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Abstract. There has been intense interest over the last decade in
implementations of probabilistic proofs (IPs, SNARKs, PCPs,
and so on): protocols in which an untrusted party proves to a
verifier that a given computation was executed properly, possibly
in zero knowledge. Nevertheless, implementations still do not
scale beyond small computations. A central source of overhead is
the front-end: translating from the abstract computation to a set of
equivalent arithmetic constraints. This paper introduces a general-
purpose framework, called Distiller, in which a user translates
to constraints not the original computation but an abstracted
specification of it. Distiller is the first in this area to perform such
transformations in a way that is provably safe. Furthermore, by
taking the idea of “encode a check in the constraints” to its literal
logical extreme, Distiller exposes many new opportunities for
constraint reduction, resulting in cost reductions for benchmark
computations of 1.3–50×, and in some cases, better asymptotics.

1 Introduction

Probabilistic proofs [7–9, 43–45]—PCPs, IPs, NIZKs, SNARKs,
SNARGs, and so on—are fundamental in complexity theory and
cryptography. They enable an untrusted prover to convince a
verifier of some statement (for example, that a given computation
Ψ, on specific input x, produces an alleged output y). In these
protocols, the verifier does not inspect a classical witness to the
truth of the statement (or re-execute Ψ) but instead checks an
encoded proof probabilistically. Zero-knowledge variants allow
the prover to keep some of the input to the computation—and the
proof itself—hidden from the verifier. Astonishingly, the veri-
fier’s checks are (in some protocols) constant-time, regardless of
the size of the computation [7, 8, 42]. The appeal of these prop-
erties in emerging application areas (most notably, outsourced
computation, blockchains, and their intersection) has fueled in-
tense interest in implementations over the last 13 years. The
results have included 20 orders of magnitude reduction in costs,
deployment of SNARKs in cryptocurrencies [35, 60, 79, 97], and
an explosion of frameworks [88, 91, 94].

Yet, probabilistic proofs are heavily limited in scalability, mak-
ing them impractical for general-purpose use (the hype notwith-
standing). One source of costs is the back-end, which is the
complexity-theoretic and cryptographic proving machinery. The
other source of costs is the front-end, which translates high-level
computations into the format that the back-end works over. In
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most probabilistic proof implementations, that format is some
variant of arithmetic constraints: equations over a finite field.

Unfortunately, not only must the prover perform cryptographic
operations proportional to the number of constraints (often with
memory requirements that scale similarly), but also constraints
are a verbose way to represent computations (§2). For example,
every iteration of a loop requires separate constraints—likewise
with all branches of conditional statements. Inequality tests, when
translated into constraints, are expensive. So is RAM.

The question that we ask and answer in this paper is: if back-end
costs are here to stay and we are stuck translating computations to
constraints, what can we do to mitigate costs? Any such technique
should achieve:

• Conciseness. Compared to a naive translation of a computation
Ψ, we want to produce a smaller set of constraints.

• Coupling. There should be a way for the prover to actually
satisfy the alternate constraints, which is non-trivial, since
they may not correspond to the individual program steps that
the prover takes to execute Ψ.

These two requirements have been addressed, at least partially.
The authors of almost all front-ends observe that translation from
a high-level computation Ψ need not result in constraints that
simulate execution [26, 27, 30, 31, 50, 61, 70, 74, 76, 81, 83, 89,
92, 105] (§2). Rather, it suffices if the constraints are satisfiable iff
the execution is valid. For example, consider a computation that
invokes a quicksort subroutine. The naive approach is to compile
quicksort into constraints. As an alternative [50, Appx. C], the
prover can sort “outside the constraints”, with the constraints
enforcing that (a) the output is a permutation of the input [20, 93],
and (b) this permutation is sorted. The naive approach requires
O(n logn) inequality tests while the alternative requires only O(n)
inequality tests (for adjacent elements in part (b)). As inequality
tests dominate this computation, the improvement is substantial.

We call such a checker of required properties a widget. This gen-
eralizes “gadget” [61], which refers to constraints that have been
written by hand; widgets can additionally be encoded in a higher-
level language and then compiled to constraints. Widgets have
been proposed for arithmetic and bitwise operations [81], multi-
precision operations [50], storage [27, 69], concurrent access to
state [83], cryptographic operations [15, 25, 27, 31, 60, 69, 79], re-
cursive composition [25, 31, 52], and optimization problems [5].

Yet, to the extent that these works make arguments about the
correctness of substituting a computation with a widget, none
of them provides formal justification: it is entirely possible that
there are wrong widgets out there! Note that any such bug, even in
an application that satisfies the other two requirements, destroys



soundness of the end-to-end application. Thus, we add a third
requirement:

• Correctness. This is not about correctness of the translation
to constraints, which is crucial and complementary, and has
been studied [38]. Our focus on correctness in this paper is
on substitutions (of computations by a widget) that happen
“upstream” of compilation-to-constraints.

There is work addressing this third requirement [89] but at the
expense of the first two (§7).

This paper contributes a framework, Distiller, that addresses
all three of these desiderata (§4). Distiller takes the goals in
reverse order: it starts with Correctness. For each class of compu-
tations, the user writes down a specification of the computation,
and proves a formal relationship between the implementation
and the specification. This justifies compiling the specification
(rather than the implementation) to constraints. This relationship
is ensured by representing both the implementation and the spec-
ification as transition systems and adapting ideas from the theory
of refinement [32, 55, 56, 62, 98]. A refinement relates the exter-
nally observable behaviors of two transition systems, formalizing
the notion of correct substitution. A proof of refinement then
yields a blueprint for the prover to satisfy the abstract constraints
(Coupling). For Conciseness, a consequence of Distiller and its
generality is to expose new opportunities for constraint reduc-
tion: Distiller lets us take the idea of widgets to its literal logical
extreme.

We apply Distiller to a series of examples (§5), including bi-
nary search, convex hull, maximal strongly connected compo-
nents (MSC), and minimum spanning tree (MST). In particular,
the solutions we obtain for the latter two problems may be of
independent interest. Our widget for MSC bears some resem-
blance to the checker for Tarjan’s algorithm [86] proposed in
prior work [24]. However, our solution builds on Dijkstra’s MSC
algorithm [33] and is specifically designed to obtain an efficient
representation in constraints. For MST, we introduce the idea of
encoding operations on an amortized data structure as a kind of
special-purpose memory; our widget exploits this encoding to
check the execution of Kruskal’s algorithm [53] in a way that
avoids the overhead of translating certain general-purpose com-
puting structures (conditionals, loads, stores, loops with dynamic
bounds) to constraints.

We implement and evaluate Distiller (§6). The system takes
as input a program representing the implementation and specifi-
cation transition systems, and generates outputs using two com-
ponents. The first component partially automates the generation
of refinement proofs relating the input transition systems. This
component relies on additional user input in the form of proof
annotations. The proofs can then be checked using the program
verifier Viper [68]. Successful verification guarantees Correct-
ness. The verification of our examples unveiled bugs that would
have compromised Correctness in initial versions of two widgets.
Once Correctness has been established, the second component
enables Coupling by building on the Pequin toolchain [76]. This
component produces two C programs that are provided as input
to Pequin. One program expresses the part of the widget to be
translated to constraints. The other program expresses the part to

be computed outside the constraints. Pequin then translates the
first program, executes the second program, and uses the obtained
outputs to drive a probabilistic proof backend.

Finally, Conciseness: replacing an implementation by its spec-
ification does not guarantee more concise constraints. However,
as we explain (§4–§5), we can often use Distiller to find, and
establish the correctness of, an intermediate point between spec-
ification and implementation that does yield a substantial im-
provement (our work on MSC and MST, mentioned above, are
examples of this). Concretely, in our examples, Distiller achieves
reductions in constraint size ranging from small constant fac-
tors to asymptotic improvements for some problems, which for
small problem instances already result in double-digit factors.
Qualitatively, the more complex a computation, the more im-
provement Distiller generally yields. Computations with many
memory accesses or searches of memory see particular benefit
under Distiller.

Distiller is not perfect (§8). As a built system, its trusted com-
puting base includes Pequin, Viper, and our own new translation
front-end. However, this restriction is not fundamental.

The bottom line is that Distiller has taken a crucial step in
improving front-ends: it has exhibited the logically most general
way to exploit nondeterminism in arithmetic constraints, while
doing so soundly, with performance improvements that range
from good constants to orders of magnitude.

2 Background: applied probabilistic proofs

This section is intended to give just enough context for the rest
of the paper. For a full, rigorous treatment of probabilistic proof
implementations, see Thaler [88].
Back-end. In these setups, a back-end is a cryptographic or
complexity-theoretic protocol between an untrusted prover P and
a verifier V in which P convinces V that a given set of equations
C has a solution.

In more detail, V and P (which are possibly probabilistic)
agree on C , as defined by a protocol, or defined by a user who
invokes V and P . The variables in C are elements in a finite
field, typically Fp (the integers mod p), where p is a large prime
(128 bits or more). For many back-ends, C is required to be in
R1CS format [17, 18, 42, 74, 82]. R1CS generalizes arithmetic
circuits, which generalize Boolean circuits. We refer to such a
set of equations as constraints.

V does not trust anything P says; P can follow an arbitrarily
malicious strategy (though some protocols presume a computa-
tional bound on P and cryptographic hardness assumptions of
one kind or another).

P wants to prove to V that P holds a solution, or satisfying
assignment, z to C—but V does not want to receive z, and P may
wish to keep z hidden. Instead, P gives V a certificate, possibly
revealed interactively, which V checks. The guarantees are:

• Completeness: If C is satisfiable, then a correct P makes V
accept, always (regardless of random choices made by P , V ,
or by the user in an offline phase).

• Soundness: If C is not satisfiable, the probability that V ’s
checks pass is negligible (the probability is over random



choices made by the verifier or by the user in an offline phase).
Some applications require a more general property, Proof of
Knowledge (PoK): if P does not have access to a satisfying
z (even if C is satisfiable), then V accepts with negligible
probability. Note that these properties hold regardless of P ’s
strategy.

• Zero knowledge: V gets no information about z other than
what can be deduced from the fact that C can be satisfied.

Examples of recent back-ends are [22, 28, 29, 40, 41, 51, 52,
58, 63, 80, 95, 96, 101, 102]. These trade off different properties,
including the nature of the cryptographic assumptions, noninter-
activity, whether there is an offline phase, whether that phase has
to be repeated each time the structure of C changes, and so on.
However, in all of these works, the costs have a major dependence
on the number of constraints, |C |, and thus all of these works will
benefit from improvements to front-ends.

Pipeline. Posit a user who cares about verifying the execution
of some high-level computation Ψ, on some input x. P supplies y
that is purportedly Ψ(x), and wants to convince some V , which
is trusted by the user, that y=Ψ(x). As a generalization, Ψ can
be a relation, so the goal is to prove that y ∈ Ψ(x). Existing
implementations have the following pipeline:
Offline (one-time for Ψ):
0. The user writes down the computation Ψ.
1. The user compiles Ψ to constraints, C , over variables X ,Y,Z,

where X andY are vectors of variables that represent the inputs
and outputs. This compilation needs to respect Translation
Fidelity: for any x and y, C (X=x,Y=y) is satisfiable (by some
Z=z) if and only if y=Ψ(x) (or y∈Ψ(x)). Here, C (X=x,Y=y)
means C with X bound to x (V ’s requested input) and Y bound
to y (the purported output). As a small example, consider a
computation that takes two inputs, computes their quotient
(over a finite field, Fp), and outputs that quotient plus 5. The
corresponding constraints are: C = {X1 = Z1 ·X2, Y = Z1+5}.
Notice that for all pairs (x,y), C (X=x,Y=y) is satisfiable (by
some Z1 = z1) iff y = x1/x2 +5.

2. The user runs any setup procedure required by the back-end.
Online (for each x,y):
3. Given a specific input x, P identifies a satisfying assignment

z to C (X=x,Y=y). In the simplest case, P does so by directly
executing Ψ.1

4. P convinces V that it has, or knows, a satisfying assignment
to C (X=x,Y=y).
One property that we need from a pipeline is End-to-end Com-

pleteness: if y = Ψ(x), then a correct P makes V accept with
probability 1. This property relies on Translation Fidelity and (the
back-end’s) Completeness, together with the mechanics of Step 3.
Another essential property is End-to-end Soundness: if y ̸= Ψ(x),
then V rejects with overwhelming probability. This property
relies on Translation Fidelity and (the back-end’s) Soundness.

1Alternatively, P could possess auxiliary information that allows it to derive a
satisfying assignment. A simple example is: Ψ requires P to supply the pre-image
of a given CRHF H for a given digest, d. Then the input to Ψ is d, the output is M;
P is then establishing that M ∈ H−1(d), but we do not think of P as “executing”
H−1; indeed, H−1 is presumed not to be efficiently computable.

Front-end. The front-end is Steps 1 and 3. We detail these steps
below, incurring some textual debts to Buffet [92]. We focus on
a compilation approach that we call the “ASIC approach”. The
alternative is the “CPU approach”, which represents the execution
of a CPU in constraints [15, 17–19, 104]. This results in much
higher overhead [92].

Given a program, the compiler unrolls loops (each iteration
gets its own variables), and converts the code to an intermediate
form, for example static single assignment. The compiler then
translates each line into one or more constraints [26, 27, 30, 31,
54, 70, 74, 76, 81, 92, 105]. Arithmetic and logical operations are
concise. For example, the line of code z3 = z2 + z1 becomes
{Z3 = Z2 + Z1}. By contrast, each inequality test and bitwise
operation costs ≈w constraints, where w is the bit width of the
relevant variables (these operations work by separating a finite
field element into bits [81, Appx.C]; see also [17, 74, 82, 92]).
The combined set of constraints resulting from the line-by-line
translation, and including RAM (see below), constitutes C .

RAM operations (which we refer to as LOAD and STORE but
which encompass any situation where an array index is not known
at compile time) translate into variables that feed into a sepa-
rate RAM-checking computation. This computation can take
several forms. One is based on permutation networks and coher-
ence checks [16, 18, 78, 92]. Loosely speaking, the computation
(a) converts a time-ordered transcript of RAM operations into an
address-ordered transcript of RAM operations with ties broken
by execution order, and (b) uses pairwise checks in the address-
ordered transcript to ensure that every LOAD delivers the value
from the most recent STORE. Other techniques include Merkle
trees and memory checking [15, 23, 27], polynomial identity
testing [104], set accumulators [69], or even a brute force switch
statement that considers every possible index (this works at small
scales, as for some blockchain statements). Regardless of the rep-
resentation, each LOAD and STORE is costly, as the RAM-checking
computation has a number of constraints proportional to Ω(n · r),
where n is the number of operations, and r is the address width
(log of memory size).

