
Baloo: Nearly Optimal Lookup Arguments

Arantxa Zapico⋆, Ariel Gabizon3, Dmitry Khovratovich1, Mary Maller1, and Carla Ràfols2

1 Ethereum Foundation
2 Universitat Pompeu Fabra
3 Zeta Function Technologies

arantxa.zapico@upf.edu, ariel.gabizon@gmail.com, khovratovich@gmail.com, mary.maller@ethereum.org,
carla.rafols@upf.edu

Abstract. We present Baloo, the first protocol for lookup tables where the prover work is linear on the
amount of lookups and independent of the size of the table. Baloo is built over the lookup arguments
of Caulk and Caulk+, and the framework for linear relations of Ràfols and Zapico.
Our protocol supports commit-and-prove expansions: the prover selects the subtable containing the
elements used in the lookup, that is unknown to the verifier, commits to it and later prove relation
with the committed element. This feature makes Baloo especially suitable for prover input-output
relations on hash functions, and in particular to instantiate the Ethereum Virtual Machine (EVM).

1 Introduction

The rise of succinct proving systems in the recent decade has brought us close to one of the Holy Grails of
computer science. Namely, being able to prove a large computation while spending not much more time on
the proof than on the computation itself. We know how to make a proof only a handful of bytes large, and
how to make the verifier run in a millisecond – but the prover time remains a bottleneck. Even though it is
asymptotically a linear function of the computation time, the constants in these asymptotics are far too big
to prove even moderate-sized programs.

Quite recently, some great hurdles have been overcome for reducing the prover time. First, we learned
how to prove not only finite field statements but also lookups in tables such as caches or databases with
Plookup [GW20]. These are crucial to implement regular (2n) integer arithmetic and bit-oriented algorithms
such as modern hash functions. The new technique, however, lower bounds the prover time to the table size
N and thus limits the usage of big tables. And here came the second breakthrough, Caulk [ZBK+22,PK22],
as the first method to prove m lookups in more reasonable O(m2) time, i.e. independent of N . Where Caulk
is suitable for big tables but inconvenient for big lookups, Caulk has been calling for the last and final
improvement, where one could finally prove m lookups in linear time.

At the same time, a number of computationally powerful blockchains, with Ethereum being the most
prominent example, barely withstand the demand for higher transaction rate and computational bandwidth.
One bold attempt is to get consensus on the computation without every node repeating work is to use a
SNARK as a certificate of correctness. However, efforts to build a prover for Ethereum’s virtual machine
[BaCCL21,Eth22,Pol22,Sta22,Zha22,zks22] have been hindered by the cost of proving the Keccak hash func-
tion, even if a prover is lookup-enhanced. As Keccak is used in Merkle tree of the blockchain state, a proof
for all state transitions in one block results in tens of millions of lookups — the amount insurmountable even
for Caulk.

In this work we present Baloo, a protocol that finally achieves the goal of proving m lookups in (almost)
linear time. The prover is quasilinear in the field and linear in the group. This is thanks to a number of new
techniques designed around proving statements over sets that are not multiplicative subgroups (where we
cannot use Fast Fourier Transforms). The Baloo protocol works smoothly with several multicolumn tables
and Baloo can be used as a drop in replacement to the Halo2 lookup argument with much better prover

⋆ This work was done while Arantxa Zapico was a PhD student at Universitat Pompeu Fabra, funded by Protocol
Labs PhD Fellowship PL-RGP1-2021-062.

efficiency. In other words Baloo is backwards compatible with instantiations of the Halo2 SNARK that use
KZG commitments. This means that Baloo is potentially the difference between a zkEVM protocol being
viable or not.

2 Related Work

In Table 1 we compare the concrete costs of the closest schemes to this work, when compiled using the
KZG polynomial commitment scheme [KZG10] (the schemes [GW20], [BGH20], [GK22] are described in the
IOP setting only). Plookup [GW20] and Halo2 [BGH20] require no preprocessing but the prover work in the
group is quasilinear on the size of the table. They can be compiled using any polynomial commitment scheme
including solutions that do not require pairings. Caulk [ZBK+22] introduced the first solution with prover
work that is sublinear in the size of the table by using preprocessing , but they incur a quadratic cost in the
number of lookups. Posen and Kattis introduced Caulk+[PK22] , an improvement over Caulk that leads to
a table-independent prover, still quadratic on number of lookups. Gabizon and Khovratovich [GK22] have
recently reduced the prover complexity to quasi-linear on the lookups while retaining a table-independent
prover. However, their techniques rely on committing to a table as roots of a polynomial instead of coefficients.
This means their commitments are not homomorphic, which limits the applicability of their solution to stand
alone set membership proofs and makes it challenging to use their lookup to speed up SNARK provers (see
Section 8). Baloo also has prover complexity that is quasi-linear on the lookups in the field and linear on
the group while retaining a table-independent prover, and the commitments are homomorphic. Currently
there does not exist a pairing free lookup argument with quasilinear prover work in the size of the table.

Scheme Preprocessing Proof size Prover work Verifier work
group field

Plookup [GW20] − 5G1, 9F O(N) O(N logN) 2P
Halo2 [BGH20] − 6G1, 5F O(N) O(N logN) 2P

Caulk [ZBK+22] O(N logN) 14G1, 1G2, 4F 15m O(m2 +m log(N)) 4P
Caulk+ [PK22] O(N logN) 7G1, 1G2, 2F 8m O(m2) 3P

Flookup [GK22] O(N log2 N) 7G1, 1G2, 4F O(m) O(m log2 m) 3P

This work: Baloo O(N logN) 12G1, 1G2, 4F 14m O(m log2 m) 5P

Table 1. Cost comparison of our scheme with other pairing-based lookups. N is the size of the table and m the size
of the set to be opened. The preprocessing costs are given in the number of group operations.

Other approaches, such as discrete-log based [BG13][GK15][BCC+15][BG18] require no trusted setup
but incur a linear verifier. Bootle et al. [BCG+18] initially suggested the use of lookup arguments to improve
the prover time in proving machine computations. Their solution was targetted the TinyRAM virtual ma-
chine [BCG+13]. Campanelli et al. [CFH+21] present also an scheme for position-hiding linkability of RSA
accumulators for large prime numbers and Pedersen commitments. Concretely they achieve good efficiency:
their proof size is constant and their proving times do not depend on the size of the accumulator. Further,
they can support larger lookup tables than Baloo because they are not constrained by the size of their setup.
However, their scheme crucially relies on groups of hidden order such as a trusted RSA modulus or class
groups.

Lookup arguments are often used in the context of key-value lookups in verifiable registries [CDGM19].
Multiple works [TBP+19,MKL+20,HHK+21,TFBT21] explore how to ensure the correctness of the table
that is used in verifiable registries. Campanelli et al. [CEO22] demonstrate how homomorphic commitments
can be used to build key-value lookups. Their solution is zero-knowledge, does not require a trusted setup

2

or pairings, and uses techniques similar to Section 8. However their prover runs in linear time. Agrawal
and Raghuraman [AR20] build key-value lookups using hidden order groups. Campanelli et al. [CFG+20]
use lookup arguments to construct verifiable decentralized storage and achieve a sublinear prover assuming
preprocessing.

Benarroch et al. [BCF+21] discuss commit-and-prove set membership proofs which is a useful primitive
for constructing modular zero-knowledge proofs.

3 Preliminaries

3.1 Notation

A bilinear group gk is a tuple gk = (q,G1,G2,GT , e, [1]1, [1]2) where G1,G2 and GT are groups of prime
order q, the elements P1, P2 are generators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently
computable, non-degenerate bilinear map, and there is no efficiently computable isomorphism between G1

and G2. Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and [1]T = e(P1,P2).
With this notation, e([a]1, [b]2) = [ab]T .

Let λ ∈ N denote the security parameter and 1λ its unary representation. A function negl : N → R+ is
called negligible if for all c > 0, there exists k0 such that negl(k) < 1

kc for all k > k0. For a non-empty set S,
let x← S denote sampling an element of S uniformly at random and assigning it to x.

PPT denotes probabilistic polynomial-time, and algorithms are randomized unless explicitly noted oth-
erwise. Let y ← A(x; r) denote running algorithm A on input x and randomness r and assigning its output
to y and y ← A(x) denotes y ← A(x; r) for a uniformly random r.

Lagrange Polynomials and Roots of Unity. Along this work, we consider two groups of roots of unity.
We use ω to denote a primitive root of unity such that ωN = 1, and defineH = {ω, . . . , ωN}. λs(X) denotes

the sth Lagrange interpolation polynomial, i.e., λs(X) =
∏

i ̸=s
X−ωi

ωs−ωi and zH(X) =
∏N

s=1(X−ωs) = XN −1
the vanishing polynomial of H. For a set of indexes I ⊂ [N], we consider the subset HI ⊂ H of size |I| = k
such that HI = {ωs}s∈I = {ξi}ki=1. {τi(X)}ki=1 and zI(X) are the corresponding Lagrange and vanishing
polynomials. We also assume ν to be a primitive root of unity of order m, and V = {ν1, . . . , νm}. For
simplicity, we may use also νj for νj . The associated Lagrange interpolation polynomials will be denoted as
{µj(X)}mj=1 and the vanishing polynomial as zV (X).

3.2 Cryptographic Assumptions

The security of our protocols holds in the Algebraic Group Model (AGM) of Fuchsbauer et al. [FKL18],
using the bilinear version of the q-dlog and q-sfrac assumptions [GG17,BB04]. In the AGM, adversaries are
restricted to be algebraic algorithms, namely, whenever A outputs a group element [y] in a cyclic group G of
order p, it also outputs its representation as a linear combination of all previously received group elements.
In other words, if [y]← A([x1], . . . , [xm]), A must also provide z⃗ such that [y] =

∑m
j=1 zj [xj]. This definition

generalizes naturally in asymmetric bilinear groups with a pairing e : G1 × G2 → GT , where the adversary
must construct new elements as a linear combination of elements in the same group.

3.3 The KZG Polynomial Commitment Scheme

Our construction heavily relies on the polynomial commitment introduced by Kate, Zaverucha and Goldberg
in [KZG10] that we described below. As noted in Caulk [ZBK+22], the protocol can be slightly modified to
support degree checks, so it consists on a tuple

(
KZG.Setup, KZG.Commit, KZG.Open, KZG.Verify

)
such that:

– srsKZG ← KZG.Setup
(
parKZG, d

)
: On input the system parameters and a degree bound d, it outputs a

structured reference string srsKZG =
(
{[xi]1,2}di=1

)
.

