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Abstract. Scaling blockchain protocols to perform on par with the expected needs of Web3.0
has been proven to be a challenging task with almost a decade of research. In the forefront of
the current solution is the idea of separating the execution of the updates encoded in a block
from the ordering of blocks. In order to achieve this, a new class of protocols called rollups
has emerged. Rollups have as input a total ordering of valid and invalid transactions and as
output a new valid state-transition.
If we study rollups from a distributed computing perspective, we uncover that rollups take as
input the output of a Byzantine Atomic Broadcast (BAB) protocol and convert it to a State
Machine Replication (SMR) protocol. BAB and SMR, however, are considered equivalent as
far as distributed computing is concerned and a solution to one can easily be retrofitted to
solve the other simply by adding/removing an execution step before the validation of the
input.
This “easy” step of retrofitting an atomic broadcast solution to implement an SMR has, how-
ever, been overlooked in practice. In this paper, we formalize the problem and show that
after BAB is solved, traditional impossibility results for consensus no longer apply towards an
SMR. Leveraging this we propose a distributed execution protocol that allows reduced exe-
cution and storage cost per executor (O( log

2n
n

)) without relaxing the network assumptions of
the underlying BAB protocol and providing censorship-resistance. Finally, we propose efficient
non-interactive light client constructions that leverage our efficient execution protocols and do
not require any synchrony assumptions or expensive ZK-proofs.

1 Introduction

The rise of blockchain technology has lead to the rapid development of a variety of solutions for the
State Machine Replication (SMR) problem. Nodes running an SMR algorithm need to both order a
set of transactions as well as execute them to update their local state, two separate responsibilities
that are usually conflated into a single consensus protocol. Recently, the idea of separating the total
ordering of transactions from the execution has shown tremendous promise on increasing the scala-
bility of blockchains [11,15,25] however all existing research focuses on the ordering layer assuming
that after ordering every participant can locally execute the transactions and update the state.

In this work, we investigate the question of “how to scale execution after the ordering is done”.
In other words, given that transactions are ordered, how scalable can an execution protocol be. Cur-
rently there exist two proposed solutions. The first and most prevalent is that every consensus-node
also executes and adds a commitment to the new-state on a succeeding block [5,11,13]. The second
relies on a semi-trusted executor node that runs a "rollup" protocol [7]. The executor proposing a new
state after locally executing the ordered transactions either provides a sufficiently large dispute win-
dow for some honest executor to challenge the proposal with a fraud proof [9,4,2], or a zk-proof [12,1]
of correct execution. Neither of these solutions are built from first principles, the former is merely



a synchrony assumption breaking the model of the underlying ordering-layer [27,14,13,21] whereas
the later is proposed as a remedy to that assumption which forces mostly inefficient and non-general
purpose zero-knowledge proof usage as well as allows for the executor to censor transactions.

In this paper, we take a step back and design from first principles. As a first contribution we
merely point out that decoupling of ordering from execution is nothing more than taking a Byzantine
Atomic Broadcast (BAB) [16], i.e. ensuring the total ordering of sent messages, and a deterministic
execution engine [17,18,3] to solve the SMR problem. In blockchain systems, the BAB layer is called a
dirty ledger because transactions are not checked for validity. The nodes taking part in the network,
which we call consensus nodes, commit transactions without validation and only make sure the
ledger is growing consistently.

Once we define our problem we propose a novel protocol for the execution layer of an underlying
dirty ledger for both the permissioned and the Proof-of-Stake settings. Our protocol works in an
asynchronous environment, making no extra assumptions and does not use zk-proving machinery.
We merely assume the existence of a dirty ledger, that ensures both the total ordering and the
availability of the transactions committed to it. Then, for the execution layer, we use a set of nodes
that we call executors. They validate transactions and update the state of the system and can be
a subset of the consensus nodes or external. Surprisingly an honest majority is sufficient for the
executors even though we have no timing assumptions and only a logarithmic number of them needs
to execute every block. As a result our solution provides both better fault tolerance (f ≤ (1 − ϵ)n2
instead of f < n

3 ) and significantly better scalability in two dimensions, execution and storage, with
expected O( log

2n
n ) (instead of O(1)) cost per executor per block meaning that the system can be

truly scalable and decentralized.

Our Approach

Our protocol can be roughly split into two steps. In the first step, we elect on expectation one executor
per round by computing a VRF [24]. Then the executor votes by computing state commitments for
the next O(log2n) rounds. Hence every round will have an O(log2n) number of executors. Their
task is to construct verifiable certificates of the state such that a user (executor or light client) can
be convinced about the state without execution. At first glance, that problem seems related to the
consensus problem [22] since executors need to agree on the state, but unlike the consensus problem,
in each round all honest nodes have the same input, an ordered list of transactions. Therefore, as
long as honest executors bootstrap in the correct state, a state commitment can be considered valid
if and only if at least one honest executor has voted on it.

Since nodes update the state in a distributed fashion, we must guarantee its availability. More
specifically, in each round, only the elected nodes obtain the state. However, to vote for the following
O(log2n) rounds, elected executors must acquire the state of the previous round. For that reason,
every node stores the state of the rounds it has executed and provides it upon request.

A final general challenge for dirty ledgers is to define light client constructions. Straightforward
solutions such as providing inclusion proofs for the transactions committed to the ledger are not
sufficient since the transactions can be invalid. To solve this challenge, we present the first non-
interactive light client construction for dirty ledgers in the asynchronous model. In a nutshell, light
clients learn information about the state by verifying the certificates produced by the executors, i.e.,
the valid state commitments, along with inclusion proofs.

Our paper has the following contributions.

– We formalize the SMR problem by separating it into ordering and execution.
– We propose a solution for the SMR execution layer with O( log

2(n)
n ) cost per executor and near-

optimal fault tolerance f < (1− ϵ)n/2, assuming the existence of the ordering layer.
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– We extend our protocol for the proof-of-stake settings.
– We introduce the first non-interactive light client for dirty ledgers.

Structure of the paper. In Section 2 we present the related work, model and assumptions, as
well as the problem definition of scaling execution. In Section 3, we overview our solutions for different
settings, including the Deterministic, the Horizontal Sampling, and the Proof-of-Stake protocols and
we provide the full solutions in Section 4. Section 5 discusses the light client protocol and Section 6
discusses the data availability problem. We provide a summary of terminologies in table 1, and all
proofs of the protocols in section 7.

2 Preliminaries

2.1 Related work

The natural way to separate the ordering from the execution is to let each node execute every
round and add the state commitment to a subsequent block, leading to an average cost per block
execution O(1) [5,11,13]. The other promising approach to moving the computation of the state
off-chain is employing a rollup protocol where a coordinator, updates the state of the system locally
and only posts the state commitment on the main chain. There are two directions to verify the state
commitments, optimistic rollups [6] and ZK-rollups [8].

In optimistic rollups, there is a dispute period during which executors can prove that a state com-
mitment posted on the main chain is invalid. However, this technique requires synchrony assumptions
and average cost per block execution O(1) to guarantee that only valid state commitments are posted
on the main chain. On the other hand, in ZK-rollups, the coordinator commits the state commitment
along with a zero-knowledge proof (ZK-STARK) indicating that a specific set of transactions has
been applied to the state. Nevertheless, ZK-rollups are not censorship-resistant since the coordinator
can just not include some valid transactions in this set. Furthermore, computing ZK-STARKs is a
computationally heavy for the users, and scaling general-purpose applications is challenging due to
the difficulty to express general computation.

Finally, on the light-client for dirty ledgers domain, Tas et al. [26] proposed the first such solution
in the synchronous model. In that work, a number of nodes, which are called full nodes, are in charge
of updating the state of the system and providing state commitments to the light clients, proving
their validity through an interactive game (bisection game). Unlike this solution we propose a light-
client construction that is non-interactive, third-party verifiable (i.e., if a node is convinced it can
convince other nodes as well) and works in the asynchronous model. This however, comes at the cost
that we require an honest majority of executors that cannot be bribed or adaptively corrupted (for
the probabilistic solution). We can also employ a fall-back mode in the protocol where any client not
happy with the assumption above, but who assumes synchrony waits for any of the elected executors
to provide a fraud-proof [10] or ask an honest full-node for the correctness of a state-commitment
through bisection games. Both approaches have an honest minority assumption which will always
be true with overwhelming probability. As a result, our proposal can easily be adapted to a flexible
model [23] for heterogeneous clients.

2.2 Model and Assumptions

Communication model: We assume an asynchronous environment, where any message sent can
be delayed for an unspecified, but finite, amount of time. The link between every two honest nodes
is reliable, namely when an honest node sends a message to another honest node, the message will
eventually arrive.
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Cryptographic Primitives: We use κ to denote the security parameter. We assume the adver-
sary is computationally bounded, the communication channels are cryptographically secure, and the
existence of hash functions, signatures, and encryption schemes. We use a computationally hiding
and perfectly binding commitment scheme: (Computecmt, V erifycmt). We require the commitment
scheme to be deterministic and provide inclusion proofs, e.g., it can be a Merkle tree. Moreover,
users employ a Verifiable Random function (VRF) [24].

