
Dynamic Decentralized Functional Encryption with Strong Security

Ky Nguyen, David Pointcheval, and Robert Schädlich

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

Abstract. Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional
encryption to multiple clients that do not trust each other. They can independently encrypt the multiple
inputs to be given for evaluation to the function embedded in the functional decryption key. And
they keep control on these functions as they all have to contribute to the generation of the functional
decryption keys.
Dynamic Decentralized Functional Encryption (DDFE) is the ultimate extension where one can dy-
namically join the system and the keys and ciphertexts can be built by dynamic subsets of clients.
As any encryption scheme, all the FE schemes provide privacy of the plaintexts. But the functions
associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning).
The function-hiding property has thus been introduced to additionally protect the function evaluated
during the decryption process.
In this paper, we first provide a generic conversion from DMCFE to DDFE, that preserves the security
properties, in both the standard and the function-hiding setting. Then, new proof techniques allow us to
analyze a new concrete construction of function-hiding DMCFE for inner products, that can thereafter
be converted into a DDFE, with strong security guarantees: the adversary can adaptively query multiple
challenge ciphertexts and multiple challenge keys. Previous constructions were proven secure in the
selective setting only.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 5

2 Preliminaries . 6
2.1 Dual Pairing Vector Spaces . 7
2.2 Dynamic Decentralized Functional Encryption . 8
2.3 Decentralized Multi-Client Functional Encryption . 12

3 Technical Overview . 13
3.1 Our Function-Hiding DMCFE for Inner Products . 18

4 From DMCFE to DDFE . 21
A Supporting Materials – Section 2 . 28

A.1 Hardness Assumptions . 28
A.2 Dual Pairing Vector Spaces . 28
A.3 Function-Hiding Decentralized Multi-Client FE . 30
A.4 Pseudorandom Functions (PRF) . 32
A.5 Non-Interactive Key Exchange (NIKE) . 33
A.6 From One-Challenge to Multi-Challenge – Proof of Lemma 5 . 34
A.7 From Weak to Full Function-Hiding – Proof of Lemma 6 . 36

B Supporting Materials – Section 4 . 39
B.1 Details about our DDFE in Section 4 . 39
B.2 From Complete to Incomplete Challenges – Proof of Lemma 14 40
B.3 Instantiation of the Generic Conversion with Our FH-DMCFE . 44
B.4 Instantiation of the Generic Conversion with the DMCFE of [27] 44
B.5 Instantiation to Obtain an Adaptively Secure LWE-based DDFE for Inner Products . 45

C Supporting Materials – A FH-DMCFE for Inner Products . 51
C.1 Construction . 51
C.2 Swapping Lemma . 53
C.3 Proof of Security . 54
C.4 Technical Overview of the Swapping Lemma 34 . 64
C.5 Swapping without Repetitions – Proof of Lemma 34 (Special Case) 68
C.6 Swapping with Repetitions – Proof of Lemma 34 (General Case) 77

3

1 Introduction

Functional Encryption. Public-Key Encryption (PKE) has become so indispensable that without
this building block, secure communication over the Internet would be unfeasible nowadays. However,
this concept of PKE limits the access to encrypted data in an all-or-nothing fashion: once the
recipients have the secret key, they will be able to recover the original data; otherwise, no information
is revealed. The concept of Functional Encryption (FE), originally introduced by Boneh, Sahai and
Waters [55, 22], overcomes this limitation: a decryption key can be generated under some specific
function F , namely a functional decryption key, and enable the evaluation F (x) from an encryption
of a plaintext x in order to provide a finer control over the leakage of information about x.

Since its introduction, FE has provided a unified framework for prior advanced encryption notions,
such as Identity-Based Encryption [56, 30, 21] or Attribute-Based Encryption [55, 40, 54, 14, 53], and
has become a very active domain of research. Abdalla et al. [3] proposed the first FE scheme (ABDP
scheme) that allows computing the inner product between a functional vector in the functional
decryption key and a data vector in the ciphertext, thenceforth coined IPFE. The interests in FE
then increased, either in improving existing constructions for concrete function classes, e.g. inner
products [10, 17, 24] and quadratic functions [15, 36, 13, 46], or in pushing the studies of new
advanced notions [38] as well as the relationship to other notions in cryptography [12, 19]. While
FE with a single encryptor, i.e. single-client FE, is of great theoretical interest, there is also a
motivation to investigate a multi-user setting, which might be applicable in practical applications
when the data is an aggregation of information coming from multiple sources.

Extensions of FE in the Multi-User Setting. Goldwasser et al. [37, 39] initiated the study
of Multi-Input Functional Encryption (MIFE) and Multi-Client Functional Encryption (MCFE). In
MCFE particularly, the encrypted data is broken into a vector (x1, . . . , xn) and a client i among n
clients uses their encryption key eki to encrypt xi, under some (usually time-based) tag tag. Given
a vector of ciphertexts (ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)), a decryptor holding a
functional decryption key dkF can decrypt and obtain F (x1, . . . , xn) as long as all ct1, . . . , ctn are
generated under the same tag. No information beyond F (x1, . . . , xn) is leaked, especially concerning
the individual secret components xi, and combinations of ciphertexts under different tags provide
no further information either. Furthermore, encrypting xi under different tag

′ ̸= tag might bear a
different meaning with respect to a client i and thus controls the possibilities constituting ciphertext
vectors1. This necessitates the encryption keys eki being private. The notion of MCFE can be seen
as an extension of FE where multiple clients can contribute into the ciphertext vector independently
and non-interactively, where encryption is done by private encryption keys. After their introduction,
MIFE/MCFE motivated a plethora of works on the subject, notably for the concrete function class
of inner products [33, 27, 28, 4, 2, 1, 45, 29, 5, 49].

Decentralized Multi-Client Functional Encryption. The setup of MCFE requires some authority (a
trusted third party) responsible for the setup and generation of functional decryption keys. The
authority possesses a master secret key msk that can be used to handle the distribution of private
encryption keys eki and deriving functional decryption keys dkF . When clients do not trust each
other, this centralized setting of authority might be a disadvantage. The need for such a central
authority is completely eliminated in the so-called Decentralized Multi-Client Functional Encryption
(DMCFE) introduced by Chotard et al. [27]. In DMCFE, only during the setup phase do we need
interaction for generating parameters that will be needed by the clients later. The key generation
is done independently by different senders, each has a secret key ski. Agreeing on a function F ,

1 In contrast, MIFE involves no tags and thus a large amount of information can be obtained by arbitrarily combining
ciphertexts to decrypt under some functional decryption key.

4

each sender generates their functional key dkF,i using ski, the description of F , and a tag tag-f.
Originally in [27], the tag tag-f can contain the description of F itself. Using DMCFE, the need
of an authority for distributing functional keys is completely removed, with minimal interaction
required during setup. The seminal work of [27] constructed the first DMCFE for computing
inner products (IP-DMCFE), where n clients can independently contribute to the ciphertext vector
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can independently contribute
to the functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ← DKeyGen(skn, tag-f, yn) of some
vector y = (y1, . . . , yn). For the function class to compute inner products, many follow-up works
improve upon the work of [27] on both aspects of efficiency as well as security, or by giving generic
transformation to (D)MCFE from single-client FE [45, 2, 1].

Dynamic Decentralized Functional Encryption. In [29], Chotard et al. generalized DMCFE and de-
fined the notion of Dynamic Decentralized Functional Encryption (DDFE) that allows users2 to join
at various stages during the lifetime of a system, while maintaining all decentralized features of
DMCFE. Notably, the setup of DDFE is non-interactive and decentralized, while that of DMCFE is a
priori interactive. When joining a DDFE system, each user i can run a local setup algorithm, which
uses some public parameters that is set by a global setup algorithm, so as to generate their own
secret key ski. A set UM of users can use ski to independently encrypt their data, contributing to a
list of ciphertexts (cti)i∈UM

. In the same way, a set UK of users can use their ski to independently
contribute to a list of functional keys (dki)i∈UK

. In the end, a DDFE scheme allows aggregating data
from different sources by decrypting (cti)i∈UM

using (dki)i∈UK
, which are fabricated in a completely

decentralized manner, while requiring no trusted third party. Being dynamic, a DDFE scheme does
not demand in advance a fixed number of users in UM nor UK . The authors of [29] provide a concrete
construction of DDFE for the function class computing inner products (IP-DDFE). A recent work
by Agrawal et al. [8] revisits the notion of DDFE and provides a construction of IP-DDFE with
stronger security guarantees (see below). To date, these works provide the only two known IP-DDFE
candidates in the literature.

Other Notions of FE in the Multi-User Setting. Many more multi-user FE primitives have been
defined, such as Ad Hoc Multi-Input Functional Encryption [6] and Multi-Authority Attribute-Based
Encryption [25]. Interestingly, Agrawal et al. [8] proposed the very general notion of Multi-Party
Functional Encryption (MPFE). The important concept behind MPFE is to cover all existing notions
of FE in the multi-user setting, including DDFE/(D)MCFE.

Function Privacy in FE. Standard security notions of all primitives mentioned above ensure
that adversaries do not learn anything about the content of ciphertexts beyond what is revealed by
the functions for which they possess decryption keys. However, it is not required that functional
decryption keys hide the function they decrypt. In practice, this can pose a serious problem because
the function itself could contain confidential data. For example, the evaluated function may represent
a neural network. Training such networks is often time-consuming and expensive, which is why
companies offer their use as a paid service. However, to ensure that customers continue to pay for
the use of the product, it is crucial that the concrete parameters of the network (i.e. the computed
function) remain secret. This additional security requirement for functional encryption schemes is
known as the function-hiding property.

2 The terminology for the participants in the various FE models is not unique in the literature. The encryptors
i in MCFE are usually referred to as clients who hold an encryption key eki. This term is adopted in [27] for
DMCFE, but the key-generating parties are referred to as senders who possess secret keys ski. In the definition of
DDFE introduced in [29], encryption and key generation are performed by the same parties, which are then simply
referred to as users, and which have secret keys ski. We follow these namings accordingly when discussing DDFE
and DMCFE.

5

Besides practical applications, function-hiding FE schemes for restricted function classes (such as
inner products) have also proven to be an important technical building block for the construction of
FE schemes for broader function classes: Lin [46] employed a function-hiding IPFE (FH-IPFE) to
obtain an FE scheme for quadratic functions. A different technique was also introduced by Gay
in [36] equally aiming at constructing FE for quadratic functions. With several technical novelties,
Agrawal et al. [7, 9] were able to generalize the aforementioned constructions to obtain MIFE for
quadratic functions.

Existing Function-Hiding FE Schemes in the Literature. Bishop et al. [18] presented the first IPFE
scheme that guaranteed a weak variant of the function-hiding property. Shortly afterwards, the
construction was lifted to fully function-hiding security by Datta et al. [31, 32]. This was further
improved in terms of efficiency and/or computational hardness assumptions by works of [59, 42, 41].
The constructions of [18, 31, 59] all leverage the power of dual pairing vector spaces (DPVSes)
developed by Okamoto and Takashima in [51, 52, 53]. In 2017, Lin [46] used a different approach
that used the ABDP IPFE to get simpler constructions of FH-IPFE. Using the same blueprint and
exploiting the specific algebraic properties of the underlying inner-product MIFE scheme carefully,
Abdalla et al. [4] were able to construct function-hiding MIFE for inner products (FH-IP-MIFE).
In [8], Agrawal et al. came up with the first construction of function-hiding MCFE for inner
products (FH-IP-MCFE) that is inspired by the FH-IP-MIFE by Datta et al. [33]. Very recently, Shi
and Vanjani [57] presented a generic transformation from single-client to multi-client functional
encryption, preserving the function-hiding property and leading to the first FH-IP-MCFE with
adaptive security. Remarkably, their security proof does not rely on random oracles. We are not
aware of any construction of function-hiding DMCFE or DDFE for inner products (FH-IP-DMCFE
or FH-IP-DDFE) whose security proof does not use the random oracle model (ROM). Again in [8],
the authors were able to lift their aforementioned FH-IP-MCFE scheme to FH-IP-DDFE, following
the approach of Chotard et al. [29] who presented a similar transformation in the non-function-
hiding setting. So far, the scheme of [8] is the only FH-IP-DDFE in the literature. They achieve
indistinguishability-based security in the ROM.
All known constructions that guarantee function-hiding security rely on pairings. A recent work by
Ünal [60] shows that in the manner of most lattice-based approaches, there is little hope to attain
function privacy in IPFE schemes, in the setting of multi-user or not.

Repetitions under One Tag. Involving tags at the time of encryption and key-generation
restricts that only ciphertexts and functional keys having the same tag can be combined in the
notion of DMCFE. This raises a natural question: what security can we guarantee when one client
uses the same tag on multiple data? We call such multiple usages of the same tag in a DMCFE system
repetitions. In the formal security model of (D)MCFE in [27] and subsequent works [45], once the
adversary makes a query for (i, tag), further queries for the same pair (i, tag) will be ignored. This
means repetitions are not taken into account. The authors of [27] argued that it is the responsibility
of the users not to use the same tag twice. However, a security notion for DMCFE that captures a
sense of protection even when repetitions mistakenly/maliciously happen will be preferable, e.g.
this is indeed studied in some other works [2, 1]. No tags exist in the general definition of DDFE.
However, jumping ahead, the specific inner product functionality considered in this paper involves
tags, so the previous reasoning in the context of DMCFE carries over to the DDFE case as well. In
addition, when repetitions are allowed for ciphertexts, the security model of MCFE encompasses
MIFE, where there is no tag, by just replacing tags with a constant value.

1.1 Our Contributions

To the best of our knowledge, the only candidates of DDFE for the class of inner products come
from [29] (standard security) and [8] (function-hiding security). Both constructions achieve only

6

selective security under static corruption, i.e. the adversary makes all encryption, key-generation and
corruption queries up front in one shot. [29] allows repetitions for both encryption and key-generation
queries, whereas [8] allows them only for encryption. This state-of-the-art leads us to the following
question:

How far can we raise the security level of (function-hiding) DDFE?

In this paper, we give several candidates for IP-DDFE that strictly improve on various aspects of
security compared with [29, 8]. Below and in Table 1 are presented a summary of our contributions
and a comparison with existing works:

1. From DMCFE to DDFE. Inspired by the (non-generic) lifting result from FH-IP-MCFE to
FH-IP-DDFE of [8], we present a generic conversion from DMCFE to DDFE that works both in
the standard and function-hiding setting. Our conversion mostly preserves the security level of
the underlying DMCFE scheme (e.g. adaptive oracle queries and repetitions) or even improves
it: we are able to generically remove the so-called complete-query constraint, a restriction that
many previous (D)MCFE schemes suffered from [27, 45] (see constraint 4 of Definition 4). The
only restriction in the security model that we do not know how to avoid in our constructions is
static corruption.

By demonstrating how to plug various IP-DMCFE schemes into our generic conversion, we obtain
a number of new IP-DDFE candidates with previously unattained properties that are emphasized
in what follows. Specifically, we employ an FH-IP-DMCFE scheme that is also constructed in this
work (see item 2 below) to obtain an FH-IP-DDFE where both encryption and key-generation
queries can be made adaptively and with repetitions. The security is based on SXDH in the ROM.
Furthermore, we show that the IP-DMCFE schemes of [27, 45] can be lifted to IP-DDFE using
our conversion. The latter gives us the first adaptively secure IP-DDFE scheme based on LWE
in the standard model. Since the IP-DMCFE of [45] does not support repetitions, the obtained
IP-DDFE does neither. A high-level overview and the technical details are given in Sections 3
and 4, respectively.

2. Function-Hiding IP-DMCFE. As a stepping stone to our FH-IP-DDFE, we construct the first
FH-IP-DMCFE that tolerates adaptive encryption queries (with repetitions) and adaptive key-
generation queries with repetitions, under static corruption. It uses pairings and is provably secure
in the ROM. The only existing FH-IP-DMCFE in the literature is the one that follows implicitly
from the FH-IP-DDFE of [8] and thus inherits the restrictions of the security model, i.e. selective
oracle queries, no repetitions for key-generation queries and static corruption. The high-level
ideas of our construction are explained in Section 3.1, details can be found in Section C.1.

3. Technical Contribution. Along the way, we push forward the study of DPVS techniques. We
state a novel lemma that shows the indistinguishability of two distributions in a setting where
not all input data is known up front. This lemma proves to be the key ingredient for the security
proof of our FH-IP-DMCFE scheme in the adaptive setting. Due to its generality, we believe
that the lemma can find other applications in the future. The formal statement can be found in
Lemma 34 in Section C.2. An overview on how the lemma is used is included in Section 3.1.
Basic definitions for the DPVS framework are provided in Section 2.1

2 Preliminaries

For integers m and n with m < n, we write [m;n] to denote the set {z ∈ Z : m ≤ z ≤ n} and
set [n] := [1;n]. For a finite set S, we let 2S denote the power set of S, and U(S) denote the

7

Scheme Type FH

Oracle Queries

Assumptions ROM
OEnc OKeyGen

[8, Section 6.2] IP-MCFE ✓ sel,w-rep sel† SXDH, pairings ✓

[57, Section B.3] IP-MCFE ✓ adap,w-rep adap† D-Lin, pairings ✗‡

Section C.1 IP-DMCFE ✓ adap,w-rep adap,w-rep SXDH, pairings ✓

[29, Section 7] IP-DDFE ✗ sel,w-rep sel,w-rep DDH ✓

Section 4 + B.4 IP-DDFE ✗ adap,w-rep adap,w-rep SXDH, pairings ✓

Section 4 + B.5 IP-DDFE ✗ adap, no-rep adap, no-rep LWE ✗

[8, Section 6.3] IP-DDFE ✓ sel,w-rep sel, no-rep SXDH, pairings ✓

Section 4 + B.3 IP-DDFE ✓ adap,w-rep adap,w-rep SXDH, pairings ✓

† For MCFE, there is no notion of tags for key generation, hence no notion of repetitions.
‡ This is the only FH-MCFE that is provably secure without the ROM. To our knowledge, there is
no FH-DMCFE nor FH-DDFE in the literature that does not use ROs. In Remark 10, we discuss
whether our constructions could be made non-ROM using similar techniques.

Table 1: We compare our constructions with existing works, in terms of the type of primitives
(Type), whether the scheme provides standard security (✗) or the stronger function-hiding security
(✓) (FH), whether the encryption oracle (OEnc) and key-generation oracle (OKeyGen) can be
queried adaptively and with repetitions (Oracle Queries), which assumptions are used for the
security proof (Assumptions), and whether the security is proven in the ROM (✓) or not (✗)
(ROM). The shorthands (sel, adap) denote selective or adaptive oracle queries. The shorthands
(w-rep, no-rep) indicates whether the adversary can demand repetitive queries to the same slot and
tag or not. All schemes are defined for the inner-product functionality of their respective type of
primitive (see Def. 2 and 8) and consider only static corruption. Preferred properties are underlined.

uniform distribution over S. For any q ≥ 2, we let Zq denote the ring of integers with addition and
multiplication modulo q. For a prime q and an integer N , we denote by GLN (Zq) the general linear
group of of degree N over Zq, and use non-boldface capital letters B,H, . . . for scalar matrices in
GLN (Zq). We write vectors as row-vectors, unless stated otherwise. For a vector x of dimension
n, the notation x[i] indicates the i-th coordinate of x, for i ∈ [n]. We will follow the implicit
notation in [34] and use JaK to denote ga in a cyclic group G of prime order q generated by g,
given a ∈ Zq. This implicit notation extends to matrices and vectors having entries in Zq. We use
boldface letters B,b, . . . for matrices and vectors of group elements. We use the shorthand ppt for
“probabilistic polynomial time”. In the security proofs, whenever we use an ordered sequence of
games (G0,G1, . . . ,Gi, . . . ,GL) indexed by i ∈ [0;L], we refer to the predecessor of Gj by Gj−1, for
j ∈ [L]. We recall the hardness assumption used throughout this work in Appendix A.1.

2.1 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in the prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q), and G1,G2,Gt are all written additively. The
DPVS technique dates back to the seminal work by Okamoto-Takashima [51, 52, 53] aiming at
adaptive security for ABE as well as IBE, together with the dual system methodology introduced by
Waters [61]. In [44], the setting for dual systems is composite-order bilinear groups. Continuing on
this line of works, Chen et al. [26] used prime-order bilinear groups under the SXDH assumption.

8

Formalizations. Let us fix N ∈ N and consider GN
1 having N copies of G1. Viewing ZN

q as a vector
space of dimension N over Zq with the notions of bases, we can obtain naturally a similar notion of
bases for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis B of GN
1 , whose

i-th row bi is JBiK1, where Bi is the i-th row of B. It is straightforward that we can write B = JBK1 for
any basisB ofGN

1 corresponding to an invertible matrix B ∈ GLN (Zq). We write x = (m1, . . . ,mN)B
to indicate the representation of x in the basis B, i.e. x =

∑N
i=1mi · bi. At some point when we

focus on the indices in an ordered list L of length ℓ, we write x = (mL[1], . . . ,mL[ℓ])B[L]. Treating

GN
2 similarly, we can furthermore define a product of two vectors x = J(m1, . . . ,mN)K1 ∈ GN

1 ,y =

J(k1, . . . , kN)K2 ∈ GN
2 by x×y :=

∏N
i=1 e(x[i],y[i]) = J⟨(m1, . . . ,mN), (k1, . . . , kN)⟩Kt. Given a basis

B = (bi)i∈[N] of GN
1 , we define B∗ to be a basis of GN

2 by first defining B∗ := (B−1)⊤ and the

i-th row b∗
i of B∗ is JB∗

i K2. It holds that B · (B
∗)⊤ = IN the identity matrix and bi × b∗

j = Jδi,jKt
for every i, j ∈ [N], where δi,j = 1 if and only if i = j. We call the pair (B,B∗) a pair of dual
orthogonal bases of (GN

1 ,GN
2). If B is constructed by a random invertible matrix B $← GLN (Zq),

we call the resulting (B,B∗) a pair of random dual bases. A DPVS is a bilinear group setting
G = (G1,G2,Gt, g1, g2, gt, e, q) with dual orthogonal bases. We denote by DPVSGen the algorithm
that takes as inputs G, a unary 1N , and some random coins r ∈ {0, 1}∗, then outputs a pair of
random matrices (B,B∗) that specify dual bases (B = JBK1 ,B

∗ = JB∗K2) of (GN
1 ,GN

2). Without
loss of generality, when the random coins r are fixed we assume that DPVSGen(G, 1N ; r) runs
in deterministic time poly(log q). Further details on DPVS-related techniques can be found in
Appendix A.2.

2.2 Dynamic Decentralized Functional Encryption

In this section we recall the notion of Dynamic Decentralized Functional Encryption with standard
security (DDFE) and the strong function-hiding security (FH-DDFE). This notion was introduced
first in [29] and later defined in [8, Section 6.1] as a special case of the Multi-Party Functional
Encryption notion. Let {IDλ}λ∈N, {Kλ}λ∈N, {Mλ}λ∈N and {Rλ}λ∈N be families of identity, key,
message and output spaces, respectively, where all of which are indexed by a security parameter
λ ∈ N and Kλ = Kλ,pri×Kλ,pub,Mλ =Mλ,pri×Mλ,pub consist of a private and a public component
each. We consider a functionality

fdyn =
{
fdyn
λ :

⋃
n∈N(IDλ ×Kλ)

n ×
⋃

n∈N(IDλ ×Mλ)
n → Rλ

}
λ∈N

.

Definition 1 (Dynamic Decentralized Functional Encryption). A DDFE scheme E for the
functionality fdyn comprises five algorithms:

GSetup(1λ): Take 1λ as input and output a set of public parameters pp.

LSetup(pp): Take as input pp, output a public key pki and a secret key ski. We assume that pki
implicitly contains pp and that ski implicitly contains pki.

KeyGen(ski, k = (kpri, kpub)): Given a secret key ski and k ∈ Kλ, output dki.

Enc(ski,m = (mpri,mpub)): Given a secret key ski and m ∈Mλ, output cti.

Dec((dki)i∈UK
, (cti)i∈UM

): Given (dki)i∈UK
, (cti)i∈UM

for UK ,UM ⊆ ID, output either an element in
Rλ or ⊥.

Correctness. E is correct if for all λ ∈ N, sets UK ,UM ⊆ IDλ, keys (i, ki)i∈UK
∈
⋃

n∈N(IDλ×Kλ)
n,

and inputs (i,mi)i∈UM
∈
⋃

n∈N(IDλ ×Mλ), we have

9

Pr

d = fdyn
λ ((i, ki)i∈UK

, (i,mi)i∈UM
)

∣∣∣∣∣∣∣∣∣∣∣∣

pp←GSetup(1λ)

∀i ∈ Uk ∪ UM : (pki, ski)←LSetup(pp)

∀i ∈ Uk : dki←KeyGen(ski, ki)

∀i ∈ UM : cti←Enc(ski,mi)

d := Dec((dki)i∈UK
, (cti)i∈UM

)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Functionalities. We consider DDFE for two concrete function classes.

(Dynamic) Inner-Product Functionality. We define the function family fdyn-ip of bounded-norm
inner-product functionalities. Previous works on DDFE [29, 8] use the same functionality.

Definition 2 ((Dynamic) Inner-Product Functionality). For λ ∈ N, let Tagλ = IDλ =
{0, 1}poly(λ), Rλ = Z, Kλ,pub = Mλ,pub = 2IDλ × Tagλ and Kλ,pri = Mλ,pri = [−B;B]N for
polynomials B = B(λ) and N = N(λ) : N → N. The (dynamic) inner-product functionality

fdyn-ip = {fdyn-ip
λ :

⋃
n∈N(IDλ ×Kλ)

n ×
⋃

n∈N(IDλ ×Mλ)
n → Rλ}λ∈N is defined via

fdyn-ip
λ ((i, ki)i∈UK

, (i,mi)i∈UM
) =

{∑
i∈U ⟨xi,yi⟩ if condition (∗) holds

⊥ otherwise

for all λ ∈ N, where condition (∗) holds if UK = UM (in which case we define U := UK) and there
exist tag, tag-f ∈ Tagλ such that for each i ∈ U
• ki is of the form (ki,pri := yi, ki,pub := (U , tag-f)), and
• mi is of the form (mi,pri := xi,mi,pub := (U , tag)).

All-or-Nothing Encapsulation (AoNE). The notion of AoNE is a particular functionality of DDFE
introduced by Chotard et al. [29]. In the transformation of [28, Section 5.2], AoNE appears under the
name Secret Sharing Layer (SSL). In [8], AoNE also serves as a building block for their FH-DDFE
scheme and it is pointed out that function-hiding and standard security are the same for AoNE, for
which there is no concept of keys.

Definition 3 (All-or-Nothing Encapsulation). For λ ∈ N, let Tagλ = IDλ = Rλ = {0, 1}poly(λ),
Kλ = ∅, Mλ,pub = 2IDλ × Tagλ and Mλ,pri = {0, 1}L for a polynomial L = L(λ) : N → N. The
all-or-nothing encapsulation functionality faone = {faone

λ :
⋃

n∈N IDn
λ×
⋃

n∈N(IDλ×Mλ)
n → Rλ}λ∈N

is defined via

fdyn-ip
λ ((i)i∈UK

, (i,mi)i∈UM
) =

{
(xi)i∈UM

if condition (∗) holds
⊥ otherwise

for all λ ∈ N, where condition (∗) holds if there exists tag ∈ Tagλ such that for each i ∈ UM , mi is
of the form (mi,pri := xi,mi,pub := (UM , tag)).

This means in particular that KeyGen is unnecessary and Dec works without taking secret keys as
input because UK can be the empty set. From [29], it holds that AoNE can be constructed generically
from identity-based encryption, or from bilinear maps under the Decisional Bilinear Diffie-Hellman
(DBDH) assumption. The first construction is secure in the standard model, but ciphertexts have
size linear in |UM |. On the other hand, the size of ciphertexts in the construction from DBDH is
independent of |UM |, but the security proof resorts to the ROM.

10

Security. We recall standard and function-hiding security for DDFE below.

Definition 4 (Function-Hiding and Standard Security). For a ppt adversary A against
a DDFE scheme E for a functionality

fdyn =
{
fdyn
λ :

⋃
n∈N(IDλ ×Kλ)

n ×
⋃

n∈N(IDλ ×Mλ)
n → Rλ

}
λ∈N ,

we define the experiments Expfh
E,F ,A(1

λ) and Expcpa
E,F ,A(1

λ) as shown in Figure 1. In the following

all variables are indexed by λ, we omit the indices λ for simplicity. The oracles OHonestGen, OEnc,
OKeyGen and OCorrupt can be called in any order and any number of times.3 We recall that for the

queries to OKeyGen and OEnc, namely (i, k(0)

i , k(1)

i) (i, ki) and (i,m(0)

i ,m(1)

i), there are private

parts k
(b)

i,pri,m
(b)

i,pri and public parts k
(b)

i,pub,m
(b)

i,pub in the keys as well as in the messages. We require

m(0)

i,pub = m(1)

i,pub = mpub and k(0)

i,pub = k(1)

i,pub = kpub because the public data is not hidden. The

adversary A is NOT admissible with respect to C,QEnc,QKGen, denoted by adm(A) = 0, if one of
the following holds:

1. There exists a tuple (i,m(0)

i ,m(1)

i) ∈ QEnc or there exists (i, k(0)

i , k(1)

i) ∈ QKGen such that i ∈ C

and m(0)

i ̸= m(1)

i or k(0)

i ̸= k(1)

i
4.

2. For b ∈ {0, 1}, there exist (i, k
(b)

i)i∈UK
∈
⋃

n∈N(ID × K)n and (i,m(b)

i)i∈UM
∈
⋃

n∈N(ID ×M)n

such that
• (i,m(0)

i ,m(1)

i) ∈ QEnc and (i, k(0)

i , k(1)

i ki) ∈ QKGen for all i ∈ H,

• m(0)

i = m(1)

i and k(0)

i = k(1)

i for all i ∈ C, and

• fdyn((i, k
(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= fdyn((i, k

(1)

i)i∈UK
, (i,m(1)

i)i∈UM
).

Otherwise, we say that A is admissible w.r.t C, QEnc and QKGen and write adm(A) = 1. We say

that E is IND-secure if for all ppt adversaries A,

Advcpa
E,F ,A(1

λ) :=
∣∣∣Pr [Expcpa

E,F ,A(1
λ) = 1

]
− 1

2

∣∣∣ .

Alternatively, E is said to be function-hiding if for all ppt adversaries A,

Advfh
E,F ,A(1

λ) :=
∣∣Pr [Expfh

E,F ,A(1
λ) = 1

]
− 1

2

∣∣ .

is negligible in λ.
Weaker Notions of Security. One may define several weaker variants of indistinguishability by
restricting the access to the oracles and imposing stronger admissibility conditions.

1. Security against Static Corruption: The experiment Expstat-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ),
except that all queries C = {i} to the oracle OCorrupt must be submitted before Initialize is called.
The challenger then performs LSetup(pp)→ (pki, ski) for each i ∈ C and return (pki, ski)i∈C to
A. In the same vein, we can define experiment Expstat-cpa

E,F ,A (1λ).

3 W.l.o.g, we assume that each i is queried at most once to OHonestGen and OCorrupt, and that a query OCorrupt(i)
is always preceded by a query OHonestGen(i).

4 This condition was introduced in [27] then used in all other works on (D)MCFE [27, 45, 2, 1] and later on DDFE [29, 8].
A recent work [50] studies the relaxation that removes this condition for (D)MCFE, i.e. more attacks are considered
admissible, and gives a provably secure DMCFE candidate computing inner products. We are not aware of any
DDFE scheme in the literature which is proven secure under the stronger notion from [50].

11

Initialize(1λ):
b $← {0, 1}
H, C,QEnc,QKGen←∅
pp←GSetup(1λ)
Return pp

OHonestGen(i):
(pki, ski)←LSetup(pp)
H←H∪ {i}
Return pki

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return 0

OKeyGen(i, k(0)

i , k(1)

i ki):

QKGen←QKGen ∪ {(i, k(0)

i , k(1)

i ki)}

Return dki←KeyGen(ski, k
(b)

i)
OEnc(i,m(0)

i ,m(1)

i):

QEnc←QEnc ∪ {(i,m(0)

i ,m(1)

i)}
Return ct←Enc(ski,m

(b)

i)
OCorrupt(i):

If i /∈ H: (pki, ski)←LSetup(pp)
H←H \ {i}; C←C ∪ {i}
Return ski

Fig. 1: Security games Expfh
E,F ,A(1

λ) and Expcpa
E,F ,A(1

λ) for Definition 4

2. Security against Selective Challenges: The experiment Expsel-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ),
except that all queries to the oracles OEnc and OKeyGen must be submitted before Initialize is
called. In the same vein, we can define experiment Expsel-cpa

E,F ,A(1
λ).