– C← KZG.Commit
(
srsKZG, p(X)

)
: On input polynomial p(X), it outputs C = [p(x)]1.

3

– (s, πKZG) ← KZG.Open
(
srsKZG, p(X), α

)
: Let deg < d be the degree of p(X). Given α ∈ F, prover

computes

q(X) =
p(X)− p(α)

X − α
,

sets s = p(α), [Q]1 = [q(x)xd−deg+1]1, and outputs (s, πKZG = [Q]1).
– 1/0← KZG.Verify

(
srsKZG,C,deg, α, s, πKZG

)
: Verifier accepts if and only if

e(C− s, [xd−deg+1]2) = e([Q]1, [x− α]2).

Multiple Openings. We also implement the optimization noted in [ZBK+22] to open one polynomial to many
distinct points. In a nutshell, given the polynomial p(X), a vector of opening points α⃗ ∈ Ft and s⃗ such that
si = p(αi) for all i = 1, . . . , t, prover and verifier define Cα⃗(X) as the unique polynomial of degree t− 1 such
that Cα⃗(αi) = si for all i ∈ [t]. Then, p(αi) = si for all i = 1, . . . , y if and only if there exists q(X) such that

p(X)− Cα⃗(X) =

m∏
i=1

(X − αi)q(X).

Subset openings. It is crucial for our construction the subvector opening scheme of Tomescu et. al [TAB+20]
that works for the vector commitment inspired by KZG.

Given an encoding C(X) =
∑N

s=1 csλs(X) to a vector c⃗ ∈ FN and CI(X) =
∑k

i=1 ĉiτi(X), where
{τi(X)} are the Lagrange interpolation polynomials of the set {ξi}ki=1 = {ωs}s∈I , they note that for zI(X) =∏

s∈I(X − ωs),

C(X)− CI(X) = zI(X)QI(X),

for some polynomial QI(X) if and only if ĉi = cs for the unique pair (i, s) such that ξi = ωs.
What is more, it is demonstrated in [TAB+20] that the prover can compute [QI]1 by performing k

group and O(k log2(k)) field operations, given they already have stored proofs {[Qs]1}s∈I that C(ωs) = cs.
Precomputing all the proofs {[Qs]1}Ns=1 can be done in time O(N logN) using techniques by Feist and
Khovratovich [FK20]. More details are given in Section 7.

3.4 Caulk+ core

We use a subroutine of the lookup argument Caulk+, which we call Caulk+ core, as a building block of Baloo.
Caulk+, by Posen and Kattis [PK22], is an improvement on Caulk [ZBK+22] that takes prover computation
in the group from O(m2 + m log(B)) to just O(m2) for m lookups on tables of size N . Following their
blueprint, our first step is to create a subtable. That is, given a public vector c⃗, encoded as polynomial
C(X), and elements t ∈ G1 and k ∈ N, Caulk+ core proves that t is a commitment to a subvector t⃗ ∈ Fk of
c⃗. In other words, there exist I ⊂ [N] such that t⃗ = (cs)s∈I .

Here Caulk+ core considers the subvector length k as a public parameter, and proves the following relation

Rsubtable =


(C(X), t, [zI]2); (HI , t(X)) HI = {ξ1, . . . , ξk} ⊂ H

∀ξ ∈ HI , t(ξ) = C(ξ)
t = [t(x)]1
[zI]2 = [zI(x)]2 for zI(X) =

∏k
i=1(X − ξi)

 ,

where C(X) =
∑N

s=1 csλs(X) for {λs(X)}Ns=1 the Lagrange interpolation polynomials of a subgroup of roots
of unity H = {ωs}Ns=1.

In Figure 1 we describe the protocol for Rsubtable [PK22]. The prover running time of Caulk+ core is
quasilinear in k for field and linear in k for group operations (assuming some precomputations), as we see
below (more details in Section 7).

Theorem 1. The protocol in Fig. 1 is knowledge sound in the algebraic group model assuming the q-dlog
and the q-sfrac assumptions hold.

We refer the reader to Appendix A for the proof.

4

srs = {[xs]1,2}Ns=1, C = [C(x)]1, [zH(x)]1 = [
∏N

s=1(x− ωs)]1, [zI]2, t

ProverC+: takes as inputHI , t(X), {[Qi(x)]1 = [(C(x)−C(ξi))/(x−ξi)]1, [Hi(x)]1 = [zH(x)/(x−ξi)]1}ki=1

– Set zI(X) =
∏k

i=1(X − ξi) and zH\I =
∏

s∈[N]\I(X − ωs)

– Compute W1 =
[
C(x)−t(x)

zI(x)

]
1
and W2 = [zH\I(x)]1

– Compute W3 = [(zI(x)− xk)xN−k+1]1
It outputs πC+ =

(
W1,W2,W3).

VerifierC+: Accepts if and only if
(i) e (C− t, [1]2) = e (W1, [zI]2)

(ii) e ([zH(x)]1, [1]2) = e (W2, [zI]2)

(iii) e
(
[xN−k+1]1, [zI]2 − [xk]2

)
= e (W3, [1]2)

Fig. 1. The Caulk+ core [PK22] quasilinear-time protocol for proving Rsubtable that a commitment contains a subtable.

3.5 Generalized Sumcheck

Following [BCR+19], in Section 5.4 we construct a scheme for inner product relations that rely on the
univariate sumcheck argument for the elements in the set HI . Since the latter is not enforced to be a group
of roots of unity, but just a subset of one, we use the generalized variant of the sumcheck:

Theorem 2 (Generalized Sumcheck [RZ21]). Let HI = {ξi}ki=1 be an arbitrary subset of size k in

some finite field F and zI(X) its vanishing polynomial. For any P (X) ∈ F[X],
∑k

i=1 P (ξi) = σ if and only
if there exist polynomials Q(X) ∈ F[X], R(X) ∈ F≤k−2[X] such that

P (X)NHI
(X)− σ = XR(X) + zI(X)Q(X),

where NHI
(X) =

∑k
i=1 τi(0)

−1τi(X) and τi(X) is the ith Lagrange polynomial associated to ξi and the set
HI .

4 Overview

In this section we provide a technical overview of Baloo protocol, which proves the following statement:

Given element cm and a public set represented as vector c⃗ ∈ FN , there exists a⃗ ∈ Fm such that all
elements of a⃗ are elements of c⃗ and cm is a commitment to a⃗.

We approach this statement in two steps. First we select a subvector t⃗ of c⃗ by trimming all elements not
in a⃗, and use Caulk+ core protocol [PK22] to prove, in a committed form, its well formation. Second, as in
Caulk and Caulk+, we prove, again in a committed form, that a⃗ is a result of some expansion of t⃗, i.e., we
design a lookup argument for an unkown table t⃗. However, and this is our main contribution, we replace the
(implicit) lookup argument in [ZBK+22,PK22] by a variant of the linear argument in [RZ21] so that both
steps are quasilinear in the lengths k,m of t⃗ and a⃗, assuming some precomputations. As precomputations
are the same as in Caulk [ZBK+22], we get a prover with quasilinear of m online time and quasilinear of N
offline (precomputation) time in the field and just O(m) group operations in the online phase, as announced.

5

Select a subvector. Following Caulk+ core (Section 3.4), we denote by C a commitment to c⃗. Then we create
a commitment t to a subvector t⃗ ∈ Fk defined by a set of index I ⊂ [N], that is, t⃗ = (cs)s∈I . To prove well
formation of t, the prover provides W1, [zI]2 such that

e(C− t, [1]2) = e(W1, [zI]2),

and a proof of well formation of [zI]2 which convinces the verifier that [zI]2 is a commitment to the vanishing
polynomial of some set HI ⊂ H. Let us denote the roots of unity elements of HI by {ξ1, ξ2, . . . , ξk} i.e.
ξi = ωs for some s ∈ I, following the order in H.

If the prover has access to precomputed proofs {[Qs]1}Ns=1 of opening for all the elements cs ∈ c⃗ and
individual proofs {[Hs]1}Ns=1 of statements “(X − ωs)|zH(X)”, it performs only 2k group operations to
compute W1 and thus convince the verifier that t is a commitment to some subvector of c⃗.

Expansion as a linear relation. Now we engage in the second task: given elements t, cm that commit to
unknown vectors t⃗ ∈ Fk, a⃗ ∈ Fm using the Lagrange basis corresponding to some unknown set HI of size k
and {µj(X)}mj=1 to public subgroup V, respectively, prove that for every j ∈ [m] there exists i ∈ [k] such that
aj = ti. The latter equation has a simple algebraic representation: as a⃗ is a vector generated using elements
of t⃗, there exists a matrix M ∈ Fm×k of 1s and 0s such that

Mt⃗ = a⃗. (1)

Concretely, the non-zero elements are mj,i for j, i such that aj = ti. We then prove that relation (1) also
holds in the committed form. Here t and cm are commitments to t⃗ and a⃗, whereas we employ a special
technique to commit to a matrix.

Proving linear relations is usually done via a lincheck argument, e.g. [BCR+19]. Ràfols and Zapico
in [RZ21] separate a lincheck argument into two parts. First, prover and verifier engage in a Checkable
Subspace Argument (CSS) where prover convinces the verifier that a polynomial D(X) encodes a random

vector d⃗ in the rowspace of M sampled with the verifiers’ coins. This can also be seen as a partial evaluation
problem: if one defines a bivariate polynomial that encodes the matrix

M(X,Y) = (µ1(X), . . . , µm(X)) M

τ1(X)
...