Solving. To produce a satisfying assignment, P in most
pipelines (but not all [70]; see §7) goes constraint by constraint.
The solution to some constraints is immediate; for example, given
the constraint Z3 = Z2 +Z1, if Z1 and Z2 are already determined
then the setting to Z3 is mechanically derived. Other constraints
require nondeterministic input from the prover. Recall our ear-
lier example: C = {X1 = Z1 · X2, Y = Z1 + 5}. Looking only
at the constraint X1 = Z1 ·X2, P knows X1 and X2 (they are in-
puts) but does not derive the setting of Z1 by filling in other
constraints. Rather, P computes X−1

2 “outside” the constraints
(for example, using repeated squaring to compute X p−2

2 , which
is X−1

2 in Fp) and then sets Z1 as X1 ·X−1
2 . Other examples are

inequality tests, where P supplies the values of each bit, and
RAM-checking, where P supplies the settings for switches in a
permutation network. In these cases, the process of translation
from Ψ to constraints has to decorate certain constraints, to tell
P how to solve them. (Decoration is known elsewhere as “anno-
tation” [27, 70, 92], but later in this paper, we use “annotation”
to mean something else.)

Widgets. Instead of representing certain operations directly



in constraints, one can sometimes substitute a validity check, as
with the sorting example in the Introduction; we call this validity
check a widget. The Pipeline handles such substitution. Assume
for simplicity that only one operation in the computation Ψ has
a widget, for example a single invocation of a sort() subroutine.
Then Step 1 compiles the computation Ψ, but with the widget
substituted for the direct operation. Meanwhile, Step 3 runs Ψ,
with the direct operation. For this to work, the compiler must
produce, and P must rely on, decorations. That is because P
needs a way to connect the computation to the constraints, which
no longer correspond to each other line-by-line.

When widgets enter the picture, achieving End-to-end Sound-
ness and End-to-end Completeness requires an additional condi-
tion beyond the three that we have mentioned, namely Transla-
tion Fidelity, and (back-end) Completeness and Soundness. That
additional condition is Correctness, from Section 1. Section 3
describes this condition informally; a precise definition requires
machinery that we will build up in Section 4.

Costs and accounting. This paper’s primary metric is |C |. That
is for two reasons. First, all back-ends in the literature impose
costs on P (and, depending on the protocol, on V ) that are at
least linear in the number of constraints, |C |. Second, these costs
typically dominate the cost to P of executing and solving (Step 3);
thus, even though P executes the underlying computation, doing
so contributes only negligibly to costs.

For concreteness, we sometimes assume the widely-used
Groth16 backend [47, 61]. In Groth16, certificate size is con-
stant (128 bytes) and V runs in constant time. However, the
running time for P and for the setup phase are O(|C | · log |C |).
Because of this and memory bottlenecks from the access pattern,
single-machine Groth16 provers are highly limited in the size of
the computation that they can handle. There are works that take
advantage of multiple machines [99] and heterogeneous hard-
ware [103] to try to overcome these bottlenecks, but they too are
limited. The bottom line is that every work in this research area
will benefit from constraint sets with fewer constraints.

3 Motivating example: merging sorted lists

As noted in the introduction, an application of probabilistic proofs,
at least in principle, is outsourcing computation. Those compu-
tations need not be “cryptographic”. In fact, the mere act of
outsourcing invites probabilistic proof machinery: a proof gives
assurance that another entity executed correctly. Accordingly,
our examples throughout this paper will have an algorithmic
flavor, rather than employing cryptography. In particular, zero-
knowledge guarantees provided by the back-end will be irrelevant.
However, this is not fundamental, as zero-knowledge properties
typically come for free in the back-end, and the Distiller frame-
work applies just the same to cryptographic computations.

As an example algorithmic computation, consider merge,
which takes as input multiple sorted lists with unique elements
(unique across all lists) and outputs a sorted union of the ele-
ments. An example implementation of merge, which we denote
TI , is in Figure 1. When translated, merge comprises a number of
constraints proportional to L · (∑k Ak.len), because of the nested

1 void merge(L,A0,..,AL-1,B) {
2 ℓ0 : int[L] curr = {0};
3 int len, running_min, kstar; bool found;
4 len = 0;
5 ℓ1 : for (int k = 0; k < L; k++) {
6 len += Ak.len;
7 }
8 B.len = len;
9 ℓ2 : for (int i = 0; i < len; i++) {

10 found = false
11 ℓ3 : for (int k = 0; k < L; k++) {
12 if (curr[k] < Ak.len && (!found ||
13 Ak[curr[k]] < running_min)) {
14 running_min = Ak[curr[k]];
15 // running_min is the current min element
16 kstar = k;
17 // kstar indexes the list that contains
18 // running_min
19 found = true;
20 // indicates that branch has been taken
21 }
22 }
23 B[i] = running_min;
24 curr[kstar]++;
25 }
26 ℓ4 : return;
27 }

Figure 1: Pseudocode for the computation merge(L,A0, . . . ,AL−1,B)
(TI). The precondition of merge requires that the Ak are strictly sorted
and their elements pairwise distinct. Also, there must be enough physical
space in B to store the elements of all Ak.

loops on lines 9 and 11.
Observe that merge is computing its result. But in the setup of

probabilistic proofs, the goal is to provide a proof about some al-
leged, exogenously-computed output. Thus, the set of constraints
could instead check that a specification is met. We are interested
in how to perform such a substitution systematically, meaning
that the requirements in Section 1 are met.

A natural starting point is to translate the weakest logical spec-
ification (WLS) of merge that still expresses functional correct-
ness: intuitively, one expects that logically weaker specifications
“enforce less” and thus should yield smaller constraints when
translated. Informally, the WLS is: “merge(L,A0, . . . ,AL−1,B)
terminates and, upon termination, B is monotonically increasing
and holds just each element from {Ak} exactly once.” Pseudocode
to check this specification, which we denote TS, is depicted in
Figure 2. Its complexity is 2 ·(∑k Ak.len), which is an asymptotic
improvement over L · (∑k Ak.len) from earlier.

To read the pseudocode, note that the keyword havoc denotes
a nondeterministic choice, while assume constrains choices. Con-
cretely, when this pseudocode is compiled to CTS (§2), havoc state-
ments become free variables that the prover supplies while assume
statements become constraints that enforce the given statement.
The specification uses for, which (logically) means bounded uni-
versal quantification, and (mechanically) unrolls and repeats the
enclosed requirements.

In Figure 2, lines 4–12 constrain B to be sorted (in increasing



1 void merge_spec_naive(L,A0,..,AL-1,B) {
2 int k_i, j_i, i_kj;
3 havoc B.len;
4 for (int i = 0; i < B.len; i++) {
5 havoc B[i];
6 assume i == 0 || B[i-1] < B[i];
7 havoc k_i;
8 assume 0 <= k_i && k_i < L;
9 havoc j_i;

10 assume 0 <= j_i && j_i < Ak_i.len;
11 assume B[i] == Ak_i[j_i];
12 }
13 for (int k = 0; k < L; k++) {
14 for (int j = 0; j < Ak.len; j++) {
15 havoc i_kj;
16 // each element in some A_k is in B
17 assume 0 <= i_kj && i_kj < B.len;
18 assume Ak[j] == B[i_kj];
19 }
20 }
21 return;
22 }

Figure 2: Pseudocode for the weakest logical specification (TS) of the
merge computation. The precondition only requires that B has enough
physical space for the elements of all Ak.

order), and enforce that B ⊆
⋃

k Ak. In particular, for each position
i in B, the prover nondeterministically supplies which list (k_i)
contributes to the ith position, and which index in that list (j_i)
holds the contributed element. For the other direction, lines 13–20
specify that

⋃
k Ak ⊆ B.

But how does the prover supply these values? Ideally they
would result from simply executing the original computation.

This brings us to the Correctness and Coupling require-
ments (§1). We must prove a relationship between TS and
the actual code executed by the prover (TI). The basic tech-
nique is to capture this relationship formally in terms of refine-
ment [55, 56, 62]. A refinement proof coupling TI and TS not only
establishes the correctness of the substitution, it also tells us how
to augment TI . The prover then executes the augmented imple-
mentation, which yields the values for the nondeterministically
assigned variables in the specification.

A further improvement is possible. Notice that the implemen-
tation TI (Fig. 1) uses the facts that the input lists are unique
and sorted, whereas TS (Fig. 2) uses neither fact. In the frame-
work that we lay out in the sections ahead, we will have the
freedom to choose a specification that refines the WLS yet still
abstracts the computation. For example, by taking advantage of
the uniqueness of the input lists, we obtain a less general but more
concise specification than TS. Specifically, we discard the lines
in Figure 2 (13–20) that enforce

⋃
k Ak ⊆ B, resulting in Figure 3,

which we call TE . When translated, TE now yields a number of
constraints proportional to ∑k Ak.len, which saves a factor of two
compared to TS.

1 void merge_spec_efficient(L,A0,..,AL-1, B) {
2 ℓ′0 : int k_i, j_i;
3 ℓ′1 : havoc B.len;

4 assume B.len == ∑
L−1
k=0 Ak.len;

5 ℓ′2 : for (int i = 0; i < B.len; i++) {
6 havoc B[i];
7 assume i == 0 || B[i-1] < B[i];
8 havoc k_i;
9 assume 0 <= k_i && k_i < L;

10 havoc j_i;
11 assume 0 <= j_i && j_i < Ak_i.len;
12 assume B[i] == Ak_i[j_i];
13 }
14 ℓ′4: return;
15 }

Figure 3: Pseudocode for the efficient specification (TE ) of the merge
computation. The precondition is the same as for merge itself.

4 Framework

We formalize our framework in terms of transition systems, which
provide a uniform formalism for representing both implemen-
tations and their specifications. From a semantic perspective, a
transition system T defines a language L(T ), which contains
for each execution trace σ of T , a sequence of observations o(σ)
made about how T interacts with its environment during the ex-
ecution. These observations may for instance encompass I/O,
network traffic, etc.

We relate transition systems in terms of their languages. This
allows us to formally capture when the execution of one transition
system behaves like the execution of another, from the perspective
of an external observer.

4.1 Transition systems and refinement
In our formalization, we adapt the classical setup of Abadi and
Lamport [1]. A transition system T = ⟨Σ,θ,∆,O,α⟩ consists of
a set of states Σ, a nonempty set of initial states θ ⊆ Σ, a set of
transitions ∆⊆ Σ×Σ, a set of observations O, and an observation
function α : Σ → O. Intuitively, the function α formalizes which
aspects of a given state are observable. When T is known, we
denote a transition (s,s′) ∈ ∆ by s → s′ and say s steps to s′. We
also call s′ a successor of s.

Example 4.1. We illustrate with our motivating example (§3).
We can regard TI (Fig. 1) as defining a transition system
(Σ,θ,∆,O,α), as follows. The states Σ of TI are mappings from
program variables to values. For s ∈ Σ, we denote by s.x the
value of program variable x in s. We sometimes write x for a
value of the program variable x when the state s is unspecified.
We write s[x 7→ v] to denote the new state obtained from s by
updating the value of x to v and keeping the values of all other
program variables unchanged. The program variables include a
dedicated variable pc storing the value of the program counter,
which ranges over the control locations ℓ0, . . . , ℓ4. (For simplicity
of exposition, we are treating the execution of a basic block, such
as one iteration of a non-nested loop, as a single transition.)

The observations O of TI are the values of the input arrays and



output array at the program start and return. Intuitively, these are
the values that an external user can observe from the program.
All intermediate program states of the computations are unob-
servable, which we denote by the special observation τ. Formally,
we define O using the following grammar:

O ::= in(L, A0, . . . ,AL−1,B) | out(L, A0, . . . ,AL−1,B) | τ .

The observation function α : Σ → O is then defined as follows:

α(s) =


in(s.L,s.A0, . . . ,s.A(s.L−1),s.B) if s.pc= ℓ0

out(s.L,s.A0, . . . ,s.A(s.L−1),s.B) if s.pc= ℓ4

τ otherwise .

The transitions ∆ of TI are obtained from the program description
in the expected way. For instance, the body of the for loop at
control location ℓ1 yields all transitions s→ s′ such that s.pc= ℓ1,
s.k< s.L, and

s′ = s[len 7→ s.len+ s.A(s.k).len][k 7→ s.k+1] .

The set of initial states θ consists of all states s that satisfy the
precondition of TI (Figure 1). We assume that this precondition
is specified by a formula ϕpre. That is, ϕpre states that pc = ℓ0,
and that the arrays Ak are sorted in strictly increasing order and
its elements pairwise distinct. We write s |= ϕpre to indicate that
s satisfies ϕpre.

An infinite sequence of states σ is called an (execution) trace of
T if it starts in an initial state and respects T ’s transition relation:
formally, σ0 ∈ θ and for all i ≥ 0, either σi steps to σi+1 or σi =
σi+1 and σi has no successors in ∆. If σi = σi+1, we say that σ

stutters in step i. A terminating execution of T corresponds to a
trace that stutters forever in its final state. By abuse of notation,
we write α(σ) to denote the sequence of observations obtained
by applying α pointwise to the states in σ. We denote the set of
all traces of T by traces(T ).

Let ♯ be the function that maps a sequence σ to the sequence ob-
tained from σ by replacing all repeated consecutive copies of ele-
ments by a single copy, for example, ♯(⟨0,0,1,1,1,2,3,3,3,3⟩)=
⟨0,1,2,3⟩.

The language of T , denoted L(T ), is defined by applying α

pointwise to each trace in traces(T ) and then removing stut-
ters. The intuition for removing stuttering is that we want to
capture only the observable behavior: stuttering steps correspond
to unobservable internal computation steps. Formally, we de-
fine the sequence of observations o(σ) made from a trace σ as
o(σ) def

= ♯(α(σ)) and then let

L(T ) def
= {o(σ) | σ ∈ traces(T )} .

Example 4.2. In the motivating example (§3), the language of
the transition system TI is simply

L(TI) =
{
⟨α(s),τ,α(s′)⟩

∣∣ s |= ϕpre ∧ s′ |= ϕpost

}
.

Here, the precondition ϕpre is as defined above. The postcondition
ϕpost states that pc= ℓ4,B is sorted in strictly increasing order, and
the set of elements of B is equal to the union of the set of elements
of the arrays Ak. The single τ in each observation sequence in
L(TI) summarizes all intermediate states of the computation.

A transition system TI refines another transition system TS
iff L(TI) ⊆ L(TS). This definition captures the idea that from
the perspective of an external observer, every execution of TI
behaves like some execution of TS. Typically, we think of TS
as the specification and TI as the implementation. We denote a
refinement relationship by TI ≤ TS.

A classical approach to proving refinement relationships is to
construct a refinement mapping. Formally, a refinement mapping
between TI and TS is a function r : ΣI → ΣS such that

1. r(θI)⊆ θS,

2. ∀s ∈ ΣI , αI(s) = αS(r(s)), and

3. ∀s,s′ ∈ ΣI , if s →I s′, then r(s)→S r(s′) or r(s) = r(s′).

