak Lee, Jooyoung Lee, and Yeongmin Lee. Toward a Fully
Secure Authenticated Encryption Scheme from a Pseudorandom Permutation. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT III, volume 13092 of
LNCS, pages 407–434. Springer, 2021.

[36] Benoît Cogliati and Jacques Patarin. Mirror theory: A simple proof of the pi + pj
theorem with xi_max = 2. IACR Cryptol. ePrint Arch., page 734, 2020.

[37] Benoît Cogliati and Yannick Seurin. EWCDM: An Efficient, Beyond-Birthday Secure,
Nonce-Misuse Resistant MAC. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO I, volume 9814 of LNCS, pages 121–149. Springer, 2016.

[38] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation encrypted
Davies-Meyer construction. Des. Codes Cryptogr., 86(12):2703–2723, 2018.

[39] Benoît Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abishanka Saha.
Proof of mirror theory for any ξmax. Cryptology ePrint Archive, Paper 2022/686,
2022.

[40] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In
Eli Biham, editor, FSE, volume 1267 of LNCS, pages 149–165. Springer, 1997.

[41] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic Indistin-
guishability via the Chi-Squared Method. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO Part III, volume 10403 of LNCS, pages 497–523. Springer, 2017.
Full version at http://eprint.iacr.org/2017/537, version 20170616:190106.

[42] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round
AES. In Kaisa Nyberg, editor, FSE, volume 5086 of LNCS, pages 116–126. Springer,
2008.

[43] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk Meet-in-the-
Middle Attacks Against Reduced-Round AES. In Shiho Moriai, editor, FSE, volume
8424 of LNCS, pages 541–560. Springer, 2013.

[44] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery
Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 371–387.
Springer, 2013.

[45] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang Wang, and
Meiqin Wang. Cryptanalysis of AES-PRF and Its Dual. IACR Trans. Symmetric
Cryptol., 2018(2):161–191, 2018.

[46] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square Attack on
7-Round Kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve A. Schneider,
editors, ACNS, volume 9696 of LNCS, pages 500–517. Springer, 2016.

[47] Christoph Dobraunig and Eik List. Impossible-Differential and Boomerang Cryptanal-
ysis of Round-Reduced Kiasu-BC. In Helena Handschuh, editor, CT-RSA, volume
10159 of LNCS, pages 207–222. Springer, 2017.

[48] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on
8-Round AES-192 and AES-256. In Masayuki Abe, editor, ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 158–176. Springer, 2010.

[49] Avijit Dutta, Mridul Nandi, and Abishanka Saha. Proof of mirror theory for ξmax = 2.
IACR Cryptol. ePrint Arch., page 669, 2020.

Avijit Dutta, Jian Guo and Eik List 35

[50] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Permutation Based EDM: An
Inverse Free BBB Secure PRF. IACR Trans. Symmetric Cryptol., 2021(2):31–70,
2021.

[51] Horst Feistel. Cryptography and computer privacy. Scientific American, 228(5):15–23,
1973.

[52] Shoni Gilboa and Shay Gueron. The Advantage of Truncated Permutations. CoRR,
abs/1610.02518, 2016.

[53] Lorenzo Grassi. MixColumns Properties and Attacks on (Round-Reduced) AES with
a Single Secret S-Box. In Nigel P. Smart, editor, CT-RSA, volume 10808 of LNCS,
pages 243–263. Springer, 2018.

[54] Lorenzo Grassi. Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES. IACR Transactions on Symmetric Cryptology,
2018(2):133–160, 2018.

[55] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman Walch. From
Farfalle to Megafono via Ciminion: The PRF Hydra for MPC Applications. IACR
Cryptol. ePrint Arch., page 342, March 14, 11:54:47 2022. version 20220314:115447.

[56] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman Walch. From
Farfalle to Megafono via Ciminion: The PRF Hydra for MPC Applications. IACR
Cryptol. ePrint Arch., page 342, 2022.

[57] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A New Structural-
Differential Property of 5-Round AES. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT II, volume 10211 of LNCS, pages 289–317, 2017.

[58] Aldo Gunsing and Bart Mennink. The Summation-Truncation Hybrid: Reusing
Discarded Bits for Free. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO I, volume 12170 of LNCS, pages 187–217. Springer, 2020.

[59] Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-birthday secure domain-
preserving PRFs from a single permutation. Des. Codes Cryptogr., 87(6):1297–1322,
2019.

[60] Chris Hall, David A. Wagner, John Kelsey, and Bruce Schneier. Building prfs from
prps. In CRYPTO 1998, Proceedings, pages 370–389, 1998.

[61] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust Authenticated-
Encryption AEZ and the Problem That It Solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT (1), volume 9056 of LNCS, pages 15–44. Springer,
2015.

[62] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages
310–327. Springer, 2006.

[63] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure. IACR
Cryptol. ePrint Arch., 2016:1087, 2016.

[64] Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-SIV.
IACR Trans. Symmetric Cryptol., 2016(1):134–157, 2016.

[65] Jérémy Jean and Ivica Nikolic. Internal Differential Boomerangs: Practical Analysis of
the Round-Reduced Keccak-f Permutation. In Gregor Leander, editor, FSE, volume
9054 of LNCS, pages 537–556. Springer, 2015.

36 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

[66] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Kiasu v1.1.
http://competitions.cr.yp.to/caesar-submissions.html, Mar 16 2014. First-round
submission to the CAESAR competition.

[67] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ciphers:
The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT
II, volume 8874 of LNCS, pages 274–288. Springer, 2014.

[68] Zilong Jiang and Chenhui Jin. Multiple Impossible Differential Attacks for ForkAES.
Security and Communication Networks, 2022:1–11, 2022.

[69] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[70] Dmitry Khovratovich and Ivica Nikolic. Rotational Cryptanalysis of ARX. In Seokhie
Hong and Tetsu Iwata, editors, FSE, volume 6147 of LNCS, pages 333–346. Springer,
2010.

[71] Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear Cryptanalysis:
Key Schedules and Tweakable Block Ciphers. IACR Trans. Symmetric Cryptol.,
2017(1):474–505, 2017.

[72] David Lefranc, Philippe Painchault, Valérie Rouat, and Emmanuel Mayer. A Generic
Method to Design Modes of Operation Beyond the Birthday Bound. In Carlisle M.
Adams, Ali Miri, and Michael J. Wiener, editors, SAC, volume 4876 of LNCS, pages
328–343. Springer, 2007.

[73] Ya Liu, Yifan Shi, Dawu Gu, Zhiqiang Zeng, Fengyu Zhao, Wei Li, Zhiqiang Liu, and
Yang Bao. Improved Meet-in-the-Middle Attacks on Reduced-Round Kiasu-BC and
Joltik-BC. Comput. J., 62(12):1761–1776, 2019.

[74] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988.

[75] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor, EURO-
CRYPT, volume 1807 of LNCS, pages 470–484. Springer, 2000.

[76] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-
Hashemi. Improved Impossible Differential Cryptanalysis of 7-Round AES-128. In
Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT, volume 6498 of LNCS,
pages 282–291. Springer, 2010.

[77] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual: Towards
Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO III, volume 10403 of LNCS, pages 556–583. Springer, 2017.

[78] Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs. IACR
Trans. Symmetric Cryptol., 2017(3):228–252, 2017.

[79] Valérie Nachef, Jacques Patarin, and Emmanuel Volte. Feistel Ciphers - Security
Proofs and Cryptanalysis. Springer, 2017.

[80] Chao Niu, Muzhou Li, Meiqin Wang, Qingju Wang, and Siu-Ming Yiu. Related-Tweak
Impossible Differential Cryptanalysis of Reduced-Round TweAES. In Riham AlTawy
and Andreas Hülsing, editors, SAC, volume 13203 of LNCS, pages 223–245. Springer,
2021.

Avijit Dutta, Jian Guo and Eik List 37

[81] Jin Hyung Park and Dong Hoon Lee. FACE: Fast AES CTR mode Encryption
Techniques based on the Reuse of Repetitive Data. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):469–499, 2018.

