
Player-Replaceability and Forensic Support are
Two Sides of the Same (Crypto) Coin

Peiyao Sheng1, Gerui Wang1, Kartik Nayak2, Sreeram Kannan3, and Pramod
Viswanath1,4

1 University of Illinois at Urbana-Champaign, IL
{psheng2, geruiw2}@illinois.edu

2 Duke University, NC
kartik@cs.duke.edu

3 University of Washington at Seattle, WA
ksreeram@ece.uw.edu

4 Princeton University, NJ
pramodv@princeton.edu

Abstract. Player-replaceability is a property of a blockchain protocol
that ensures every step of the protocol is executed by an unpredictably
random (small) set of players; this guarantees security against a fully
adaptive adversary and is a crucial property in building permissionless
blockchains. Forensic Support is a property of a blockchain protocol that
provides the ability, with cryptographic integrity, to identify malicious
parties when there is a safety violation; this provides the ability to en-
force punishments for adversarial behavior and is a crucial component of
incentive mechanism designs for blockchains. Player-replaceability and
strong forensic support are both desirable properties, yet, none of the
existing blockchain protocols have both properties. Our main result is to
construct a new BFT protocol that is player-replaceable and has maxi-
mum forensic support. The key invention is the notion of a “transition
certificate”, without which we show that natural adaptations of extant
BFT and longest chain protocols do not lead to the desired goal of si-
multaneous player-replaceability and forensic support.

1 Introduction

Byzantine fault tolerant state machine replication (BFT SMR) protocols allow a
group of parties to agree on a common sequence of values submitted by external
clients. The core security guarantee provided by BFT SMR is that as long as a
certain fraction of parties are honest, i.e., follow the protocol, then these parties
achieve consensus with respect to a time evolving ledger regardless of the actions
of the remaining Byzantine parties that deviate from the protocol. Of particular
interest are secure and efficient BFT SMR protocols: efficiency is measured in
terms of commit latency and communication complexity [14,26,4,1,37,25], and
security is measured by tolerating the maximum number of Byzantine parties
under various network and cryptographic assumptions [16,17,28,14,15,2,22].



Security guarantee of BFT protocols is one-sided, addressing the scenario
when the number of Byzantine parties is less than a certain threshold. Forensic
support addresses the other side: what happens when the number of Byzantine
parties exceeds the allowable threshold? Several recent works focus on designing
secure BFT protocols that also have an additional goal of accountability, i.e.,
the ability to detect faulty behavior through an irrefutable proof upon security
violation [12,7,30,31,36]. A recent work [35] has formally defined forensic sup-
port of BFT protocols, providing a unified framework to compare and contrast
different designs; [35] provides a detailed analysis of canonical BFT protocols
(e.g., PBFT [9,8], HotStuff [37], VABA [3], and Algorand [18,10,11]) with respect
to their support for forensics on detecting Byzantine behavior. A key takeaway
from this work is that, while forensic support depends heavily on the implemen-
tation details of the protocol, deterministically secure protocols with poly(n)
communication complexity (here, n is the number of parties in the protocol)
have protocol variants with maximum forensic support, i.e., the maximum num-
ber of Byzantine parties can be identified irrefutably using simply the transcript
available at one of the honest parties.

An entirely different aspect of BFT protocols has emerged with the advent
of blockchains and the desire to support the participation of a very large number
of players (“permissionless” participation): communication-efficiency (i.e., have
sub-quadratic communication complexity) combined with security against a fully
adaptive adversary; e.g., Algorand [10] and Ouroboros Praos [13]. Such protocols
are commonly referred to as “player-replaceable” since they rely on verifiably
selecting small subgroups of truly random parties in each round, thus achieving
adaptive security and communication efficiency. Of specific interest are secure
blockchain protocols that offer both desired properties: forensic support and
player-replaceability. We begin by observing that no extant blockchain protocols
offer both properties. For instance, HotStuff excels in efficiency and forensic
support but is not player-replaceable; Algorand is player-replaceable but has non-
existent forensic support [35]. Indeed, no extant blockchain protocol appears to
have both player-replaceability and strong forensic support.

Could this status-quo be not coincidental? Player replaceability implies se-
curity even though different players are corrupted at different rounds of the
protocol; perhaps this strong property inherently rules out the ability to identify
malicious parties when security is violated? Understanding the core relationships
between player-replaceability and forensic support properties of BFT protocols
is the main goal of this paper. Our main result is dissenting: we construct a new
BFT protocol that is player-replaceable and has strong forensic support (i.e.,
detecting the maximum number of Byzantine nodes with the minimum number
of honest transcripts).

In this paper, we divide our investigation based on two stylistically different
families of player-replaceable protocols: BFT protocols and longest-chain proto-
cols. A summary of our results is presented in Table 1.

Main result: a player-replaceable BFT protocol with strong forensic
support. We first present a novel player-replaceable BFT protocol with strong

2



Table 1: Comparison of forensic properties among different protocols

Protocol
Byzantine

threshold (t)
Player

replaceability
Forensic

support (d)

BFT
Protocols

Algorand [10]
n/3

Yes None 0

HotStuff [37] No Strong ⌈n/3⌉

Player-replaceable
HotStuff (§3.1) Yes None 0

Longest-chain
Protocols

OBFT [23] n/3 No
Moderate

n− 2f

Ouroboros [24]
n/2① No < (n− 2f)κ/n

Ouroboros
Praos [13]

Yes < (n− 2f)κ/n− T (n, κ)②

Our Result Algorithm 3 n/3 Yes Strong ⌈λ/3⌉③

① In Ouroboros and Praos, forensic support is discussed even when f < t.
② κ is a parameter for longest-chain confirmation, T (n, κ) > 0.
③ λ is the expected size of committee.

forensic support in the partially synchronous setting, where “strong” implies
that the most number of Byzantine nodes can be detected with the least num-
ber of honest transcripts. In particular, we show that when the total fraction
of Byzantine parties is less than (1 − ϵ)2/3 (ϵ is a positive constant) and the
expected committee size is λ, our forensic protocol can detect at least ⌈λ/3⌉
Byzantine parties when safety violations occur. Due to idiosyncratic constraints
imposed by player-replaceability, traditional analyses of forensic support [35] do
not immediately apply. For instance, a core component of the forensic support
analysis of existing BFT protocols relies on identifying parties that perform two
or more actions that are incompatible with each other with respect to the pro-
tocol specification [35]. The forensic protocol determines appropriate quorums
and uses quorum intersection arguments to identify culpable parties. However,
with player replaceability, when n is large, it is extremely unlikely that the same
player will be selected twice; thus access to incompatible actions performed by the
same player, especially across different rounds (or views) of the protocol, may be
unavailable. One of our key innovations is the notion of “transition certificates”,
maintained and shared by each party in each round – this ensures that if Byzan-
tine parties vote incorrectly in a round resulting in a safety violation, there is
sufficient information to detect misbehavior.

Forensic analysis for longest-chain protocols. Bitcoin, the prototypical
longest-chain protocol, demonstrates ideal player-replaceability: not only is the
next proposer not predictable, but also the mined block safe from any later tam-
pering. Indeed, the longest chain rule has inspired both BFT and proof-of-stake
(PoS) based player-replaceable blockchain protocols, e.g., Ouroboros family, in-
cluding Ouroboros BFT (OBFT), Ouroboros, and Ouroboros Praos (referred to
simply as Praos in this paper). We first prove that OBFT, as a binary consen-
sus protocol, can hold n − 2f replicas culpable where n and f represent the
total number of replicas and the number of actual faults respectively. On the
other hand, the number of Byzantine parties detected in Ouroboros and Praos

3



is bounded by 2κ(n − 2f)/n where κ is the confirmation depth. The bound is
a result of the randomized leader election process in the two protocols. It is
noteworthy that there is no forensic support when f > n/2. However, even if
Ouroboros and Praos have Byzantine threshold t < n/2, the random election
results in possible executions with safety violation when f < t. We observe that
the safety violation of longest chain protocols can be identified when an honest
replica finalizes two conflicting blocks and observes more than one longest chain.
In the case of Ouroboros family, this is used to identify malicious leaders who
propose more than one valid block in the same round.