3. Security against One Challenge: Exp1chal-fh
E,F ,A (1λ) is as Expfh

E,F ,A(1
λ), except that the adversary

must declare up front to Initialize additional public information for challenge messages and
challenge keys mpub, kpub so that:
• if (i,m(0)

i ,m(1)

i) ∈ QEnc and m(0)

i,pub = m(1)

i,pub ̸= mpub, then m(0)

i = m(1)

i ,

• if (i, k(0)

i , k(1)

i) ∈ QKGen and k(0)

i,pub = k(1)

i,pub ̸= kpub, then k(0)

i = k(1)

i .

In the same vein, we can define experiment Exp1chal-cpa
E,F ,A (1λ).

4. Security against Complete Challenges: Let ID be an identity space and Tag be a tag space. For a
functionality fdyn with Kλ,pub =Mλ,pub = 2IDλ × Tagλ, we consider a weakening of the security
model with an additional constraint termed complete challenges. Specifically, the experiment
Exppos-fh

E,fdyn,A(1
λ) is the same as Expfh

E,fdyn,A(1
λ), except that we add the following condition 3 for

adm(A) = 0:

3. There exists mpub = (UM , tag) such that a query OEnc(i, (m(0)

i,pri,mpub), (m
(1)

i,pri,mpub)) has
been asked for some but not all i ∈ H ∩ UM , or there exists kpub = (UK , tag-f) such that a
query OKeyGen(i, (k(0)

i,pri, kpub), (k
(1)

i,pri, kpub)) has been asked for some but not all i ∈ H ∩ UK .

In the same vein, we can define experiment Exppos-cpa
E,fdyn,A(1

λ).

5. Weakly Function-Hiding: We can weaken the function-hiding property by changing condition 2
for adm(A) = 0. More specifically, we replace it by the following condition 2’:

2’. For b ∈ {0, 1}, there exist (i, k(b)

i)i∈UK
∈
⋃

n∈N(ID×K)n as well as (i,m(b)

i)i∈UM
∈
⋃

n∈N(ID×
M)n such that
• (i,m(0)

i ,m(1)

i) ∈ QEnc and (i, k(0)

i , k(1)

i) ∈ QKGen for all i ∈ H,
• m(0)

i = m(1)

i and k(0)

i = k(1)

i for all i ∈ C, and
• f((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f((i, k(0)

i)i∈UK
, (i,m(1)

i)i∈UM
) OR

f((i, k(0)

i)i∈UK
, (i,m(1)

i)i∈UM
) ̸= f((i, k(1)

i)i∈UK
, (i,m(1)

i)i∈UM
) OR

f((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f((i, k(1)

i)i∈UK
, (i,m(1)

i)i∈UM
).

The weakly function-hiding experiment is denoted by Expwfh
E,F ,A(1

λ).

Lemma 5 uses a standard hybrid reduction to prove that in the weakly function-hiding setting (or for
standard security), one-challenge security is equivalent to multi-challenge security. For completeness,
the proof in the (more challenging) weakly function-hiding setting is given in Appendix A.6.

12

Lemma 5. Let E = (GSetup, LSetup,KeyGen,Enc,Dec) be a DDFE scheme for a functionality f . If
E is one-challenge weakly function-hiding, then it is also weakly function-hiding. More specifically,
for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-cpa
E,f,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-cpa

E,f,B (1λ) ,

where qe and qk denote the maximum numbers of different mpub and kpub that A can query to OEnc
and OKeyGen respectively, and xxx ⊆ {stat, sel, pos,wfh}.

The works of [47] and [4] present generic transformations that turn weakly function-hiding (multi-
input) functional encryption schemes into full-fledged function-hiding schemes. A similar trans-
formation, stated in Lemma 6, is also applicable in the case of IP-DDFE. The proof is given in
Appendix A.7.

Lemma 6. If there exists a weakly function-hiding DDFE scheme E for fdyn-ip, then there exists a
(fully) function-hiding DDFE scheme E ′ for fdyn-ip. More precisely, for any ppt adversary A, there
exists a ppt algorithm B such that

Advxxx-fh
E ′,fdyn-ip,A(1

λ) ≤ 3 ·Advxxx-wfh
E,fdyn-ip,B(1

λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

2.3 Decentralized Multi-Client Functional Encryption

The notion of Decentralized Multi-Client Functional Encryption (DMCFE) introduced in [27] can
be identified as a special case of DDFE, where (1) the number of users is fixed in advanced by a
(possibly interactive) global setup and there is no local setting up so that a new user can enter the
system (2) the key of a user can be an encryption key to encrypt their private individual data (the
user is a “client” in the terminology of [27]) or a secret key to generate a functional key component
(the user is a “sender” in the terminology of [27]). Moreover, for efficiency, prior papers (such as
[27, 28, 2, 1, 45, 29]) considered an additional key combination algorithm that, given n functional
key components (dktag-f,i)i∈[n] generated for the same tag tag-f, outputs a succinct functional key
dktag-f which can be passed to decryption Dec(dktag-f , c). Without loss of generality, the DMCFE
notion in this paper implicitly includes the key combination algorithm in the decryption algorithm
and whenever we refer to other existing DMCFE schemes, they are syntactically understood as such.
The formal definition of DMCFE that is used in this paper is given below.

Let {Tagλ}λ∈N, {Dλ}λ∈N, {Rλ}λ∈N and {Paramλ}λ∈N be sequences of tag, domain, range and
parameter spaces, respectively. We consider a function class F = {Fn,λ}n,λ∈N, where each Fn,λ =
{fn,λ,(y1,...,yn)}(y1,...,yn) contains functions fn,λ,(y1,...,yn) : Dn

λ → Rλ described by their parameters
(y1, . . . , yn) ∈ Paramn

λ.
5

Definition 7 (Decentralized Multi-Client Functional Encryption). A DMCFE scheme E
for F between n senders (Si)i∈[n] and a functional decrypter FD consists of the four algorithms
defined below:

Setup(1λ, 1n): This is a protocol between the senders that eventually generate their own secret keys ski
and encryption keys eki, as well as the public parameter pp. We will assume that all the secret
and encryption keys implicitly contain pp.

5 Implicitly, we use a deterministic encoding pλ : Fλ → Paramλ × · · · × Paramλ in order to associate each function to
its parameters.

13

DKeyGen(ski, tag-f, yi): On input a secret key ski, a tag tag-f ∈ Tag, and parameter yi ∈ Paramλ,
this algorithm outputs a partial decryption key dktag-f,i.

Enc(eki, tag, xi): On input an encryption key eki, a tag tag and a message xi ∈ Dλ, this algorithm
outputs a ciphertext cttag,i.

Dec(d, c): On input a list of functional decryption keys d := (dktag-f,i)
n
i=1 and a list of ciphertexts

c := (cttag,i)
n
i=1, this algorithm runs a key combination if necessary, then outputs an element d ∈

Rλ or a symbol ⊥.

The definitions of correctness and security (including all weaker notions) can be derived from that of
DDFE (Definition 4). For completeness, we recall the explicit definitions for DMCFE in Appendix A.3.
The function family F ip

n of bounded-norm inner-product functionalities with n inputs is defined as
follows.

Definition 8 (Inner Product Functionality). For λ ∈ N, let Dλ = Paramλ = [−B;B]N and
Rλ = Z, where B = B(λ) and N = N(λ) : N → N are polynomials. We define the inner-product
functionality F ip = {F ip

n,λ}n,λ∈N for F ip
n,λ = {fn,λ,(y1,...,yn)

: Dn
λ → Rλ}(y1,...,yn)∈Paramn

λ
as the family

of functions fn,λ,(y1,...,yn)
(x1, . . . ,xn) =

∑n
i=1⟨xi,yi⟩.

3 Technical Overview

In this section, we give an overview about our generic conversion from DMCFE to DDFE as well as
our FH-DMCFE scheme for inner products. The concrete construction of our FH-DMCFE heavily
relies on the DPVS framework. We therefore divide this section in two parts. First, we discuss the
main ideas behind our constructions on a high-level and compare them to existing schemes in the
literature. Subsequently, we give a more technical overview about our FH-DMCFE scheme and its
security proof in Section 3.1.

As a starting point, we attempt to follow the blueprint of Agrawal et al. [8]. They provide a
construction of a FH-IP-DDFE scheme proven secure under selective key-generation and encryption
queries as well as static corruption. Furthermore, their proof uses an additional constraint on
the adversary termed one key-label restriction.6 Our goal is to have a conversion that can be
used independently of the function-hiding requirement, while achieving adaptive security for both
encryption and key-generation queries under static corruption without relying on the one key-label
restriction. The construction of [8] proceeds in two steps: Firstly, the authors build an FH-MCFE
scheme, followed by a non-black-box transformation to DDFE. We recall their construction and
explain our modifications that allow us to prove security in a stronger model. Furthermore, we
identify specific structural properties that allow us to perform the second step in a black-box manner.
By applying this generic conversion to our scheme built in step 1 as well as to other existing DMCFE
schemes in the literature, we obtain several new DDFE constructions with previously unattained
security guarantees.

Step 1: Function-Hiding (D)MCFE. We start by recalling that MCFE is a special case of
DMCFE where a trusted authority is responsible for the generation of the functional decryption keys
as well as the encryption keys (eki)i∈[n] for the n clients. The key held by the authority is called the
master secret key msk.

6 The one key-label restriction is an additional constraint on the adversary in the security game of FH-DDFE for the
inner-product functionality fdyn-ip. Specifically, an adversary satisfies the one key-label restriction if their queries
satisfy the following additional condition: The query OKeyGen(i, (k0

pri, kpub), (k
1
pri, kpub)) for kpub = (∗, tag-f) is

made only once for each pair (i, tag-f).

14

From Previous Works - The Function-Hiding MCFE of [8]. In their scheme, the encryption key eki
of a client i ∈ [n] consists of a master secret key mski of a (single-input) FH-IPFE scheme. The
key-generating authority holds msk = (mski)i∈[n]. Given a tuple (i, tag,xi), the encryption algorithm
defines an extended vector of the form x̂i = (xi, ω, · · ·), where ω = H(tag) is a hash of the
tag, and returns an encryption cti of x̂i under mski. The dots · · · in the extended vector x̂i

represent additional coordinates that are only used in the security proof and are 0 in the real
scheme. Similarly, a functional decryption key dky for a vector y = (yi)i∈[n] is created by choosing
a random secret sharing (si)i∈[n] of 0, defining ŷi = (yi, si, · · ·) and returning dky = (dki)i∈[n]
where dki is a key for ŷi that is generated using mski. Intuitively, decrypting cti with dki gives
⟨xi,yi⟩ + ωsi. Since the value si is secret, the term ωsi serves as a mask that hides the partial
inner product ⟨xi,yi⟩. On the other hand, if one has a ciphertext cti for each client i ∈ [n] and
all ciphertexts are encrypted w.r.t the same tag, then the sum of the partial decryptions gives∑

i∈[n](⟨xi,yi⟩+ ωsi) =
∑

i∈[n]⟨xi,yi⟩+ ω ·
∑

i∈[n] si =
∑

i∈[n]⟨xi,yi⟩, as (si)i∈[n] is a secret sharing
of 0. The scheme is proven to be secure against selective adversaries that submit all oracle queries
up front.
Achieving Adaptive Security. Before describing our changes from their scheme, it is instructive to
analyze the difficulties that arise when attempting to build a simulator that is able to respond
to encryption and key-generation queries adaptively. The admissibility for adversaries in the
function-hiding security game for MCFE specifies global conditions. In the case of the inner-product
functionality, they are of the form

∑n
i=1⟨x

(0)

i ,y(0)

i ⟩ =
∑n

i=1⟨x
(1)

i ,y(1)

i ⟩. However, it is not excluded
that locally at client i we have ⟨x(0)

i ,y(0)

i ⟩ ≠ ⟨x
(1)

i ,y(1)

i ⟩. Therefore, during the security proof, switching
from (x(0)

i)i to (x(1)

i)i will introduce a non-zero difference if the adversary tries to distinguish using
the fact ⟨x(0)

i ,y(0)

i ⟩ − ⟨x
(1)

i ,y(1)

i ⟩ ̸= 0. This non-zero difference caused by ⟨x(0)

i ,y(0)

i ⟩ − ⟨x
(1)

i ,y(1)

i ⟩
must be compensated for the sake of indistinguishability between subsequent games in the security
proof. For this reason, it happens that some queries (x(0)

i ,x(1)

i) or (y(0)

i ,y(1)

i) to the encryption or
key-generation oracle must be “mixed” and embedded in the responses to prior or subsequent
queries. In the adaptive setting, this can lead to the situation that the simulator needs to embed
values into keys or ciphertexts before they were even input to an oracle query.
In the MCFE of [8], this problem is solved by resorting to selective security. In this case, the simulator
knows all inputs from the beginning and can use them whenever necessary. In contrast, we provide a
concrete instantiation of the underlying single-input FE scheme for each mski based on DPVSes. If
the simulator gets into a situation where it would have to use inputs (x(0)

i ,x(1)

i ,y(0)

i ,y(1)

i) that have
not yet been queried by the adversary, we make it guess them. Even though this guess degrades the
probability of a successful efficient simulation by an exponential factor, it does not help the adversary
because we design the games to have perfectly identical views, thanks to information-theoretic
properties of the DPVS setting. In fact, this is the only point in our security proof where we crucially
rely on DPVSes. Everywhere else, we could also employ a (black-box) single-input FH-IPFE scheme,
as done in [8]. The technical details of our DPVS-based construction are quite involved and as
mentioned above, we therefore describe them separately in Section 3.1.
Security against Repeated Key Queries. Even if the one key-label restriction (see footnote 6) is
a constraint on the security model of the final DDFE scheme, the key for us to remove it is a
modification in the underlying MCFE scheme. Therefore, we discuss this aspect at this point rather
than below in Step 2 of the construction. Firstly, observe that both the syntax and the security
definition of a function-hiding DDFE scheme (Definitions 1 and 4) are completely symmetric with
respect to encryption and key generation. In particular, both ciphertexts and decryption keys are
generated independently by each client, and an adversary is allowed to submit repeated queries
(under the same tag) for both of them. On the other hand, there is an inherent asymmetry in the
MCFE model. This consists in the fact that decryption keys are generated by a central authority

15

rather than by the clients themselves, as is the case for ciphertexts. Moreover, the adversary can
submit only global key queries on (yi)i containing for each sender i a sub-vector yi. Intuitively, when
viewing MCFE as a restricted particular case of DDFE (centralized setup and key generation with a
fixed number of clients), these global queries (yi)i w.r.t the security model of MCFE correspond
to a set of key queries w.r.t the security model of DDFE, namely exactly one query for each yi

under the same tag. Looking at the one key-label restriction, it can be noticed that this is exactly
what is required therein. Phrased differently, the one key-label restriction imposed on the security
model of DDFE by [8] seems to be exactly related to the structure of the MCFE model and the fact
that [8] built their DDFE from MCFE. In order to lift this restriction, our approach to obtain a
DDFE scheme whose security does not rely on this assumption is to directly build a scheme that is
able to deal with repeated key queries. Then, using this newly built scheme, the DDFE scheme that
is constructed below in Step 2 inherits the stronger security notion.

The natural generalization of MCFE that implements the concept of a local key query (i.e. a partial
query yi for only one sender i at a time) is the DMCFE model. Therefore, our first part of the
construction is not an MCFE but a DMCFE scheme which is secure against repeated key queries. As
mentioned above, the desired security model is completely symmetric with respect to encryption and
key generation. Therefore, it seems natural to aim for a symmetric construction, too. Inspecting the
MCFE scheme of [8], it turns out that the asymmetry lies in the second component of the extended
vectors x̂i and ŷi, i.e. the pair (ω, si) where ω is a hash of the ciphertext tag tag and (si)i∈[n] is a
secret sharing of 0. Intuitively, the randomness of si hides the partial inner product ⟨xi,yi⟩ even if
the adversary submits encryption queries for several xi. By adding a flipped pair of tag and secret
share to x̂i and ŷi, we can obtain the same properties for repeated key-generation queries. More
precisely, if µ = H(tag-f) denotes the hash of the function tag tag-f and (ti)i∈[n] is another random
secret sharing of 0, we set x̂i = (xi, ω, ti, · · ·) and ŷi = (yi, si, µ, · · ·). The resulting scheme can
be proven to be a FH-DMCFE whose security proof does not rely on the one key-label restriction
anymore.

Security against Incomplete Queries and Multiple Challenges.

We recall from the above paragraph that our first step is constructing an FH-DMCFE scheme that is
secure against repeated key queries. However, the security model of our initial construction suffers
from two other restrictions that we call one-challenge security and the complete-queries constraint.
(See conditions 3 and 4 in Definition 21 in the appendix for DMCFE, or conditions 3 and 4 in
Definition 4 for the more general DDFE case). The complete-queries constraint is not particular to
our construction and appears in many schemes in the literature, e.g. [8, 27, 1, 45]. On the other
hand, the reason for the restriction to one-challenge security is due to technical subtleties in our
security proof and does not occur in [8]. Intuitively, the above-mentioned information-theoretic
arguments in the DPVS framework force us to consider queries one by one, whereas [8] can deal
with all challenge queries at the same time in a uniform way. Fortunately, there exist conversions
that remove both restrictions in a generic manner. For the sake of a more general result, we discuss
them below in the DDFE setting (see paragraphs Adaptive Security against Incomplete Queries. and
Security against Multiple Challenge Queries). Nevertheless, we emphasize that exactly the same
transformations also work for (D)MCFE schemes and in the end our FH-DMCFE is secure against
multiple adaptive challenge encryption queries and multiple adaptive challenge key-generation queries,
where all queries are allowed to be incomplete and repetitive, under static corruption.

Step 2: Transformation from (D)MCFE to DDFE. The main difference between a DMCFE
and a DDFE scheme for the inner product functionality is how the setup algorithm is executed. In the
case of DMCFE, this is an interactive procedure with no easy way of adding new participants, while
DDFE allows users to join the system at any time without interaction with the other users. Note

16

that the dynamic set of users is also reflected in the DDFE version of the inner-product functionality
which allows arbitrary support sets (Definition 2). This case is not considered in the DMCFE setting,
as the set of clients is fixed up front (Definition 8). For the transformation from DMCFE to DDFE,
it is therefore not enough to set up only one instance of the underlying DMCFE, but one needs
to emulate an independent instance for each support, without interaction and for an exponential
number of possible supports.

From Previous Works - The Transformation of [8]. Let ID be some set of identities. The transfor-
mation of [8] uses two key ideas.

Firstly, recall that the encryption keys in their MCFE are independent master secret keys of a
single-input function-hiding IPFE scheme. To generate them on demand and without interaction,
each user i in the DDFE is equipped with a key Ki for a family of pseudorandom functions {FK}K .
To obtain the encryption key w.r.t some support U ⊆ ID, user i ∈ U evaluates FKi(U)→ ri and
runs the setup algorithm of the single-input FE scheme with fixed random coins ri. In this way it
is guaranteed that user i encrypts messages for the same support under the same key, but uses
independent keys for different supports.

Secondly, the key-generation algorithm of the MCFE makes use of a random secret sharing (si)i∈[n]
of 0, i.e.

∑
i∈[n] si = 0. For the transformation to DDFE, it arises the question of how such sharings

can be generated in a decentralized and non-interactive manner. As a solution, the authors use
a technique introduced in [29] under the name decentralized sum (DSum). This technique uses a
clever interleaving of a non-interactive key exchange (NIKE) scheme and a PRF to generate a fresh
sharing for each function.

A Generic Conversion from DMCFE to DDFE. We observe that both techniques mentioned in the
previous paragraph can be applied in a much broader setting. Intuitively, we show that a DMCFE
scheme can be lifted to DDFE whenever secret and encryption keys are of the form ski = (si, ŝki)
and eki = (si, êki), where (si)i is a random secret sharing of 0 and ŝki and êki are generated
independently of other users. As in [8], we use a DSum instance to compute a secret sharing (si)i
and a PRF to generate the independent key components ŝki and êki. In [29], it was shown that the
DSum technique extends to any finite Abelian group A. This allows us to apply the conversion to
our FH-DMCFE scheme where the shares si are vectors in Z2

q . (Recall that we use two scalar secret
sharings, one in the keys and one in the ciphertexts). This gives us the first function-hiding IP-DDFE
construction with adaptive security in the literature. Similarly, our conversion can be applied to
the DMCFE scheme in [27] where shares si are matrices in Z2×2

q . Furthermore, we observe that if
the sum s :=

∑
i si is only needed at decryption time, then we are not limited to secret sharings

of s = 0A, but s can be chosen from a large variety of distributions. For instance, our technique
extends to the case where s is a sum of independent discrete Gaussian random variables. In this way,
we are able to apply our conversion to the lattice-based DMCFE scheme of Libert et al. [45] which
yields a IP-DDFE whose security is based solely on LWE in the standard model. Both properties were
previously unattained. The details of our conversion are presented in Section 4, the instantiations
are discussed in Sections B.3, B.4 and B.5.

Security against Incomplete Queries. To remove the complete-queries constraint (constraint 4 in
Definition 4), previous works [29, 8] make use of a technique called all-or-nothing encapsulation
(AoNE). Roughly, AoNE allows all parties of a group to encapsulate individual messages, that can
all be extracted by everyone if and only if all parties of the group have sent their contribution.
Otherwise, no message is revealed. In the DDFE constructions of [29, 8], such an AoNE layer is
added on top of both ciphertexts and keys. Intuitively, this approach allows the following reasoning:
if an adversary makes encryption queries for all (honest) clients under some tag tag (i.e. the global
query is “complete”), then the AoNE scheme allows to obtain all ciphertexts, and we can rely on the

17

security of the DDFE scheme that is secure against complete challenges. On the other hand, if the
adversary queries only some but not all honest clients (i.e. the global query is “incomplete”), then
the security of the AoNE scheme guarantees that the adversary does not learn anything about the
encapsulated messages. While this construction is well known, previous DDFE constructions prove
only selective security, even if the employed AoNE scheme is adaptively secure. Therefore, we think
it is important to show that this AoNE layer indeed preserves adaptive security if the underlying
scheme, which is only secure against complete queries, has this property. To our knowledge, the
only known conversion that preserves adaptive security has been presented by Abdalla et al. [1].
The drawback of their construction is that global ciphertexts (i.e. one ciphertext for each client)
grow quadratically in the number of clients. So, in conclusion, we show that the AoNE technique of
[29] achieves the same security level as [1], while having global ciphertexts of only linear size if an
appropriate instantiation for the AoNE scheme is used.

We present our result in form of a generic conversion that turns any one-challenge DDFE scheme
secure against complete queries into one that is also secure against incomplete queries. The formal
description of the conversion is provided in Appendix B.2. Security is stated in Lemma 14. On an
intuitive level, our simulator initially guesses whether or not the encryption queries for the challenge
public input k∗pub (or m∗

pub) will be complete. If the guess was “complete” and this guess turns
out to be correct at the end of the game, then the simulator attacks the underlying DDFE scheme
that is assumed to be secure against complete queries. If the guess was “incomplete” and the guess
is correct, then the simulator attacks the security of the AoNE scheme. If the guess was incorrect
(which happens with probability 1/2), then the simulator aborts with a random bit. In this way, we
can upper bound the advantage of a distinguisher between two successive hybrids in terms of the
advantages that efficient adversaries can achieve against the underlying AoNE and DDFE schemes.
We point out that this argument crucially relies on the one-challenge setting. Due to the guess
on the (in)completeness of the query, we lose a factor 1/2 in the security proof. Thus, a hybrid
argument over a polynomial number of incomplete queries would incur an exponential security loss.
Therefore, it is important to add security against incomplete queries in the one-challenge model.
Afterwards, one can obtain security against multiple challenges by using the conversion described in
the next paragraph.

We mention that a concurrent work by Shi and Vanjani [57] presents a similar conversion in the
MCFE setting.

Security against Multiple Challenge Queries. It remains to discuss how a one-challenge DDFE scheme
can be made resistant against multiple challenge queries. Firstly, observe that the equivalence of
one-challenge and multi-challenge security in the standard setting (without function-hiding) is trivial.
Indeed, the proof can be done by a sequence of hybrids over the different public inputs queried to the
encryption oracle. This approach, however, does not directly generalize to the function-hiding setting.
The problem is that now both encryption and key-generation queries depend on the challenge bit
b ∈ {0, 1}. Since ciphertexts and keys can be arbitrarily combined in general, such a sequence of
hybrids leads to a situation where an adversary is able to mix ciphertexts that encrypt the left
message with keys generated for the right function or vice versa. However, the function-hiding
admissibility does not provide any security guarantees in the case of such a mixed decryption.
Therefore, we cannot change ciphertexts and keys one by one anymore. We solve this problem by
first proving security in the weakly function-hiding setting (see Lemma 5). This model provides us
exactly with the necessary guarantee for mixed decryptions, which allows a hybrid argument over
public inputs to subsequently swap keys and ciphertexts. Afterwards, we apply another standard
transformation that turns weakly function-hiding DDFE schemes for inner products into full-fledged

18

function-hiding DDFE (see Lemma 6). Previous works [47, 4] presented that transformation for
single-input and multi-input FE schemes.

3.1 Our Function-Hiding DMCFE for Inner Products

We give a simplified overview of our FH-DMCFE scheme in Section C.1 for the function class F ip
n

defined in Definition 8. Specifically, we show weakly function-hiding, one-challenge security against
complete queries under static corruption. As discussed earlier, the first three restrictions can be
removed by applying several generic conversions. In this way, we obtain a FH-DMCFE for inner
products whose only constraint on the security model is static corruption.

Construction. We work in the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) assuming SXDH.
Our construction relies on the notion of Dual Pairing Vector Spaces (DPVS). See Section 2.1 for basic
definitions and Appendix A.2 for further details. During the setup, we sample two random secret
sharings (s̃i)i∈[n], (t̃i)i∈[n] of 0 and an independent pair of dual bases (Bi = (bi,j)j ,B

∗
i = (b∗

i,j)j) for

each i ∈ [n]. Then we set ski = (s̃i,B
∗
i) and eki = (t̃i,Bi). Each sender can use their secret key ski

to independently generate a partial functional decryption key di for yi ∈ ZN
q , and each client can

use their encryption key eki to independently compute a ciphertext ci of their data xi ∈ ZN
q . We

use two full-domain hash functions H1 : Tag → G1 and H2 : Tag → G2 to process the encryption
and key-generation tags, where Tag denotes some set of tags. Given tag for encryption and tag-f
for key generation, we denote ω ∼ H1(tag) and µ ∼ H2(tag-f) to indicate that JωK1 = H1(tag) and
JµK2 = H(tag-f). Recall from paragraph Security against Repeated Key Queries that we encrypt and
generate keys for extended vectors of the form x̂i = (xi, ω, ti, · · ·) and ŷi = (yi, si, µ, · · ·) where
(si)i and (ti)i are two secret sharings of 0. To generate (si)i in a decentralized manner, we use
the secret sharing (s̃i)i fixed during the (interactive) setup procedure and randomize it by setting
(si)i := (µs̃i)i. Under the DDH assumption in G2, such a multiple of (s̃i)i cannot be distinguished
from an independently randomly chosen secret sharing of 0. The same technique is applied for the
decentralized generation of (ti)i, i.e. (ti)i := (µt̃i)i for the secret sharing (t̃i)i fixed during the setup.
More specifically, the ciphertexts ci and keys di in our FH-DMCFE have the following form:

ci = (xi ω ∼ H1(tag) ti = t̃iω 0 ρi · · ·)Bi

di = (yi si = s̃iµ µ ∼ H2(tag-f) πi 0 · · ·)B∗
i

where πi, ρi
$← Zq are random scalars, and the dots · · · represent additional coordinates that are

only used in the security proof and are 0 in the real scheme.7

Security. We recall that the one-challenge restriction (constraint 3 in Definition 21) allows only one
tag tag∗ to the encryption oracle OEnc(i, tag∗,x(0)

i ,x(1)

i) having x(0)

i ̸= x(1)

i . Other tags tagℓ ̸= tag∗

and their corresponding inputs (x(0)

ℓ,i ,x
(1)

ℓ,i) to OEnc are indexed by ℓ and it holds that x(0)

ℓ,i = x(1)

ℓ,i , so

we can omit the superscript in this case. In the formal proof of Theorem 32, we add indices j to
denote repeated queries to the same client-tag pair. That is, the j-th query to OEnc for client i and
tag tag∗ (respectively tagℓ) is denoted by (x(0,j)

i ,x(1,j)

i) (respectively x(j)

ℓ,i). In the same manner, there

exists only one tag-f∗ queried to the key-generation oracle ODKeyGen(i, tag-f∗,y(0),y(1)) having
y(0) ̸= y(1), while for other tag-fk ̸= tag-f∗ it holds that y(0) = y(1). We denote the j-th query to
ODKeyGen for client i and tag tag-f∗ (respectively tag-fk) by (y(0,j)

i ,y(1,j)

i) (respectively y(j)

k,i). In

this overview, for the ease of reading we omit the index j when we do not differentiate the way

7 Careful readers may have noticed that the encryption algorithm cannot compute ω ∈ Zq, but only H1(tag)→ JωK1 ∈
G1. Hence, to enable an efficient computation of ci, we actually include the scalar vectors Bi,N+1, Bi,N+2 ∈ ZN

q

into eki, as opposed to bi,N+1,bi,N+2 ∈ GN
1 . Similarly, to enable an efficient computation of di, we include

B∗i,N+1, B
∗
i,N+2 ∈ ZN

q instead of b∗i,N+1,b
∗
i,N+2 ∈ GN

2 into ski.

19

we handle repetitions for a specific i. To summarize, in the security game with the challenge bit
b $← {0, 1}, the adversary obtains the following ciphertexts and keys:

cℓ,i = (xℓ,i ωℓ ∼ H1(tagℓ) tℓ,i = t̃iωℓ 0 ρℓ,i · · ·)Bi

ci = (x(b)

i ω ∼ H1(tag
∗) ti = t̃iω 0 ρi · · ·)Bi

di = (y(b)

i si = s̃iµ µ ∼ H2(tag-f
∗) πi 0 · · ·)B∗

i

dk,i = (yk,i sk,i = s̃iµk µk ∼ H2(tag-fk) πk,i 0 · · ·)B∗
i

(1)

where πi, πk,i, ρi, ρℓ,i
$← Zq are random scalars. Our goal is to switch (x(b)

i ,y(b)

i)i in (ci,di)i to
(x(1)

i ,y(1)

i)i so that the game does not depend on b anymore, and the adversary’s advantage becomes
0. We recall that variables with letters c, d, x, y, π and ρ implicitly carry an additional index j for
repetitions. On the other hand, the secret sharings (si, ti, sk,i, tℓ,i)i,k,ℓ depend only on the tags and
a fixed secret sharing generated at setup time, hence they are the same across repetitions under the
same tag. We denote H = [n] \ C the set of honest clients. Note that the secret shares si, ti, sk,i, tℓ,i
itself are hidden to the adversary for i ∈ H. However, their sums

S :=
∑

i∈H si Sk :=
∑

i∈H sk,i T :=
∑

i∈H ti Tℓ :=
∑

i∈H tℓ,i (2)

can be computed (e.g. via S = −
∑

i∈[n]\H si).

Concrete Interpretation of the Admissibility. The general conditions for an adversary A to be
admissible (i.e. adm(A) = 1) are given in Definition 21. A step of vital importance in our proof is
an interpretation of the admissibility for the concrete case of F ip

n which gives us:

• Weakly Function-Hiding Security (Condition 2’ in Definition 21). In general, weakly function-
hiding security requires that for all functions (f (0), f (1)) and messages (x(0)

i , x(1)

i)i∈[n] queried to

OKeyGen and OEnc under the same tag, it holds that f (0)(x(0)

1 , . . . , x(0)
n) = f (1)(x(0)

1 , . . . , x(0)
n) =

f (1)(x(1)

1 , . . . , x(1)
n). Translating this equation into our setting with one-challenge security and

inner-product functionality, we obtain for all messages (x(0)

i ,x(1)

i)i∈[n] and function parameters

(y(0)

i ,y(1)

i)i∈[n] queried w.r.t the challenge tags tag∗ and tag-f∗ that∑
i∈[n]⟨x

(0)

i ,y(0)

i ⟩ =
∑

i∈[n]⟨x
(0)

i ,y(1)

i ⟩ =
∑

i∈[n]⟨x
(1)

i ,y(1)

i ⟩ . (3)

Note that for non-challenge tags, this equation holds trivially since left and right messages and
function parameters must be the same.

