Powers-of-Tau to the People:
Decentralizing Setup Ceremonies

Valeria Nikolaenko!, Sam Ragsdale!, Joseph Bonneau!, and Dan Boneh?

! Andreesen-Horowitz - al6z crypto research
2 Stanford University
3New York University

Abstract

We introduce the first decentralized trusted setup protocols for constructing a powers-of-tau struc-
tured reference string. Facilitated by a blockchain platform, our protocols can run in a permissionless
manner, with anybody able to participate in exchange for paying requisite transaction fees. The result
is secure as long as any single party participates honestly. We introduce several protocols optimized for
different sized powers-of-tau setups and using an on-chain or off-chain data availability model to store the
resulting string. We implement our most efficient protocol on top of Ethereum, demonstrating practical
concrete performance numbers.

1 Introduction

Many cryptographic protocols assume a trusted setup ceremony, a one-time procedure to generate public
parameters which also generates an unwanted trapdoor as a byproduct. Perhaps the earliest example is the
accumulator scheme of Benaloh and de Mare [BM93]| which requires a public modulus N such that nobody
knows its factorization N = p - ¢, a trapdoor which allows forging a proof that any element is included in

the accumulator. In general, trusted setup consists of a randomized algorithm Setup() LA pp, 7 whose public
parameters (pp) are needed, but for which the trapdoor (7) must be discarded for the scheme to be secure.
Such trapdoors have been called “toxic waste” due to the importance of destroying them after the setup is
complete.

In the simplest case of a fully trusted setup a single entity computes Setup() and is trusted to discard
7. Setup ceremonies have been conducted by several prominent cryptocurrency applications, which have
pioneered the use of secure multiparty computation (MPC) ceremonies to avoid having any single party
ever know the trapdoor. These ceremonies have differed in the number of participants involved, the number
of rounds, and the exact trust model, but so far all have been facilitated by a centralized coordinator. In
particular, the coordinator has the ability to choose which parties are able to participate, making these
protocols permissioned.

In this work, we endeavor to remove the coordinator and build the first truly decentralized and permis-
stonless setup ceremony. This approach is appropriate given a multiparty computation which requires only
one honest participant (sometimes called an “anytrust” or “dishonest majority” model). In this model, there
is no downside (beyond computational overhead) of allowing additional participants to contribute to the
protocol. We call this the more-the-merrier property. A more-the-merrier protocol can safely be opened
to the general public, enabling an interesting new security property: any individual can participate and
therefore they can trust the final result (at least to the extent that they trust themselves), even if they make
no assumptions about any of the other participants.

Powers-of-tau We focus on a common type of ceremony which constructs a powers-of-tau structured
reference string (SRS). Working in elliptic curve groups G, Gy with generators By and Bs respectively and

an efficiently computable pairing, the goal of the setup is to produce a public parameter string:
pp = (TB1,7'2Bl, ...,7"B1; TBo,7%Bs, ... ,TmBg) e G} x G

The value 7 is the trapdoor: it should be randomly generated and unknown to anybody. The structure
of this string enables efficient re-randomization. Without knowing 7, it is possible to take an existing string
pp and produce a new randomized string pp’ by choosing a new random value 7/ and multiplying each
component of pp by an appropriate power of 7. The new trapdoor will be 7 - 7/, which is secure if either 7
or 7/ are unknown and neither of them is zero.

This re-randomizability leads to a simple serial MPC protocol in which each participant in turn re-
randomizes the string. Note that this can be done on an ongoing (or “perpetual”) basis, as new participants
can continue to join and re-randomize the string for future use. As long as each participant re-randomizes
correctly and at least one participant destroys their local randomness, the cumulatively constructed string
will be secure.

Applications Powers-of-tau setup is required for many protocols, including:

e The KZG polynomial commitment scheme [KZG10] require a setup of n powers of tau in any one of
the groups (e.g., G1), plus one power of tau in the other group (e.g., Gs).

e SNARKSs built from the KZG univariate polynomial commitment scheme, such as Sonic [MBKM19],
Plonk [GWC19|, and Marlin [CHM™20], require a powers-of-tau string. The number of powers of tau
needed is proportional to the size of the statement being proved.

o KZG commitments are also used in Verkle trees [Kusl8, LY10], a bandwidth-efficient alternative to
Merkle trees. Unlike a binary Merkle tree, a Verkle tree is a b-ary tree, where each node is a vector
commitment to up to b children. While Merkle trees have O(log, n) inclusion proof size, where n is the
number of nodes, Verkle trees have O(log, n) inclusion proof size. The most efficient Verkle trees, e.g.
BalanceProofs [WUP22|, are based on KZG polynomial commitments requiring a powers-of-tau setup.

e Fast proofs of multi-scalar multiplication (MSM) over arbitrary groups of size O(log d) are possible using
a powers-of-tau setup of length O(v/d), where d is the number of scalars and group elements [BMM*21].

e The recent Danksharding proposal [But20] for sharding Ethereum relies on a powers-of-tau string with
4096 elements in G and 64 in Gs.

Challenges to decentralization Historically, ceremonies have been run through a centralized coordinator
which fulfills several important functions, all of which we seek to replicate in a decentralized fashion:

e Consensus Participants should agree on the final value of pp.

e Verification Each participant must provide a zero-knowledge proof that their contribution is a valid
re-randomization (and not simply replacing the string with one for which the trapdoor is known).

e Data Availability The final string must be available for all to download, as well as the history of
prior versions and participants for auditability.

e Censorship Resistance Any willing participant should be able to contribute.

In this work we demonstrate how to replace the centralized coordinator with a smart contract, observing
that blockchain platforms are designed to provide most or all of our desired properties. In particular,
blockchains inherently provide consensus, previously done by fiat of the central coordinator, as well as
censorship resistance, which has not been an explicit goal of centrally coordinated ceremonies. Verification
and data availability are more interesting and provide several design options. For verification, we can rely
on on-chain (Layer-1) verification, or (to reduce costs) use a Layer-2 verification solution or leave this task

Data availability Commitment scheme Section | Proof size | Verifier time

On-chain none 3 0,(1) O, (n)
Any commitment 4.1 0. (lgn) O.(lgn)
Off-chain AFGHO unstructured

4.2 O,(Ign) O, (Ign)

commitment

Figure 1: Comparing on-chain powers-of-tau of length n to off-chain powers-of-tau with an on-chain commit-
ment. On-chain storage requires linear on-chain work to verify an update. With off-chain storage we require
only logarithmic on-chain work to verify an update. The AFGHO-based proof in the third row performs
better in practice than the generic proof in the second row.

to users of the string to verify before using. Similarly, for data availability we might post the full string pp
on chain or, for efficiency, post only a commitment and rely on an external data-availability layer.