[82] Jacques Patarin. A Proof of Security in O(2n) for the Xor of Two Random Permuta-
tions. In Reihaneh Safavi-Naini, editor, ICITS, volume 5155 of LNCS, pages 232–248.
Springer, 2008. Full version at https://eprint.iacr.org/2008/010.

[83] Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC, volume 5381 of LNCS, pages 328–345.
Springer, 2008.

[84] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear
Equalities and Linear Non Equalities for Cryptography. IACR Cryptology ePrint
Archive, 2010:287, 2010.

[85] Jacques Patarin. Security in O(2n) for the Xor of Two Random Permutations: Proof
with the standard H technique. IACR Cryptology ePrint Archive, 2013:368, 2013.

[86] Thomas Peyrin. Improved Differential Attacks for ECHO and Grøstl. In Tal Rabin,
editor, CRYPTO, volume 6223 of LNCS, pages 370–392. Springer, 2010.

[87] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO I, volume 9814 of LNCS, pages 33–63. Springer, 2016.

[88] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J.,
28(4):656–715, 1949.

[89] Tairong Shi, Chenhui Jin, and Jie Guan. Collision attacks against aez-prf for authen-
ticated encryption aez. China Communications, 15(2):46–53, 2018.

[90] Bing Sun. Provable Security Evaluation of Block Ciphers Against Demirci-Selçuk’s
Meet-in-the-Middle Attack. IEEE Trans. Inf. Theory, 67(7):4838–4844, 2021.

[91] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT I, volume 9056 of LNCS, pages
287–314. Springer, 2015.

[92] Yosuke Todo and Kazumaro Aoki. FFT Key Recovery for Integral Attack. In Dimitris
Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS, volume 8813
of LNCS, pages 64–81. Springer, 2014.

[93] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A Meet in the Middle
Attack on Reduced Round Kiasu-BC. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., 99-A(10):1888–1890, 2016.

[94] Qianqian Yang, Ling Song, Siwei Sun, Danping Shi, and Lei Hu. New Properties of
Double Boomerang Connectivity Table. IACR Cryptol. ePrint Arch., page 1579, 2022.

A The χ2 Method
For each i ∈ [q] and each vector Wi−1 = (W i−1

2 , . . . ,W i−1
r) with Wi−1

j = (W 1
j , W 2

j ,
. . . ,W i−1

j), define

χ2(Wi−1) def=
∑

W∈(Fb
2)r−1

(
PrOreal [Wi = W |Wi−1]− PrOideal [Wi = W |Wi−1]

)2
PrOideal [Wi = W |Wi−1] .

38 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

Theorem 10 (χ2 Method [41]). Consider two systems Oreal and Oideal. Suppose that for
any vector W, it holds that PrOideal [Wi] > 0 whenever PrOreal [Wi] > 0. Then

∥∥∥∥ Pr
Oreal

[
Wi
]
− Pr
Oideal

[
Wi
]∥∥∥∥ ≤

√√√√1
2

q∑
i=1

EOreal [χ2(Wi−1)] .

B Proof for ForkSTH
We recall the theorem to aid the reader.

Theorem 8. Let a, b, q, r be positive integers and τ = (V,W) be a good transcript such
that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/(3r). Then, for r ≥ 3, it
holds that

Eτ [|Pr [O2 = τ]− Pr [Oideal = τ]|] ≤
(

4
3

)r
·
(rq

2n−a/3
)3/2

.

The proof will use the χ2 approach by Dai et al. [41]. Gunsing and Mennink have
shown in [58] that we can condition on an auxiliary variable Yi−1 instead of Wi−1, even
if the former exists in only one of the worlds, as long as the former allows to derive Wi−1

uniquely.

Theorem 11 ([58]). Let Yi−1 be a random variable existing in world Oreal but not
necessarily in Oideal. Then,

EOreal [χ2(Wi−1)]

≤
∑

W∈(Fb
2)r−1

EOreal

[(
PrOreal [Wi = W |Wi−1,Yi−1]− PrOideal [Wi = W |Wi−1]

)2
PrOideal [Wi = W |Wi−1]

]
.

The proof for r = 2 is provided in [58] and works in the same manner as there for general
r.

Proof of Theorem 8. We can easily see that PrOideal [W i = W |Wi−1] = 2−(r−1)b. Though,
it remains to determine the probability in the real world. We denote the outputs
(Y i1 , Y i2 , . . . , Y ir) also as (yi1, yi2, . . . , yir) and the fixed sum values at the i-th step (W i

2, . . . ,W
i
r)

also as (wi2, . . . , wir). We consider r independent permutations π1, . . .πr. We have to
determine the probability

Pr
Oreal

[Wi = (wi2, . . . , wir)|Yi−1] ,

where Yi−1 = (Y 1
1 , . . ., Y 1

r , . . ., Y i−1
1 , . . ., Y i−1

r).
Fix a tuple Wi = (wi2, . . . , wir) ∈ (Fb2)r−1. We define q × r sets Sij = {y1

j , . . . , y
i−1
j }

for all i ∈ [q] and j ∈ [r]. Furthermore, we propose sets of translated values Siyj→wj
=

Sij ⊕ wj =def {Yj ∈ Sij : Yj ⊕ wj} to denote the elementwise translation of Sij for the fixed
scalar wj ∈ Fb2 for all j ∈ {2, . . . , r}. For consistency, we introduce wi1 = 0b for all i ∈ [q]
so we can define Siy1→w1

= Si1. We define cardinalities sij = |Siyj→wj
| = |Sij | for all j ∈ [r].

We have to find the number of possible solutions Y i = (Y i1 , . . . , Y ir) for the next fixed
tuple W i = (wi2, . . . , wir). For Y i1 ⊕ Y i2 = wi2, Y i1 ⊕ Y i3 = wi3, . . . , it must hold that

Y i1 ∈ Fb2 \

Si1 ∪ r⋃
j=2

(Siyj→wj
)

 .

Avijit Dutta, Jian Guo and Eik List 39

From the inclusion-exclusion principle, the number of choices for Y i1 , that we denote by ni,
is

ni = 2b −
(
|Siy1→w1

|+ |Siy2→w2
|+ · · ·+ |Siyr→wr

|
)

+(
|Siy1→w1

∩Siy2→w2
|+ |Siy1→w1

∩Siy3→w3
|+ · · ·+ |Siyr−1→wr−1

∩Siyr→wr
|
)
−(

|Siy1→w1
∩ Siy2→w2

∩ Siy3→w3
|) + · · ·

)
+ · · ·

= 2b −

 r∑
j=1
|Siyj→wj

|

+

∑
j1<j2

|Siyj1→wj1
∩ Siyj2→wj2

|

−
 ∑

1≤j1<j2<j3≤r

|Siyj1→wj1
∩ Siyj2→wj2

∩ Siyj3→wj3
|

+ · · ·

= 2b −

 r∑
j=1

sij

+

 ∑
1≤j1<j2≤r

s
i,wj1 ,wj2
j1,j2

−
 ∑

1≤j1<j2<j3≤r

s
i,wj1 ,wj2 ,wj3
j1,j2,j3

+ · · ·+

(−1)r
 ∑

1≤j1<···<jr≤r

s
i,wj1 ,wj2 ,...,wjr

j1,...,jr

 , (4)

where we define si,w1,w2
1,2 , si,w1,w2,w3

1,2,3 , . . . for the cardinalities of the corresponding inter-
section sets in a natural manner. We call the terms si,w1,w2

1,2 2-tuple-related, si,w1,w2,w3
1,2,3

3-tuple-related, and so on. For each, we have to upper bound its expectation and variance.

Expectation and Variance of 2-tuple-related Terms. We can use the knowledge
about si,w1,w2

1,2 = si,0,w2
1,2 = Di,w from [41, 58]. Thus, the expectation and variance of all

cardinalities of two-component intersections can be taken from Equations (34) and (35) in
[58] as

E[si,wj1 ,wj2
j1,j2

] =
sij1
sij2

2b Var[si,wj1 ,wj2
j1,j2

] ≤
2sij1

sij2

2b . (5)

For independent permutations π1, . . . , πr, and independent Binomial variables, we can
derive them more precisely.