• Restricted Queries for Corrupted Clients (Condition 1 in Definition 21). If a client i ∈ [n] is
corrupted by the adversary, then the challenge queries at i must be on equal messages x(0)

i = x(1)

i

and function parameters y(0)

i = y(1)

i .

Thus, the honest clients H ⊆ [n] satisfy

∑
i∈H⟨x

(0)

i ,y(0)

i ⟩
(⋆)
=
∑

i∈H⟨x
(0)

i ,y(1)

i ⟩
(▲)
=
∑

i∈H⟨x
(1)

i ,y(1)

i ⟩ . (4)

The Swapping Lemma. The swapping lemma will be the centerpiece of our security proof. It features
a number of interesting properties, which we believe make it of independent interest. Due to space
limitations, we provide a separate overview of this lemma in Appendix C.4. The formal statement is
presented in Lemma 34 and proven in Appendices C.5 and C.6. Here, we only state a simplified
version.

20

Lemma 9 (Swapping – Informal). Let H,K,L,N,R,R1, . . . , RK be public scalars and (Bi,B
∗
i)i∈[H]

be pairs of random dual bases that are kept secret. For each i ∈ [H], consider public vectors

(ui,uℓ,i,u
′
ℓ,i,v

(0)

i ,v(1)

i ,vk,i)k∈[K],ℓ∈[L] ∈ ZN
p so that

∑H
i=1⟨ui,v

(0)

i ⟩ =
∑H

i=1⟨ui,v
(1)

i ⟩.
For secret r, rℓ, ρi, ρℓ,i, πi, πk,i, σi, σk,i

$← Zq such that
∑H

i=1 σi = R and
∑H

i=1 σk,i = Rk, for all
k ∈ [K], the following distributions are computationally indistinguishable under the SXDH assump-
tion:

(
(uℓ,i,u

′
ℓ,i, rℓ, 0, ρℓ,i, · · ·)Bi

)ℓ∈[L]

i∈[H](
(ui , 0 , r, 0, ρi, · · ·)Bi

)
i∈[H](

(v(0)

i ,v(1)

i , σi, πi, 0, · · ·)B∗
i

)
i∈[H](

(vk,i,vk,i, σk,i, πk,i, 0, · · ·)B∗
i

)k∈[K]

i∈[H]

≈

(
(uℓ,i,u

′
ℓ,i, rℓ, 0, ρℓ,i, · · ·)Bi

)ℓ∈[L]

i∈[H](
(0 , ui , r, 0, ρi, · · ·)Bi

)
i∈[H](

(v(0)

i ,v(1)

i , σi, π
(j)

i , 0, · · ·)B∗
i

)
i∈[H](

(vk,i,vk,i, σk,i, πk,i, 0, · · ·)B∗
i

)k∈[K]

i∈[H]

Similar to above, all variables with letters u, v, π and ρ implicitly carry an additional index j
representing repetitions (e.g. we can have multiple u,u′ for a fixed (ℓ, i)), but we omit it in this
general overview for the sake of simplicity. We further note that this informal statement only reflects
a “selective” variant of the real lemma. To prove adaptive security for the DMCFE scheme, we will
use a stronger version, where all vectors with letters u and v can be chosen one by one.

We stress that this lemma is strictly more powerful than what can be done with black-box (single-
input) FH-IPFE. If one replaces each pair (Bi,B

∗
i) with an independent FH-IPFE instance and

encodes all vectors in Bi (resp. B
∗
i) in ciphertexts (resp. secret keys) of the i-th FH-IPFE instance,

then one cannot conclude the above indistinguishability since the local inner products (at a single
FH-IPFE instance) may be different. Indeed, the lemma does not require that ⟨ui,v

(0)

i ⟩ = ⟨ui,v
(1)

i ⟩,
so the admissibility is not satisfied and the FH-IPFE does not provide any security guarantees for
this case.

Finishing the Proof. Being armed with Lemma 9, we are ready to tackle the security proof of our
FH-DMCFE from Section C.1. First of all, since we consider only static corruptions, the simulator
knows the corrupted clients from the very beginning and performs all changes only for honest i ∈ H
whose ski = (s̃i,B

∗
i) and eki = (t̃i,Bi) are never revealed to the adversary. We start by modifying

the vectors as shown below (for details, see paragraph Computational Basis Change of Section A.2).
Note that we use some of the auxiliary 0-coordinates represented by · · · in (1). For clarity, the
changes are highlighted with boxes.

cℓ,i = (xℓ,i ωℓ tℓ,i 0 ρℓ,i 0 · · ·)Bi

ci = (x(b)

i ω ti 0 ρi 0 · · ·)Bi

di = (y(b)

i si µ πi 0 y(1)

i · · ·)B∗
i

dk,i = (yk,i sk,i µk πk,i 0 yk,i · · ·)B∗
i

(5)

As a sanity check, observe that all vectors in Bi have only zeros in the coordinates corresponding to

the newly introduced y(1)

i and yk,i in B∗
i , so the inner products of vectors in Bi and B∗

i do not

change. Now we are ready to use Lemma 9. We start with the challenge ciphertext ci. Our goal is

to move the vector x(b)

i , which currently faces y(b)

i in di, to the position that faces y(1)

i for all i ∈ H.
To this aim, we apply the swapping lemma by setting ui := x(b)

i , uℓ, i := xℓ, i, u
′
ℓ,i := 0, v(0)

i := y(b)

i ,

v(1)

i := y(1)

i , vk,i := yk,i, r := ω, rℓ := ωℓ, σi := si, and σk,i := sk,i. The constraints on (ui,v
(b)

i)i and
R,Rk are verified by equality (⋆) in (4) and by (2), respectively. Similarly, we perform a sequence

21

of hybrids over distinct tags tagℓ and apply the lemma to each xℓ,i , to finally arrive at:

cℓ,i = (0 ωℓ tℓ,i 0 ρℓ,i xℓ,i · · ·)Bi

ci = (0 ω ti 0 ρi x(b)

i · · ·)Bi

di = (y(b)

i si µ πi 0 y(1)

i · · ·)B∗
i

dk,i = (yk,i sk,i µk πk,i 0 yk,i · · ·)B∗
i

(6)

Since the first N coordinates of all vectors in Bi are equal to 0 now, we can also replace the
corresponding positions in di and dk,i with 0, relying again on computational basis changes:

di = (0 si µ πi 0 y(1)

i · · ·)B∗
i

dk,i = (0 sk,i µk πk,i 0 yk,i · · ·)B∗
i

(7)

Note that at this point all keys di and dk,i are independent of the challenge bit b. Next we apply a
sequence of basis changes symmetric to (5), (6) and (7), to achieve the same for the ciphertexts. We

first use computational basis changes to introduce x(1)

i and xℓ,i in ci and cℓ,i, using the fact that

the first N coordinates of all d-vectors are 0. Then we apply Lemma 9 to swap y(1)

i in the challenge
key relying on the equalities (2) and (▲) in (4). In the same vein, we go over all tag-fk to swap all

yk,i . Eventually, we clean xℓ,i and x(b)

i . At this point the game is independent of the challenge bit

b, so the adversary’s advantage is 0.

cℓ,i = (xℓ,i ωℓ tℓ,i 0 ρℓ,i 0 · · ·)Bi

ci = (x(1)

i ω ti 0 ρi 0 · · ·)Bi

di = (y(1)

i si µ πi 0 0 · · ·)B∗
i

dk,i = (yk,i sk,i µk πk,i 0 0 · · ·)B∗
i

Remark 10. (Usage of the ROM in FH-DMCFE/FH-DDFE) In a concurrent work, Shi and
Vanjani [57] propose the first FH-MCFE for inner products using pairings that is provably secure in
the standard model. An important building-block in their FH-MCFE is the primitive of correlated
pseudorandom functions (Cor-PRFs) from [20, 1, 58]. Using such a Cor-PRF, it is possible to generate
a secret sharing of 0 in a decentralized way without interaction. In their scheme, each client embeds
one share of such a secret sharing in their ciphertexts, similarly to our (ti)i. To tie the ciphertexts
of the different clients together, their key components use common randomness in the coordinates
facing (ti)i, similarly to our µ. In this way, the ti’s cancel out during decryption so as to enable
correct decryption. In MCFE, the use of such common randomness in the keys does not pose a
problem, as the functional key generation is centralized. Moving to the decentralized key generation
of DMCFE, however, we do not know how to make key components agree on such a randomness
without relying on ROs.

4 From DMCFE to DDFE

In this section, we generically build DDFE schemes from DMCFE, PRF and NIKE schemes. If
the underlying DMCFE scheme satisfies the strong function-hiding security, so does the obtained
DDFE. Furthermore, we present a black-box conversion that allows us to remove the incomplete-
queries constraint in certain cases. The underlying DMCFE schemes are required to satisfy simple
structural properties that are satisfied by our function-hiding IP-DMCFE in Section C.1 and various
constructions in the literature [27, 45]. Even though all our instantiations are DMCFE schemes
for the inner-product functionality, we believe it is interesting to note that our conversion does

22

not require this. For instance, some works in the literature [5, 49] build functional encryption
schemes for the inner-product functionality combined with fine-grained access control. Thanks to its
general description, our conversion could also be applied to DMCFE schemes for this more complex
functionality.

We start by formally defining the structural properties that a DMCFE scheme must meet to be
compatible with our conversion to DDFE. For a positive integer n and a finite Abelian group A, we
define the set of sharings of 0A as S(n,A) = {(Si)i∈[n] ∈ An :

∑n
i=1 Si = 0A}. Overloading notation,

we also denote by S(n,A; r) a ppt algorithm that outputs a uniformly random element of S(n,A)
using random coins r.

Definition 11 (Dynamizability). Let A be a finite Abelian group. A DMCFE scheme E =
(Setup,DKeyGen,Enc,Dec) is called A-dynamizable if there exist ppt algorithms SetupPP, SetupUser
and functions Psk, Pek : {0, 1}log |A| → {0, 1}≤log |A| so that for (pp, (ski, eki)i∈[n])← Setup(1λ, 1n; r),

(si)i∈[n] ← S(n,A; rS), p̂p← SetupPP(1λ; r0) and {(êki, ŝki)← SetupUser(p̂p; ri)}i∈[n], the following
distributions are equal:{

pp, (ski, eki)i∈[n]
}
=
{
p̂p,
(
Psk(si, ŝki), Pek(si, êki)

)
i∈[n]

}
,

where the probability is taken over the random coins r $← {0, 1}poly(λ) and rS , r0, . . . , rn
$← {0, 1}poly(λ)

Next, we define the DDFE functionality fdyn that we will obtain when plugging a DMCFE scheme
for a function class F into our conversion.

Definition 12 (Corresponding DDFE Functionality). Let {Dλ}λ, {Rλ}λ, {Paramλ}λ be
families of domain, output range and parameter spaces, respectively. Consider a DMCFE function
classe F = {Fn,λ}n,λ∈N, where each Fn,λ = {fn,λ,(y1,...,yn)}(y1,...,yn) contains functions of the form
fn,λ,(y1,...,yn) : Dn

λ → Rλ. Furthermore, let {Tagλ}λ∈N, {IDλ}λ∈N, {Kλ}λ∈N and {Mλ}λ∈N be families
of tag, identity, key and message spaces, respectively, where Tagλ = IDλ = {0, 1}∗, Kλ = Kλ,pri ×
Kλ,pub,Mλ =Mλ,pri×Mλ,pub, Kλ,pri = Paramλ,Mλ,pri = Dλ and Kλ,pub =Mλ,pub = 2IDλ×Tagλ.

The DDFE functionality fdyn = {fdyn
λ :

⋃
n∈N(IDλ × Kλ)

n ×
⋃

n∈N(IDλ ×Mλ)
n → Rλ}λ∈N corre-

sponding to F is defined via

fdyn
λ ((i, ki)i∈UK

, (i,mi)i∈UM
) =

{
f|Uk|,λ,(yi)i∈UK

((xi)i∈UM
) if (∗) holds

⊥ otherwise

for every λ ∈ N, where condition (∗) holds if UK = UM (in which case we define U := UK) and there
exist tag, tag-f ∈ Tagλ such that for each i ∈ U , ki is of the form (ki,pri := yi, ki,pub := (U , tag-f)),
and mi is of the form (mi,pri := xi,mi,pub := (U , tag)).

As an example, we observe that the DDFE inner-product functionality fdyn-ip (Definition 2) corre-
sponds to the DMCFE inner-product function class F ip (Definition 8). Our conversion employs an
A-dynamizable DMCFE scheme E ′ = (E ′.Setup, E ′.DKeyGen, E ′.Enc, E ′.Dec), a NIKE N = (N .Setup,
N .SharedKey) and two families of pseudorandom functions {FK}K∈K and {F ′

K}K∈K′ , where the
range of {F ′

K}K∈K′ is a subset of A. The details of our DDFE scheme E = (GSetup, LSetup,
KeyGen,Enc,Dec) are given in Fig. 2. Decryption correctness is verified in Appendix B.1. Security
is stated in the following theorem and also proven in Appendix B.1.

Theorem 13. If N is an IND-secure NIKE scheme, {FK}K∈K and {F ′
K′}K′∈K′ are families of

pseudorandom functions and E ′ is a dynamizable (function-hiding) DMCFE scheme for a function

23

GSetup(1λ): On input the security parameter 1λ, run E′.p̂p← E′.SetupPP(1λ) and N .pp← N .Setup(1λ) and return pp := (E′.p̂p,N .pp)
LSetup(pp, i): On input the public parameters pp and a user i ∈ ID, sample Ki

$← K, generate (N .ski,N .pki)← N .KeyGen(N .pp) and return
the key pair (ski := (N .ski, Ki), pki := N .pki).

KeyGen(ski, k): On input a secret key ski = (N .ski, Ki) and k = (yi, (UK , tag-f)) such that i ∈ UK , compute and return dki as follows:

∀j ∈ UK \ {i} : K
′
i,j ← N .SharedKey(N .ski,N .pkj)

si =
∑

j∈UK\{i}
(−1)

j<i
F

′
K′

i,j
(UK)

(êki, ŝki)← E
′
.SetupUser(E′.p̂p;FKi

(UK))

dki ← E
′
.DKeyGen(Psk(si, ŝki), tag-f,yi)

Enc(ski,m): On input a secret key ski and m = (xi, (UM , tag)) such that i ∈ UM , compute and return cti as follows:

∀j ∈ UM \ {i} : K
′
i,j ← N .SharedKey(N .ski,N .pkj)

si =
∑

j∈UM\{i}
(−1)

j<i
F

′
K′

i,j
(UM)

(êki, ŝki)← E
′
.SetupUser(E′.p̂p;FKi

(UM))

cti ← E
′
.Enc(Pek(si, êki), tag,xi)

Dec((ski)i∈UK
, (cti)i∈UM

): On input a list of decryption keys (dki)i∈UK
and a list of ciphertexts (cti)i∈UM

, if UK ̸= UM abort with failure,

otherwise compute and return out← E′.Dec((dki)i∈UK
, (cti)i∈UM

).

Fig. 2: DDFE scheme E = (GSetup, LSetup,KeyGen,Enc,Dec) built from an A-dynamizable DMCFE
scheme E ′ = (E ′.Setup, E ′.DKeyGen, E ′.Enc, E ′.Dec), a NIKE scheme N = (N .Setup,N .SharedKey)
and two PRFs {FK}K∈K and {F ′

K}K∈K′

class F , then the DDFE scheme E in Fig. 2 for the functionality fdyn corresponding to F is also
(function-hiding) secure. More precisely, let qh be the maximum number of queries to the oracle
OHonestGen and let qu be an upper bound on the number of distinct sets U ⊆ ID that occur in
an encryption or key-generation query. Then, for any ppt adversary A, there exist ppt algorithms
B1, . . . ,B4 such that

Advstat-xxx-cpa
E,fdyn,A (1λ) ≤ qh ·Advprf

{FK},B1
(1λ) + q2h ·Advnike

N ,B2
(1λ)

+ q2h ·Advprf
{F ′

K′},B3
(1λ) + qu ·Advstat-xxx-cpa

E ′,F ,B4
(1λ) ,

where xxx ⊆ {1chal, pos, sel,wfh, fh}.

Upgrading the Security Model. By adding a layer of AoNE encryption on top of both ciphertexts
and keys, we can make a DDFE scheme E secure against incomplete queries. While this technique is
well known from [29, 8], we provide a new proof showing that the conversion preserves adaptive
security if both E and the AoNE scheme are adaptively secure.

Lemma 14. Assume there exist (1) a one-challenge (weakly function-hiding) DDFE scheme Epos
for a functionality fdyn that is secure against complete queries, and (2) an AoNE scheme Eaone
whose message space contains the ciphertext space of Epos. Then there exists a one-challenge (weakly
function-hiding) DDFE scheme E for fdyn that is even secure against incomplete queries. More
precisely, for any ppt adversary A, there exist ppt algorithms B1 and B2 such that

Adv1chal-xxx-yyy-cpa
E,fdyn,A (1λ) ≤ 6 ·Adv1chal-pos-xxx-yyy-cpa

Epos,fdyn,B1
(1λ) + 6 ·Adv1chal-xxx-cpa

Eaone,faone,B2
(1λ) ,

where xxx ⊆ {stat, sel} and yyy ⊆ {wfh}.

Details are given in Appendix B.2. Subsequent to the conversion in Lemma 14, an application of
Lemma 5 shows that the obtained construction is also secure against multiple challenges. However,

24

we stress that the security proof of Lemma 14 crucially relies on the one-challenge setting. For
instance, if Epos is {pos, fh}-secure, then our proof technique does not allow to remove the pos
restriction directly. Instead, we first observe that {pos, fh}-security implies {1chal, pos,wfh}-security.
Then we can apply Lemma 14 to obtain {1chal,wfh}-security (which requires the 1chal restriction),
followed by an application of Lemma 5 to obtain {wfh}-security (which requires the wfh restriction).
Finally, if Epos is a DDFE scheme for the inner-product functionality fdyn-ip, then we can even
upgrade wfh back to fh by using Lemma 6. We summarize our results in the following corollary.

Corollary 15. Let ε denote the empty string. Assume there exist (1) a dynamizable xxx-yyy DMCFE
scheme E ′ for a function f , where xxx ⊆ {1chal, pos, stat, sel} and yyy ∈ {ε,wfh, fh}, and (2) an
AoNE scheme Eaone whose message space contains the ciphertext space of E ′. Then there exists
an xxx-yyy DDFE scheme E for the same functionality f , where xxx = (xxx ∩ {sel}) ∪ {stat}, and
yyy = ε if yyy = ε, yyy = wfh if yyy ∈ {wfh, fh} and f ̸= fdyn-ip, and yyy = fh if yyy ∈ {wfh, fh} and
f = fdyn-ip,

Concrete Instantiations. We can apply Corollary 15 to our FH-DMCFE presented below in
Section C.1 as well as existing schemes in the literature [27, 45]. In this way, we obtain several
IP-DDFE schemes for the functionality fdyn-ip with previously unattained properties, which we
highlight by a frame .

Corollary 16. • Conversion of the FH-DMCFE of this work (Fig. 7). There exists an FH-IP-DDFE

scheme that is adaptively secure while allowing repetitions for key-generation queries , against
static corruption, under the SXDH assumption in the ROM. For details, see Section B.3.

• Conversion of the DMCFE of [27]. There exists a IP-DDFE scheme that is adaptively secure
against static corruption under the SXDH assumption in the ROM. For details, see Section B.4.

• Conversion of the DMCFE of [45]. There exists a IP-DDFE scheme that is adaptively secure

against static corruption under the LWE assumption in the standard model . For details, see
Section B.5.

Acknowledgments

This work was supported in part by the French ANR Project ANR-19-CE39-0011 PRESTO and the
France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer,
Heidelberg (Dec 2019)

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption.
In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 128–157. Springer, Heidelberg (Apr 2019)

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (Mar / Apr 2015)

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner prod-
ucts: Function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 597–627. Springer, Heidelberg (Aug 2018)

5. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 467–497. Springer, Heidelberg
(Dec 2020)

6. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-input functional encryption. In:
Vidick, T. (ed.) ITCS 2020. vol. 151, pp. 40:1–40:41. LIPIcs (Jan 2020)

25

7. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption from pairings. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 208–238. Springer, Heidelberg, Virtual Event
(Aug 2021)

8. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim, K., Waters, B. (eds.) TCC 2021,
Part II. LNCS, vol. 13043, pp. 224–255. Springer, Heidelberg (Nov 2021)

9. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption: Stronger security, broader
functionality. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 711–740. Springer,
Heidelberg (Nov 2022)

10. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg
(Aug 2016)

11. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and
applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer,
Heidelberg (Aug 2013)

12. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (Aug 2015)

13. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from
degree-5 multilinear maps. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
152–181. Springer, Heidelberg (Apr / May 2017)

14. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size
ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108.
Springer, Heidelberg (Mar 2011)

15. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with
applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 67–98. Springer, Heidelberg (Aug 2017)

16. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (Apr 2012)

17. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional encryption from projective hash
functions. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 36–66. Springer, Heidelberg (Mar 2017)

18. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (Nov / Dec 2015)

19. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V.
(ed.) 56th FOCS. pp. 171–190. IEEE Computer Society Press (Oct 2015)

20. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth,
K.: Practical secure aggregation for privacy-preserving machine learning. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1175–1191. ACM Press (Oct / Nov 2017)

21. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (Aug 2001)

22. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (Mar 2011)

23. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: Unbounded attributes and semi-adaptive security. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (Aug
2016)

24. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption
modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–764. Springer,
Heidelberg (Dec 2018)

25. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
515–534. Springer, Heidelberg (Feb 2007)

26. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In:
Abdalla, M., Lange, T. (eds.) PAIRING 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (May 2013)

27. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption
for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732.
Springer, Heidelberg (Dec 2018)

28. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with
repetition for inner product. Cryptology ePrint Archive, Report 2018/1021 (2018), https://eprint.iacr.org/
2018/1021

29. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic decentralized functional encryption.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 747–775. Springer,
Heidelberg (Aug 2020)

https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2018/1021

26

30. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) 8th IMA
International Conference on Cryptography and Coding. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (Dec
2001)

31. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In:
Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195.
Springer, Heidelberg (Mar 2016)

32. Datta, P., Dutta, R., Mukhopadhyay, S.: Strongly full-hiding inner product encryption. Theoretical Com-
puter Science (2017). https://doi.org/https://doi.org/10.1016/j.tcs.2016.12.024, https://www.sciencedirect.
com/science/article/pii/S0304397516307526

33. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption
from the k-Linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp.
245–277. Springer, Heidelberg (Mar 2018)

34. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug
2013)

35. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (Feb / Mar 2013)

36. Gay, R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 95–120. Springer, Heidelberg (May
2020)

37. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A., Shi, E., Zhou, H.S.: Multi-input
functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602.
Springer, Heidelberg (May 2014)

38. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (Aug 2015)

39. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint
Archive, Report 2013/774 (2013), https://eprint.iacr.org/2013/774

40. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of
encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp. 89–98. ACM
Press (Oct / Nov 2006), available as Cryptology ePrint Archive Report 2006/309

41. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is
practical. In: Catalano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 544–562. Springer, Heidelberg
(Sep 2018)

42. Kim, S., Kim, J., Seo, J.H.: A new approach for practical function-private inner product encryption. Cryptology
ePrint Archive, Report 2017/004 (2017), https://eprint.iacr.org/2017/004

43. Langrehr, R.: On the multi-user security of lwe-based nike (2023), https://eprint.iacr.org/2023/1401
44. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts.

In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (Feb 2010)
45. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE.

In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 520–551. Springer,
Heidelberg (Dec 2019)

46. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Heidelberg (Aug 2017)

47. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree
graded encodings. In: Dinur, I. (ed.) 57th FOCS. pp. 11–20. IEEE Computer Society Press (Oct 2016)

48. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS. pp.
458–467. IEEE Computer Society Press (Oct 1997)

49. Nguyen, K., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with fine-grained access-control. In:
Asiacrypt ’22. Springer-Verlag (2022), https://ia.cr/2022/215

50. Nguyen, K., Phan, D.H., Pointcheval, D.: Optimal security notion for decentralized multi-client functional
encryption. In: 21st International Conference on Applied Cryptography and Network Security. Springer-Verlag
(2023), https://ia.cr/2023/435

51. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear
assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (Aug 2010)

52. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (Apr 2012)

53. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (Dec 2012)

54. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning,
P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007. pp. 195–203. ACM Press (Oct 2007)

https://doi.org/https://doi.org/10.1016/j.tcs.2016.12.024
https://www.sciencedirect.com/science/article/pii/S0304397516307526
https://www.sciencedirect.com/science/article/pii/S0304397516307526
https://eprint.iacr.org/2013/774
https://eprint.iacr.org/2017/004
https://eprint.iacr.org/2023/1401
https://ia.cr/2022/215
https://ia.cr/2023/435

27

55. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 457–473. Springer, Heidelberg (May 2005)

56. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84.
LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (Aug 1984)

57. Shi, E., Vanjani, N.: Multi-Client Inner Product Encryption: Function-Hiding Instantiations Without Random
Oracles. In: International Conference on Practice and Theory of Public-Key Cryptography (PKC) (2023),
https://eprint.iacr.org/2023/615

58. Shi, E., Wu, K.: Non-interactive anonymous router. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part III. LNCS, vol. 12698, pp. 489–520. Springer, Heidelberg (Oct 2021)

59. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security.
In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Heidelberg (Sep
2016)

60. Ünal, A.: Impossibility results for lattice-based functional encryption schemes. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 169–199. Springer, Heidelberg (May 2020)

61. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (Aug 2009)

https://eprint.iacr.org/2023/615

28

A Supporting Materials – Section 2

A.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 17 (Decisional Diffie-Hellman). In a cyclic group G of prime order q, the Decisional
Diffie-Hellman (DDH) problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c $← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH
problem with non-negligible probability.

Definition 18 (Decisional Separation Diffie-Hellman). In a cyclic group G of prime order q,
the Decisional Separation Diffie-Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {(x, y, J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b $← Zq. The DSDH assumption in G assumes that no ppt adversary can
solve the DSDH problem with non-negligible probability.

It can be shown straightforwardly that given a cyclic group G and q, we have AdvDSDH
G (1λ) ≤

2 ·AdvDDH
G (1λ).

Definition 19 (Symmetric External Diffie-Hellman). In the bilinear setting G = (G1,G2,Gt, g1, g2, gt, e, q),
the Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in both G1

and G2.

We denote by GGen(1λ) the algorithm that on input the security parameter outputs a description of
a bilinear group G = (G1,G2,Gt, g1, g2, gt, e, q) that satisfies the SXDH assumption.

Definition 20 (Learning with Errors). Let α : N→ (0, 1) and m ≥ n ≥ 1, q ≥ 2 be functions of
a security parameter λ ∈ N. We write vectors as column vectors. The Learning with Errors (LWE)
problem consists in distinguishing between the distributions (A, s⊤A + e⊤) and U(Zn×m

q × Zm
q),

where A ∼ U(Zn×m
q), s ∼ U(Zn

q) and e ∼ DZm,αq. For a ppt algorithm A : Zn×m
q ×Zm

q → {0, 1}, we
define

AdvLWE
q,m,n,α(A) =

∣∣∣Pr[A(A, s⊤A+ e⊤
)
= 1]− Pr[A (A,u) = 1

∣∣∣ ,
where the probabilities are over A ∼ U(Zn×m

q), s ∼ U(Zn
q), u ∼ U(Zm

q), e ∼ DZm,αq and the
internal randomness of A. We say that LWEq,m,n,α is hard if for all ppt algorithm A, the advantage
AdvLWE

q,m,n,α(A) is negligible in λ.

We require that α ≥ 2
√
n/q for the reduction from worst-case lattice problems and refer the readers

to, e.g., [23] for more details.

A.2 Dual Pairing Vector Spaces

Basis Changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2). Let (U = (ui)i,U

∗ = (u∗
i)i) be a pair of dual bases of (GN

1 ,GN
2), corresponding to an

29

invertible matrix U ∈ ZN×N
q . Given an invertible matrix B ∈ ZN×N

q , the basis change from U w.r.t
B is defined to be B := B ·U, which means:

(x1, . . . , xN)B =

N∑
i=1

xibi = (x1, . . . , xN) ·B = (x1, . . . , xN) ·B ·U

= (y1, . . . , yN)U where (y1, . . . , yN) := (x1, . . . , xN) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN)B = ((x1, . . . , xN) ·B)U ; (y1, . . . , yN)U =
(
(y1, . . . , yN) ·B-1

)
B

. (8)

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1
)⊤

:

(x1, . . . , xN)B∗ =
(
(x1, . . . , xN) ·B′)

U∗
; (y1, . . . , yN)U∗ =

(
(y1, . . . , yN) ·B⊤

)
B∗

. (9)

It can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N] of indices in the representation w.r.t
basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly the entries
of B outside this block are taken from the identity matrix IN .
The basis changes are particularly useful in our security proofs. Intuitively these changes constitute
a transition from a hybrid G having vectors expressed in (U,U∗) to the next hybrid Gnext having
vectors expressed in (B,B∗). We focus on two types of basis changes, which are elaborated below.
For simplicity, we consider dimension N = 2:

Formal Basis Change: We change (U,U∗) into (B,B∗) using

B :=

1 0

1 1

1,2

B′ :=
(
B−1

)⊤
=

1 −1
0 1

1,2

B = B ·U B∗ = B′ ·U∗ .

We use this type in situations such as: in G we have vectors all of the form (x1, 0)U, (y1, 0)U∗

and we want to go to Gnext having all of the form (x1, 0)B, (y1, y1)B∗ . The simulator writes all
vectors (x1, 0)U, (y1, 0)U∗ in (U,U∗) and under this basis change they are written into

(x1, 0)U = (x1 − 0, 0)B = (x1, 0)B; (y1, 0)U∗ = (y1, 0 + y1)B∗ = (y1, y1)B∗

following the calculations in (8) and (9). The products between two dual vectors are invariant,
all vectors are formally written from (U,U∗) (corresponding to G) to (B,B∗) (corresponding to
Gnext), the adversary’s view over the vectors is thus identical from G to Gnext. In particular, this
is a kind of information-theoretic property of DPVS by basis changing that we exploit to have
identical hybrids’ hop in the security proof.

Computational Basis Change: Given an instance of a computational problem, e.g. J(a, b, c)K1 of
DDH in G1 where c− ab = 0 or δ $← Zq, we change (U,U∗) into (B,B∗) using

B :=

1 0

a 1

1,2

B′ :=
(
B−1

)⊤
=

1 −a
0 1

1,2

B = B ·U B∗ = B′ ·U∗ .

30

One situation where this type of basis change can be useful is: in G we have some target vectors
of the form (0, rnd)U, where rnd $← Zq is a random scalar, together with other (z1, z2)U, and

all the dual is of the form (0, y2)U∗ . We want to go to Gnext having (r̃nd, rnd)B masked by

some randomness r̃nd $← Zq, while keeping (0, y2)B∗ . Because JaK1 is given, the simulator can
simulate vectors (z1, z2)U directly in B using JaK1 as well as the known coordinates z1, z2. The
basis change will be employed for the simulation of target vectors:

(c, b)U + (0, rnd)B = (c− a · b, rnd+ b)B;

(0, y2)U∗ = (0, y2 + a · 0)B∗ = (0, y2)B∗

where all vectors in B∗ must be written first in U∗, since we do not have JaK2, to see how
the basis change affects them. Using the basis change we simulate those target vectors by
(c− a · b, rnd+ b)B with rnd implicitly being updated to rnd+ b, the uninterested (z1, z2)B are
simulated correctly in B, meanwhile the dual vectors (0, y2)B∗ stays the same. Depending on
the DDH instance, if c− ab = 0 the target vectors are in fact (0, rnd)B and we are simulating G,

else c− ab = δ $← Zq the target vectors are simulated for Gnext and r̃nd := δ. Hence, under the
hardness of DDH in G1, a computationally bounded adversary cannot distinguish its views in
the hybrids’ hop from G to Gnext.

We remark that the basis changes will modify basis vectors and for the indistinguishability to hold,
perfectly in formal change and computationally in computational changes, all impacted basis vectors
must not be revealed to the adversary.

Additional Notations. Any x = J(m1, . . . ,mN)K1 ∈ GN
1 is identified as the vector (m1, . . . ,mN) ∈

ZN
q . There is no ambiguity because G1 is a cyclic group of order q prime. The 0-vector is

0 = J(0, . . . , 0)K1. The addition of two vectors in GN
1 is defined by coordinate-wise addition.

The scalar multiplication of a vector is defined by t · x := Jt · (m1, . . . ,mN)K1, where t ∈ Zq and
x = J(m1, . . . ,mN)K1. The additive inverse of x ∈ GN

1 is defined to be −x := J(−m1, . . . ,−mN)K1.
The canonical basis A of GN

1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN :=
J(0, . . . , 0, 1)K1. By convention the writing x = (m1, . . . ,mN) concerns the canonical basis A.