It would be prudent to note that there are considerable research efforts aimed at building cryptographic
systems with fully transparent setup; that is, setup in which there is no trapdoor at all and therefore no trust
assumption is required of the setup ceremony. A notable effort in that direction comes from a partnership
of Electric Coin Company, Protocol Labs, the Filecoin Foundation, and the Ethereum Foundation, who
collaboratively work on the Halo2 proof-system [Comb, Coma] that does not require a trusted setup. Halo2
powers the ZCash cryptocurrency since Zcash Network Upgrade 5 (NU5) activated on mainnet on May 31,
2022. However, known trustless systems don’t match the efficiency of the ones based on the trusted setup:
the zk-snarks have poly-logarithmic-time verification (e.g. Halo2 and STARKS) compared to constant-time
(e.g. Grothl6, Plonk, Marlin), and polynomial commitments have poly-logarithmic-size evaluation-opening
proofs (e.g. FRI, Dory) compared to constant-size proofs (e.g. KZG). It remains to be an open problem
and an impactful research direction to come up with a system for the aforementioned applications that does
not require a trusted setup while providing constant-time verification, or alternatively prove an impossibility
result in this regard. In a meanwhile, a unified framework for running setup ceremonies in a transparent,
verifiable and censorship-resistant manner would help bootstrap more efficient cryptosystems.

Contributions We design ceremonies with two data-availability models: one with the entire string pp
posted on-chain, and one with only a commitment to pp, ¢ = H(pp), posted on-chain and the full string
stored in an external data-availability system, see Table 1 highlighting the properties of the two models
that we develop. The latter can offer significant cost savings for large strings as on-chain data storage is
expensive.

With data available on-chain, we present an efficient pairing-based proof construction for verifying each
participant’s contribution (Section 3). We implemented this protocol (and have released our code open-
source: github.com/al6z/evim-powers-of-tau) on the Ethereum blockchain with the BN254 curve. Partici-
pating in the ceremony costs 190,000 to 11,500,000 gas (about $4 to $250 at current prices), depending on
the size of the desired resulting parameters (in this case between 8 and 1024 powers-of-tau). The size of the
setup is limited but can still be used to power small zero-knowledge SNARKSs, data-availability sampling,
and Verkle trees.

For larger strings, we develop methods that have on-chain verification, yet only store a short commitment
to the full setup on-chain (see Section 4). We discuss how to make the data-availability solutions that
can facilitate such setups light-weight. The data-availability service only needs to be able to produce a
commitment over the data of an appropriate form and store at most two latest contributions.

We discuss censorship resistance, incentives and methods to lower on-chain cost through roll-ups, opti-
mistic verification, batching, IVC and other techniques in Section 5.

https://github.com/a16z/evm-powers-of-tau

2 Related work

Ben-Sasson et al. [BSCGT 15| proposed the first multi-party protocol to sample public parameters for a
zero-knowledge proof scheme which was instantiated for Zcash Sprout. Although this ceremony was not
instantiating the powers-of-tau, it paved the floor for crowd-sourcing subsequent ceremonies.

Bowe et al. [BGM17] designed a protocol for Groth16, where constructing a powers-of-tau public string
was part of one of two phases. The protocol however required a random beacon, an auxiliary process
that produces publicly verifiable unpredictable and unbiasable randomness. Kohlweiss, Maller, Siim, and
Volkhov [KMSV21] removed the need for a random beacon in the setup by proving that the setup remains
secure for use with zero-knowledge proofs even if the public parameters have some degree of bias. Cohen et
al. [CDK"22] demonstrated that the KZG commitments also remain secure in case the public parameters
have bounded bias, thus similarly eliminating the need to use the random beacons for setups to be used for
KZG commitments.

All of these protocols fall in a category of the more-the-merrier protocols, as they each require only a single
one honest participant to be secure. However, all were built with the assumption of a central coordinator.
Buterin [But22] suggested a simple way to verify the update to the setup that opens the possibility of a
gas-efficient on-chain deployment which we base our on-chain protocol on.

Setup ceremonies in practice Some of the most prominent ceremonies have been run by Zcash, a
privacy-oriented blockchain project. Six participants carried out the first Zcash ceremony, Sprout, in 2016,
and 90 participants built parameters for a Sapling upgrade in 2018.

The perpetual “powers-of-tau” ceremony was first run in a continuous mode, where contributions are
still being accepted, by the team of the Semaphore project, a privacy preserving technology for anonymous
signaling on Ethereum. The setup uses a BN254 elliptic curve and has had 71 participants so far. Other
prominent projects later used this setup to run their own ceremonies on top, including Tornado.Cash [Cas20] ,
Hermez network [Her20], and Loopring [Dev19]. Similar ceremonies on other curves were run by Aztec [Azt20]
for zkSync, a “layer two” Ethereum scaling solution that uses zero knowledge rollups; by Filecoin [Fil20],
a decentralized data storage protocol; by Celo [Cel20], a layer-1 blockchain, for their light-client Plumo;
Aleo [Ale21], a blockchain for private applications.

Ethereum plans [Fou22| to run a smaller trusted setup ceremony for its upcoming ProtoDankSharding
and DankSharding upgrades: the targeted sizes are 212,213 214 215 powers in G, and 64 powers in Go. Those
two upgrades will increase the amount of data that the Ethereum chain provides to clients for storage. This
data will have a suggetsed expiry 30-60 days. The ceremony is under active development, and is planned to
run for six weeks in 2023. It is shaping up to be the largest trusted setup ceremony in terms of participation
for blockchains run so far.

3 Powers-of-tau setup with full data on-chain

We assume three groups G1, G2, Gr, each of prime order p, with generators By, Bs, By respectively, addition
as a group operation in all of them, and a bilinear pairing operation e : G1 X Gz — Gr, s.t. for any a,b € Zj
the following holds: e(aBj,bBs) = ab-e(By, By). Our goal is to construct a “powers of 77 structured reference
string (SRS) of the form:

pp = [7B1,72B1, 7B, ..., 7" B1; 7Bo,7’Bs,...,7"By]

It is essential that 7 be kept secret in the final string, pp. The protocol for constructing pp will be a
sequential multi-party computation between m contributors in m rounds, such that each contributor, Cj,
contributes only in the j* round. Each contributor can efficiently prove that their participation was correct.
The protocol should be secure as long as any individual contributor used good randomness in their round
and was honest, i.e. only used locally generated secrets as intended by the protocol and destroyed them
successfully after the protocol’s completion. In this way it is possible to conduct a permissionless setup in

which any contributor is free to contribute, mediated by a smart contract which verifies each participant’s
contribution.

Initialization The initial state (after round 0) consists of the string:

pp=[Pio, Pao, Pso, ..., Pno; Quo, Q20, ..., Qo
= [Bl, Bl, Bl, ceey Bl; BQ, BQ, ey BQ] (31)

That is, n copies of the generator By plus k copies of the generator By. This is equivalent to an SRS with
7 = 1. This is trivially insecure as everybody knows 7, but is trivially easy to check for well-formedness.
Note that it is not strictly necessary to have k > 1, but it benefits the efficiency of certain applications, e.g.
multi-point evaluation proofs in KZG polynoimal commitments.