Outline. We describe the security model and definitions in §2. §3 contains our
main result: the construction of a new BFT protocol endowed with both player-
replaceability and strong forensic support. Longest-chain protocols are naturally
aligned with the player-replaceability property and we explore their forensic sup-
port properties in §4. §5 concludes the paper with a discussion of the relation-
ship between player-replaceability and forensic support. The topic of this paper
has not been broached in any prior work, to the best of the authors’ knowl-
edge. Works, other than those already referenced, are tangential to the core
content here; the connections are discussed for completeness in Appendix A.
The practicality and parameter choices of our protocol are formally described in
Appendix B.

2 Model and Definitions

We consider a network with n nodes interacting via all-to-all communication.
Prior to the protocol execution, each node generates its key pair honestly and
sends its public key to all other nodes. The adversary can adaptively corrupt
nodes at any time during the protocol execution after the trusted setup. Nodes
that are never corrupted are referred to as honest. The total number of nodes
corrupted by the adversary in an execution is denoted as f . The maximum
number of corrupted nodes the protocols can tolerate is denoted as t.

Network setting. We consider synchronous and partially synchronous network
settings. In a synchronous protocol, a message sent at time T by a sender node is
guaranteed to arrive at the receiver node by time T +∆, where ∆ is a bounded
network delay. In a partially synchronous protocol, there exists an unknown
global stabilization time (GST), after which all transmissions between two honest
nodes arrive within a bounded network delay ∆ [16].

Blockchains and state machine replication (SMR). The goal of blockchains
(state machine replication [34]) is to build a public ledger that provides clients a
totally ordered sequence of transactions. The key security properties a blockchain
protocol should provide are those of safety and liveness. Safety: no two honest
nodes finalize two different blocks at the same position in the ledger. Liveness:
every valid transaction is eventually finalized by every honest node. We use
blockchain and SMR interchangeably and refer to nodes that run blockchain
protocols as “replicas” or “players”.

4



Player-replaceability is a property of blockchain protocols. As presented by
Chen and Micali [10], a protocol is player-replaceable if each step of the proto-
col execution is conducted by an independently and randomly selected subset
of players. A player-replaceable protocol achieves both adaptivity and commu-
nication efficiency since the adaptive adversary cannot predict the committee
membership ahead of time and only a subset of parties (typically sublinear)
need to communicate in each round (hence the communication complexity is
subquadratic).

Forensic support for blockchains. The notion of forensic support for Byzan-
tine Agreement (BA) was introduced by [35]. Forensic support refers to the
ability to identify misbehaving replicas whenever there is a safety violation (two
honest replicas finalize different blocks at the same position). The number of
replicas that can be held culpable when t < f ≤ m is captured by the parameter
d. Here,m denotes the bound on Byzantine replicas under which the forensic sup-
port can be provided. In BA, transcripts of honest parties are needed to obtain
irrefutable proof of culprits after clients detect a safety violation. The number
of transcripts to decide culpability of replicas is denoted by k. In the blockchain
setting, we adapt the definition of k to denote the number of transcripts required
to detect safety violations and construct the culpability proof.

Definition 1. (m, k, d)-Forensic Support. [35] If t < f ≤ m and there
is a safety violation, then using the transcripts of all messages received from k
honest replicas during the protocol, a client can provide an irrefutable proof of
culpability of at least d Byzantine replicas.

Cryptographic primitives. All protocols we discuss in this paper use collision
resistant cryptographic hash functions and digital signatures (that are adaptively
secure for achieving player-replaceability). ⟨x⟩ denotes the signed message x.
The intersection of two aggregated signatures refers to the set of replicas who
sign both messages. We use verifiable random functions (VRFs) [27] to choose a
random subset of replicas to be the leader or committee in a round. In our model,
VRF has two functions: VRF(x) and VerifyVRFpk(msg, x). VRF(x) returns two
values: a hash and a proof π. The hash is a HASHLEN-bit value, normalized
by 2HASHLEN, i.e., hash ∈ [0, 1). It is uniquely determined by sk and x, and
indistinguishable from a random value to anyone that does not know sk. The
proof π enables anyone that knows pk to verify the value by VerifyVRFpk. In
our protocol, (hash, π) is always appended to a message and hence not explicitly
specified. VerifyVRFpk(msg, x) verifies that hash is the correct value computed
from x by using π. The appended hash value is denoted by msg.vrf. We omit the
notation of sk, pk and the appended (hash, π) when the context is clear. In some
of the protocols, VRFs may be used to elect leaders and/or committees to obtain
player-replaceability, i.e., every step of the protocol is executed by a potentially
new set of parties. This approach was pioneered in [10] to construct protocols
secure under fully adaptive adversaries that are also efficient, i.e., subquadratic
communication complexity.

5



3 Main Results

Our main result is the first player-replaceable BFT protocol that has strong
(maximum) forensic support. In particular, we construct a partially synchronous,
player-replaceable BFT protocol (§3.2) that tolerates t = (1 − ϵ)n/3 Byzantine
faults for safety and liveness while providing forensic support with t < f ≤
(1− ϵ)2n/3, where ϵ is a positive constant.

We start with a warm-up protocol (§3.1) that makes HotStuff [37] player-
replaceable using ideas in Algorand [10] but it is shown to lack forensic support.
Inspired by the learnings, we design our protocol which is equipped with an ad-
ditional step, called certified transition, to obtain both player-replaceability and
strong forensic support. We provide the forensic protocol and formally prove that
when there is a safety violation, the protocol can hold at least ⌈λ/3⌉ Byzantine
replicas culpable with irrefutable proof (§3.3).

3.1 Warmup: HotStuff Made Player-replaceable

t t

Non-player-replaceable world

Commit 
quorum for v

Voting 
quorum for v’

2λ/3t + 1

Player-replaceable world

Commit 
quorum for v

Voting 
quorum for v’

2λ/3

Fig. 1: Comparison of non-player-replaceable and player-replaceable worlds.

The most intuitive approach to obtain both properties is to start with a pro-
tocol with strong forensic support and make it player-replaceable. For instance,
we can start with HotStuff [37] (or Tendermint [6]) and make it player-replaceable
using techniques from Algorand [10]. Specifically, in each round of voting, repli-
cas perform cryptographic sortition to determine whether they are eligible to
vote in the current round. Such a sortition is publicly verifiable and produces a
randomly and independently selected voting committee in each round.

While the use of sortition enables player-replaceability, the protocol still falls
short of providing forensic support. In HotStuff with forensic support, when there
is a safety violation, the forensic support protocol can always map it back to a
set of culpable parties that have performed (at least) two contradictory actions,
thus not following the protocol. Such behavior is observable even in non-trivial
violations that happen across rounds. In particular, in a non-player-replaceable
world, since a majority of honest parties guard the safety of the commit, there
does not exist enough votes for a different value when f ≤ t. When f > t, it
has been shown in [35] that we can detect t + 1 such parties whenever there is
a safety violation. Intuitively, the idea uses a quorum intersection between the
2t+1 parties that send a commit message for the first committed value v and a
specific set of 2t+ 1 parties that vote on a different value v′ later (cf. left figure

6



in Figure 1), where the voting quorum for a different value consists of honest
parties who hold stale states, and Byzantine parties trying to violate the safety.