Permissioned setting: We consider a fixed number of n nodes with their public keys known to
every participant in the network. A genesis block G which describes the initial state of the system
is provided both to the executors and to the clients. The adversary is static and can corrupt up to
f ≤ (1− ϵ)n2 (ϵ > 0 is a constant) nodes in a Byzantine fashion before the protocol starts.

Proof of stake: With the term node we refer to each identity that has an account on the system.
The point of reference in the proof-of-stake system is a unit coin, which is the smallest amount of
money existing. Each coin is a unique string linked to its owner. We assume each node is equipped
with a private-public key pair. A genesis block G which contains the initial stake distribution is
accessible to all nodes. The stake distribution is dynamic, namely the coins might change hands
over time. We assume that the total amount of stake is fixed and equal to W in every round. The
adversary is static and can corrupt a portion of the stake holders holding at most f coins, such that
f ≤ (1− ϵ)W2 where ϵ is a constant, in a Byzantine fashion.

2.3 Problem Definition

We formulate the State Machine Replication (SMR) problem by diving it into an ordering and an
execution layer. Solutions for the ordering layer include Blockchain protocols such as Byzantine
Atomic Broadcast (BAB) [27,14,13,21], in which the nodes only agree on the order of the blocks
without executing them. Our protocols are solutions for the execution layer.

State Machine Replication (SMR): A state machine consists of a set of state variables
that encode its current state. External identities, users of the system, can issue commands to the
state machine. The state machine executes the commands sequentially using a transition function
to update the state of the system. Furthermore, the state machine might generate an output after
executing each command. To provide fault-tolerant behavior, the state machine replicates in multiple
copies. An SMR protocol aims to maintain synchronization between the replicas. In this paper, we
illustrate that an SMR solution can be a composition of a protocol Π1 for the ordering layer and a
protocol Π2 for the execution layer. Below, we define the ordering and the execution layers.

Ordering layer: Consider a number of nodes, some of which can be adversarial, receiving
transactions from external identities. The nodes organize the transactions in blocks. Furthermore,
they employ a protocol Π1 to agree on an order of the blocks. Each node i commits locally to a
finalized ledger of blocks. We denote the ledger to which node i commits in the round r by T i

r . The
output of the ordering protocol, i.e. the order of the blocks in which the nodes reach, is a ledger
T = b0 ← b1 ← ...← bi. We introduce the properties that an ordering protocol must satisfy:

– O-Safety : There is no round r for which exist two honest nodes i, j s.t. T i
r ̸= T j

r .
– O-Liveness: If an honest node receives an input tx, then all honest nodes will eventually include

tx in a block of their local ledger.

Execution Layer: Consider a number of nodes where some of them can be adversarial. More-
over, consider the ledger of blocks T = b0 ← b1 ← ... ← bi output by the ordering layer, accessible
to everyone. Each block might contain invalid transactions. The validity of a transaction depends
on the logic of the application. The nodes are responsible for applying only the valid transactions
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within the blocks committed to the ledger T . The invalid transactions within the blocks are disre-
garded. Each node updates the state of the system. We denote the state of the system in the round
r according to node’s i view by Si

r.
State: As a blockchain state, we denote a structure keeping track of each user’s possessions. The

content of the state depends on the type of transactions committed to the ledger. For instance, in
Ethereum, the state captures the balance accounts of the users, while in Bitcoin the UTXO model
is adopted. Furthermore, the state can contain fragments of code, e.g., smart contracts.

Ideal functionality Π: We illustrate the correctness of the state of the system by introducing an
ideal functionality Π. The functionality Π receives as input the ledger T = b0 ← b1 ← ... ← bi
which is an output by the ordering layer. Π updates the state by applying all (and only) the valid
transactions within the blocks committed to the ledger T . We denote the state of the system stored
by Π for the round r by S∗

r . The initial state of the system S∗
0 equal to the genesis block, S∗

0 = G. To
update the state in each round, Π uses the deterministic transition function apply. The inputs are
the state of the previous round and the block to be executed in the current round. More specifically,
in the round r, S∗

r ← apply(br, S
∗
r−1) = Sr,len(br) where

Sr,j =

{
S∗
r−1 if j = 0

apply_tx(Sr,j−1, txj) if 1 ≤ j ≤ len(br)
and br = [tx1, ..., txlen(br)].

The state applied to the function apply_tx remains unchanged when the input tx is an invalid
transaction, namely apply_tx(S,tx)=S. Therefore, for the ledger T , there exists a unique sequence
of states S∗

0 , S
∗
1 , ..., S

∗
i defined by the state transition function above.

In practice, nodes can employ any execution engine M that simulates the ideal functionality Π.
When receiving as inputs the correct state of r and the block r+1, the engine M outputs the correct
state of r + 1.

An execution layer guarantees that the honest nodes simulate the ideal functionality Π. We
proceed with defining the properties of an execution layer:

– E-Safety : There is no round r for which exists an honest node i that commits on a state Si
r s.t.

Si
r ̸= S∗

r .
– E-Liveness: For any round r where an honest node i commits a state Si

r, there exists a round
r′ > r where node i eventually commits a state Si

r′ s.t. Si
r ̸= Si

r′ .

Since nodes keep updating their state without deviating from the ideal functionality Π, an
execution protocol is Censorship Resistant, namely it satisfies the following property:

– Censorship Resistance: Every valid transaction tx committed to the ledger T will eventually be
applied in the state.

Note that the liveness property ensures only that each honest node will eventually update its
state. Since not all nodes execute for every round essentially, we do not require that the honest nodes
update their states in the same rounds.

State Machine Replication: Finally, we formulate the SMR problem on top of the ordering
and execution layers. More specifically, transactions issued by external identities constitute the input
of the SMR. An SMR protocol consists of an ordering layer protocol Π1 and an execution layer
protocol Π2 satisfying the properties O-Safety, O-Liveness and E-Safety, E-Liveness respectively.
Nodes participating in those protocols may or may not be the same. The output of Π1 which is a
ledger of blocks T is the input of Π2. The output of the machine is the output of Π2, namely an
ever-growing state sequence S0, S1, S2, ..., Si.

Light Client. Consider an execution layer Πe with input a ledger T and the average size of
the state that the ideal functionality Π outputs in any round |S|. The execution layer supports
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light client constructions. Light clients request succinct proofs from the participating nodes to learn
desired information about the state of the system. We capture this idea by defining the state proof
certificates.

– A state proof πS for the round r is a succinct proof indicating that the state S is the correct
state of the round r. Proof πS is correct if and only if S = S∗

r .
– A state proof π for the round r is succinct if it contains asymptotically less data than the history

of states, namely if len(π)
r|S| = o(1)

Assume that the light client lci receives a state proof πS for the round r without necessarily
receiving the state S. Lci evaluates whether the proof is correct, in its perception, using a predicate
acceptlci(πS , r) which yields either True or False. The light client lci accepts πS if and only if
acceptlci(πS , r) = True. The properties which a light client execution layer protocol must satisfy are
the following:

– LC-Safety : There is no round r for which exists a light client lci that receives a proof πS for the
round r s.t. acceptlci(πS , r) = True and S ̸= S∗

r .
– LC-Liveness: A light client bootstrapping in the round r will eventually receive a proof πS′ for

a round r∗, r∗ ≥ r s.t. acceptlci(πS′ , r∗) = True.

Additional Assumptions: We assume the existence of an underlying ledger T as an output of an
ordering layer Π that satisfies the properties of O-Safety, O-Liveness. The ledger T is accessible
to every node. Furthermore, we assume that there are no duplicate transactions committed to T .
Finally, we assume that for each round a random seed is provided by the dirty ledger, similarly to
Algorand [19], or DAG-based BFT protocols [21,15,20].

3 Overview of the Protocols

In our proposed protocols, executors update the state of the system in a distributed fashion. We
decompose the protocols in two phases, an election phase and a voting phase. The election phase
will select a set of executors for every round. Then, in the voting phase elected executors for the
round compute and broadcast their signed state commitments. The voting phase outputs valid state
commitments, as defined:

– A state commitment is considered to be valid if and only if either it is signed by at least one
honest node or it is the genesis block.

The goal is to ensure that only correct state commitments, defined below, will become valid.

– A state commitment cmt is the correct state commitment of round r if and only if cmt =
computecmt(S

∗
r ), where S∗

r is the state of round r defined by the ideal functionality of the
execution layer introduced in Section 2.

There are two challenges when solving the problem. The first is to ensure that there is provably
at least one honest node that has voted a state commitment to guarantee its validity. The second is
to ensure that when elected nodes enter the voting phase, they have the state of the previous round
available. Below we explain how we tackle these challenges for different settings.