Update procedure At the beginning of round j the current string assumed to be:

pp = Pij1, Poji,-..y Poj1s Qujis--oy Qkj-l
= [Tj-lBlny_lBla ...7TﬂlBl; Tj_lBg7 ...,le-g_lBQ] (32)

The value 7;_; is of course hidden. Contributor C; chooses a random value 7 & Z,, and publishes a new
string:

pp =[P1;, P, Py, ooy Pags Q1,5, ooy Qr gl
=[rjPij1, 2P, rPsja, . rTPajas Qg s T Qe
Z[’I“j’Tj_lBl, ’I”j2-’7'j2_1 'Bl, ’I“?T;’_lBl, ey T?Tﬂ1Bl§ TjTj_lBg, ey Tfo_lBQ]
:[TjBla T]»QB]_, T]aB]_, ...,T;LBl; TjBQ, ...,TjkBQ] (33)

The new setup has 7; = r; - 7;1 as its secret!. If an attacker knows Tj—1 but not r;, and r; was chosen
uniformly at random from Z (meaning in particular that r; # 0), then the attacker will have no information
about 7; (since the operations are done modular a large prime p of roughly 256-bits length). In other words,
each new honest contributor randomizes the setup completely. If at least one of the contributors supplies their
update, r;, randomly and properly destroys it (and forgets), then the resulting secret (7, =71 72 ... 7y,)
is randomly distributed and unknown to anybody.

Update proofs Contributor C; must convince the verifier (the smart contract) that the following three
statements are true about its contribution:

Check #1 - the contributor knows r;: a proof that the latest contribution to the ceremony builds on
the work of the preceding participants.

Check #2 - the new parameters, pp;, are well-formed: the contract should verify that newly sub-
mitted pp consists of consecutive powers of some 7;.

Check #3 - the update is non-degenerative, r; # 0: a defense against attackers trying to erase the
setup thus undermining the contributions of previous participants.

Ouly if the verifier (smart contract) is convinced that all of the above is true, it updates the setup pp
with the contribution from C;. We now give the details of how each of these statements is verified on-chain
and what proofs (if any) the contributor needs to send to facilitate the verification.

1Note that it is also possible to compute an additive update to the tau (15 = rj + 7j—1), however it would require the
contributor to compute many multi-scalar multiplications making it less efficient.

The contributor computes a zero-knowledge proof m demonstrating that it knows r; s.t. P ; = P j_1-7;.
This proof could be either a Fiat-Shamir version of Schnorr’s ¥-protocol [Sch89, Sch91] or a BLS-style proof
of possession [RY07] of the secret key. The latter is effectively, the BLS signature over the public key, but
it is more expensive to verify on-chain as it requires to compute pairings, so we will focus on the former
approach which works as follows.

The prover, the contributor C}, samples a random z & Z,, and computes
h = HASH(PLJ || P17j_1 H z - Pl,j—l)a ™ = (Z . Pl,j—la z+h- ?"j)

Here HASH is a collision-resistant hash function whose outputs are uniformly distributed in Z,. The smart
contract verifies the proof m = (1, m2) as follows:

Check # 1: o - P17j_1 =T + HASH(PL] H Pl,j—l H 7T1) . PLj (34)

Definition 3.1. We say that the setup string pp = (P1, P2, Ps, ..., Pn; Q1,Q2, ..., Q) is well-formed if there
exists T € Zy, such that P; =7'B; and Q¢ = ¢B, foralli=1...nand{=1...k.

To verify that pp; is well-formed, the verifier will sample two random scalars p1, p2 & Z,, and check that:

Check # 2:

k
(szll 1,5 B2+ZP2QM) *G(Bl""zpl 1,5 Zpé‘lQe,j) (3.5)
(=1

=1

For a well-formed setup the check will always pass successfully, since:

N

—1
e<TJBl+Z By, By + (péTfBg)))

1
k—1

<31 + Z TIB1), T <32 + Z (pngBg))>>
(=1

In practice the random scalars py, p2 can be generated using the Fiat-Shamir heuristic by hashing the string
submitted by the contributor, namely p; <~ HASH(pp||1) and p2 <~ HASH(pp||2).

Finally to ensure that the updated setup is non-degenerative, the verifier simply checks that the first
element in the new setup is non-zero:

~
I

Check #3: P #0. (3.6)

We now argue the properties of the scheme: correctness, honest-verifier zero-knowledge, soundness and
knowledge-soundness.

Correctness: it is easy to see that an honest prover that updated the setup correctly, assuming the
previous setup was well-formed, and produced correct proof 7 will convince the verifier about the correctness
of its update.

Zero-knowledge: only the first check requires the contributor to submit a proof, and it is necessary
to demonstrate that this proof leaks no information about the contributor’s secret. Since for the proof m
we suggest to use Schnorr’s identification protocol with Fiat-Shamir’s transform, proving that 7 is zero-
knowledge and leaks no information about the underlying secret is standard, nonetheless we sketch the
proof next for completeness. A satisfying proof with the same distribution for Eq. (3.4) without knowing
r; can be constructed by programming the random oracle (using the random-oracle (RO) assumption) as

follows. Choose random w, h & Z,, and set m = Plu,)jfl/Plhﬂ‘? w9 = w and program the random oracle:

HASH(P, ; || P1j-1 || Pij_y) = h, such a proof will leak no information about the secret and for a public
observer will look identical to a real proof.

Knowledge soundness: to show that a witness 7; can be extracted from a convincing prover, we apply
folklore techniques and exploit knowledge soundness of the 3-protocol of the proof 7; to extract the discrete
log of 7; B, to the base 7;_1By: r; = 7;/7j—1 by rewinding the prover with different outputs of its random
oracle queries [PS00] and use the forking-lemma to extract the witness r;.

Soundness: we argue that a contributor can not pass Check #2 with a malformed setup other than
with some negligible probability, and we prove the following theorem in Appendix A.

Theorem 3.1. Check # 2 ensures the well-formedness of the setup. In particular, a probabilistic polynomial-
time contributor will pass Check #2 with a malformed setup string with probability at most W, which

is negligible in the security parameter X (where we assume p ~ 22* and n,k being polynomial-size in).

3.1 Implementation and Evaluation on Ethereum

In this section, we analyse the practicality of a fully on-chain implementation on Ethereum. Ethereum
currently (as of Oct’22) natively supports only one group with bilinear pairing, BN254 (the initial EIP-
197 [VB17] describes the curve equations). This group is foundational to multiple projects (e.g. Aztec,
zkSync) although unfortunately its security has been lowered with recent attacks [BD19], and now esti-
mated [KB16] to be at 100-bits level. Ethereum consensus layer uses BLS12-381, which is another pairing-
friendly group, and also a popular choice for other projects (e.g. Aztec and Filecoin), has stronger secu-
rity guarantees, however the precompiles for this curve are not available on Ethereum yet, though have
been suggested (EIP-2537 [AV20]) alongside precompiles for other pairing-friendly curves BLS12-377 (EIP-
2539 [V1a20]) and BW6-761 (EIP-3026 [YEH20]). The supported operations are scalar-multiplication and
addition in G; and a pairing precompile, which are priced as follows according to EIP-1108 [ASC18]:

Name Arguments Operation Gas cost
ECADD A Be G A+ B 150
ECMULT | a€Zy, A€ G, aA 6,000
ECPAIR | A € G}, BeGh | 2 e(A;, B;) =0 | 34,000 - k + 45,000

Each contribution is sent as calldata, which is a read-only byte array, currently priced at 16 gas per byte
according to EIP-2028 [ASB*19].