τk(X)

 ,

the goal of a CSS argument is to show that D(X) = M(α,X) =
∑k

i=1

∑m
j=1 Mi,jτi(X)µj(α). This allows to

reduce the statement in eq. (1) to a single inner product relation d⃗ · t⃗ =
∑m

j=1 ajµj(α), that can be proven

with the univariate sumcheck [BCR+19].
We modify the framework for linear relation of Ràfols and Zapico in [RZ21] in several ways:

– CSS. We give a new definition of Commit-and-Prove CSS which works for matrices that are chosen in a
commit-and-prove fashion [CFQ19], that is, the prover selects matrix M, communicates it to the verifier
in a succinct manner and then convinces them that Mt⃗ = a⃗. Importantly, the prover must convince
the verifier that the committed matrix M has a certain form, i.e., that its rows are unit vectors, so the
linear relation represents a lookup. Also, the basis to encode the vectors in the rowspace τ⃗(X) is also
communicated succintly by the prover. This is in contrast to the constructions of CSS schemes in the
holographic model considered in [RZ21], where the matrix M was fixed and preprocessed offline and
where τ⃗(X) was fixed.
The checkable subspace sampling (CSS) technique ensures that a commitment [D]1 is to D(X), as defined
by verifier’s coins. For this we adapt a construction of CSS given in [RZ21] for so called basic matrices,
with only a non-zero element per column. Since a lookup matrix has only a non-zero element per row,
it is the transpose of a basic matrix. Since M is only known by the prover in our new construction, we
replace the offline phase usually performed by some untrusted party with a commitment phase performed
by the prover itself.

6

To adapt the CSS in [RZ21] to our case, we observe that if M(X,Y) =
∑k

i=1

∑m
j=1 Mi,jτi(X)µj(Y) is

the encoding of a matrix, E(X) = M(β,X) encodes a vector sampled in the column space of M and
a vector sampled in the row space of its transpose, a basic matrix, using same coins β. So we use the
argument in [RZ21] for well formation of E(X) and then use the fact that if D(X) = D(X,α) encodes
a sampling in the row space using coins α, it must be the case that E(α) = D(β).

– Inner Product. In Section 5.4 we present a scheme for proving inner product relations between
encodings D(X) and t(X) to vector d⃗ as described above and table t⃗, respectively. Both t(X) and D(X)
can be naturally written in the Lagrange basis {τi(X)}ki=1 corresponding to set HI . This is not a subgroup
of the field. so use a generalized univariate sumcheck that works in this setting due to [RZ21]. We show

that this result allows to prove a “twisted inner product relation”
∑k

i=1 tidiτi(0). To cancel out the

undesired τi(0) factors, in the CSS argument we will in fact sample set d⃗ to be a vector in the rowspace
of M where coordinate i is divided by τi(0)

−1.

Summary. Overall, the expansion protocol takes as input ϕ(X), t(X), zI(X) and aims to show that ϕ(ξ) =
t(ξ) for all (X − ξ) dividing zI(X). For that, we

1. Prove that an element [D]1 is the commitment to D(X) = M(X,α) =
∑m

j=1 µj(α)τcol(j)(X)(τcol(j)(0))
−1,

where α is a random point sampled by the verifier, and col(j) is the column of non-zero element in row
j i.e. Mj,col(j) = 1. Here {µj(X)}mj=1 is a set of known Lagrange polynomials and {τi(X)}ki=1 is a set

of unknown Lagrange polynomials defined by the set of points HI = {ξi}ki=1 such that (X − ξi) divides
zI(X). For this step, we create E(X) = M(β,X) and prove its well formation, i.e., we prove it is the
encoding of a vector sampled in the row space of M⊤. Then, we prove E(α) = D(β) and thus D(X) is
a vector sampled in the row space of M.

2. From t, [D]1, prove that d⃗ · t⃗ =
∑m

j=1 ajµj(α) = ϕ(α).

We combine this scheme with Caulk+ core (Fig. 1) and obtain Baloo, a lookup argument proving that all
the elements in a⃗, committed to in cm, are included in c⃗.

5 Building Blocks

In this section we introduce argument cp-expansion, a polynomial holographic proof (PHP) [CFF+21] to show
that the vector a⃗ encoded in a polynomial a(X) is an expansion of the vector t⃗ encoded in a polynomial
t(X), which means that all for all j ∈ [m] there exists i ∈ [k] such that aj = ti. cp-expansion uses two core
building blocks: (i) a checkable subspace sampling proof to prove that some polynomial D(X) encodes a
vector in the row space of a matrix M defining the expansion, and (ii) a proof that some inner product
argument holds between the vectors encoded in D(X), t(X), and a(X). We present these building blocks as
PHP and compile them in Section 6.

5.1 Commit-and-Prove Checkable Subspace Sampling

The first step for proving the relation between t⃗ and a⃗ through polynomial encodings, is that prover and
verifier agree on a polynomial D(X) encoding a random element in the row space of matrix M such that
Mt⃗ = a⃗. In the setting of SNARKs, matrix M is part of the instance and, therefore, known by prover and
verifier, while in our case, M is decided by the prover and the verifier only needs to be convinced that it has
the correct form. More concretely, t⃗ is an expansion of a⃗ if and only if M is a matrix that has unit vectors
in its rows, that is, there exists only one non-zero element in each row of M and it equals 1. Overall, the
prover chooses M

For some technical reasons4, it will be simpler to define the argument avoiding explicit reference to matrix
M and refer instead only to polynomials. In these terms, what we want to prove is that D(X) is the correct

4 The matrix M needs to depend on the order of τi(X), although the argument does not enforce any order of HI .
Using polynomials allows us to complete ignore the order of the elements of the set HI .

7

linear combination of the polynomials M⃗(X) = (M1(X), . . . ,Mk(X))⊤ that are some encoding of the rows

M⃗i of M.
We call this variant of CSS schemes a commit-and-prove CSS, a PHP where instead of having an indexer

that in an offline phase computes polynomials describing the matrix, we have that the prover commits to a
matrix and then proves attributes of it. In our commit-and-prove CSS, the prover and verifier first engage in
a commit and sample phase, during which they jointly agree on the statement being proven. Afterwards the
prover and verifier engage in a proving phase where the prover demonstrates that the statement is correct.

Definition 1 (Commit-and-Prove CSS). A commit-and-prove checkable subspace sampling argument
over a field F, is a PHP that defines a set of allowed matricesMI and runs in four different stages:

– Commit Phase: For some set of maximal size k, the prover PCSS sends a commitment cmHI
to a set

HI and a commitment cmM⃗ to a vector M⃗(X) in some allowed setMI(X).
– Sampling Phase: Prover PCSS and verifier VCSS engage in an interactive protocol Sampling. In some

round, the verifier sends cns ← C, and the prover replies with a polynomial D(X) = s⃗⊤M⃗(X), for
s⃗ = Smp(cns).

– Proving Phase: PCSS and VCSS engage in an interactive protocol to prove that(
cmHI

, cmM, cns, D(X)
)
∈ LCSS

for

RCSS =


(
cmHI

, cmM, cns, D(X)
)
, (HI , M⃗(X), D(X)) cmHI

= Commit(HI), |HI | = k,

cmM⃗ = Commit(M⃗(X)), M⃗(X) ∈MI(X)
s⃗ = Smp(cns);

D(X) = s⃗⊤M⃗(X)

 .

– Decision Phase: When the proving phase is concluded, the verifier outputs a bit indicating acceptance
or rejection.

We note that here the term commit it is used in a loose sense to refer to some well-defined polynomial
encoding of the vectors.

Soundness. A Commit-and-Prove checkable subspace sampling argument is ϵ-sound if for any polynomial
time prover P∗

CSS :

Prob

[
instance ̸∈ RCSS cm← P∗

CSS ; instance← Sample⟨P∗
CSS(HI , M⃗(X)),VCSS(cm)⟩;

b = 1 b← ⟨P∗
CSS(instance),VCSS(instance)⟩

]
≤ ϵ.

5.2 Our Concrete CSS Relation

Similar to [RZ21], we encode matrix M following Marlin [CHM+20], through the bivariate polynomial

M(X,Y) =

m∑
j=1

τcol(j)(0)
−1τcol(j)(X)µj(Y),

where col : [m] 7→ [k] is such that col(j) = i if and only if Mj,i is the only non-zero element in row j of M,
and {µj(X)}mj=1, {τi(X)}ki=1 are the Lagrange interpolation polynomials of some set V of size m and HI

of size k, respectively. As in both mentioned works, computing an encoding of a vector sampled in the row
space of M using verifier’s coin α, is done through a partial evaluation M(X,α). That is,

D(X) = M(X,α) =

m∑
j=1

τcol(j)(0)
−1τcol(j)(X)µj(α)

8

is an encoding of d⃗ =
∑m

j=1 µj(α)M⃗j , where M⃗j is the jth row of M and is a unit vector in Fk. The only

difference between their encodings and ours is that we use the set of polynomials {τ̂i(X) = τi(X)
τi(0)
}ki=1 instead

of simply τi(X), i.e. D(X) =
∑k

i=1 diτ̂i(X). The reason is that for the inner product in Section 5.4, we will
need this normalized variant of the Lagrange polynomials that interpolate HI .

For each I, the set of allowed vectors polynomials that encode the set of allowed matrices is

Therefore, we define the allowed set of vectors of polynomials as:

M(X)I =
{
(τ̂col(1)(X), . . . , τ̂col(m)(X)) : for some col : [m] 7→ [k]

}
,

where {τi(X)}ki=1 are the Lagrange polynomials for the set HI , and τ̂i(X) = τi(0)
−1τi(X).

Proving well formation of D(X) can be thought now as proving that D(X) = s⃗⊤M⃗(X) for some (⃗X) ∈
M(X)I and s⃗ = Smp(cns).

The commitment algorithm is given by

Commit(HI) = zI(X) =
∏
ξ∈HI

(X − ξ)

Commit(M⃗(X)) = v(X) where v(νj) = ξ−1
col(j) for all νj ∈ V

Note that v(X) uniquely defines some vector M⃗(X) ∈MHI
, as it is isomorphic to a map from [m] 7→ [k].

In the sampling phase the verifier chooses α ← F randomly from the field and the prover sets D(X)
accordingly. Then the proving phase is run with respect to the relation RzI ,M⃗(X) ∈ RCSS.

RzI ,M⃗(X) =
{ (

α,D(X)
)
, (M⃗(X), D(X)) : s⃗ = (µj(α))

m
j=1, D(X) = s⃗⊤M⃗(X) =

∑m
j=1 µj(α)τ̂col(j)(X)

}
.

5.3 The Scheme

In Fig. 2 we provide a formal PHP for our CSS proving system. During the committing and sampling phase
the prover and verifier agree an instance zI(X), v(X), α,D(X) where zI(X) =

∏k
i=1(X − ξi). Note that

zI(X) is proven to be correctly formed in the Caulk+ core protocol (see Section 3.4).