Lemma 1. For distinct j1, j2 ∈ [r], it holds that

E[si,wj1 ,wj2
yj1 ,yj2

] =
sij1
sij2

2b and

Var[si,wj1 ,wj2
j1,j2

] =
sij1
sij2

2b −
(sij1

sij2
)2

23b .

Expectation and Variance of 3-tuple-related Terms. Next, we consider the expec-
tation and variance of si,w1,w2,w3

y1,y2,y3
.

Lemma 2. For distinct j1, j2, j3 ∈ [r], it holds that

E[si,wj1 ,wj2 ,wj3
yj1 ,yj2 ,yj3

] =
sij1
sij2
sij3

22b and

Var[si,wj1 ,wj2 ,wj3
j1,j2,j3

] =
sij1
sij2
sij3

22b −
(sij1

sij2
sij3

)2

25b .

40 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

Expectation and Variance of Terms for General Tuples.

Lemma 3. Let t ≤ r and {I } = {j1, . . . , jt} ⊆ {1, . . . , r}. Then, it holds for the
expectation and variance that

E[si,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt
] =

∏
j∈{I} s

i
j

2(t−1)b

Var[si,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt
] =

∏
j∈{I} s

i
j

2(t−1)b −

(∏
j∈{I} s

i
j

)2

2(2t−1)b .

Determining the Ratio. In the real and ideal worlds, it holds that

Pr
Oreal

[W i = (wi2, . . . , wir)|Yi−1] = E[n
i

di
] and

Pr
Oideal

[W i = (wi2, . . . , wir)|Wi−1] = 1
2(r−1)b ,

respectively, with ni given in Equation (4). The number of all choices of Y i, that represents
the denominator di, is

di = (2b − si1) · (2b − si2) · · · · · (2b − sir) =
r∏
j=1

(2b − sij)

= 2rb − 2(r−1)b

 r∑
j=1

sij

+ 2(r−2)b

 ∑
1≤j1<j2≤r

sij1
sij2

−
2(r−3)b

 ∑
1≤j1<j2<j3≤r

sij1
sij2
sij3

+ · · ·+ (−1)r
 ∑

1≤j1<···<jr≤r

sij1
· · · sijr

 , (6)

which yields

E

[(
Pr
Oreal

[W i = (wi2, . . . , wir)|Yi−1]− Pr
Oideal

[W i = (wi2, . . . , wir)|Wi−1]
)2
]

= E

[(
ni

di
− 1

2(r−1)b

)2]

= E

[(
2(r−1)b · ni − di

2(r−1)b · di

)2]

≤
(

4
3

)2r
· 1

2(4r−2)b · E
[(

2(r−1)b · ni − di
)2
]
, (7)

where we used the assumption of sij < 2b−2, for all j ∈ [r], to upper bound di ≥
(3

4 · 2
b
)r.

In the following, we focus on the rightmost term of Equation (7), i.e., the expectation of
the squared difference. We can observe that the leftmost two terms of 2(r−1)b · ni, that we
call ni for short,

ni
def= 2(r−1)b ·

2b −
r∑
j=1

sij

 = 2rb − 2(r−1)b

 r∑
j=1

sij

 ,

Avijit Dutta, Jian Guo and Eik List 41

are identical to the leftmost two terms in di as in Equation (6). Therefore, they cancel in
the difference. We define

ni
def= ni −

2b −
r∑
j=1

sij

 (8)

=

 ∑
1≤j1<j2≤r

s
i,wj1 ,wj2
j1,j2

−
 ∑

1≤j1<j2<j3≤r

s
i,wj1 ,wj2 ,wj3
j1,j2,j3

+ · · ·+

(−1)r
(
si,w1,w2,...,wr

1,...,r

)
d
i def= di − ni . (9)

We substitute the extended formulation of di from Equation (6) into Equation (8) and
factor out (2(r−1)b)2:

E
[(

2(r−1)b · ni − di
)2
]

= E

[
22(r−1)b ·

(
ni − di

2(r−1)b

)2]

= 22(r−1)b · E

(ni − d
i

2(r−1)b

)2 . (10)

We can write the rightmost term as

d
i

2(r−1)b =

 ∑
1≤j1<j2≤r

sij1
sij2

2b

−
 ∑

1≤j1<j2<j3≤r

sij1
sij2
sij3

22b

+ · · ·

+ (−1)r · s
i
1 · · · sir
2(r−1)b . (11)

From Equation (4) for ni, we can observe that for the sum of terms x in ni, Equation (11)
consists of exactly the sum of terms E[x].

(10) = 2(2r−2)b · E[
(
ni − E[ni]

)2]
= 2(2r−2)b ·Var[ni] .

Inserting it into Equation (7) yields

(
4
3

)2r
· 1

2(4r−2)b · E
[(

2(r−1)b · ni − di
)2
]
≤
(

4
3

)2r
· 1

22rb ·Var[ni] .

For the sum of random variables xi, it holds that

Var[ni] =
∑
i

∑
j

Cov[xi, xj] = ci ,

42 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

where ci is the sum of the pairwise covariances of all combinations of two addends in
Var[ni], which includes the (always positive) variance terms:

ci =

 ∑
1≤j1<j2≤r

∑
1≤j′1<j′2≤r

Cov[si,wj1 ,wj2
j1,j2

, s
i,wj′1

,wj′2
j′1,j
′
2

]


−

 ∑
1≤j1<j2≤r

∑
1≤j′1<j′2<j′3≤r

Cov[si,wj1 ,wj2
j1,j2

, s
i,wj′1

,wj′2
,wj′3

j′1,j
′
2,j
′
3

]

+ · · ·

+(−1)r
∑
j1,j2

∑
j′1,...j

′
r

Cov[si,wj1 ,wj2
j1,j2

, s
i,wj′1

,wj′2
,...,wj′r

j′1,...,j
′
r

]


−

 ∑
1≤j1<j2<j3≤r

∑
1≤j′1<j′2<j′3≤r

Cov[si,wj1 ,wj2 ,wj3
j1,j2,j3

, s
i,wj′1

,wj′2
,wj′3

j′1,j
′
2,j
′
3

]

− · · ·
+(−1)r

 ∑
j1,j2,j3

∑
j′1,...j

′
r

Cov[si,wj1 ,wj2 ,wj3
j1,j2,j3

, s
i,wj′1

,wj′2
,...,wj′r

j′1,...,j
′
r

]

+ · · · .

Recall that the covariance of a term with itself equals its variance and is always positive:
Cov[xi, xi] = Var[xi].

Covariance. In the definition of covariance,

Cov[xi, xj] = E[xi · xj]− E[xi]E[xj] , (12)

we can compute the products of expectations, but have to find the expectations of the
products E[xi · xj], with dependent variables xi and xj .

Lemma 4 considers the expectation of products. For all i ∈ [`], let Si be a list
of n independent Bernoulli trials represented by indicator variables Ii,j for j ∈ [n],
where Pr[Ii,j = 1] = pi for all i, j. For multiple pairwise distinct index combinations
i1, . . . , ir ∈ [`], let Si1,...,ir = {j : Ii1,j = · · · = Iir,j = 1} for j ∈ [n]. Let si = |Si| and
si1,...,ir = |Si1,...,ir | for all indices and all pairwise distinct index combinations.

We use I,J ⊆ {i1, . . . , ir} as distinct index sets and overload the notations so that
for each I = {j1, . . . , js} ⊆ {i1, . . . , ir}, we define sI = sj1,...,js

. Moreover, we define
pI =

∏
i∈I pi. Note that

E[sI] · E[sJ] = npI · npJ
E[sI · sJ] = E[sI] · E[sJ] + Cov[sI , sJ] .

If I ∩ J = ∅, it follows that pI∪J = pI · pJ ; thus, Cov[sI , sJ] = 0 and

E[sI · sJ] = E[sI] · E[sJ] .