A.3 Function-Hiding Decentralized Multi-Client FE

This section complements Section 2.3 with additional definitions.

Correctness. E is correct if for all λ, n ∈ N, (x1, . . . , xn) ∈ Dn
λ , fn,λ,(y1,...,yn) ∈ Fn,λ having

parameters (y1, . . . , yn) ∈ Paramn
λ, and for any tag, tag-f ∈ Tagλ, we have

Pr

d = fn,λ,(y1,...,yn)(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)

∀i ∈ [n] : dktag-f,i←DKeyGen(ski, tag-f, yi)

∀i ∈ [n] : cttag,i←Enc(eki, tag, xi)

d := Dec((dktag-f,i)i∈[n], (cttag,i)i∈[n])

 = 1

where the probability is taken over the random coins of the algorithms.

Security. We define function-hiding and standard security for DMCFE. In the seminal work by
Chotard et al. [27] and its follow-up study [29], the security notion does not cover the function-hiding
requirement for DMCFE or its more general sibling DDFE. Until recently, the work by Agrawal et
al. [8] abstracted out DMCFE into the notion of Multi-Party Functional Encryption (MPFE). The
authors of [8] also used MPFE to spell out the function-hiding security for MCFE as well as for DDFE.
The latter does capture DMCFE as a particular case but for convenience of the reader, we introduce

31

the detailed function-hiding security for DMCFE, without going through all the abstraction of MPFE
nor of DDFE.

Definition 21 (Function-Hiding and Standard Security). For a DMCFE scheme E, a

function class F = {Fn,λ}n,λ and a ppt adversary A we define the experiments Expfh
E,F ,A(1

λ)

Expcpa
E,F ,A(1

λ) as shown in Figure 3 and set H := [n] \ C. The oracles OEnc, ODKeyGen and

OCorrupt can be called in any order and any number of times. The adversary A is NOT admissible
with respect to C,QEnc,QKGen, denoted by adm(A) = 0, if either one of the following holds:

1. There exists a tuple (i, tag, x(0)

i , x(1)

i) ∈ QEnc or (i, tag-f, y(0)

i , y(1)

i) ∈ QKGen such that i ∈ C and

x(0)

i ̸= x(1)

i
8, or y(0)

i ̸= y(1)

i .

2. There exist tag, tag-f ∈ Tag, two vectors (x(0)

i)i∈[n], (x
(1)

i)i∈[n] ∈ D1 × · · · × Dn and func-

tions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n)

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n)
∈ F fn,λ,y1,...,yn ∈ F having parameters (y(0)

i , y(1)

i)i∈[n]

(yi)i∈[n] such that

• (i, tag, x(0)

i , x(1)

i) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i yi) ∈ QKGen for all i ∈ H,

• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and

• f
(0)

n,λ,y
(0)
1 ,...,y

(0)
n

(x(0)

1 , . . . , x(0)
n) ̸= f

(1)

n,λ,y
(1)
1 ,...,y

(1)
n

(x(1)

1 , . . . , x(1)
n).

Otherwise, we say that A is admissible w.r.t C, QEnc and QKGen and write adm(A) = 1. We call E
function-hiding IND-secure if for all ppt adversaries A,

Advfh
E,F ,A(1

λ) :=
∣∣Pr [Expfh

E,F ,A(1
λ) = 1

]
− 1

2

∣∣
Advcpa

E,F ,A(1
λ) :=

∣∣∣Pr [Expcpa
E,F ,A(1

λ) = 1
]
− 1

2

∣∣∣
is negligible in λ.

Weaker Notions. One may define weaker variants of indistinguishability by restricting the access
to the oracles and imposing stronger admissibility conditions.

1. Security against Static Corruption: The experiment Expstat-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries to the oracle OCorrupt must be submitted before Initialize is called. In
the same vein, we can define experiment Expstat-cpa

E,F ,A (1λ).

2. Security against Selective Challenges: The experiment Expsel-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries to the oracles OKeyGen and OEnc must be submitted before Initialize is
called. In the same vein, we can define experiment Expsel-cpa

E,F ,A(1
λ).

3. One-time Security: The experiment Exp1chal-fh
E,F ,A (1λ) is the same as Expfh

E,F ,A(1
λ) except that the

adversary must declare up front to Initialize two additional “challenge” tags tag∗, tag-f∗ ∈ Tag
such that for all tag, tag-f ∈ Tag:
• if (i, tag, x(0)

i , x(1)

i) ∈ QEnc and tag ̸= tag∗, then x(0)

i = x(1)

i ,
• if (i, tag-f, y(0)

i , y(1)

i) ∈ QKGen and tag-f ̸= tag-f∗, then y(0)

i = y(1)

i .

8 We refer to Footnote 4 for a discussion on this condition.

32

Initialize(1λ):
C,QEnc,QKGen←∅; b $← {0, 1}
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)
Return pp

ODKeyGen(i, tag-f, y(0)

i , y(1)

i yi):

QKGen←QKGen ∪ {(i, tag-f, y(0)

i , y(1)

i yi)}

Return dkf,i←DKeyGen(ski, tag-f, y
(b)

i)

OEnc(i, tag, x(0)

i , x(1)

i):

QEnc←QEnc ∪ {(i, tag, x(0)

i , x(1)

i)}
Return ct←Enc(eki, tag, x

(b)

i)

OCorrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return 0

Fig. 3: Security games Expfh
E,F ,A(1

λ) and Expcpa
E,F ,A(1

λ) for Definition 21

In the same vein, we can define experiment Exp1chal-cpa
E,F ,A (1λ).

4. Security against Complete Challenges: The experiment Exppos-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that we add the following condition 3 for adm(A) = 0:

3. There exists tag ∈ Tag so that a query OEnc(i, tag, x(0)

i , x(1)

i) has been asked for some but
not all i ∈ H, or there exists tag-f ∈ Tag such that a query OKeyGen(i, tag-f, y(0)

i , y(1)

i) has
been asked for some but not all i ∈ H.

In other words, we require for an adversary A to be admissible that, for any tag, either A makes
no encryption (resp. key) query or makes at least one encryption (resp. key) query for each slot
i ∈ H. In the same vein, we can define experiment Exppos-cpa

E,F ,A (1λ).

5. Weak Function−Hiding : We can weaken the function-hiding property by changing condition 2
for adm(A) = 0. More specifically, we replace it by the following condition 2’:

2’. There exist tag, tag-f ∈ Tag, (x(0)

i)i∈[n] and (x(1)

i)i∈[n] in D1 × · · · × Dn and two func-

tions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n)

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n)
∈ F having parameters (y(0)

i , y(1)

i)ni=1 such that

• (i, tag, x(0)

i , x(1)

i) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i) ∈ QKGen for all i ∈ H,
• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n)

(x(0)

1 , . . . , x(0)
n) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n)

(x(1)

1 , . . . , x(1)
n) OR

f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n)

(x(0)

1 , . . . , x(0)
n) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n)

(x(0)

1 , . . . , x(0)
n) OR

f (1)(x(0)

1 , . . . , x(0)
n) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n)

(x(1)

1 , . . . , x(1)
n).

The experiment in this weak function-hiding model is denoted by Expwfh
E,F ,A(1

λ).

A.4 Pseudorandom Functions (PRF)

Let X , Y and K be sets representing domain, range and key space, respectively. We assume that they
are implicitly indexed by the security parameter λ. Furthermore, let R be the set of all functions
with domain X and range Y . A family of functions {FK}K∈K that consists of efficiently computable
functions FK : X → Y is called pseudorandom (PRF) if for any ppt adversary A, the following
advantage is negligible in λ:

Advprf
FK ,A(1

λ) :=
∣∣∣Pr[AFK(·) = 1]− Pr[AR(·) = 1]

∣∣∣ ,

33

where K $← K and R $← R.
It is well-known that PRFs can be constructed under DDH, e.g. the Naor-Reingold construction [48].
or under the Learning with Rounding (LWR) [16]. The LWR problem is shown to be as hard as
LWE if the modulus and modulus-to-noise ratio9 are super-polynomial [16, 11].

A.5 Non-Interactive Key Exchange (NIKE)

A NIKE scheme N = (Setup,KeyGen, SharedKey) for a key space K is a tuple of three efficient
algorithms defined as follows:

Setup(1λ): On input the security parameter 1λ, the algorithm outputs the public parameters pp.

KeyGen(pp): On input the public parameters pp, the algorithm outputs a pair (sk, pk) consisting of
a secret key sk and the corresponding public key pk.

SharedKey(sk, pk′): On input a secret key sk and a (usually non-corresponding) public key pk′, the
algorithm deterministically outputs a shared key K ∈ K.

Correctness. A NIKE scheme is correct if, for all λ ∈ N, we have

Pr

Ki,j = Kj,i

∣∣∣∣∣∣∣∣∣
pp←Setup(1λ),

(pk1, sk1), (pk2, sk2)←KeyGen(pp),

K1,2←SharedKey(sk1, pk2),

K2,1←SharedKey(sk2, pk1)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. For a NIKE scheme N and a ppt adversary A we define the experiment Expnike-b
N ,A as

shown in Figure 4. The oracles OHonestGen, OReveal, OTest and OCorrupt can be called in any
order and any number of times. The adversary A is NOT admissible, denoted by adm(A) = 0, if
either one of the following holds:

1. There exist public keys pk1 and pk2 such that A made the following queries
• OCorrupt(pk1),
• OTest(pk1, pk2) or OTest(pk2, pk1)’

2. There exist public keys pk1 and pk2 such that A made the following queries
• OReveal(pk1, pk2) or OReveal(pk2, pk1),
• OTest(pk1, pk2) or OTest(pk2, pk1).

Otherwise, we say that A is admissible and write adm(A) = 1. We call N IND-secure if for any ppt
adversary A, the following advantage is negligible in λ:

Advnike
N ,A(1

λ) :=
∣∣∣Pr [Expnike-1

N ,A (1λ) = 1
]
− Pr

[
Expnike-0

N ,A (1λ) = 1
]∣∣∣ .

NIKE can be constructed based on a variant of the Decisional Bilinear Diffie-Hellman assumption in
the standard model [35, Section 4.3]. In a recent work [43], it is shown that NIKE can be constructed
from LWE with polynomial modulus-to-noise ratio and satisfy strong security properties in the
standard model.

9 The modulus-to-noise ratio q/σ is defined for the LWE problem over the ring of integers modulo q and the errors
are sampled from a discrete Gaussian distribution Dσ. The approximation factor in reducing LWE to a worst-case
lattice problem relates closely to this ratio.

34

Initialize(1λ):

pp←Setup(1λ); H←∅
Return pp

OHonestGen():
(sk, pk)←KeyGen; H←H∪ {(sk, pk)}
Return pk

OReveal(pk1, pk2):
If ∃sk1 s.t. (sk1, pk1) ∈ H,

return K←SharedKey(sk1, pk2)
If ∃sk2 s.t. (sk2, pk2) ∈ H,

return K←SharedKey(sk2, pk1)
Return ⊥

OTest(pk1, pk2):
If {(sk1, pk1), (sk2, pk2)} ⊈ H,

return ⊥
If b = 0, return K $← K
Else, return K←SharedKey(sk1, pk2)

OCorrupt(pk):
Recover sk s.t. (sk, pk) ∈ H
H ← H \ {(sk, pk)}
Return sk

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return β $← {0, 1}

Fig. 4: Security game Expnike-b
N ,A for b ∈ {0, 1}

A.6 From One-Challenge to Multi-Challenge – Proof of Lemma 5

Lemma 5. Let E = (GSetup, LSetup,KeyGen,Enc,Dec) be a DDFE scheme for a functionality f . If
E is one-challenge weakly function-hiding, then it is also weakly function-hiding. More specifically,
for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-cpa
E,f,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-cpa

E,f,B (1λ) ,

where qe and qk denote the maximum numbers of different mpub and kpub that A can query to OEnc
and OKeyGen respectively, and xxx ⊆ {stat, sel, pos,wfh}.

Proof. Let A be a ppt adversary in the experiment Expxxx-wfh
E,f,A (1λ) and b $← {0, 1} be the challenge

bit. We denote the qe distinct mpub that can occur in a query to OEnc by m1
pub, ...,m

qe
pub. Similarly,

we denote the qk distinct kpub that can occur in queries to OKeyGen by k1pub, ..., k
qk
pub. We define a

sequence of hybrid games:

Game G1,j for j ∈ [0; qk]: This hybrid is the same asExpxxx-wfh
E,f,A (1λ) except that a queryOKeyGen(i,

(k(0)

pri, k
ℓ
pub), (k

(1)

pri, k
ℓ
pub)) is answered by a decryption key for (k(1)

pri, k
ℓ
pub) if ℓ ≤ j, and by a de-

cryption key for (k(0)

pri, k
ℓ
pub) if ℓ > j. Note that G1,0 = Expxxx-wfh

E,f,A (1λ), conditioned on b = 0
as the challenge bit. The indistinguishability between G1,j and G1,j−1 for j ∈ [qk] is proven in
Lemma 22.

Game G2,j for j ∈ [0; qe]: This hybrid is the same as G1,qk except that a queryOEnc(i, (m(0)

pri,m
ℓ
pub),

(m(1)

pri,m
ℓ
pub)) is answered by an encryption of (m(1)

pri,m
ℓ
pub) (as opposed to (m(0)

pri,m
ℓ
pub)) if ℓ ≤ j.

Note that G2,0 = G1,qk and G2,qe = Expxxx-wfh
E,f,A (1λ), conditioned on b = 1 as the challenge bit.

The indistinguishability between G2,j and G2,j−1 for j ∈ [qe] is proven in Lemma 23.

35

For any hybrid Gt,j , with t ∈ [2], j ∈ [0, qe] ∪ [0, qk], we define the event Gt,j = 1 to indicate that A
outputs 1 in Gt,j . We calculate the advantage as follows:

Advxxx-wfh
E,f,A (1λ)

=
1

2
·
∣∣∣Pr[A outputs 1 in Expxxx-wfh

E,f,A (1λ) | b = 1
]

−Pr
[
A outputs 1 in Expxxx-wfh

E,f,A (1λ) | b = 0
]∣∣∣

=
1

2
·
∣∣Pr [G2,qe = 1]− Pr [G1,0 = 1]

∣∣
=

1

2
·

∣∣∣∣∣∣
qk∑
j=1

(
Pr [G1,j = 1]− Pr [G1,j−1 = 1]

)
+

qe∑
j=1

(
Pr [G2,j = 1]− Pr [G2,j−1 = 1]

)∣∣∣∣∣∣
≤ 1

2
·

 qk∑
j=1

∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣+ qe∑

j=1

∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣

≤ (qk + qe) ·Adv1chal-xxx-wfh
E,f,B (1λ) ,

where the last inequality is a consequence of Lemmas 22 and 23. ⊓⊔

Lemma 22. If E is weakly function-hiding, then we have for each j ∈ [qk] that∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,f,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G1,j and G1,j−1. We construct a ppt
adversary B playing against Exp1chal-xxx-wfh

E,f,B (1λ) that uses black-box access to A. B simulates the
view of A as follows:

• Initialization: Upon A calling Initialize(1λ), B runs the initialization procedure

Initialize(1λ, k∗pub := kjpub,m
∗
pub := mj

pub)

of Exp1chal-xxx-wfh
E,f,B (1λ) and forwards the response to A.

• Encryption Queries: Upon A querying OEnc(i, (m(0)

pri,m
ℓ
pub), (m

(1)

pri,m
ℓ
pub)), B queries the oracle

OEnc of Exp1chal-xxx-wfh
E,f,B (1λ) on input (i, (m0

pri,m
ℓ
pub), (m

0
pri,m

ℓ
pub)) and forwards the response

to A.
• Key-generation Queries:

Upon A querying OKeyGen on input (i, (k(0)

pri, k
ℓ
pub), (k

(1)

pri, k
ℓ
pub)), B does:

1. If ℓ < j, B queries (i, (k1pri, k
ℓ
pub), (k

1
pri, k

ℓ
pub)) to the oracle OKeyGen of Exp1chal-xxx-wfh

E,f,B (1λ)
and forwards the response to A.

2. If ℓ = j, B queries OKeyGen(i, (k0pri, k
(j)

pub), (k
1
pri, k

(j)

pub)) and forwards the response to A.
3. If ℓ > j, B queries OKeyGen(i, (k0pri, kℓpub), (k0pri, kℓpub)) and forwards the response to A.

• Corruption Queries: Upon A querying OCorrupt(i), B queries OCorrupt of Exp1chal-xxx-wfh
E,f,B (1λ)

on the same input i and forwards the response to A.
• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize procedure.

We note that A is an admissible adversary in G1,j and G1,j−1 if and only if B is an admissible
adversary against Exp1chal-xxx-wfh

E,f,B (1λ). Moreover, we observe that B simulates G1,j−1 to A if b = 0,

36

and G1,j otherwise. Thus, we calculate

|Pr [G1,j = 1]− Pr [G1,j−1 = 1]| =
∣∣∣Pr[B outputs 1 in Exp1chal-xxx-wfh

E,f,B (1λ) | b = 1
]

−Pr
[
B outputs 1 in Exp1chal-xxx-wfh

E,f,B (1λ) | b = 0
]∣∣∣

≤ 2 ·Adv1chal-xxx-wfh
E,f,B (1λ)

and the lemma is concluded. ⊓⊔

Lemma 23. If E is weakly function-hiding, then we have for each j ∈ [qe] that∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,f,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G2,j and G2,j−1. We construct a ppt
adversary B playing against Exp1chal-xxx-wfh

E,f,B (1λ) that uses black-box access to A. B simulates the
view of A as follows:

• Initialization: Upon A calling Initialize(1λ), B runs the initialization procedure

Initialize(1λ, k∗pub := kjpub,m
∗
pub := mj

pub)

of Exp1chal-xxx-wfh
E,f,B (1λ) and forwards the response to A.

• Encryption Queries: Upon A querying OEnc(i, (m(0)

pri,m
ℓ
pub), (m

(1)

pri,m
ℓ
pub)), B behaves as follows:

1. If ℓ < j, B queries (i, (m(1)

pri,m
ℓ
pub), (m

(1)

pri,m
ℓ
pub)) to the oracle OEnc of Exp1chal-xxx-wfh

E,f,B (1λ)
and forwards the response to A.

2. If ℓ = j, B queries OEnc(i, (m(0)

pri,m
ℓ
pub), (m

(1)

pri,m
ℓ
pub)) and forwards the response to A.

3. If ℓ > j, B queries OEnc(i, (m(0)

pri,m
ℓ
pub), (m

(0)

pri,m
ℓ
pub)) and forwards the response to A.

• Key-generation Queries: Upon A querying OKeyGen(i, (k0pri, kℓpub), (k1pri, kℓpub)), B queries (i,

(k(1)

pri, k
ℓ
pub), (k

(1)

pri, k
ℓ
pub)) the oracle OEnc of Exp1chal-xxx-wfh

E,f,B (1λ) and forwards the response to A.
• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ [n], B queries the oracle
OCorrupt of Exp1chal-xxx-wfh

E,f,B (1λ) on the same input i and forwards the response (eki, ski) to A.
• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize procedure.

We note that A is an admissible adversary in G2,j and G2,j−1 if and only if B is an admissible
adversary against Exp1chal-xxx-wfh

E,f,B (1λ). Moreover, we observe that B simulates G2,j−1 if b = 0, and
G2,j otherwise. Using the same calculation as in Lemma 22, we conclude that∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]

∣∣ ≤ 2 ·Adv1chal-xxx-wfh
E,f,B (1λ)

and the proof is completed. ⊓⊔

A.7 From Weak to Full Function-Hiding – Proof of Lemma 6

Lemma 6. If there exists a weakly function-hiding DDFE scheme E for fdyn-ip, then there exists a
(fully) function-hiding DDFE scheme E ′ for fdyn-ip. More precisely, for any ppt adversary A, there
exists a ppt algorithm B such that

Advxxx-fh
E ′,fdyn-ip,A(1

λ) ≤ 3 ·Advxxx-wfh
E,fdyn-ip,B(1

λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

37

Proof. Given E = (GSetup, LSetup,KeyGen,Enc,Dec), we define the fully function-hiding scheme
E ′ = (GSetup′, LSetup′,KeyGen′,Enc′,Dec′) for fdyn-ip as follows:

• Global Setup: GSetup′(1λ) runs (pp)← GSetup(1λ) and outputs the public parameters pp.
• Local Setup: LSetup′(pp) runs (pki, ski)←LSetup(pp) and outputs (pk′i, sk

′
i) := (pki, ski).

• Key Generation: KeyGen′(sk′i, k
′
i = (yi,UK,i, tag-fi)) parses sk

′
i = ski, runs dki ← KeyGen(ski, ki =

(yi ∥ 0N ,UK,i, tag-fi)) and outputs dk′i := dki.
• Encryption: Enc′(ek′i,m

′
i = (xi,UM,i, tagi)) parses ek′i = eki, computes a ciphertext cti ←

Enc(eki,mi = (xi ∥ 0N ,UM,i, tagi)) and outputs ct′i := cti.
• Decryption: Dec((dk′i)i∈UK

, (ct′i)i∈UM
) outputs d← Dec((dk′i)i∈UK

, (ct′i)i∈UM
).

The correctness of E ′ follows immediately from that of E and the fact that〈(
xi

∥∥ 0N
)
i∈[n] ,

(
yi

∥∥ 0N
)
i∈[n]

〉
=
〈
(xi)i∈[n], (yi)i∈[n]

〉
,

where we denote (zi)i∈[n] := (z1 ∥ . . . ∥ zn) for arbitrary vectors z1, . . . , zn. Furthermore, we
show that E ′ enjoys the function-hiding property. Towards this, we consider a sequence of hybrid
games G0, . . . ,G3 where G0 equals Expxxx-fh

E ′,fdyn-ip,A(1
λ), where the challenge bit is 0, and G3 equals

Expxxx-fh
E ′,fdyn-ip,A(1

λ), where the challenge bit is 1, and A is a ppt adversary. For i ∈ [3], we denote the
event Gi = 1 to signify that A outputs 1 in the hybrid Gi.

Game G0: This is Expxxx-fh
E ′,fdyn-ip,A(1

λ) conditioned on the challenge bit b = 0. We recall that in this

specific functionality fdyn-ip, there is the concept of tags in the public information of keys and
ciphertexts. We denote the ℓ-th distinct tag that occurs in a query to OEnc by tagℓ. Similarly,
tag-fk refers to the k-th distinct tag in a query to OKeyGen. Queries to OEnc and OKeyGen are
answered as follows:
• Upon A querying

OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (x(0)

i ∥ 0
N ,UM,i, tagi), (x

(0)

i ∥ 0
N ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(0)

i ∥ 0
N ,UK,i, tag-fi), (y

(0)

i ∥ 0
N ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.
We note that Ni are included in pki which can be known to the simulator via queries to
OHonestGen, upon requests from A. In other words, the ciphertexts (ct′ℓ,i)i∈UM

encrypt the

vector (x(0)

i ∥ 0N)i∈UM
, and the partial decryption keys (dk′k,i)i∈UK

allow for the computation of

the inner product with the vector (y(0)

i ∥ 0N)i∈UK
.

Game G1: We modify the definition of OEnc and OKeyGen as follows:
• Upon A querying

OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (0N ∥ x(1)

i ,UM,i, tagi), (0
N ∥ x(1)

i ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.

38

• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(0)

i ∥ y
(1)

i ,UK,i, tag-fi), (y
(0)

i ∥ y
(1)

i ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.

Thus, the ciphertexts (ct′ℓ,i)i∈UM
encrypt the vector (0N ∥ x(1)

i)i∈UM
(as opposed to (x(0)

i ∥
0N)i∈UM

in G0), and the partial decryption keys (dk′k,i)i∈UK
allow for the computation of the

inner product with the vector (y(0)

i ∥ y(1)

i)i∈UK
(as opposed to (y(0)

i ∥ 0N)i∈UK
in G0). Let

n := |UK | = |UM | in case of correct evaluation in fdyn-ip. The admissibility of A states that
⟨(x(0)

i)i∈[n], (y
(0)

i)i∈[n]⟩ = ⟨(x
(1)

i)i∈[n], (y
(1)

i)i∈[n]⟩ which implies that〈(
x(0)

i

∥∥ 0N
)
i∈[n] ,

(
y(0)

i

∥∥ 0N
)
i∈[n]

〉
=
〈(

x(0)

i

∥∥ 0N
)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
And our simulator’s queries are admissible in the weakly function-hiding model. Then it follows
by the weak function-hiding property of E ′ that there exists a ppt adversary B such that

|Pr[G1 = 1]− Pr[G0 = 1]| =
∣∣∣Pr[B outputs 1 in Expxxx-wfh

E,fdyn-ip,B(1
λ) | b = 1

]
−Pr

[
B outputs 1 in Expxxx-wfh

E,fdyn-ip,B(1
λ) | b = 0

]∣∣∣
≤ 2 ·Advxxx-wfh

E,fdyn-ip,B(1
λ)

The simulator’s queries change only the function’s contents while relaying UK , tag-fk queried by
A. The same will hold for the following hybrids.

Game G2: We modify the definition of OEnc and OKeyGen again.
• Upon A querying

OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (x(1)

i ∥ 0
N ,UM,i, tagi), (x

(1)

i ∥ 0
N ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(1)

i ∥ y
(1)

i ,UK,i, tag-fi), (y
(1)

i ∥ y
(1)

i ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.

That is, the challenger provides a ciphertext of (x(1)

i ∥ 0N)i∈UM
and a decryption key for

(y(1)

i ∥ y
(1)

i)i∈UK
, as opposed to (0N ∥ x(1)

i)i∈UM
and (y(0)

i ∥ y
(1)

i)i∈UK
in G1. Let n := |UK | = |UM |

in case of correct evaluation in fdyn-ip. Notice that〈(
0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

x(1)

i

∥∥ 0N
)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
.

And our simulator’s queries are admissible in the weakly function-hiding model. Then it follows
by the weak function-hiding property of E ′ that there exists a ppt adversary B such that
|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2 ·Advxxx-wfh

E,fdyn-ip,B(1
λ).

39

Game G3: We modify the definition of OKeyGen as follows. (The definition of OEnc is as in G2.)
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(1)

i ∥ 0
N ,UK,i, tag-fi), (y

(1)

i ∥ 0
N , tag-fi))

and returns dk′k,i := dkk,i.

Thus, the challenger provides a decryption key for (y(1)

i ∥ 0N)i∈UK
, as opposed to (y(1)

i ∥ y
(1)

i)i∈UK

in G2. Let n := |UK | = |UM | in case of correct evaluation in fdyn-ip. We have〈(
x(1)

i

∥∥ 0N
)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

x(1)

i

∥∥ 0N
)
i∈[n] ,

(
y(1)

i

∥∥ 0N
)
i∈[n]

〉
.

And our simulator’s queries are admissible in the weakly function-hiding model. As above, it
follows by the weak function-hiding property of E ′ that there exists a ppt adversary B such
that |Pr[G3 = 1] − Pr[G2 = 1]| ≤ 2 · Advxxx-wfh

E,fdyn-ip,B(1
λ). Note that G3 equals the experiment

Expxxx-fh
E ′,fdyn-ip,A(1

λ) conditioned on b = 1.

Using a hybrid argument, we conclude that:

Advxxx-fh
E ′,fdyn-ip,A(1

λ) =
1

2
|Pr[G3 = 1]− Pr[G0 = 1]| ≤ 1

2
·

3∑
i=1

|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤ 3 ·Advxxx-wfh
E,fdyn-ip,B(1

λ)

and the lemma is proved. ⊓⊔

B Supporting Materials – Section 4

B.1 Details about our DDFE in Section 4

Correctness Using the correctness of the NIKE scheme N that gives K ′
i,j = K ′

j,i for all i, j ∈ UK ,
we have ∑

i∈UK

∑
j∈UK\{i}

(−1)j<iF ′
K′i,j

(UK) = 0

Thus, (si :=
∑

j∈UK\{i}(−1)j<iF ′
K′i,j

(UK))i∈UK
∈ S(|UK |,A). The argument for UM proceeds in

exactly the same way. Then the correctness of E follows from the correctness of E ′ and the
decomposition of the setup algorithm according to the dynamizability.

Security We prove the security of our DDFE scheme below.

Theorem 13. If N is an IND-secure NIKE scheme, {FK}K∈K and {F ′
K′}K′∈K′ are families of

pseudorandom functions and E ′ is a dynamizable (function-hiding) DMCFE scheme for a function
class F , then the DDFE scheme E in Fig. 2 for the functionality fdyn corresponding to F is also
(function-hiding) secure. More precisely, let qh be the maximum number of queries to the oracle
OHonestGen and let qu be an upper bound on the number of distinct sets U ⊆ ID that occur in
an encryption or key-generation query. Then, for any ppt adversary A, there exist ppt algorithms
B1, . . . ,B4 such that

Advstat-xxx-cpa
E,fdyn,A (1λ) ≤ qh ·Advprf

{FK},B1
(1λ) + q2h ·Advnike

N ,B2
(1λ)

+ q2h ·Advprf
{F ′

K′},B3
(1λ) + qu ·Advstat-xxx-cpa

E ′,F ,B4
(1λ) ,

where xxx ⊆ {1chal, pos, sel,wfh, fh}.

40

Proof. We consider the case that xxx ∩ {wfh, fh} ≠ ∅. Standard security (i.e. xxx ∩ {wfh, fh} = ∅)
can then be treated as a special case where inputs to OKeyGen(i, k(0)

i , k(1)

i) are always of the form
(i, ki, ki). The proof is done via a sequence of hybrid games.

Game G0: This is the game Expstat-xxx-cpa
E,fdyn,A (1λ).

Game G1: In all key-generation and encryption queries of the form (i, ∗, ∗) with i ∈ H, we replace
FKi with a random function Ri. By the security of the PRF, we have |Pr[G1 = 1]− Pr[G0 = 1]| ≤
qh ·Advprf

{FK},B1
(1λ).

Game G2: For all i, j ∈ H, we chooseK ′
i,j = K ′

j,i
$← K′ instead ofK ′

i,j ← N .SharedKey(N .ski,N .pkj)
when replying to key-generation and encryption queries. The indistinguishability directly follows from
the security of the NIKE scheme. Specifically, we have |Pr[G2 = 1]−Pr[G1 = 1]| ≤ q2h ·Advnike

N ,B2
(1λ).

Game G3: For all i, j ∈ H, we replace F ′
K′i,j

= F ′
K′j,i

with a random function R′
i,j = R′

j,i in all

key-generation and encryption queries. The indistinguishability directly follows from the security of
the PRF. More precisely, we have that |Pr[G2 = 1]− Pr[G1 = 1]| ≤ q2h ·Advprf

{F ′
K′},B3

(1λ).

Note that in G3, for each set U that occurs in an encryption or key-generation query, (si :=∑
j∈U\{i}(−1)j<iR′

i,j(UK))i∈U∩H is uniformly random subject to the condition that
∑

i∈U∩H si =

−
∑

i∈U∩C si. Thus, by the dynamizability of E ′, it follows for i ∈ U ∩ H that sk′i := Psk(si, ŝki)

and ek′i := Pek(si, êki) computed for responses to OKeyGen and OEnc queries now follow the same
distribution as “real” keys generated by E ′.Setup. This allows us to rely on the security of E ′ in
what follows.
Let U1, . . . ,Uqu denote the qu different sets that occur in an encryption or key-generation query
where they are sorted e.g. ascending in the order in which they are queried for the first time. For
κ ∈ [0; qu], we define the hybrids Ĝκ as follows:

Game Ĝκ for κ ∈ [0; qu] : This game is the same as G3 except that the generation of ciphertexts and
secret keys is modified as follows. Upon receiving a queryOKeyGen(i, (y(0)

i , (Uj , tag-f)), (y(1)

i , (Uj , tag-f))),
the simulator computes

di ←

{
E ′.DKeyGen(sk′i, tag-f,y

(0)

i) if j ≤ κ

E ′.DKeyGen(sk′i, tag-f,y
(b)

i) if j > κ .

Similarly, upon receiving a query OEnc(i, (x(0)

i , (Uj , tag)), (x(1)

i , (Uj , tag))), the simulator computes

ci ←

{
E ′.Enc(ek′i, tag,x

(0)

i) if j ≤ κ

E ′.Enc(ek′i, tag,x
(b)

i) if j > κ .