Fully on-chain setup for k£ = 1. We first consider a setup with a single element in Go. The following
pre-computation will reduce the cost of the check # 2 to n + 3 scalar multiplications and one ECPAIR,
though the check will remain to dominate the verification cost:

Check # 2 (more efficient):

n—1
For R=Y pi'-Pij: e(Bi+pR Q) = e(R+pi Py, Ba) (3.7)
=1

The contributor submits 64 - n + 224 bytes of calldata: n elements of G; (64 bytes per uncompressed?
element), 1 element in Go (128 bytes per uncompressed element), and a proof which consists of one element
in Z, and one element in G;. The cost of the contribution is therefore comprised of compute and calldata
storage:

compute cost: (n + 3) - 6,000 + 113,000 gas (3.8)

storage cost: n - 1,024 + 3,584 gas

20ur evaluations showed that recovering element from a compressed form would cost significantly more than sending them
in an uncompressed form directly.

It is instructive to notice that the cost of compute is roughly 6x the cost of storage. The compute is dominated
by the multi-scalar multiplication. Most likely it is inevitable for each element of the setup to have to be
multiplied by a scalar or be directly inserted into a pairing, it is therefore unlikely to be able to reduce
the compute cost for the fully on-chain setup. However, using a techniques of Bellare et al. [BGR98a] the
scalar-multiplications might be substituted by A-random subset sums for A-security, however for Ethereum
this trick does not bring any savings. Table 1 shows estimated and concrete pricing per contribution with a
check from Eq. 3.7 based on our open-sourced implementation (github.com/al6z/evm-powers-of-tau).

n 8 16 32 64 128 256 512 1024
compute | 429 500 | 227,000 | 323,000 | 515,000 | 899,000 | 1,667,000 | 3,203,000 | 6,275,000
gas units

compute $3 $4 $6 $10 $18 $33 $62 $122
cost

storage 1| g 199 | 16,384 | 32,768 | 65,536 | 131,072 | 262,144 | 524,288 | 1,048,576
gas units

storage S0 30 $1 $1 $3 $5 $10 $20
cost

Total 187,192 | 243,384 | 355,768 | 580,536 | 1,030,072 | 1,029,144 | 3,727,288 | 7,323,576
(estimates) $4 $5 $7 $11 $20 $38 $73 $143
Total 102,162 | 272,217 | 432,702 | 755,340 | 1,406,185 | 2,731,526 | 5,474,920 | 11,341,136
(actual) $4 $5 $8 $15 $27 $53 $108 $221

Table 1: Estimates according to the Eq. 3.8 and actual costs. The pricing in USD is calculated based on
rough numbers on 10/11/2022: 15 gwei per gas unit and 1 ETH = $1,300.

Fully on-chain setup for £ > 1. Since Ethereum does not support addition and scalar multiplication in
Go the following alternative method for Check #2 targeting Ethereum can be used, it does one additional
pairing per each power in Gs:

Check #2 (alternative):
n—2 ‘

For R=Y p'-Py1;: e(Bi+pR, Q;) = e(R+p" 'P,;, By) (3.9)
i=0

For t =2..k-1: e(Pk_t,j, Qt) = e(Pk)j, BQ) AN e(Bl, Qk) = 6<P]€’j,Bg) (310)

Note that the right-hand part of the equations 3.10 can be computed once. Note also that equations 3.9
and 3.10 are each checking the equalities of pairings, these checks can be batched using pseudorandom scalars
Qp, 1, ...,Qp € (Z;)n sampled as «o; = HASH(ppj, i) to transform into a check of the sum of pairings which
is cheaper to do on Ethereum (Ethereum has an opcode that allows to verify e(A1, B1)+...4+¢e(Ap, Bm) = 0).:

e(Al,Bl) = G(Cl,Dl) 6(@1A1,B1)+€(—0[1C1,D1)+
G(AQ, Bg) = 6(02, DQ) PN 6(&21427 Bz) + 6(—042027 D2)+ (311)

e(Am, Bm) = e(Chy, D) e(amAm, Bm) + e(—mChiy D) =0

Note on the use of hash functions for generation of scalars. For a 256-bits order groups, the
hash function HASH needs to output 512-bits, should be given as inputs strings generated with invertible
serialization method, and be domain-separated (i.e. the input should be prefixed with a fixed-length string
indicating the step of the protocol and the purpose of hashing).

https://github.com/a16z/evm-powers-of-tau

4 Powers-of-tau setup protocol with data off-chain

The required number of powers of tau for some applications can be as high as 224-228 resulting in public
parameters of size in the range 0.5GB-9GB. This rules out the possibility of storing the full parameters on
chain, given limitations of today’s Layer-1 smart contract platforms. However, it is still possible to take
advantage of the anti-censorship properties of an L1 chain by posting a commitment to the parameters on
chain, while storing the parameters off chain. Each contributor who updates the on-chain commitment
proves that the update to the current off-chain parameters is well-formed by submitting a ZK proof to the
smart contract. The contract accepts the contribution if the proof is valid.

In more detail, let Alice be the i-th contributor to the powers-of-tau. Let pp; be the powers-of-tau
before Alice’s contribution and let pp;,; be the powers-of-tau after. Prior to Alice’s contribution, the smart
contract holds a short binding commitment to pp;, namely ¢; := H(pp,), for some collision resistant hash
function H. Alice will send to the contract ¢;11 := H(pp;, ;) along with a succinct ZK proof 7 that the
transition from ¢; to ¢;41 is well formed, as discussed in more detail in the next subsection. If the proof is
valid, the contract updates the stored hash to ¢;y; and erases ¢;. Note that the contract places ¢;41 in its
storage array; however the proof m need only be sent to the contract as call data and does not need to be
written to the contract’s storage.

We describe three ways to produce the proof 7: (i) using a generic transparent SNARK and (ii) using the
Dory polynomial commitment scheme, and (iii) using an inferior method of inner-pairing product argument
(see Appendix C).

On data-availability. If the L1 chain only holds a hash of the powers-of-tau, then the actual data must
be kept elsewhere. One can use a centralized data-availability (DA) service, such as a cloud storage provider,
or a decentralized one, such as Celestia, Polygon Avail, or Arweave. Regardless, of how the DA service is
run, we only require it to attest to the availability of the data behind the on-chain commitment. The DA
service does not need to run any verification on the underlying data.

Note that the DA service can safely discard an old parameter set after the chain verifies a new parameter
set, meaning that the DA service only needs to store at most two parameter sets at any given time, meaning
it scales well to protocols with many participants.