Unfortunately, with player-replaceable protocols, such an argument does not
apply. Since only a small λ-sized fraction (λ is a security parameter) of parties
are chosen each time, it is highly likely that a replica is elected in the com-
mittee only once. As is shown in Figure 1 on the right, the quorums from the
committee in two distinct rounds are mutually exclusive with high probability,
due to which the continuity of participation of a single replica is lost. In other
words, we cannot distinguish between Byzantine replicas from honest replicas
with stale states since in any of the cases, since Byzantine replicas can delib-
erately mimic the behavior of honest replicas who suffer long message delays.
By contradiction, suppose forensic support is possible in some case, i.e., some
Byzantine replicas voting for a different value are made accountable, there must
exist a corresponding scenario where these accountable replicas are honest (and
their behaviors are simulated by Byzantine parties in the first case). Thus, we
may not have any forensic support under this circumstance when f > t while
still being safe and live when f ≤ t.

3.2 Construction of a Player-Replaceable BFT Protocol with
Strong Forensic Support

Intuition. To address the above concern, the intuition of our protocol is to
enforce replicas to wait for enough messages (2/3 of the committee size) to
form a transition certificate (TC) of each round r before entering round r + 1.
Waiting for messages of round r ensures that a replica’s state is up-to-date at
the beginning of round r+1, then the scenario where honest parties are blamed
due to message delays are no longer possible. Therefore, no honest replicas have
stale states and we can distinguish honest replicas who suffer long message delays
from Byzantine replicas, and have strong forensic support. Starting from this
intuition, we design the protocol with safety and liveness properties as well as
strong forensic support.

Protocol overview. The protocol proceeds in a sequence of consecutive rounds
where each round lasts for at least 4∆ time (as measured by each replica’s own
clock). In each round, a set of leaders and a committee will be self-selected
from all replicas using cryptographic sortition. The role of a leader is to collect
votes from committee members and generate a quorum certificate (QC) from
the votes. It then proposes a block that contains the QC to all replicas. The role
of a committee member is to wait for the leader’s proposal and, if it is valid, to
vote for it. We first describe the sortition process used for election, then define
the data structures used in the protocol, and finally present the protocol.

Cryptographic sortition. We use cryptographic sortition to choose a random
subset of parties as leaders or committee members, by using VRF [27]. A replica
determines its eligibility to be the next leader or the committee member by
computing VRF from the random seed, the round, and the role (''leader '' or
''committee''), i.e., VRF(seed||curRound||role), role ∈ {''leader '', ''committee''}.

7



If the VRF hash value is smaller than a threshold, the replica is eligible and
when it fulfills its role by broadcasting a message, it accompanies the VRF
output (hash value and proof) thus allowing other replicas to verify its eligibility.
For a message m, we denote the accompanied VRF hash value as m.vrf . The
threshold is set to τ/n for leader and λ/n for committee where τ and λ are
the expected number of leaders and the committee size, respectively. Hence, to
validate cryptographic sortition of a message m, a replica calls VerifyVRF and
checks whether m.vrf < τ/n or λ/n appropriately. To ensure that some block
is proposed in each round with high probability, parameter τ should be chosen
much larger than 1, e.g., Algorand [18] chooses τ = 26. We denote tH ← ⌈2λ/3⌉
as the number of votes used to form a QC.

Cryptographic sortition enables player-replaceability in a straightforward
manner. In each round, a new leader and committee are elected privately, i.e.,
only the elected parties know their eligibility before they fulfill their roles. To be
resilient to strongly adaptive adversaries, the protocol can use ephemeral keys as
in Algorand [11]. For simplicity, we use the same random seed in the genesis block
for cryptographic sortition in all rounds. The protocol can be enhanced with a
frequently refreshing random seed, as in Algorand [18]. Cryptographic sortition
also works in a proof-of-stake setting if eligibility is weighted by stakes.

Blocks and quorum certificates. Client requests are batched into blocks.
Each block references its predecessor (parent) with the exception of the genesis
block which has no predecessor. A block proposed in round r, denoted br, has
the following format: br := (cmd, parent, justify). cmd denotes client commands
to be committed, parent denotes the hash of the parent block of block br, and
justify stores the quorum certificate (QC) for the parent block. A QC for a
block br consists of at least tH vote messages. A QC contains the hash, the
round number of the block, and metadata such as signatures and accompanying
VRF outputs of the vote messages. Notice that we abuse the notation qc.block
to refer to the actual block instead of the block hash when the context is clear.
A block is said to be valid if its parent is valid (genesis block is always valid) and
client requests in the block meet application-level validity conditions. A block br
extends a block br′ if br′ is an ancestor of br. Note that a block extends itself.
Two blocks br and b′r′ are conflicting if they do not extend one another.

Full protocol. Each replica maintains a lock denoted as lockedQC initialized as
qcgenesis, and a set of (id, lockedQC) pairs for every round, where id is the replica
identifier. Each round proceeds as follows. (The full protocol is also presented in
Algorithm 3, Appendix C.)

– Propose. A replica checks its potential leader eligibility using cryptographic
sortition (line 7). Leader can construct a new QC and update its own lock
once receiving tH votes for the same block. Then the leader collects com-
mands and proposes a new block extending from lockedQC.block.

– Process proposals. Unlike HotStuff, a replica waits for a fixed length period
(period [0, 2∆)) for proposals in case there are multiple leaders eligible to
propose (line 13). When a replica receives multiple proposals, it chooses the

8



one with the smallest VRF hash (line 15). At time 2∆ of this round, all
replicas check the validity of the block and the safety rule to ensure the new
block extends from lockedQC.block (line 17). If the block is valid and safe,
replicas will update lockedQC, TC properly. When three consecutive QCs
are formed, the block is directly finalized, and all its previous blocks on the
same chain will also be finalized indirectly (line 35).

– Vote and timeout. Then every replica checks its eligibility to vote for the
round (line 20). The vote message is denoted as ⟨Vote, r, b, lockedQC, TC[r−
1]⟩, where r is the current round number, b is the hash of the block the
committee replica votes for, TC[r − 1] is the set of locks collected from the
last round (line 21). When b = ∅, the vote message serves as a timeout
message and meanwhile contains the lock of the committee replica. When
b is not empty, it is required that b.justify = lockedQC. For each round,
replicas selected as committee broadcast their votes to all replicas.

– Wait for locks. All replicas cannot enter a round r until they receive tH
locks reported by the committee in round r − 1. If a vote message in r is
received from a replica whose lock has not been received in this round, the
lock is added into a set TC[r], and if the lock is more up-to-date, the replica
updates its own lock (line 26). The replicas will also update TC[r− 1] given
TC∗[r − 1] contained in the vote. At time 4∆ or later of a round r, replicas
enter the next round r + 1 if |TC[r]| ≥ tH .

Communication complexity. The communication complexity of Algorithm 3
is O(n · poly(λ)) where λ is a security parameter denoting the committee size.
In each round, only λ replicas in the committee broadcast messages and the TC
in messages is O(λ)-sized.

3.3 Forensic Protocol and Proof of Forensic Support

When f < (1− ϵ)n/3, the safety and liveness of Algorithm 3 are formally stated
in Appendix C. When f ≥ (1 − ϵ)n/3, it is possible that safety is violated, at
which time the following forensic protocol in Algorithm 1 can provide forensic
support proved in Theorem 1.

Theorem 1. When f ≥ (1 − ϵ)n/3, if two honest replicas finalize conflicting
blocks, Algorithm 1 provides ((1− ϵ)2n/3, 2, ⌈λ/3⌉)-forensic support.

Proof. Suppose two conflicting blocks are finalized by two honest replicas, let
br, br′ be the first directly finalized blocks that are conflicting, w.l.o.g., suppose
r ≤ r′.

Case r + 2 > r′.
Culpability. If r ≤ r′ < r + 2, there are two quorums formed in r′, these two
QCr′ intersect in ⌈λ/3⌉ replicas.These replicas should be Byzantine since the
protocol requires a replica to vote for at most one block in a round.
Witnesses. In this case, the culpability proof can be constructed from two QCs
generated in the same round (line 5-7, Algorithm 3).