The first property states that r maps the initial states of TI to
those of TS. The second property states that the observations
computed from states are preserved by r. The third property
states that every transition in ∆I is matched by a corresponding
transition in ∆S under r or by a stuttering step. Together, these
properties capture the intuition that the relationship between a
refinement and its specification is that the specification abstracts
steps that are “internal” to the implementation.

Once it has been established that r : ΣI → ΣS is a refinement
mapping, TI ≤ TS follows: given a trace σI of TI , the sequence
r(σI) is a trace of TS (modulo stuttering). Moreover, r(σI) makes
the same observations as σI , i.e., ♯(αI(σI)) = ♯(αS(r(σI))).
Hence, the existence of r establishes that TI refines TS.

We write TI ≤r TS to indicate that r is a refinement mapping
between TI and TS. An important property that we will use freely
later is that refinement mappings compose: T1 ≤r T2 and T2 ≤q T3
implies T1 ≤q◦r T3.

4.2 Refinement-based widgets
We can now use the language of transition systems to recast
Steps 0, 1, and 3 in Section 2 and explain how widgets are con-
ventionally used to modify these steps. We start from a given
transition system TI and a property φ ⊆ Oω specifying the ob-
servation sequences of interest (Step 0). The problem is for the
prover P to convince the verifier V that L(TI)∩φ is nonempty.
Here, the property φ will, in particular, ensure that the consid-
ered observations are restricted to those that are bound to the
specific input x and alleged output y. However, φ may impose
additional requirements on the observation sequences that are of
interest to V . The conventional approach is then to first translate
TI into constraints CTI (φ) = CTI ∧Co−1

I (φ). We elide the definition
of Co−1

I (φ). In the context of the steps in Section 2, it is simply
X = x∧Y = y. The translation guarantees that CTI (φ) is satisfi-
able iff o(σI) ∈ L(TI)∩φ for some σI (Step 1). The prover then
executes TI on the specified input x to obtain such a σI and derives
from it the desired satisfying assignment (Step 3).

The conventional use of a widget is then to replace the con-
straints CTI by a smaller set of constraints CTW . The prover still
executes TI to yield σI , but uses σI to compute a satisfying assign-
ment for CTW (φ). A crucial shortcoming of this approach is that
replacing TI by TW is not formally justified. In particular, there
is no guarantee that the existence of a satisfying assignment for



CTW (φ) implies the nonemptiness of L(TI)∩φ, potentially com-
promising the soundness of the proof system. Moreover, there is
no systematic approach to compute a satisfying assignment for
CTW (φ) from σI . We use the notion of refinement to address both
of these shortcomings.

First, we change the problem setup as follows. The new Step 0
is to write down transition systems TS, TE , and TI , as well as
refinement mappings r and q such that TI ≤r TE ≤q TS. This is
our formal definition of Correctness (§1): a widget represented
as TE is Correct if it satisfies the refinement chain TI ≤r TE ≤q TS.
Now, the problem is for the prover P to convince the verifier V
that L(TS)∩φ is nonempty. That is, V is only interested in TS,
the weakest specification; the transition systems TE and TI are
merely a means to an end to solve the problem. TE then plays the
role of TW above. The new Step 1 is to translate TE and φ into
constraints CTE (φ). The new Step 3 is for P to execute TI on x
(obtaining o(σI) ∈ L(TI)∩φ), to use r to compute a trace r(σI),
and finally to use r(σI) to compute a satisfying assignment for
CTE (φ).

Observe that TE ≤q TS implies that if o(σE) ∈ L(TE)∩φ for
some σE , then o(q(σE)) ∈ L(TS)∩φ. Hence, assuming Transla-
tion Fidelity, if CTE (φ) is satisfiable, then L(TS)∩φ is nonempty.
This ensures the soundness of the approach. Similarly, TI ≤r TE
means that if o(σI) ∈ L(TI)∩φ, then o(r(σI)) ∈ L(TE)∩φ and,
hence, CTE (φ) is satisfiable. This ensures the completeness of
the approach.

A difference between proving TI ≤r TE and TE ≤q TS is that
q need not be explicit. That is, although End-to-end Soundness
requires that if CTE (φ) is satisfiable then so is CTS(φ), the ac-
tual satisfying assignment to CTS(φ) is not used explicitly. Con-
sequently, TE ≤ TS can be established by means other than re-
finement mappings, for example a proof based on simulation
relations [65, 73, 90].

We note that the approach also applies in the special case where
TS = TE . Though, generally, the crux is to find a suitable TE in
between TS and TI that yields a reduction in the constraint size
relative to both TS and TI .
Constructing refinement mappings. It remains to show how
to construct refinement mappings. We demonstrate this with the
merge computation as a guiding example, using general princi-
ples inspired by refinement calculi such as [64, 66, 67]. These
principles apply broadly (Section 5 contains further examples).

Our first step is to construct a refinement mapping r between
the transition system TI of the merge computation (Fig. 1) and
its intermediate specification TE (Fig. 3). As we will explain
below, r can then be used to obtain a satisfying assignment for
the constraints CTE from a given execution of TI , enabling more
efficient verification of that execution. In a second step, we then
show that the intermediate specification TE refines the naive
specification TS.

To prove TI ≤ TE , we divide the construction of the refinement
mapping into three steps by deriving two auxiliary transition
systems TIE and T̂IE that yield a refinement sequence TI ≤ TIE ≤
T̂IE ≤ TE . Intuitively, the auxiliary transition systems couple TI
and TE so that they are executed together.

A transition system TE refined by an implementation TI will
typically involve nondeterministic (havoc, see §3) assignments to

1 void merge (L,A0,..,AL-1,B) {
2 ℓ0 : int[L] curr = {0};
3 int len, running_min, kstar, k_i, j_i;
4 bool found;
5 len = 0;
6 ℓ1 : for (int k = 0; k < L; k++) { len += Ak.len; }
7 B.len = len;

8 assume B.len == ∑
L−1
k=0 Ak.len;

9 ℓ2 : for (int i = 0; i < B.len; i++) {
10 found = false;
11 ℓ3 : for (int k = 0; k < L; k++) {
12 if (curr[k] < Ak.len && (!found ||
13 Ak[curr[k]] < running_min)) {
14 running_min = Ak[curr[k]];
15 kstar = k;
16 found = true;
17 }
18 }
19 B[i] = running_min;
20 assume i == 0 || B[i-1] < B[i];
21 k_i = kstar;
22 assume 0 <= k_i && k_i < L;
23 j_i = curr[kstar];
24 assume 0 <= j_i && j_i < Ak_i.len &&
25 B[i] == Ak_i[j_i];
26 curr[kstar]++;
27 }
28 ℓ4: return;
29 }

Figure 4: Pseudocode for the transition system T̂IE . The prover will
execute the black and blue code (TIE ) instead of TI . The values in blue are
used to create an assignment to the nondeterministic variables occurring
in the constraints obtained from TE (the red assume statements).

program variables that do not appear in the implementation. In
our example of the merge computation, these are the assignments
to k_i and j_i in Figure 3 (Lines 8 and 10). The execution of TE
can proceed only if the value chosen by each nondeterministic
assignment satisfies the constraints imposed by the subsequent
assume statements. A key step in the refinement proof is therefore
to show that such values can be obtained from the trace σI . We
make this step explicit in the construction of the intermediate tran-
sition system TIE . This transition system augments TI with those
variables unique to TE as well as assignments to these variables
that determine the desired values to be chosen for the nondeter-
ministic assignments in TE . In our example, this augmentation
can be seen in lines 3, 21, and 23 shown in blue in Figure 4.

Observe that the assignments to k_i and j_i in TIE of our
example depend only on the original program variables of TI .
Moreover, the variables do not interfere with the other parts of
the transition system in any way. Such auxiliary variables that
are used only for the purpose of proving a refinement relation
are sometimes referred to as ghost variables. Conveniently, if
adding ghost variables to a transition system T results in T ′, then
T ≤ T ′ [64]; thus TI ≤ TIE .

In the context of program translation for probabilistic proofs,
augmenting an implementation with ghost variables is not only
useful for proving the refinement between TI and TE . The system



TIE also instructs the prover how to obtain the satisfying assign-
ment for the constraints CTE . That is, the prover will actually
execute TIE instead of TI .

The next step in our construction is to augment TIE with the
assume statements in TE that constrain the values chosen for the
nondeterministic assignments. We call the resulting transition
system T̂IE . In our merge example, T̂IE is shown in Figure 4 with
the added assume statements highlighted in red (Lines 8, 20, 22,
and 24).

Establishing the refinement TIE ≤ T̂IE follows a generic con-
struction. We first show that the added assume statements express
invariants of TIE . That is, the assumed expressions must always
evaluate to true in TIE , at the appropriate program points. In Ap-
pendix A, we discuss this step of the proof in more detail with
regards to the merge computation. Once the invariants have been
established, TIE ≤ T̂IE follows, by simply using the identity func-
tion on the states of TIE as the refinement mapping.

Finally, we observe that TE can be obtained from T̂IE by ab-
stracting all program variables that appear in TI but not in TE .
For our merge example, this amounts to removing the loops at
locations ℓ1 and ℓ3 in T̂IE , and replacing the assignments on lines
7, 19, 21, and 23 that depend on the abstracted program variables
by havoc commands.

Abstracting program variables in this systematic manner again
yields a refinement by construction. The refinement mapping
changes the value of the program counter in the expected way.
For instance, the refinement mapping in our example coalesces
locations ℓ2 and ℓ3 to ℓ′3 and maps all other locations ℓi to ℓ′i.
The values of the remaining program variables that are common
to T̂IE and TE are preserved by the refinement mapping. This
concludes the proof of TI ≤ TE .

It remains to argue that TE refines TS. One can generally apply
the above technique again, to construct an appropriate refinement
mapping. In particular, one can show that the following property
is an invariant at the end of the for loop in TE (Fig. 3):

∀ k,j :: 0 <= k && k < L && 0 <= j && j < Ak.len ==>
∃ i :: 0 <= i && i < B.len && Ak[j] == B[i]

The second for loop at lines 13 to 20 of TS (Fig. 2) establishes
exactly the same property.

Systems view. An end-to-end system view of Distiller is as fol-
lows. At compile-time the user provides a weakest specification
TS, an effective specification TE , and a computation TI (the new
Step 0 in Section 2). One must then show that the refinement
relationships TI ≤ TE and TE ≤ TS hold. These proofs can be done
by the user outside of the system or the system aids the user by
(partially) automating the proofs.

Such a refinement proof (say, TI ≤ TE ) can be constructed
generically in the following way. First, one augments TI with
the necessary ghost variables (yielding TIE ) to obtain TI ≤ TIE .
Then one adds the invariants needed to properly constrain the
nondeterministic assignments in TE (yielding T̂IE ) to obtain TIE ≤
T̂IE . To take the final step to TE , one abstracts away all variables
that are found in TIE but not TE to obtain T̂IE ≤ TE . One proceeds
similarly for TE ≤ TS.

T̂IE is a coupling of TI and TE that makes explicit how the
havoced ghost variables in TE are computed from TI . T̂IE is then

Example Improvement
Merging (Ch. 16) Θ(L)
Find Min (Ch. 12) 1.4×
Binary Search (Ch. 12) Θ(log(n) log(log(n)))
Pattern Matching (Ch. 18) 3×
Next Permutation (Ch. 13) 1.4×
Dutch Flag (Ch. 14) 1.5×
RR Sequence (Ch. 17) 2×
Sum of Powers (Ch. 19) 1.66×
2D Convex Hull (Ch. 24) 5×
2D Convex Hull∗ (Ch. 24) Θ(log(n))
MSC (Ch. 25) 17.5×
MST (Ch. 22) 52.2×

Figure 5: Improvement for all examples based on theoretical analysis
on large inputs. For improvements where TE has asymptotically fewer
constraints than TI , we provide the complexity of the improvement;
otherwise we provide a constant factor. L in Merging is the number of
lists. n in Binary Search is the length of the array. n in 2D Convex Hull
is the total number of nodes, and 2D Convex Hull∗ is the case where the
nodes in the convex hull are marked instead of returned in a list.

the input to an augmented front-end that splits T̂IE into TE and TIE .
It then compiles TE to constraints CTE (the new Step 1). For each
invocation of the probabilistic proof protocol (the new Steps 3
and 4), the prover runs TIE and feeds its values back in to get a
satisfying assignment to CTE .

Note that TE ≤ TS is needed for End-to-end Soundness (every
satisfying assignment to CTE encodes an element of L(TS)) while
TI ≤ TE is needed for End-to-end Completeness (a satisfying
assignment to CTE can be obtained from TI).

5 Examples

We have applied the Distiller framework to the problems in Dijk-
stra’s classic book A Discipline of Programming [33]. We chose
this source for two reasons. First, it discusses algorithms for a
diverse set of problems. Second, Dijkstra develops his algorithms
iteratively, starting from a formal problem specification. This ap-
proach helps to identify suitable intermediate transition systems
TE that yield an efficient translation to constraints.

Our evaluation considers 11 of the 14 problems discussed in
Dijkstra’s book. The three problems we have omitted are “Updat-
ing a sequential file” (Chapter 15), “The problem of the smallest
prime factor of a large number” (Chapter 20), and “The prob-
lem of the most isolated villages” (Chapter 21). We also have
simplified the problem of computing the convex hull in three
dimensions (Chapter 24) to the two-dimensional case.

For all the problems that we have considered, we are able to
obtain significant reductions in the size of the generated con-
straints (Fig. 5). In some cases, the scale factor of the reduction
grows asymptotically with the problem instance size.

In the following, we discuss a selected subset of the considered
problems in detail. We explain TS, TE , and TI for these problems,
provide a qualitative analysis that explains the expected reduc-



1 int find_min(n, A, B) {
2 int min = A[0]; int p = 0;
3 ℓ0 : for (int i = 0; i < n; i++) {
4 if (A[i] < min) {
5 min = A[i]; p = i;
6 }
7 }
8 bool found = false;
9 ℓ1 : for (int i = 0; i < n; i++) {

10 assume min <= A[i];
11 if (A[i] == min) {
12 B[i] = 1; assume B[i] == 1;
13 found = true;
14 } else {
15 B[i] = 0; assume B[i] == 0;
16 }
17 }
18 assume found;
19 return min;
20 }

Figure 6: Pseudocode for TI of Find Min. The code in red is the augmen-
tation needed for proving TI ≤ TE .

tion in constraint size, and explain the key insights behind the
refinement proofs.

5.1 Find Min
Given a non-empty array A of length n, the problem is to find its
smallest element, min, and mark all occurrences of the minimum
using another array B. More precisely, there must exist an index
p such that the following conditions hold:

1. 0 ≤ p < n and min= A[p],
2. for each i ∈ [0,n), min≤ A[i],
3. for each i ∈ [0,n], B[i] = (A[i] = min?1: 0).