4.1 Off-chain setup using a transparent succinct proof

Let pp be the current state of the powers-of-tau stored at some data availability service, and let ¢ := H(pp)
be the commitment to pp stored in the smart contract on chain. Recall that

pp:(PhPQan)’v"'an; Q17Q27"'7Qk’):
= (TBl,TZBl,TSBl,...,TnBl; TBQ,TQBQ,...,TkBQ) GG? ><(Gr]2C

for some secret 7 € Z,, and public By € G;, By € Go.
Alice wants to re-randomize pp to obtain pp’. She chooses a random r € Z,, computes

pp/ — (TP17T2P27T3P37"'7T.”PH; rQlar2Q27"‘7erk) =

and sends pp’ to the data availability service. Next, she computes the commitment ¢ = H(pp’) and needs
to convince the on-chain smart contract that the transition from c to ¢’ is a valid transition. As explained
in Section 3, Alice must produce a succinct zero-knowledge argument of knowledge (zk-SNARK) that the
following relation holds, for random p1, p2 in Z, chosen by the verifier:

public statement: ¢, ¢ and p1,p2 € Z, , witness: pp, pp’, and r € Z, ,

and the relation is satisfied if and only if

c=H(pp), ¢ =H(pp'), P[=rP, P #0, and

n k—1 n—1 k
(Yo APl peBat Y pTQ)) =e(mBi+ Y TP Y AQ):
i=1 j=1 j=1

i=1

Note that the zero-knowledge property is needed to keep r secret.

The simplest, though not the most efficient, way to produce a succinct proof for this relation is to use
a generic zk-SNARK system (we describe better approaches in the next subsection). To use a generic zk-
SNARK, we need a proof system with the following properties: (i) transparent, namely the zk-SNARK
requires no trusted setup, since we cannot assume the existence of a trusted setup in our settings; (ii) short,
to reduce the cost of posting the proof on-chain; and (iii) fast to verify, to reduce the on-chain gas costs
for verification. The STARK system [BBHR18] meets these requirements. In practice, the resulting proof
is about 100KB which may be too expensive to post on chain for every update. In Section 5 we discuss
batching proofs, namely supporting multiple updates using a single proof. This may make STARKS a viable
option.

Once Alice constructs the proof , she sends (¢, ¢,) to the on-chain contract. The contract verifies the
proof, and if valid, it replaces ¢ by ¢’

4.2 Off-chain setup using AFGHO commitments on-chain

In this section we describe a more efficient approach than the one in the previous section. We use the
unstructured AFGHO commitments of Abe et al. [AFG*10] in combination with the Dory [Lee21]| inner-
pairing product arguments. This leads to short and efficiently verifiable proofs on chain.

We again assume groups Gi,Go, G of a prime order p and a bilinear operation e : G; x Gy — Gr.
We adopt the product notation for pairing operations: for vectors A € G} and B € G we write (A,B) =
Yo e(A;, B;). Let T'y € GY be generators of Go and T'y € G*¥ be generators of Gy, all randomly chosen in
a transparent way.

Instead of the full parameters pp = (P; Q) = ((P1, Pe, ..., Pn); (Q1,Q2, . .., Qr)), the chain only stores P;
and AFGHO commitments (Cy, Cs) € G x G on chain, where C; = (P, T's) € Gy and Cy = (I'1, Q) € Gr.

The contributor submits a proof-of-knowledge of the discrete log of the update to P; as explained in
Check #1 of Section 3 and a logarithmic-size proof for the following inner-pairing product (IPP) relations:

C1 = (P,I) C2=(I'1,Q)
p’j’lLP’an - BlQl = Pa (LPlaP%» BRI p?il) ' (plQl - B2)>
pISPle - P1B2 = <(1702;P%a ce 7pg_1) . (pQPI - Bl)a Q> (41)

P, =(P,(0,0,...,0,1)) Qr =(Q,(0,0,...,0,1))
P1:<Pa(1707~~~7070)> Q1:<Qv(1707"'7070)>

We give more details on constructing the proof for these IPPs in Appendix B.

5 Discussion and open problems

Incentives for participation. Several options are available to subsidize gas costs to encourage additional
participation. The simplest solution is to load funds into the setup contract and reward each user who
successfully updates the structured reference string pp, although users will still need to first pay the requisite
gas fees. Alternately, transaction relay services, such as the nascent Gas Station Network (GSN), can pay
transaction fees for users sending data to the setup contract. This makes it possible for an end user to
participate in setup even if that user owns no crypto to pay for gas. Finally, we note that a setup ceremony

10

might give users a non-monetary reward such as an NFT as a badge of participation. A challenge in all cases
is that users might pseudonymously participate many times via Sybil accounts; while this doesn’t undermine
security of the setup it may enable them to claim rewards multiple times or drain the available budget for
covering transaction fees, preventing other users from participating cheaply.

Censorship-resistance. Our ceremonies are designed to run without any centralized coordination, but
they do require contributions in a serial manner. At time j, the next contributor must prove correctness
relative to the previous value pp,_;. If two contributors independently submit transactions building on the
same parameter set pp;_y, only the one sequenced first will be executed successfully. The second will fail for
referencing a stale parameter set. This means that, without off-chain coordination, at most one contribution
per block is possible as contributors must first observe pp;_;. For Ethereum this limits the ceremony to one
contribution every 12 seconds or 219,000 contributions per month.

Worse, this also provides an avenue for denial-of-service and censorship: whenever an honest contribu-
tion arrives, an attacker can create an alternative contribution paying higher transaction fees, preempting
the honest one. Such an attack could be detected off-chain via timing analysis. A stronger defense strat-
egy against censorship could be to select one contribution among the conflicting ones in a random but
publicly-verifiable way. To lower the transaction fees, a contributor could first register an intent to make a
contribution, and only submit the actual data if it is selected. Alternatively, the setup contract can order
the registered contributors in a verifiable random way and then execute the protocol according to the list,
with each user given a pre-assigned slot to contribute.

Verification with general-purpose roll-ups. Verification costs can be decreased using a general Layer-2
compute platform such as a rollup server. ZK-Rollups (also called verifiable rollups) provide succinct proofs
of execution (in our case, verifying a contribution) and hence provide equivalent security to execution on
Layer-1. However, caution is in order as many (though not all) ZK-rollups themselves rely on a trusted
setup, leading to a circular dependency. Alternately, optimistic rollups require watchful observers to submit
fraud proofs to detect incorrect execution. Given the serial nature of our ceremony, general optimistic rollups
require caution as they naively require waiting for a challenge period before accepting correct execution.

Rollups might offer significant cost savings, given that execution costs typically average 100x cheaper
on Layer-2, and execution costs (as opposed to storage) are about 75% of total transaction costs [12f22].
Combined with off-chain data availability, total costs can be greatly reduced. As of this writing, all production
rollup servers rely on a single centralized sequencing server, undermining the censorship resistance benefits
of an on-chain trusted setup.

Protocol-specific ZK rollups via proof batching Rather than relying on a general-purpose rollup
server, we can design a specific one optimized for our application. In our ceremony, every contribution is
accompanied by a proof of correctness, requiring a linear number of proofs in the number of updates. We can
improve things using a coordinator which compiles a sequence of update proofs from multiple participants
and aggregates them all into a single proof that all the received updates are valid. This can be done using
proof recursion [Val08] or accumulation [BCMS20]. This coordinator will then post the aggregate proof on
chain along with the aggregate update to the parameters. This coordinator can censor particular participants
by refusing to accumulate their proofs into the batch. However, since anyone can act as a coordinator, an
affected participant can find another coordinator. In the worst case, if all coordinators are censoring, the
participant can post their own update and proof directly on chain, bypassing the censoring coordinators.