Case r + 2 ≤ r′.

9



Algorithm 1 Forensic protocol for Algorithm 3

1: upon receiving conflicting blocks finalized by two honest replicas do
2: query the entire blockchain from the two honest replicas
3: find the first block finalized by consecutive QCs in each chain, denoted by br, br′

4: swap br, br′ if r′ < r ▷ make sure r ≤ r′

5: if r + 2 > r′ then
6: find two QCr′ on each chain
7: return the intersection of two QCr′

8: else
9: query TC[r + 1] from either of the honest replicas
10: if all lockedQC in TC[r + 1] has round < r then
11: find QCr+1 that makes br be committed
12: return the intersection of TC[r + 1] and QCr+1

13: else
14: find block br∗ s.t.

(1) r + 2 ≤ r∗ ≤ r′, and
(2) br′ extends br∗ , and
(3) br conflicts with br∗ , and
(4) r∗ is the smallest round satisfying the above 3 conditions

15: find QC for br∗ , denoted by QCr∗ , return all replicas in QCr∗

Culpability. Since br is directly finalized in round r + 2 (by QCr+1), it must be
the case that at least tH committee replicas are locked on at least QCr (if they
are honest), and broadcast their votes with lock to all replicas. Then consider
the first block br∗ (possibly br′) that is conflicting with br and proposed after
r + 1. On the one hand, br∗ must be extended from a block older than br since
this is the first conflicting block proposed after r. On the other hand, only those
replicas whose locks are staler than QCr can vote for br∗. Remember that in
round r+1, at least tH committee replicas broadcast lock QCr (or higher lock).
And for committee replicas in r∗ to vote, they must collect a set TC[·] consisting
of at least tH locks from the committee in every round < r∗. If the lock of any
one of them is still staler than QCr, the intersection (⌈λ/3⌉ replicas) of QCr+1

and TC[r+1] is the set of committee replicas who equivocate in round r+1 hence
are Byzantine (line 10-12, Algorithm 3). Otherwise all the committee replicas
who vote for br∗ must be Byzantine (line 13-15, Algorithm 3).

Witnesses. In this case, there are two possible scenarios. (i) QCr+1 intersects
TC[r + 1] in ⌈λ/3⌉ replicas, who are culpable since their votes in QCr+1 and
TC[r + 1] are incompatible. (ii) All replicas in QCr∗ (at least tH in total) are
Byzantine because they should have received TC[r + 1] containing QCr and
update their locks to be at least QCr, but they vote for a conflicting block br∗

extending from a block older than r. These two cases indicate that with same-
round safety violation, the witnesses can detect ⌈λ/3⌉ replicas. If same-round
safety violation does not exist, at least tH culprits can be detected.

10



4 Forensic Analysis for Player-Replaceable Longest-Chain
Protocols

Longest-chain based protocols such as Bitcoin and Ouroboros are another family
of SMR protocols. Compared to BFT protocols, they do not have explicit voting
procedure and finalization of a block is probabilistic. In this section, we show
that forensic support for longest-chain protocols targets leader proposals, and
we investigate how player-replaceability influences the forensic properties by an-
alyzing the Ouroboros protocol family, including Ouroboros BFT (OBFT) [23],
Ouroboros [24], and Ouroboros Praos [13] (referred to as Praos).

4.1 Protocol Description

Ouroboros is a proof-of-stake blockchain protocol which tolerates up to 1/2
Byzantine stake under a synchronous network. Building on Ouroboros, Praos is
a player-replaceable protocol secure under an adaptive adversary. On the other
hand, OBFT is a deterministic permissioned derivative of Ouroboros for ledger
consensus. We start with a general simplified description of Ouroboros family.

Each of the n replicas maintain the longest blockchain C = b0 · · · br (b0 is
the genesis block and round number r ≥ 0) containing a sequence of blocks. The
length of a blockchain is the number of blocks on the chain, and the height of
a block br is the length of chain b0 · · · br. Each block br := (data, parent, proof)
proposed in round r contains block data data, the hash of the parent block
parent, and a block proof proof that replicas can use to verify the validity of
the block. The block is valid if its data and parent are valid, and it is signed by
a certified round leader. The protocol proceeds in rounds, in round j, replica i
performs the following.
- Blockchain update. The replica collects chains diffused by all valid leaders
in the current round as set C. Denote the longest valid chain (does not fork
from C more than κ blocks) among C as C ′. It updates its local longest chain
C with C ′ if C ′ is strictly longer.

- Blockchain extension. If the replica is a leader in the current round, it
generates a new block with a proof of leader (stored in proof). After the new
block is appended to the local longest chain, the replica diffuses the new chain
to other replicas.
The key distinguishing factors between the protocols we consider are the

leader election process and the confirmation depth κ. We describe these in more
detail for each of the three protocols below. Observe that we omit details related
to message verification, stake distribution, randomness generation, etc. in our
analysis since they do not matter in terms of forensic support. In terms of stake
distribution, for our analysis we assume the stake of each of the parties are equal,
although our analysis should be generalizable when the stakes are not equal.

4.2 Forensic Support for OBFT

We start with the simplest of the three protocols, OBFT, which is a deterministic
permissioned protocol. In OBFT, leaders are elected in a round-robin manner,

11



Algorithm 2 Forensic protocol for OBFT

1: upon receiving conflicting outputs from two honest replicas do
2: query the entire blockchain from the two honest replicas
3: r, r′ ← minimum / maximum round number among all blocks
4: S ← ∅
5: for i = r, r + 1, · · · , r′ do
6: if two conflicting blocks are generated in round i by a valid leader then
7: add leader j of round i into S ▷ j − 1 = (i− 1) mod n in OBFT

8: return S

i.e., in round j, if i−1 = (j−1) mod n, replica i is the round leader. Moreover,
a block is committed if it is on the longest chain that is κ = 3t+ 1 blocks deep.

Security analysis. The key property satisfied by OBFT is that the blockchain is
not forkable during a period of execution where the fraction of Byzantine leaders
over all rounds is < 1/3 [23, Proposition 3.7]. Furthermore, under covert adver-
saries (who do not leave any verifiable evidence of misbehavior), the threshold
of Byzantine leaders’ fraction becomes 1/2.

First, observe that the adversary can simply behave as covert adversary to
fork the chain when f > n/2, in which case no cryptographic evidence will
be left behind and therefore there is no forensic support (formally stated in
Theoreum 7). Thus, we argue about forensic support only when n/3 ≤ f < n/2.
In such a situation, the adversary can undertake multiple malicious actions such
as not extending any chain when it is the leader, extending a smaller chain,
extending more than one chain, etc. Among these, the only detectable action
is when a Byzantine leader proposes two or more blocks in the same round.
Thus, given a safety violation (i.e., two or more chains of depth κ), if any leader
proposes two different blocks in these chains in the same round, it is a Byzantine
replica. The proof to hold it culpable are the two signed blocks.

The key part of our forensic analysis is to determine the minimum num-
ber of rounds that must equivocate to violate safety for an execution. The fol-
lowing lemma formally presents a bound on equivocating rounds (see proof in
Appendix E.1).

Lemma 1. If there exist two or more longest chains that diverge from height h
until h+ l−1, define RH = |{ωi = 0|r ≤ i ≤ r′}| as the number of rounds whose
leader is unique and honest (where r, r′ are the minimum / maximum round
number among all blocks with height between h and h + l − 1), RA = |{ωi =
1|r ≤ i ≤ r′}| as the number of rounds that possibly equivocate (generate more
than one block), where ∀i ∈ [r, r′]

ωi =

{
0 the leader of block in round i is unique and honest

1 otherwise

Denote the number of rounds whose leader generates two or more blocks (for
each chain) as X, then we have X ≥ RH −RA.