TS encodes this specification by nondeterministically choosing
min, each B[i], and p. It uses two loops that iterate over A to enforce
conditions 2 and 3.

TI is shown in Fig. 6 (without the code in red, which we will
discuss later). It also requires two loops: ℓ0 to compute min, and
ℓ1 to compute the B[i]. Comparing TI and TS, we note that the
two loops in TI and TS have exactly the same costs. However, TS
performs an additional dynamic LOAD, namely A[p], to enforce
Condition 1. Hence, CTS incurs the extra cost of RAM initializa-
tion, which performs n STOREs to write A into the memory, and
is therefore larger than CTI .

However, we can do better than either TS or TI . First, observe
that unlike in TI , we can merge the two loops in TS for conditions 2
and 3 into a single loop because min can be chosen nondeter-
ministically upfront. Compared to TI , this saves one of the two
inequality tests i < n that CTI would otherwise include for each it-
eration of the two loops. Furthermore, we can eliminate the LOAD
A[p] in Condition 1 of TS by introducing an auxiliary variable
found that indicates whether min has been encountered at least
once in the loop that checks conditions 2 and 3. The pseudocode
of the resulting TE is shown in Fig. 7 (excluding the blue code,
which we will use later to establish that TE refines TS).

Thus, CTE needs only 2 · n inequality tests, saving 1/3 over

1 int find_min_efficient(n, A, B) {
2 int min, p;
3 ℓ′0 : havoc min;
4 bool found = false;
5 ℓ′1 : for (int i = 0; i < n; i++) {
6 assume min <= A[i];
7 if (min == A[i]) {
8 havoc B[i]; assume B[i] == 1;
9 found = true; p = i;

10 } else {
11 havoc B[i]; assume B[i] == 0;
12 }
13 }
14 assume found;
15 assume 0 <= p < n && A[p] == min;
16 return min;
17 }

Figure 7: Pseudocode for TE of Find Min. The code in blue is the aug-
mentation needed for proving TE ≤ TS.

CTI . Since the encoding of inequality tests dominates the size of
the generated constraints, we observe a similar constant factor
improvement in the overall constraint size.

Turning to the refinement proofs, if we add the red code in
Fig. 6 to TI , we obtain the augmented transition system T̂IE for
showing TI ≤ TE (see §4.2). Recall that the main part of the
refinement proof is to show that the added assume statements in
T̂IE coming from TE always succeed. We focus on the assume on
Line 18, which is the most interesting one. Observe that the loop
at ℓ0 ensures 0≤ p< n∧A[p] = min after the loop has terminated.
Using this fact, we can then establish the loop invariant i < p∨
found for the second loop at ℓ1. This then allows us to prove that
the assume statement on Line 18 is safe.

Next consider the refinement TE ≤ TS. Adding the blue code
in Fig. 7 to TE yields an augmented transition system T̂ES for the
refinement proof TE ≤ TS. We focus on showing that TE ensures
Condition 1. (The other two conditions follow immediately from
the loop in TE .) To this end, we can establish the loop invariant
found= 0∨(0 ≤ p < n∧A[p] = min) for the loop at ℓ′1. Together
with Line 14, this implies that adding the assume on Line 15 is
safe. This line then establishes Condition 1.

We note that we would not be able to improve over TI if the
array A was guaranteed to have a single minimum, or if we were
satisfied with finding any of the minimums in A. The loops at ℓ1
and ℓ′1 would be unnecessary.

5.2 Binary Search
Given a sorted array A, the bounds l,r of a possibly empty seg-
ment in A, and a value x, the problem is to compute i such that
l ≤ i ≤ r and A[i] = x. If no such i exists, return i =−1.

TS for this problem checks i according to the specification
above. That is, if i ̸= −1, TS checks that l ≤ i < r and x = A[i],
otherwise it iterates over A[l . . .r] and checks that the segment
does not contain x. TI is based on standard binary search.

For our cost analysis we focus on the number of LOAD opera-
tions, which is the largest contributor to the size of the generated
constraints. In the worst case, TI performs log(n) LOAD opera-



tions to search through the segment A[l . . .r] where n = r− l. In
contrast, TS performs n+ 1 LOAD operations in the worst case.
That is, TS is asymptotically worse than TI .

We can do better by exploiting that A is sorted. Introducing an
auxiliary value s, we divide the specification for the case when
x is not present (i =−1) into four subcases while retaining the
specification for the case when i ̸=−1. The refined specification
becomes:
1. If i = −1, then l = r or x < A[l] or x > A[r− 1] or (l ≤ s <

r−1 ∧ A[s]< x < A[s+1]),
2. else l ≤ i < r ∧ A[i] = x.
TE is the direct encoding of this case analysis. It performs a
constant number of LOAD operations, achieving an asymptotic
improvement over TI . We note that if the search is viewed as a
standalone program, then this improvement is overshadowed by
the cost of storing the array segment into RAM, which is linear
in n. However, if the search is executed many times or viewed as
a subroutine, then the RAM initialization can be amortized.

For proving TE ≤ TS, observe that each of the subcases of Con-
dition 1 implies that x cannot be present anywhere in the segment.
For the last three cases, the proof relies on the precondition that A
is sorted in strictly increasing order. For proving TI ≤ TE , recall
that binary search iteratively shrinks a subsegment A[l′ . . .r′] of
A[l . . .r] that may still contain x. This process continues until the
subsegment converges to a single point l′ = r′, which is the index
of the least element larger than x. In the nontrivial case where
l ̸= r and x is not present in the segment but within the range
of values defined by A[l] and A[r− 1], we define s = l′− 1 for
the final point l′ = r′. Then s is the index that satisfies the last
disjunct in Condition 1.

5.3 2D Convex Hull
Given a set of points P= {p0, . . . , pn−1}⊆Z2 with n> 1, assume
no three points are on the same line, the problem is to find all
points in P that lie on the convex hull of the set.

We additionally require P to satisfy the precondition of Graham
Search [46], a popular algorithm that solves the 2D Convex Hull
problem. Specifically, p0 has the smallest y coordinate among
all points in P, and the greatest x coordinate among all points in
p with the same y coordinate as p0. The remaining points are
sorted in counterclockwise order when using p0 as a reference
point. In other words, for each i ∈ (0,n), let Li be the line passing
through p0 and pi. Then intersect Li with a horizontal line at p0
and define ∠i to be the top-right angle of the intersection. P is
ordered so that ∠i < ∠i+1 for all i.

With these assumptions, C defines the convex hull of P iff the
following conditions hold:

1. C ⊆ P.

2. p0 ∈C and for all i ∈ (0,n), pi ∈C or the angle defined by
the points (prvi, pi,nxti) bends inwards, where prvi and
nxti are the first points before and after pi in P that are also
in C. If no such nxti exists, then nxti = p0.

Condition 1 ensures that C contains no points outside P. Since P
is sorted, Condition 2 guarantees that C contains all the points of
P that lie on the convex hull of P.

1 int X_PROD(p, q, r) {
2 return (q.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.x-p.x)
3 }
4 void 2d_convex_hull_efficient(n, P, C) {
5 int k;
6 havoc k;
7 point nxt, prv;
8 havoc nxt; // nxt0
9 prv = P[0]; // prv1

10 havoc C[0]; assume C[0] == prv;
11 int count = 1;
12 for (int i = 1; i < n; i++) {
13 point cur = P[i];
14 if (nxt == cur) { // P[i] in C
15 havoc C[count]; assume C[count] == cur;
16 // get nxti because nxti−1 ̸= nxti
17 havoc nxt; // nxti
18 // angle (prv, cur, nxt) must bend inwards
19 assume X_PROD(prv, cur, nxt) > 0;
20 prv = cur; // prvi+1
21 count++;
22 } else { // P[i] !in C
23 // nxti = nxti−1; prvi+1 = prvi
24 assume X_PROD(prv, cur, nxt) < 0;
25 }
26 }
27 assume nxt == P[0];
28 assume k == count;
29 }

Figure 8: Pseudocode of TE for 2D Convex Hull.

TS nondeterministically chooses C and then checks the above
conditions. The size of CTS is in O(n2). (In particular, for each
pi, TS needs to iterate through P again to find prvi and nxti.).

We use Graham Search as the TI for this problem. For each
of the n points, TI needs two STORE operations and two dynamic
LOAD operations.

TE is shown in Fig. 8. It nondeterministically chooses k, C,
and the points nxti, then it iterates over the pi and checks all
relevant conditions in constant time for each i. The refinement
proof showing TI ≤ TS uses the fact that TI computes the points
in C in the order in which they appear in P. Moreover, the nxti
can be computed by TIE using a simple linear scan of the final C.

To see that TE yields smaller constraints than TI , observe that
only the array access of C[count] on Line 15 is dynamic and
incurs the cost of two LOADs (one for each coordinate of the
point). Also, there are no STORE operations. (Recall that a havoc

command stands for augmented code in TIE . Hence, it does not
contribute to CTE .) So TE only performs two dynamic LOAD oper-
ations per iteration. The cost of a STORE depends on how deeply it
is nested in conditionals whereas the cost of a LOAD does not [92,
§3.1]. Specifically, each STORE in TI is four times more expensive
than a LOAD in TE . We therefore expect that the size of CTE is
about five times smaller than that of CTI .

If we consider the variant where the problem is not to enumer-
ate C but to compute its characteristic function on the indices of
P (that is, mark the points in P that belong to C), then we can
eliminate all dynamic LOAD operations from TE and achieve an



asymptotic log(n) factor improvement over TI .

5.4 Maximal Strong Components
Given a directed graph G = (V,E) with nodes V and edges E ⊆
V ×V , the problem is to partition V into the maximal strongly
connected components C0, . . . ,Ck−1 of G. We represent the Ci
implicitly using an array rank that maps every node v ∈ V to
the index of its maximal strongly connected component. That
is, we define for all i ∈ [0,k), Ci = {v ∈V | rank[v] = i}. Given
this, the formal problem statement is to find k and rank such that
the following three conditions hold:

1. For all v ∈V , 0 ≤ rank[v]< k.

2. For all i ∈ [0,k), there exists a cycle ci in G that visits exactly
the nodes in Ci.

3. For all i ∈ [0,k) and all cycles c in G, if c visits some node
in Ci then c visits only nodes in Ci.

TS encodes the above specification by nondeterministically choos-
ing k, rank[v] for each node v ∈V , and the cycles ci for each com-
ponent i ∈ [0,k). Condition 3 quantifies over the set of all cycles
in G, which is in general an infinite set. However, it can be shown
that restricting the quantification to simple cycles in G yields
an equivalent condition. A simple cycle is a path where only
the first and last node are equal and all other nodes are distinct.
The condition that quantifies over simple cycles can be encoded
using a nested loop that iterates over all partial permutations p
of nodes in G and then checks that if p forms a simple cycle in
G and intersects with a Ci, then it is fully contained in Ci. As the
number of partial permutations grows exponentially with |V |, so
does |CTS |.

We use Dijkstra’s MSC algorithm [33, Chapter 25] as our TI .
The algorithm iterates over E and V . In each iteration, it performs
up to 13 LOAD and 8 STORE operations. These operations dominate
the size of the generated constraints.

However, we can again construct a TE that improves over both
TI and TS. The key idea for TE comes from Dijkstra’s correct-
ness argument for his algorithm. Dijkstra observed that a set
of connected components C0, . . . ,Ck−1 is maximal iff it can be
ordered so that all edges leaving a Ci target only nodes in compo-
nents preceding Ci. Given Dijkstra’s observation, we can replace
Condition 3 in TS with the following condition in TE :

3∗. For all (v,w) ∈ E, rank[w]≤ rank[v].

Replacing Condition 3 by 3∗ yields a refinement of TS.
Additionally, Condition 2 can be reformulated as a Condi-

tion 2∗ that no longer relies on the construction of explicit cycles
ci connecting the nodes in each component. We observe that the
nodes in each Ci can be arranged in a tree that implicitly wit-
nesses the existence of an appropriate ci (which we use in the
TE ≤ TS proof). The tree reflects the way TI traverses the nodes in
V and collapses candidate components whenever a node is revis-
ited. These trees can be obtained from TI using an augmentation
that does not increase TI’s asymptotic complexity. We use this
augmentation to establish Condition 2∗ when proving TI ≤ TE .

Further details, including how Condition 2∗ is expressed, are
described in Appendix B. What is important is that the combined

size of these trees is linear in |V | and so is checking their cor-
rectness. As a result, for dense graphs (|E| ≈ |V |2), the cost to
enforce Condition 2∗ is insignificant. A detailed cost analysis
yields an expected reduction in total constraint size for dense
graphs by a factor of 17.5 for sufficiently large |E|. For shallow
graphs (|E| ≈ |V |), we still obtain a reduction by a factor of two.
The principal savings come from the fact that conditions 3∗ and
2∗ can be checked by TE (in the sense of validated inside an
assume) with many fewer LOAD and STORE operations versus TI .

Dijkstra’s MSC algorithm is similar to Tarjan’s algorithm [86].
We note that earlier work [24] already proposed an efficient
checker for certifying the output of Tarjan’s algorithm. Their
approach shares with ours that it constructs trees from the graph
to efficiently check whether the computed components are con-
nected. However, the details of how these trees guarantee the
existence of a cycle for each component differ from the trees used
by our TE . Moreover, their approach does not immediately yield
an efficient encoding into constraints.

5.5 Minimum Spanning Tree
Given a connected graph G= (V,E)where undirected edges have
unique positive weights, the problem is to find M, the unique
minimum weight connected spanning subgraph of G. M is called
the minimum spanning tree (MST) of G. A natural, yet crude,
specification is: M is a set of |V | − 1 edges that is connected
and spanning, and all other sets of |V |−1 edges are either not
connected, not spanning, or heavier than M. The TS that would
encode this specification is exponential in |V | because it needs
to consider all

( |E|
|V |−1

)
candidates for M.

We will use an alternate definition for MST that leads to a
more efficient TS. Specifically, an MST, M, is the unique set of all
edges that are not the heaviest in any cycle [77]. There are exactly
|V |−1 edges with this property. Thus, for all edges e∈ E \M, e is
the heaviest in at least one cycle. Our TS encodes this specification
by nondeterministically picking an alleged MST M̃ and then for
each e ∈ E \ M̃ (there are |E|− |V |+1 such edges), providing a
cycle where e is heaviest. Notice that there is no need to explicitly
consider edges e ∈ M̃: after eliminating all |E|− |V |+1 edges
that are heaviest in some cycle, the remaining |V |−1 edges (M̃)
are the unique MST. Cycles are O(|V |) edges in the worst case,
and there are O(|E|) edges outside of M, so the complexity of
this TS is dominated by O(|V | · |E|) edge lookups.