Note that Ĝ0 = G3 and Ĝqu is independent of the bit b. For κ ∈ [qu], we have |Pr[Ĝκ = 1]−Pr[Ĝκ−1 =
1]| ≤ Advxxx-stat-fh

E ′,F ,B4
(1λ). ⊓⊔

B.2 From Complete to Incomplete Challenges – Proof of Lemma 14

Lemma 14. Assume there exist (1) a one-challenge (weakly function-hiding) DDFE scheme Epos
for a functionality fdyn that is secure against complete queries, and (2) an AoNE scheme Eaone
whose message space contains the ciphertext space of Epos. Then there exists a one-challenge (weakly
function-hiding) DDFE scheme E for fdyn that is even secure against incomplete queries. More
precisely, for any ppt adversary A, there exist ppt algorithms B1 and B2 such that

Adv1chal-xxx-yyy-cpa
E,fdyn,A (1λ) ≤ 6 ·Adv1chal-pos-xxx-yyy-cpa

Epos,fdyn,B1
(1λ) + 6 ·Adv1chal-xxx-cpa

Eaone,faone,B2
(1λ) ,

where xxx ⊆ {stat, sel} and yyy ⊆ {wfh}.

41

Proof. We consider only the weakly function-hiding setting, i.e. yyy = {wfh}. Standard security (i.e.
yyy = ∅) can then be treated as a special case where inputs to OKeyGen(i, k(0)

i , k(1)

i) are always of
the form (i, ki, ki).

Let Epos = (pGSetup, pLSetup, pKeyGen, pEnc, pDec) be a one-challenge, weakly function-hiding
DDFE scheme for the function class fdyn that is secure against complete queries, and let Eaone =
(aGSetup, aLSetup, aEnc, aDec) be a DDFE scheme for the AoNE functionality Faone. We construct
a one-challenge, weakly function-hiding DDFE scheme E for the function class fdyn that is secure
against incomplete queries. The details of E = (GSetup, LSetup,KeyGen,Enc,Dec) go as follows:

GSetup(1λ): On input the security parameter 1λ, run

pPP← pGSetup(1λ); aPP← aGSetup(1λ)

and return PP := (pPP, aPP)

LSetup(PP, i): On input PP and a user i ∈ ID, generate

(pSKi, pPKi)← pLSetup(pPP); (aSKi, aPKi)← aLSetup(aPP)

and return (SKi := (pSKi, aSKi),PKi := (pPKi, aPKi)).

KeyGen(SKi, k): On input a secret key SKi and k = (kpri, kpub), compute

pDKi ← pKeyGen(pSKi, k); aDKi ← aEnc(aSKi, (pDKi, kpub))

and return DKi := aDKi.

Enc(SKi,m): On input a secret key SKi and m = (mpri,mpub), compute:

pCTi ← pEnc(pSKi,m); aCTi ← aEnc(aSKi, (pCTi,mpub))

and return CTi := aCTi.

Dec((DKi)i∈UK
, (CTi)i∈UM

): On input a set of secret keys (DKi)i∈UK
and a set of ciphertexts

(CTi)i∈UM
, compute

(pDKi)i∈UK
← aDec((aDKi)i∈U); (pCTi)i∈UM

← aDec((aCTi)i∈U) .

If one of these decryption processes returns ⊥, return the same value. Otherwise, return
out← pDec({pDKi}i∈UK

, {pCTi}i∈UM
).

The correctness of E follows immediately from the correctness of Epos and Eaone. Turning to its
security, we introduce a sequence of hybrids G0, . . . ,G4. For i ∈ [0; 4], we denote AdvGi(A) :=
|Pr[Gi = 1]− 1/2|. To improve readability, we introduce the shorthands(

Expip
B1
,Advip

B1

)
:=
(
Exp1chal-pos-xxx-yyy-cpa

Epos,fdyn,B1
(1λ),Adv1chal-pos-xxx-yyy-cpa

Epos,fdyn,B1
(1λ)

)
(
Expaone

B2
,Advaone

B2

)
:=
(
Exp1chal-xxx-cpa

Eaone,faone,B2
(1λ),Adv1chal-xxx-cpa

Eaone,Faone,B2
(1λ)

)
.

The hybrid games are defined as follows.

42

Game G0: This game equals Exp1chal-xxx-yyy-cpa
E,fdyn,A (1λ), so we have AdvG0 = Adv1chal-xxx-yyy-cpa

E,fdyn,A (1λ).

Recall that one-challenge security states that the adversary must declare up front to Initialize
additional public information for challenge messages and challenge keys m∗

pub = (U∗
M , tag∗), k∗pub =

(U∗
K , tag-f∗) so that:

• if (i,m(0)

i ,m(1)

i) ∈ QEnc and m(0)

i,pub = m(1)

i,pub ̸= m∗
pub, then m(0)

i = m(1)

i ,

• if (i, k(0)

i , k(1)

i) ∈ QKGen and k(0)

i,pub = k(1)

i,pub ̸= k∗pub, then k(0)

i = k(1)

i .

We define events E0 and E1 as follows:

(E0) A has asked queries of the form OKeyGen(i, (·, k∗pub), (·, k∗pub)) for all or no i ∈ H ∩ U∗
K .

(E1) A has asked queries of the form OKeyGen(i, (·, k∗pub), (·, k∗pub)) for some but not all i ∈ H∩U∗
K ,

i.e. E1 = ¬E0.

Game G1: This is the same as G0 except that the simulator chooses a random bit d $← {0, 1}
during Initialize. Upon A calling Finalize, if (d = 0 and E1 happens) or (d = 1 and E0 happens),
the simulator outputs 0 and aborts. Note that the simulator’s behavior is independent of the bit d
before Finalize is called. Therefore, we have AdvG1(A) = 1/2 ·AdvG0(A).
Game G2: If d = 1, then the simulation works exactly as in the previous game. Otherwise, the
simulator acts as an adversary B1 in the game Expip

B1
. Specifically, if d = 0, the simulation works as

follows. W.l.o.g., we assume that each i ∈ ID is queried at most once to OHonestGen and OCorrupt.

• Initialization: Upon A calling Initialize(1λ,m∗
pub, k

∗
pub), B1 chooses a random bit b $← {0, 1},

initializes empty sets C and H, runs

pPP← Expip
B1
.Initialize(1λ); aPP← Eaone.GSetup(1λ)

and returns PP := (pPP, aPP).
• User-Generation Queries: Upon A querying OHonestGen(i) for some i ∈ ID, B1 queries and
computes

pPKi ← Expip
B1
.OHonestGen(i); (aSKi, aPKi)← Eaone.LSetup(i) ,

adds i to H and returns PKi := (pPKi, aPKi).
• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ ID, B1 first checks whether
OCorrupt has previously been called on the same input and returns the same calue as before in
this case. Otherwise, B1 checks whether i ∈ H and calls OHonestGen(i) if this is not the case
yet. It then removes i from H, adds it to C, queries pSKi ← Expip

B1
.OCorrupt(i) and returns

SKi := (pSKi, aSKi), where aSKi is known from the corresponding query to OHonestGen.
• Encryption Queries: Upon A querying OEnc(i, (m(0)

pri,mpub), (m
(1)

pri,mpub)), B1 queries and com-
putes

pCTi ← Expip
B1
.OEnc(i, (m(b)

pri,mpub), (m
b
pri,mpub)); aCTi ← Eaone.Enc(aSKi, (pCTi,mpub))

and returns CTi := aCTi.
• Key-Generation Queries: Upon A querying ODKeyGen on input (i, (k(0)

pri, kpub), (k
(1)

pri, kpub)), B1
does the following:
◦ If kpub = k∗pub, B1 queries

pDKi ← Expip
B1
.OKeyGen(i, (k(b)

pri, k
∗
pub), (k

(1)

pri, k
∗
pub)); aDKi ← Eaone.Enc(aSKi, (pDKi, k

∗
pub))

and returns DKi := aDKi.

43

◦ If kpub ̸= k∗pub, then k(0)

pri = k(1)

pri and B1 queries

pDKi ← Expip
B1
.OKeyGen(i, (k(1)

pri, k
∗
pub), (k

(1)

pri, k
∗
pub)); aDKi ← Eaone.Enc(aSKi, (pDKi, k

∗
pub))

and returns DKi := aDKi.
• Finalize: Upon A calling Finalize(b′), B1 forwards the same bit to its own challenger by calling
Expip

B1
.Finalize(b′).

In the end, we have |AdvG2(A)−AdvG1(A)| ≤ Advip
B1
.

Game G3: We do a similar modification in the simulation for the case d = 1. That is, for
queries of the form OKeyGen((i, (k(0)

pri, k
∗
pub), (k

(1)

pri, k
∗
pub))), the simulator now outputs a key for

(k(1)

pri, k
∗
pub) instead of (k(b)

pri, k
∗
pub). The indistinguishability between G3 and G2 reduces to the security

of Eaone. We construct a reduction B2 that acts as an adversary in the experiment Expaone
B2

. B2
replaces all Eaone algorithms with calls to the respective oracles of Expaone

B2
, in the same vein as

B1 does with calls to oracles of Expip
B1

in G2. In particular, upon A querying ODKeyGen on input

(i, (k(0)

pri, kpub), (k
(1)

pri, kpub)), B2 does the following:

• If kpub = k∗pub, B2 queries

pDKi ← Epos.KeyGen(pSKi, (k
(b)

pri, k
∗
pub))

pDK′
i ← Epos.KeyGen(pSKi, (k

(1)

pri, k
∗
pub))

aDKi ← Expaone
B2

.OEnc(i, (pDKi, k
∗
pub), (pDK

′
i, k

∗
pub))

and returns DKi := aDKi.
• If kpub ̸= k∗pub, then k(0)

pri = k(1)

pri and B2 queries

pDKi ← Epos.KeyGen(pSKi, (k
(1)

pri, kpub))

aDKi ← Expaone
B2

.OEnc(i, (pDKi, kpub), (pDKi, kpub))

and returns DKi := aDKi.

In the end, we have |AdvG3(A)−AdvG2(A)| ≤ Advaone
B2

.

Game G4: We answer queries of the form OEnc((i, (m(0)

pri,m
∗
pub), (m

(1)

pri,m
∗
pub))) by encryptions of

(m(1)

pri,m
∗
pub) as opposed to (m(b)

pri,m
∗
pub) using a similar sequence of hybrids as G1, G2 and G3, but

with flipped roles of the oracles OKeyGen and OEnc. Note that G4 is independent of the bit b. In
the end, we obtain AdvG3(A) ≤ 2 · (AdvG4(A) +Advip

B1
+Advaone

B2
)

To conclude, we compute

Adv1chal-xxx-yyy-cpa
E,fdyn,A (1λ) = AdvG0(A)

= 2 ·AdvG1(A)

≤ 2 · (AdvG2(A) +Advip
B1
)

≤ 2 · (AdvG3(A) +Advip
B1

+Advaone
B2

)

≤ 4 ·AdvG4(A) + 6 ·Advip
B1

+ 6 ·Advaone
B2

= 6 ·Advip
B1

+ 6 ·Advaone
B2

,

where the last equality follows from the fact that G4 is independent of b. ⊓⊔

44

B.3 Instantiation of the Generic Conversion with Our FH-DMCFE

The following lemma argues that our DMCFE depicted in Fig. 7 fits into the framework of dynamizable
DMCFE schemes.

Lemma 24. The IP-DMCFE in Fig. 7 is Z2
q-dynamizable.

Proof. The scheme admits the following implementation of the algorithms SetupPP and SetupUser.

SetupPP(1λ): Run G = (G1,G2,Gt, g1, g2, gt, e, q) ← GGen(1λ) and sample two full-domain hash
functions H1 and H2 onto G2

1 and G2
2 respectively. Return p̂p := (G,H1,H2).

SetupUser(p̂p): Generate (Bi, B
∗
i)← DPVSGen(G, 14N+5) and return (êki, ŝki) computed as follows:

ŝki := (b∗
i,1, . . . ,b

∗
i,N , B∗

i,N+1, B∗
i,N+2, b∗

i,N+3)

êki := (bi,1, . . . ,bi,N , Bi,N+1, Bi,N+2, bi,N+4)

Furthermore, we define Psk(si = (s̃i, t̃i), ŝki) := (s̃i, ŝki) and Pek(si = (s̃i, t̃i), êki) := (t̃i, êki). We
note that when (s̃1, t̃1), . . . , (s̃n, t̃n)

$← Z2
q satisfying

∑n
i=1 s̃i =

∑n
i=1 t̃i = 0, Psk(si = (s̃i, t̃i), ŝki) and

Pek(si = (s̃i, t̃i), êki) := (t̃i, êki) give the keys ski and eki in our construction of Fig. 7, respectively.
Then the following distributions are equal{

pp, (ski, eki)i∈[n]
}
=
{
p̂p,
(
Psk(si, ŝki), Pek(si, êki)

)
i∈[n]

}
,

where (pp, (ski, eki)i∈[n])← Setup(1λ) and s1, . . . , sn
$← Z2

q conditioned on
∑n

i=1 si = 0. ⊓⊔

The DMCFE scheme in Fig. 7 was proven to be one-challenge, weakly function-hiding secure against
complete queries under static corruption in the ROM. Our conversion yields a (fully) function-hiding
DDFE scheme without the one-challenge and complete-queries constraints. Specifically, we obtain
the following corollary of Corollary 15.

Corollary 25. There exists a FH-DDFE scheme for the function class fdyn-ip that is secure against
static corruption under the SXDH assumption in the ROM.

B.4 Instantiation of the Generic Conversion with the DMCFE of [27]

We recall the construction of [27] in Fig. 5 using our notations. The scheme considers a restricted
variant of the inner-product functionality F ip where each user encrypts sub-vectors of length 1. The
original syntax used in [27] differs from ours in a few aspects, which we list below. For details, see
Sections 2.3 and A.3.

• The scheme of [27] considers an additional algorithm DKeyComb that, given n functional key
components (dktag-f,i)i∈[n] generated for the same tag tag-f, outputs a succinct functional key
dktag-f which can be passed to the decryption algorithm. Instead, we implicitly include the
DKeyComb in the decryption algorithm.

• The key generation algorithm of [27] (called DKeyGenShare in their syntax) takes only two
arguments, a secret key ski and a tag tag containing a description of the corresponding function.
However, this syntax does not allow considering repetitions in the key generation. Therefore,
our tags do not define the entire function, but we pass a third argument to the key generation
algorithm containing the part of the function description necessary to compute the decryption
key.

45

Setup(1λ, 1n): On input the security parameter 1λ and the number of clients 1n, run G =
(G1,G2,Gt, g1, g2, gt, e, q) ← GGen(1λ) and sample two full-domain hash functions H1 and H2 onto G2

1

and G2
2 respectively. For each i ∈ [n], generate si

$← Z2
q and Ti

$← Z2×2
q such that

∑
i∈[n] Ti = 0. Return

(pp := (G,H1,H2), (ski := (si,Ti), eki := si)i∈[n]).
DKeyGen(ski, tag-f, yi): On input a secret key ski = (si,Ti), a function tag tag-f and a scalar yi ∈ Zq, compute

JµK2 = H2(tag-f), JdiK2 = Jyi · si +Ti · µK2 and return dki := JdiK2.
Enc(eki, tag, xi): On input an encryption key eki = si, a tag tag and a scalar xi ∈ Zq, compute JωK1 = H1(tag),

JciK1 = J⟨ω, si⟩+ xiK1 and return cti := (JciK1 , tag).
Dec((dki)i∈[n], (cti)i∈[n]): On input a list of decryption keys (dki := JdiK2)i∈[n] and a list of ciphertexts (cti :=

(JciK1 , tagi))i∈[n], if H1(tag1) = · · · = H1(tagn) =: JωK1 compute

JoutKt =
∑n

i=1 JciK1 × JyiK2 − JωK1 × JdiK2 ,

then find and output the discrete log out. Otherwise, abort with failure.

Fig. 5: DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) presented in [27]

• The decryption algorithm of [27] explicitly takes the ciphertext’s tag tag as an additional
argument. Without loss of generality, this tag can be included in the ciphertexts to match our
syntax.

The following lemma shows that the construction of [27] fits into our framework of dynamizable
DMCFE schemes.

Lemma 26. The DMCFE scheme E in Fig. 5 is Z2×2
q -dynamizable.

Proof. The scheme admits the following implementation of the algorithms SetupPP and SetupUser.

SetupPP(1λ): Run G = (G1,G2,Gt, g1, g2, gt, e, q) ← GGen(1λ) and sample two full-domain hash
functions H1 and H2 onto G2

1 and G2
2 respectively. Return p̂p := (G,H1,H2).

SetupUser(p̂p): Sample si
$← Z2

q and return (êki, ŝki) := (si, si).

Furthermore, we define Psk(Ti, ŝki) = (Ti, ŝki) to be the identity function and Pek(Ti, êki) = êki to
be the projection onto the second coordinate. Then the following distributions are equal{

pp, (ski, eki)i∈[n]
}
=
{
p̂p,
(
Psk(Ti, ŝki), Pek(Ti, êki)

)
i∈[n]

}
,

where (pp, (ski, eki)i∈[n])← Setup(1λ), (êki, ŝki)← SetupUser(p̂p) for all i ∈ [n], and T1, . . . ,Tn
$←

Z2×2
q conditioned on

∑n
i=1Ti = 0. ⊓⊔

The IP-DMCFE scheme of [27] was proven to be adaptively secure without repetitions against
complete queries under static corruption in the ROM. By an application of Corollary 15, we obtain
the following result.

Corollary 27. There exists an IP-DDFE scheme where each user encrypts vectors of length 1 that
is adaptively secure without repetitions (neither for OEnc nor for OKeyGen queries) against static
corruption under the SXDH assumption in the ROM.

B.5 Instantiation to Obtain an Adaptively Secure LWE-based DDFE for Inner
Products

We recall the construction of [45] in Fig. 6. For the ease of comparison with [45], we now use ℓ to
denote the number of clients, as well as the number of senders. The scheme considers a restricted

46

variant of the inner-product functionality F̃ ip = {F̃ ip
ℓ,λ}ℓ,λ (compared to F ip from Definition 8)

where F̃ ip
ℓ,λ = {f̃ℓ,λ,(y1,...,yℓ) : D

ℓ
λ → Rλ}(y1,...,yℓ)∈Paramℓ

λ
as the family of functions

f̃ℓ,λ,(y1,...,yℓ)(x1, . . . ,xℓ) =
ℓ∑

i=1

yi · xi

where Dλ := [−X,X]n0 , Paramλ := [−Y, Y] for some bound ∥y∥∞ ≤ Y with y := (y1, . . . , yℓ). We

then propose a variant of [45], where the differing details in boxes . A proof of security for our
proposal is given in Theorem 30 and more importantly, this variant fits into our framework from
Section 4 following Lemma 29.

Preliminaries. If X and Y are distributions over the same domain D, then ∆(X,Y) denotes
their statistical distance. For the preliminaries on lattices, homomorphic encryption, and admissible
hash functions, we refer to [45, Section 2].
Probability. Let Σ ∈ Rn×n be a symmetric positive definite matrix and c ∈ Rℓ be a vector. We define
the Gaussian function over Rn by ρΣ, c(x) = exp(−π(x − c)⊤Σ-1(x − c)) and if Σ = σ2 · In and
c = 0, we write ρσ for ρΣ, c. For any discrete set Λ ⊂ Rn, the discrete Gaussian distribution DΛ,Σ,c

has probability mass PrX∼DΛ,Σ,c
[X = x] =

ρΣ, c(x)
ρΣ, c(Λ)

, for any x ∈ Λ. When c = 0 and Σ = σ2 · In
we denote DΛ,Σ,c by DΛ,σ. We also apply the Chernoff-Cramér method to derive a tail bound for
Gaussian random variables. The proof is classic and omitted.

Theorem 28. Let X ∼ N(0, ν) where ν > 0 is the variance. For any β > 0, it holds that

Pr[|X| ≥ β] ≤ 2 · exp
(
−β2

2ν

)
.

Finally, we also need some inequalities from calculus:

ex ≤
(
1 +

x

n

)n+x/2
; 1 + x ≤ ex (10)

for x, n > 0.

Constructions. The construction of [45] and our variant E are presented in Fig. 6. We use the
following global public parameters

cp = (λ, ℓmax, X, X̄, Y, Ȳ ,n0, n1, n̄1, ng, n̄g,m, m̄, α,

α1, ᾱ1, σ, σ̄, ℓt, ℓf , L, q, q̄,AHF,AHFf , M)

where M is a new additional parameter for our variant E . The security parameter is λ and other
quantities follow the below setting:

– Let ℓmax = λk, n1 = λd, d̄ = 3d+k−1, q = 2λ
d−1+λ, q = 2λ

d̄−1+λ, n̄1 = λd̄, α1 = 2−λd−1+d log λ, ᾱ1 =

2−λd̄−1+d̄ log λ, α = 2−
√
λ, n0 · ℓmax = O(λd−2), n0 = O(λd−2), ng = O(λ2d−1), n̄g = O(λ4d+k−2),

X = Ȳ = 1, σ = 2λ
d−1−2λ, σ̄ = 2λ

d̄−1−2λ, X̄ = 2ℓ · Y · σ√ng and the rest Y,m, m̄ = poly(λ).

– The tag lengths ℓt ∈ Θ(λ) for encryption and ℓf ∈ Θ(λ) for key generation.

– The dimensions ng,m, n0, n1, n̄g, m̄ ∈ poly(λ) satisfy that ng > 3 · (n0 + n1) · ⌈log q⌉, m >
2 · ng · ⌈log q⌉, n̄g > 3 · (ng + n1) · ⌈log q̄⌉, and m̄ > 2 · n̄g · ⌈log q̄⌉.

– The description of balanced admissible hash functions AHF : {0, 1}ℓt → {0, 1}L and AHFf :
{0, 1}ℓf → {0, 1}L for suitable L ∈ poly(λ).

47

– A real α > 0 and a Gaussian parameter σ > 0 so that the interval [−β, β] := [−σ√ng, σ
√
ng]

specifies the domain for the secret vector’s coordinates (with overwhelming probability).

– The real M := λ2 · σ̄.

We recall the specification of the gadget matrix T̄

T̄ = [Ing ⊗ (1, 2, 4, . . . , 2⌈log q̄⌉) | 0ng | · · · | 0ng] ∈ Zng×m̄
q̄ .

The other gadgets matrices T,T0 can be defined similarly:

T0 = [In0 ⊗ (1, 2, 4, . . . , 2⌈log q̄⌉) | 0n0 | · · · | 0n0] ∈ Zn0×m
q

T = [Ing ⊗ (1, 2, 4, . . . , 2⌈log q̄⌉) | 0ng | · · · | 0ng] ∈ Zng×m
q .

Dynamizability. The following Lemma 29 shows that our DMCFE scheme E can be plugged
into Theorem 13 to obtain a DDFE.

Lemma 29. The DMCFE scheme E in Fig. 6 is [−M,M]n̄g-dynamizable.

Proof. The finite Abelian group A is A := [−M,M]n̄g defined for any n̄g ∈ N and [−M,M] :=
[−λ2 · σ̄, λ2 · σ̄]. It suffices to specify the ppt algorithms SetupPP, SetupUser as well as the two
functions Psk, Pek : {0, 1}log |A| → {0, 1}≤log |A|. We give the details below:

SetupPP(1λ; r0): Using the random coins r0, sample the public parameters and matrices according
to the security parameter λ, then output

p̂p :=
(
cp,V, V̄, (Ai,b)i∈[L],b∈{0,1}, (Bi,b)i∈[L],b∈{0,1}

)
.

We note that SetupPP(1λ; r0) does not rely on the number of clients (or senders), which is
important in our definition of dynamizability.

SetupUser(p̂p; ri): Sample ti
$← DZn̄g ,σ̄ and si

$← DZng ,σ using the coins ri, then define êki :=

si, ŝki := (si, ti) and output (êki, ŝki).
Psk(si, ŝki): Given inputs ŝki = (si, ti) and si = vi such that (vi)i∈n̄g←S(n,A; rS), i.e. (vi)i∈n̄g

is uniformly random shares of 0 in A following a ppt algorithm with random coins rS , output
(si, ti,ui := ti + vi).

Pek(si, êki): Given inputs êki and si = vi belonging to (vi)i∈n̄g←S(n,A; rS), output êki = si.

By construction, for any λ, n ∈ N, the distribution
{
p̂p,
(
Psk(si, ŝki), Pek(si, êki)

)
i∈[ℓ]

}
is identical

to
{
pp, (ski, eki)i∈[ℓ]

}
from E in Fig. 6. ⊓⊔

Security. We now prove the security of our DMCFE scheme E from Figure 6. The main theorem
is stated below.

Theorem 30. If the DMCFE scheme E in [45] is secure against adaptive key-generation and

encryption queries under static corruption, then so is our modified scheme E in Fig. 6.

Proof. Let A be an adversary in the experiment Expstat-cpa

E ,F ip,A
(1λ) attacking the security of E . We

build an adversary B for the experiment Expstat-cpa
E,F ip,B(1

λ) that attacks the security of the original
scheme E . For convenience, we introduce the shorthands(

Expip
A,Advip

A

)
:=

(
Expstat-cpa

E ,F ip,A
(1λ),Advstat-cpa

E ,F ip,A
(1λ)

)
(
Expip

B ,Advip
B

)
:=
(
Expstat-cpa

E,F ip,B(1
λ),Advstat-cpa

E,F ip,B(1
λ)
)

.

The adversary B works as follows:

48

Setup(cp, 1n): On input common global public parameters cp, the dimension n in unary, sample random matrices:

V ∈ Zn0×ng
q , V̄ ∈ Zn×n̄g

q ,
(
Ai,b ∈ Zng×m

q

)
i∈[L],b∈{0,1}

,
(
Bi,b ∈ Zn̄g×m̄

q̄

)
i∈[L],b∈{0,1}

as well as gaussian samples ti
$← DZn̄g ,σ̄, si

$← DZng ,σ for i ∈ [n]. The sum of ti is denoted by t =
∑n

i=1 ti.

For each i ∈ [ℓ], sample vi
$← [−M,M]n̄g such that

∑
i∈[ℓ] vi = 0. Output

pp :=
(
cp,V, V̄, (Ai,b)i∈[L],b∈{0,1}, (Bi,b)i∈[L],b∈{0,1}, t

)
,

:=
(
cp,V, V̄, (Ai,b)i∈[L],b∈{0,1}, (Bi,b)i∈[L],b∈{0,1}

)
,(

eki := si, ski := (si, ti ,ui := ti + vi)
)
i∈[ℓ] .

DKeyGen(ski, tag-f, yi): On input a secret key ski = (si ∈ Zng , ti ∈ Zn̄g ,ui), a function tag tag-f and a scalar
yi ∈ Paramλ, where Paramλ = [−Y, Y], compute
1. The hash τtag-f = τtag-f [1] . . . τtag-f [L] := AHFf(tag-f) ∈ {0, 1}L as well as the GSW evaluation

B(τtag-f) = BL,τtag-f [L] · T̄-1
(
BL−1,τtag-f [L−1] · T̄-1(· · ·B2,τtag-f [2] · T̄

-1(B1,τtag-f [1]))
)

· T̄-1(W̄⊤) ∈ Zn̄g×m̄
q̄ (11)

and W̄ = T̄⊤ · V̄ ∈ Zm̄×n̄g
q̄ .

2. Sample etag-f,i
$← Dm̄,αq̄ and output dki =

(
di := T̄⊤ · (yi · si) +B(τtag-f)

⊤ · ti + etag-f,i ∈ Zm̄
q̄ ,ui

)
.

Enc(eki, tag,xi): On input an encryption key eki = si ∈ Zng , a tag tag and a vector xi ∈ [−X,X]n0 , compute
1. The hash τtag = τtag[1] . . . τtag[L] := AHF(tag) ∈ {0, 1}L as well as the GSW evaluation

A(τtag) = AL,τtag[L] ·T-1
(
AL−1,τtag[L−1] ·T-1(· · ·A2,τtag[2] ·T

-1(A1,τtag[1]))
)

·T-1(W⊤) ∈ Zng×m
q (12)

and W = T⊤0 ·V ∈ Zm×ng
q .

2. Sample etag,i
$← DZm,αq and output cti = T⊤0 · xi +A(τtag)

⊤ · si + etag,i.
Dec((dki)i∈[ℓ], (cti)i∈[ℓ]): On input a list of decryption keys (dki = (di, ui))i∈[ℓ] and a list of ciphertexts

(cti)i∈[ℓ], perform the key combination by first computing t =
∑

i∈[ℓ] ui ∈ Zn̄g , τtag-f = τtag-f [1] . . . τtag-f [L] :=

AHFf(tag-f) ∈ {0, 1}L, and d̃f :=
∑

i∈[ℓ] dki−B(τtag-f)
⊤ ·t mod q̄, where B(τtag-f) is get as per (11). Interpret

d̃f = T̄⊤df + ẽf , use the public trapdoor of Λ⊥(T̄) to compute df . Next, compute τtag = τtag[1] . . . τtag[L] :=
AHF(tag) ∈ {0, 1}L, then ztag =

∑
i∈[ℓ] yi · cti −A(τtag)

⊤ · df mod q, where A(τtag) is computed as per (12).

Interpret ztag = T⊤0 z+ e, use the public trapdoor of Λ⊥(T0) to compute z ∈ [−ℓXY, ℓXY].

Fig. 6: The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) given in [45] and our variant E with

differing details in boxes .

• Initialization and Static Corruption Queries: UponA callingExpip
A.Initialize(1

λ), B callsExpip
B .Initialize(1

λ)
to obtain

pp =
(
cp,V, V̄, (Ai,b)i∈[L],b∈{0,1}, (Bi,b)i∈[L],b∈{0,1}, t

)
.

and sends pp = (cp,V, V̄, (Ai,b)i∈[L],b∈{0,1}, (Bi,b)i∈[L],b∈{0,1}) to A. The adversary B aborts if
t /∈ [−M,M]n̄g .
In the static corruption setting, A sends up front a set C ⊂ [ℓ] of corrupted i to Expip

A.OCorrupt.
For each i ∈ C, B samples vi

$← [−M,M]n̄g , queries Expip
B .OCorrupt(i) to receive (si ∈ Zng , ti ∈

Zn̄g), defines ui := ti+vi and sends {(eki := si, ski = (si, ti,ui))}i∈C to A. Furthermore, for each
i ∈ H := [ℓ]\C, B samples vectors ui

$← [−M,M]n̄g conditioned on
∑

i∈H ui = t−
∑

i∈C(ti+vi).

49

• Encryption Queries: W.l.o.g, we assume that A will query Expip
A.OEnc(i, tag,x

(0)

i ,x(1)

i) only for

i ∈ H. In that case B queries Expip
B .OEnc(i, tag,x

(0)

i ,x(1)

i) and forwards the result to A.
• Key-Generation Queries: W.l.o.g, we assume thatA will queryExpip

A.ODKeyGen(i, tag-f,y
(0)

i ,y(1)

i)

only for i ∈ H. Then, B calls Expip
B .ODKeyGen(i, tag-f,y

(0)

i ,y(1)

i) to obtain di and sends
dki = (di,ui) to A.

• Finalize: Upon A calling Expip
A.Finalize(b

′), B calls Expip
B .Finalize(b

′).

For t =
∑

i∈[ℓ] ti with ti
$← DZn̄g ,σ̄ i.i.d, it holds that t follows the Gaussian distribution DZn̄g ,ℓ·σ̄

where the standard deviation is multiplied by a factor ℓ. By using the fact that the center of DZn̄g ,ℓ·σ̄
is 0 together with the union bound, the Chernoff-Cramér bound (Theorem 28) applied for Gaussian
random variables yields:

Pr[B aborts on t] = Pr[∃ i ∈ [ℓ] : |t[i]| ≥M] ≤ ℓ ·
(
2 exp

(
− M2

2ℓ2σ̄2

))
which is negligible in λ under the parameter choice M = λ2 · σ̄ with respect to ℓ and σ̄. In what
follows, we condition on the event that B does not abort on t. By construction the public parameters,
encryption responses, and the corrupted keys provided by B are identical to those in the experiment
Expip

A. It therefore suffices to show that the ODKeyGen responses dki = (di,ui) simulated by B
are indistinguishable from those in the experiment Expip

A. Specifically, we show that the following
distributions are statistically close

D0 :=

{
(ti,vi)

}
i∈C ;{

ui

}
i∈H; t

∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ [ℓ] : ti
$← DZn̄g ,σ̄; t :=

∑
i∈[ℓ] ti

∀i ∈ C : vi
$← [−M,M]n̄g

∀i ∈ H : ui
$← [−M,M]n̄g s.t.∑

i∈H ui = t−
∑

i∈C(ti + vi)

D1 :=

{
(ti,vi)

}
i∈C ;{

ui

}
i∈H; t

∣∣∣∣∣∣∣
∀i ∈ [ℓ] : ti

$← DZn̄g ,σ̄; t :=
∑

i∈[ℓ] ti

∀i ∈ [ℓ] : vi
$← [−M,M]n̄g

∀i ∈ H : ui := ti + vi

 ,

where D0 corresponds to the simulation of B and D1 corresponds to the responses in the experiment
Expip

A.