12



Applying the above lemma to an execution of binary consensus version of
OBFT, where the protocol terminates after 2n rounds and the majority bits of
the first n rounds of blocks will be output (the first n blocks are finalized by
κ-deep rule when n = 3t+ 1), we can get the following theorem.

Theorem 2. When n/3 ≤ f < n/2, if two honest replicas output conflicting
values, Ouroboros BFT has (n/2, 2, n− 2f)-forensic support.

Proof. Suppose safety fails, i.e., when protocol terminates, there exist two longest
chains finalized by honest replicas, whose majority bits among the first n rounds
are different. Since OBFT uses round-robin leader election, we can apply Lemma 1
with R = r′− r+1 = n,RH = n−f and RA ≤ f (since some Byzantine replicas
may stay silent), then d = RH −RA ≥ n− 2f .

Notice that in Theorem 2, d = n − 2f = 0 when f = n/2, thus m = n/2.
And two honest replicas are required to provide two different longest chains for
irrefutable proof, thus k = 2. With two different chains, the forensic protocol
to detect Byzantine leaders is to find these rounds whose leaders have proposed
more than one values (Algorithm 2). Further, the impossibility for f > n/2 is
formally stated in Appendix D.

4.3 Forensic Support for Ouroboros and Praos

In Ouroboros and Praos, the leader election process is randomized. In Ouroboros,
in each round, a unique leader is elected randomly among the n replicas. In Praos,
each replica evaluates a round dependent VRF independently. The probability
of a replica i with relative stake αi to be selected as a round leader is

Pr[i is a leader] = ϕw(αi) = 1− (1− w)αi

where w is the probability of electing a replica in a round when it holds all the
stake. The probability of electing a leader with lesser stake is scaled as described
above; due to this, zero, one or multiple leaders may be elected in a round.

Since the leader election process is randomized, “forkability” of the chain is
not deterministic. However, when considering a single execution after safety is
violated, since they are executed under the same longest chain rule, a similar
intuition as in OBFT is still applicable for forensic support. Even though these
protocols tolerate t < n/2 w.h.p., there may be executions with safety violation
when the fraction of adversarial rounds is < 1/2 independent of f .5 We formally
discuss this in the following theorem.

Theorem 3. For a given execution, if during rounds [r, r +R − 1], two honest
replicas finalize two conflicting blocks at height h (i.e., there exist two longest
chains that diverge from height h to h+κ− 1), then Ouroboros has (n/2, 2, d)-

forensic support where d = (1 − ϵ)
(
n
(
1− (1− 1/n)

R
)
− 2fR/n

)
except with

exp(−Ω(R)) probability.

5 Our paper discusses the forensic ability after a safety violation happens. In particular,
we ignore when such a violation happens. The probability of such a safety violation
has been shown in Ouroboros [24, Figure 8].

13



We provide a short proof here, with complete proof in Appendix E.2. Ac-
cording to Lemma 1, the expected number of rounds whose leader equivocates
E[X] ≥ E[RH−RA] ≥ (n−2f)R/n. However, some of these rounds may have the
same leaders, denote D as the number of rounds whose leader has been selected

before, then E[d] ≥ E[X−D] ≥ (n−2f)R/n−(R−n
(
1− (1− 1/n)

R
)
). Finally,

using a Chernoff bound, we have d = (1− ϵ)
(
n
(
1− (1− 1/n)

R
)
− 2fR/n

)
for

ϵ > 0 except with exp(−Ω(R)) probability.

Corollary 1. When R/n = o(1), Ouroboros has (n/2, 2, d)-forensic support
where d = (1− ϵ)(n− 2f)κ/n except with exp(−Ω(κ)) probability.

Proof. When R/n = o(1), by binomial approximation, E[D] ∼ 0. With R ≥ κ,
we have E[d] ≥ (n− 2f)κ/n. Using a Chernoff bound, we have d = (1− ϵ)(n−
2f)κ/n for ϵ > 0 except with exp(−Ω(κ)) probability.

The random leader election process of Ouroboros adds some uncertainty to the
forensic analysis due to possibly duplicated equivocating leaders, which slightly
impairs the forensic ability (though when κ/n is very small, this effect will be
negligible). In comparison, since in Praos multiple leaders may be elected in a
round, there may be equivocation even when all of them are honest. In this case,
if multiple honest leaders are elected in round i, ωi = 1 per the definition in
Lemma 1, the round may contribute to the violation of safety. But such leaders
in these rounds should not be held culpable by the forensic protocol.

Recall the probability for any replica i to be elected as a leader in a round
is defined as ϕw(αi). Observe that the probability that no one is elected as a
leader in some round is

p0 = Pr[no leader is elected] =

n∏
i=1

(1− w)1/n = 1− w

And the probability that only one honest or adversarial leader is elected is

pH1 = Pr[one honest leader] = (n− f)(1− (1− w)1/n)(1− w)1−1/n = (n− f)g(n)

pA1 = Pr[one adversarial leader] = f(1− (1− w)1/n)(1− w)1−1/n = fg(n)

where g(n) = (1− (1− w)1/n)(1− w)1−1/n. Therefore,

Pr[multiple leaders are elected] = p2 = 1− p0 − pH1 − pA1 = w − ng(n)

Based on the analysis above, Praos has the following forensic support.

Theorem 4. For a given execution, if during rounds [r, r + R − 1], two hon-
est replicas finalize two conflicting blocks at height h (i.e. there exist two longest
chains that diverge from height h until h+κ−1). Ouroboros Praos has (n/2, 2, d)-
forensic support where d = (1−ϵ) ((n− 2f)g(n)R− T (n,R)) except with exp(−Ω(R))
probability, and T (n,R) = 2(w − ng(n))R+ (R− n+ n(1− g(n))R) > 0.

14



Corollary 2. When R/n = o(1), Ouroboros Praos has (n/2, 2, d)-forensic sup-
port where

d = (1− ϵ)((w − w2)(n− 2f)κ/n− (1− w + 3w2)κ)

except with exp(−Ω(κ)) probability.

The complete proof of Theorem 4 and Corollary 2 are presented in Ap-
pendix E.3 and E.4 respectively.

5 Discussion and Conclusion

We begin with two observations about the forensic properties for player-replaceable
protocols in both families.

First, compared to quadratic complexity protocols analyzed in [35], player-
replaceable protocols require fewer replicas to send messages; correspondingly,
only fewer replicas (O(λ) or O(κ)) can be held culpable when there is a safety
violation even if the total number of Byzantine replicas are far higher (O(n)).
For BFT style protocols, whenever forensic support is available, the number of
culpable replicas is in the same proportion to the quorum size as in the non
player-replaceable setting. Moreover, this number is independent of f . When
there is no forensic support, no replica may be held culpable. On the other hand,
since longest-chain style protocols are synchronous and can tolerate t < n/2,
our detection is applicable in the regime n/3 ≤ f < n/2. Safety violation is still
possible since these protocols are randomized. In this case, we observe that the
number of culpable replicas decreases linearly as f increases.

Second, qualitatively, the key difficulty with holding replicas culpable is re-
lated to potentially having a different set of replicas participating in each round.
In BFT protocols, voting rules stipulate how previous actions impose restric-
tions on current behavior. Due to player-replaceability, voters’ behaviors across
rounds are less traceable, which can be utilized by adversary to conceal evidence
of deviation. Thus, to construct a protocol with strong forensic support, we need
to reconnect across-rounds actions. In our protocol, transition certificates serve
as the link that the forensic protocol can use to identify culpable behavior. In
longest-chain protocols, extending blocks are also used to certify the previous
blocks. However, there is no evidence if a Byzantine replica appends blocks to
a shorter chain. Thus the only culpable behavior our forensic protocol can de-
tect is when a leader double proposes blocks (equivocates) in a round. As a
consequence, the forensic analysis for longest-chain protocols only focuses on
the same-round behavior. Player-replaceability can still adversely affect forensic
analysis if multiple leaders are allowed to be elected in the same round. However,
as seen in Corollary 2, this has a limited effect when κ/n is small.