We use Kruskal’s algorithm [53] as our TI . It starts with M
empty, sorts edges by weight, and iteratively adds edges to M if
they don’t form a cycle. This algorithm uses a Disjoint Set data
structure to keep track of components of M and detect cycles.
This data structure forms a partition of V into equivalence classes
where two vertices are in the same class if they are connected
by edges that have already been considered by the algorithm.
Thus, when considering whether an edge e does or doesn’t form a
cycle with previous edges, Kruskal’s algorithm need only check
whether both endpoints of e are in the same equivalence class; if
so, e is not added to M, and if not, e is added and the equivalence
classes are merged.

The specific operations supported by a Disjoint Set data struc-
ture are:
• MAKE-SET(v): turn vertex v into a singleton set.



• FIND-SET(v): return a unique identifier (root vertex) for the
set containing v; also, re-parent all vertices on the path from v
to the root to point directly to the root.

• UNION(u, v): take two different set identifiers (vertices u and v)
and join the two sets together. Some bookkeeping happens to
minimize the depth of the union, which keeps FIND-SET calls
cheap.

MAKE-SET and UNION both use O(1) memory operations. We
use an implementation [87] of this data structure in which
FIND-SET(v) has an average-case complexity of O(α(|V |)) mem-
ory operations (where α is the inverse Ackermann function) and
a worst-case complexity of O(log |V |) memory operations.

Given the amortized complexity of FIND-SET(v), there are
two ways to compile TI to constraints. One option is to unroll all
FIND-SET(v) operations to their worst case O(log |V |) bounds.
An alternative is to collect all nested loops into a state machine
(as described in Buffet [92, §4]). The former results in O(|E| ·
log |V |) RAM operations (§2) with a small constant. The latter
has better asymptotics, only requiring O(|E| ·α(|V |)) iterations
of the state machine. However, the constant is large, because
the state machine has many states (at least five, as detailed in
Appendix C), each requiring multiple RAM operations.

Our TE achieves both good asymptotics and a small constant.
It builds on the idea behind widgets—checking FIND-SET rather
than actually executing its logic—and introduces other techniques.
The techniques are more fully described in Appendix C. At a
high level, our TE nondeterministically receives the MST, M, and
the history, H, of the Disjoint Set operations; its constraints check
the validity of M and H with respect to the input, the algorithm,
and the data structure specification. This approach can be under-
stood as directly encoding a special-purpose memory, namely
the Disjoint Set data structure, as opposed to implementing that
data structure on a general-purpose RAM (§2).

TE represents H as a table of tuples, where each tuple contains:
the operation being performed (MAKE-SET,FIND-SET,UNION, and
UPDATE, which is a new operation that abstracts steps of the im-
plementation of FIND-SET, described further below), a vertex,
its old parent, its new parent, and the weight of the edge being
examined by this operation.

To check H and M, TE needs to:
1. Check that M is a (|V |−1)-sized subset of E;
2. Check H is consistent by verifying consistency between the

old and new parent in consecutive operations on the same
vertex;

3. Check that the data structure is consistent by ensuring
MAKE-SET, FIND-SET, and UNION behave correctly and pre-
serve the invariants of the Disjoint Set;

4. Check that for each edge e not in M, H reports that the
endpoints of e are in the same set; and

5. Check that for all edges in M, H reports that the endpoints
of each edge are in different sets and that the history merges
those sets.

As an example, we elaborate on how to check that all FIND-SET
operations are consistent (one component of the third check). Re-
call from earlier that a FIND-SET involves a sequence of re-parent
operations. TE encodes that sequence using the aforementioned

UPDATE. We now define UPDATE by way of an example. Consider
a tuple with (UPDATE,u,v,w,23). The meaning of this tuple ap-
pearing in H is that the prover is claiming that at the moment that
the edge e with weight 23 was considered, one of e’s endpoints
was u, which had parent v in the Disjoint Set data structure; the
parent of u was then immediately rewritten to be w.

Now, for a given FIND-SET operation to be validated, one re-
quires the following. First, there is a sequence of tuples that starts
with the corresponding FIND-SET tuple in H, immediately fol-
lowed by zero or more consecutive UPDATE tuples. Second, for
all tuples in the sequence (including the initial FIND-SET), the
old parent must be the vertex of the next tuple in the sequence (in-
formally: the algorithm is progressing toward the root). Third, in
those tuples, the new parent must be the vertex of the last tuple in
the sequence (informally: the algorithm re-parents consistently).
Fourth, the last tuple in the sequence must have the vertex, old
parent, and new parent all equal to each other (informally: the
sequence ends at a root). To be clear, these properties are neces-
sary but not sufficient to validate FIND-SET; another requirement
is that the other numbered steps above hold (not just step 3), for
example, H must be consistent. Of course, constraints that encode
TE enforce all of these properties and conditions.

We turn now to TE ’s qualitative costs. At a high level, TE walks
down a table of tuples. The asymptotically high-order cost from
doing so is handling a collection of Θ(|E| ·α(|V |)) UPDATE and
FIND-SET operations. The constraint translation of this logic
has a much lower constant than in the state machine approach
because the conditionality has only two branches (UPDATE vs.
FIND-SET; see Appendix C). Just as important, neither branch
has RAM operations; instead, this table encodes, in and of itself,
the history of operations on a special-purpose memory. That is,
TE semantically understands “update on the Disjoint Set”, so
TE avoids explicit program logic (conditional statements, LOADs,
STOREs) that implements Disjoint Set operations.

Quantitatively, we make this point by comparing the core ap-
proach in TE—encoding the Disjoint Set as its own primitive—
to encoding the history of Disjoint Set on top of RAM (§2),
specifically Buffet-style RAM [92, §3]. Individual Disjoint Set
operations in TE are 2.5× more expensive than RAM operations
because they use 5-tuples instead of 4-tuples (a 1.25× increase)
and require 2 full transcript sorts instead of just 1 (a 2× increase).
However, these increases are swamped by savings from removing
the need for nested loop unrolling or a state machine. On all input
sizes, TE outperforms both versions of TI . On large inputs, TI
with a state machine outperforms TI with loop unrolling; on such
inputs, TE requires 52.2× fewer constraints than the better TI . TE
also sees additive improvements when |E| ≫ |V |; these are due
to further techniques described in Appendix C.

Although we have focused on the specific example of the Dis-
joint Set data structure, as used by Kruskal’s algorithm, the tech-
nique introduced here is much more general: it applies to any
amortized data structure.

6 Experimental evaluation

This section answers the following questions:
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Figure 9: Relative |C | for TS (orange) and TE (blue) compared to the baseline TI (red). The graph shows the problems where CTE improves over CTI by
a constant factor (in the limit). The columns show the measurements obtained for the largest problem instances for which Pequin is able to compile TI
without timing out. In many benchmarks, the run time of TS of the largest problem instance exceeds the timeout threshold. We use “T/O” to denote
these cases. The error bars indicate the spread of the measurements obtained for smaller problem instances. For the Pattern Matching problem (KMP)
we have TS = TE .
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Figure 10: Relative |C | for TS (orange) and TE (blue) compared to the baseline TI (red) for the problems where CTE improves asymptotically over CTI

with increasing input size. TI is omitted for the variant of the 2D Convex Hull problem considered here because the improvement is so vast.

(1) How difficult is it to build an end-to-end system for proba-
bilistic proof checking based on Distiller?

(2) Does Distiller increase confidence in the correctness of wid-
gets?

(3) Can we empirically achieve a constraint size reduction when
using Distiller with existing front-ends?

End-to-end system. To answer the first question, we implement
our framework (§4) in a system also called Distiller. The system
takes TS, TE , and TI as input. The system partially automates the
refinement proofs and implements the new probabilistic proof
pipeline proposed in Section 4.2. The input transition systems are
expressed in a simple imperative programming language. Dis-
tiller’s input format enables the user to augment these transition
systems with ghost code to be used in the refinement proofs, for
Correctness and for Coupling.

To check Correctness, the system generates skeletons of the
refinement proofs TI ≤ TE and TE ≤ TS from its input. The proof
skeletons are expressed in the Viper intermediate verification
language [68]. The user can augment these proof skeletons with
proof annotations (e.g. loop invariants) and then check them

using the Viper verification tool. For the proof of TI ≤ TE , the
system computes the transition system T̂IE by replacing all assume
statements coming from TE by assert statements. Viper checks
that these assert statements are safe. The tool also checks that
the proof annotations are correct. In particular, it checks that
all user-provided loop invariants are indeed inductive. Distiller
proceeds similarly for the proof of TE ≤ TS.

To enable Coupling, Distiller takes TE from its input and trans-
lates it to the language accepted by the Pequin toolchain [76],
which is a subset of C, extended with domain-specific constructs.
Distiller also takes T̂IE from the previous step and extracts the
program TIE , which it translates to a standard C program. The
two generated programs are then fed into Pequin. Pequin in turn
compiles TE to constraints CTE , runs TIE , and feeds the values
into CTE .

One of the constructs that Pequin supports is assertions. Each
assertion translates to R1CS constraints checking that the asser-
tion holds. Distiller uses this construct to compile the assume

statements in TE . Another Pequin construct is exo_compute, a
hook allowing the prover to execute a program that produces
values for arbitrary nondeterministic inputs to the generated con-



straints. This feature enables the prover to run TIE and supply the
auxiliary inputs to CTE when solving the constraints.

We perform an end-to-end evaluation of the resulting prob-
abilistic proof pipeline composed of Distiller and Pequin for a
select subset of our benchmarks. As a basic test of End-to-end
Completeness, we apply the pipeline to the encoded benchmarks
and successfully run it on a range of inputs. We note that the
overhead of executing TIE versus TI in the solving step is neg-
ligible compared to the rest of the pipeline (recall that Step 3
contributes negligibly to costs in the first place; §2). As a basic
test of End-to-end Soundness, we also run Distiller with buggy
versions of the TIE . In these cases, the back-end correctly rejects
the computation.

Improved Reliability. To answer Question (2) we check the TI ≤
TE and TE ≤ TS proofs for 10 of our 11 benchmark problems (§5)
using Viper. We omit the MST benchmark in this experiment
because, here, TS also encompasses the specification of a refined
RAM, making the proof mechanization more elaborate.

Viper verifies all proofs. However, for two of the benchmarks
we discovered bugs in the initial version of TE . These bugs would
have compromised End-to-end Soundness (§2). One bug was a
missing array bounds check in TE of the merge computation (§3).
The other one was a subtle omission of a check in TE for the Sum
of Powers problem [33, Chapter 19]. We discovered these bugs
when trying to annotate the respective TE to prove TE ≤ TS.

Constraint size reduction. Recall that our primary performance
metric is |C | (§2). Our final experiment assesses Distiller against
this metric. For all of our benchmarks, we generate TI , TE , and TS
as input programs for Pequin to be compiled to constraints. Then,
with the exception of MST, we run Pequin’s front-end on all three
programs for a range of values for the loop unrolling bound that
determines the maximal input size for each benchmark problem.
As MST relies on a refined RAM construct that is not available
in Pequin, we calculate the size of the constraints generated by
all RAM operations by hand and run Pequin on the rest of the
program. We then combine the result of the two parts to obtain
the final constraint size. We enforce a timeout threshold of 240s
per run, with the exception of MSC and MST, where a 2000s
threshold is chosen to enable computations on larger problem
instance sizes that demonstrate the exponential behavior of TS.
For each successful run, we measure the size of the generated
R1CS constraints and compute the relative sizes of CTS and CTE

compared to CTI .
Figure 9 shows the results for the benchmarks where our theo-

retical analysis yields an improvement of TE over TI that converges
to a constant factor with increasing problem instance size (Fig. 5).
The results closely match our analysis. We note that for the MSC
problem (§5.4), the relative improvement between TE and TI
increases with the problem instance size. The maximal MSC
instance size for which the translation of TI does not time out
is n = 20,m = 400. This is still too small to observe the 17.5×
theoretical improvement that we predict for dense graphs. Con-
versely, for the MST problem TI has a large constant overhead
that causes the improvement achieved with TE to be 3× larger on
small instances than the predicted 52.5× improvement for large
problem instances. Finally, for binary search (BinS) we observe

that the cost of storing the input array A into RAM, which is linear
in the size of the array, dwarfs the log(n) improvement achieved
for a single invocation of the binary search (§5.2).

Figure 10 shows the results obtained for the three problems
where our theoretical analysis predicts that TE performs asymp-
totically better than TI with increasing problem instance size. The
experiment again confirms our predictions. In particular, for the
merge problem discussed in §3, Figure 10a shows that |CTE |/|CTI |
is approximately hyperbolic, which we expect because the pre-
dicted improvement for each point is L×, where L is the number
of merged arrays. Also, if we discount the RAM initialization
cost for binary search, then we see the expected log(n) factor
improvement (Fig. 10b).

7 Other related work

Probabilistic proofs. Section 2 gave an overview of probabilistic
proof implementations, covering back-ends and front-ends; see
also [88, 91, 94]. Unlike Distiller, none of the front-ends achieves
all three requirements stated in the Introduction; in fact, none
creates a framework for proving the correctness of widgets.

Distiller combines formal methods and probabilistic proofs.
Very few works live at this intersection. Some notable exceptions
are as follows. CirC [70] is a toolkit for building compilers to a
family of constraint formalisms, including R1CS and SMT in-
stances. Its architecture takes advantage of the rich SMT toolbox,
allowing users to build powerful analyses and optimizations. Ad-
ditionally, CirC includes partially verified compiler passes to help
ensure soundness and completeness are preserved when optimiz-
ing high-level program statements into low-level constraints [71].
The two works are complementary: one could compile a Distiller-
verified widget in CirC, to get further reductions.

The Orbis Specification Language (OSL) [89] has a similar
ideology to ours: replace a computation with its formal specifica-
tion, and compile the latter to constraints, in the hope of gaining
more concise constraints. However, as our examples (§5) make
clear, the cost of a naive specification is often exorbitant. So one
has to identify an “in-between” specification, and (a) relate it to
the abstract specification, and (b) derive an implementation that
knows how to satisfy the in-between specification or the origi-
nal. Neither of these problems is addressed by OSL. The authors
mention that they want to synthesize implementations from speci-
fications. Though, for the rich specification language we consider
(general transition systems), whether a specification even has an
implementation is undecidable. Thus, to instantiate the ideology
that OSL and we share, one needs human input (to write down
TE , and relate it to the specification and the implementation).

In an under-appreciated work, Fournet et al. [38] develop a
compiler, based on CompCert [59], that formally connects the
semantics of a higher-level program to the constraint formalism
(specifically R1CS constraints). This work is complementary to
Distiller—it provides Translation Fidelity (§2).

Leo [30] also has the goal of formally verified translations to
constraints. Leo develops a compiler and uses the ACL2 [49]
theorem prover to validate each stage of translation. However, this
falls short of a verified compiler, as in Fournet et al. Moreover,
the authors of Leo want to validate hand-crafted gadgets. It is not



clear how to do this, since ACL2 cannot easily “reverse” R1CS
instances to lift them to higher-level semantics. As a consequence,
crucial pieces of verification are works in progress [30, §6.4]. By
contrast, Distiller incorporates widgets soundly and completely,
by treating them at the source code level and using refinement.