To prove well formation of D(X), the prover sends a commitment to the polynomial

E(X) = M(X,β) =

m∑
j=1

τcol(j)(0)
−1τcol(j)(β)µj(X)

It proves that E(X) has exactly this form by showing that (i) E(X) has degree less than m and (ii)
E(νj) = τcol(j)(0)

−1τcol(j)(β) for all νj ∈ V . We have that point (ii) holds if and only if there exists Q1(X)
such that

E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = zV (X)Q1(X).

Intuitively, this is done because we have CSS for matrices M′ that have one non-zero element per column
(basic matrices in [RZ21]), meaning we can sample an element in the row space of the transpose to M, which
is a vector in the column space ofM. Later, we prove well formation of the desired encodingD(X) = M(X,α)
of a vector in the row space of M by linking D(X) and E(X). In terms of polynomials, we know how to
prove partial evaluation of the polynomial M(X,Y) at different values for X but not Y , so we do it and
then relate M(β,X) with M(X,α).

9

Comitting Phase: PCSS computes and outputs zI(X) =
∏k

i=1(X − ξi) and v(X) =
∑m

j=1 ξ
−1
col(j)µj(X).

Sampling Phase: V sends α ∈ F and P computes and outputs D(X) = M(X,α) = µ⃗(α)M⃗(X) =∑m
j=1 µj(α)τcol(j)(X)(τcol(j)(0))

−1.

Proving Phase: V sends β ∈ F. P computes E(X) = M(β,X) =
∑m

j=1 µj(X)τcol(j)(β)(τcol(j)(0))
−1 and Q1(X)

such that
E(X)(βv(X)− 1) + zI(β)zI(0)

−1 = zV (X)Q1(X).

It outputs
(
E(X), Q1(X)

)
, a proof that deg(E) < m, and a proof that zI(X) is a commitment to k distinct

roots.
Decision Phase: Accepts if and only if (i) deg(E) < m,

(ii) E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = zV (X)Q2(X)

(iii) D(β) = E(α)

(iv) zI(X) is a commitment to k distinct roots5

Fig. 2. Commit-and-Prove CSS for M⃗(X) ∈ MI(X).

Theorem 3. The protocol in Fig 2 satisfies completeness.

Proof. For equation (ii) recall that
∑m

j=1 µj(X) = 1 and note that

E(X)(βv(X)− 1) =

 m∑
j=1

τcol(j)(β)(τcol(j)(0))
−1µj(X)

β

m∑
j=1

ξ−1
col(j)µj(X)−

m∑
j=1

µj(X)


=

 m∑
j=1

τcol(j)(β)(τcol(j)(0))
−1µj(X)

 m∑
j=1

(
βξ−1

col(j) − 1
)
µj(X)


=

m∑
j=1

τcol(j)(β)(τcol(j)(0))
−1
(
βξ−1

col(j) − 1
)
µj(X) mod zV (X)

=

m∑
j=1

∏
i ̸=col(j)

β − ξi
ξcol(j) − ξi

∏
i ̸=col(j)

ξcol(j) − ξi

−ξi
ξ−1
col(j)

(
β − ξcol(j)

)
µj(X) mod zV (X)

=

m∑
j=1

∏
i̸=col(j)

β − ξi
−ξi

ξ−1
col(j)

(
β − ξcol(j)

)
µj(X) mod zV (X)

= −zI(β)zI(0)−1
m∑
j=1

µj(X) mod zV (X) = −zI(β)zI(0)−1 mod zV (X)

Thus, there exists Q1(X) such that E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = Q1(X)zV (X)

Equation (iii) follows as D(X) = M(X,α) and E(X) = M(β,X). ⊓⊔

Theorem 4. If zI(X) =
∏k

i=1(X − ξi) for unique roots ξi then the CSS protocol in Fig. 2 is sound.

Proof. Set vj = v(νj) for all j ∈ [m], then there exists q(X) ∈ F[X] such that v(X) =
∑m

j=1 vjµj(X) +
zV (X)q(X). We first argue that the PHP enforces the form of E(X) with respect to the evaluations {vj}j∈[m].

5 In our protocol, well formation of zI(X) is given by Caulk+ core.

10

We then argue that given this E(X), the form of D(X) is determined by v(X) and zI(X) except with neg-
ligible probability. Third we will show that v−1

j is a root of zI(X) for all j ∈ [m]. Finally we will show that
D(X) is exactly in our allowed set of matrices.

Form of E(X): We show that

E(X) =

m∑
j=1

(
−zI(β)

zI(0)(βvj − 1)

)
µj(X)

Since deg(E) < m, there exist coefficients {ej}mj=1 such that E(X) =
∑m

j=1 ejµj(X). So we have:

E(X)(βv(X)− 1) =

 m∑
j=1

ejµj(X)

β

m∑
j=1

vjµj(X) + zV (X)q(X)−
m∑
j=1

µj(X)


=

m∑
j=1

ej
(
βvj − 1

)
µj(X) mod zV (X)

and then equation (ii) says that for all νj ∈ V,

m∑
j=1

ej(βvj − 1)µj(νj) + zI(β)zI(0)
−1 = 0,

and then for all j ∈ [m], ej(βvj − 1) = −zI(β)zI(0)−1. Thus for all j, βvj − 1 ̸= 0 and it follows that

ej =
−zI(β)

zI(0)(βvj−1) .

Form of D(X): We show that

D(X) = −
m∑
j=1

zI(X)µj(α)

zI(0)vj(X − v−1
j)

except with negligible probability. Let

f(X) =

m∑
j=1

 m∏
s=1,s̸=j

(Xvs − 1)

 zI(0)
−1zI(X)µj(α) +D(X)

m∏
j=1

(Xvj − 1)

Then at random β we have that

f(β) =

m∑
j=1

 m∏
s=1,s̸=j

(βvs − 1)

 zI(0)
−1zI(β)µj(α) +D(β)

m∏
j=1

(βvj − 1)

⇒ f(β)∏m
j=1(βvj − 1)

=

m∑
j=1

zI(β)

zI(0)(βvj − 1)
µj(α) +D(β)

⇒ f(β)∏m
j=1(βvj − 1)

= −E(α) +D(β)

provided that
∏m

j=1(βvj − 1) ̸= 0, which is the case as explained above. Now by the verifiers (iii) check we
have that −E(α) + D(β) = 0 and hence that f(β) = 0. If f(X) ̸= 0 then f(β) ̸= 0 except with negligible

11

probability because v(X), zI(X), D(X) are chosen before β. Thus

D(X) = −
m∑
j=1

(∏m
s=1,s ̸=j(Xvs − 1)

)
zI(0)

−1zI(X)µj(α)∏m
j=1(Xvj − 1)

= −
m∑
j=1

zI(X)µj(α)

zI(0)vj(X − v−1
j)

Form of v(X): We show that for all j ∈ [m], v−1
j is a root of zI(X). In other words, there exists a map

col : [m] 7→ [k] such that for all j ∈ [m], v−1
j = ξcol(j). Indeed, define J = {j : v−1

j /∈ HI}, and the set

V = {vj : j ∈ J}. We assume for contradiction that there is some v−1
j that is not a root of zI(X), which

means that V is not empty. Then,

DJc(X) = −
∑

j∈[m]\J

zI(X)µj(α)

zI(0)vj(X − v−1
j)

is a polynomial, and we can write:

D(X)−DJc(X) = −
∑
j∈J

zI(X)µj(α)

zI(0)vj(X − v−1
j)

= −zI(X)

zI(0)

∑
v∈V

1

v(X − v−1)

 ∑
j:vj=v

µj(α)

 = −zI(X)

zI(0)

∑
v∈V

Pv(α)

v(X − v−1)
,

where, for any v ∈ V , Pv(X) =
∑

j:vj=v µj(X). Regardless of α, this identity can only hold if, for all v ∈ V ,

Pv(α) = 0. Indeed, the left side is a polynomial because the prover sent D(X) and DJc(X) is a polynomial
by definition of J , but a polynomial cannot be equal to a sum of non-trivial rational functions with different
poles. The probability that Pv(α) = 0 for all v ∈ V can be bounded by the probability that Pv(α) = 0 for any
single v ∈ V . But this probability is at most m−1

|F| , because all these polynomials were defined independently

of α. We conclude that the probability that V is not empty is negligible.

D(X) is in the space of allowed matrices: Let us substitute our mapping col from v−1
j to the roots of

zI(X) into our expression for D(X):

D(X) = −
m∑
j=1

zI(X)µj(α)

zI(0)ξ
−1
col(j)(X − ξcol(j))

=

m∑
j=1

−ξcol(j)zI(X)µj(α)

zI(0)(X − ξcol(j))

Now the lagrange polynomials for the set {ξi}ki=1 are given by

τi(X) =

k∏
s=1,s̸=i

X − ξs
ξi − ξs

=
zI(X)

(X − ξi)
∏k

s=1,s ̸=i(ξi − ξs)

Thus

τcol(j)(0) =
zI(0)

−ξcol(j)
∏k

s=1,s̸=col(j)(ξcol(j) − ξs)
and τcol(j)(0)

−1τcol(j)(X) =
−ξcol(j)zI(X)

zI(0)(X − ξcol(j))

Substituting these into our expression for D(X) yields our result

D(X) =

m∑
j=1

τcol(j)(0)
−1τcol(j)(X)µj(α) =

m∑
j=1

µj(α)τ̂col(j)(X)

⊓⊔

12

5.4 Inner products from Generalized Sumcheck

In this section, we introduce a scheme for proving that for two vectors a⃗, b⃗ ∈ Fk encoded as polynomials
a(X), b(X) it is true that a⃗ · b⃗ = σ. Importantly, our scheme uses polynomial encodings of both vectors, but

in the case of vector a⃗ the encoding is normalized, in particular, a(X) =
∑k

i=1 aiτ̂i(X) =
∑k

i=1 ai
τi(X)
τi(0)

for

the set of Lagrange interpolation polynomials corresponding to some set HI of size k. This is because we will
instantiate our inner product argument setting a(X) to be polynomial D(X) from the previous section and

D(X) =
∑k

i=1
di

τi(0)
τi(X), where d⃗ is a vector in the rowspace of the lookup matrix M.