Blockchain protocols perform two distinct roles: first, they are secure against
adversarial behavior (by a fraction of participating nodes). Second, they are im-
bibed with incentives that encourage participation, and furthermore via honest
behavior (i.e., following protocol). In this paper, forensic support of protocols
serves the implicit role of incentives (identification of Byzantine action with cryp-
tographic integrity strongly discourages deviation from following protocol). By

15



studying both strong security (i.e., against fully adaptive adversaries) and strong
forensic support (i.e., identifying the maximum number of Byzantine nodes from
just the transcripts of two honest nodes) we are considering both sides of the
blockchain protocol (resistance to Byzantine behavior as well as incentives to
promote honest behavior). Further, the identification of BFT protocols with
both strong security and strong forensic support properties allows us to con-
struct blockchain protocols with implicitly built incentive mechanisms. It is in
these two senses that the title of this manuscript is constructed.

References

1. Abraham, I., Chan, T.H., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.: Commu-
nication complexity of byzantine agreement, revisited. In: Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. pp. 317–326 (2019)

2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine
agreement with expected O(1) rounds, expected O(n2) communication, and opti-
mal resilience. In: International Conference on Financial Cryptography and Data
Security. pp. 320–334. Springer (2019)

3. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asyn-
chronous byzantine agreement. In: Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing. pp. 337–346 (2019)

4. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case latency of byzantine broad-
cast: a complete categorization. arXiv preprint arXiv:2102.07240 (2021)

5. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for
realistic adversaries. In: Theory of Cryptography Conference. pp. 137–156. Springer
(2007)

6. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938 (2018)

7. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

8. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

9. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

10. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: Super fast
and partition resilient byzantine agreement. IACR Cryptol. ePrint Arch. 2018,
377 (2018)

11. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science 777, 155–183 (2019)

12. Civit, P., Gilbert, S., Gramoli, V.: Polygraph: Accountable byzantine agreement.
IACR Cryptol. ePrint Arch. 2019, 587 (2019)

13. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018)

14. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM) 32(1), 191–204 (1985)

15. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing 12(4), 656–666 (1983)

16



16. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)

17. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1(1), 26–39 (1986)

18. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51–68 (2017)

19. Haeberlen, A., Kouznetsov, P., Druschel, P.: Peerreview: Practical accountability
for distributed systems. ACM SIGOPS operating systems review 41(6), 175–188
(2007)

20. Haeberlen, A., Kuznetsov, P.: The fault detection problem. In: International Con-
ference On Principles Of Distributed Systems. pp. 99–114. Springer (2009)

21. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Annual Cryptology Conference. pp. 369–386. Springer (2014)

22. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. In: Annual International Cryptology Conference. pp. 445–462. Springer
(2006)

23. Kiayias, A., Russell, A.: Ouroboros-bft: A simple byzantine fault tolerant consensus
protocol. IACR Cryptol. ePrint Arch. 2018, 1049 (2018)

24. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

25. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles. pp. 45–58 (2007)

26. LAMPORT, L., SHOSTAK, R., PEASE, M.: The byzantine generals problem.
ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)

27. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th annual
symposium on foundations of computer science (cat. No. 99CB37039). pp. 120–
130. IEEE (1999)

28. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine
consensus with t¡ n/3 and o (n2) messages. In: Proceedings of the 2014 ACM
symposium on Principles of distributed computing. pp. 2–9 (2014)

29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
30. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-

finality dilemma. arXiv preprint arXiv:2009.04987 (2020)
31. Neu, J., Tas, E.N., Tse, D.: Snap-and-chat protocols: System aspects. arXiv

preprint arXiv:2010.10447 (2020)
32. Neu, J., Tas, E.N., Tse, D.: The availability-accountability dilemma and its reso-

lution via accountability gadgets. arXiv preprint arXiv:2105.06075 (2021)
33. Ranchal-Pedrosa, A., Gramoli, V.: Blockchain is dead, long live blockchain! ac-

countable state machine replication for longlasting blockchain. arXiv preprint
arXiv:2007.10541 (2020)

34. Schneider, F.B.: Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (dec 1990).
https://doi.org/10.1145/98163.98167, https://doi.org/10.1145/98163.98167

35. Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: Bft protocol forensics.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1722–1743 (2021)

36. Stewart, A., Kokoris-Kogia, E.: Grandpa: a byzantine finality gadget. arXiv
preprint arXiv:2007.01560 (2020)

17

https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167


37. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347–356 (2019)

A Related Work

Forensic support. The idea of holding misbehaving participants accountable
has been discussed in earlier works [19,20] for distributed systems in general.
Similar ideas have been discussed in other domains such as in secure multi-
party computation with identifiable abort [21]. For SMR and blockchain, recent
works [7,36,33] have discussed finality and accountability and designed their con-
sensus protocols with the focus on accountability. A recent work [35] formally
defined forensic support for Byzantine Agreement (BA) and analyzed it for pro-
tocols such as PBFT [9,8], HotStuff [37], VABA [3], and Algorand [18,11]. They
show that except Algorand, the other protocols have forensic support depend-
ing on their implementation details. Another work [32] introduces the notion of
accountable-safety that combines the traditional safety with the ability to hold
Byzantine parties accountable, and shows that there exists a trade-off between
accountable-safety and liveness. In [30], they proposed the class of snap-and-
chat protocols, which combines a longest chain protocol with a BFT protocol
to provide both availability and finality, and in reference [31] they showed that
if the BFT protocol provides accountable-safety then the snap-and-chat proto-
col inherits accountable-safety. Nevertheless, to the best of our knowledge, this
work is the first to investigate forensic support or accountability for longest chain
protocols.

BFT protocols. Among Byzantine fault tolerant (BFT) protocols, HotStuff [37]
is the first partially synchronous SMR protocol that enjoys a linear communi-
cation (with threshold signature) of view change and optimistic responsiveness.
Forensic support for it was discussed in [35] at the cost of quadratic communi-
cation complexity (due to replacing threshold signatures with aggregated signa-
tures). Algorand [18,11] is a player-replaceable proof-of-stake protocol that was
shown to not have any forensic support. Our work explores forensic support for
player-replaceable protocols achieving sub-quadratic communication complexity
under different network settings and assumptions; the protocol is loosely inspired
from HotStuff.

Longest chain protocols. The longest chain protocol [29] in Bitcoin and
Ethereum uses proof-of-work, a mechanism where participants exhausting com-
putation power to solve a hash puzzle and use the solution as the eligibility to
propose a block. Proof-of-stake protocols such as Ouroboros [24] and Praos [13]
keep the longest chain rule but replaces the energy-consuming puzzle to a stake
weighted puzzle, which a stake-holder with higher stakes has higher probabil-
ity to solve. These protocols are resilient to (1/2 − ϵ) adversarial computation
power or stake; in work [35, Appendix B] it has been proven that forensic sup-
port cannot be provided when t = ⌈n/2⌉ − 1. Ouroboros BFT [23] is a longest
chain protocols with deterministic block proposing assignment and it tolerates
(1/3− ϵ) Byzantine adversary as well as (1/2− ϵ) covert adversary [5].

18



B Practicality Analysis

We consider a network with n replicas, among which f replicas are corrupted by
an adversary. Our protocol can tolerate up to t = (1 − ϵ)n/3 Byzantine faults
for safety and liveness and hold at least ⌈λ/3⌉ Byzantine replicas culpable when
f > t, where ϵ, n and λ are three parameters that together determine the failure
probability of the protocol. In this section we analyze practical parameters that
can be used in implementation to ensure safety and liveness with overwhelming
probability when f ≤ t.