Protocol-specific optimistic verification and checkpointing. Another mode of operation which may
offer improved performance would have users post proofs (or even commitments to proofs with off-chain
data availability), but not rely on on-chain verification in the optimistic case. Instead, users can post a
fidelity bond which is forfeited (within a set challenge period) if another user determines off-chain that their
proof is incorrect and challenges it on-chain. A caveat is that any invalidated update will also invalidate
all subsequent updates due to the chained nature of the protocol. With this approach, users should verify

11

recent contributions themselves before participating to avoid building on top of a contribution that is later
invalidated.

To avoid requiring users to verify too many recent contributions before participating, it is possible to
checkpoint certain updates by including a proof that all updates since the last checkpoint were valid. This
checkpoint can be created via proof batching [BGR98b, CHP12|. We note that, in our protocol in Section 3,
only Check #1 needs to be repeated for each update since the last checkpoint; the more expensive Check #2
only needs to be done once on the latest version of the structure reference string.

Fully off-chain verification via IVC/PCD. Another potential optimization is to conduct a ceremony
with no on-chain proof verification, but where each update includes a succinct proof that every update since
the start of the ceremony was well-formed. These proofs can be constructed using any incrementally verifiable
computation scheme (IVC). In this case the parameters plus proof are an instantiation of proof-carrying data
(PCD). With such a protocol, it is possible to execute the ceremony using a blockchain which only provides
data availability and consensus (and no verification). Each user can verify the succinct proof of the latest
parameters before using or updating them. The ceremony is only using the chain for its persistent storage
and anti-censorship properties.

Forking/re-starting Throughout the paper we assumed that updates to the powers-of-tau are applied
sequentially and each update is applied to the latest state. It is also possible that a project may build on an
existing powers-of-tau string, but fork it for its own use. A forking community can continue to re-randomize
their own powers-of-tau branch, while the rest of the world continues to re-randomize the main branch. As
such, the on-chain contract could be set up to handle forks in the update process, where multiple powers-of-
tau are continuously updated independently of one another. Some powers-of-tau may even start afresh from
scratch, perhaps to support different tower lengths and possibly different groups.

Proving participation Users may wish to see an authentic list of everyone who has contributed to the
SRS. A lazy participant might see that enough participants that it trusts contributed, and choose to use the
SRS without participating themselves. Fortunately, since every Ethereum transaction is signed by the party
that initiates that transaction, any user can inspect the chain and construct a list of authenticated addresses
that contributed to the ceremony since its inception.

Generating a powers-of-tau setup with a punctured point Some systems require a powers-of-tau
string where one power in the sequence is absent, namely

pp = [P ionins (@)] = [P BOR, anvias (FB)Y],

where the point Py, = 7V+1B; is absent from pp. Example systems that use a punctured sequence include
Groth’10 [Grol0], Attema and Cramer [AC20], Lipmaa, Siim, and Zajac’s Vampire scheme [LSZ22], and
Waters and Wu [WW22]. The absence of the point Py41 from pp is necessary for security. Check #2 in
(3.5) can be modified to handle this case: the verifier will sample two random scalars p1, p2 in Z; and carry
out the following check that now consists of two equations:

Check # 2 for punctured setup:
2N N-1 2N-1 N
e(> P, B+ Y pﬁQe) = 6(31 + > AP, pé'le) (5.1)
i=1 (=1 i=1 =1
i#N+1 i#AN
i#AN+2 i#N+1
6(PN+2, 32) = 6<PN7 Qz) (5.2)

It is not difficult to see that a well-formed setup will pass the check successfully. We argue soundness, i.e.
that this check guarantees the well-formedness of the setup, in the note at the end of Appendix A.

12

Acknowledgments

We would like to thank Licas Meier, Yashvanth Kondi, Mary Maller, and Justin Thaler for useful feedback
on the early ideas underlying this work. Boneh is supported by the Simons Foundation and NTT Research.

References

[AC20]

[AFG*10]

[Ale21]

[ASB*19]

[ASC1S8]

[AV20]

[Azt20]

[BBHR18]

[BCMS20]

[BD19)

[BGM17]

[BGR98a]

[BGROSb)|

[BM93]

[BMM 21|

Thomas Attema and Ronald Cramer. Compressed X-protocol theory and practical application
to plug & play secure algorithmics. In CRYPTO’20, volume 12172 of Lecture Notes in Computer
Science, pages 513-543. Springer, 2020.

Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Annual Cryptology
Conference, pages 209-236. Springer, 2010.

Aleo. Announcing aleo setup. https://www.aleo.org/post/announcing-aleo-setup, 2021.

Alexey Akhunov, Eli Ben Sasson, Tom Brand, Louis Guthmann, and Avihu Levy. Eip-2028:
Transaction data gas cost reduction. https://eips.ethereum.org/EIPS/eip-2028, 2019.

Zachary Williamson Antonio Salazar Cardozo. Eip-1108: Reduce alt bnl28 precompile gas
costs. https://eips.ethereum.org/EIPS/eip-1108, 2018.

Kelly Olson Alex Vlasov. Eip-2537: Precompile for bls12-381 curve operations. https://eips.
ethereum.org/EIPS/eip-2537, 2020.

Aztec. Universal crs setup. https://docs.zksync.io/userdocs/security/
#universal-crs-setup, 2020.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. TACR Cryptol. ePrint Arch., page 46, 2018.

Benedikt Biinz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof
composition from accumulation schemes. In TCC, 2020.

Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings. Journal
of cryptology, 32(4):1298-1336, 2019.

Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark pa-
rameters in the random beacon model. Cryptology ePrint Archive, 2017.

Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verification for modular exponen-
tiation and digital signatures. In International conference on the theory and applications of
cryptographic techniques, pages 236—250. Springer, 1998.

Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast Batch Verification for Modular Exponenti-
ation and Digital Signatures. In Furocrypt, 1998.

Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Eurocrypt, 1993.

Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner
pairing products and applications. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 65-97. Springer, 2021.

13

https://www.aleo.org/post/announcing-aleo-setup
https://eips.ethereum.org/EIPS/eip-2028
https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-2537
https://docs.zksync.io/userdocs/security/#universal-crs-setup
https://docs.zksync.io/userdocs/security/#universal-crs-setup

[BSCG*15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In IFEE Symposium on
Security and Privacy, 2015.

[But20] Vitalk Buterin. What is Danksharding, 2020.

[But22] Vitalik Buterin. "How do trusted setups work?". https://vitalik.ca/general/2022/03/14/
trustedsetup.html, 2022.

[Cas20] Tornado Cash. Tornado.cash trusted setup ceremony. https://tornado-cash.medium.com/
tornado-cash-trusted-setup-ceremony-b846e1e00bel, 2020.

[CDK*22] Ran Cohen, Jack Doerner, Yashvanth Kondi, et al. Guaranteed output in o(sqrt(n)) rounds for
round-robin sampling protocols. Cryptology ePrint Archive, 2022.

[Cel20] Celo. Plumo ceremony. https://celo.org/plumo, 2020.

[CHM*20| Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. Marlin: preprocessing zkSNARKSs with universal and updatable SRS. In Furocrypt,
2020.

[CHP12] Jan Camenisch, Susan Hohenberger, and Michael Ostergaard Pedersen. Batch verification of
short signatures. J. Cryptol., 25(4):723-747, 2012.