Though, for the cases when I ∩ J 6= ∅, we have to find Cov[sI , sJ] in Lemma 4.

Lemma 4. It holds that

Cov[sI , sJ] = npI∪J − npI · pJ .

We show that we are allowed to apply Lemma 4. Since the permutations are independent
from each other and the values are sampled independently at random, we can say that

Avijit Dutta, Jian Guo and Eik List 43

each value in Su, Sv, Sw is chosen independently from the others. The size of all three
lists is n = 2b; moreover, we can instantiate the probabilities pj , for j ∈ [r] as

pj
def=

sij
2b .

In our case, this means

E[sI · sJ] = 22b ·
∏
i∈I

pj ·
∏
j∈J

pj + Cov[sI , sJ]

Cov[sI , sJ] = 2b ·
∏

i∈I∪J
pi − 2b ·

∏
i∈I

pi ·
∏
j∈J

pj .

For example, let I = {1, 2} and J = {1, 3, 4}. Then,

Cov[si1,2, si1,3,4] = 2b ·
(
si1s

i
2s
i
3s
i
4

24b − (si1)2si2s
i
3s
i
4

25b

)
.

Decomposing ci. Given the covariance, we can rewrite ci. We define Ct,r for the set of
t-out-of-r element combinations, e.g. C2,3 = {(1, 2), (1, 3), (2, 3)}.

ci =
r∑

t1=2

r∑
t2=2

(−1)t1+t2 · cit1,t2,r , where (13)

cit1,t2,r =
∑
I∈Ct1,r

∑
J∈Ct2,r

Cov[si,wII , si,wJJ] .

Lemma 4 allows us to write

cit1,t2,r =
∑
I∈Ct1,r

∑
J∈Ct2,r

2b · (pI∪J − pIpJ) (14)

= 2b ·

 ∑
I∈Ct1,r

∑
J∈Ct2,r

∏
j∈I∪J

pj


︸ ︷︷ ︸

ci
t1,t2,r

−2b ·

 ∑
I∈Ct1,r

∑
J∈Ct2,r

∏
i∈I

pi
∏
j∈J

pj


︸ ︷︷ ︸

ci
t1,t2,r

. (15)

Later, we will consider the case that p1 = p2 = · · · = pr = p. Then, we can write cit1,t2,r as

cit1,t2,r = 2b ·
(
cit1,t2,r − c

i
t1,t2,r

)
= 2b ·

 u∑
j=0

(
k
i

t1,t2,r,j · p
`

i

t1,t2,r,j

)
− kit1,t2,r · p

`i
t1,t2,r


with u =def min(r−t2, t1) and j denotes the number of elements in I that are not contained
in J . Thus, we can reduce the task to that of finding the multiples

k
i

t1,t2,r,j = |{(I,J) ∈ Ct1,r,×Ct2,r : |I ∪ J | = t2 + j}| and (16)

`
i

t1,t2,r,j = |I ∪ J | (17)

and

kit1,t2,r = |{(I,J) ∈ Ct1,r,×Ct2,r}| = |Ct1,r| · |Ct2,r| =
(
r

t1

)
·
(
r

t2

)
and (18)

`it1,t2,r = |I|+ |J | = t1 + t2 . (19)

44 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

The exponent `it1,t2,r,j is derived from the size of the union set I ∪ J when j elements of
I are not in J . Thus

`
i

t1,t2,r,j = max(t1, t2) + j

for all j ∈ [0..u] where u =def min(r − t2, t1). It remains to determine kit1,t2,r,j . For this
purpose, we can use the simple combinatorial Lemma 5.

Lemma 5. Let t1, t2, r, j be fixed integers with t1 ≤ t2 ≤ r and j ∈ [t2..r]. Let I,J ⊆ [r]
be non-identical subsets of [r] with |I| = t1 and |J | = t2. Then, the number of combinations
of distributing I and J so that

|{(I,J) ∈ Ct1,r,×Ct2,r : |I ∪ J | = t2 + j}| =
(
r

t2

)
·
(

t2
t1 − j

)
·
(
r − t2
j

)
.

Proof. W.l.o.g., we had fixed that |I| ≤ |J | and therefore t1 ≤ t2. There are
(
r
t2

)
sets J

among r elements. We defined that j elements of I are not in J . For a fixed J and fixed
j, there are

(
t2
t1−j

)
combinations of the t1− j values in I ∩J and

(
r−t2
j

)
combinations how

the j values from I \ J are distributed outside of J . The lemma follows.

We can rewrite Lemma 5 as Lemma 6, which will serve useful.

Lemma 6. Let t1, t2, r, ` be fixed integers with t1, t2 ≤ r. Let I,J ⊆ [r] such that |I| = t1,
|J | = t2, and j = `− t1. Then, the number of combinations of distributing I and J so
that

|{(I,J) ∈ Ct1,r,×Ct2,r : |I ∪ J | = `}|

=
(
r

t1

)(
t1

t1 + t2 − `

)(
r − t1
`− t1

)
(−1)t1+t2 .

Proof. There are
(
r
t1

)
sets I among r elements. The overlap, i.e., the number of shared

elements in the intersection |I ∩ J | = t1 + t2 − `. Among the t1 elements of I, there are(
t1

t1+t2−`
)
combinations what elements of I and J could be in the intersection. Then, the

remaining ` − t1 elements in J \ I can be distributed by
(
r−t1
`−t1

)
combinations over the

remaining r − t1 elements not in I. The lemma follows.

Upper Bounding ci for General r. We aim at having a simplified upper bound for
ci for general r. The terms in ci consist of multiples of powers of p from exponents 2 to 2r.
Now, we can find non-negative integer coefficients kj , for all j ∈ [2..r], such that we can
write

ci = ki2 · p2 + ki3 · p3 +
r∑
j=2

(
(−1)2j−1 · ki2j · p2j) . (20)

We show that there the indices j ∈ [2..2r] are the only potential non-zero non-negative
coefficients kij . For k` · p` with k` < 2, there must exist `it1,t2,r,j < 2 or `it1,t2,r < 2 for some
t1, t2 ∈ [2..r] and j ≤ r. Though, our sets that always have |I|, |J | ∈ [2..r]. Hence,

`
i

t1,t2,r,j = |I ∪ J | ∈ [2..2r]
`it1,t2,r = |I|+ |J | ∈ [4..2r] .

Thus, k` = 0 for all ` 6∈ [2..2r]. We want to reduce the bound to the terms with the
few lowest exponents and show that we can upper bound the tail since the positive and

Avijit Dutta, Jian Guo and Eik List 45

negative terms will compensate each other. In particular, we want a bound so that we can
reduce Equation (20) to

ci ≤ 2b · (k2 · p2 + k3 · p3) .

Later, we show two aspects: first, that p ≤ 1
3r always holds, and second, the following

lemma.

Lemma 7. Let r ≥ 3 be integer. It holds for all ` = 2j for some j ∈ [2..r − 1] that

|ki`+1|
|ki`|

≤ 3r , ki`+1 ≥ 0 , ki` ≤ 0 and ki2r ≤ 0 .

We defer the proof of Lemma 7 to Appendix C.4. Combined with our assumption that
p ≤ 1

3r , it follows for all ` = 2j for some j ∈ [2..r − 1], that

k` · p` ≥ k`+1 · p`+1

k` · p` ≥ 3r · k` · p` ·
1
3r ,

and therefore

ci = 2b ·

k2 · p2 + k3 · p3 +
r−1∑
j=2

(
−k2j · p2j + k2j+1 · p2j+1)︸ ︷︷ ︸

≤0

−k2r · p2r


≤ 2b · (k2 · p2 + k3 · p3) .

The factors k2 and k3 result from only few terms in ci. In particular, they stem from ci2,2,r,
ci2,3,r = ci3,2,r, and ci3,3,r. Given r ≥ 3, they result from

k2 = k
i

2,2,r,0 =
(
r

2

)(
2
2

)(
2
0

)
=
(
r

2

)
k3 = k

i

2,2,r,1 − k
i

2,3,r,0 − k
i

3,2,r,0 + k
i

3,3,r,0

=
(
r

2

)(
2
1

)(
r − 2

1

)
− 2
(
r

3

)(
3
2

)(
r − 3

0

)
+
(
r

3

)(
3
3

)(
r − 3

0

)
=
(
r

3

)
.