Permissioned and Deterministic. First, we present a straightforward deterministic protocol
for the permissioned settings to lay the foundation of our other solutions. We consider a total number
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of n = 2f +1 executors (instead of n > 3f), with f executors corrupted by a static adversary. Every
node executes for each round, i.e., each executor starts from the genesis block and updates the state
by applying the valid transactions of the dirty ledger. For every round, executors compute, sign, and
broadcast the corresponding state commitment. A state commitment is valid if signed by at least
f + 1 nodes so that at least one honest node is included.

Probabilistic solutions. The straightforward deterministic solution requires every executor to
run for every round, which is not scalable. For better scalability, we propose probabilistic protocols
for the permissioned and the Proof-of-Stake settings. We assume up to f ≤ (1 − ϵ)n2 executors
can be corrupted by a static adversary, where ϵ is some constant. Our protocols guarantee the
validity of a state commitment by requiring a threshold of executors to sign the state commitment.
To ensure safety, the number of adversarial nodes executing in each round must be less than this
threshold. To ensure liveness, in each round, there must be enough honest nodes executing to form
a valid state commitment. We set the threshold for the valid state commitment to be 1/2 of the
number of elected executors, and demonstrate that the aforementioned property is satisfied with a
overwhelming probability in the security parameter by electing only a logarithmic number of nodes
per round.

Vertical vs Horizontal Sampling. The straightforward probabilistic solution is to elect a
committee of poly-logarithmic size per round who broadcasts signed state commitments. A state
commitment is considered valid if it is signed by at least half of the committee members. We call
this approach vertical sampling. Each node is elected on average once per O( n

polylogn ) rounds and
executes for only the respective rounds. Instead, we adopt an approach we call Horizontal Sampling,
in which only expected constant number (e.g. one) of nodes are elected per round. In that solution,
every node is elected on average every n rounds and executes for O(polylogn) rounds. In both cases
the cost per block execution is O(polylognn ). However, since nodes update their execution states in a
distributed fashion, elected nodes may need to retrieve the previous execution state from other nodes
in order to execute the current round, which incurs high communication overhead. In Horizontal
Sampling, in comparison to the vertical sampling, nodes request the state less frequently, resulting
in a more scalable solution.

Permissioned and Randomized. First, we present the Horizontal Sampling protocol for the
permissioned settings. During the election phase, each executor computes the VRF locally in each
round. Only one node on average is elected per round. The elected node starts from the state of the
previous round, computes and broadcasts state commitments for the following O(polylogn) rounds.
Hence, with only one executor elected per round, a poly-logarithmic number of nodes will vote for
each round. State commitments signed by at least half of the elected nodes are considered valid.

Proof-of-stake (PoS). We then extend the Horizontal Sampling protocol for the Proof-of-Stake
settings. In the permissioned settings, each node computes a VRF for the election phase. In PoS,
the adversary can create numerous accounts to increase the probability of being elected. To make
the protocol Sybil Resistant, each node’s election probability is proportional to its stake. Concretely,
nodes compute the VRF for all of their coins in the election phase. In the voting phase, elected nodes
compute and broadcast their signed state commitments, as in the permissioned protocol.

An extra challenge in the PoS protocol is that the stake distribution changes over time. In every
round, each node keeps track of its own stake and only the elected nodes execute the state. Therefore,
elected nodes must prove the ownership of elected coins to the rest of the nodes. To this end, they
construct and broadcast inclusion proofs along with their signed state commitments.

State availability. In the probabilistic protocols, not all nodes execute for every round to acquire
the respective the state of every round. For liveness, our protocol must guarantee state availability,
i.e., any node is able to acquire the state of the previous round when it executes the current round.
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Since any valid state commitment is signed by at least one honest node, the corresponding state will
eventually be available to any node requesting it.

Light clients. Lastly, we introduce a non-interactive light client construction for our protocols.
We assume that at any given time, each light client is connected to at least one honest executor.
Briefly, a non-interactive light client can learn information about the state of the system after
receiving a valid state commitment from an executor, along with an inclusion proof (e.g. Merkle
proof).

4 Protocols

In this section, we present our asynchronous execution layer protocols on top of an underlying dirty
ledger. First, in the permissioned settings, we present the deterministic protocol 1 demonstrating
how to construct verifiable certificates that correspond to the correct state, i.e., the valid state
commitments. The deterministic protocol suggests that a majority of honest nodes is a necessary
and sufficient condition to construct valid state commitments. However, every node executes for
every round resulting in cost per block execution O(1). Next, we define a probabilistic scalable
protocol called Horizontal Sampling, where in every round we select only a poly-logarithmic number
of nodes to execute so that the majority of them are honest with overwhelming probability. We start
with the permissioned settings in Section 4.2 and then extend the Horizontal Sampling protocol to
the proof-of-stake settings in Section 4.3.

4.1 Deterministic Protocol

The Deterministic protocol is described in Algorithm 1. Every node is responsible for executing in
each round. More specifically, every node downloads the data committed to the ledger starting from
the genesis block and applies it sequentially via the execution machine M , to acquire the execution
state of each round. In every round, the nodes compute and sign the respective state commitment.
Then, they broadcast the state commitment to the rest of the nodes. This process is illustrated in
Algorithm 1 (Procedure Execute lines: 5-11). The remaining nodes accept signed state commitments
once they have verified the sender’s signature (Algorithm 1 Predicate AcceptCommitment, lines:
3-4). A state commitment is valid when it is signed by at least f + 1 nodes.

4.2 Horizontal Sampling

In the deterministic protocol, all nodes execute in every round and broadcast their state commit-
ments. Now, we proceed with building an efficient probabilistic protocol, called Horizontal Sampling,
illustrated in Algorithm 2. We assume up to f ≤ (1 − ϵ)n2 executors can be corrupted by a static
adversary where ϵ is some constant, and we choose the security parameter κ = O(log2 n) for this sec-
tion. Nodes first download the genesis block G which holds the initial state. In each round, every node
checks whether it is elected (Algorithm 2, line 28). Elected nodes propose state commitments during
the voting phase. The voting phase outputs valid state commitments, which are state commitments
signed by enough executors.

Election phase : In each round, every node computes the VRF using its private key, the round
number, and the corresponding random seed. This computation returns two values, a hash value of
length |h| and a proof of authenticity certifying this hash value (Algorithm 2, line 27). We refer to
this proof as the proof of election of the leaders. All nodes with hash value in round r of less than
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Algorithm 1: Deterministic execution protocol: Node pi with public key pki and secret key
ski
1 state(0)← G, rcur ← 1
2 threshold← f + 1, state_com← {}

/* accept the state commitment cmt from the node with public key pkj if the signature
σ is valid */

3 Predicate AcceptCommitment(cmt, r, σ, pkj) :
4 return Verify(σ, pkj , cmt||r)
/* executing for round r: applying the data committed to the ledger to update the

state, computing and broadcasting the state commitment to everyone */
5 Procedure Execute(r) :
6 download data(r)
7 state(r)← apply(state(r − 1), data(r))
8 cmt← Computecmt(state(r))
9 σ ← Sign(cmt||r, pki, ski)

10 state_com[(r, cmt)].add((σ, pki))
11 Send ("state commitment", cmt, r, σ) to all nodes

/* Main loop. */
12 while True do
13 Execute(rcur)
14 rcur ← rcur + 1

15 Upon receiving("state commitment", cmt, r, σ) from the node with public key pkj for the first time
in the round r do :

16 if AcceptCommitment(cmt, r, σ, pkj) then
17 state_com[(r, cmt)].add((σ, pkj))

Xr =

{
κ 2|h|

n , if r = 1
2|h|

n , if r > 1
are elected (Algorithm 2, line 28). In that way, in the first round there will

be expected κ elected nodes constituting the bootstrap committee, while for r > 1 there will be only
one node in expectation, which is called the leader.

Validity of a commitment : For the first κ rounds only the members of the bootstrap committee
are voting. For any round r ≥ κ+1 all the elected nodes in the interval [r−κ+1, r] compute the state
commitments. In Lemma 5, we prove that the bootstrap committee consists of at least κ

2 honest nodes
and at most κ

2 − 1 adversarial nodes with overwhelming probability in n (we choose κ = O(log2 n)).
The same property holds for the elected nodes in any interval of κ consecutive rounds according to
Lemma 6. As a result, in each round, at least κ

2 honest and at most κ
2 − 1 adversarial nodes will be

responsible for voting. Therefore, a state commitment corresponding to a round r can be considered
as valid if it is signed by at least κ

2 nodes among those that are elected to execute during the interval
of rounds [max(1, r − κ + 1), r] or if it is the genesis block. In figure 1, on the left side we present
an example of the leaders’ votes in the interval [r, r + 3] where the malicious leader Lr+2 votes for
incorrect state commitment for rounds r+2, r+3; on the right side we present the resulting fork in
the round r + 2, where there are less than κ

2 votes for the incorrect state commitment coming from
the adversarial leaders in the interval [r − κ + 3, r + 2], and at least κ

2 votes for the correct state
commitment coming from the honest leaders in the same interval.