[Comal The Electric Coin Company. Halo2. https://github.com/zcash/halo2.

[Comb] The Electric Coin Company. The halo2 book. https://zcash.github.io/halo2/.

[Dev19] Brecht Devos. Loopring starts zksnark trusted setup multi-
party computation ceremony. https://medium.loopring.io/
loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874£f7abb,
2019.

[DL77] Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program testing.

Technical report, GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION AND
COMPUTER SCIENCE, 1977.

Fil20 FileCoin. Trusted setup complete! https://filecoin.io/blog/posts/
p g/p
trusted-setup-complete/, 2020.

[Fou22] Ethereum Foundation. Ethereum: Powers of tau specification. https://github.com/
ethereum/kzg- ceremony-specs, 2022.

[Grol0] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASTACRYPT’10,
volume 6477 of Lecture Notes in Computer Science, pages 321-340. Springer, 2010.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper
2019/953, 2019.

[Her20] Polygon Hermez. Hermez zero-knowledge proofs. https://blog.hermez.io/
hermez-zero-knowledge-proofs/, 2020.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity for
the medium prime case. In Annual international cryptology conference, pages 543-571. Springer,
2016.

14

https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://celo.org/plumo
https://github.com/zcash/halo2
https://zcash.github.io/halo2/
https://medium.loopring.io/loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874f7a5b
https://medium.loopring.io/loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874f7a5b
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://blog.hermez.io/hermez-zero-knowledge-proofs/

[KMSV21]

[Kus1§]

[KZG10]

[12£22]

[Lee21]

[LSZ22]

[LY10]

[MBKMT19]

[PS00]

[RY07]

[Sch80]

[Sch8g]

[Sch91|

[Valog]

[VB17]

[V1a20]

[WUP22]

[WW22]

Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky ceremonies. In
AsiaCrypt, 2021.

John Kuszmaul. V(ery short m)erkle trees. verkle trees. https://math.mit.edu/research/
highschool/primes/materials/2018/Kuszmaul.pdf, 2018.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to poly-
nomials and their applications. In International conference on the theory and application of
cryptology and information security, pages 177-194. Springer, 2010.

"12 fees". https://12fees.info/, 2022.

Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and poly-
nomial commitments. In Theory of Cryptography Conference, pages 1-34. Springer, 2021.

Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires: From univariate sumcheck
to updatable zk-snark. Cryptology ePrint Archive, 2022.

Benoit Libert and Moti Yung. Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In Theory of Cryptography Conference, pages 499-517.
Springer, 2010.

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updatable structured reference strings. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 2111—
2128, 2019.

David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind sig-
natures. Journal of cryptology, 13(3):361-396, 2000.

Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 228-245. Springer, 2007.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM (JACM), 27(4):701-717, 1980.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Conference on
the Theory and Application of Cryptology, pages 239-252. Springer, 1989.

Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161-174, 1991.

Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In TCC, 2008.

Christian Reitwiessner Vitalik Buterin. Eip-197: Precompiled contracts for optimal ate pairing
check on the elliptic curve alt bnl28. https://eips.ethereum.org/EIPS/eip-197, 2017.

Alex Vlasov. Eip-2539: Bls12-377 curve operations. https://eips.ethereum.org/EIPS/
eip-2539, 2020.

Weijie Wang, Annie Ulichney, and Charalampos Papamanthou. BalanceProofs: Maintainable
Vector Commitments with Fast Aggregation. Cryptology ePrint Archive, Paper 2022/864, 2022.

Brent Waters and David Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In CRYPTO’22, 2022.

15

https://math.mit.edu/ research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/ research/highschool/primes/materials/2018/Kuszmaul.pdf
https://l2fees.info/
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-2539

[YEH20] Aurore Guillevic Youssef El Housni, Michael Connor. Eip-3026: Bw6-761 curve operations.
https://eips.ethereum.org/EIPS/eip-3026, 2020.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216-226. Springer, 1979.

A Proof of Theorem 3.1

In this section we prove Theorem 3.1 of Section 3 which guarantees that Check #2 guards the setup from
malformed contributions.

Proof. Suppose the contributor generated a parameter set pp that passed Check #2. We write

pp:(P17P27P3a'--7Pn; Qla"'7Qk):
= (a1 B1,a2By,...,a,B1 ; b1 By, baBs, ..., by Bs).

If check # 2 passed, then for two random scalars x = p; and y = p3 in Z, chosen by the verifier the following
equation holds:

A+ az+ a2z’ + ...+ ap12") - (b +boy + ... + bkyk_l)—
(a1 +asx + ...+ apz™ 1) - (1 +bry 4+ boy® +... + bk,lyk_l) =0 (A.1)

Let us define a 2-variate polynomial f(z,y) to match the left-hand side of Eq. A.1. By the DeMillo-Lipton-
Schwartz—Zippel (DLSZ) lemma [DL77, Zip79, Sch80], if f is a non-zero polynomial, then the number of
zeros of f is bounded by d-p where d = (n — 1)(k — 1) is the degree of f(z,y). Equivalently, the probability
that f(z,y) = 0 for # and y selected uniformly at random from Z, is bounded above by d/p. Therefore,
the probability that the polynomial f defined in Eq. A.1 is a zero polynomial is overwhelming: it is at least
1—(k—=1)(n—1)/p. For a zero polynomial f = 0, its coefficients are all zero. In particular the constant
term b; — aq is 0 implying that a; = b1, and we denote that by 7 = a;. The rest coefficients being zero

implies that
2

coefficient of x : arby —as =0 = ay =T
coefficient of z2 : asby —a3 =0 = a3=7°
coefficient of ™! : ap-1b1 —a, =0 = a,=T1"

Applying the same argument to the coeflicients of 4’ in Eq. A.1 we obtain:

coefficient of y : by —a1b; =0 = by=7
coefficient of 32 : bs —aibs =0 = byg=73
coefficient of 3/ : b —abp_1 =0 = by=71F

Therefore we obtain that a setup that successfully passes check #2 is well-formed with probability at least
1—(k—1)(n—1)/p, as required. O

Note on soundness for a punctured setup. At the end of Section 5 we explained how to modify Check
2 to be able to handle powers-of-tau setups with one point missing. The soundness proof for this modified
check is analogous: for random scalars © = p1,y = p2 in Z, we define the polynomial f(z,y) to match the
left-hand side of Eq. A.2:

2N N-—1 2N—1 N
SR N (RS SEYA T PR DR B O o) BTN
1=1 i=1 i=1 i=1

i#N+1 iEN

i#N+2 i#EN+1

16

https://eips.ethereum.org/EIPS/eip-3026

The probability that the polynomial f is zero is at least 1 —2N?/p. For a zero polynomial all of its coefficients
are zero, hence the constant term b; —a; = 0 (denote 7 = a;) and analogously we get b; = 7¢ fori =1... N
and a; = 7 fori = 1...2N where i # N + 1. The only difference in the argument, is that we use the second
pairing check (5.2) to get ayyo = ayby which implies ay o = 7V 2.