We obtain

ci ≤ 2b ·
((

r

2

)
· p2 +

(
r

3

)
· p3
)
. (21)

Equal Probabilities pi. It remains to show that p1 = · · · = pr. The values of the a
most significant bits of the permutation outputs, Vi

j = V 1
j , . . . , V

i
j , for all j ∈ [r], are

sampled uniformly and independently at random, also in the modified real world Oreal
since we replace their sampling with that from a truncated permutation. Thus, every V ij
has probability 2−a to be equal to a specific a-bit value. Therefore

EVi−1 [si1] = · · · = EVi−1 [sir] = i− 1
2a .

Thus, for all j ∈ [r], we can use

pj = E[
sij
2b] =

E[sij]
2b = i− 1

2n .

46 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

We have to show that the expectations of the quantities si1, . . . , sir are independent. We
can adopt the argument from [58] here: it holds since they stem from pairwise independent
permutations and hence

EVi−1 [si2|si1] = EVi−1 [si2]

and similarly for all other combinations. We can use

EVi−1 [si1si2] = EVi−1 [si1] · EVi−1 [si2]

and the other product combinations can be decomposed similarly.

Finalizing with the χ2 Approach. We have that

E

[(
Pr
Oreal

[W i = W |Wi−1]− Pr
Oideal

[W i = W |Wi−1]
)2
]
≤
(

4
3

)2r
· 1

22rb ·Var[ni] .

Using the χ2 approach and inserting PrOideal [W i = W |Wi−1] = 2−(r−1)b, we obtain

(‖Pr[Oreal = τ]− Pr[Oideal = τ]‖)2

≤ 1
2

q∑
i=1

EOreal [χ2(Wi−1)]

≤ 1
2

q∑
i=1

∑
W∈(Fb

2)r−1

EOreal

[(
PrOreal [W i = W |Wi−1]− PrOideal [W i = W |Wi−1]

)2
PrOideal [W i = W |Wi−1]

]

≤ 1
2 · 2

(r−1)b ·
q∑
i=1

∑
W∈(Fb

2)r−1

E

[(
Pr
Oreal

[W i = W |Wi−1]− Pr
Oideal

[W i = W |Wi−1]
)2
]

≤ 1
2 · 2

(r−1)b ·
q∑
i=1

∑
W∈(Fb

2)r−1

((
4
3

)2r
· 1

22rb · c
i

)

≤ 1
22b+1 ·

(
4
3

)2r
·
q∑
i=1

ci . (22)

From Equation (21)

ci ≤ 2b
((

r

2

)
p2 +

(
r

3

)
p3
)

and p = (i− 1)/2n, we obtain that

(22) =

√√√√ 1
22b+1 ·

(
4
3

)2r
·
q∑
i=1

2b ·
((

r

2

)
(i− 1)2

22n +
(
r

3

)
(i− 1)3

23n

)

=

√√√√ 1
22b+1 ·

(
4
3

)2r
· 1

2a ·
q∑
i=1

((
r

2

)
(i− 1)2

2n +
(
r

3

)
(i− 1)3

22n

)

≤

√
1

22n−a ·
(

4
3

)2r
· 1

2 ·
(
r2q3

2n + r3q4

22n

)
≤
(

4
3

)r
· 1

2 ·
√

r2q3

23n−a + r3q4

24n−a

≤
(

4
3

)r
·
(rq

2n−a/3
)3/2

,

Avijit Dutta, Jian Guo and Eik List 47

which yields the bound in Theorem 8. We used the assumption that q ≤ 2n/3r to upper
bound

r2q3

23n−a + r3q4

24n−a ≤
2r3q3

23n−a .

Though, we can obtain tighter constant factors. We give the results for r = 3, 4 in
Corollaries 1 and 2 to aid the reader.

Corollary 1. Let a, b, q be positive integers and τ = (V,W) be a good transcript such
that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/9. Then, for r = 3, it holds
that

Eτ [Pr[O2 = τ]− Pr[Oideal = τ]] ≤ 4 ·
(q

2n−a/3
)3/2

.

Corollary 2. Let a, b, q be positive integers and τ = (V,W) be a good transcript such
that CV,j(i) < 2b−2 holds for all i ∈ [q] and j ∈ [r] and q ≤ 2n/12. Then, for r = 4, it
holds that

Eτ [Pr[O2 = τ]− Pr[Oideal = τ]] ≤ 8 ·
(q

2n−a/3
)3/2

.

C Proof of Lemmas for ForkSTH
C.1 Proof of Lemma 1
Lemma 1. For distinct j1, j2 ∈ [r], it holds that

E[si,wj1 ,wj2
yj1 ,yj2

] =
sij1
sij2

2b and

Var[si,wj1 ,wj2
j1,j2

] =
sij1
sij2

2b −
(sij1

sij2
)2

23b .

Proof. Let us focus on si,w1,w2
1,2 ; the remaining 2-tuple-related terms si,wj1 ,wj2

j1,j2
behave

similarly, for all j1 6= j2, j1, j2 ∈ [r]. Given fixed w2 ∈ Fb2, for each y1 ∈ Fb2, we define
Bernoulli variables Iy1 as

Iy1
def=
{

1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2
0 otherwise.

Then, we derive

E
[
si,w1,w2

1,2

]
=
∑
y1∈Fb

2

Pr[Iy1] .

To obtain

Var [x] = E
[
x2]− (E[x])2

,

we have to determine E
[
x2]. For a sum of n independent Bernoulli variables Iy1 , with

Pr[Iy1 = 1] = p for all y1,

x =
∑
y1

Pr[Iy1 = 1] ,

48 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

it holds that

E
[
x2] = E


 n∑
j=1

Ij

2
 = n(n− 1)p2 + np .

In our case, n = 2b and p = si1s
i
2 · 2−2b, for all y1 ∈ Fb2. Given that (E[x])2 = (2bp)2, we

obtain

Var
[
si,0,w2

1,2

]
≤ si1s

i
2

2b −
(si1si2)2

23b and in general

Var
[
s
i,wj1 ,wj2
j1,j2

]
≤
sij1
sij2

2b −
(sij1

sij2
)2

23b .

C.2 Proof of Lemma 2
Lemma 2. For distinct j1, j2, j3 ∈ [r], it holds that

E[si,wj1 ,wj2 ,wj3
yj1 ,yj2 ,yj3

] =
sij1
sij2
sij3

22b and

Var[si,wj1 ,wj2 ,wj3
j1,j2,j3

] =
sij1
sij2
sij3

22b −
(sij1

sij2
sij3

)2

25b .

Proof. Again, the remaining 3-tuple-related terms si,wj1 ,wj2 ,wj3
j1,j2,j3

behave similarly, for all
distinct j1, j2, j3 ∈ [r]. Given fixed w1 = 0b and w2, w3 ∈ Fb2, for each y1 ∈ Fb2, we define
Bernoulli variables Iy1 as

Iy1
def=
{

1 y1 ∈ Si1 ∧ y1 ⊕ w2 ∈ Si2 ∧ y1 ⊕ w3 ∈ Si3
0 otherwise.

Then, it holds that

E
[
si,w1,w2,w3

1,2,3

]
= E

 ∑
y1∈Fb

2

Iy1

 =
∑
y1∈Fb

2

E[Iy1] .