Formally, we build a proof system for the following relation:

Rginnerprod =
{

(a(X), b(X), zI(X)) ; (⃗a, b⃗, HI) ai = a(ξi)τi(0)
−1, bi = b(ξi) and

∑k
i=1 aibi = σ

}
for HI = {ξi}ki=1 some fixed set of known size k and {τi(X)}ki=1 its Lagrange interpolation polynomials. Let
zI(X) be the vanishing polynomial of HI . Inspired in the linear check of Aurora [BCR+19], we compute an

encoding
∑k

i=i aibiτ̂i(X) of the Hadamard product between a⃗, b⃗ and use a univariate sumcheck argument
to obtain the inner product from it. Importantly, since HI may contain any set of distinct points that do
not necessarily form a multiplicative group, we instantiate our inner product argument with the generalized
sumcheck in Section 3.5.

The intuition is that for all Lagrange interpolation polynomials {λj(X)}Nj=1 corresponding to a mul-

tiplicative subgroup H of size N , we have λj(0) = N−1. Then, for any polynomial p(X), to prove that∑N
j=1 p(ω

j) = σ, we note that p(X) =
∑N

j=1 p(ω
j)λj(X) mod zH(X), and the latter polynomial evaluates

to
∑N

j=1 p(ω
j)λj(0) = σN−1 in 0. When it comes to arbitrary sets HI , the corresponding Lagrange polyno-

mials {τi(X)}ki=1 take different values when evaluated in 0. The generalized sumcheck observes that as soon

as one of the encoding polynomials uses normalized Lagrange polynomials, that is τ̂i(X) = τi(X)
τi(0)

, the inner

product behaves the same way. The protocol is described in Fig. 3.

Committing Phase:
– Set the polynomial

zI(X) =
∏
ξ∈HI

(X − ξ)

Proving Phase: PIP computes R(X), Q(X) such that

a(X)b(X)− σ = XR(X) + zI(X)Q(X).

It outputs
(
R(X), Q(X)

)
and a proof that zI(X) has distinct k roots.

Decision Phase: VIP accepts if and only if (i) deg(R(X)) < k − 1, and

a(X)b(X) = XR(X) + zI(X)Q(X),

and (ii) zI(X) has distinct k roots.

Fig. 3. PHP for a generalised inner product argument. As before, well-formation of zI(X) is given by Caulk+ core.

Theorem 5 (Inner Product Polynomial Relation). The argument in Fig. 3 is a statistically sound
PHP for the relation Rginnerprod.

13

Proof. Let ξi, i = 1, . . . , k be the roots of zI(X). If we define ai = a(ξi)τi(0)
−1 and bi = b(ξi), we can

represent a(X) =
∑k

i=1 aiτi(0)
−1τi(X) + zI(X)q1(X) and b(X) =

∑k
j=1 bjτj(X) + zI(X)q2(X). Then there

exists q3(X) such that

a(X)b(X) =

(
k∑

i=1

aiτi(0)
−1τi(X)

) k∑
j=1

bjτj(X)

+ zI(X)q3(X).

We recall that for i ̸= j, zI(X)|τi(X)τj(X) and also zI(X)|τ2i (X) for all i ∈ [k]. Hence, there exists q4(X)
such that

a(X)b(X) =
∑
i

aibiτi(0)
−1τi(X) + zI(X)q4(X)

Finally observe that ∑
i

aibiτi(0)
−1τi(X) =

∑
i

aibi +XR(X).

This is because the left hand side evaluated at 0 is
∑

i aibiτi(0)
−1τi(0) =

∑
i aibi. for some XR(X) of degree

strictly smaller than zI(X). Putting this together we have that

a(X)b(X) =
∑
i

aibi +XR(X) + zI(X)q4(X)

and therefore
∑

i aibi = σ if and only if

a(X)b(X)− σ = XR(X) + zI(X)Q(X)

for some R(X), Q(X) for R(X) of degree k − 2. ⊓⊔

6 Baloo Full Construction

In this section, we provide our full Baloo construction for proving the relation

Rlookup =

{
cm; ϕ(X) cm = Commit(srs, ϕ(X))

∀ν ∈ V, ϕ(ν) ∈ {cs}Ns=1

}
where V is a set of roots of unity that is independent from N (the size of the lookup table C) and Commit
is the KZG commitment algorithm [KZG10]. For simplicity we have omitted c⃗ and V from the relation
description. The prover for the full construction is formally given in Fig. 5 and the verifier is given in Fig. 6
with all optimisations included.

Before describing the full construction, we describe the protocol for performing commit-and-prove lookups.
Baloo is the result of compiling our building blocks into a succinct proof and use it after the Caulk+ core
protocol in Section 3.4. The compiled subprotocol is given in Fig. 4. In other words we describe a protocol
for proving the relation

Rcp-expansion =

{
cm; ϕ(X) cm = Commit(srs, ϕ(X))

∀ν ∈ V, ϕ(ν) ∈ {ti}ki=1

}
with respect to some table {ti}ki=1 that is potentially unknown to the verifier. For simplicity we have omitted
t⃗ and V from the relation description.

The commit and prove lookup takes as input commitments t, cm to vectors t⃗ ∈ Fk, a⃗ ∈ Fm encoded as
polynomials t(X), ϕ(X). It also takes as input [zI]2 a commitment to the vanishing polynomial respect to a set
HI of known size k. The polynomial t(X) is computed using the Lagrange interpolation basis corresponding to
set HI . The polynomial ϕ(X) is computed using the Lagrange interpolation basis corresponding to subgroup
V.

14

The prover aims to convince the verifier that there exists some mapping col : [m] 7→ [k] such that
aj = tcol(j) for all j ∈ [m]. The prover and verifier use as subroutine the CSS from Fig. 2 to agree on an
encoding D(X) such that

D(X) =

m∑
j=1

µj(α)τ̂col(j)(X)

at a random point α. Then the prover and verifier engage in the generalised inner product argument
from Fig. 3 so show that, if di = D(ξi)τi(0)

−1, and t(xi) = ti,

k∑
i=1

diti = ϕ(α).

Since di =
∑

j∈col−1(i) µj(α),

ϕ(α) =

k∑
i=1

diti =

k∑
i=1

ti
∑

j∈col−1(i)

µj(α) =

m∑
j=1

µj(α)tcol(j)

we thus have that sj = ϕ(νj) = tcol(j) with overwhelming probability, as required.

6.1 Compilation of the cp-expansion Subprotocol

We compile our PHP into a non-interactive succinct argument following the compiler in [CFF+21], and
obtain the protocol in Fig. 4. This proves soundness of our scheme under the q-dlog assumption.

Recall that this protocol is a subroutine of Baloo in Fig. 5 and thus the common inputs to the systems
are the commitments to zI(X), C(X) and t(X). The SRS of the full scheme is

(
{[xs]1,2}Ns=1

)
, where N is the

maximum degree among all polynomials. Prover and Verifier instantiate PIP and VIP for the PHP of Fig. 3.
All oracle polynomials sent by PIP are translated into polynomials evaluated (in the source groups) at x.
Polynomial equations are checked by the verifier from group elements using pairings. For quadratic checks,
the prover must send the commitments to the polynomials in different source groups.

All the openings at one point, as well as the degrees of the opened polynomials, are proven using the
KZG polynomial commitment. For degree checks with deg(p) = d < N and p(X) a polynomial that is never
opened, the prover sends a single extra polynomial p̂(X) = XN−dp(X), and the verifier checks one extra
pairing equation as explained in Section 3.3.

6.2 The Full Baloo Construction

The final construction Baloo is described in Fig. 5 and Fig. 6. It consists simply of combining the Caulk+
core protocol from Section 3.4 and the cp-expansion argument in Fig. 4. We also apply several efficiency
optimisations which are specified below.

Efficiency Optimisations In this section we describe some optimizations that can be applied to the
protocol in Fig. 4 in order to achieve a construction with smaller proof size and that requires less work from
the verifier.

Opening t polynomials in one point. As noted in [GWC19],[CHM+20], whenever we have many openings
of different polynomials at the same point, the prover can provide a joint proof after receiving a random
element γ ∈ F from the verifier, i.e., if

(u1, [w1]1)← KZG.Open(srsKZG, f1(X),deg = d, α)

(u2, [w2]1)← KZG.Open(srsKZG, f2(X),deg = d, α)

then [w]1 = [w1]1 + γ[w2]2 is a proof that f1(X) + γf2(X) opens to u1 + γu2 at α.

15

Common input: t = [t(x)]1, cm = [ϕ(x)]1, [zI]2 = [zI(x)]2 and srs =
{
{[xs]1,2}Ns=1

}
Provercp-e:

– Compute v(X) =
∑m

j=1 ξ
−1
col(j)µj(X),

– Output π1 =
(
[v]2 = [v(x)]2,

)
.

Verifiercp-e: Send α ∈ F
Provercp-e:

– Compute D(X) = M(X,α) =
∑m

j=1 µj(α)τ̂col(j)(X) and find R(X), Q2(X) such that

D(X)t(X)− ϕ(α) = XR(X) + zI(X)Q2(X)

– Set R̂ = XN−m+2

– Output π2 =
(
[D]2 = [D(x)]2, [R]1 = [R(x)]1, [R̂]1 = [R̂(x)]1, [Q2]1 = [Q2(x)]1

)
.

Verifiercp-e: Send β ∈ F
Provercp-e:

– Compute E(X) = M(β,X) =
∑m

j=1 µj(X)τ̂col(j)(β) and Q1(X) such that

E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = zV (X)Q1(X)

–
(
u1, [w1]1

)
← Open.KZG(srsKZG, [E]1,deg = m− 1, α)

–
(
u2, [w2]1

)
← Open.KZG(srsKZG, cm,deg = ⊥, α)

–
(
u3, u4, [w3]1

)
← Open.KZG(srsKZG, [zI]2,deg = ⊥, (0, β))

–
(
u5, [w4]1

)
← Open.KZG(srsKZG, [D]2,deg = ⊥, β)

– Output π3 =
(
[E]1 = [E(x)]1, [Q1]1 = [Q1(x)]1, (u1, [w1]1), (u2, [w2]1), (u3, u4, [w3]1), (u5, [w4]1)

)
.