The protocol employs cryptographic sortition to select committee in each
round secretly. Every replica independently computes a hash value to determine
its eligibility to vote with probability λ/n. In each round, we denote the number
of selected honest and Byzantine replicas as two random variables H and B,
both of which follow the binomial distribution with the probability mass function
Pr(H = h) = ϕ(h;n− f, λ/n) and Pr(B = b) = ϕ(b; f, λ/n), where f is defined
as below

ϕ(k;n, p) =

(
n

k

)
· pk · (1− p)n−k

The protocol guarantees safety when H +2B < 2tH and liveness when H ≥ tH .
Therefore we can calculate the probability that each condition fails.

Pr(liveness fails) = Pr(H < tH)

=

tH−1∑
h=0

ϕ(h;n− f, λ/n)

= F (tH − 1;n− f, λ/n)

Pr(safety fails) = Pr(H + 2B ≥ 2tH)

=

∞∑
b=0

ϕ(b; f, λ/n)

∞∑
h=max(0,2tH−2b)

ϕ(h;n− f, λ/n)

=

∞∑
b=0

ϕ(b; f, λ/n)(1− F (max(0, 2tH − 2b− 1);n− f, λ/n)

= 1−
tH−1∑
b=0

ϕ(b; f, λ/n)F (2tH − 2b− 1;n− f, λ/n)

where F is the cumulative distribution function of f . By union bound, the
total failure probability does not exceed the sum of the above two probabil-
ities. We begin by assuming, as stated in Appendix B of Algorand [18], that
the total number of replicas (stakes) might be arbitrarily high, in which case
ϕ(k;n, λ/n) = λk exp(−λ)/k!. We set the maximal tolerable total failure proba-
bility to 5 · 10−9 and search for optimal ϵ given different committee size λ, the
results are shown in Figure 2. When choosing the same committee size λ = 2000

19



as Algorand’s implementation, we can tolerate 17.3% Byzantine fraction (slightly
less than 20% used in Algorand). To further optimize the committee size, we may
apply the same technique used in Algorand to balance safety and liveness con-
ditions by adjusting the quorum threshold tH (we use tH = ⌈2/3λ⌉ whereas in
Algorand, tH = 0.685λ).

0.4 0.5 0.6 0.7 0.8
epsilon

500

1000

1500

2000

2500

3000

3500

4000

Co
m

m
itt

ee
 S

ize

(0.48, 2000)

5e-9

Fig. 2: The optimal Byzantine fraction parameter ϵ with different committee size
λ to achieve the failure probability of 5 · 10−9.

After selecting the committee size λ = 2000 and ϵ = 0.48, we examine the
impact of n. We evaluate the total number of replicas up to 400k, which is the
estimated population in Ethereum. Figure 3 shows the overall failure probability
increases when there are more replicas. This indicates the protocol will be more
secure with larger population in the given setting.

C Full Protocols and Safety and Liveness of Algorithm 3

In this section, we provide the full protocols, as well as formal proofs for safety
and liveness when f < (1 − ϵ)n/3. The safety follows from the following argu-
ments.

Lemma 2. For any valid QC,QC ′, if QC.round = QC ′.round, QC.block and
QC ′.block are not conflicting except with exp(−Ω(λ)) probability.

Proof. To show a contradiction, suppose QC,QC ′ are formed in the same round
and QC.block,QC ′.block are conflicting, then at least 2tH distinct votes are
generated by the committee in the same round. Since honest replicas will only
vote for one block, we require the following inequality to hold: |H| + 2|B| ≥
2tH , where H and B are the set of honest and Byzantine committee members

20



0 50 100 150 200 250 300 350 400
Total Number of Users (10^3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(
sa

fe
ty

 o
r l

iv
en

es
s f

ai
ls)

1e 9

3.0E-9

Fig. 3: The relation of failure probability and population size n given λ =
2000, ϵ = 0.48. The red line represents the approximate probability when we
assume there are arbitrary large population.

respectively. By Chernoff bound, the probability of this event is exp(−Ω(λ))
since there are at most (1− ϵ)n/3 Byzantine replicas.

Theorem 5. Any two conflicting blocks will not be both finalized by honest repli-
cas except with exp(−Ω(λ)) probability.

Proof. For contradiction, suppose two conflicting blocks are finalized by two
honest replicas (see Figure 4). Let br, br′ be the first directly finalized blocks
(finalized in r + 2, r′ + 2 by two consecutive QCs) that are conflicting, w.l.o.g.,
assume r < r′. Further, we can assume r + 1 < r′ due to Lemma 2. In round
r + 2, br is finalized, at least tH committee replicas in round r + 1 receive br+1

and update lock to at least QCr (the QC containing votes in round r) if they
are honest.

Then consider the first block br∗ (possibly br′) conflicting with br and pro-
posed after r + 1. The br∗ .justify must be formed in a round < r because br∗ is
the first conflicting block after r+1. Since br′ is finalized, a QC for br∗ must be
formed, which means at least tH votes are generated in round r∗.

To enter r∗ > r+1, replicas need to collect at least tH locks from committee
members in r + 1. Remember at least tH committee replicas in round r + 1 are
locked on QCr, then for every replica, TC[r+ 1] must contain at least one QCr

reported by honest replica except with exp(−Ω(λ)) probability. Since honest
replicas who are locked on QCr cannot vote for a staler lock and f < (1− ϵ)n/3,
it is contradictory that a QC for br∗ is formed.

Since the protocol is synchronous after GST, the liveness satisfies the follow-
ing statements.

21



Fig. 4: A case where two conflicting blocks are both finalized.

Lemma 3. After GST, if an honest replica enters some round r at time T , all
honest replicas enter round r by time T+4∆ except with exp(−Ω(λ)) probability.

Proof. Suppose the earliest honest replica enters round r at time T (after GST).
If this honest replica is a committee replica in round r, it will broadcast TC[r−1].
Due to synchrony, all honest replicas will receive TC[r − 1] within T + 2∆ time
and enter round r. Otherwise, since there are tH messages in TC[r − 1] sent by
committee replicas in round r− 1, at least tH replicas have entered r− 1 before
T − ∆, among which at least one is honest except for probability exp(−Ω(λ))
since f < (1− ϵ)n/3. The honest committee replica in round r−1 will broadcast
TC[r− 2], therefore at T , all honest replicas will enter round r− 1. Then honest
committee replicas in r− 1 will broadcast votes before T + 2∆. And since there
are at least tH honest committee replicas except with exp(−Ω(λ)) probability,
all honest replicas can collect TC[r − 1] by T + 4∆.

Lemma 4. At any point after GST, if the highest QC is QCr, and three consec-
utive rounds r+1 ∼ r+3 have honest leaders, then br+1 will be finalized within
16∆ time except with exp(−Ω(λ)) probability.

Proof. After GST, when QCr is sent by leader r + 1, by Lemma 3, all honest
replicas enter r + 1 within 4∆. If the leaders of r + 1 ∼ r + 3 are honest, leader
r + 1 will propose br+1 extending from the parent of br and all honest replicas
are willing to vote. The leader r+2 can collect QCr+1 except with exp(−Ω(λ))
probability and propose br+2. Similarly leaders r+3 can collect enough votes to
form QCr+2. Then br+1 is finalized within 3 rounds, each round costs at most
4∆.

Theorem 6 (Liveness). Every valid block will be eventually finalized by every
honest replica.

Proof. Since leader changes in every round randomly, the probability to elect
consecutive 3 honest leaders is > (2/3)3. Whenever a QC is formed and 4 honest
leaders are elected consecutively, by Lemma 4, a block will be finalized within
a time bound with overwhelming probability. Thus all honest replicas will even-
tually finalize all valid blocks.