Since the expectations for a fixed value y1 ∈ Fb2 and its translations to be in the list of all
three permutations are mutually independent, the probability is 2−3b. Over all elements of
the sets |Siy1→w1

| = |Si1|, |Siy2→w2
|, and |Siy3→w3

|, it holds that

E[Iu] = si1s
i
2s
i
3

23b and therefore E
[
si,w1,w2,w3
y1,y2,y3

]
= si1s

i
2s
i
3

22b . (23)

It remains to determine its variance

Var
[
si,w1,w2,w3
y1,y2,y3

]
= E

[(
si,w1,w2,w3
y1,y2,y3

)2]− (E[si,w1,w2,w3
y1,y2,y3

])2
= Var

 ∑
y1∈Fb

2

Iy1

 =
∑
y1∈Fb

2

Var [Iy1] +
∑
y1 6=y′1

Cov
[
Iy1 , Iy′1

]
,

with the covariance

Cov
[
Iy1 , Iy′1

]
= E

[
Iy1 , Iy′1

]
− E[Iy1]E

[
Iy′1
]

= E[Iy1] Pr[Iy′1 = 1|Iy1 = 1]− E[Iy1]E
[
Iy′1
]
.

Avijit Dutta, Jian Guo and Eik List 49

For the variance of the Bernoulli variables, it holds that

Var [Iy1] = E
[
(Iy1)2]− (E[Iy1])2 = E[Iy1]− (E[Iy1])2 = sius

i
vs
i
w

23b −
(
sius

i
vs
i
w

23b

)2

.

For their covariance, we need to determine the conditional probability. We consider the
case that y′1 6∈ {y1 ⊕ w2, y1 ⊕ w3}. Since y′1 6= y1, it holds that all values differ mutually

Pr[Iy′1 = 1|Iy1 = 1] = Pr[(y′1 ∈ Si1) ∧ (y′1 ⊕ w2 ∈ Si2) ∧ (y′1 ⊕ w3 ∈ Si3)|
(y1 ∈ Si1) ∧ (y1 ⊕ w2 ∈ Si2) ∧ (y1 ⊕ w3 ∈ Si3)]

≤ (si1 − 1)(si2 − 1)(si3 − 1)
(2b − 1)3 .

We conduct it for y′1 = y1 ⊕ w2 exemplarily. From the requirement of the covariance that
y′1 6= y1, we must exclude w2 = 0.

Pr[Iy1⊕w2 = 1|Iy1 = 1]
≤ Pr[(y1 ⊕ w2 ∈ Si1) ∧ (y1 ∈ Si2) ∧ (y1 ⊕ w2 ⊕ w3 ∈ Si3)|Iy1 = 1]

≤ (siu − 1)(siv − 1)(siw − 1)
(2b − 1)3 .

From si1, s
i
2, s

i
3 < 2b, it follows that

Pr[Iy1⊕w2 = 1|Iy1 = 1] ≤ E[Iy1⊕w2] ,

and therefore Cov [Iy1 , Iy1⊕w2] ≤ 0 in this case. A similar argument holds for y′1 = y1⊕w3,
w2 6= w3. It remains to consider y′1 = y1 ⊕ w2 with w2 = w3.

Pr[Iy1⊕w2 = 1|Iy1 = 1, w2 = w3]
≤ Pr[(y1 ⊕ w2 ∈ Si1) ∧ (y1 ∈ Si2) ∧ (y1 ∈ Si3)|Iy1 = 1]

≤ (si1 − 1)(si2 − 1)(si3 − 1)
(2b − 1)3 .

Again, si1, si2, si3 < 2b implies

Pr[Iy1⊕w2 = 1|Iy1 = 1] ≤ E[Iy1+w2] ,

and therefore, Cov [Iy1 , Iy1⊕w2] ≤ 0. Thus, it holds that Cov
[
Iy1 , Iy′1

]
≤ 0 over all cases

of y′1, and it follows that

Var
[
si,w1,w2,w3

1,2,3

]
≤
∑
y1∈Fb

2

Var [Iy1]

= 2b ·
(
si1s

i
2s
i
3

23b −
(
si1s

i
2s
i
3

23b

)2)
= si1s

i
2s
i
3

22b − (si1si2si3)2

25b .

C.3 Proof of Lemma 3
Lemma 3. Let t ≤ r and {I } = {j1, . . . , jt} ⊆ {1, . . . , r}. Then, it holds for the
expectation and variance that

E[si,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt
] =

∏
j∈{I} s

i
j

2(t−1)b

Var[si,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt
] =

∏
j∈{I} s

i
j

2(t−1)b −

(∏
j∈{I} s

i
j

)2

2(2t−1)b .

50 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

Proof. Given fixed wj2 , . . . wjt
∈ Fb2, for each y1 ∈ Fb2, we define Bernoulli variables Iy1 as

Iy1
def=
{

1 y1 ∈ Si1 ∧ y1 ⊕ wj2 ∈ Sij2
∧ . . . ∧ y1 ⊕ wjt ∈ Sijt

0 otherwise.

Then, it holds that

E
[
s
i,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt

]
= E

 ∑
y1∈Fb

2

Iy1

 =
∑
y1∈Fb

2

E[Iy1] .

Since the expectations for a fixed value y1 ∈ Fb2 and its translations to be in the list of all
three permutations are mutually independent, the probability is 2−tb. Over all elements of
the sets, it holds that

E[Iu] =
∏
j∈I s

i
j

2tb and therefore E
[
s
i,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt

]
=
∏
j∈I s

i
j

2(t−1)b .

For x =
∑
y1

Pr[Iy1 = 1], as a sum of n independent Bernoulli variables Iy1 , with Pr[Iy1 =
1] = p for all y1, it holds that

E
[
x2] = E


 n∑
j=1

Ij

2
 = n(n− 1)p2 + np .

In our case, n = 2b and p =
∏
j∈I s

i
j · 2−tb, for all y1 ∈ Fb2. Given that (E[x])2 = (2bp)2,

we obtain

Var
[
s
i,wj1 ,wj2 ,...,wjt

j1,j2,··· ,jt

]
≤
∏
j∈I s

i
j

2(t−1)b −

(∏
j∈I s

i
j

)2

2(2t−1)b .

C.4 Proof of Lemma 7
Lemma 7. Let r ≥ 3 be integer. It holds for all ` = 2j for some j ∈ [2..r − 1] that

|ki`+1|
|ki`|

≤ 3r , ki`+1 ≥ 0 , ki` ≤ 0 and ki2r ≤ 0 .

Proof. First, we note that ki` will be negative whereas ki`+1 will be positive, given that
` ≥ 4. We can write

ki` = ki` + k
i

`

We consider ki` first. To isolate those terms that contribute to the fixed `, we can see
from Equation 19 and 15 that t1 + t2 = ` must hold. Since we consider an even exponent
` = t1 + t2 = 2j, those summands add to

ki` = −(−1)t1+t2
(
r

2

)(
r

`− 2

)
−
(
r

3

)(
r

`− 3

)
− · · · −

(
r

`− 2

)(
r

2

)
= −

(
`−2∑
t1=2

(
r

t1

)(
r

`− t1

))
.

Avijit Dutta, Jian Guo and Eik List 51

For odd `+ 1, the inverse holds, i.e., all terms in ki`+1 will be positive:

ki` =
(
`−1∑
t1=2

(
r

t1

)(
r

`+ 1− t2

))
.

Next, we consider the summands that contribute to ki`. From Lemma 6, we know that the
factors for fixed t1, t2, r, and ` for k

i

` are

k
i

t1,t2,r =
(
r

t1

)(
r

t1 + t2 − `

)(
r − t1
`− t1

)
(−1)t1+t2 .

Over all t1, t2 ∈ {2, . . . , `} in Equation 13 and considering the correct signs, we obtain

k
i

` =
∑̀
t1=2

∑̀
t2=2

((
r

t1

)(
t1

t1 + t2 − `

)(
r − t1
`− t1

)
(−1)t1+t2

)
.