Voting phase : For the first κ rounds, the bootstrap committee members form the respective
valid state commitments. To update the state, they apply the transactions committed to the ledger
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Algorithm 2: Horizontal Sampling: Node pi with public key pki and secret key ski

1 state(0)← G // genesis block
2 threshold← κ

2
, state_com← {}

3 rcur ← 1 // current round
/* threshold for the election process */

4 Procedure Target(r) :
5 return 2|h|

n
κ if r = 1, else return 2|h|

n

/* verify the election proof with public key pk in the round r */
6 Predicate TimeToExecute(pk, r, u, π) :
7 return VerifyVRFpk

(v, π, seedr||r) ∧ v ≤ Target(r)

/* check whether cmt comes from a valid leader of round rl that is responsible for
executing in round r */

8 Predicate AcceptCommitment(pk, rl, u, π, r, σ, cmt) :
9 return

¬(rl > 1 ∧ r ≤ κ) ∧ (rl ≤ r ≤ rl + κ− 1) ∧Verify(σ, pk, cmt||r) ∧ TimeToExecute(pk, rl, u, π)
/* acquiring the state of round r */

10 Procedure AcquireState(r) :
11 Wait until ∃(cmt, r) s.t.|state_com[(cmt, r)]| ≥ threshold
12 if state(r) = null then
13 request state(r)
14 wait until receiving state s.t. Computecmt(state) = cmt
15 state(r)← state

/* compute and broadcast the signed state commitments for all the intermediate rounds
within the interval [rl, rl + κ− 1] */

16 Procedure Execute(rl, (v, π)) :
17 AcquireState(rl − 1) if rl > 1
18 for r = rl, ..., rl + κ− 1 do
19 download data(r) // data within the block with height r
20 state(r)← apply(state(r − 1), data(r))
21 continue if rl > 1 ∧ r ≤ κ // only bootstrap committee votes
22 cmt← Computecmt(state(r))
23 σ ← Sign(cmt||r, pki, ski)
24 state_com[(r, cmt)].add((pki, rl, v, π, σ))
25 Send ("state cmt", cmt, rl, r, σ, v, π) to all nodes

/* Main loop, run leader election for each round */
26 while True do
27 (v, π)← VRFsk(seedrcur ||rcur)
28 if v ≤ Target(rcur) then
29 Execute(rcur, (v, π))

30 rcur ← rcur + 1

31 Upon receiving("state cmt", cmt, rl, r, σ, u, π) from the node with public key pkj for the first time
for round rl do :

32 if AcceptCommitment(pkj , rl, u, π, r, σ, cmt) then
33 state_com[(r, cmt)].add((pkj , rl, u, π, σ))

10



correct state commtiment in round i honest node

genesis block voting the commitment

cmtcmt cmt cmt

cmt

faulty state commtiment in round i adversarial node

ancestor commitment

Fig. 1: The left figure illustrates the elected leaders’ votes in the round interval [r, r + 3], resulting
in the fork in the chain of the proposed state commitments illustrated on the right side. The set
Hr+2 (or Ar+2) consists of the votes of the honest (or adversarial) elected leaders in the interval
[r − κ+ 3, r + 2].

for all these rounds starting from the genesis block. For every round, they compute and broadcast
their signed state commitments along with their proof of election.

Now consider node pi, an elected leader in some round r ≥ 2 during the voting phase (Algorithm 2,
Procedure Execute). First, pi waits until witnessing a valid state commitment for the round r − 1.
After receiving the valid state, the leader acquires the corresponding state. If the state is not available
from a previous execution, pi requests it from all the nodes that have signed the commitment
(Algorithm 2, lines 13-14) (more on data availability in section 6). Then, pi downloads the data
committed to the ledger for the intermediate rounds and applies it sequentially to obtain the state
of the round r + κ − 1. For each round, it constructs and signs the respective state commitment.
Finally, pi broadcasts the signed state commitments along with the proof of its election to the rest
of the nodes. We note again that only bootstrap committee members vote for the first κ rounds
(Algorithm 2 line 21). The rest of the nodes accept the received commitments only after confirming
p′is signature and proof of election (Algorithm 2, lines 8-9).

4.3 Proof-of-stake settings

Now we extend the Horizontal Sampling protocol to the proof-of-stake setting. Participating nodes
have accounts holding stake/coins, and we use W to denote the total amount of the stake in the
system. New nodes can dynamically join the system, and we demonstrate bootstrapping in Algo-
rithm 5. We assume up to f ≤ (1 − ϵ)W2 stake can be corrupted by a static adversary, where ϵ is
some constant, and we choose the security parameter κ = O(log2 W ) for this section.

First, all nodes download the genesis block G which contains the initial stake distribution. The
stake distribution can change over time. The execution protocol consists of the Algorithms 3, 4.
More specifically, we decompose the protocol into the following phases. In each round, every node
participates in the election phase to check whether any of its coins is elected (Algorithm 3, Procedure
Election). During the voting phase, nodes with at least one elected coin compute state commitments
to form the respective valid state commitments, like in the permissioned protocol.
Tracking wealth : The stake distribution changes over time and the nodes do not necessarily acquire
the execution state of each round. Every node joins the system with a specific stake, and it triggers
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transactions, e.g., to pay a user, or it receives transactions, e.g., it is paid by a user. Hence the
challenge for a node to update its stake is to check whether the transactions it receives are successful
or not. In our protocol, the node requests a proof of payment certificate from the payer, (see section 5),
to verify that its state has changed as expected and therefore the transaction was successful.

Election phase : In each round, every node computes the VRF using its owned coins and the
randomness seed coming from the dirty ledger to see whether it is elected and generate the proofs
of election for the elected coins. Similarly to the permissioned protocol, the PoS protocol elects a
bootstrap committee for the first round, and elects on average one coin per round for every round
r > 1. To keep the threshold of a valid state commitment identical for every round, only the bootstrap
committee members are voting for the first κ rounds, while for r ≥ 2 the owner of an elected coin in
round r can vote for every round in the interval [max(r, κ+ 1), r + κ− 1]. A state commitment for
the round r is valid if it is signed by the owners of at least κ

2 of the elected coins during the interval
of rounds [max(1, r − t+ 1), r] or if it is the genesis block.

Proof of ownership: Since nodes track only their own stake, the elected nodes must prove that
they own the elected coins. Hence, they provide inclusion proofs for their elected coins using the
valid state commitment of the previous round, e.g., the commitment would be the Merkle root in a
Merkle proof. We call these certificates proofs of ownership and the corresponding state commitment
parent commitment. To be able to verify the proofs of payment in order to track its stake, and to
compute the proofs of ownership in case of election, each node waits for the valid state commitment
of the previous round before participating in the election phase.

Voting phase : The voting phase is similar to the permissioned protocol. First, the bootstrap com-
mittee members compute and broadcast their signed state commitments for every round r ≤ κ to
form the respective valid state commitment. Then, every node with an elected coin in the round r,
starts from the state corresponding to the valid state commitment of the round r− 1. Moreover, the
node uses the valid state commitment to construct the proof of ownership for its elected coin. Finally,
the elected node computes and broadcasts the signed state commitments for all the intermediate
rounds along with the proof of election and the proof of ownership in the round r.

Nodes accept the state commitments proposed by the elected nodes only after verifying the proof
of election and the proof of ownership certificates (Algorithm 4 lines 27-30). When receiving an
inclusion proof with a parent commitment which is not valid yet, they store all the certificates in a
local data structure (Algorithm 3 lines 13-15). When a state commitment becomes valid in the view
of an honest node pi, the node takes into account all the votes for which it is a parent commitment
(Algorithm 3 lines: 21-24).

Bootstrapping : Consider Bob, a node that wishes to join the network in the round r. We assume
that Bob is connected to at least one honest executor. Bob has received from many nodes a data
structure called chain that contains the state commitments signed by the elected nodes along with
the respective certificates (signatures, proofs of election, and proofs of ownership) for each round.

Bob downloads the genesis block G first. For each chain, Bob applies Algorithm 5 to evaluate
whether it is the correct one. For the first round, Bob verifies only the proofs of election of the
bootstrap committee members since the initial stake distribution is contained in G. Then, for each
vote up to round r, he verifies the signatures, the proof of ownership, and the proof of election of
the elected nodes. When Bob receives the correct chain, it acquires the last valid state commitment
in the chain and requests the corresponding state (Section 6). As an example, in figure 2 we present
the correct chain up to the round h. .