QED2 [72] is another work at the intersection of formal meth-
ods and probabilistic proofs. This work is concerned with de-
tecting underconstrained circuits (constraint systems where an
input can have multiple outputs). They build a tool that checks if
a particular set of constraints is fully constrained (and produces
two satisfying outputs for a single input if not). We see this work
as orthogonal to Distiller because QED2 does not verify the con-
nection between a specification and constraints. In particular, it
is possible for a constraint system to be satisfied by something
which doesn’t satisfy the specification or vice versa. Additionally,
the requirement that circuits correspond to functions (unique
output for each input) makes the overall framework less expres-
sive than the transition systems, traces, and refinements used by
Distiller.

Another orthogonal work that combines formal methods and
probabilistic proofs is zero knowledge abstract interpretation [36].
Here, the problem is to devise a scheme that enables a prover to
convince a verifier of the result of a static program analysis run
without revealing the analyzed program.
Refinement. The idea of developing a program from a specifica-
tion in a step-wise refinement process goes back to early work by
Dijkstra [32, 33] and Wirth [98]. The formal concept of refine-
ment relations and mappings to relate the observable behaviors of
transition systems was first explored in the 1980s [55, 56, 62]. It
is a cornerstone of modern Formal Methods; applications include
reasoning about concurrent and distributed systems, establishing
program equivalence, and verifying security properties.

Abadi and Lamport [1] showed that refinement mappings yield
a complete proof technique for establishing refinement. Though,
in general, the technique requires the transition systems to be
augmented with history variables (recording information about
past states) and prophecy variables (predicting information about
future states). Other related proof techniques for establishing
refinement, for instance, based on (weak) simulation relations [65,
73, 90] are less suited for our purposes as they do not immediately
provide a blueprint for computing satisfying assignments.

The notion of refinement considered in Distiller takes a mono-
lithic view of transition systems, which makes it difficult to reason
compositionally about subroutines. Contextual refinement [37] re-
lates the observable behavior of subroutines subject to all possible
client programs that may use them, thereby enabling composi-
tional reasoning. For the relatively simple programming models
supported by most existing probabilistic proof front-ends (no
concurrency, object-oriented features, or higher-order functions),
considering contextual refinement instead of global refinement
does not add substantial complexity to the verification effort.

Distiller uses mechanized proofs (§6). Specifically, it uses a
lightweight encoding of refinement proofs in the language of the
deductive program verifier Viper [68]. The proofs are partially
automated using SMT solvers. However, this is a choice. Nothing
in our approach precludes or necessitates particular approaches
to mechanization. In particular, there is a large body of work on

refinement calculi that mechanize the correct step-wise refine-
ment of programs and system models [2, 10, 64, 66, 67]. More
recently, the many applications of proofs concerning products and
couplings of two or more programs have fueled the development
of relational program logics that provide frameworks for proof
mechanization [11–13, 21, 39, 85, 100]. Several of these formal
reasoning systems have been implemented in tools, including for
instance TLA+ [57], Rodin [3], EasyCrypt [14], and ReLoC [39].

8 Discussion and conclusion

Distiller improves a key metric in implementations of probabilis-
tic proofs, namely the number of arithmetic constraints required
to encode the validity of the execution of a computation. The
improvements typically range from small integer factors to or-
ders of magnitude, depending on the computation. Distiller also
introduces, for the first time, a framework for widgets that are
correct by construction. This framework radically expands the
space of potential widgets, thereby allowing probabilistic proofs
to do much more, by paying much less.

The primary remaining verification gap is that we do not ver-
ify our tools, including the translator to the two targets, Pequin
and Viper itself. This is not a fundamental limitation. In fact,
we are encouraged by certified compiler work in this research
area [38] to guarantee Translation Fidelity (§2). The TCB can
be further reduced by using a verification toolchain with a small
trusted core [6] (at the expense of reduced proof automation), or
by deploying validation techniques that produce certificates for
automatically generated proofs [34, 75].

Another limitation is that widgets are constructed manually.
Identifying a TE that slashes constraint size relative to TS and
TE , and then proving its correctness can take significant time
and effort. A promising direction for future work is to adapt
techniques from program synthesis [4] and superoptimizing com-
pilers [48, 84] to automate these steps.

The code for Distiller is available at: https://github.com/
PepperSieve/vprexocompiler
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A Details of refinement mapping: merging

This section provides details on showing that the assume state-
ments of T̂IE (Fig. 4) of the merge computation express invari-
ants of TIE . This guarantees that the assume statements will al-
ways evaluate to true in TI (Fig. 1), and completes the refinement
TIE ≤ T̂IE . See Section 4.2 for the full discussion.

https://github.com/PepperSieve/vprexocompiler
https://github.com/PepperSieve/vprexocompiler


We justify the addition of the assume statements by provid-
ing supporting invariants at relevant portions of TIE . Figure 11
shows T̂IE with the desired invariants explicitly added. There
are four assume statements added to TIE that require justification,
on Lines 33, 35, 37, and 38. We omit the proof of the assume

statement on Line 11 as it is easy to show.
The first assume (Line 33) states that the most recently added

element B[i] is properly ordered with respect to its preceding
element. To prove this, we establish the invariants on Lines 21
to 23 at the inner loop, and the invariant on Line 15 at the outer
loop. These invariants imply that, at each iteration of the outer
loop, B[i] is set to a value greater than B[i-1], provided found

is true after the inner loop terminates. To show the latter, first
observe that k= L holds after the inner loop terminates. Now, if
found were false at this point, then Line 20 would imply

L−1

∑
n=0

curr[n]≥
L−1

∑
n=0

An.len .

However, the invariants on Line 14 together with the loop con-
dition i < B.len of the outer loop and the equation on Line 11
imply

L−1

∑
n=0

curr[n]< B.len=
L−1

∑
n=0

An.len .

This yields a contradiction. Hence, found must be true after the
inner loop terminates.

To prove the second assume (Line 35), we can again use the
invariant at Line 21 and the fact that found must hold after termi-
nation of the inner loop.

Similarly, the third assume (Line 37) follows from the invari-
ants at Lines 21 and 22 at the inner loop, and 13 at the outer
loop.

The final assume (Line 38) follows from the identity
running_min == Akstar[curr[kstar]]. This is sufficient because
k_i is set to kstar, j_i is set to curr[kstar], and B[i] is set to
running_min.

The remaining invariants that are not used directly to prove
the assume statements are needed to ensure that the invariants are
inductive. In particular, Line 24 at the inner loop is needed to
show that Line 15 is maintained by each iteration of the outer
loop.

The invariants, thus, justify the addition of the assume state-
ments in T̂IE , proving the refinement TIE ≤ T̂IE .

B Details of MSC example

In this section, we expand on the discussion of the maximum
strongly connected component problem in Section 5.4.

Given a directed graph G = (V,E) with nodes V and edges
E ⊆V ×V , the problem is to partitionV into the maximal strongly
connected components C0, . . . ,Ck−1 of G. We represent the Ci
implicitly using an array rank that maps every node v ∈V to the
index of its maximal strongly connected component. That is, we
define for all i ∈ [0,k)

Ci = {v ∈V | rank[v] = i} .

Given this, the formal problem statement is to find k and rank
such that the following three conditions hold:

1. For all v ∈V , 0 ≤ rank[v]< k.

2. For all i ∈ [0,k), there exists a cycle ci in G that visits exactly
the nodes in Ci.

3. For all i ∈ [0,k) and all cycles c in G, if c visits some node
in Ci then c visits only nodes in Ci.

Weakest specification. TS encodes the above specification by
nondeterministically choosing k, rank[v] for each node v∈V , and
the cycles ci for each component i ∈ [0,k). Condition 3, which
enforces that the components Ci are maximal, is encoded by a
nested loop, where the inner loop enumerates all cycles in G that
visit exactly one node twice. As there are O(|V |!) possible cycles
that need to be considered, the size of the constraints generated
from TS grows exponentially in |V |.
Implementation We use Dijkstra’s MSC algorithm [33, Chapter
25] as our TI . The algorithm is similar to Tarjan’s algorithm [86]
but lends itself more directly to an efficient translation into con-
straints.

Dijkstra observed that a set of strongly connected components
C0, . . . ,Ck−1 is maximal iff it can be ordered so that all edges leav-
ing a Ci target only nodes in components preceding Ci. That is,
consider the graph GC = (VC,EC) such that VC = {C0, . . . ,Ck−1}
and (Ci,C j) ∈ EC iff i ̸= j and (v,w) ∈ E for some v ∈ Ci and
w ∈C j. Then the above ordering of the Ci is a (reverse) topologi-
cal sort of GC. The existence of this topological sort implies that
GC is acyclic and therefore the Ci cannot be joined into larger
components. Given Dijkstra’s observation, one can replace Con-
dition 3 in TS with the following:

3∗. For all (v,w) ∈ E, rank[w]≤ rank[v].

The algorithm computes a rank that satisfies this revised con-
dition. For pedagogy we discuss the abstract version of the al-
gorithm shown in Figure 12, which assumes mathematical sets
as an built-in type. Dijkstra’s concrete version of the algorithm
implements the relevant set operations using auxiliary variables
to achieve a running time that is linear in the size of G.

The code highlighted in blue can be ignored for now. The
algorithm iterates over V and E using two working sets VW and EW
to keep track of the nodes and edges that still need to be processed.
The stack cc is used to keep track of a chain of disjoint strongly
connected components that are currently being traversed.

The algorithm maintains the invariant that each component
is connected via an edge in G to its next component higher up
on the stack. Moreover, the algorithm maintains that the set VC
is the union of all the components in cc. A node leaves VC (and,
hence, cc) once its maximal strongly connected component has
been identified and its rank has been assigned. The variable k
keeps track of the number of maximal components that have been
identified so far.

Whenever the stack cc becomes empty, the outermost loop
nondeterministically chooses an unprocessed node v from VW
and adds it as a new singleton component to cc (Lines 14–17).
While the stack is nonempty, the algorithm pops the topmost



1 void merge (L,A0,..,AL-1,B) {
2 ℓ0 : int[L] curr = {0};
3 int len, running_min, kstar, found, k_i, j_i;
4 len = 0;
5 ℓ1 : for (int k = 0; k < L; k++)

6 invariant len == ∑
k−1
n=0 An.len

7 {
8 len += Ak.len;
9 }

10 B.len = len;

11 assume B.len == ∑
L−1
k=0 Ak.len;

12 ℓ2 : for (int i = 0; i < B.len; i++)
13 invariant ∀ j :: 0 ≤ j < L ⇒ 0 ≤ curr[j]

14 invariant ∑
L−1
n=0 curr[n] == i

15 invariant i == 0 ∨ ∀ j :: 0 ≤ j < L ∧ curr[j] < Aj.len ⇒ B[i-1] < Aj[curr[j]]
16 {
17 found = false;
18 ℓ3 : for (int k = 0; k < L; k++)
19 invariant !found ⇒ ∀ j :: 0 ≤ j < k ⇒ curr[j] ≥ Aj.len

20 invariant !found ⇒ ∑
k−1
n=0 curr[n] ≥ ∑

k−1
n=0 An.len

21 invariant found ⇒ 0 ≤ kstar < L
22 invariant found ⇒ curr[kstar] < Akstar.len
23 invariant found ⇒ running_min == Akstar[curr[kstar]]
24 invariant found ⇒ ∀ j :: 0 ≤ j < k ∧ j ̸= kstar ∧ curr[j] < Aj.len ⇒ running_min < Aj[curr[j]]
25 {
26 if (curr[k] < Ak.len && (!found || Ak[curr[k]] < running_min)) {
27 running_min = Ak[curr[k]];
28 kstar = k;
29 found = true;
30 }
31 }
32 B[i] = running_min;
33 assume i == 0 || B[i-1] < B[i];
34 k_i = kstar;
35 assume 0 <= k_i && k_i < L;
36 j_i = curr[kstar];
37 assume 0 <= j_i && j_i < Ak_i.len
38 assume B[i] == Ak_i[j_i];
39 curr[kstar]++;
40 }
41 ℓ4: return;
42 }

Figure 11: Pseudocode for the transition system T̂IE with invariants.



1 datatype comp =
2 Node(node)
3 | Rotate(node, comp, node)
4 | Concat(comp, comp)
5

6 int msc(V, E, rank) {
7 set<edge> EW = E;
8 set<node> VW = V;
9 set<node> VC = /0

10 stack<set<node> * comp * node * node> cc = empty;
11 comp[] cycle;
12 int k = 0;
13 while (VW != /0) {
14 int v = choose(VW);
15 VC = {v};
16 VW = VW \ {v};
17 push(cc, ⟨{v}, Node(v), v, v⟩);
18 do {
19 set<node> C, comp c, node i, _ = pop(cc);
20 while ({(u,w) ∈ EW | u ∈ C} != /0) {
21 edge (u,w) = choose({(u,w) ∈ EW | u ∈ C});
22 EW = EW \ {(u,w)};
23 if (w ∈ VC \ C) {
24 // compact the chain
25 c = Rotate(i, c, u);
26 do {
27 set<node> C1, comp c1, node i1, node o1 =
28 pop(cc);
29 C = C ∪ C1;
30 i = w ∈ C1 ? w : i1;
31 c = Concat(Rotate(i, c1, o1), c);
32 } while (w /∈ C)
33 } else if (w ∈ VW) {
34 VW = VW \ {w};
35 VC = VC ∪ {w};
36 push(cc, ⟨C,i,c,u⟩);
37 C = {w}; c = Node(w); i = w;
38 }
39 }
40 for (w ∈ C) rank[w] = k;
41 cycle[k] = c;
42 k = k + 1;
43 VC = VC \ C;
44 } while (VC != /0);
45 }
46 assert isMSC(V, E, k, rank, cycle);
47 return k;
48 }

Figure 12: Pseudocode for implementation TI of MSC. The code in blue
is the augmentation needed for proving TI ≤ TE .

1 int msc_efficient(V, E, rank) {
2 comp[] cycle;
3 int k;
4 havoc k;
5 for (v ∈ V) havoc rank[v];
6 for (i ∈ [0,k)) havoc cycle[k];
7 assume isMSC(V, E, k, rank, cycle);
8 return k;
9 }

Figure 13: Pseudocode for TE of MSC.

component C from cc. Then it attempts to nondeterministically
choose an unprocessed edge (u,w) in EW such that its source
node u is in C (Lines 21–22). If no such edge exists, then C must
be maximal and its nodes are removed from VC (Lines 40–43).
Otherwise, if the target node w of the chosen edge is in VC\C, then
by the invariant of cc (that every component in VC is pointing to
the next component higher up on the stack), there exists a cycle
connecting all the components in cc starting with the component
that contains w, all the way to C. The loop on lines 26–32 thus
compacts these components to a new component C. If on the other
hand the target node w is an unprocessed node, then the current
component C is added back to the stack and then C is updated to
the new topmost component consisting of w (Lines 33–38). In all
other cases, w is either already in C or is already in an identified
maximal strongly connected component. In these cases, the edge
can be discarded because it is guaranteed to satisfy Condition 3∗
based on the partial reverse topological sort that has already been
computed.