Note that values of t1, t2 > ` do not contribute since they have no terms in ci that produce
powers p`. We observe that ki` consists of summands of different sign. To gain clarity, we
decompose and group those first according to

(
r
t1

)
and second to their sign.

k
i

` =
∑̀
t1=2

(
r

t1

)(
r − t1
`− t1

)
(−1)t1+t2

 ∑
t2=2,4,...,`

(
t1

t1 + t2 − `

)
−

∑
t2=3,5,...,`+1

(
t1

t1 + t2 − `

) (24)

k
i

`+1 =
`+1∑
t1=2

(
r

t1

)(
r − t1

`+ 1− t1

)
(−1)t1+t2+1

 ∑
t2=2,4,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
−

∑
t2=3,5,...,`+1

(
t1

t1 + t2 − (`+ 1)

) . (25)

Note that for odd `+ 1, the cardinalities of |{2, 4, . . . , `+ 1}| = |{3, 5, . . . , `+ 1}| = `/2.
Though, while |{2, 4, . . . , `}| = `/2, |{3, 5, . . . , `}| = `/2 − 1. Since the term

(
t1

t1+t2−`
)

=(
t1
−1
)

= 0 for t2 = `+ 1, we were allowed to extend the underlined index in the rightmost
sum in Equation (24) from ` to ` + 1 without changing the result. Then, we have `/2
terms in each difference and will be able to use another helping lemma.

For some set I ⊆ N0, let Ie = {i ∈ I : i is even} and Io = {i ∈ I : i is odd} denote
the sets of even and odd non-negative numbers in I. The following result is well-known.

Lemma 8. Let n be a non-negative integer. Then∑
k∈[0..n]e

(
n

k

)
=

∑
k∈[0..n]o

(
n

k

)
= 2n

2 .

It follows that ∑
k∈[0..n]o

(
n

k

)
−

∑
k∈[0..n]e

(
n

k

)
= 0

∑
k∈[1..n]o

(
n

k

)
−

∑
k∈[1..n]e

(
n

k

)
=
(
n

0

)
= 1

∑
k∈[2..n]o

(
n

k

)
−

∑
k∈[2..n]e

(
n

k

)
=
(
n

0

)
−
(
n

1

)
= 1− n .

52 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

First, we consider ki`+1 with three cases.

Case t1 ≤ `− 1: From Equation (25), we see that for all even t1 ≤ `− 1, it holds that∑
t2=2,4,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]o

(
t1
k

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]e

(
t1
k

)
and from Lemma 8∑

t2=2,4,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
−

∑
t2=3,5,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
= 0 .

A similar statement can be derived for all odd t1 ≤ `− 1.

Case t1 = `: For t1 = `, we have∑
t2=2,4,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]o

(
t1
k

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]e

(
t1
k

)
−
(
t1
0

)
.

Case t1 = `: For t1 = `+ 1, it holds that∑
t2=2,4,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]e

(
t1
k

)
−
(
t1
0

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − (`+ 1)

)
=

∑
k∈[0..`+1]o

(
t1
k

)
−
(
t1
1

)
We obtain that

k
i

`+1 =
(
r

`

)(
r − `

`+ 1− `

)(
`

0

)
−
(

r

`+ 1

)(
r − (`+ 1)

`+ 1− (`+ 1)

)((
`+ 1

1

)
−
(
`+ 1

0

))
=
(
r

`

)
(r − `)−

(
r

`+ 1

)
`

= (`+ 1)
(

r

`+ 1

)
− `
(

r

`+ 1

)
=
(

r

`+ 1

)
.

Next, we consider ki` with three similar cases.

Case t1 ≤ `− 2: From Equation (25), we see that for all even t1 ≤ `− 2, it holds that∑
t2=2,4,...,`

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`+1]e

(
t1
k

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`+1]o

(
t1
k

)

Avijit Dutta, Jian Guo and Eik List 53

and from Lemma 8∑
t2=2,4,...,`

(
t1

t1 + t2 − `

)
−

∑
t2=3,5,...,`+1

(
t1

t1 + t2 − `

)
= 0 .

A similar statement can be derived for all odd t1 ≤ `− 2.

Case t1 = `− 1: For t1 = `− 1, we have∑
t2=2,4,...,`

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`]o

(
t1
k

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`]e

(
t1
k

)
−
(
t1
0

)
.

Case t1 = `: For t1 = `, it holds that∑
t2=2,4,...,`

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`]e

(
t1
k

)
−
(
t1
0

)
∑

t2=3,5,...,`+1

(
t1

t1 + t2 − `

)
=

∑
k∈[0..`]o

(
t1
k

)
−
(
t1
1

)
We obtain that

k
i

` =
(

r

`− 1

)(
r − (`− 1)
`− (`− 1)

)(
`− 1

0

)
−
(
r

`

)(
r − `
`− `

)((
`

1

)
−
(
`

0

))
=
(

r

`− 1

)
(r − (`− 1))−

(
r

`

)
(`− 1)

= `

(
r

`

)
− (`− 1)

(
r

`

)
=
(
r

`

)
.

Now, we can insert our terms to bound our desired ratio

ki`+1
ki`

=
ki`+1 + k

i

`+1

ki` + k
i

`

=

(∑`−1
t1=2

(
r
t1

)(
r

`+1−t1

))
+
(
r
`+1
)

−
(∑`−2

t1=2
(
r
t1

)(
r

`−t1

))
−
(
r
`

)

=

a︷ ︸︸ ︷(
`−2∑
t1=2

(
r

t1

)(
r

`+ 1− t1

))
+

b︷ ︸︸ ︷(
r

`− 1

)(
r

2

)
+

c︷ ︸︸ ︷(
r

`+ 1

)

−

(
`−2∑
t1=2

(
r

t1

)(
r

`− t1

))
︸ ︷︷ ︸

d

−
(
r

`

)
︸︷︷︸
e

.

Thus, we have shown the positivity and negativity statements from Lemma 7:

ki`+1 ≥ 0
ki` ≤ 0
ki2r ≤ 0 .

54 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

It remains to obtain upper bound the ratio of their absolutes. We can use

a+ b+ c

d+ e
≤ a

d+ e
+ b

d+ e
+ c

d+ e
≤ a

d
+ b

d
+ c

e
.

We can see that

a

d
=
∑`−2
t1=2

(
r
t1

)(
r

`+1−t1

)∑`−2
t1=2

(
r
t1

)(
r

`−t1

) =
∑`−2
t1=2

(
r
t1

)(
r

`−t1

) r−(`−t1)
`−t1+1∑`−2

t1=2
(
r
t1

)(
r

`−t1

) ≤
∑`−2
t1=2

(
r
t1

)(
r

`−t1

)
r−2

3∑`−2
t1=2

(
r
t1

)(
r

`−t1

) ≤ r

3 .

Similarly, for all ` ≥ 4:

b

d
=

(
r
`−1
)(
r
2
)∑`−2

t1=2
(
r
t1

)(
r

`−t1

) ≤ (r2)(r
`−1
)(

r
2
)(

r
`−2
) ≤ (r2)(r

`−2
) r−(`−2)

`−1(
r
2
)(

r
`−2
) ≤ r

3 .

Finally, for all ` ≥ 4, it holds

c

e
=
(
r
`+1
)(

r
`

) ≤ (r`) r−``+1(
r
`

) ≤ r

`+ 1 ≤
r

5 .

From the sum of the three bounds, we obtain our claim for all ` = 2j and j ∈ [2..r − 1]:

|ki`+1|
|ki`|

≤ 3r .

D Lessons from Related AES-round-based Block Ciphers
Lessons from AES-PRF. Derbez et al. studied the security of generalized variants
of AES-PRF and its dual. The original instantiations have five rounds in each of their
respective permutations. For variants AES-PRF-r1-r2, Derbez et al.’s works could attack up
to AES-PRF-∗-4 rounds with zero-correlation cryptanalysis and AES-PRF-dual-4-∗. Thus,
the security margin seems to be one round for those variants. Note that AES-PRF and its
dual are untweaked and a tweak may introduce even further attack angles. As a takeaway,
we need at least six rounds in each bottom-permutation call to achieve our desired security
margins.