Verifiercp-e: Accept if and only if

(i) e (t, [D]2)− e ([1]1u2, [1]2) = e ([R]1, [x]2) + e ([Q2]1, [zI]2)

(ii) e ([E]1, (β[v]2 − 1)) + e
(
[1]1(1− u−1

3 u4), [1]2
)
= e ([Q1]1, [zV (x)]2)

(iii) e([R]1, [x
N−m+2]2) = e([R̂]1, [1]2)

(iv) u1 = u5.

(v) 1← KZG.Verify(srsKZG, [E]1,deg = m− 1, α, u1, [w1]1)

(vi) 1← KZG.Verify(srsKZG, cm,deg = ⊥, α, u2, [w2]1)

(vii) 1← KZG.Verify(srsKZG, [zI]2,deg = ⊥, (0, β), (u3, u4), [w3]1)

(viii) 1← KZG.Verify(srsKZG, [D]2,deg = ⊥, β, u5, [w4]1)

Fig. 4. cp-expansion argument for proving ϕ(X) has entries in a (potentially unknown) subtable t(X).

16

Openings for Pairings. To save the verifier some work, we use a technique introduced in [GWC19] and
attributed to M. Maller. In order to verify that a(X)b(X) = c(X)d(X) for a(X), b(X), c(X), d(X) the
algebraic representations of [a]1, [b]2, [c]1, [d]2, instead of asking the verifier to check that

e([a]1, [b]2) = e([c]1, [d]2),

we ask the prover to show that [b]2, [d]2 open to u1, u2 at β and that u1[a]1−u2[c]1 opens to zero at β. Note
that now the prover can also commit to b(X) and d(X) in G1 instead of G2. We apply this technique to the
equations that verify the inner product relation and the well formation of [E]1; that is, equations (i) and
(ii). Note that we can open this equations together with other elements. Indeed, we will check equation (i)
by opening a polynomial [P1]1 at β, and batch that KZG opening together with the one for [D]1.

Degree checks. Degree checks as deg(f) ≤ k < d can be included in a KZG proof that f(α) = u if the prover

sets ŵ(X) = f(X)−f(α)
X−α , outputs (u, [w]1 = [ŵ(x)xd−k+1]) and the verifier checks

e
(
[f]1 − [u]1, [x

d−k+1]2
)
= e
(
[w]1, [x− α]2

)
,

as explained in Section 3.3. This is conditional on α being randomly chosen after f(X).

Throughout Baloo we require 3 degree checks: (i) that deg(E(X)) < m − 1, (ii) that deg(zI(X)) = m,
and (iii) that deg(R(X)) = m− 2. For (i) we check via a KZG opening that E(X) has bounded degree. For
(ii) we check that zI(X)−Xm has degree bounded by m− 1 during our opening check that zI(0) is correct.
Degree bounding f(X) < k via an opening at 0 checks that

e
(
[f]1 − [u]1, [1]2

)
= e
(
[w]1, [x]2

)
and e

(
[f]1, [x

d−k+2]2
)
= e
(
[w]2, [x]2

)
,

because 0 is not a random point.

For (iii) we recall that the polynomial R(X) is sent for the inner product relation to show that a(X)b(X)−
σ = XR(X)+zI(X)Q(X). In our optimised protocol we instead send R̄(X) = XR(X) and show that R̄(0) =
0 and that R̄(X) has degree bounded by m − 1. We then show that a(X)b(X) − σ = R̄(X) + zI(X)Q(X).
This is equivalent because R̄(0) = 0 if and only if R̄(X) = XR(X). Where we can batch this check with
opening and degree bounding zI(X) at the same point (namely 0) and with the same degree (m − 1), this
check is essentially free.

Batching Pairings. We also apply standard techniques to batch pairings that share the same elements in
one of the two groups. Namely, upon sampling a uniform γ2 ∈ F, the verifier can aggregate the equations

e([a]1, [b1]2) = e([c1]1, [d]2) and e([a]1, [b2]2) = e([c2]1, [d]2),

as e([a]1, [b1 + γb2]2) = e([c1 + γc2]1, [d]2)

Note that we can adapt KZG openings equations so they can be batched further, namely if we parse the
verification pairing as e

(
[f]1 − u+ [w]1α, [1]2

)
= e
(
[w]1, [x]2

)
, then two openings of different polynomials at

different points can be verified by two pairings.

Finally, note that in order to check E(α) = D(β), the proves needs to provide proof of both openings
but can only send u2 = E(α) and the verifier checks D(β) opens to u2 as well.

7 Baloo Prover Cost

In this section we elaborate on the Prover’s computational costs while showing that those are quasilinear in
m.

17

Common input: C = [C(x)]1, [zH(x)]1 = [
∏N−1

i=0 (x− ωi)]1, srs = {[xi]1,2}di=1

1. Take as input {[Qi(x)]1, [Hi(x)]1}Ni=1 and ϕ(X)
2. Choose I ⊂ [N] such that |I| = k and ∀ν ∈ V, ∃ξ ∈ HI s.t. ϕ(ν) = C(ξ)
3. Compute v(X) =

∑m
j=1 ξ

−1
col(j)µj(X)

4. Output π1 =
(
[zI]2 = [zI(x)]2, [v]1 = [v(x)]1, t = [t(x)]1

)
.

5. Receive α ∈ F

6. Compute D(X) = M(X,α) =
∑m

j=1 µj(α)τ̂col(j)(X)

7. Find R(X), Q2(X) such that deg(R(X)) < m− 1, R(0) = 0, and

D(X)t(X)− ϕ(α) = R(X) + zI(X)Q2(X)

8. Output π2 =
(
[D]1 = [D(x)]1, [R]1 = [R(x)]1, [Q2]1 = [Q2(x)]1,

)
.

9. Receive β ∈ F

10. Compute E(X) = M(β,X) =
∑m

j=1 µj(X)τ̂col(j)(β) and Q1(X) such that

E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = zV (X)Q1(X)

11. Output π3 =
(
[E]1 = [E(x)]1, [Q1]1 = [Q1(x)]1

)
12. Receive ρ, γ ∈ F

13. Compute ([a1]1, [a2]1,)← ProverC+(t(X),HI) and set [a]1 = [a1]1 + γ[a2]2
Compress Caulk+ proof.

14. Set u1 = E(α), u2 = ϕ(α),

ŵ1(X) =
E(X)− u1

X − α
+ γ

ϕ(X)− u2

X − α

Prove that E(α) = u1, ϕ(α) = u2, deg(E(X)) < m

15. Set u3 = zI(0) and

w2(X) =
zI(X)− u3

X
+ γ

R(X)

X
+ γ2Xd−m+1(zI(X)−Xm) + γ3Xd−m+1R(X)

Prove that zI(0) = u3, R(0) = 0, deg(zI(X)) = m and deg(R(X)) < m

16. Set P1(X) = t(X)D(β)− ϕ(α)−R(X)− zI(β)Q2(X), u4 = zI(β) and

w3(X) =
D(X)− u1

X − β
+ γ

zI(X)− u4

X − β
+ γ2P1(X)

X − β

Prove that D(β) = E(α), zI(β) = u4, t(X)D(X)− ϕ(α) = R(X) + zI(X)Q2(X)

17. Set u5 = E(ρ), P2(X) = E(ρ)(βv(X)− 1) + zI(β)zI(0)
−1 − zV (ρ)Q1(X),

w4(X) =
E(X)− u5

(X − ρ)
+ γ

P2(X)

X − ρ

Prove that E(X)(βv(X)− 1) + zI(β)zI(0)
−1 = zV (X)Q1(X)

18. Set s = d−m+ 1 for d the maximum power of x in srs and output

π3 =
(
u1, u2, u3, u4, u5, [a]1, [w1]1 = [ŵ1(x)x

s]1, [w2]1 = [w2(x)]1, [w3]1 = [w3(x)]1, [w4]1 = [w4(x)]1
)
.

Fig. 5. Optimized Baloo prover. Underlined steps are messages from Verifier (Fig. 6).

18

Common input: C = [C(x)]1, [zH(x)]1 = [
∏N−1

i=0 (x− ωs)]1, srs = {[xi]1,2}di=1

Take cm as input.
Receive π1 =

(
[zI]2, [v]1, [t]1

)
and send α ∈ F

Receive π2 =
(
[D]1, [R]1, [Q2]1

)
and send β ∈ F

Receive π3 =
(
[E]1, [Q1]1

)
and send ρ, γ ∈ F

Receive π4 = (u1, u2, u3, u4, u5, [a]1, [w1]1, [w2]1, [w3]1, [w4]1)
Compute

[P1]1 = u1[t]− u2[1]1 − [R]1 − u4[Q2]1

[P1]1 = [t(x)D(β)− ϕ(α)−R(x)− zI(β)Q2(x)]1

[P2]1 = u5(β[v]1 − 1) + u−1
3 u4 − zV (ρ)[Q1]1

[P2]1 = [E(ρ)(βv(x)− 1) + zI(β)zI(0)
−1 − zV (ρ)Q1(x)]1

Set s = d−m+ 1 for d the maximum power of x in srs and accept if and only if
1. e((C− t) + γ[zH(x)]1, [1]2)− e([a]1, [zI]2) = 0

Check that C+ elements [a1]1 and [a2]1 verify.

2. e(α[w1]1, [1]2)− e([w1]1, [x]2) + e([E]1 + γcm− [u1 + γu2]1, [x
s]2) = 0

Check that E(α) = u1, ϕ(α) = u2, deg(E(X)) < m

3. e(−[u3]1+γ[R]1, [1]2)−e([w2]1, [x]2)+e([1+γ2xs+1]1, [zI]2)+e(−γ2[xm]1+γ3[R]1, [x
s+1]2) = 0

Check that zI(0) = u3, R(0) = 0, deg(zI(X)) = m and deg(R(X)) < m

4. e(β[w3]1 + [D]1 + γ2[P1]1 − [u1 + γu4]1, [1]2)− e([w3]1, [x]2) + e([γ]1, [zI]2) = 0
Check that D(β) = E(α), zI(β) = u4, t(X)D(X)− ϕ(α) = R(X) + zI(X)Q2(X)

5. e(ρ[w4]1 + [E]1 + γ[P2]1 − [u5]1, [1]2)− e([w4]1, [x]2) = 0
Check that E(ρ) = u5 and E(X)(βv(X)− 1) + zI(β)zI(0)

−1 = zV (X)Q1(X)
These checks can be batched into 1 equation with 5 pairings.

Fig. 6. Optimized Baloo verifier.