We recall that U(S) denotes the uniform distribution on a finite set S, and that S(ℓ, [−M,M]n̄g)
denotes the distribution that outputs vi

$← [−M,M]n̄g for i ∈ [ℓ] conditioned on
∑

i∈[ℓ] vi = 0.

W.l.o.g, we extend U([−M,M]n̄g) over [−M,M]n̄g to over Zn̄g such that for any x ∈ Zn̄g \[−M,M]n̄g

it holds PrX∼U([−M,M]n̄g)[X = x] = 0. For the ease of notation, we use boldface letters (T,U,V) to
denote collections of vectors sampled following a given distribution.

We will make use of the following lemma which is proven below.

Lemma 31. For each U ∈ ([−M,M]n̄g)|H|, we have

Pr[D1→ U] ≤ (2M + 1)n̄g

(2M + 1)n̄g|H|

(
1 +

2|H|πn̄gB
2

2σ̄2 − |H|πn̄gB2

)
+

(
1

(2M + 1)n̄g

)|H|−1

,

where B := λ · σ̄.

50

We bound the statistical distance ∆(D0, D1) as follows:

∆(D0, D1) (13)

(1)

≤ max
S⊆([−M,M]n̄g)|H|

|Pr[D1 ∈ S]− Pr[D0 ∈ S]|+ negl1(λ)

(2)

≤
∑

U∈S⊆([−M,M]n̄g)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(
Pr[D1→ U]−

(
1

(2M + 1)n̄g

)|H|−1
)

+ negl1(λ) (14)

We note that (1) follows from the definition of the statistical distance and Theorem 28, and (2)
applies the uniform choice of U in D0. Next, we use Lemma 31 and obtain from (14) that

∆(D0, D1)

≤
∑

U∈S⊆([−M,M]n̄g)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(
(2M + 1)n̄g

(2M + 1)n̄g|H| ·
(
1 +

2|H|πn̄gB
2

2σ̄2 − |H|πn̄gB2

)

+

(
1

(2M + 1)n̄g

)|H|−1

−
(

1

(2M + 1)n̄g

)|H|−1
)

+ negl1(λ)

≤
∑

U∈S⊆([−M,M]n̄g)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(2M + 1)n̄g

(2M + 1)n̄g|H| ·
(
1 +

2|H|πn̄gB
2

2σ̄2 − |H|πn̄gB2

)
+ negl1(λ)

(3)

≤
∑

U∈S⊆([−M,M]n̄g)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

1

(2M + 1)n̄g|H| · exp
(
2Mn̄g −

2|H|πn̄gB
2

|H|πn̄gB2 − 2σ̄2

)
+ negl1(λ)

≤ exp

(
2Mn̄g −

2|H|πn̄gB
2

|H|πn̄gB2 − 2σ̄2

)
+ negl1(λ) ,

where (3) uses the fact that 1 + x ≤ ex from (10). To bound negl1(λ), we can perform a similar
calculation as it is done for negl2(λ) in the proof of Lemma 31. By parameter choices |H|πn̄gB

2 =

ω(1)σ̄2 and M = o(|H|πB2), then exp
(
2Mn̄g − 2|H|πn̄gB2

|H|πn̄gB2−2σ̄2

)
is negligible in λ and the proof is

completed. ⊓⊔

We now prove the lemma.

Proof (of Lemma 31). For U ∈ ([−M,M]n̄g)|H|, noting that in D1 each ti
$← DZn̄g ,σ̄ is i.i.d by

construction, we compute

Pr[D1→ U]

≤
∑

T∈([−B,B]n̄g)|H|

V∈([−M,M]n̄g)|H|

T+V=U

Pr[∀i ∈ H : DZn̄g ,σ̄→ T[i]] · Pr[S(n, [−M,M]n̄g)→ V] + negl2(λ)

=
∑

T∈([−B,B]n̄g)|H|

V∈([−M,M]n̄g)|H|

T+V=U

 |H|∏
i=1

ρσ̄(T[i])

ρσ̄(Zn̄g)

 · (1

(2M + 1)n̄g

)|H|−1

+ negl2(λ) (15)

51

We denote the i-th vector in T by T[i] ∈ [−B,B]n̄g and write Σ := σ̄2 · I. Then evaluating the
Gaussian term gives

ρσ̄(T[i])

ρσ̄(Zn̄g)
≤ ρσ̄(T[i])

ρσ̄([−B,B]n̄g)
=

exp(−πT[i]⊤Σ-1T[i])∑
T∈[−B,B]n̄g exp(−πT⊤Σ-1T)

=
exp(−π∥T[i]∥22/σ̄2)∑

T̂∈[−B,B]n̄g exp(−π∥T̂∥22/σ̄2)

(1)

≤ exp(πn̄gB
2/σ̄2)

(2B + 1)n̄g

(2)

≤

(
1 +

2|H|πn̄gB2

2σ̄2−|H|πn̄gB2

)
(2B + 1)n̄g

1/|H|

, (16)

where (1) follows from the fact that the squared Euclidean norm ∥T[i]∥22 is bounded by n̄gB
2, and

(2) uses the inequality ex ≤
(
1 + x

n

)n+x/2
from (10). We observe that any choice of T given U fixes

V. Then plugging (16) into (15) implies

Pr[D1→ U] ≤
(
2B + 1

2M + 1

)n̄g·|H|
· (2M + 1)n̄g

(
1

(2B + 1)n̄g

)|H|
·
(
1 +

2|H|πn̄gB
2

2σ̄2 − |H|πn̄gB2

)
+ negl2(λ)

≤ (2M + 1)n̄g

(2M + 1)n̄g|H|

(
1 +

2|H|πn̄gB
2

2σ̄2 − |H|πn̄gB2

)
+ negl2(λ) . (17)

It remains to bound negl2(λ). By employing the independence of the mask V from T, we have

negl2(λ) ≤
∑

V∈([−M,M])|H|

Pr[S(ℓ, [−M,M]n̄g)→ V] · Pr[T /∈ ([−B,B]n̄g)|H|]

(3)

≤ (2M + 1)n̄g|H|
(

1

(2M + 1)n̄g

)|H|−1

· Pr[T /∈ ([−B,B]n̄g)|H|]

(4)

≤ (2M + 1)n̄g|H|
(

1

(2M + 1)n̄g

)|H|−1

· 2n̄g|H| · exp
(
− B2

2σ̄2

)
(5)

≤ exp (2Mn̄g|H|) ·
(

1

(2M + 1)n̄g

)|H|−1

· 2n̄g|H| · exp
(
− B2

2σ̄2

)
=

(
1

(2M + 1)n̄g

)|H|−1

· 2n̄g|H| · exp
(
2Mn̄g|H| −

B2

2σ̄2

)
(6)

≤
(

1

(2M + 1)n̄g

)|H|−1

,

where (3) uses the union bound over all possible values of V and the fact that it is uniformly
distributed, (4) employs the Gaussian distribution of T and Theorem 28, (5) uses the inequality
1 + x ≤ ex from (10) and (6) follows from the parameter choice M = o(B2). This concludes the
proof. ⊓⊔

C Supporting Materials – A FH-DMCFE for Inner Products

C.1 Construction

This section presents an FH-DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for the function class
F ip. We note that each client encrypts a vector padded to the same length of N ∈ N. We work in

52

Setup(1λ, 1n): Run G← GGen(1λ) and DPVSGen(G, 14N+5) for i ∈ [n] to obtain n pairs of matrices (Bi, B
∗
i) of

dimensions 4N + 5 that specify dual orthogonal bases (Bi,B
∗
i).

a Sample (s̃i)i, (t̃i)i
$← Zn

q conditioned on∑n
i=1 s̃i =

∑n
i=1 t̃i = 0. Then, output the public parameters pp := G, secret keys ski and the encryption keys

eki as follows:

ski :=
(
s̃i, (b

∗
i,1, . . . ,b

∗
i,N , B∗i,N+1, B∗i,N+2, b∗i,N+3)

)
eki :=

(
t̃i, (bi,1, . . . ,bi,N , Bi,N+1, Bi,N+2, bi,N+4)

)
.

DKeyGen(ski, tag-f,yi): Parse ski = (s̃i, (b
∗
i,1, . . . ,b

∗
i,N , B∗i,N+1, B

∗
i,N+2,b

∗
i,N+3)). Compute H2(tag-f)→ JµK2 ∈

G2 and sample πi
$← Zq. Compute and output

di =

N∑
k=1

yi[k]b
∗
i,k + (s̃iB

∗
i,N+1 +B∗i,N+2) · JµK2 + πib

∗
i,N+3

= (yi, s̃iµ, µ, πi, 0, 03N+1)B∗
i

.

Enc(eki, tag,xi): Parse eki = (t̃i, (bi,1, . . . ,bi,N , Bi,N+1, Bi,N+2,bi,N+4)). Compute H1(tag)→ JωK1 ∈ G1 and
sample a random scalar ρi

$← Zq. Finally, compute and output

ci =

N∑
k=1

xi[k]bi,1 + (Bi,N+1 + t̃iBi,N+2) · JωK1 + ρibi,N+4

= (xi, ω, t̃iω, 0, ρi, 03N+1)Bi .

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∑n

i=1 ci × di, then find and output the discrete
log out.

a For each i ∈ [n], we denote j-th row of Bi (resp. B
∗
i) by bi,j (resp. b∗i,j). Similarly, Bi,k (respectively B∗i,k)

denotes the k-th row of the basis changing matrix Bi (respectively B∗i).

Fig. 7: FH-DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for inner products. We work in the
prime-order bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q). We use two full-domain hash
functions H1 : Tag→ G1 and H2 : Tag→ G2.

the prime-order bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written
additively. We employ two full-domain hash functions H1 : Tag → G1 and H2 : Tag → G2. The
details of E are given in Fig. 7.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∑

i=1

ci × di =
n∑

i=1

q
⟨xi,yi⟩+ s̃iµω + t̃iωµ

y
t

=

t
n∑

i=1

⟨xi,yi⟩+ ωµ ·
n∑

i=1

(s̃i + t̃i)

|

t

=

t
n∑

i=1

⟨xi,yi⟩

|

t

,

and we are using the fact that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0.

Security. The formal definition of security notions for FH-DMCFE is recalled in Definition 21 in
Appendix A.3. Theorem 32 states that the scheme is weakly function-hiding, one-challenge secure
against complete queries under static corruption. Below, we argue that most restrictions on the
security model can be removed by applying a sequence of generic lemmas.

53

Theorem 32. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) in Fig. 7 for the function class
F ip is one-challenge, weakly function-hiding secure against complete queries under static corruption
in the ROM, if the SXDH assumption holds for (G1,G2).
More specifically, we let qe and qk denote the maximum number of distinct tags queried to OEnc
and OKeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we define Ji,tag and
J̃i,tag-f to be the numbers of queries of the form OEnc(i, tag, ⋆, ⋆) and OKeyGen(i, tag-f, ⋆, ⋆), and
we set J := maxi∈[n],tag∈Tag Ji,tag and J̃ := maxi∈[n],tag-f∈Tag J̃i,tag-f , respectively. Then, for any ppt
adversary A against E, we have the following bound:

Adv1chal-pos-stat-wfh
E,F ip,A (1λ) ≤

((
(qe + 1)J + (qk + 1)J̃

)
· (2N + 8) + qk + qe + 8N + 2

)
·AdvSXDH

G1,G2
(1λ)

The proof can be found in Appendix C.3, whose ideas are presented in Section 3.1. In Section 2.3,
we argue that DMCFE can be viewed as a special case of DDFE. Therefore, it is possible to apply
generic lemmas stated in the DDFE setting to DMCFE schemes, too. Specifically, we first apply
Lemma 14 to allow incomplete queries, then Lemma 5 to allow multiple challenges, and finally
Lemma 6 to guarantee (full-fledged) function-hiding. In this way, we obtain a FH-DMCFE for inner
products whose only constraint on the security model is static corruption.

Corollary 33. There exists an FH-DMCFE scheme for the function class F ip that is function-hiding
secure against static corruption under the SXDH assumption in the ROM.

C.2 Swapping Lemma

In this section we state a technical lemma that will be the basis of the security analysis of our
function-hiding IP-DMCFE. An overview on how this lemma is used can be revisited in Section 3.1.
The proof is divided into three parts. We start with an informal description of the main ideas in
Section C.4. Then we formally prove an important special case in Section C.5, followed by a full
proof of the general lemma in Section C.6.

Lemma 34 (Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomials. Let (Bi,B

∗
i),

for each i ∈ [H], be a pair of random dual bases of dimension 4N + 4 in (G1,G2,Gt, g1, g2, gt, e, q).
All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq be some public scalars. For i ∈ [H], ℓ ∈ [L]
and k ∈ [K], sample σi, σi,k, r, rℓ

$← Zq conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:

Õu: On input (ℓ, i,x(rep)

ℓ,i ,x′(rep)
ℓ,i) ∈ [L]× [H]× ZN

q × ZN
q , where rep ∈ [Ji] is a counter for the number

of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

u(rep)

ℓ,i = (x(rep)

ℓ,i , x′(rep)
ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 02N+1)Bi .

Ob
u : For b ∈ {0, 1}, on input (i,x

(j̃i)

i) ∈ [H] × ZN
q , where j̃i ∈ [J̃i] is a counter for the number of

queries of the form (i, ⋆), sample ρ
(j̃i)

i
$← Zq and output

If b = 0 : u
(j̃i)

i = (x
(j̃i)

i , 0N , r, 0, ρ
(j̃i)

i , 02N+1)Bi

If b = 1 : u
(j̃i)

i = (0N , x
(j̃i)

i , r, 0, ρ
(j̃i)

i , 02N+1)Bi .

Ov: On input (i,y
(1,ji)

i ,y
(0,ji)

i) ∈ [H] × ZN
q × ZN

q , where ji ∈ [Ji] is a counter for the number of

queries of the form (i, ⋆, ⋆), sample π
(ji)

i
$← Zq and output

v(j)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 02N+1)B∗i .

54

Õv: On inputs (k, i,y(rep)

k,i) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number of queries

of the form (k, i, ⋆), sample π(rep)

k,i
$← Zq and output

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 02N+1)B∗i .

If
∑H

i=1⟨x
(j̃i)

i ,y
(0,ji)

i ⟩ =
∑H

i=1⟨x
(j̃i)

i ,y
(1,ji)

i ⟩ for all j̃i ∈ [J̃i], ji ∈ [Ji], then the following advantage is
negligible under the SXDH assumption:∣∣∣∣∣Pr[AÕu,O0

u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (2N + 8) · J̃ ·AdvSXDH

G1,G2
(1λ)

where J̃ = maxi∈[H] J̃i and A can query the oracles Õu,Ob
u ,Ov,Õv adaptively, i.e. the queries

can be made in any order and any number of times respecting the (polynomial) upper bounds
K,L, (Ji, J̃i)i∈[H].

C.3 Proof of Security

Security The security of our scheme in Fig. 7 is proven below.

Theorem 32. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) in Fig. 7 for the function class
F ip is one-challenge, weakly function-hiding secure against complete queries under static corruption
in the ROM, if the SXDH assumption holds for (G1,G2).
More specifically, we let qe and qk denote the maximum number of distinct tags queried to OEnc
and OKeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we define Ji,tag and
J̃i,tag-f to be the numbers of queries of the form OEnc(i, tag, ⋆, ⋆) and OKeyGen(i, tag-f, ⋆, ⋆), and
we set J := maxi∈[n],tag∈Tag Ji,tag and J̃ := maxi∈[n],tag-f∈Tag J̃i,tag-f , respectively. Then, for any ppt
adversary A against E, we have the following bound:

Adv1chal-pos-stat-wfh
E,F ip,A (1λ) ≤

((
(qe + 1)J + (qk + 1)J̃

)
· (2N + 8) + qk + qe + 8N + 2

)
·AdvSXDH

G1,G2
(1λ)

Proof. The proof is done via a sequence of hybrid games. The games are depicted in Figure 8.

Game G0: This is the experiment Exp1chal-pos-stat-fh
E,F ,A (1λ) of a ppt adversary A, where b $← {0, 1}

is the challenge bit. Because we are in the one-challenge setting with static corruption, the
adversary will declare since Initialize the challenge ciphertext tag tag∗, the challenge function tag
tag-f∗ as well as the set C ⊂ [n] of corrupted clients. We define H := [n] \ C. Knowing tag∗, tag-f∗,
we index by ℓ ∈ [qe] the ℓ-th group of ciphertext components queried to OEnc for tagℓ ̸= tag∗.
Similarly, we index by k ∈ [qk] the k-th group of key components queried to OKeyGen for
tag-fk ≠ tag-f∗. For the ciphertext and key queries, challenge or not, the adversary can issue
repetitions and we index the repetition by j′ ∈ [J] (respectively j̃′ ∈ [J̃]) for the non-challenge
and by j ∈ [J] (respectively j̃ ∈ [J̃]) for the challenge ciphertext (respectively key) components,
where J, J̃ are maximum numbers of repetitions at any position i ∈ [n], over all queried tags, in
ciphertext and key components in that order.
There are 2 secret sharings of 0, namely (s̃i)i and (t̃i)i, that we generate from Initialize. For the
tag tag-fk w.r.t non-challenge functional key queries, we denote H2(tag-fk)→ JµkK2 and define

55

Game G0:
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0, H1(tagℓ) → JωℓK1, H1(tag
∗) → JωK1, H2(tag-fk) → JµkK2, H2(tag-f

∗) → JµK2,
b $← {0, 1} is the challenge bit

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ t̃iωℓ 0 ρ(j′)
ℓ,i 0N 02N+1)Bi

d(j̃′)
k,i = (yk,i s̃iµk µk π(j̃′)

k,i 0 0N 02N+1)B∗
i

c(j)

i = (x(b,j)

i ω t̃iω 0 ρ(j)

i 0N 02N+1)Bi

d(j̃)

i = (y(b,j̃)

i s̃iµ µ π(j̃)

i 0 0N 02N+1)B∗
i

Game G1:
∑n

i=1 sk,i =
∑n

i=1 si =
∑n

i=1 tℓ,i =
∑n

i=1 ti = 0 (Randomization)

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ tℓ,i 0 ρ(j′)
ℓ,i 0N 02N+1)Bi

d(j̃′)
k,i = (yk,i sk,i µk π(j̃′)

k,i 0 0N 02N+1)B∗
i

c(j)

i = (x(b,j)

i ω ti 0 ρ(j)

i 0N 02N+1)Bi

d(j̃)

i = (y(b,j̃)

i si µ π(j̃)

i 0 0N 02N+1)B∗
i

Game G2: (Subspace Indistinguishability)

d(j̃′)
k,i = (yk,i sk,i µk π(j̃′)

k,i 0 yk,i 02N+1)B∗
i

d(j̃)

i = (y(b,j̃)

i si µ π(j̃)

i 0 y(1,j̃)

i 02N+1)B∗
i

Game G3: (Swapping - Lemma 34 - over OEnc tags)

c(j′)
ℓ,i = (0N ωℓ tℓ,i 0 ρ(j′)

ℓ,i x(j′)
ℓ,i 02N+1)Bi

c(j)

i = (0N ω ti 0 ρ(j)

i x(b,j)

i 02N+1)Bi

Game G4: (Subspace Indistinguishability)

d(j̃′)
k,i = (0N sk,i µk π(j̃′)

k,i 0 yk,i 02N+1)B∗
i

d(j̃)

i = (0N si µ π(j̃)

i 0 y(1,j̃)

i 02N+1)B∗
i

Game G5: (Subspace Indistinguishability)

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ tℓ,i 0 ρ(j′)
ℓ,i x(j′)

ℓ,i 02N+1)Bi

c(j)

i = (x(1,j)

i ω ti 0 ρ(j)

i x(b,j)

i 02N+1)Bi

Game G6: (Swapping - Lemma 34 - over OKeyGen tags)

d(j̃′)
k,i = (yk,i sk,i µk π(j̃′)

k,i 0 0N 02N+1)B∗
i

d(j̃)

i = (y(1,j̃)

i si µ π(j̃)

i 0 0N 02N+1)B∗
i

Game G7: (Cleaning - Subspace Indistinguishability)

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ tℓ,i 0 ρ(j′)
ℓ,i 0N 02N+1)Bi

d(j̃′)
k,i = (yk,i sk,i µk π(j̃′)

k,i 0 0N 02N+1)B∗
i

c(j)

i = (x(1,j)

i ω ti 0 ρ(j)

i 0N 02N+1)Bi

d(j̃)

i = (y(1,j̃)

i si µ π(j̃)

i 0 0N 02N+1)B∗
i

Fig. 8: Games for proving Theorem 32

56

sk,i := µk · s̃i. Similarly, for the only challenge functional key query to KeyGen corresponding
to tag-f∗, we denote H2(tag-f

∗)→ JµK2 and define si := µ · s̃i. We remark that for all k ∈ [qk],
(sk,i)i is a secret sharing of 0, and the same holds for (si)i as well.
In the same manner, for the ℓ-th non-challenge tag tag, we write H1(tagℓ)→ JωℓK1 and tℓ,i := ωℓ · t̃i.
For the challenge tag tag∗, we denote H1(tag

∗)→ JωK1 and ti := ω · t̃i. In the end, the challenger
provides the key and ciphertext components as follows: for the challenge bit b

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, ωℓt̃i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µks̃i, µk, πk,i, 0, 0N , 02N+1)B∗i

c(j)

i = (x(b,j)

i , ω, ωt̃i, 0, ρ(j)

i , 0N , 02N+1)Bi

d(j̃)

i = (y(b,j̃)

i , µs̃i, µ, πi, 0, 0N , 02N+1)B∗i

We index by (j, j′) (respectively (j̃, j̃′)) the repetitions of challenge and non-challenge ciphertext
components (respectively key components). Note that the admissibility condition in Definition 21
requires that x(0,j)

i = x(1,j)

i (respectively y0
i = y1

i) for all queries to OEnc (respectively ODKeyGen)
where i ∈ C. All transitions, by means of basis changes in DPVS, in this proof apply only to
pairs of bases (Bi,B

∗
i) where i ∈ H. This means in particular that all basis vectors considered

in the proof are hidden from the adversary.
In the following we define event Gi = 1 to signify that “The output b′ of A satisfies b′ = b in Gi”.
We have Adv1chal-pos-stat-wfh

E,F ip
N1,...,Nn

,A
(1λ) = |Pr[G0 = 1]− 1

2 | and a probability calculation shows that for

two successive games Gi−1,Gi, |Pr[Gi = 1]− Pr[Gi−1 = 1]| is the difference in probabilities that
A outputs 1 in Gi versus that A outputs 1 in Gi−1. We now start the description of games.

Game G1: The vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, ωℓt̃i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µks̃i, µk, πk,i, 0, 0N , 02N+1)B∗i

c(j)

i = (x(b,j)

i , ω, ωt̃i, 0, ρ(j)

i , 0N , 02N+1)Bi

d(j̃)

i = (yb
i , µs̃i, µ, πi, 0, 0N , 02N+1)B∗i

In this game we replace the shifted secret shares of 0 in d(j̃)

i ,d(j̃′)
k,i (respectively ci, c

(j′)
ℓ,i), which

are si := µ · s̃i and sk,i := µk · s̃i (respectively ti := µ · t̃i and tℓ,i := ωℓ · t̃i), while H1(tag)→
JωK1 ,H1(tag)→ JωℓK1 ,H2(tag-f)→ JµK2 ,H2(tag-f)→ JµkK2 and H1,H2 are modeled as random
oracles. We proceed as follows:
G0.1: We program H1 at the points tag, (tagℓ)ℓ∈[qe] by sampling ω, ωℓ

$← Zq and setting H1(tag) :=
JωK1 ,H1(tag-f) := JωℓK1. The same programmation is done for H2. This gives a perfect
simulation and Pr[G0.1] = Pr[G0].

G0.2: We replace the shifted shares in d(j̃)

i ,d(j̃′)
k,i by random secret shares, while preserving their

sum. Our key observation is that: because we are in the static corruption model, all corrupted
i are known since the beginning. More specifically, the secret shares (s̃i)

n
i=1 are generated at

setup and
∑

i∈H s̃i = −
(∑

i∈C s̃i
)
is fixed since the beginning. Therefore, upon receiving the

challenge tag tag-f (that is declared up front by the adversary in the current one-challenge
setting) as well as all other non-challenge tags tag-fk, thanks to the programmation of the
RO from G0.1, all the sums:

R := µ
∑
i∈H

s̃i; Rk := µk

∑
i∈H

s̃i

57

are fixed in advance. We use this observation and the random-self reducibility of DDH in G2

in a sequence of hybrids G0.1.k over k ∈ [0, qk + 1] for changing the non-challenge key query

d(j̃′)
k,i under tag-fk as well as changing the challenge key query d(j̃)

i undef tag-f.

In the hybrid G0.1.k with 0 ≤ k ≤ qk, the first k non-challenge key queries d(j̃′)
k,i are having a

random secret shares over i ∈ H:

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i , µk, πk,i, 0, 0N , 02N+1)B∗i

where sk,i
$← Zq and

∑
i∈H sk,i = Rk = µk ·

∑
i∈H s̃i. In the hybrid G0.1.qk+1 we change the

challenge key query d(j̃)

i :

d(j̃)

i = (y0
i , si, µ, πi, 0, 0Ns, 02N+1)B∗i

where si
$← Zq and

∑
i∈H si = R = µ ·

∑
i∈H s̃i. We note that the secret shares are the same

for all repetitions j̃ at position i under tag-f∗, or j̃′ under tag-fk. We have G0.1.0 = G0.1 and
G0.1.qk+1 = G0.2.

We describe the transition from G0.1.k−1 to G0.1.k for k ∈ [qk + 1], using a DDH instance
(JaK2 , JbK2 , JcK2) where c − ab = 0 or a uniformly random value. Given a ppt adversary A
that can distinguish G0.1.k−1 from G0.1.k that differ at the k-th key query (being the challenge
key if k = qk + 1), we build a ppt adversary B that breaks the DDH:

– The adversary B uses JaK2 to simulate H2(tag-fk) (or H2(tag-f
∗) if we are in the last

transition to G0.1.qk+1). This implicitly sets µk := a.
– The adversary B samples s̃i

$← Zq for corrupted i, as well as other parameters to output
the corrupted keys (eki, ski) to A. Then, B computes and defines Sk := −

∑
i∈C s̃i.

– Let us denote H := |H| the number of honest i. For i among the first H − 1 honest clients
whose keys are never leaked, B uses the random-self reducibility to compute Jµks̃iK2 for

responding to the k-th key query d(j̃′)
k,i (or the challenge d(j̃)

i if k = qk + 1).
– First of all, for i among the first |H| − 1 honest, B samples αk,i, βk,i

$← Zq and implicitly
defines bk,i := αk,ib+ βk,i, ck,i := αk,ic+ βk,ia. We note that{

Jbk,iK2 = αk,i JbK2 + Jβk,iK2
Jck,iK2 = αk,i JcK2 + βk,i JaK2

are efficiently computable from the DDH instance. Then, B uses Jck,iK2 in the simulation

of d(j̃′)
k,i (or d(j̃)

i in the last hybrid).
– Next, for the last H-th honest client, B computes and defines:

Jck,HK2 := Sk · JaK2 −
∑

i∈H\{H}

Jck,iK2 (18)

where Sk is known in clear from above and other honest Jck,iK2 can be computed as
explained. The adversary B then uses Jck,HK2 to simulation the H-th key component
of the k-th key query. We emphasize that we makes use of the static corruption in the
simulation for honest i, since we never have to compute the (ck,i)i∈H in the clear and can
embed the DDH instance so that on the exponents (of group elements) they sum to Sk.

It can be verified that if c− ab = 0, then B is simulating the k-th query where B simulates
d(j̃′)
k,i [N + 1] = µks̃i := abk,i and we are in G0.1.k−1; Else d(j̃′)

k,i [N + 1] = sk,i := ck,i is a totally

58

uniformly random value such that
∑

i∈H ck,i + µk
∑

i∈C s̃i = aSk + µk
∑

i∈C s̃i = 0 thanks
to (18) and the definition of Sk.

In the end we have |Pr[G0.1.k−1 = 1]− Pr[G0.1.k = 1]| ≤ AdvDDH
G2

(1λ) and thus |Pr[G0.2 =

1]− Pr[G0.1 = 1]| ≤ (qk + 1) ·AdvDDH
G2

(1λ).

G0.3: We replace the shifted shares ωt̃i, ωℓt̃i in c(j)

i , c(j′)
ℓ,i by random secret shares ti, tℓ,i for i ∈ H,

while preserving their sum. We recall that because multiple queries, even for the same i ∈ [n],
are authorized for the challenge ciphertext, the same ωt̃i (replaced by ti) will be used for all
c(j)

i for all j. The random secret shares ti, tℓ,i
$← Zq satisfy:

∑
i∈H

ti = ω
∑
i∈H

t̃i;
∑
i∈H

tℓ,i = ωℓ

∑
i∈H

t̃i

where
∑

i∈H t̃i is fixed from the beginning due to the static corruption setting, and the
challenge tag is declared up front in the current one-challenge setting. We use the same
argument as from G0.1 to G0.2, using DDH in G1 and with (qe + 2) hybrids (to change qe
non-challenge ciphertext queries then the 1 challenge ciphertext). This gives us |Pr[G0.3 =
1]− Pr[G0.2 = 1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ).

After arriving at G0.3 the vectors are now having the form:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i , 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi ; d(j̃′)

k,i = (y(j̃′)
k,i , sk,i , µk, πk,i, 0, 0N , 02N+1)B∗i

c(j)

i = (x(0,j)

i , ω, ti , 0, ρ(j)

i , 0N , 02N+1)Bi ; d(j̃)

i = (y0
i , si , µ, πi, 0, 0N , 02N+1)B∗i

as desired in G1. As a result G0.3 = G1 and the total difference in advantages is |Pr[G1 =
1]− Pr[G0 = 1]| ≤ (qk + 1) ·AdvDDH

G2
(1λ) + (qe + 1) ·AdvDDH

G1
(1λ).

Game G2: We use DSDH in G2 to make y(j̃′)
k,i appear in coordinates [N + 5, 2N + 4] of d(j̃′)

k,i , as well

as y(1,j̃)

i in coordinates [N + 5, 2N + 4] of d(j̃)

i . This is of type computational basis changes that
is reviewed in Appendix A.2, the calculation stays the same where we use DSDH to introduced
fixed instead of random values.

We proceed by a sequence of N + 1 hybrids, indexed by m ∈ [0, N], such that the first hybrid of
m = 0 is identical to G1 and for m ≥ 1 in the m-th hybrid the first coordinates [N +5, N +4+m]

of d(j̃′)
k,i ,d

(j̃)

i are modified. For m ∈ [N], the transition from the (m− 1)-th hybrid to the m-th
hybrid is described below. Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is
either 0 or 1, the bases (Bi,B

∗
i) are changed following:

Bi =

 1 0

−a 1

N+3,N+4+m

·Hi; B∗
i =

1 a

0 1

N+3,N+4+m

·H∗
i .

59

The bases B∗
i can be computed using JaK2 and the key components can be written as follows:

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, µk, π(j̃′)
k,i , 0, y(j̃′)

k,i [1], ..,y
(j̃′)
k,i [m− 1], 0, .., 0︸ ︷︷ ︸

last (N−m+1)-th coords are 0

, 02N+1)B∗i

+ (0N+2, by(j̃′)
k,i [m], 0, 0, .., 0, cy(j̃′)

k,i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among N

, 02N+1)H∗i

= (y(j̃′)
k,i , sk,i, µk, π(j̃′)

k,i + by(j̃′)
k,i [m], 0, y(j̃′)

k,i [1], ..,y
(j̃′)
k,i [m− 1], δy(j̃′)

k,i [m], .., 0︸ ︷︷ ︸
last (N−m)-th coords are 0

, 02N+1)B∗i

d(j̃)

i = (y(b,j̃)

i , si, µ, π(j̃)

i , 0, y(1,j̃)

i [1], ..,y(1,j̃)

i [m− 1], 0, .., 0︸ ︷︷ ︸
last (N−m+1)-th coords are 0

, 02N+1)B∗i

+ (0N+2, by(1,j̃)

i [m], 0, 0, .., 0, cy(1,j̃)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among N

, 02N+1)H∗i

= (y(b,j̃)

i , si, µ, π(j̃)

i + by(1,j̃)

i [m], 0, y(1,j̃)

i [1], ..,y(1,j̃)

i [m− 1], δy(1,j̃)

i [m], .., 0︸ ︷︷ ︸
last (N−m)-th coords are 0

, 02N+1)B∗i .