Lessons from ForkCipher Instances. ForkAES has seen third-party cryptanalysis [7, 11]
after its proposal. The former showed rectangle and impossible-differential attacks using
only the encryption direction on ForkAES-∗-4-4, i.e., with one round less on each of the
bottom permutations; The cipher was broken with reflection queries by [11]; Jiang and
Jin [68] proposed another attack on ForkAES-∗-5-4 with the help of multiple impossible
differentials. We note that our applications prohibit reflection queries, which makes attacks
with chosen reflection queries inapplicable. Moreover, our construction renders partial
decryption infeasible or at least considerably harder since the adversary would have to
guess parts of the internal states. We conclude from the chosen-plaintext attacks on
ForkAES-∗-4-4 that we need at least six rounds in each bottom permutation to have at least
two rounds of margin. Moreover, we see the branch constants of ForkAES as an effective
means to make inter-branch differentials harder to exploit.

Lessons from Kiasu-BC. Kiasu-BC [66] provided a baseline of adding tweaks to the AES.
Third-party cryptanalysis showed that integral [46], MitM [73, 93], and differential-based
attacks [47] can exploit the degrees of freedom from tweak inputs to extend several attacks
by one round – i.e., key-recovery attacks can cover eight rounds, compared to the best

Avijit Dutta, Jian Guo and Eik List 55

Table 5: Existing key-recovery attacks (no related keys) on round-reduced AES-like block
ciphers. r = #rounds, t = #used tweaks, Mem. = memory complexity, ref. = reference,
int. = integral, diff. = differential, BD/ID = biased/impossible differential, MitM =
meet-in-the-middle, ZC = zero-correlation linear, rect. = rectangle, boom. = boomerang,
CP/CC = chosen plaintexts/chosen ciphertexts. (*) Distinguisher found to have probability
zero in [94].

(a) On AES-128.

r Type Time Data Mem. Ref.

AES, single-key key-recovery
6 Int. 251.7 234.6 CP 232 [92]
7 ID 2110.2 2106.2 CP 290.2 [76]
7 MitM 299 297 CP 298 [44]

AES, single-key distinguishers
4 Int. 237 232 CP 232 [40]
4 ID 2110.2 2106.2 CP 290.2 [76]
4 MitM 299 297 CP 298 [44]
6 Diff 296.5 289.5 CP 236 [8]
6 Mixture 288.2 288.2 CP 288.2 [10]

(b) On AES-PRF and its dual.

r Type Time Data Mem. Ref.

AES-PRF
2-∗ ID 294 294 CP 288 [45]
∗-4 ZC 296.95 296.95 KP 264 [45]
s-(7−s) MitM 2107 2107 CP 2104 [45]

Dual-AES-PRF
∗-2 ID 2104 2104 CP 272 [45]
∗-2 ZC 2115.14 2115.06 KP 265 [45]
3-∗ Diff. 297 297 CP 232 [45]
4-∗ Diff. 2121 2121 CP 28 [45]

(c) On Kiasu-BC (related tweaks).

r Type Time Data Mem. Ref.

7 Int. 248.5 243.6 CP – [46]
8 ID 2118 2118 CP – [47]
8 MitM 2116 2116 CP 286 [93]
8 MitM 2112.8 2109 CP 292.9 [73]
8 Boom. 283 283 CC – [12]

(d) On TweAES (related tweaks).

r t Type Time Data Mem. Ref.

5 2 Diff. 226 25 CP 228.6 [29]
6 16 Int. 245 25 KP negl. [29]
7 16 Boom. 2125 2125 CP negl. [29](*)
8 2 ID 2124.4 2124.3 CP 2118.8 [80]

(e) On ForkAES.

Type r Type Time Data Mem. Ref.

ForkAES
∗-4-4 8 ID 247 239.5 CP 235 [7]
∗-4-4 8 RD 235 235 CP 233 [7]
∗-5-4 8 ID 2118.2 2111.4 CP 292.7 [68]
∗-5-5 10 Diff. 2125 2119 CR 283 [11]

single-key attacks that cover seven out of ten rounds on AES-128. We observe that Kiasu-BC
has only one, four, and eight active S-boxes over two, three, and four rounds, respectively,
which may open up the gates for rectangle distinguishers. We consider this a crucial attack
vector that we have to close for our construction and aim for more active S-boxes over
a few rounds. The recent further improvements of boomerang attacks by Bariant and
Leurent on Kiasu-BC and TNT-AES [12] emphasize that boomerang attacks could also pose
a similar threat to our constructions. The attack on TNT-AES is not directly applicable
to our setting since the tweak differences could be chosen arbitrarily in the tweak state.
Though, we observe that the cipher must remain secure also against combinations of trails
with few rounds for the top and bottom trails. To conclude, our proposal must ensure
sufficiently many active S-boxes for two to four rounds.

Lessons from TweAES. TweAES applies a lightweight linear code to expand the tweak;
thus, a tweak difference activates at least three cells from any non-zero tweak difference
and prevents cancellations of a tweak-injected difference in the subsequent tweak addition.
The design strategy injects the tweak after only every second round, which ensures at least
15 active S-boxes in four subsequent rounds with a tweak addition in the middle. Thus,
it activates more S-boxes than Kiasu-BC (see Table 3). For the construction, there exist
longer distinguishers than for the AES, e.g. impossible differentials can cover up to six
rounds. While the designers proposed impossible-differentials attacks on up to six and
possibly boomerangs on up to 1 + 3 + 3 + 1 rounds, Niu et al. [80] showed that the latter
attack was invalid; though, they proposed an alternative impossible-differential-based key

56 Forking Sums of Permutations for Optimally Secure and Highly Efficient PRFs

recovery on eight rounds in the same work. Thus, it seems that TweAES is on par with
Kiasu-BC in terms of covered rounds in attacks.

TweAES opens several interesting questions. The linear code seems to be one instance
out of various variants. Since we do not target being lightweight for an AES-based
instantiation, little overhead compared to TweAES is less relevant. The linear code ensures
many active S-boxes effectively. We see that the tweak injection only after every second
round yields too few – only 0, 4, and 15 active S-boxes over two, three, and four rounds,
respectively. Thus, while four rounds offer sufficient protection to thwart boomerang-based
attacks, attacks that can combine two trails of less than four rounds may become a threat.
Though, since we consider the bottom-permutation calls, we can add the tweak addition
before its first round to increase security. Moreover, we can investigate what strategy of
tweak injections – each round vs. after every second round – will be more effective against
attacks.

	Introduction
	Designing PRFs with Beyond-birthday-bound Security
	From Fixed- to Variable-output-length PRFs
	Round-reduced Primitives
	Filling the Gaps Towards Secure Highly Efficient VOL-PRFs

	Preliminaries
	Definitions of The Forking Zoo
	The Baseline: From PRP2 over STH to SoP, EDM, and EDMD
	Forking: From ForkCipher to ForkPRF and ForkSTH
	Reducing Numbers of Rounds: From EDMD and EDM to FastPRF and FastPRF-EDM
	Multiple Forks: From MFC to ForkCENC and ForkSTHCENC
	Multiple Forks: From MFC to ForkEDMD and ForkEDM-CTR
	Comparison to MFC"0365MFC
	Are Those All Optimally Secure Constructions?

	Security Proofs
	H-coefficient Technique
	Security Proof for ForkPRF
	Security Proof for ForkCENC
	Security Proof for FastPRF and FastPRF-EDM
	Security Proof for ForkEDMD
	Security Proof for ForkEDM-CTR
	Security Proof for ForkSTH

	From VOL-PRF To Nonce-based Mode
	Instantiation
	Requirements
	Definition of TweAES'
	Aspects of TweAES' in ForkCENC-AES and ForkEDM-AES

	Cryptanalysis of TweAES' in ForkCENC and ForkEDM
	Rationale
	Differential Bounds
	Linear Attacks
	Integral Cryptanalysis
	Impossible-differential and Zero-correlation Distinguishers
	Meet-in-the-Middle (MitM) Distinguishers
	Differential-linear and Rectangle Distinguishers
	Mixtures
	Reflection, Yoyo, and Boomerang Attacks
	Others

	Implementation
	Conclusion
	The 2 Method
	Proof for ForkSTH
	Proof of Lemmas for ForkSTH
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 7

	Lessons from Related AES-round-based Block Ciphers