19

7.1 Generic algorithms

An excellent survey of various algorithms for polynomials with pseudocode is given in [vzGG13]. Let F be a
domain with Fast Fourier Transform of size N . Polynomials in F[X] are considered as vectors of coefficients
in the standard basis {1, X,X2, . . . , XN} unless stated otherwise. The set I does not support FFTs. The
computational costs are counted in operations in F. We are using the following basic results (everywhere
d < N):

– Multiplication: two polynomials of degree d can be multiplied in O(d log d) time.

– Inversion: given a polynomial f of degree d can be inverted modulo Xℓ, ℓ > d, in O(d log d) time.

– Division: a polynomial f of degree d can be divided with a remainder by a polynomial g of degree d′ < d
in O(d log d) time, i.e. we can find q(X), r(X) of degree d′′ < d such that

f(X) = q(X)g(X) + r(X)

– Vanishing polynomial: a polynomial zI(X) that vanishes on set I of size d can be computed in O(d log2 d)
time.

– Evaluation: a polynomial f of degree d can be evaluated in d points in O(d log2 d) time.

– Interpolation: a polynomial f of degree d with values ci at points xi, 0 ≤ i ≤ d, can be computed
(interpolated) in O(d log2 d) time.

7.2 Prover costs in Baloo

For simplicity we assume that m = k.

Aggregation of individual proofs . The subset opening proofs for the set of points HI ⊆ H are computed as

[H]1 =
∑
i∈I

 m∏
s∈I,s̸=i

1

(ωi − ωs)

 [Hi]1

The coefficients ri =
(∏m

s∈I,s̸=i
1

(ωi−ωs)

)
are altogether computed in O(m log2 m) time as follows. Let Z ′

I(X)

be the derivative of ZI(X) then we have ri = 1
Z′

I(ω
i) [vzGG13, p. 300]. We use a vanishing polynomial

reconstruction algorithm (see above) and symbolically compute Z ′
I(X) inO(m log2 m) time. Then we evaluate

Z ′
I(X) over I also in O(d log2 d) time. Thus [H]1 can be computed in m group operations.

Running time of Caulk+ core. The costs of Fig. 5 break down as follows:

– Polynomial C(x)−t(x)
zI(x)

similarly to [H]1 using O(m log2 m) field operations. Then it takes m group oper-

ations to compute W1.

– The group element W2 is computed as a linear combination of [Hi(x)]1 as in [ZBK+22] in time m group
and O(k log2 k) field operations (see above).

– The polynomial in W3 has O(m) nonzero coefficients and thus needs at most m group operations to be
computed.

In Fig. 5 the elementW3 is unused and this computation can be omitted. Overall we need 2m group operations
and O(m log2 m) field operations.

20

Running time of cp-expansion argument Fig. 4 We first note that Lagrange polynomials µj(X) and τi(X)
have succinct form. Concretely we have, assuming |V| = m:

µj(X) =
Xm − 1

mν−j(X − νj)
, τi(X) =

zI(X)

z′I(ξi)(X − ξi)
=

rizI(X)

(X − ξi)

where z′I(X) is the derivative of zI(X). All µj(X) can be batch-evaluated in m points in m logm time as
one evaluation is logm time. For τi(X) we compute ri =

1
z′
I(ξi)

using the evaluation algorithm for zI(X) in

O(m log2 m) time, and then inverting in m log(m) time. Then in order to batch-evaluate all τi(X) at some
point β, we evaluate zI(X) at β in m time and each ri

β−ξi
in logm time. These costs are all in F.

The field operation costs of Fig. 4 break down as follows:

– Polynomial v(X) has degree m and can be computed via interpolation in O(m log2 m) .
– Polynomial D(X) is computed by interpolation as follows. We first batch-evaluate µj(X) at α in

O(m logm) time. Then we batch-evaluate τi(X) at 0 in O(m log2 m) time, so that we know all coef-
ficients of τcol(j)(X) in the sum. Those coefficients are exactly values of D(X) at ξi. From those we

interpolate D(X) in O(m log2 m) time.
– Polynomials R(X), Q1(X), Q2(X) can be computed using the division algorithm (above) in O(m log2 m)

time
– Polynomial E(X) is computed by interpolation again. As for D(X) we batch-evaluate all τi(X) at β so

that we know all coefficients of µj(X) in O(m log2 m) time. As µj(X) are defined over a subgroup of
roots of unity, the interpolation of E(X) is in O(m logm) time.

Computing [zI(x)]2 takes m G2 operations. Computing the 12 G1 elements that Prover sends takes 11m G1

operations as those commitments are either to polynomials of degreem (those are t, v,D,E,Q1, R,Q2, w3, w4)
or have at most m non-zero coefficients ([w1]1, [w2]1), or need constant time ([a]1). Overall we need 11m G1

operations, m G2 operations, and O(m log2 m) field operations.

Full running cost By summing up the prover costs for Caulk+ core and cp-expansion we get that the total
Prover cost in Baloo is 13m G1 operations, m G2 operations and O(m log2 m) field operations.

8 Faster SNARKs using Baloo

Commit-and-prove lookup tables are especially suitable for the Ethereum Foundation’s zero-knowledge
Ethereum Virtual Machine (zkEVM), which nowadays uses Halo2 with KZG commitments as a backend. The
zkEVM is an effort to outsource the evaluation of the Ethereum Virtual Machine on some chosen inputs to
a powerful prover, and then demonstrate that the result is correct to a computationally constrained verifier.
Importantly, what the zkEVM aims to is a succinct proof of validity of the blocks, and since they are public,
no zero-knowledge is required. In other words, the proofs are sound but not zero-knowledge, and Baloo can
be safely used.

In this section we describe an overview of how lookups are currently used in the Halo2 proving system
[BGH20] and claim Baloo can be used as a drop in replacement to the Halo2 lookup argument with better
prover efficiency. In other words Baloo is backwards compatible with instantiations of Halo2 that use KZG
commitments.

Baloo is a proving system for the relation that

Rlookup =

{
cm; ϕ(X) cm = Commit(srs, ϕ(X))

∀ν ∈ V, ϕ(ν) ∈ {cs}Ns=1

}
where V is a set of roots of unity that is independent from N (the size of the lookup table C) and Commit
is the KZG commitment algorithm [KZG10]. This lookup argument only handles a single column. Suppose
instead that we want to prove f(x) = y by precomputing all possible values T = {(xs, f(xs))}Ns=1 and looking
up whether (x, y) ∈ T . To achieve this we require more functionality from our lookup argument. In particular
we need to be able to prove a lookup argument over multicolumned tables.

21

Multi-column Baloo We build on the Halo2 approach 6.

Given a lookup with input column polynomials [ϕ0(X), . . . , ϕk−1(X)] and a multi-columned table of the

form C = {ci,j}i=k,s=N
i,s=1 , their prover shows that for all ν ∈ V, there exists some s such that (ϕ0(ν), . . . , ϕk−1(ν))

= (c0,s, . . . , ck−1,s). It does this by taking a random linear combination of the input column polynomials and
the table columns and then running a lookup argument over the compressed values. We present a similar
compression for Baloo such that we can run lookups over multi-columned tables.

Similarly than in Caulk+, described in Section 3.4, the pre-processing phase commits to the table
{ci,s}k,Ni,s=1 by committing to the column polynomials

Cs(X) =

N∑
s=1

csλs(X)

for {λs(X)}Ns=1 a set of roots of unity H = {ωs}Ns=1 of size N . The pre-processing phase also computes
auxiliary information for the prover, namely it computes commitments to the polynomials

{Qi,s(X) = (Cs(X)− Cs(ωj))/(X − ωs)}k,Ni,s=1, Hs(X) = {zH(X)/(X − ωs)}Ns=1

in time kN log2(N).

Given the input column polynomials [ϕ0(X), . . . , ϕk−1(X)] we sample a random value θ. Suppose that
I is the set of points such that j ∈ I if and only if (c0,s, . . . , ck−1,s) appears in the input columns i.e.
(c0,s, . . . , ck−1,s) ∈ {(ϕ0(ν), . . . , ϕk−1(ν))}ν∈V. Then the prover commitments to the compressed polynomials

ϕcompressed(X) = ϕ0(X) + θϕ1(X) . . .+ θk−1ϕk−1(X) =

m∑
j=1

(
k∑

i=0

θiϕi(νj)

)
µj(X)

Ccompressed(X) = C0(X) + θC1(X) . . .+ θk−1Ck−1(X) =

N∑
s=1

(
k∑

i=0

θici,s

)
λs(X)

for s ∈ I, Qcompressed,j = Q0,s(X) + θQ1,s(X) . . .+ θk−1Qk−1,s(X) =

(
k−1∑
i=0

θiCi(X)− θiCi(ω
s))

)
/(X − ωs)

Then we have that Ccompressed(X) describes the table Ccompressed = {
∑k−1

i=0 θici,s}Ns=1. The randomiser θ is

sampled from a large field. Thus the probability that
∑k

i=0 θ
iϕi(ν) ∈ Ccompressed is negligible unless there

exists some s such that (ϕ0(ν), . . . , ϕk−1(ν)) = (c0,s, . . . , ck−1,s). The auxiliary information that the prover
requires for efficiency, namely commitments to {Hs(X), Qcompressed,s(X)}s∈I , can be computed in km time
where m = |V| is the number of lookups.

Thus for cmcompressed a commitment to ϕcompressed(X), the prover demonstrates that cmcompressed ∈ Rlookup

with respect to the table Ccompressed.