We update (π(j̃′)
k,i , π

(j̃)

i) to (π(j̃′)
k,i + by(j̃′)

k,i [m], π(j̃)

i + by(1,j̃)

i [m]). Even though bi,N+1+m cannot be
computed due to the lack of JaK1, the simulator can write the c-vectors in Hi to observe how
they are affected:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Hi

= (x(j′)
ℓ,i , ωℓ, tℓ,i, 0 + 0 · a, ρ(j′)

ℓ,i , 0N , 02N+1)Bi

= (x(j′)
ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)

ℓ,i , 0N , 02N+1)Bi

c(j)

i = (x(b,j)

i , ω, ti, 0, ρ(j)

i , 0N , 02N+1)Hi

= (x(b,j)

i , ω, ti, 0, ρ(j)

i , 0N , 02N+1)Bi .

If δ = 0 we are in the (m− 1)-th hybrid, else we are in the m-th hybrid. Totally, we proceed for
all i ∈ H in parallel, after N transitions we arrive at G3 and obtain |Pr[G2 = 1]− Pr[G1 = 1]| ≤
2N ·AdvDDH

G2
(1λ).

Game G3: After G2 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, µk, π(j̃′)
k,i , 0, y(j̃′)

k,i , 02N+1)B∗i

c(j)

i = (x(b,j)

i , ω, ti, 0, ρ(j)

i , 0N , 02N+1)Bi

d(j̃)

i = (y(b,j̃)

i , si, µ, π(j̃)

i , 0, y(1,j̃)

i , 02N+1)B∗i .

We now swap x(b,j)

i ,x(j′)
ℓ,i from coordinates [1, N] to coordinates [N + 5, 2N + 4] in c(j)

i , c(j′)
ℓ,i ,

respectively. This can be done by a sequence of qe + 2 hybrids over the qe distinct tags tagℓ to
OEnc and the only challenge tag tag∗ that is declared at the beginning of the one-challenge
game. The first hybrid is the same as G3. The transition between each hybrid is done by an
application of Lemma 34. We first swap the challenge c(j)

i , then swap the non-challenge c(j′)
ℓ,i one

after another on an ordering over ωℓ, e.g. their order of appearances. We verify the constraints
required by Lemma 34.
Swapping the challenge x(b,j)

i :

60

• First of all, thanks to the weakly function-hiding admissibility (condition 3 that is concretely
interpreted for inner products): for all j ∈ [J], j̃ ∈ [J̃]

∑
i∈H
⟨x(b,j)

i ,y(b,j̃)

i − y(1,j̃)

i ⟩ (1)=
n∑

i=1

⟨x(b,j)

i ,y(b,j̃)

i − y(1,j̃)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge keys satisfy y(0,j̃)

i = y(1,j̃)

i ,
and (2) comes from the weakly function-hiding. This provides the conditions for the application
of Lemma 34.

• The sets of vectors, listed in the order of the lemma’s oracles, are ((c(j′)
ℓ,i)

j′∈[J]
i∈H , (c(j)

i)
j∈[J]
i∈H ,

(d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk]). The constants will be R =

∑
i∈H si, Rk =

∑
i∈H sk,i for k ∈ [qk],

known thanks to the static corruption. The 4N + 4 coordinates affected, in the order
w.r.t the statement of Lemma 34 so that they form a subspace of dimension 4N + 4, are
([1, N], [N + 5, 2N + 4], N + 1, N + 3, N + 4, [2N + 5, 4N + 5]).

In the end, the security loss for this swapping is bounded by (2N + 8) · J ·AdvSXDH
G1,G2

(1λ).

Swapping the non-challenge x(j′)
ℓ,i :

• First of all, thanks to the weakly function-hiding admissibility (condition 3 that is concretely
interpreted for inner products): for all j′ ∈ [J], j̃ ∈ [J̃]

H∑
i=1

⟨x(j′)
ℓ,i ,y

(b,j̃)

i − y(1,j̃)

i ⟩ (1)=
n∑

i=1

⟨x(j′)
ℓ,i ,y

(b,j̃)

i − y(1,j̃)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge keys satisfy y(0,j̃)

i = y(1,j̃)

i ,

and (2) comes from the weakly function-hiding while treating x(j′)
ℓ,i as the challenge. This

provides the conditions for the application of Lemma 34.
• The sets of vectors, listed in the order of the lemma’s oracles, are ((c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H ,

(d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk]). The constants will be R =

∑
i∈H si, Rk =

∑
i∈H sk,i for k ∈ [qk],

known thanks to the static corruption. The 4N + 4 coordinates affected, in the order
w.r.t the statement of Lemma 34 so that they form a subspace of dimension 4N + 4, are
([1, N], [N + 5, 2N + 4], N + 1, N + 3, N + 4, [2N + 5, 4N + 5]).

Finally, the security loss for each swap over the qe non-challenge tags tagℓ ̸= tag∗ to OEnc is
upper bounded by: (2N + 8) · J ·AdvSXDH

G1,G2
(1λ). In total, we have |Pr[G3 = 1]− Pr[G2 = 1]| ≤

(qe +1) · (2N +8) · J ·AdvSXDH
G1,G2

(1λ) in which N is recalled to be the length of vectors encrypted
by clients.

Game G4: After G3 the vectors are now:

c(j′)
ℓ,i = (0N , ωℓ, tℓ,i, 0, ρ(j′)

ℓ,i , x(j′)
ℓ,i , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, µk, π(j̃′)
k,i , 0, y(j̃′)

k,i , 02N+1)B∗i

c(j)

i = (0N , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Bi

d(j̃)

i = (y(b,j̃)

i , si, µ, π(j̃)

i , 0, y(1,j̃)

i , 02N+1)B∗i .

In this G4, we use DSDH to clean y(j̃′)
k,i in coordinates [1, N] of d(j̃′)

k,i , as well as y
(b,j̃)

i in coordinates

[1, N] of d(j̃)

i .
We again exploit the randomness at coordinate (N + 3) of the d-vectors and proceed by a
sequence of N +1 hybrids, indexed by m ∈ [0, N], such that the first hybrid for m = 0 is identical

61

to G3 while in the m-th hybrid the first coordinates [1,m] of d(j̃′),d(j̃)

i are modified, for m ≥ 1.
For m ∈ [N], the transition from the (m− 1)-th hybrid to the m-th hybrid can be done by a
computational basis change using a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is
either 0 or 1. The bases (Bi,B

∗
i) are changed following:

Bi =

1 a

0 1

m,N+3

·Hi; B∗
i =

 1 0

−a 1

m,N+3

·H∗
i .

The basis B∗
i can be computed using JaK2 and the d-vectors are simulated below:

d(j̃′)
k,i = (0, .., 0,y(j̃′)

k,i [m], ..,y(j̃′)
k,i [N]︸ ︷︷ ︸

first (m−1)-th coords are 0

, sk,i, µk, π(j̃′)
k,i , 0, y(j̃′)

k,i , 02N+1)B∗i

+ (0, .., 0,−cy(j̃′)
k,i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among N

, 02, by(j̃′)
k,i [m], 0, 03N+1)H∗i

= (0, .., 0,y(j̃′)
k,i [m]− δy(j̃′)

k,i [m], ..,y(j̃′)
k,i [N]︸ ︷︷ ︸

first (m−1)-th coords are 0

, sk,i, µk, π(j̃′)
k,i + by(j̃′)

k,i [m], 0, y(j̃′)
k,i , 02N+1)B∗i

d(j̃)

i = (0, .., 0,y(b,j̃)

i [m], ..,y(b,j̃)

i [N]︸ ︷︷ ︸
first (m−1)-th coords are 0

, si, µ, π(j̃)

i , 0, y(1,j̃)

i , 02N+1)B∗i

+ (0, .., 0,−cy(b,j̃)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among N

, 02, by(b,j̃)

i [m], 0, 03N+1)H∗i

= (0, .., 0,y(b,j̃)

i [m]− δy(b,j̃)

i [m], ..,y(b,j̃)

i [N]︸ ︷︷ ︸
first (m−1)-th coords are 0

, sk,i, µk, π(j̃′)
k,i + by(b,j̃)

i [m], 0, y(1,j̃)

i , 02N+1)B∗i .

Even though we cannot compute bi,m due to the lack of JaK1, the c-vectors can be written
directly in H∗

i :

c(j′)
ℓ,i = (0N , ωℓ, tℓ,i, 0, ρ(j′)

ℓ,i , x(j′)
ℓ,i , 02N+1)Hi

= (0N , ωℓ, tℓ,i, 0− a · 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N+1)Bi

= (0N , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N+1)Bi

c(j)

i = (0N , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Hi

= (0N , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Bi .

If δ = 0 we are in the (m − 1)-th hybrid, else we are in the m-th hybrid. Totally, after N
transitions we arrive at G4 and obtain |Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2N ·AdvDDH

G2
(1λ).

Game G5: After G4 the vectors are now:

c(j′)
ℓ,i = (0N , ωℓ, tℓ,i, 0, ρ(j′)

ℓ,i , x(j′)
ℓ,i , 02N+1)Bi

d(j̃′)
k,i = (0N , sk,i, µk, π(j̃′)

k,i , 0, y(j̃′)
k,i , 02N+1)B∗i

c(j)

i = (0N , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Bi

d(j̃)

i = (0N , si, µ, π(j̃)

i , 0, y(1,j̃)

i , 02N+1)B∗i .

We use DSDH in G1 to make x(j′)
ℓ,i appear in coordinates [1, N] of c(j′)

ℓ,i , as well as x(1,j)

i in

coordinates [1, N] of c(j)

i . This is of type computational basis changes that is reviewed in

62

Appendix A.2, the calculation stays the same where we use DSDH to introduced fixed instead of
random values.
We exploit the randomness at coordinate (N + 4) of the c-vectors and proceed by a sequence
of N + 1 hybrids, indexed by m ∈ [0, N], such that the first hybrid for m = 0 is identical to

G4 while in the m-th hybrid the first coordinates [1,m] of c(j′)
ℓ,i , c

(j)

i are modified, for m ≥ 1.
For m ∈ [N], the transition from the (m− 1)-th hybrid to the m-th hybrid can be done by a
computational basis change using a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is
either 0 or 1. The bases (Bi,B

∗
i) are changed following:

Bi =

1 0

a 1

m,N+4

·Hi; B∗
i =

1 −a
0 1

m,N+4

·H∗
i .

The calculation can be adapted from that in the transitions from G1 to G2, except that now we will
do it dually for the c-vectors in the basis change fromHi toBi. TheBi can be computed using JaK1.
Even though we cannot compute b∗

i,m due to the lack of JaK2, the d-vectors can be written directly
in H∗

i and stay invariant thanks to the fact that their coordinates [1, N] are all 0 after G4. Totally,
after N transitions we arrive at G5 and obtain |Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2N ·AdvDDH

G1
(1λ).

Game G6: After G5 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N+1)Bi

d(j̃′)
k,i = (0N , sk,i, µk, π(j̃′)

k,i , 0, y(j̃′)
k,i , 02N+1)B∗i

c(j)

i = (x(1,j)

i , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Bi

d(j̃)

i = (0N , si, µ, π(j̃)

i , 0, y(1,j̃)

i , 02N+1)B∗i .

We apply Lemma 34 to swap y(1,j̃)

i ,y(j̃′)
k,i from coordinates [N +5, 2N +4] to coordinates [1, N] of

vectors d(j̃)

i ,d(j̃′)
k,i . This can be done by a sequence of qk+2 hybrids over the qk distinct tags tag-fk

to OKeyGen and the only challenge tag tag-f that is declared at the beginning of the one-challenge
game. The first hybrid is the same as G5. The transition between each hybrid is done by an
application of Lemma 34. We first swap the challenge d(j̃)

i , then swap the non-challenge d(j̃′)
k,i one

after another on an ordering over µk, e.g. their order of appearances. We verify the constraints
required by Lemma 34.

Swapping the challenge y(1,j̃)

i :
• First of all, thanks to the weakly function-hiding admissibility (condition 3 that is concretely
interpreted for inner products): for all j ∈ [J], j̃ ∈ [J̃]∑

i∈H
⟨y(1,j̃)

i ,x(b,j)

i − x(1,j)

i ⟩ (1)=
n∑

i=1

⟨y(1,j̃)

i ,x(b,j)

i − x(1,j)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge messages satisfy x(b,j)

i =
x(1,j)

i , and (2) comes from the weakly function-hiding. This provides the conditions for the
application of Lemma 34.

• The sets of vectors, listed in the order of the lemma’s oracles, are ((d(j̃′)
k,i)

j̃′∈[J]
i∈H,k∈[qk], (d

(j̃)

i)
j̃∈[J]
i∈H ,

(c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H). The constants will be R =

∑
i∈H ti, Rℓ =

∑
i∈H µℓ,i for ℓ ∈ [qe],

known thanks to the static corruption. The 4N + 4 coordinates affected, in the order
w.r.t the statement of Lemma 34 so that they form a subspace of dimension 4N + 4, are
([N + 5, 2N + 4], [1, N], N + 2, N + 4, N + 3, [2N + 5, 4N + 5]).

63

Finally this swap incurs a security loss upper bounded by (2N + 8) · J̃ ·AdvSXDH
G1,G2

(1λ).

Swapping the non-challenge y(j̃′)
k,i :

• First of all, thanks to the weakly function-hiding admissibility (condition 3 that is concretely
interpreted for inner products): for all j ∈ [J], j̃′ ∈ [J̃]

H∑
i=1

⟨y(j̃′)
k,i ,x

(b,j)

i − x(1,j)

i ⟩ (1)=
n∑

i=1

⟨y(j̃′)
k,i ,x

(b,j)

i − x(1,j)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge messages satisfy x(b,j)

i =
x(1,j)

i , and (2) comes from the weakly function-hiding. This provides the conditions for the
application of Lemma 34.

• The sets of vectors, listed in the order of the lemma’s oracles, are ((d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk],

(c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H). The constants will be R =

∑
i∈H ti, Rℓ =

∑
i∈H µℓ,i for ℓ ∈ [qe],

known thanks to the static corruption. The 4N + 4 coordinates affected, in the order
w.r.t the statement of Lemma 34 so that they form a subspace of dimension 4N + 4, are
([N + 5, 2N + 4], [1, N], N + 2, N + 4, N + 3, [2N + 5, 4N + 5]).

Finally, the security loss for each swap over the qe non-challenge tags to OEnc is upper bounded
by: (2N + 8) · J̃ ·AdvSXDH

G1,G2
(1λ). In total, we have |Pr[G6 = 1]− Pr[G5 = 1]| ≤ (qk + 1) · (2N +

8) · J̃ ·AdvSXDH
G1,G2

(1λ) in which N is recalled to be the length of vectors encrypted by clients.
Game G7: After G6 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, µk, π(j̃′)
k,i , 0, 0N , 02N+1)B∗i

c(j)

i = (x(1,j)

i , ω, ti, 0, ρ(j)

i , x(b,j)

i , 02N+1)Bi

d(j̃)

i = (y(1,j̃)

i , si, µ, π(j̃)

i , 0, 0N , 02N+1)B∗i .

We perform some cleanings to make the vectors independent of b. We use DSDH in G1 to clean
x(j′)
ℓ,i in coordinates [N + 5, 2N + 4] of c(j′)

ℓ,i , as well as x
(b,j)

i in coordinates [N + 5, 2N + 4] of c(j)

i .
This is of type computational basis changes that is reviewed in Appendix A.2, the calculation
stays the same where we use DSDH to introduced fixed instead of random values.
We exploit the randomness at coordinate (N + 4) of the c-vectors and proceed by a sequence of
N + 1 hybrids, indexed by m ∈ [0, N], such that the first hybrid for m = 0 is identical to G6

while in the m-th hybrid the coordinates [N + 5, N + 4+m] of c(j′)
ℓ,i , c

(j)

i are modified, for m ≥ 1.
For m ∈ [N], the transition from the (m− 1)-th hybrid to the m-th hybrid can be done by a
computational basis change using a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is
either 0 or 1. The bases (Bi,B

∗
i) are changed following:

Bi =

1 −a
0 1

N+4,N+4+m

·Hi; B∗
i =

1 0

a 1

N+4,N+4+m

·H∗
i .

The calculation can be adapted from that in the transitions from G3 to G4, except that now
we will do the cleaning dually for the c-vectors w.r.t the basis change from Hi to Bi. The Bi

can be computed using JaK1. Even though we cannot compute b∗
i,m due to the lack of JaK2,

the d-vectors can be written directly in H∗
i and stay invariant thanks to the fact that their

coordinates [N + 5, 2N + 4] are all 0 after G6. Totally, after N transitions we arrive at G7 and
obtain |Pr[G7 = 1]− Pr[G6 = 1]| ≤ 2N ·AdvDDH

G1
(1λ).

64

In the end, we clean the coordinates and the vectors become

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, tℓ,i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, µk, π(j̃′)
k,i , 0, 0N , 02N+1)B∗i

c(j)

i = (x(1,j)

i , ω, ti, 0, ρ(j)

i , 0N , 02N+1)Bi

d(j̃)

i = (y(1,j̃)

i , si, µ, π(j̃)

i , 0, 0N , 02N+1)B∗i

and they do not depend on the challenge bit b $← {0, 1} anymore and Pr[G7 = 1] = 1/2. The
difference in advantages is

Adv1chal-pos-stat-wfh

E,F ip
N1,...,Nn

,A
(1λ) = |Pr[G0 = 1]− 1

2
|

= |Pr[G0 = 1]− Pr[G7 = 1]|

≤
7∑

i=1

|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤
((

(qe + 1)J + (qk + 1)J̃
)
· (2N + 8) + qk + qe + 8N + 2

)
·AdvSXDH

G1,G2
(1λ)

and the proof is completed. ⊓⊔

C.4 Technical Overview of the Swapping Lemma 34

Lemma 34 (Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomials. Let (Bi,B

∗
i),

for each i ∈ [H], be a pair of random dual bases of dimension 4N + 4 in (G1,G2,Gt, g1, g2, gt, e, q).
All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq be some public scalars. For i ∈ [H], ℓ ∈ [L]
and k ∈ [K], sample σi, σi,k, r, rℓ

$← Zq conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:

Õu: On input (ℓ, i,x(rep)

ℓ,i ,x′(rep)
ℓ,i) ∈ [L]× [H]× ZN

q × ZN
q , where rep ∈ [Ji] is a counter for the number

of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

u(rep)

ℓ,i = (x(rep)

ℓ,i , x′(rep)
ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 02N+1)Bi .

Ob
u : For b ∈ {0, 1}, on input (i,x

(j̃i)

i) ∈ [H] × ZN
q , where j̃i ∈ [J̃i] is a counter for the number of

queries of the form (i, ⋆), sample ρ
(j̃i)

i
$← Zq and output

If b = 0 : u
(j̃i)

i = (x
(j̃i)

i , 0N , r, 0, ρ
(j̃i)

i , 02N+1)Bi

If b = 1 : u
(j̃i)

i = (0N , x
(j̃i)

i , r, 0, ρ
(j̃i)

i , 02N+1)Bi .

Ov: On input (i,y
(1,ji)

i ,y
(0,ji)

i) ∈ [H] × ZN
q × ZN

q , where ji ∈ [Ji] is a counter for the number of

queries of the form (i, ⋆, ⋆), sample π
(ji)

i
$← Zq and output

v(j)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 02N+1)B∗i .

Õv: On inputs (k, i,y(rep)

k,i) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number of queries

of the form (k, i, ⋆), sample π(rep)

k,i
$← Zq and output

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 02N+1)B∗i .

65

If
∑H

i=1⟨x
(j̃i)

i ,y
(0,ji)

i ⟩ =
∑H

i=1⟨x
(j̃i)

i ,y
(1,ji)

i ⟩ for all j̃i ∈ [J̃i], ji ∈ [Ji], then the following advantage is
negligible under the SXDH assumption:∣∣∣∣∣Pr[AÕu,O0

u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (2N + 8) · J̃ ·AdvSXDH

G1,G2
(1λ)

where J̃ = maxi∈[H] J̃i and A can query the oracles Õu,Ob
u ,Ov,Õv adaptively, i.e. the queries

can be made in any order and any number of times respecting the (polynomial) upper bounds
K,L, (Ji, J̃i)i∈[H].

The proof is done via a sequence of hybrids over the repetitions j̃ ∈ [J̃] where we separate the
repetition u(j̃)

i (if J̃i < j̃ there is no change on ui) into isolated coordinates then apply a lemma

that treats the fundamental case where J̃ = 1 (Lemma 35). A full proof of the general Lemma 34
can be found in Appendix C.6. Below we give the main ideas for the simpler case J̃ = 1.

Proof (Main ideas for Lemma 35). The sequence of games is given in Figure 9. We explain the
main steps in our proof as follows, where details about formal and computational basis changes
can be revised from the examples in Basis changes of Appendix A.2. We start from the game
where the sample given to the adversary A follows D0 and the changes on vectors throughout the
games are put in boxes. We omit the index of repetitions over (ui)i, because J̃ = 1, for the ease of
presentation. For each i ∈ [H], the value Ji denotes the maximum number of possible repetitions
(u(rep)

ℓ,i)rep, (v
(j)

i)j , and (v(rep)

k,i)rep, indexed by rep and j over all ℓ, k.
Our first step is to exploit the fact that r $← Zq is a uniformly random value and for each j ∈ [J]
all the secret shares σi in v(j)

i sum to a known constant R. This helps us perform a computational
basis change on (Bi,B

∗
i) and introduce a value r′ $← Z∗

q in ui[4Ni + 4] as well as a random secret

sharing of 0, common for j ∈ [J], namely (τi)
H
i=1, in (v(j)

i [4Ni + 4])Hi=1.

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni τi)B∗i

We use the hypothesis that all basis vectors are kept secret so that the computational basis change
using DDH cannot be detected by the adversary. More details can be found in the transition G0 → G1.
After G1, we perform a formal duplication to go to G2 in which we duplicate coordinates [1, Ni], [Ni+
1, 2Ni] to [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] in vectors v(j)

i ,v(rep)

k,i for all i ∈ [H], k ∈ [K], j ∈ [J].

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗i

The duplication is done for all vectors v(j)

i ,v(rep)

k,i also across all repetitions rep ∈ [J]. On a more

technical detail, this formal basis change will affect all vectors u(rep)

ℓ,i ,ui as well, also across all
repetitions rep ∈ [J]. Roughly speaking, by the duality of (Bi,B

∗
i), this basis change will incur

66

Game G0: The vectors are sampled according to D0.

Game G1: (Random 0-Secret Sharing) ∀ j ∈ [J] :
∑H

i=1 τi = 0

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 0Ni 0Ni 0)B∗
i

Game G2: (Formal Duplication from coordinates [1, Ni], [Ni + 1, 2Ni] to [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] in B∗i)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G3: (Computational Swapping between [1, Ni] and [2Ni + 4, 3Ni + 3] in ui using (2Ni + 3)-randomness in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi xi 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Inside a complexity leveraging argument:
Game G4: (Formal Quotient on coordinates [2Ni + 4, 4Ni + 3] in Bi)

u(rep)

ℓ,i = (· · · 0Ni 0Ni 0)Bi

ui = (· · · 1Ni 0Ni r′)Bi

v(j)

i = (· · · (xi[m]y(1,j)

i [m])m (xi[m]y(0,j)

i [m])m τi)B∗
i

v(rep)

k,i = (· · · (xi[m]y(rep)

k,i [m])m (xi[m]y(rep)

k,i [m])m 0)B∗
i

Game G5: ∆y(j)

i := y(1,j)

i − y(0,j)

i , τ̃i := τi +
1
r′ ⟨xi,∆y(j)

i ⟩ (Formal Swapping)

u(rep)

ℓ,i = (· · · 0Ni 0Ni 0)Bi

ui = (· · · 0Ni 1Ni r′)Bi

v(j)

i = (· · · (xi[m]y(1,j)

i [m])m (xi[m]y(0,j)

i [m])m τ̃i)B∗
i

v(rep)

k,i = (· · · (xi[m]y(rep)

k,i [m])m (xi[m]y(rep)

k,i [m])m 0)B∗
i

Game G6: (Formal Quotient on coordinates [2Ni + 4, 4Ni + 3] in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi 0Ni xi r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G7: (Computational Swapping between [1, Ni] and [3Ni + 4, 4Ni + 3] in ui using (2Ni + 3)-randomness in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni xi r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G8: Undo G2, G1 (Cleaning) – Vectors sampled according to D1.

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni xi r 0 ρi 0Ni 0Ni 0)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni 0)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 0Ni 0Ni 0)B∗
i

Fig. 9: Games for proving Lemma 34 in the particular case where J̃ = 1. We omit the index of
repetitions over (ui)i for the ease of presentation.

67

“moving” coordinates [2Ni +4, 3Ni +3], [3Ni +4, 4Ni +3] to [1, Ni], [Ni +1, 2Ni] in the u-vectors. In
this simple G1 → G2 the moved coordinates contain 0 and that poses no problems. All calculation
can be found in the full proof of Appendix C.5.
After G2, we perform a computational basis change under SXDH in order to swap between [1, Ni]
and [2Ni + 4, 3Ni + 3] in ui. The randomness is taken from ρi at coordinate 2Ni + 3 in ui.

ui = (0Ni 0Ni r 0 ρi xi 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗i

.

We remark that this change preserves the products ui × v(j)

i and ui × v(rep)

k,i for all k ∈ [K], j ∈ [J]
necessarily for the indistinguishability. Moreover, the computational basis change allows us to target
only the vectors (ui)i∈[H] while maintaining u(rep)

ℓ,i for ℓ ∈ [L], i ∈ [H] intact.
Upon reaching G3, we obtain the necessary ingredients for our proof. A formal basis change maintains
identical views for the adversary in two games, allowing a complexity leveraging argument. This
argument aims to demonstrate that the adversary’s views over two hybrids are perfectly identical,
resulting in a 0 difference in winning advantages under efficient simulation. Principally a complexity
argument consists of a formal argument on top of two identical variants of hybrids, which are usually
their selective variants, and yields a security loss of 0. Formal basis changes provide a way to link
underlying selective variants that require identical views. The formal changes highlight DPVS’s
information-theoretic properties, as discussed in Basis changes of Appendix A.2. However, the
primary obstacle is handling the modification of all vectors under basis changes.
We now explain the sequence of games on which the complexity leveraging is applied. We want to
perform some sort of swapping between coordinates [2Ni + 4, 3Ni + 3] and [3Ni + 4, 4Ni + 3] of ui

and reach G6 whose vectors are:

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi 0Ni xi r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗i .

The complexity leveraging will be applied to the selective versions G∗
3 → G∗

4 → G∗
5 → G∗

6 and only
formal basis changes will be used in between. In these selective versions the simulator guesses the

values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

and the hybrids are conditioned on a “good” event that happens
with fixed probability. This leads to an identical adversary’s view:

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (19)

We briefly highlight the selective games’ ideas below:

• In G∗
3 → G∗

4 a formal basis change is applied to do a quotient by xi[k] for k ∈ [ni] over
all coordinates [2Ni + 4, 3Ni + 3] as well as [3Ni + 4, 4Ni + 3] of v-vectors. There are some
technicalities when defining the basis matrices to ignore the quotient when xi[k] = 0 and we
refer to equation (22) in the proof for more details.

• Then, in G∗
4 → G∗

5, we define a formal basis change that uses the fixed randomness r′ ∈ Z∗
q in

ui[4Ni + 4] (introduced from G1) to switch 1 to 0 at coordinates [2Ni + 4, 3Ni + 3] and 0 to 1 at
coordinates [3Ni + 4, 4Ni + 3] of all ui. The matrix definition is given in equation (23). We note
that unlike ui, the vectors u(rep)

ℓ,i stay invariant because u(rep)

ℓ,i [4Ni + 4] = 0.

68

– Dually, all v-vectors will be altered such that the accumulated differences
∑Ni

k=1(v
(j)

i [2Ni +
3+k]−v(j)

i [3Ni+3+k]) will be added to v(j)

i [4Ni+4]. For v(rep)

k,i we have v(rep)

k,i [2Ni+3+k] =

v(rep)

k,i [3Ni + 3 + k] and those differences are all 0, no matter which repetition rep. The real

challenge comes from the fact that we have one set of (ui)
H
i=1 but multiple sets of (v(j)

i)Hi=1

for each j ∈ [J], i.e. for a given k ∈ [Ni], the difference v(j)

i [2Ni +3+ k]−v(j)

i [3Ni +3+ k] =
xi∆y(j)

i [k], where ∆y(j)

i [k] := y(1,j)

i [k]− y(0,j)

i [k], can be non-zero.
– We note that for each i ∈ [H], for all j ∈ [J], the term ⟨xi, ∆y(j)

i ⟩ =
∑

k∈[Ni]
xi∆y(j)

i [k] is a

constant. Otherwise there exists ∅ ̸= I ′ ⊆ [H] and j′, j′′ ∈ [J] so that∑
i∈I′
⟨xi, ∆y(j′)

i ⟩ ≠
∑
i∈I′
⟨xi, ∆y(j′′)

i ⟩

while ∑
i∈[H]\I′

⟨xi, ∆y(j′)
i ⟩ =

∑
i∈[H]\I′

⟨xi, ∆y(j′′)
i ⟩ ,

which contradicts the hypothesis that
∑H

i=1⟨xi,y
(0,j)

i ⟩ =
∑H

i=1⟨xi,y
(1,j)

i ⟩ for any j ∈ [J].
– It is at this point that we need to use the secret sharing (τi)

H
i=1 of 0 in (v(j)

i [4Ni + 4])Hi=1

(introduced from G1) as well as the above observation that for each i ∈ [H], for all j ∈ [J], the
term ⟨xi, ∆y(j)

i ⟩ is constant. More specifically, adding
∑Ni

k=1(v
(j)

i [2Ni+3+k]−v(j)

i [3Ni+3+k])
meaning adding a fixed multiple of ⟨xi, ∆y(j)

i ⟩ to τi, which is constant for whatever j. This
fixed multiple of a constant ⟨xi, ∆y(j)

i ⟩ over j still keeps it a sharing of 0 over all i ∈ [H] and
the new τ̃i still does not depend on j:∑

i∈[H]

(τi + ⟨xi, ∆y(j)

i ⟩) =
∑
i∈[H]

τi +
∑
i∈[H]

⟨xi, ∆y(j)

i ⟩ = 0 .

This “fixed multiple” depends only on r′ $← Z∗
q (introduced from G1) and thus preserves the

distribution of (τi)
H
i=1.

• Finally, in G∗
5 → G∗

6 we redo the quotient, still being in the selective variants conditioned on the
“good” event.

The probability calculation (see footnote 11) of the complexity leveraging makes use of the fact
that the “good” event happens with a fixed probability in conjunction with property (19), leading
to Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. Coming out of the complexity-leveraging
argument, the very last step consists in swapping xi from coordinates [3Ni + 4, 4Ni + 3] back to
[1, Ni] (see G6 → G7) and some cleaning in order to make the vectors follow D1 (see G7 → G8). ⊓⊔

C.5 Swapping without Repetitions – Proof of Lemma 34 (Special Case)

We prove a special case of Lemma 34 where J̃ = 1. We omit the index of repetitions over (ui)i for
the ease of presentation.

Lemma 35 (Swapping without Repetitions). Let λ ∈ N and H = H(λ),K = K(λ), L =
L(λ), Ji = Ji(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomi-
als. Let (Bi,B

∗
i), for each i ∈ [H], be a pair of random dual bases of dimension 4N + 4 in

(G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq be some public
scalars. For i ∈ [H], ℓ ∈ [L] and k ∈ [K], sample σi, σi,k, r, rℓ

$← Zq conditioned on
∑

i∈[H] σi = R
and

∑
i∈[H] σk,i = Rk.

We consider the following oracles:

69

Õu: On input (ℓ, i,x(rep)

ℓ,i ,x′(rep)
ℓ,i) ∈ [L]× [H]× ZN

q × ZN
q , where rep ∈ [Ji] is a counter for the number

of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

u(rep)

ℓ,i = (x(rep)

ℓ,i , x′(rep)
ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 02N+1)Bi .

Ob
u : For b ∈ {0, 1}, on input (i,xi) ∈ [H]× ZN

q , sample ρi
$← Zq and output

If b = 0 : ui = (xi , 0N , r, 0, ρi, 02N+1)Bi

If b = 1 : ui = (0N , xi , r, 0, ρi, 02N+1)Bi .

This oracle can be called only once for each i ∈ [H].
Ov: On input (i,y

(1,ji)

i ,y
(0,ji)

i) ∈ [H] × ZN
q × ZN

q , where ji ∈ [Ji] is a counter for the number of

queries of the form (i, ⋆, ⋆), sample π
(ji)

i
$← Zq and output

v(j)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 02N+1)B∗i .