12
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Algorithm 3: Functions for the election phase: node pi with pair of keys (pki, ski)

/* threshold for the election process */
1 Procedure Target(r) :
2 return 2|h|

n
κ if r = 1, else return 2|h|

n

/* pi evaluates whether a subset of its coins is elected in the round r, returning a
list with the respective certificates */

3 Procedure Election(r, parentcmt) :
4 elected_coins← {}
5 for each coin that pi owns in the round r do
6 (v, π)← V RFski(coin||seedr)
7 if v ≤ Target(r) then
8 πm ← null if r = 1, else πm ← InclusionProof(parentcmt, pi, coin)

elected_coins.add((pki, r, coin, v, π, πm, parentcmt))

9 return elected_coins

/* verify the proofs of election and ownership coming from a valid leader that can
vote for the round r */

10 Procedure VerifyVotes(r, votes) :
11 valid_votes← {}
12 for vote← (pkj , rl, coin, u, π, πm, parentcmt) ∈ votes do
13 if |state_com[(rl − 1, parentcmt)]| < κ

2
then

14 tmp_certificates[(parentcmt, rl − 1)].add(cmtr, r, votes)
15 continue // parentcmt is not valid yet

16 if (rl = 1 ∧ pkj owns coin ∧ r ≤ κ ∧ V erifyV RF pkj
(u, π, coin||seed1) ∧ u ≤

Target(1)) ∨ (rl > 1 ∧ r > κ ∧ rl ≤ r ≤ rl + κ− 1 ∧VerifyInclusionProof (πm, parentcmt)) ∧
VerifyVRFpkj

(u, π, coin||seedrl) ∧ u ≤ Target(rl)) then
17 valid_votes.add(vote)

18 return valid_votes

/* include the valid votes for cmt; if cmt becomes valid, update the votes for which
cmt is the parent commitment */

19 Procedure UpdateVotes(votes, cmt, r) :
20 ∀vote ∈ votes : state_com[(cmt, r)].add(vote)
21 if |state_com[(cmt, r)]| ≥ threshold then
22 for (cmtr′ , r

′, certificates) ∈ tmp_certificates[(cmt, r)] do
23 induced_votes← VerifyVotes(r′, certificates)
24 UpdateVotes(induced_votes, cmtr′ , r

′) if induced_votes ̸= null
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Algorithm 4: Functions for the voting phase: node pi with pair of keys (pki, ski)

1 state(0)← G, state_com← {}, tmp_certificates← {}, elected_coins← {}, succesful_rounds←
{}

2 rcur ← 1, threshold← κ
2

3 parentcmt ← G // valid state commitment of round r − 1
/* acquire the state of the round r */

4 Procedure AcquireState(r) :
5 if state(r) = null then
6 cmt← cmt′ s.t. state_com[(cmt′, r)] ≥ threshold
7 request state(r)
8 wait until receiving state s.t. Computecmt(state) = cmt
9 state(r)← state

/* node pi computes and broadcasts its state commitments for the rounds [rl, rl + κ− 1]
to everyone along with the proofs of election and ownership of its coins in the
round rl */

10 Procedure Execute(rl, elected_coins) :
11 AcquireState(rl − 1) if rl > 1
12 for r = rl, ..., rl + κ− 1 do
13 download data(r)
14 state(r)← apply(state(r − 1), data(r))
15 continue if rl > 1 ∧ r ≤ κ // only the bootstrap committee votes
16 cmt← Computecmt(state(r))
17 σ ← Sign(cmt||r, pki, ski)
18 ∀vote ∈ elected_coins : state_com[(r, cmt)].add(vote)
19 Send("state cmt", rl, r, cmtr, σ, elected_coins) to all nodes

/* Main loop. */
20 while True do
21 Wait until ∃(cmt, rcur − 1) s.t.|state_com[(cmt, rcur − 1)]| ≥ threshold if rcur > 1
22 parentcmt ← cmt if rcur > 1 // else parentcmt ← G
23 elected_coins← Election(rcur, parentcmt)
24 if elected_coins ̸= null then
25 Execute(rcur, elected_coins)

26 rcur ← rcur + 1

/* Receiving cmt for round r, the respective certificates (proofs of election and
ownership), and the signature σ. */

27 Upon receiving("state cmt", rl, r, cmtr, σ, certificates) from node with public key pkj for the first
time for the round rl do :

28 return if V erify(σ, pkj , cmtr||r) = false
29 valid_votes← VerifyVotes(r, certificates)
30 UpdateVotes(valid_votes, cmtr, r) if valid_votes ̸= null
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Algorithm 5: Bootstrapping: user Ui

/* Ui aims to bootstrap in a round greater or equal than round re. */
1 Procedure Bootstrap(chain, re) :
2 r ← 1, state_cmt← {}, valid_state_cmt← {}
3 while chain[r] ̸= null do
4 for (node, cmt, σ, votes) ∈ chain[r] do
5 continue if Verify(σ, node, cmt||r) = false
6 valid_votes← VerifyVotes(r, votes)
7 if valid_votes ̸= null then
8 ∀vote ∈ valid_votes : state_cmt[(cmt, r)].add(vote)
9 if |state_cmt[(cmt, r)]| ≥ κ

2
then

10 valid_state_cmt[r]← cmt
11 break

12 return null if ̸ ∃cmt s.t. |state_cmt[(cmt, r)]| ≥ κ
2

13 r ← r + 1

14 return valid_state_cmt if r ≥ re
15 return null

5 Light clients protocol

Once we have a system where executors can verify that a payment has been made, it is simple to
transform it to the first non-interactive, asynchronous light-client for dirty ledgers. In this section,
we demonstrate how a light client can learn the state of the system. First, we discuss how a light
client can acquire and verify a state proof. Then, we use state proofs as a building block to prove
that a change in the state occurred.
Assumptions: Each light client has access to the random seed for each round through the dirty
ledger, in order to verify the leader election. In addition, each light client is connected to at least
one honest executor. An executor uses a gossip protocol to obtain information necessary to react to
a light client’s requests, such as the state that corresponds to a valid state commitment.
Bootstrapping: Assume that the height of the dirty ledger equals h and a light client lci bootstraps
in the round r ≤ h. First, we illustrate how lci can verify a state proof. A validity proof of the state
commitment corresponding to the state S constitutes the state proof πS . The light client then
chooses how to connect to the network. One option is to receive the corresponding state and derive
the desired information after downloading and applying the data committed to the ledger on its
own. Otherwise, lci can reconnect to the network whenever it needs a proof of payment certificate.

State Proof - Permissioned settings: To bootstrap in the round r, lci waits to receive a valid state
commitment for some round greater than or equal to the round r. In the Deterministic protocol, lci
verifies that a state commitment is signed by at least f+1 nodes using the Predicate AcceptStateProof
in Algorithm 6. In the Horizontal Sampling protocol, a valid state commitment in a round r′ is voted
by at least κ

2 elected leaders in the interval [max(1, r′ − κ+ 1), r′]. Each leader’s vote includes their
signature and proof of election. Lci verifies this using the Predicate AcceptStateProof in Algorithm 7.

State Proof - Proof-of-stake settings: The light client bootstraps using Algorithm 5. In a nutshell,
for each round, lci requires and verifies the signatures, the proof of ownership, and the proof of election
coming from the owners of the elected coins that have voted for the valid state commitments.
Proofs of payment: We now demonstrate how to provide certificates for successful transactions.
Consider Alice and Bob, two light clients using our system. Bob wishes to purchase a product from
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Algorithm 6: Light Client protocol - Deterministic Protocol
1 threshold← f + 1

/* check whether there are at least f + 1 signatures for cmt in Σ */
2 Predicate AcceptStateProof(cmt, r,Σ) :
3 Remove duplicates in Σ
4 return |AcceptCommitment(cmt, r, σ, pj) : (σ, pj) ∈ Σ| ≥ threshold

5 Predicate PaymentProof(cmt, r,Σ, πinclusion_proof ) :
6 return AcceptStateProof (cmt, r,Σ)∧ state change has occurred according to πinclusion_proof

Algorithm 7: Light Client protocol - Horizontal Sampling
1 threshold← κ

2

/* check whether there are at least κ
2

signatures for cmt by leaders of rounds
[r − t+ 1, r] in Σ */

2 Predicate AcceptStateProof(cmt, r,Σ)) :
3 Remove duplicates in Σ
4 return |AcceptCommitment(pk, rl, u, π, r, σ, cmt) : (pk, rl, u, π, σ) ∈ Σ| ≥ threshold

5 Predicate PaymentProof(cmt, r,Σ, πinclusion_proof ) :
6 return AcceptStateProof(cmt, r,Σ)∧ state change occurred according to the πinclusion_proof

Alice, triggering a transaction that will be logged in the dirty ledger. Alice needs a proof that the
payment is successful before providing the merchandise to Bob.

Assume that the transaction of Bob paying Alice is committed at round r. The certificate with
which Bob proves that Alice’s state is changed in round r is called proof of payment. More specif-
ically, the certificate constitutes of a valid state commitment for any round greater than r and a
short inclusion proof (e.g. a Merkle proof) indicating Alice’s new state. Alice uses the Predicate Pay-
mentProof in Algorithm 7 to verify first the validity of the state commitment and then the inclusion
proof, using the valid state commitment, to extract her new state. If the transaction is successful,
Alice’s state is changed during this interval.

6 Data availability

State availability: Nodes responsible for executing in a particular round need to acquire first the
state of a previous round. It is also required by the Proof of payment and bootstrapping in the
proof-of-stake settings (section 4.3).