References

AR20. Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commitments for blockchains and be-
yond. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493 of Lecture Notes in Computer
Science, pages 839–869. Springer, 2020. 3

BaCCL21. Olivier Bégassat, Alexandre Belling andThéodore Chapuis-Chkaiban, and Nicolas Liochon1. A specifica-
tion for a zk-evm, 2021. https://ethresear.ch/t/a-zk-evm-specification/11549. 1

6 https://zcash.github.io/halo2/design/proving-system/circuit-commitments.html

22

https://ethresear.ch/t/a-zk-evm-specification/11549
https://zcash.github.io/halo2/design/proving-system/circuit-commitments.html

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, International Conference on the The-
ory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer, 2004. 3

BCC+15. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit.
Short accountable ring signatures based on DDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl, editors, Computer Security - ESORICS 2015 - 20th European Symposium on Research in Com-
puter Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I, volume 9326 of Lecture Notes
in Computer Science, pages 243–265. Springer, 2015. 2

BCF+21. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge
proofs for set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Dı́az, editors,
Financial Cryptography and Data Security - 25th International Conference, FC 2021, Virtual Event,
March 1-5, 2021, Revised Selected Papers, Part I, volume 12674 of Lecture Notes in Computer Science,
pages 393–414. Springer, 2021. 3

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for C:
verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science,
pages 90–108. Springer, 2013. 2

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya: Nearly linear-
time zero-knowledge proofs for correct program execution. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory
and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science, pages 595–626. Springer, 2018.
2

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I,
volume 11476 of Lecture Notes in Computer Science, pages 103–128. Springer, 2019. 5, 6, 13

BG13. Stephanie Bayer and Jens Groth. Zero-knowledge argument for polynomial evaluation with application to
blacklists. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
646–663. Springer, 2013. 2

BG18. Jonathan Bootle and Jens Groth. Efficient batch zero-knowledge arguments for low degree polynomials.
In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part II, volume 10770 of Lecture Notes in Computer Science, pages 561–588.
Springer, 2018. 2

BGH20. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo2. URL: https://github. com/zcash/halo2, 2020. 2, 21

CDGM19. Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. Seemless: Secure end-to-end
encrypted messaging with less trust trust. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019, London, UK, November 11-15, 2019, pages 1639–1656. ACM, 2019. 2

CEO22. Matteo Campanelli, Felix Engelmann, and Claudio Orlandi. Zero-knowledge for homomorphic key-value
commitments with applications to privacy-preserving ledgers. In Clemente Galdi and Stanislaw Jarecki,
editors, Security and Cryptography for Networks - 13th International Conference, SCN 2022, Amalfi, Italy,
September 12-14, 2022, Proceedings, volume 13409 of Lecture Notes in Computer Science, pages 761–784.
Springer, 2022. 2

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez. Lunar: A toolbox
for more efficient universal and updatable zksnarks and commit-and-prove extensions. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December 6-10, 2021,
Proceedings, Part III, volume 13092 of Lecture Notes in Computer Science, pages 3–33. Springer, 2021.
7, 15

23

CFG+20. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. Incrementally
aggregatable vector commitments and applications to verifiable decentralized storage. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-
11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science, pages 3–35. Springer,
2020. 3

CFH+21. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators. IACR Cryptol. ePrint Arch., page 1672, 2021. 2

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. Legosnark: Modular design and composition of
succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 2075–2092. ACM, 2019. 6

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zksnarks with universal and updatable SRS. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of Lecture Notes in Computer Science, pages 738–768. Springer, 2020. 8, 15

Eth22. Zkevm introduction, 2022. https://github.com/privacy-scaling-explorations/zkevm-specs/blob/

master/specs/introduction.md. 1

FK20. Dankrad Feist and Dmitry Khovratovich. Fast amortized kate proofs, 2020. 4

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II, volume 10992 of LNCS, pages 33–62. Springer, 2018. 3

GG17. Essam Ghadafi and Jens Groth. Towards a classification of non-interactive computational assumptions
in cyclic groups. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in
Computer Science, pages 66–96. Springer, 2017. 3

GK15. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science,
pages 253–280. Springer, 2015. 2

GK22. Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-based lookups in quasi-linear
time independent of table size. Cryptology ePrint Archive, 2022. 2

GW20. Ariel Gabizon and Zachary J Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, 2020. 1, 2

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., page 953, 2019. 15,
17

HHK+21. Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Raluca Ada Popa. Merkle2: A
low-latency transparency log system. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021, pages 285–303. IEEE, 2021. 2

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th Inter-
national Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 177–194.
Springer, 2010. 2, 3, 14, 21

MKL+20. Sarah Meiklejohn, Pavel Kalinnikov, Cindy S. Lin, Martin Hutchinson, Gary Belvin, Mariana Raykova,
and Al Cutter. Think global, act local: Gossip and client audits in verifiable data structures. CoRR,
abs/2011.04551, 2020. 2

PK22. Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments. Cryptology ePrint
Archive, Paper 2022/957, 2022. https://eprint.iacr.org/2022/957. 1, 2, 4, 5

Pol22. Polygon zkevm documentation, 2022. https://docs.hermez.io/zkEVM/Overview/Overview/. 1

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updatable snarks. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International

24

https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/introduction.md
https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/introduction.md
https://eprint.iacr.org/2022/957
https://docs.hermez.io/zkEVM/Overview/Overview/

Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume
12825 of Lecture Notes in Computer Science, pages 774–804. Springer, 2021. 5, 6, 7, 8, 9

Sta22. Starknet, 2022. https://starkware.co/starknet/. 1
TAB+20. Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich.

Aggregatable subvector commitments for stateless cryptocurrencies. In Clemente Galdi and Vladimir
Kolesnikov, editors, Security and Cryptography for Networks - 12th International Conference, SCN 2020,
Amalfi, Italy, September 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science,
pages 45–64. Springer, 2020. 4

TBP+19. Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Trian-
dopoulos, and Srinivas Devadas. Transparency logs via append-only authenticated dictionaries. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019, pages 1299–1316. ACM, 2019. 2

TFBT21. Nirvan Tyagi, Ben Fisch, Joseph Bonneau, and Stefano Tessaro. Client-auditable verifiable registries.
IACR Cryptol. ePrint Arch., page 627, 2021. 2

vzGG13. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cambridge University
Press, 2013. 20

ZBK+22. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin.
Caulk: Lookup arguments in sublinear time. CCS ’22: 2022 ACM SIGSAC Conference on Computer and
Communications Security, Los Angeles, CA, USA, November 7 - 11, 2022, 2022. 1, 2, 3, 4, 5, 20

Zha22. Ye Zhang. Introducing zkevm, 2022. https://scroll.io/blog/zkEVM. 1
zks22. zkevm faq, 2022. https://docs.zksync.io/zkevm/. 1

A Proof of Thm 1

Proof. Let A be an algebraic adversary attempting to break knowledge soundness. We design an extractor E
that behaves as follows. When the adversary (C(X), t, [zI]2, π)← A(srs) outputs a proof π = (W1,W2,W3),
then it also outputs the representations w1(X), w3(X) of maximum degree N such that

W1 = [w1(x)]1,W3 = [w3(x)]1

The extractor E computes

zI(X) = w3(X)X−(N−k+1) +Xk, t(X) = C(X)− w1(X)zI(X)

and returns HI , t(X) where HI consists of the roots of zI(X).
We show that either E succeeds with overwhelming probability or we can construct a reductions B1 and

B2 such that
A0

A,E(λ) ≤ A
q-sfrac
B1

(λ) +Aq-dlog
B2

(λ)

Game0 7→ Game1: Let Game0 be the original knowledge soundness game. We first transition to a game Game1

that behaves identically to Game0 except that, when A outputs the representation w3(X), if zI(X) =
w3(X)X−(N−k+1) + Xk is not a degree k polynomial (with positive degree monomials only) then Game1

aborts.
We show the existence of a reduction B1 such that

A0
A,E(λ) ≤ A1

A,E(λ) +A
q-sfrac
B1

(λ)

The reduction B1 gets as input srs and forwards this reference string to run (C(X), t, [zI]2, π) ← A(srs).
When A outputs a proof π = (W1,W2,W3), then it also outputs the representation w3(X) of maximum
degree N such that

zI = [w3(x)x
−N+k−1 + xk]2

Write w3(X) =
∑N

s=0 asX
s Then B1 returns

N−k∑
s=0

asX
s, XN−k+1, [zI]2 − [xk]2 − [

N∑
s=N−k+1

asx
s]2

25

https://starkware.co/starknet/
https://scroll.io/blog/zkEVM
https://docs.zksync.io/zkevm/

If as ̸= 0 for 0 ≤ s ≤ N − k, then the degree of
∑N−k

s=0 asX
s is less than N − k + 1 and hence B1 breaks the

q-sfrac assumption.
If as = 0 for all 0 ≤ s ≤ N − k then

zI(X) = w3(X)X−(N−k+1) +Xk =

k−1∑
s=0

aN−k+1+sX
s +Xk

which is a degree k polynomial.

Game1 7→ Game2 We second transition to a game Game2 that behaves identically to Game1 except that, when
A outputs the representation w3(X), if zI(X) = w3(X)X−(N−k+1)+Xk does not divide zH(X), then Game2

aborts. We show the existence of a reduction B2 such that

A1
A,E(λ) ≤ A2

A,E(λ) +A
q-dlog
B1

(λ)

See that if Game2 does not abort, then zI = [f(X)] for some f(X) of degree k that divides zH(X). This

means that zI(X) =
∏k

i=1(X − ξi) for HI some subset of H of size k.
The reduction B2 gets as input srs and forwards this reference string to run (C(X), t, [zI]2, π)← A(srs).

When A outputs a proof π = (W1,W2,W3), then it also outputs the representation w3(X), w2(X) of maxi-
mum degree d such that

zI = [f(x)]2 = [w3(x)x
−N+k−1 + xk]2,W2 = [w2(x)]1

Then B2 computes the degree N polynomial g(X) = ZH(X)− zI(X)w2(X) and solves to find the N roots.
It checks amongst these roots whether any solution x corresponds to the qdlog challenge and if yes it returns
x. Else it aborts.

By the second verification equation we have that ZH(x) − g(x)w2(x) = 0 whenever A convinces the
verifier. See that if g(X) does not divide ZH(X), then ZH(X)− g(X)w2(X) ̸= 0. But then x must lie in the
roots and B2 succeeds.

Game2 7→ 0 We finally show that for any adversary A

A2
A,E(λ) = 0

Indeed, when A also outputs the representation w3(X), we have that either [zI]2 = [zI(x)]2 for zI(X) =
w3(X)X−(N−k+1) + Xk a degree N polynomial dividing zH(X), or Game2 aborts. The adversary A also
outputs a representation w1(X) of maximum degree N such that [W]1 = [w1(x)]1. By the first verification
equation we have that t(X) = C(X)−w1(X)zI(X) is such that t = [t(X)]1. Further t(ξi) = C(ξi)+ 0 for all
i ∈ [k], making zI(X) and t(X) a correct witness. ⊓⊔

26

	Baloo: Nearly Optimal Lookup Arguments