Õv: On inputs (k, i,y(rep)

k,i) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number of queries

of the form (k, i, ⋆), sample π(rep)

k,i
$← Zq and output

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 02N+1)B∗i .

If
∑H

i=1⟨xi,y
(0,ji)

i ⟩ =
∑H

i=1⟨xi,y
(1,ji)

i ⟩ for all ji ∈ [Ji], then the following advantage is negligible
under the SXDH assumption:∣∣∣∣∣Pr[AÕu,O0

u

Õv,Ov

(
1λ, N,H,K,L, (Ji)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (2N + 8) ·AdvSXDH

G1,G2
(1λ)

where A can query the oracles Õu,Ob
u ,Ov,Õv adaptively, i.e. the queries can be made in any order

and any number of times respecting the (polynomial) upper bounds K,L, (Ji)i∈[H].

Proof (of Lemma 35). The sequence of games is given in Figure 9. The changes that make
the transition between games are highlighted by a frame. For the sake of simplicity, we do not
mention explicitly the oracles for the generation of vectors in the proof. We write 0t to denote t
consecutive coordinates containing 0. For each i ∈ [H], the value Ji denotes the maximum number
of possible repetitions (u(rep)

ℓ,i)rep, (v
(j)

i)j , and (v(rep)

k,i)rep, indexed by rep and j over all ℓ, k. We define
J := max i ∈ [H]Ji. The details of the transition are given as follows:

Game G0: The vectors are computed according to the interaction:

AÕu,O0
u

Õv,Ov

(
1λ, N,H,K,L, (Ji)i∈[H], R, (Rk)k∈[K]

)
.

Game G1: We perform a computational basis change, making use of the randomness r $← Zq at
coordinate 2N + 1 of (ui)

H
i=1 and of σi

$← Zq at coordinate 2N + 1 of (vi)
H
i=1 so as to introduce

a new non-zero r′ $← Z∗
q at coordinate 4N + 4 in (ui)

H
i=1 and secret sharings (τi)

H
i=1 of 0 with

only non-zero τi at coordinate 4N + 4 of (v(j)

i)Hi=1, where j ∈ [J]. We recall that for each j ∈ [J],

it holds
∑H

i=1 σi = R for some fixed public value R. We proceed in two steps:

70

Game G0.1: We first use the subspace-indistinguishability to introduce r′ $← Z∗
q at coordinate

4N + 4 of ui, while keeping v(j)

i [4N + 4] = u(rep)

ℓ,i [4N + 4] = v(rep)

k,i [4N + 4] = 0. Given a DSDH
instance (JaK1 , JbK1 , JcK1) in G1 where δ := c−ab is either 0 or 1, the basis changing matrices
are:

Bi =

1 a

0 1

2N+1,4N+4

·Hi; B∗
i =

 1 0

−a 1

2N+1,4N+4

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
u-vectors as follows:

ui = (xi, 0N , r, 0, ρi, 0N , 0N , 0)Bi + (0N , 0N , br′, 0, 0, 0N , 0N , cr′)Hi

= (xi, 0N , r + br′ , 0, ρi, 0N , 0N , δr′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi .

We cannot compute b∗
i,2N+1 but can write the v-vectors in H∗ and observe that they stay

invariant in B∗
i as the (4N + 4)-th coordinate is 0:

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0N , 0N , 0)H∗i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0N , 0N , 0)B∗i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0N , 0N , 0)H∗i

= (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0N , 0N , 0)B∗i .

If δ = 0 we are in G0 else we are in G0.1, while updating r to r + br′10. The difference in
advantages is |Pr[G0.1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH

G1
(1λ).

Game G0.2: We use DSDH in G2 to introduce any chosen secret sharing (τi)i∈[H] of 0, i.e.∑H
i=1 τi = 0, such that τi ≠ 0 for all i, for every j ∈ [J]. Given a DSDH instance

(JaK2 , JbK2 , JcK2) in G2 where δ := c − ab is either 0 or 1, the bases (Bi,B
∗
i) are changed

following:

Bi =

 1 0

−a 1

2N+1,4N+4

·Hi; B∗
i =

1 a

0 1

2N+1,4N+4

·H∗
i .

All vectors changed under these bases are secret. We compute B∗
i using JaK2 and write the

v-vectors as follows:

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0N , 0N , 0)B∗i + (0N , 0N , bτi, 0, 0, 0N , 0N , cτi)H∗i

= (y(1,j)

i , y(0,j)

i , σi + bτi , π(j)

i , 0, 0N , 0N , δτi)B∗i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0N , 0N , 0)Bi .

For each j ∈ [J], the secret shares (σi)
H
i=1 are updated to (σi + bτi)

H
i=1 and still satisfy:

H∑
i=1

(σi + bτi) =

(
H∑
i=1

σi

)
+ b

(
H∑
i=1

τi

)
= R

10 It is thanks to the randomness of r $← Zq that allows us to update br′ without changing the distribution. When
applying this swapping lemma for our FH-DMCFE scheme, this random r is provided by the RO while hashing the
tags.

71

because (τi)
H
i=1 is a secret sharing of 0. We cannot compute bi,4N+4 but can write the

u-vectors in Hi, for r
′′, rℓ

$← Zq, r
′ $← Z∗

q :

ui = (xi, 0N , r′′, 0, ρi, 0N , 0N , r′)Hi = (xi, 0N , r′′ + ar′, 0, ρi, 0N , 0N , r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Hi = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi ,

while simulating r := r′′ + ar′ perfectly uniformly at random in Zq. If δ = 0 we are in G0.1,
else we are in G0.2 = G1. The difference in advantages is |Pr[G1 = 1] − Pr[G0.1 = 1]| ≤
2 ·AdvDDH

G2
(1λ).

After G0.2 = G1, the vectors are now:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 02N , 0)Bi ; ui = (xi, 0, r , 0, ρi, 02N , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi , π(j)

i , 0, 02N , τi)B∗i ; v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 02N , 0)B∗i

and in total |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH
G2

(1λ) + 2 ·AdvDDH
G1

(1λ).

Game G2: We perform a formal basis change to duplicate (y(1,j)

i ,y(0,j)

i) (respectively (y(rep)

k,i ,y
(rep)

k,i))

from coordinates [1, N], [N + 1, 2N] to [2N + 4, 3N + 3], [3N + 4, 4N + 3] of v(j)

i (respectively of
v(rep)

k,i). The bases are changed following using the following matrices (we denote Bi[row, col] the
entry at row row and column col of Bi)

Bi =

Bi[row, col] = 1 if row = col

Bi[row, col] = 1 if (row, col) ∈ {(2N + 4 + d, 1 + d) : d ∈ [0, N − 1]}
Bi[row, col] = 1 if (row, col) ∈ {(3N + 4 + d,N + 1 + d) : d ∈ [0, N − 1]}
Bi[row, col] = 0 otherwise

B′
i :=

(
B-1

i

)⊤
Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We write the vectors as follows, observing that the u-vectors stay invariant because their
coordinates [2N + 4, 3N + 3], [3N + 4, 4N + 3] are all 0 and the duplication is done correctly for
the v-vectors:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Hi = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi

ui = (xi, 0, r, 0, ρi, 0N , 0N , r′)Hi = (xi, 0, r, 0, ρi, 0N , 0N , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0N , 0N , τi)H∗i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0N , 0N , 0)H∗i = (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0, y(rep)

k,i ,y
(rep)

k,i , 0)B∗i .

We are in G1 in bases (Hi,H
∗
i) and in G2 in bases (Bi,B

∗
i). The change is formal and we have

Pr[G2 = 1] = Pr[G1 = 1].

Game G3: We perform a computational change to swap xi from coordinate [1, N] to [2N+4, 3N+3]
of ui, using the randomness ρi at coordinate 2N +3. We proceed by a sequence of N +1 hybrids,
namely G2.k for k ∈ [0, N], such that G2.0 = G2 and in G2.k the first coordinates [1, k] are swapped
to [2N + 4, 2N + 3 + k], for k ≥ 1. For k ∈ [N], the transition from G2.k−1 to G2.k is described
below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c − ab is either 0 or 1, the

72

bases (Bi,B
∗
i) are changed following:

Bi =

1 0 0

−a 1 a

0 0 1

k,2N+3,2N+4+k−1

·Hi; B∗
i =

1 a 0

0 1 0

0 −a 1

k,2N+3,2N+4+k−1

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
u-vectors as follows:

ui = (0, .., 0,xi[k], ..,xi[N]︸ ︷︷ ︸
first (k−1)-th coords are 0

, 0N , r, 0, ρi, xi[1], ..,xi[k − 1], 0, .., 0︸ ︷︷ ︸
last (N−k+1)-th coords are 0

, 0N , r′)Bi

+ (0, .., 0,−cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among N

, 0N , 0, 0, bxi[k], 0, .., 0, cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among N

, 0N , 0)Hi

= (0, .., 0, xi[k]− δxi[k], ..,xi[N]︸ ︷︷ ︸
first (k−1)-th coords are 0

, 0N , r, 0, ρi + bxi[k],xi[1], ..,xi[k − 1], δxi , .., 0︸ ︷︷ ︸
last (N−k)-th coords are 0

, 0N , r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi .

We cannot compute b∗
i,1+k and b∗

1,2N+4+k−1 due to the lack of JaK2, but the v-vectors can be

written in H∗
i indeed they stay invariant: for instance we consider v(j)

i , the same holds for v(rep)

k,i

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)H∗i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i ,−ay(1,j)

i [k] + ay(1,j)

i [k], y(1,j)

i , y(0,j)

i , τi)B∗i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗i .

If δ = 0 we are in G2.k−1, else we are in G2.k, while updating ρi to ρi+ bxi[k] that stays uniformly
random in Zq. We have |Pr[G2.k = 1] − Pr[G2.k−1 = 1]| ≤ 2 · AdvDDH

G1
(1λ) and in the end

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2N ·AdvDDH
G1

(1λ).

The vectors, when we arrive at G3, are of the form:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi ; ui = (0N , 0N , r, 0, ρi, xi, 0N , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗i ; v(rep)

k,i = (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0,y
(rep)

k,i ,y
(rep)

k,i , 0)B∗i

where for each j ∈ [J], (τi)
H
i=1 is a random secret sharing of 0, with τi ̸= 0 for all i, and r′ $← Z∗

q .
Our goal in the next three games G4,G5,G6 is to swap xi from coordinates [2N + 4, 3N + 3] to
coordinates [3N + 4, 4N + 3] of ui, for all i ∈ [H]. The main idea is to consider the selective version

G∗
j for j ∈ {4, 5, 6}, where the values (xi[k],y

(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N] are guessed in advance. We then

use formal argument for the transitions G∗
j → G∗

j+1 for j ∈ {3, 4, 5} to obtain

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (20)

In the end, we use a complexity leveraging argument to conclude that thanks to (20), we have
Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. For the sequence G3 → G6, we make a guess

for the values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N], choose r′ $← Z∗

q , random secret sharings (τi, τ̃i)
H
i=1 of

73

0 for each j ∈ [J], with τi, τ̃i ̸= 0 for all i, and define the event E that the guess is correct on

(xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N] and

τ̃i − τi =
1

r′
⟨xi, ∆y(j)

i ⟩

where ∆y(j)

i := y(1,j)

i − y(0,j)

i . Before elaborating the games, we note that for each i ∈ [H], for all
j ∈ [J], the term

⟨xi, ∆y(j)

i ⟩ =
∑
k∈[N]

xi∆y(j)

i [k] (21)

is a constant. Otherwise there exists ∅ ̸= I ′ ⊆ [H] and j′, j′′ ∈ [J] so that∑
i∈I′
⟨xi, ∆y(j′)

i ⟩ ≠
∑
i∈I′
⟨xi, ∆y(j′′)

i ⟩

while ∑
i∈[H]\I′

⟨xi, ∆y(j′)
i ⟩ =

∑
i∈[H]\I′

⟨xi, ∆y(j′′)
i ⟩ ,

which contradicts the hypothesis that
∑H

i=1⟨xi,y
(0,j)

i ⟩ =
∑H

i=1⟨xi,y
(1,j)

i ⟩ for any j ∈ [J]. We describe
the selective games below, starting from G∗

3, where event E is assumed true:

Game G∗
3 : The selective version of G3, assuming event E is true.

Game G∗
4 : Knowing (xi[k],y

(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N] in advance, we perform a formal quotient on

coordinates [2N + 4, 4N + 3] of ui and of v(j)

i . The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col ≤ 2N + 3

Bi[row, col] = 1
xi[k]

if ∃k ∈ [2N] : row = col = 2N + 3 + k AND xi[k] ̸= 0

Bi[row, col] = 1 if ∃k ∈ [2N] : row = col = 2N + 3 + k AND xi[k] = 0

Bi[row, col] = 1 if row = col ≥ 3N + 3

Bi[row, col] = 0 otherwise

(22)

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We note that the matrices, which have dimensions (4N + 4)× (4N + 4), depend only on i and
not on j hence the basis change is well defined. The vectors change from Hi and H∗

i to Bi and
B∗

i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi ;ui = (· · · , 1, · · · , 1, 0, · · · , 0, r′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[N]y(1,j)

i [N],xi[1]y
(0,j)

i [1], · · · ,xi[N]y(0,j)

i [N], τi)B∗i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N], 0)B∗i

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

3, else we are in G∗
4. The change is

formal.

74

Game G∗
5 : In this game we perform a formal basis change to move all the values 1 from coordinates

[2N + 4, 3N + 3] to coordinates [3N + 4, 4N + 3] of ui. The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col

Bi[row, col] = 1
r′ if ∃k ∈ [N] : (row, col) = (4N + 4, 2N + 3 + k) AND xi[k] ̸= 0

Bi[row, col] = 0 if ∃k ∈ [N] : (row, col) = (4N + 4, 2N + 3 + k) AND xi[k] = 0

Bi[row, col] = −1
r′ if ∃k ∈ [N] : (row, col) = (4N + 4, 3N + 3 + k) AND xi[k] ̸= 0

Bi[row, col] = 0 if ∃k ∈ [N] : (row, col) = (4N + 4, 3N + 3 + k) AND xi[k] = 0

Bi[row, col] = 0 otherwise

(23)

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We emphasize the the matrices are defined based on the knowledge of (xi[k])i∈[H],k∈[N] in this
selective hybrid. The vectors change from Hi and H∗

i to Bi and B∗
i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi

ui = (· · · , 1, · · · , 1, 0, · · · , 0, r′)Hi

= (· · · , 1− 1, · · · , 1− 1︸ ︷︷ ︸
only 1-coord is changed, 0-coord stays invariant

,

changed only if its N -th left coord. is 1︷ ︸︸ ︷
0 + 1, · · · , 0 + 1 , r′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[N]y(1,j)

i [N],xi[1]y
(0,j)

i [1], · · · ,xi[N]y(0,j)

i [N], τi)H∗i

= (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[N]y(1,j)

i [N],xi[1]y
(0,j)

i [1], · · · ,xi[N]y(0,j)

i [N],

τi +
1

r′

∑
xi[k] ̸=0

xi[k]∆y(j)[k])B∗i

= (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[N]y(1,j)

i [N],xi[1]y
(0,j)

i [1], · · · ,xi[N]y(0,j)

i [N],

τi +
1

r′
⟨xi, ∆y(j)⟩)B∗i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N], 0)H∗i

= (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],

0 +
1

r′

∑
xi[k′] ̸=0

xi[k
′](y(rep)

k,i [k
′]− y(rep)

k,i [k
′]))B∗i

= (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N], 0)B∗i .

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

4, else we are in G∗
5. We emphasize that

the secret sharings are updated to τ̃i := τi +
1
r′ ⟨xi, ∆y(j)

i ⟩ and are stil independent of j thanks
to observation (21) that ⟨xi,y

(1,j)

i − y(0,j)

i ⟩ is a constant for all j ∈ [J], i ∈ [H]. The change is
formal.

75

Game G∗
6 : We perform once again a formal quotient as from G∗

3 to G
∗
4, on coordinates [2N+4, 4N+3]

of ui and of v(j)

i . The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col ≤ 2N + 3

Bi[row, col] = 1
xi[k]

if ∃k ∈ [2N] : row = col = 2N + 3 + k AND xi[k] ̸= 0

Bi[row, col] = 1 if ∃k ∈ [2N] : row = col = 2N + 3 + k AND xi[k] = 0

Bi[row, col] = 0 otherwise

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We note that the matrices, which have dimensions (4N + 4)× (4N + 4), depend only on i and
not on j hence the basis change is well defined. The vectors change from Hi and H∗

i to Bi and
B∗

i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi

ui = (· · · , 0, · · · , 0, 1, · · · , 1, r′)Hi = (· · · , 0N ,xi, r
′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[N]y(1,j)

i [N],xi[1]y
(0,j)

i [1], · · · ,xi[N]y(0,j)

i [N], τi)H∗i

= (· · · ,y(1,j)

i ,y(0,j)

i , τi)B∗i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N],xi[1]y
(rep)

k,i [1], · · · ,xi[N]y(rep)

k,i [N], 0)H∗i

= (· · · ,y(rep)

k,i ,y
(rep)

k,i , 0)B∗i .

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

5, else we are in G∗
6. The change is

formal.

The above games demonstrate relation (20). We now employ the complexity leveraging argument.
Let us fix j ∈ {3, 4, 5}. For t ∈ {j, j+1} let Advt(A) := |Pr[Gt(A) = 1]− 1/2| denote the advantage
of a ppt adversary A in game Gt. We build a ppt adversary B∗ playing against G∗

t such that its
advantage Adv∗

t (B∗) := |Pr[G∗
t (B∗) = 1] − 1/2| equals γ · Advt(A) for t ∈ {j, j + 1}, for some

constant γ.

The adversary B∗ first guesses for the values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N], chooses r

′ $← Z∗
q , random

secret sharings (τi, τ̃i)
H
i=1 of 0 for each j ∈ [J], with τi, τ̃i ≠ 0 for all i. Then B defines the event E

that the guess is correct on (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[N] and

τ̃i − τi =
1

r′
⟨xi, ∆y(j)

i ⟩

where ∆y(j)

i := y(1,j)

i − y(0,j)

i . When B∗ guesses successfully and E happens, then the simulation of
A’s view in Gt is perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E

76

happens with some fixed probability γ and is independent of the view of A, we have:11

Adv∗
t (B∗) =

∣∣∣∣Pr[G∗
t (B∗) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[E] · Pr[G∗
t (B∗) = 1 | E] +

Pr[¬E]

2
− 1

2

∣∣∣∣
=

∣∣∣∣γ · Pr[G∗
t (B∗) = 1 | E] +

1− γ − 1

2

∣∣∣∣
(∗)
= γ ·

∣∣∣∣Pr[Gt(A) = 1]− 1

2

∣∣∣∣ = γ ·Advt(A) (24)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gt for A, therefore
Pr[Gt(A) = 1 | E] = Pr[G∗

t (B∗) = 1 | E], then we apply the independence between E and
Gt(A) = 1. This concludes that Pr[Gj = 1] = Pr[Gj+1 = 1] for any fixed j ∈ {3, 4, 5}, in particular
Pr[G6 = 1] = Pr[G3 = 1]. After G6, the vectors are now of the form:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi ; ui = (0, 0, r, 0, ρi, 0N , xi, r′)Bi

v(j)

i = (y(1,j)

i ,y(0,j)

i , σi, π
(j)

i , 0,y(1,j)

i ,y(0,j)

i , τ ′i)B∗i ; v(rep)

k,i = (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0,y
(rep)

k,i ,y
(rep)

k,i , 0)B∗i .

We redo the computational swap from G2 to G3 so as to move xi from coordinates [3N + 4, 4N + 3]
back to [N +1, 2N] of ui. The calculation is similar, using a sequence of N +1 hybrids G6.k, namely
G6.k for k ∈ [0, N], such that G6.0 = G6 and in G6.k the first coordinates [3N + 3, 3N + 3 + k] are
swapped to [N + 1, N + k], for k ≥ 1. For k ∈ [N], the transition from G6.k−1 to G6.k is described
below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the bases
(Bi,B

∗
i) are changed following:

Bi =

1 0 0

a 1 −a

0 0 1

N+k,2N+3,2N+4+k−1

·Hi; B∗
i =

1 −a 0

0 1 0

0 a 1

k,2N+3,3N+4+k−1

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the u-vectors
as follows:

ui = (0N , xi[1], ..,xi[k − 1], 0, .., 0︸ ︷︷ ︸
last (N−k+1)-th coords are 0

, r, 0, ρi, 0N , 0, .., 0,xi[k], ..,xi[N]︸ ︷︷ ︸
first (k−1)-th coords are 0

, r′)Bi

+ (0N , 0, .., 0, cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among N

, 0, 0, bxi[k], 0N , 0, .., 0,−cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among N

, 0)Hi

= (0N ,xi[1], ..,xi[k − 1], δxi[k], .., 0︸ ︷︷ ︸
last (N−k)-th coords are 0

, r, 0, ρi + bxi[k], 0N , 0, .., 0, xi[k]− δxi[k], ..,xi[N]︸ ︷︷ ︸
first (k−1)-th coords are 0

, r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0N , 0N , 0)Bi .

11 This calculation (24) to relate Adv∗t (B∗) to Advt(A) is the core of our complexity levaraging argument, being
built upon the previous information-theoretic game transtions and the probability of event E.

77

We cannot compute b∗
i,N+k and b∗

1,3N+4+k−1 due to the lack of JaK2, but the v-vectors can be

written in H∗
i indeed they stay invariant: for instance we consider vi, the same holds for v(rep)

k,i

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)H∗i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i ,−ay(0,j)

i [k] + ay(0,j)

i [k], y(1,j)

i , y(0,j)

i , τi)B∗i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗i .

If δ = 0 we are in G6.k−1, else we are in G6.k, while updating ρi to ρi + bxi[k] that stays uniformly
random in Zq. We have |Pr[G6.k = 1]− Pr[G6.k−1 = 1]| ≤ 2 ·AdvDDH

G1
(1λ) and in the end |Pr[G7 =

1]− Pr[G6 = 1]| ≤ 2N ·AdvDDH
G1

(1λ).

We redo the transition G0 → G1 to clean coordinates 4N + 4 of ui,v
(j)

i , which leads to an additive
loss 2 ·AdvDDH

G2
(1λ) + 2 ·AdvDDH

G1
(1λ). Then, we redo the transition G1 → G2 to clean coordinates

[2N +4, 3N +3], [3N +4, 4N +3] of v(rep)

k,i ,v
(j)

i , which is formal. Finally we arrive at G8 whose vectors
are computed according to the interaction

AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji)i∈[H], R, (Rk)k∈[K]

)
,

implying |Pr[G8]− Pr[G0]| ≤ (2N + 8) ·AdvSXDH
G1,G2

(1λ) and the proof is completed. ⊓⊔

C.6 Swapping with Repetitions – Proof of Lemma 34 (General Case)

Lemma 34 (Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomials. Let (Bi,B

∗
i),

for each i ∈ [H], be a pair of random dual bases of dimension 4N + 4 in (G1,G2,Gt, g1, g2, gt, e, q).
All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq be some public scalars. For i ∈ [H], ℓ ∈ [L]
and k ∈ [K], sample σi, σi,k, r, rℓ

$← Zq conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:

Õu: On input (ℓ, i,x(rep)

ℓ,i ,x′(rep)
ℓ,i) ∈ [L]× [H]× ZN

q × ZN
q , where rep ∈ [Ji] is a counter for the number

of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

u(rep)

ℓ,i = (x(rep)

ℓ,i , x′(rep)
ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 02N+1)Bi .

Ob
u : For b ∈ {0, 1}, on input (i,x

(j̃i)

i) ∈ [H] × ZN
q , where j̃i ∈ [J̃i] is a counter for the number of

queries of the form (i, ⋆), sample ρ
(j̃i)

i
$← Zq and output

If b = 0 : u
(j̃i)

i = (x
(j̃i)

i , 0N , r, 0, ρ
(j̃i)

i , 02N+1)Bi

If b = 1 : u
(j̃i)

i = (0N , x
(j̃i)

i , r, 0, ρ
(j̃i)

i , 02N+1)Bi .

Ov: On input (i,y
(1,ji)

i ,y
(0,ji)

i) ∈ [H] × ZN
q × ZN

q , where ji ∈ [Ji] is a counter for the number of

queries of the form (i, ⋆, ⋆), sample π
(ji)

i
$← Zq and output

v(j)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 02N+1)B∗i .

Õv: On inputs (k, i,y(rep)

k,i) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number of queries

of the form (k, i, ⋆), sample π(rep)

k,i
$← Zq and output

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 02N+1)B∗i .

78

If
∑H

i=1⟨x
(j̃i)

i ,y
(0,ji)

i ⟩ =
∑H

i=1⟨x
(j̃i)

i ,y
(1,ji)

i ⟩ for all j̃i ∈ [J̃i], ji ∈ [Ji], then the following advantage is
negligible under the SXDH assumption:∣∣∣∣∣Pr[AÕu,O0

u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (2N + 8) · J̃ ·AdvSXDH

G1,G2
(1λ)

where J̃ = maxi∈[H] J̃i and A can query the oracles Õu,Ob
u ,Ov,Õv adaptively, i.e. the queries

can be made in any order and any number of times respecting the (polynomial) upper bounds
K,L, (Ji, J̃i)i∈[H].

Proof (Of Lemma 34). We describe the games to change the vectors’generation as follows. For each
i ∈ [H], the value Ji denotes the maximum number of possible repetitions (u(rep)

ℓ,i)rep, (v
(j)

i)j , and

(v(rep)

k,i)rep, indexed by rep and j over all ℓ, k. We define J := max i ∈ [H]Ji.

Game G0: The vectors are computed according to the interaction:

AÕu,O0
u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
.

Game G1: We perform a sequence of hyrbids G0.j̃ for j̃ ∈ [0, J̃] where G0.0 = G0 and in the j̃-th

hybrid G0.j̃ we switch the first j̃ repetitions of u(j̃)

i (if J̃i < j̃ there is no change on ui):

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0N , 0N , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j′)
i = (x(j′)

i , 0N , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j′)
i = (0N , x(j′)

i , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ ≤ j̃(
v

(ji)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 0N , 0N , 0)B∗i
)ji∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0N , 0N , 0)B∗i
)rep∈[J]
i∈[H],k∈[K]

.

This means G0.J has all vectors sampled from D1 and the proof is completed. For j̃ ∈ [J̃], to go
from G0.j̃−1 to G0.j̃ we apply Lemma 35. This can be done in a black-box manner, where at each

application we target only the j̃-th repetition of each u(j̃)

i . We detail below how each transitions
from the proof of Lemma 35 is used:
• G0.j̃−1.0: This is G0.j̃−1.
• G0.j̃−1.1: We use the same calculation as in G0 → G1 in the proof of Lemma 35, noting that

it is completely computational and we can modify only the j̃-th repetition:(
u(j′)
i = (x(j′)

i , 0N , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j̃)

i = (x(j̃)

i , 0N , r, 0, ρ(j̃)

i , 0N , 0N , r′)Bi

)
i∈[H](

u(j′)
i = (0N , x(j′)

i , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ ≤ j̃ − 1(
v

(ji)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 0N , 0N , τ̃i)B∗i
)ji∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0N , 0N , 0)B∗i
)rep∈[J]
i∈[H],k∈[K]

.

79

where r′ $← Z∗
q and for all j ∈ [J], the secret sharing (τ̃i)i in vi-vectors satisfies:

∑H
i=1 τ̃i = 0.

We emphasize that the same share τ̃i is used across all repetitions ji for a given i.
• G0.j̃−1.2: We perform a formal duplication on all v-vectors:

(
v

(ji)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, y
(1,ji)

i , y
(0,ji)

i , τ̃i)B∗i
)ji∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, y(rep)

k,i , y(rep)

k,i , 0)B∗i
)rep∈[J]
i∈[H],k∈[K]

.

This is done for all i and and all repetitions rep ∈ [J]. Dually, the destination coordinates in
the u-vectors are all 0 hence they stay unchanged.

• G0.j̃−1.3: We use a computational swap between [1, N] and [3N + 4, 4N + 3] in u(j̃)

i using

(2N + 3)-randomness. It is important that the change is computational using DDH in G1,

therefore we can target only the j̃-th repetition of (u(j̃)

i)i. For all other (u
(j′)
i)i where j′ ̸= j̃

their coordinates remain intact and are 0. The computation on the v-vectors can be done
similarly as from G2 → G3 in the proof of Lemma 35.(

u(j̃)

i = (0N , 0N , r, 0, ρ(j′)
i , x(j̃)

i , 0N , r′)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τ̃i)B∗i
)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, y(rep)

k,i , y(rep)

k,i , 0)B∗i
)rep∈[J]
i∈[H],k∈[K]

.

• G0.j̃−1.4: We now perform the complexity leveraging argument on coordinates [2N+4, 4N+4],

in the same manner to G3 → G4 → G5 → G6 in the proof of Lemma 35. The transitions are
all formal and affect all vectors in both Bi and B∗

i :
◦ For the u-vectors, only the j̃-th repetition has a non-zero (4N +4)-th coordinate and the
swapping will make change only to (u(j̃)

i)i. Moreover, other quotient changes are on 0
coordinates for j′-th repetition whose j′ ̸= j̃ and incur no modifications.
◦ For the v-vectors, all quotient basis changes will modify their coordinates [2N +4, 4N +4]
with the same factor (x(j̃)

i [m])m. Later on, the formal swapping will modify the secret

sharings τi into τi +
1
r′ ⟨x

(j̃)

i , ∆y(j)

i ⟩, which stays a secret sharing of 0 for any fixed j̃, j
thanks to condition

H∑
i=1

⟨x(j̃)

i ,y(0,j)

i ⟩ =
H∑
i=1

⟨x(j̃)

i ,y(1,j)

i ⟩

and moreover the updated τi does not depend on j̃, j thanks to the fact that ⟨x(j̃)

i ,y(1,j)

i −
y(0,j)

i ⟩ is constant for all j̃, j, for any fixed i ∈ [H]. The argument can be made similarly
as in the observation (21).

• G0.j̃−1.5 = G0.j̃ : Finally we perform a computational swapping, after exiting the complexity

leveraging, then cleaning by reversing the transitions G0.j̃−1.0 → G0.j̃−1.2:

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0N , 0N , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j′)
i = (x(j′)

i , 0N , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j′)
i = (0N , x(j′)

i , r, 0, ρ(j′)
i , 0N , 0N , 0)Bi

)
i∈[H]

if j′ ≤ j̃(
v

(ji)

i = (y
(1,ji)

i , y
(0,ji)

i , σi, π
(ji)

i , 0, 0N , 0N , 0)B∗i
)ji∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0N , 0N , 0)B∗i
)rep∈[J]
i∈[H],k∈[K]

.

80

The computational changes help us target the necessary vectors, while the formal (de-
)duplication can be done without touching other u-vectors as the affected coordinates are 0.
We remark that the cleaning steps can be postponed until the very last G0.J̃−1.4 → G0.J̃−1.5 =
G0.J̃ to save redundant security loss, while changing the definition of the hybrids.

After arriving at G0.J̃ = G1, the vectors are computed following the interaction

AÕu,O1
u

Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
,

the transitions are indistinguishable under SXDH, and the proof is finished. ⊓⊔

	Introduction
	Our Contributions

	Preliminaries
	Dual Pairing Vector Spaces
	Dynamic Decentralized Functional Encryption
	Decentralized Multi-Client Functional Encryption

	Technical Overview
	Our Function-Hiding DMCFE for Inner Products

	From DMCFE to DDFE
	Supporting Materials – Section 2
	Hardness Assumptions
	Dual Pairing Vector Spaces
	Function-Hiding Decentralized Multi-Client FE
	Pseudorandom Functions (PRF)
	Non-Interactive Key Exchange (NIKE)
	From One-Challenge to Multi-Challenge – Proof of Lemma 5
	From Weak to Full Function-Hiding – Proof of Lemma 6

	Supporting Materials – Section 4
	Details about our DDFE in Section 4
	From Complete to Incomplete Challenges – Proof of Lemma 14
	Instantiation of the Generic Conversion with Our FH-DMCFE
	Instantiation of the Generic Conversion with the DMCFE of AC:CDGPP18
	Instantiation to Obtain an Adaptively Secure LWE-based DDFE for Inner Products

	Supporting Materials – A FH-DMCFE for Inner Products
	Construction
	Swapping Lemma
	Proof of Security
	Technical Overview of the Swapping Lemma 34
	Swapping without Repetitions – Proof of Lemma 34 (Special Case)
	Swapping with Repetitions – Proof of Lemma 34 (General Case)