B Inner-pairing product arguments for Section 4.2

We restate Eq. 4.1 of Section 4.2 again for convenience:

C1 = (P,Ty) (B.1)
C2 = (', Q) (B.2)
PIP.Qr — BiQr = (P, (L p1,pi,...,pI ") - (p1Q1 — Ba)) (B.3)
PsPIQr — PiBy = ((1,p2,p3,...,p5 ') - (02P1 — B1), Q) (B.4)
P, =(P,(0,0,...,0,1)) (B.5)
P, =(P,(1,0,...,0,0)) (B.6)
Qr =(Q,(0,0,...,0,1)) (B.7)
Q1 =(Q,(1,0,...,0,0)) (B.8)

We first prove the soundness, namely we show that with an overwhelming probability a setup pp = (P; Q)
that satisfies the set of equations above for random scalars p; and ps chosen by the verifier has to be well-
formed according to Definition 3.1. We denote by = = p;, and we write P = (a;B1,a2B1,...,a0,B1) and
Q = (b1B2,b9Bs, ... ,byBy) for some a,...,an,b1,...,b; € Z, and we rewrite Eq. B.3 equivalently into the
following equation:

"anby — by — (a1 + wag + 2%az + ... + 2" tay,) - (zby — 1) = 0 <=
(a1 — b1) + (a2 — a1by)x + (a3 — a2b1)$2 +...+(an — an,lbl)x”_l =0 (B.9)

We denote the left-hand side of Eq. B.9 by f(x), where f is a polynomial of degree n —1 over Z,. We apply
the DeMillo-Lipton-Schwartz—Zippel (DLSZ) lemma [DL77, Zip79, Sch80|, if f is a non-zero polynomial,
then the number of zeros of f is bounded by d - p where d = n — 1 is the degree of f(z). Equivalently, the
probability that f(z) = 0 for = selected uniformly at random from Z, is bounded above by d/p. Therefore,
the probability that the polynomial f defined in Eq. B.9 is a zero polynomial is overwhelming: it is at least
1—(n—1)/p. For a zero polynomial f =0, its coefficients are all zero:

free term : a7 — by = 0 = a1 = bywe denote that by a1 =7

coefficient of = : ay — a1b; =0 = ag = 72

coefficient of 2 : a3 — ashy =0 = a3 = 7°

coefficient of 2" i ap — ap_1b1 = 0= a, = "

With analogous analysis of Eq. B.4 we get that b; = 7° for all i = 1..k with probability at least 1—(k—1)/p.
This proves Theorem B.1:

Theorem B.1. A probabilistic polynomial-time contributor will satisfy Eq. B.3 and Eq. B.J with a malformed

)+(k=1)

setup string with probability at most (n—1 s , which is negligible in the security parameter \ (where we

assume p ~ 22* and n, k being polynomial-size in \).

17

The IPP protocol. We now explain the interactive version of the protocol that can be made non-
interactive with a Fiat-Shamir heuristic to be run with a verifier as an on-chain smart-contract.

1. The prover submits Cy,Ca, P, P, Q1, Q. € G% x G} x G3 to the verifier.

2. The prover shows that it knows the discrete log to the update of P; (knowledge of discrete log of P;
base the previous value of P; that is currently stored on-chain) as explained in Section 3, Eq. 3.4.

3. The verifier checks that the update is non-degenerative: P; # 0 and if so replies with two random

scalars p1, po & L.

4. The prover sends F; € G; and Fy € Gy to the verifier, where By = (P, (1,p1,p3,...,p7" ")) and
E2 - <Q7 (LP%P%a v 7p12€71)>’

5. The prover runs six Dory-IPP arguments in batch to produce a proof 7 that it sends to the verifier.
As we explain below.

6. The verifier checks that Fy(p1Q1 — B2) = P,p"Q1 — B1Q1, and Ey(pa Py — B)Ey = p5PiQy — P, Bs.
7. The verifier checks 7 and, if correct, updates the setup that it stores to (C1,Cs, Py) € G% x Gq.

We now show how to construct a succinct (logarithmic-size) proof 7 for Eq. B.1-B.8 using Dory inner
product argument of Jonathan Lee [Lee21]. Those arguments allow to prove the following general relation
(where the vectors of scalars s7 and $3 are public and have multiplicative structure):

(D,C]7CQ,E1,E2) S ETL,FI,FQ(S_i7S_é) c Gg’w X (Gl X GQ <
Exists witnesses 01 € Gy and v3 € Gy : Cp = (v1,T2) Co = (T'y,v3)

Ey = (v1,81) Es=(03,83) D = (v1,03)

We invoke the argument six times (the arguments are batchable and allow to squash six proofs into a
single one) to prove the following less general statements, we show two of those for Eq. B.3 and Eq. B.5 as
the rest are analogous:

e For Eq. B.3: (0,01,0,E1,0) € L1, 1,(51,53) for scalars 7 = (1,p1,p3,...,p7 ") and 85 = 0 and
witnesses v1 = P, vy = 0.

e For Eq. B.5: (0,C4,0,P,,0) € L, r, r,(51,52) for scalars s; = (0,0,0,...,0,1), so = 0 and witnesses

—

’U1=P,’U2:0.

The verifier in [Lee21] is set up with 4log(n) 4+ 1 pre-computed elements of Gy. Those values are inner-
products between subvectors of the vectors of generators I'y and I'; and can be pre-computed in linear-time.

Note that in this type of setup, the secret is only used to update the setup and prove knowledge of the
discrete log of P;. The bulk of the computation, namely proof generation, is independent of the secret chosen
by the contributor. Thus, the contributor may outsource this computation to an untrusted helper.

C Off-chain setup from IPP arguments with a smaller setup

For completeness, we briefly explain the inner-product pairing (IPP) method of Biinz et al. [BMM™*21]. It
relies on a powers-of-tau SRS of a smaller size stored by the verifier in full:

I = (aB1,0By,...,a*" By), Ty = (8B, 3*Bs, ..., " By)

18

The contributor can then commit to a larger setup of length N = n x n in G; and Go with structured
AFGHO commitments of of Abe et al. [AFGT10] as follows:

For P = (Py,...,P,) € (GY,...,G) and
for Q = (Q1,...,Q,) € (G3,...,G3) :
Ci = ((P1,T1even)s - - -» (P T even)) € G7-
Cs = ((T2evens Q1), - - -5 (T1,evens Q) € G-

The contributor submits commitments C;, Cy to the verifier and creates TIPP-proofs of a set of inner-
pairing-product relations similar to the ones described in Section 4.2. The resulting proofs add up to be of
cumulative size O(nlog(n)) and can be verified in O(nlog(n)) time.

This method leads to worse practical efficiency compared to the method described in Section 4.2, although
it might yield better concrete costs if an on-chain setup is extended by a small multiple making the resulting
length N be far from the power of two.

19

	Introduction
	Related work
	Powers-of-tau setup with full data on-chain
	Implementation and Evaluation on Ethereum

	Powers-of-tau setup protocol with data off-chain
	Off-chain setup using a transparent succinct proof
	Off-chain setup using AFGHO commitments on-chain

	Discussion and open problems
	Proof of Theorem 3.1
	Inner-pairing product arguments for Section 4.2
	Off-chain setup from IPP arguments with a smaller setup