To reduce the size of the generated constraints for TI , we flatten
the nested loops into a single loop that is executed |V |+ |E|
times. In each iteration, TI performs up to 13 LOAD and 8 STORE
operations. These operations dominate the size of the generated
constraints. In particular, the STORE operations are embedded
under 4 layers of conditionals making them 16× more expensive
than a LOAD.
Efficient specification. The idea behind TE is to directly check
the three conditions 1, 2, and 3∗. Its pseudocode is shown in
Figure 13. TE nondeterministically assigns k, rank, and an aux-
iliary array cycle. The latter stores for each alleged connected
component Ci, a cycle ci that visits the nodes in Ci. The three
conditions are assumed on Line 7 using the function isMSC. Be-
fore we discuss isMSC in detail, we argue TI ≤ TE , which boils
down to justifying the assume at Line 7 of Figure 13 by showing
that the assert at Line 46 of Figure 12 always holds. The crux
of the proof is to establish conditions 1, 2, and 3∗ as an invariant
before the assert.

It is easy to see that TI ensures Condition 1. To see that it
ensures 3∗, first note that when a component C is assigned its
rank it is the topmost component in the chain cc. Moreover, its
assigned rank k is larger than the rank of all previously assigned
components. Hence, we must show that all edges leaving C point
only to these older components. To this end, observe that the
algorithm maintains the invariant that for the topmost component
C in the chain, all edges starting in C that have already been
processed either remain in C or target an older component. Since



C is assigned its rank only after all its edges have been processed,
it follows that Condition 3∗ is satisfied.

For showing Condition 2, TE nondeterministically chooses for
each alleged connected component Ci, a cycle ci that visits the
nodes in Ci. Hence, to show TI ≤ TE , we need to augment TI with
auxiliary code to compute the cycles stored in cycle. This is the
code highlighted in blue in Figure 12.

The augmentation maintains for each connected component C
in cc, an associated cycle c that visits all nodes in C. When C is
assigned its rank, c is copied to cycle (Line 41). To maintain the
invariant that c visits all nodes in C, the code must also construct
a new cycle each time the algorithm computes a new component
by compacting a cyclic chain in cc. Therefore, the augmentation
additionally maintains for each component C, the target node
i in C for the incoming edge from its predecessor in cc, and
the source node o in C for the outgoing edge to its successor in
cc (unless C is the topmost component, in which case o can be
chosen arbitrarily).

Instead of representing each cycle c explicitly as a path in G,
we represent it symbolically using an auxiliary tree-like datatype
comp. To motivate this symbolic representation, consider the
construction of an explicit cycle for a new compacted component
obtained by the loop on lines 26–32. To this end, we need to
construct a path c from w to u that visits all nodes in the new
component. Since there exists an edge back from u to w, we obtain
the desired cycle. The loop must therefore maintain the invariant
that c is a path that visits all nodes in the components that have
already been compacted into C. Moreover, this path must end in
u and start in i. The latter is needed so that we can concatenate
this path with another path that visits all nodes in the component
C1 that precedes C in cc and that will be compacted next. The
component C1 has an associated cycle c1 and is connected to its
neighbors via i1 and o1. First, we rotate c1 to obtain a path that
starts and ends in the node i1, thus visiting all nodes in C1 at
least once. Next, we extend this path with the segment of c1 that
goes from i1 to o1. Finally, we concatenate the resulting path
with c using the edge (o1,i) that must exist by the invariant of
cc. The final path goes from i1 to u and visits all nodes in C1∪C
(at which point i1 becomes the new i for C1∪C), reestablishing
the loop invariant.

The issue with this construction is that the size of the obtained
cycle c can be exponential in the size of the compacted compo-
nents. This blow-up would affect both the running time of the
augmented TI as well as the size of CTE . By representing the
cycles using the type comp, we avoid this blow-up. Intuitively,
a comp value c is a program that provides instructions for con-
structing a cycle that visits all the nodes appearing in c. The size
of this program is linear in the number of visited nodes. More-
over, checking whether a given comp program c indeed constructs
a cycle that contains all the nodes appearing in c can be done
in linear time. This checker is our missing ingredient for TE to
guarantee Condition 2.

The comp programs have a tree-like structure where each ver-
tex p is labeled with an instruction to construct a path from the
paths computed by p’s children. There are three kinds of instruc-
tions, corresponding to the three different operations involved
in the construction of cycles during compaction. The instruc-

1 bool isMSC(V, E, k, rank, cycle) {
2 bool b = true;
3 bool[V] seen = {false};
4

5 for (i ∈ [0,k))
6 b = b && isCycle(V, E, rank, cycle[i], seen, i);
7 for (v ∈ V) b = b && seen[v];
8 for ((u,v) ∈ E) b = b && rank[v] <= rank[u];
9

10 return b;
11 }
12

13 bool isCycle(V, E, i, rank, c, seen) {
14 match c {
15 case Node(n) =>
16 seen[n] = true;
17 return n ∈ V && rank[n] == i
18 case Rotate(l,c1,r) =>
19 return !seen[l] && !seen[r]
20 && isCycle(V, E, i, rank, c1, seen)
21 && seen[l] && seen[r]
22 case Concat(c1, c2) =>
23 return isPath(V, E, i, rank, c1, seen)
24 && isPath(V, E, i, rank, c2, seen)
25 && (right(c1),left(c2)) ∈ E
26 && (right(c2),left(c1)) ∈ E
27 }
28 }
29

30 bool isPath(V, E, i, rank, c, seen) {
31 match c {
32 case Node(n) =>
33 seen[n] = true;
34 return n ∈ V && rank[n] == i
35 case Rotate(l,c1,r) =>
36 return !seen[l] && !seen[r]
37 && isCycle(V, E, i, rank, c1, seen)
38 && seen[l] && seen[r]
39 case Concat(c1, c2) =>
40 return isPath(V, E, i, rank, c1, seen)
41 && isPath(V, E, i, rank, c2, seen)
42 && (right(c1),left(c2)) ∈ E
43 }
44 }
45

46 node left(c) {
47 match c {
48 case Node(n) => return n
49 case Rotate(l, _, _) => return l
50 case Concat(c1, _) => return left(c1)
51 }
52 }
53

54 node right(c) {
55 match c {
56 case Node(n) => return n
57 case Rotate(_, _, r) => return r
58 case Concat(_, c1) => return right(c1)
59 }
60 }

Figure 14: Pseudocode for checker used by TE of MSC.



tion Node(n) for a node n constructs a (trivially cyclic) path that
consists only of the node n. The instruction Rotate(l,c,r) con-
structs a new path from l to r that visits all nodes in c, provided c
constructs a cycle that contains l and r. Finally, Concat(c1,c2)
concatenates the two paths constructed by c1 and c2, provided
there exists an edge in G from the end point of c1 to the start
point of c2.

The implementation of isMSC is shown in Figure 14. It uses the
function isCycle to check for each i ∈ [0,k) whether cycle[i]
constructs a cycle in G that visits all nodes appearing in cycle[i].
Moreover, it ensures that the rank of each of these nodes is indeed
i. The auxiliary array seen is used to ensure that each node in V
occurs in some cycle[i].

We briefly discuss the TE ≤ TS refinement proof. The proof
boils down to establishing conditions 1, 2, and 3 as an invari-
ant after the assume at Line 7 of Figure 13. First, note that if k
is negative, then the loop on Line 5 of Figure 14 is skipped.
Hence, the next loop on Line 7 will set b to false because
at least one node will not be seen, assuming V is nonempty.
Therefore, the checker implies Condition 1. Next, to prove that
isCycle(V,E,rank,cycle[i],seen, i) implies Condition 2 for
component i, we construct an interpreter for comp programs.
Given a comp program c that satisfies isCycle, the interpreter
executes c to construct the cyclic path in G encoded by c. Finally,
the loop on Line 8 directly checks Condition 3∗. As we have
argued earlier, this implies Condition 3.

The combined size of all comp programs is linear in |V | and
so is checking their correctness (Lines 5 and 6 in Figure 14).
As a result, for dense graphs (|E| ≈ |V |2), the cost to enforce
Condition 2 is insignificant. While checking Condition 3∗ is
still linear in |E|, it involves only two LOADs per edge and no
STORE. A detailed cost analysis yields an expected reduction
in total constraint size for dense graphs by a factor of 17.5 for
sufficiently large |E|. For shallow graphs (|E| ≈ |V |), we still
obtain a reduction by a factor of two.

C Details of MST example

This section delves into the details of the Minimum Spanning
Tree (MST) problem, to elaborate on Section 5.5. Pseudocode
for TI is shown in Figure 15; pseudocode for TE is shown in
Figures 16 and 17. Below, we explain how TE is a widget for TI .

We will do this by building and working directly with a tran-
script of Disjoint Set operations and by designing a checker that
establishes that:

1. This transcript reflects the defined semantics of the Disjoint
Set; and

2. This transcript corresponds to an execution of Kruskal’s
algorithm on a graph G.

Introducing Hpre. First, we instrument TI to transcribe Disjoint
Set function calls (make_set,find_set, and union; the interface
is given in Section 5.5) with the information necessary to describe
and simulate them. We represent entries in this transcript, which
we call Hpre, as 5-tuples of the form:

(label, vertex, old parent, new parent, weight).
The label is one of MAKE-SET, FIND-SET, UNION, or UPDATE;

it corresponds to the function being called. MAKE-SET and
UNION correspond to calls to make_set and union, respec-
tively. FIND-SET corresponds to a top-level call to find_set
(Lines 40 and 41 in Figure 15). UPDATE corresponds to a recur-
sive call to find_set (Line 16 in Figure 15).

The vertex field is an input to the function. For make_set,
vertex refers to the vertex being created. For find_set (here and
below, find_set refers to entries labeled FIND-SET and UPDATE),
vertex refers to the vertex being queried. For union, vertex refers
to the vertex with smaller rank.

The old parent field is redundant for make_set; for find_set
and union, this is the parent of the vertex before the call modifies
it. For all function calls, the new parent field is the parent of the
vertex after the call modifies it.

The final field is weight, which is used for ordering Disjoint
Set operations (§C.1) and associating them to edges in G (§C.2).
For make_set, this field is −1 to ensure that they are ordered
before all other operations. For find_set and union, this field
is the weight of the edge being considered for inclusion in the
MST when the call occurred.

This transcript only considers the Disjoint Set operations as
acting on the parent array in TI and ignores the rank array. This
is because the rank array is useful only for preserving asymptotics
(and not correctness). As a result, we can freely augment TI ,
replacing accesses to rank with nondeterministic choice (Line 23
in Figure 15).

C.1 Checking Disjoint Set operations from Hpre

Given some Hpre, to check that it is a valid series of Disjoint Set
operations, there are two key tests. First, a vertex’s parent must
be consistent from operation to operation (the new parent in the
operation for a given vertex must appear as the vertex’s old parent
in the next operation), assuming the operations are executed in
ascending order of weight. Second, the semantics of make_set,
find_set, and union are preserved (and thus invariants on the
structure of the Disjoint Set are preserved across operations).
These two tests, namely parent consistency and Disjoint Set se-
mantics, refer to Conditions 2 and 3 respectively in Section 5.5.
We detail these tests next.

The parent consistency test is in assume_memory_checks()
(Line 30 in Figure 17). For this test, the prover nondetermin-
stically reorders Hpre as Hpar and performs the following three
checks for each consecutive pair of rows in Hpar. First, the rows
must be sorted into groups by vertex. Next, consecutive rows
with the same vertex must be sorted by their weights. Finally, the
old parent of row i must be the new parent of row i−1 if their
vertices are the same. The first of the Hpar checks is efficiently
enforced by defining an order over the vertices and then checking
that the rows are sorted by this order.

These checks are very similar to those for checking RAM [16,
18, 78, 92] in constraints. Here, (vertex, weight) is analogous to
RAM’s (address, timestamp), and parent is analogous to RAM’s
value. As a technical point, the timestamps in RAM create a total
order on operations, whereas for this problem, weight imposes
only a partial order: when a particular edge is being considered,
there could be multiple operations on a given vertex, and the
approach outlined here does not require that the operation order



1 struct DisjointSet {
2 int parent[MAX]; // indexes are not known statically
3 int rank[MAX]; // indexes are not known statically
4 DisjointSet(int num_v) {
5 for (int i = 0; i < num_v; i++) {
6 make_set(i);
7 }
8 }
9 void make_set(int i) {

10 parent[i] = i;
11 rank[i] = 0;
12 }
13 int find_set(int v) {
14 if (v != parent[v]) {
15 parent_v_tmp = parent[v]
16 new_root = find_set(parent_v_tmp);
17 parent[v] = new_root
18 }
19 return parent[v];
20 }
21 void union(int u, int v) {
22 // sort the two vertices by rank
23 bool swap = (rank[u] < rank[v]);
24 int min = swap * (u - v) + v;
25 int max = swap * (v - u) + u;
26 // join the two sets
27 parent[min] = max;
28 rank[max] = max(rank[max], rank[min] + 1);
29 }
30 }
31

32 Tree mst_kruskal(Graph G) {
33 DisjointSet ds = new DisjointSet(G.num_vertices);
34 Edge sorted_edges[G.num_edges] =
35 sort_by_weight(G.edges);
36 Edge mst[G.num_vertices - 1];
37 int mst_idx = 0;
38 for (int i = 0; i < G.num_edges; i++) {
39 Edge e = sorted_edges[i];
40 int u_root = ds.find_set(e.u);
41 int v_root = ds.find_set(e.v);
42 if (u_root != v_root) {
43 mst[mst_idx++] = e;
44 ds.union(u_root, v_root);
45 }
46 }
47 return mst;
48 }

Figure 15: Pseudocode for TI of MST.

in the transcript reflect the intended execution of TI . However,
as we discuss later (§C.4), any order (within a vertex) that re-
spects the weight partial order and that survives the other checks
is acceptable, even if such a transcript could not be a result of
executing the real TI .

The test of Disjoint Set semantics is in the helper function
assume_ds_semantics() (Line 41 in Figure 17). For this test,
the prover nondeterminstically reorders Hpre as Hdjs to place all
find_set operations first (rows with label FIND-SET or UPDATE).