We first let the executors store every state they executed. In all of the proposed protocols, each
valid state commitment is signed by at least one honest node which has stored the state (the argument
holds with overwhelming probability in the probabilistic protocols). An executor requests the state
that corresponds to a valid state commitment from all the nodes that have signed the respective
state commitment. The honest node that has signed the state commitment will eventually provide
it to the executor. The executor will verify that the state indeed corresponds to the valid state
commitment.
Certificate availability: To support bootstrapping protocols, executors store the certificates re-
lated to the valid state commitments. In the Deterministic protocol, they only store the signed state
commitments (Algorithm 1 lines: 10, 17). In the Horizontal Sampling protocol, executors store the
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signed valid state commitments along with the leaders’ proofs of election (Algorithm 2 lines: 24, 33),
and in the proof-of-stake settings, they additionally keep the proofs of ownership of the elected coins
(Algorithm 3 line 20, Algorithm 4 line 18).

Notation Description
n total number of nodes in the permissioned settings
f number of adversarial nodes (or coins held by adversarial

nodes) in the permissioned settings ( or in PoS)
W total amount of stake in PoS
proof of election proofs coming from the VRF computation of the elected

nodes in the probabilistic protocols
proof of ownership
with parent commit-
ment cmt

inclusion proof with hash header cmt demonstrating that
a node pi owns a particular coin in PoS

Table 1: Terminologies
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7 Proofs

Structure of the Proofs section: First, for each protocol, we will formulate helpful lemmas to
prove safety and liveness of the execution protocols. For safety, we must argue first that there are
some state commitments that the nodes can trust. The objective of our protocols is that only a
correct state commitment can be valid. For liveness, we must ensure that as long as the ledger grows
the nodes will be generating valid state commitments.

Then we will prove the properties E-Safety, E-Liveness for all the protocols together using the
aforementioned Lemmas as a foundation. Additionally, we prove the properties LC-Safety, LC-
Liveness for the light client execution layer protocol together using these Lemmas. In the probabilistic
protocols, namely the horizontal sampling and the PoS protocol, the properties hold except with
negligible probability in the security parameter.

7.1 Deterministic Protocol

Definition 1. A state commitment is considered to be valid if and only if either it is signed by at
least f + 1 nodes or it is the genesis block.

Definition 2. Successful round: A round r is successful if and only if a valid state commitment
visible to every honest node exists for this round.

Lemma 1. Every valid state commitment is correct.

Proof. We will prove the Lemma by reaching a contradiction. Assume that the state commitment
cmtr corresponding to the round r ≥ 1 is valid but not correct. Since cmtr is valid, it is signed
by at least f + 1 nodes and therefore from at least an honest node. We call the existing honest
node pi. Node pi has started updating the system from the genesis block, applying the transactions
committed to the ledger via the execution engine M . Thus, pi must have obtained the correct state
corresponding to the round r. So, we conclude that pi must have misbehaved and thus we reach a
contradiction. □

Lemma 2. State availability: The state corresponding to a valid state commitment will be available
to any user ui.

Proof: Consider the valid state commitment cmtr for the round r. The commitment cmtr is signed
by at least f + 1 nodes and therefore from at least an honest one, which we call pi. Node pi has
stored the corresponding state. A user ui requests the state from all the nodes that have signed the
commitment cmt. Since pj is honest, it will eventually send the corresponding state to ui. □

Lemma 3. Every round r corresponding to a block committed to the dirty ledger will eventually be
successful.

Proof: Consider the round r ≥ 1. There are at least f + 1 honest nodes executing in each round
(Algorithm 1 Procedure Execute). All these honest nodes download the data committed to the dirty
ledger up to round r and apply only the valid transactions to obtain the updated state. For each one
of these rounds, the honest nodes compute the respective state commitment. Since the commitment
scheme is deterministic the f + 1 honest nodes output the same result forming a valid commitment
for all the rounds up to the round r. □
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7.2 Horizontal Sampling protocol

Permissioned Protocol In the following proofs: κ = O(log2n).

Lemma 4. Consider a number of n nodes with f ≤ (1−ϵ)n2 Byzantine nodes and ≥ (1+ϵ)n2 honest
nodes, where 0 < ϵ < 1

2 . Let κ denote the security parameter. A sampling is taking place, where
each node is chosen independently with a probability of κ

n . The following arguments hold except a
negligible probability in κ:
1. There will be at least (1 + ϵ

2 )
κ
2 honest nodes chosen.

2. There will be at most (1− ϵ)κ2 Byzantine nodes chosen.

Proof. 1. Let H denote the number of selected honest nodes. Since each node is chosen with prob-
ability κ

n , we have E[H] ≥ (1 + ϵ)n2 ·
κ
n = (1 + ϵ)κ2 . From Chernoff bounds, we have P [H ≤

(1− δ)E[H]] ≤ e−
δ2E[H]

2 where 0 ≤ δ ≤ 1. Since E[H] ≥ (1+ ϵ)κ2 , we have P [H ≤ (1− δ)(1+ ϵ)κ2 ] ≤

P [H ≤ (1− δ)E[H]] ≤ e−
δ2E[H]

2 . Choosing δ = ϵ
2(1+ϵ) , we have P [H ≤ (1 + ϵ

2 )
κ
2 ] ≤ e−

ϵ2κ
16(1+ϵ) .

2. Let F denote the number of selected Byzantine nodes. Since each node is chosen with proba-

bility κ
n , we have E[F ] ≤ (1−ϵ)κ2 . Again using Chernoff bounds, P [F ≥ (1+δ)E[F ]] ≤ e−

δ2E[F ]
2+δ , 0 <

δ < 1, and the fact that P [F ≥ (1 + δ)(1− ϵ)κ2 ] ≤ P [F ≥ (1 + δ)E[F ]], and choosing δ = ϵ
1−ϵ leads

to P [F ≥ κ
2 ] ≤ e−

ϵ2κ
4−2ϵ .

Definition 3. A majority commitment corresponding to some round r is a state commitment voted
by at least κ

2 nodes among the ones elected during the interval of rounds [max(1, r − κ+ 1), r].

Definition 4. A state commitment is considered to be valid if and only if either it is a majority
commitment or it is the genesis block.

Lemma 5. The bootstrap committee consists of at least κ
2 honest and at most κ

2 − 1 adversarial
nodes except with negligible probability in n.

Proof: In the first round each node is elected with a probability of p = κ
n after computing the VRF.

Since the majority of the nodes are honest and considering the VRF computations as independent
Bernoulli trials, the argument holds by applying Lemma 4. Since κ = O(log2n) the probabilities are
overwhelming in n. □

Lemma 6. In any interval of rounds [r, r+κ− 1], r ≥ 1, there will be at least κ
2 honest and at most

κ
2 − 1 adversarial, not necessarily distinct, elected nodes with a high probability in n.

Proof: Case 1, r = 1: Only votes coming from bootstrap committee members’ are taken into account
for this interval. Following from Lemma 5, there are at least κ

2 honest and at most κ
2 − 1 adversarial

bootstrap committee members except with negligible probability in n.
Case 2, r ≥ 2: Without loss of generality, consider the interval of rounds [r, r+κ−1]. In every round
within that interval, each node computes the VRF for the election phase (Algorithm 2 line 27), which
is a Bernoulli trial with a probability of success p = 1

n . Let H (or F) denote the number of honest
(or adversarial) elected nodes within that interval. Then E[H] ≥

∑r+κ−1
i=r (1 + ϵ)n2

1
n = (1 + ϵ)k2 .

Similarly, E[F ] ≤
∑r+κ−1

i=r (1 − ϵ)n2
1
n = (1 − ϵ)k2 . Since computing the VRF results in independent

Bernoulli trials, we can apply Chernoff bounds for E[H] and E[F ]. With the same analysis done in

Lemma 4: P [H ≤ (1 − δ)E[H]] ≤ e−
ϵ2κ

16(1+ϵ) and P [F ≥ κ
2 ] ≤ e−

ϵ2κ
4−2ϵ . Since κ = O(log2 n), we have

these probabilities negligible in n. □
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Lemma 7. Every valid state commitment is correct except with negligible probability in n.

Proof. We will prove this theorem by induction on the rounds for which a valid state commitment
exists.
Base step: Genesis block is the valid and correct state commitment for round 0.
Induction step: Consider the round r ≥ 1 for which the valid state commitment cmtr exists. Assume
that the theorem holds for every round r′ < r. First, if 1 ≤ r ≤ κ, there are at most κ

2 −1 adversarial
bootstrap committee members except with negligible probability in n according to Lemma 5. If
r ≥ κ + 1, the elected adversarial nodes in the interval [r − κ + 1, r] are at most κ

2 − 1 with
overwhelming probability in n according to Lemma 6. So, for any r ≥ 1, cmtr must be signed by at
least one honest node, which we call pi. Pi was a leader in some round rl,max(1, r−κ+1) ≤ rl ≤ r.
Node pi started the execution from the state corresponding to a valid state commitment cmtrl−1

of the round rl−1. It verified that the state corresponds to cmtrl−1
by computing the respective

commitment. According to the induction assumption, cmtrl−1
is correct. Finally, pi applied the valid

transactions committed to the ledger for all the intermediate rounds via the execution engine M .
Therefore, since cmtr is signed by pi it must be correct. □

Lemma 8. State availability: Consider a round for which a valid state commitment exists. Each
node that requests the corresponding state will eventually receive it except with negligible probability
in n.

Proof: Consider node pi that needs the state corresponding to a valid state commitment of a round
r. Pi requests the state from all the nodes that have signed the state commitment. Each valid state
commitment is signed by at least one honest node except with negligible probability in n. Otherwise,
the adversarial nodes could form a valid state commitment on their own contradicting Lemma 7.
Let us call pj an existing honest node that have signed the valid state commitment. Node pj has
stored the corresponding state and will eventually deliver it to pi. □

Definition 5. We call the interval of rounds [r − κ + 1, r] well formed if and only if every honest
elected node for a round rl ∈ [r − κ + 1, r] has witnessed a valid state commitment for the round
rl − 1.

Lemma 9. Consider a well formed interval of rounds [r−κ+1, r]. Round r will eventually become
successful except with negligible probability in n.

Proof: Consider a round r ≥ κ such that the interval [r − κ + 1, r] is well formed. So, each honest
node elected in a round rl ∈ [r−κ+1, r] has witnessed a valid state commitment for the round rl−1.
Following from Lemma 6 there are at least κ

2 honest nodes elected in that interval with overwhelming
probability, constituting the subset H. Every node in H will acquire the state corresponding to
the valid state commitment it has seen according to Lemma 8. The valid state commitment, and
therefore the state, is correct according to Lemma 7. Nodes in H will next apply the valid transactions
committed to the ledger and compute the state commitments up to the round r (Algorithm 2 lines:
18-22). The leaders will then broadcast the signed state commitment along with their proof of
election to every node (Algorithm 2 line 25). Every node will verify their signatures and their proofs
of election (Algorithm 2 line 32). Since the commitment scheme is deterministic and the nodes in
H start from a correct state, they will output the same result forming a valid state commitment for
the round r. □

Lemma 10. Every round r corresponding to a block committed to the dirty ledger will eventually be
successful except with negligible probability in n.
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Proof: The interval of rounds [2, κ + 1] will eventually become well formed, since there are at least
κ
2 honest bootstrap committee members, according to Lemma 5, that will compute and broadcast
to every node the state commitments for every round r ∈ [1, κ] along their proofs of election. Since
the commitment scheme is deterministic their outputs will be identical, forming the respective valid
state commitments for these rounds.

Applying Lemma 9 for the well formed interval [rc, rc+κ−1] results in a valid state commitment
cmtrc+κ−1 visible to every honest node for the round rc+κ−1. Therefore, the interval [rc+1, rc+κ]
becomes well formed. By applying this argument recursively for rc ≥ 2, every round r will eventually
become successful. □

Lemma 11. Efficiency guarantees: The expected number of rounds for which each node executes
equals hκ

n , where h is the number of the blocks committed to the dirty ledger and κ = O(log2n).

Proof: In the first round, nodes are elected with a probability of p = κ
n and execute for κ rounds. For

the rounds r ≥ 2, consider the random variable N depicting the number of times that the honest node
pi is elected in h− 1 rounds. N follows the binomial distribution N ∼ B(h− 1, 1

n ). Each time that
pi is elected, it executes for κ rounds. Thus, the expected value of the random variable X capturing
the number of rounds for which pi executes in h rounds is equal to E[X] = κ2

n +κE[N ] = (h+κ−1)κ
n .

□

Proof-of-stake protocol In the following proofs: κ = O(log2W ).

Definition 6. We say that an interval of rounds [r, r+κ−1] is honest prevalent if at least κ
2 elected

coins within that interval are held by honest nodes and at most κ
2 − 1 elected coins by adversarial

nodes.

Definition 7. Consider the node pi. We call and denote by Cpi,r the stake of pi in the round r
according to its view as relative stake, and the stake of pi according to the correct state S∗

r , denoted
by C∗

pi,r, as actual stake.

Definition 8. A majority commitment corresponding to some round r is a state commitment voted
by the owners of at least κ

2 of the elected coins during the interval of rounds [max(1, r − t+ 1), r].

Definition 9. A state commitment is considered to be valid if and only if either it is a majority
commitment or it is the genesis block.

Lemma 12. Bootstrap committee: Consider the interval of rounds [1, κ]. The following arguments
hold except with negligible probability in W : i) [1, κ] is honest prevalent, ii) for every round r ∈ [1, κ]
there will eventually exist a valid state commitment which is correct and visible to every honest node,
iii) every node requesting a state corresponding to any of the valid state commitments will eventually
receive it.

Proof: i) Only votes coming from nodes elected in the first round are valid for this interval. In
the first round, every node computes the VRF for each coin it owns, events that are independent
Bernoulli trials with a probability of success p = X1

2|h| = κ
W . Since the majority of the coins in the

initial stake distribution are held by honest nodes, we can apply Lemma 4 where instead of nodes
we sample their coins, to conclude that there will be at least κ

2 elected coins owned by honest nodes
and at most κ

2 − 1 elected coins held by adversarial nodes.
ii) Since the interval is honest prevalent, there are at least κ

2 elected coins held by honest nodes. These
honest nodes will apply the valid transactions committed to the ledger to update the state for every
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round r ∈ [1, κ] and broadcast the corresponding state commitments to every node (Algorithm 4
Procedure Execute). Since the commitment scheme is deterministic and they all start from the
genesis block their output will be identical, forming the corresponding valid state commitments
which must be correct.
iii) There are at most κ

2 − 1 coins held by adversarial nodes within that interval. Therefore, each
valid state commitment is signed by at least one honest node which has stored the state and will
eventually provide it to every node requesting it. □

Lemma 13. Bootstrapping: Consider two nodes pi, pj that have bootstrapped in the system in the
rounds ri, rj ≥ 1 respectively. If ri ≤ rj and pj have accepted the chain chainj to bootstrap, pi would
consider as valid every state commitment included in chainj.

Proof: For every round r ≥ 1, pj has access to the random seed via the dirty ledger for the proofs of
election of the elected nodes. Chainj starts from the genesis block and continues with the valid state
commitments that the bootstrap committee forms according to Lemma 12. In any round r > 1, pj
verifies the respective proofs of ownership coming from nodes with elected coins only when the parent
commitment is the valid state commitment of the previous round. For the voting phase, pj takes
into account only votes coming from elected nodes. Since pi and pj perform the same verifications
for the election and the voting phase, pi would accept as valid every state commitment included in
chain2. □

According to Lemma 13 we cannot distinguish bootstrapping nodes from nodes that have been
participating from the first round. From now on, we refer to both as nodes.

Lemma 14. Consider the interval of rounds [r, r+κ−1], r ≥ 2. If for every round r′ ∈ [r−1, r+κ−2]
and for each honest node pi: i) pi eventually receives a valid state commitment which is correct,
ii) Cpi,r′ = C∗

pi,r′
, then the interval [r, r + κ − 1] will eventually become honest prevalent in every

honest node’s view except with negligible probability in W .

Proof: Each coin is elected with a probability of p = 1
W after its owner computes the VRF for it.

Adversarial nodes cannot construct a proof of ownership for coins they do not own and every honest
node with elected coins in any round r′ ∈ [r, r + κ− 1] will provide a proof of inclusion with parent
commitment the valid state commitment of round r′ − 1 that will be accepted by everyone. Since
the valid state commitments are correct and in each round the majority of the coins are held by
honest nodes by assumption, the argument holds with the analysis done in Lemma 6 (case 2) where
the independent Bernoulli trials are the coins’ election. □

Lemma 15. Consider the honest prevalent interval of rounds [r, r+κ− 1] and that i) every honest
node eventually receives a valid state commitment which is correct for every round in the interval
[r − 1, r + κ − 2], ii) every honest node with an elected coin in a round r′ ∈ [r, r + κ − 1] will
eventually receive the corresponding state of the round r′−1. There will eventually exist a valid state
commitment for the round r + κ − 1 which will be correct and visible to every honest node except
with negligible probability in W .

Proof: i) Consider the set H including the honest nodes that own elected coins with that interval.
Now, consider the node pi ∈ H with elected coins in a round r′ ∈ [r, r + κ− 1]. Pi starts executing
from the correct state of the round r′ − 1. Then, it applies the data committed to the ledger up
to the round r′ + κ − 1 ≥ r via the execution engine M , computes and broadcast to every node
the state commitments for all the intermediate rounds, which must be correct since pi started from
a correct state. Node pi provides the proof of election and the proof of ownership with the parent
commitment cmtr′−1, which is the valid and correct state commitment of the round r′ − 1, for all
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of its elected coins along with the signed state commitment. All honest nodes will verify the proof
of election, the signature, and the proof of ownership since cmtr′−1 will eventually be visible to
everyone by assumption. Since the nodes in H own at least κ

2 elected coins and the commitment
scheme is deterministic, they will form a valid state commitment for the round r which will be visible
to every node. □

Lemma 16. State availability: Consider the honest prevalent interval of rounds [r, r + κ − 1]. If
the valid state commitment cmt for the round r + κ − 1 exists, it will be available to all the nodes
requesting it except with negligible probability in W .