1 Tree mst_efficient(Graph G) {
2 havoc Edge mst[G.num_vertices - 1];
3 havoc Edge not_mst[G.num_edges - G.num_vertices + 1];
4 assume G.edges == mst ∪ not_mst ;
5 AugmentedDisjointSet ds = new AugmentedDisjointSet(G);
6 ds.assume_memory_checks();
7 ds.assume_ds_semantics();
8 for (Edge e : mst) {
9 int u_root = ds.assume_find_set(e.u, e.weight);

10 int v_root = ds.assume_find_set(e.v, e.weight);
11 assume u_root != v_root;
12 ds.assume_union(u_root, v_root, e.weight);
13 }
14 for (Edge e : not_mst) {
15 int u_root = ds.assume_find_set(e.u, e.weight);
16 int v_root = ds.assume_find_set(e.v, e.weight);
17 assume u_root == v_root;
18 }
19 return mst;
20 }

Figure 16: Pseudocode for TE of MST.

Then it performs the check that is detailed in Section 5.5, namely
that: for each FIND-SET label, new parent must be the root at-
tested to by a sequence of FIND-SET and zero or more UPDATE
operations, where the final row in the sequence has old parent
equal to new parent equal to vertex.

C.2 Associating Hpre to a valid execution of Kruskal
For efficiency, we would like that creating the needed association
does not require the constraints to encode an execution of TI . To
that end, the prover nondeterministically supplies M (the alleged
MST), and constraints “check” that this M satisfies the remaining
conditions from Section 5.5, namely Conditions 1, 4, and 5.

Condition 1 is that M is a subset of E with cardinality |V |−1.
This is checked by Line 4 in Figure 16.

To check Conditions 4 and 5 and to finish handling the seman-
tics of make_set and union, the checker nondeterministically
reorders Hpre to get H, which has the following structure. Similar
to Hpre, the first |V | rows of H must have MAKE-SET labels, and
constraints directly enforce that old parent, new parent, and the
vertex are the same (and the weight must be −1) for these entries.
The next rows provision for the worst-case number of UPDATE
operations: they have 2 · |E| ·α(|V |) UPDATE labels. These rows
are used when enforcing Disjoint Set semantics (§C.1).2 Then
there are |V |− 1 three-row groups; each three-row group con-
sists of a FIND-SET, another FIND-SET, then a UNION, for a total
of 3 · (|V |−1) rows. All remaining rows have FIND-SET labels,
divided into pairs of rows. These three-row groups and pairs are
instrumental in checking Conditions 4 and 5, as explained next.

Recall Condition 4: for each edge e not in M, H reports that the
endpoints of e are in the same set. In Kruskal’s algorithm, this

2The worst-case number of rows is not always needed. However, Hdjs must act
on all rows. We handle this mismatch by allowing FIND-SET chains (a FIND-SET
followed by zero or more UPDATEs) to have no-op UPDATE entries as padding
at the end, which “drains” the pool of excess UPDATEs, if needed. These no-op
entries have vertex equal to old parent equal to new parent, which passes the
checker.



1 struct AugmentedDisjointSet {
2 Transcript H; // transcript with rows: (op, vertex, oldP, newP, weight)
3 int idx = 0;
4 int num_make_set, num_find_set, num_union, num_update, num_ops;
5 AugmentedDisjointSet(Graph G) {
6 num_make_set = G.num_vertices;
7 num_find_set = 2 * G.num_edges;
8 num_union = G.num_vertices - 1;
9 num_update = 2 * alpha(G.num_vertices) * G.num_edges; // worst-case number of "update"

10 num_ops = num_make_set + num_find_set + num_union + num_update;
11 H = new Transcript(num_ops);
12 for (int i = 0; i < num_make_set; i++) {
13 assume H[idx++] == {MAKE-SET, i, i, i, -1};
14 }
15 for (int i = 0; i < num_update; i++) {
16 havoc vertex, oldP, newP, weight;
17 assume H[idx++] == {UPDATE, vertex, oldP, newP, weight};
18 }
19 }
20 int assume_find_set(int v, int weight) {
21 havoc oldP, newP;
22 assume H[idx++] == {FIND-SET, v, oldP, newP, weight};
23 return newP;
24 }
25 void assume_union(int u, int v, int weight) {
26 havoc parent, child;
27 assume {parent, child} == {u, v} || {parent, child} == {v, u};
28 assume H[idx++] == {UNION, child, child, parent, weight};
29 }
30 void assume_memory_checks() {
31 havoc Hpar, σ;
32 assume H == σ(Hpar); // verify that Hpar is a permutation of H
33 for (int i = 1; i < num_ops; i++) {
34 assume Hpar[i - 1].vertex <= Hpar[i].vertex;
35 if (Hpar[i - 1].vertex == Hpar[i].vertex) {
36 assume Hpar[i - 1].newP == Hpar[i].oldP;
37 assume Hpar[i - 1].weight <= Hpar[i].weight;
38 }
39 }
40 }
41 void assume_ds_semantics() {
42 havoc Hdjs, σ;
43 assume H == σ(Hdjs); // verify that Hdjs is a permutation of H
44 assume Hdjs[0].op == FIND-SET;
45 int i;
46 for (i = 1; i < num_find_set + num_update; i++) {
47 if (Hdjs[i].op == FIND-SET) {
48 // Hdjs[i-1] is expected to be the last UPDATE in a sequence
49 // or a FIND-SET with a 0-length UPDATE sequence.
50 // In either case, we need to enforce that the last tuple in the sequence is the root
51 assume Hdjs[i - 1].vertex == Hdjs[i - 1].oldP == Hdjs[i - 1].newP;
52 assume Hdjs[i - 1].weight < Hdjs[i].weight;
53 } else {
54 assume Hdjs[i].op == UPDATE;
55 assume Hdjs[i - 1].oldP == Hdjs[i].vertex;
56 assume Hdjs[i - 1].newP == Hdjs[i].newP;
57 assume Hdjs[i - 1].weight == Hdjs[i].weight;
58 }
59 }
60 assume Hdjs[i - 1].vertex == Hdjs[i - 1].oldP == Hdjs[i - 1].newP;
61 }
62 }

Figure 17: Pseudocode for AugmentedDisjointSet in TE of MST.



corresponds to two top-level calls to find_set (Lines 40 and 41
in Figure 15). For H, this involves assigning each e not in M to
a unique FIND-SET row-pair, and associating these rows to e as
follows:
• Both rows have their weight set to e.weight.
• The first row in the pair has a vertex of e.u.
• The second row in the pair has a vertex of e.v.
• The return values (new parent) of these calls are equal.

Finally, recall Condition 5: for each edge e in M, H reports
that the endpoints of e are not in the same set. In Kruskal’s
algorithm, this corresponds to two top-level calls to find_set
(Lines 40 and 41 in Figure 15) that return different values and
a call to union (Line 44 in Figure 15) with their results. For H,
this involves assigning each e in M to a three-row group and
associating these rows to e as follows.
• All rows have their weight set to e.weight.
• The first row in the three-row group has a vertex of e.u.
• The second row in the three-row group has a vertex of e.v.
• The new parents in these two rows (representing the return

values of the find_set calls) are not equal.
• These two new parents appear as the old and new parents of

the third row (in either order).
• In the final row, the vertex and old parent are equal.
This choice of which root becomes the old or new parent uses
the fact that we replaced accesses to rank with nondeterministic
choice.

None of our checks that Hpre is a valid execution of Kruskal’s
algorithm required actually reasoning about Hpre. Instead, they
exclusively considered the reorderings H, Hpar, and Hdjs. As a
final optimization, we remove Hpre entirely from TE , nondeter-
ministically supply H (Line 11 in Figure 17), and then check that
Hpar and Hdjs are reorderings of H (Lines 32 and 43 respectively
in Figure 17). This allows a checker to ensure the existence of a
valid Hpre without paying the cost of instantiating it in constraints.

C.3 Performance
Avoiding RAM and state machines. Recall from Section 5.5
that the constraint reduction in the compiled TE , relative to the
compiled TI , is largely driven by avoiding RAM, state machines,
and worst-case unrolling. We delve into that point now.

En route to translating TI to constraints, the contents of the
main loop (Lines 38–46 in Figure 15) are first translated to a state
machine. To build this state machine, the recursion in find_set
is translated into two while loops, one which handles the case
of following the parent pointer (to find the root) and one which
handles the case of re-parenting vertices to point to the root. As
a result, each find_set call (Lines 40 and 41 in Figure 15) is
translated into two complex states with LOADs and STOREs on
the parent array. Another complicated state results from the
conditional body on Lines 42–45 in Figure 15: there are LOADs
and STOREs on the parent, rank, and mst arrays. Furthermore,
there are a handful of additional states created by the compiler
(resulting from code in between the loops or between the loops
and the conditional branch). Because it is not statically known

which state the prover will be in at any given time, TI has to pay for
all encoding all states and all transitions, in each of Θ(|E| ·α(|V |))
unrolled iterations.

In TE , this same asymptotic cost appears twice: once as the
checks on Hpar and once as the checks on Hdjs. Both of these
checks involve iterating over a fixed number of rows in the tran-
script and locally checking properties of adjacent rows. These
checks involve conditionals, but the branches are few; crucially,
they do not involve LOADs or STOREs. As a consequence, the
constant on the high-order term (referring to the number of con-
straints) is far smaller when compiling TE versus TI , specifically
52.2× smaller, as stated in Sections 5 and 6.

“Conditional splitting”. We also referred to additive improve-
ments when |E| ≫ |V |, and detail those now. The technique may
be of independent interest.

Whereas the constraint encoding of TI includes logic for un-
taken conditional branches, the constraint encoding of TE sheds
that overhead. This point is best illustrated by considering the
conditional in Line 42 in Figure 15. In an execution of Kruskal,
this conditional will be true only |V | − 1 times (once for each
edge added to the MST); yet, if TI were represented in constraints,
those constraints would have to include the logic of the condi-
tional body in all |E| iterations, because the specific iterations in
which the conditional is true are not known statically. By con-
trast, in TE , two assume statements (Lines 11 and 17 in Figure 16)
presuppose statically that the conditional is true |V | − 1 times
and false |E|− |V |+1 times; indeed, the code contains the body
of the conditional (Line 12 in Figure 16) only for true iterations,
removing the need to pay for it in constraints for false iterations.

One can observe this “conditional splitting” by mapping lines
in the body of TI’s main loop (Lines 40–44 in Figure 15) to lines
in TE ’s two main loops (Lines 9–12 and 15–17 in Figure 16). Con-
ceptually, the constraints are checking the iterations of Kruskal’s
algorithm out of order, which works because the prover is pre-
sumed already to have executed Kruskal.

Because the complexity of our MST is dominated by O(|E| ·
α(|V |)) Disjoint Set operations, the savings of going from |E|
union instances to |V |−1 checks of UNION rows does not result
in an asymptotic improvement. However, this change does result
in significant additive improvements in the number of constraints,
particularly when |E| ≫ |V |.

C.4 Soundness: intuition
Recall our claim from Section C.1: although the prover is free to
choose an order in Hpar that respects the weight partial order, even
if the order diverges from what TI would produce, this freedom
is not problematic. Specifically, the prover cannot satisfy the
constraints TE when M is not an MST of G. Ultimately, this claim
is established with end-to-end reasoning (§C.5), not by reasoning
about all forms of misbehavior. For intuition, however, consider
as an example the following attempt by a malicious prover to
return something that is not an MST, by using the freedom to
reorder rows that have matching vertex and weight entries in
Hpar.

Suppose the prover tries, for a particular edge e with
incident vertices u and v, to maliciously reorder Hpar to
claim union(u_root, v_root) occurs strictly before the



find_set(u) and find_set(v) calls instead of in the order spec-
ified by TI (Lines 40–44 in Figure 15). Let the row corresponding
to union(u_root, v_root) be:

(UNION, u_root, u_root, v_root, weight).
Let the row corresponding to the final UPDATE required by
find_set(u) be:

(UPDATE, u_root, u_root, u_root, weight).
Following the execution of TI , these rows will be ordered as fol-
lows in Hpar:

i : (UPDATE, u_root, u_root, u_root, weight)
i+1: ( UNION, u_root, u_root, v_root, weight).

A nefarious prover might try to reorder these two rows to undo
the effect of the union call and thus potentially later claim that
some other edge is in the MST when it is not. Such a reordering
would look like:

i : ( UNION, u_root, u_root, v_root, weight)
i+1: (UPDATE, u_root, u_root, u_root, weight).

This behavior is caught by Line 36 in Figure 17 because the newP
of the first line doesn’t match the oldP of the second line. The
prover could modify the second line to avoid failing this check
and produce the following:

i : ( UNION, u_root, u_root, v_root, weight)
i+1: (UPDATE, u_root, v_root, u_root, weight).

This passes the check on Line 36 in Figure 17, but now the prover
will be caught by various checks on the contents of Hdjs. The
prover can make tweaks to H, Hpar, and Hdjs to try to satisfy
checks in different parts of the circuit, but ultimately a lying
prover will always be caught by at least one of the five checks.
This holds for all malicious prover actions, which is established
via end-to-end reasoning, summarized in the next section.

C.5 Refinement proof
As usual, we want to show TI ≤ TE ≤ TS, for End-to-end Com-
pleteness and End-to-end Soundness (§4.2). We will do this in
two pieces. Piece 1 is our usual: TI ≤ TE . For Piece 2, we are
trying to establish TE ≤ TS. We will do so by showing TE ≤ TI .
Since TI ≤ TS (indeed, Kruskal’s algorithm is known to solve the
problem!) we will get the desired refinement relation by transi-
tivity. Notice that our approach here differs from the one taken
elsewhere in the paper, where we establish TE ≤ TS directly; that
is because for the other problems, TE is similar to the respective
specification. For the MST problem, however, our TE is a widget
specifically geared to checking the execution of Kruskal’s algo-
rithm; indeed, the checks in TE ensure the existence of an Hpre
that corresponds to a correct execution of TI .

We give a high-level overview of the proof based on our dis-
cussion of TI , TE , and TS here and in Section 5.5.

We establish that TI refines transition system TE by follow-
ing the approach in Section 4.2 (“Constructing refinement map-
pings”), in three major steps. First, we instrument TI to emit the
history, Hpre, of the Disjoint Set (yielding TIE ). Second, we aug-
ment this TIE with assume statements that enforce Conditions 1–5
(to get T̂IE ) and show that these conditions, when applied over
prefixes of Hpre, are also loop invariants of the augmented TI .
Finally, we obtain TE from T̂IE by abstracting away the variables
not required by Conditions 1–5 and replacing assignments by
havoc statements. These removed variables include most of the

TI implementation and also the emitted Hpre.
We show that TE refines TI by following the same general

procedure, only this time starting with H and reconstructing Hpre.
We use Hpre and M to reconstruct variables in TI and then prove
that invariants on the Disjoint Set can be reconstructed from these
ghost variables (which are effectively prefixes of Hpre and M) and
from Conditions 1–5. These conditions allow one to reconstruct
the state of the Disjoint Set data structure at each point in TI
(and thus all variables in TI). Additionally, the specifications of
operations found in reconstructed states are consistent with return
values of operations in H due to Conditions 1–5.
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