Proof: Consider node pi that has seen a valid state commitment for the round r and requests the
corresponding state. Pi requests the state from all the nodes with elected coins in that interval that
have signed for the valid state commitment. Since [r, r + κ − 1] is honest prevalent, there are not
enough adversarial members with elected coins to form a valid state commitment on their own. Thus,
cmt must be signed by at least one honest node. This honest node has stored the corresponding
state and will eventually send it to pi. □

Lemma 17. For every r ≥ 1, the interval of rounds [r, r + κ − 1] will eventually become honest
prevalent in every honest node’s view except with negligible probability in W .

Proof: The interval [1, κ] is honest prevalent and for every round within that interval there is a
corresponding valid state commitment which is correct according to Lemma 12. Since there is a
valid state commitment visible to every node for each round, every honest node that was paid
within that interval requesting a proof of payment will eventually receive it by the payer. Therefore,
each honest node pi can determine whether the transactions it receives are successful and it knows
which coins it has spent, so for every round r ∈ [1, κ] Cpi,r = C∗

pi,r.
Since there is a valid and correct state commitment for every round in [1, κ] and each node

tracks its actual stake, the interval [2, κ + 1] will become honest prevalent according to Lemma 14.
For each round in [1, κ], the state corresponding to the valid commitment will be available according
to Lemma 12. Finally, we can apply Lemma 15 to conclude that a valid state commitment which is
correct will eventually exist for the round κ+ 1. For the intervals [r, r + κ− 1], r ≥ 3, we apply the
same argument recursively where for the state availability of the round r+ κ− 2 we use Lemma 16.
□

Lemma 18. Every valid state commitment is correct except with negligible probability in W .

Proof: We will prove the Lemma by reaching a contradiction. Assume that there is a round r to
which the valid state commitment cmtr that is not correct corresponds. Then, there must be a
round r∗, 1 ≤ r∗ ≤ r − κ + 1 which is the first round s.t. there are at least κ

2 elected coins within
the interval [r∗, r∗ + κ − 1] held by adversarial nodes. By Lemma 17 we conclude that the interval
[r∗, r∗ + κ− 1] is honest prevalent and thus we reach a contradiction. □

We say that an interval of rounds [r, r+ κ− 1] is adversarial prevalent if at least κ
2 elected coins

within that interval are held by adversarial nodes.

Lemma 19. Every round r corresponding to a block committed to the dirty ledger will eventually be
successful except with negligible probability in W .

Proof: For every round r ∈ [1, κ] the bootstrap committee forms the respective valid state commit-
ments following from Lemma 12. For every round r ≥ κ+1 the interval [r−κ+1, r] is honest prevalent
and the honest nodes with elected coins within that interval form the valid state commitment for
round r according to Lemma 17. □
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Lemma 20. The expected number of rounds for which an honest node pi executes equals κ(κWpi,1+∑h
r=2 Wpi,r)/W , where Wpi,r is p′is stake in the round r, W is the total stake distribution, h is the

number of the blocks committed to the dirty ledger, and κ = O(log2W ).

Proof: The probability with which at least one of p′is coin is elected in the round r equals pi,r ={
κWpi,r

W , if r = 1
Wpi,r

W if r > 1
. When pi is elected, it executes for κ rounds. We denote the number of the rounds

for which node pi will execute by the random variable X, expressed as the sum of independent
Poisson trials, with excepted value: E[X] =

∑h
r=1 κpi,r = κ

κWpi,1

W +
∑h

r=2 κ
Wpi,r

W . □

7.3 Execution protocol

We refer to the Lemmas 1, 7, 18 and 3, 10, 19 that guarantee, respectively, that valid state commit-
ments are correct and that executors keep producing them as long as the ledger grows. We prove
the properties E − Safety, E − Liveness on top of these Lemmas.

The rationale behind the following definition, which indicates when nodes commit to a state, is
that we only need to guarantee the generation of valid state commitments and the corresponding
states’ availability. When those conditions are satisfied, nodes can acquire the state whenever they
wish.

Definition 10. We say that node pi commits to the state S in the round r, if and only if pi has
received a valid state commitment cmt for that round such that cmt = computecmt(S).

Theorem 1. All of our protocols (Deterministic 4.1, Horizontal Sampling 4.2, PoS 4.3) satisfy the
E-Safety property.

Proof: Nodes commit only to valid state commitments. Valid state commitments are correct ac-
cording to Lemmas 1, 7, 18 for each respective protocol (Deterministic, Horizontal Sampling, PoS).
Therefore, if node pi commits to the state S in the round r it must hold that S = S∗

r . □

Theorem 2. All of our protocols (Deterministic 4.1, Horizontal Sampling 4.2, PoS 4.3) satisfy the
E-Liveness property.

Proof: In all the protocols (Deterministic, Horizontal Sampling, PoS), nodes form a valid state com-
mitment visible to every node for every round according to Lemmas 3,10,19 respectively. Therefore,
in all protocols, for every round r and every node pi there will a round r′ > r for which pi commits
to a different state. □

Theorem 3. All of our protocols (Deterministic 4.1, Horizontal Sampling 4.2, PoS 4.3) satisfy the
Censorship resistance property.

Consider a valid transaction tx committed to the ledger in the block with height r. Enough hon-
est nodes will eventually execute the block in the round r, apply all the valid transactions, and
therefore tx, to the state, and form the corresponding valid state commitment according to Lem-
mas 3,10,19 for each protocol (Deterministic, Horizontal Sampling, PoS) respectively. Following
from Lemmas 1, 7, 18, the valid state commitment will be correct, namely every valid transaction,
including tx, must have been applied to the state.□
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7.4 Light clients

Again we use Theorems 1, 7, 18 and 3, 10, 19 concerning the validity and availability of state
commitments.

Lemma 21. Light nodes perform the same verifications with the executors for valid state commit-
ments in the: i)Deterministic protocol, ii) Horizontal Sampling protocol, iii) PoS protocol.

Proof: i) In the Deterministic protocol, the light clients know in advance the public keys of the
executors.
ii) In the Horizontal Sampling, light clients know the public keys of the executors before the protocol
starts as well as they have access to the random seed for each round through the dirty ledger, to
verify the proofs of the election of the nodes.
iii) Following from Lemma 13. □

Theorem 4. All of the proposed protocols (Deterministic 4.1, Horizontal Sampling 4.2, PoS 4.3)
satisfy the LC-Safety property.

Proof: A light node joins the network after having received a state proof consisting of a valid
state commitment and the respective certificates. Assume that there exists a round r in which
the adversary provides a state proof πS̃ corresponding to a faulty state S̃ to a light client lci s.t.
lci outputs acceptlci(πS̃ , r) = True. Since light clients perform the same verifications as honest
nodes, according to Lemma 21, the adversary would convince the executors about the validity of the
faulty commitment cmt = Computecmt(S̃) as well. That is contradicting Lemmas 1, 7, 18 for each
respective protocol (Deterministic, Horizontal Sampling, PoS). □

Theorem 5. All of the proposed protocols (Deterministic 4.1, Horizontal Sampling 4.2, PoS 4.3)
satisfy the LC-Liveness property.

Proof: Consider the light client lci that requests a state proof for a round greater or equal than r.
Each round will eventually become successful in all protocols (Deterministic, Horizontal Sampling,
PoS) as follows from the Lemmas 3, 10, 19. The honest executors store all the certificates related
to the valid state commitments. Lci is connected to at least one honest node, let us call it pi. Since
round r will become successful, pi will eventually see a valid state commitment corresponding to
a round r∗ ≥ r. The state proof πS which pi will construct and send to lci, contains the state
commitment and the respective certificates indicating its validity. The light client will verify πS ,
since the honest executor had already verified the certificates, and output acceptlci(πS , r

∗) = True.
□

For the following Lemma, we denote the size of the nodes’ signatures by c1, the size of the proof
of election (proof coming from the VRF) by c2, and the average size of the proof of ownership
(inclusion proof) by I(|S|). We assume that I(|S|)

|S| = o(1), where |S| is the average size of the state.
For example, in Merkle proofs I(|S|) = O(log(|S|)).
Lemma 22. A state proof π for a round r ≥ 1, is succinct in all of our proposed protocols: i)
Deterministic 4.1, ii) Horizontal Sampling 4.2, iii) PoS 4.3.

Proof: i) In the Deterministic protocol, π constitutes of f + 1 signatures and therefore len(π) =
(f + 1)c1.
ii) In the Horizontal Sampling, π consists of O(log2n) signatures and the respective proofs of election
and thus len(π) = (c1 + c2)O(log2n).
iii) In the Proof-of-Stake protocol, for every round up to the round r there are O(log2W ) votes along
with the signatures and the proofs of election and ownership. Consequently, len(π) = r(c1 + c2 +
I(S))O(log2W ). □
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