22



D Impossibility when f > n/2 of OBFT

Theorem 7. When f ≥ n/2, if two honest replicas output conflicting values,
(n/2, n− f, d)-forensic support is impossible with d > 0 for Ouroboros BFT.

Proof. Suppose the protocol provides forensic support to detect d ≥ 1 replicas
with irrefutable proof. To prove this result, we construct two worlds where a
different set of f replicas are Byzantine in each world but a forensic protocol
cannot be correct in both worlds. We fix f = n/2, although the arguments will
apply for any f > n/2.

Let there be two replica partitions P,Q, where P = {ri | i mod 2 = 1} and
Q = {ri | i mod 2 = 0}. All replicas in P (except r1) have input value vi = 0,
all replicas in Q (except r2) have input value vi = 1, v1 = 1, v2 = 0.

Fig. 5: Each row represents for a possible longest chain. In world 1, the leaders of
odd rounds are Byzantine. In world 2, the leaders of even rounds are Byzantine.

World 1. Let P be Byzantine replicas in this world. When Byzantine replica
i becomes the leader, it generate the block with input value but only sends
the block to replica i + 3. Thus, there exists two longest chains as is shown in
Figure 5. Honest replicas who receive the first chain will output value 1 while
honest replicas who receive the second chain will output value 0. Thus there is
a safety violation.

During the forensic protocol, all replicas send their transcripts to the client.
Since the protocol has forensic support for d ≥ 1, the forensic protocol determines
some subset of P are culpable.

World 2. Let R be Byzantine replicas in this world. When Byzantine replica i
becomes the leader, it generates the block with input value but does not follow
the longest chain rule. It always appends another chain to create a fork. Assume
honest replicas always choose to append on top of the longest chain sent by
Byzantine replicas. Thus, the situation is the same as in World 1. Honest replicas
who receive the first chain will output value 1 while honest replicas who receive
the second chain will output value 0. Thus there is a safety violation.

Similarly, all replicas send their transcripts to the client and these transcripts
are the same as those in World 1. So the forensic protocol outputs some subset
of P as culpable replicas. In World 2, this is incorrect since replicas in P are
honest. This completes the proof.

23



E Proof of Lemmas and Theorems

E.1 Proof of Lemma 1

Proof. Choose two longest chains (if there are more than two, choose any two
of them). Let BH and BA be the number of blocks on these two chains that are
generated in RH and RA rounds respectively. Since honest replicas will always
generate blocks and extend from the longest chain when being leaders, then
l ≥ RH. Moreover, honest leaders will only generate one block per round, but
their blocks may not be on these two chains, thus BH ≤ RH. Byzantine replicas
can choose to generate zero, one, and more than one block per round, thus
BA ≤ RA +X, then,

RH +RA +X ≥ BH +BA = 2l ≥ 2RH

=⇒ X ≥ RH −RA

E.2 Proof of Theorem 3

Proof. For the given execution, denote the number of rounds whose leader equiv-
ocates as X. According to Lemma 1, we have X ≥ RH − RA, which means
E[X] ≥ E[RH − RA]. The leader election of Ouroboros is uniformly random,
therefore E[RH] = (n− f)R/n and E[RA] ≤ fR/n, we have

E[X] ≥ E[RH −RA]

≥ (n− f)R

n
− fR

n

=
(n− 2f)R

n

Among X rounds, there are possibly duplicated leaders selected more than
once, and letting duplicated leaders equivocate is beneficial for adversary to
reduce the number of replicas who leave verifiable evidence for misbehavior.
Thus, d ≥ X − D, where D is the number of rounds whose leader has been
selected before among R rounds, i.e.,

D =

r+R−1∑
i=r

I [leader of round i is selected among [r, i− 1]]

where I is the indicator function.
Let ZR

j = 0 denote the event that the j-th replica was not selected in these

R rounds and ZR
j = 1 otherwise. Then, E

[
ZR
j

]
= 1− (1− 1/n)

R
.

Then the expected number of different replicas that have been selected as
leaders among these R rounds is

E

 n∑
j=1

ZR
j

 = n

(
1−

(
1− 1

n

)R
)

24



which implies

E [D] = E

R− n∑
j=1

ZR
j

 = R− n

(
1−

(
1− 1

n

)R
)

Therefore the expected number of Byzantine replicas that will be held cul-
pable E[d] during the execution is

E [d] ≥ E [X −D]

≥ (n− 2f)R

n
−R+ n

(
1−

(
1− 1

n

)R
)

= n

(
1−

(
1− 1

n

)R
)
− 2fR

n

Using a Chernoff bound, we have

d = (1− ϵ)
(
n
(
1− (1− 1/n)

R
)
− 2fR/n

)
for ϵ > 0 except with exp(−Ω(R)) probability. k = 2 since two honest replicas
are required to provide different chains, with which a forensic protocol similar
to Algorithm 2 can be used to identify equivocating leaders. When f > n/2, a
private chain attack is possible, thus m = n/2.

E.3 Proof of Theorem 4

Proof. For the given execution, denote the number of rounds whose leader equiv-
ocates as X, to satisfy the condition in Lemma 1, we have X ≥ RH − RA
and therefore E[X] ≥ E[RH − RA]. The election gives E[RH] = pH1 R and
E[RA] ≤ (pA1 + p2)R, then we have

E[X] ≥ E[RH −RA] ≥ pH1 R− (pA1 + p2)R

In Praos, adversary can not only let duplicated leaders equivocate, but make
rounds that have multiple leaders generate more than one blocks, thus d ≥
X −D−Y where D is a random variable representing for the number of rounds
whose leader has been uniquely selected before among R rounds and Y is the
number of rounds among R rounds that have multiple leaders. Therefore we have
E[Y ] = p2R and

E[d] ≥ E[X −D − Y ] = E[X −D]− p2R

Let ZR
j = 1 denote the event that the j-th replica was uniquely selected in

these R rounds and ZR
j = 0 otherwise. Then,

E
[
ZR
j

]
= 1− (1− g(n))R

25



Since g(n) is the probability for a replica to be uniquely selected. Then the
expected number of different replicas that have been selected as leaders among
these R rounds is

E

[
n∑

i=1

ZR
i

]
= n− n(1− g(n))R

and

E [D] = E

[
R−

n∑
i=1

ZR
j

]
= R− n+ n(1− g(n))R

Therefore the expected number of Byzantine replicas that will be held cul-
pable during the execution is

E [d] ≥ E [X −D]− p2R

≥ pH1 R− (pA1 + p2)R−
(
R− n+ n(1− g(n))R

)
− p2R

≥ pH1 R− pA1 R− 2p2R−
(
R− n+ n(1− g(n))R

)
= (n− 2f)g(n)R− 2(w − ng(n))R− (R− n+ n(1− g(n))R)

= (n− 2f)g(n)R− T (n,R)

where T (n,R) = 2(w − ng(n))R + (R − n + n(1 − g(n))R) for short and
T (n,R) > 0. Then, using a Chernoff bound, we have

d = (1− ϵ) ((n− 2f)g(n)R− T (n,R))

except with exp(−Ω(R)) probability.

E.4 Proof of Corollary 2

Proof. Applying binomial approximation to the probability g(n), we have

g(n) = (1− (1− w)1/n)(1− w)1−1/n

= (1− w)
n−1
n − (1− w)

∼ (1− w)(1 +
w

n
)− (1− w)

=
w(1− w)

n
<

1

n

Therefore, when R/n = o(1), Rg(n) = o(1), then we have E[D] ∼ R − ng(n)R
and T (n,R) ∼ (1− w + 3w2)R. Further, since R ≥ κ

E[d] ∼ (w − w2)(n− 2f)κ/n− (1− w + 3w2)κ

Using a Chernoff bound,

d = (1− ϵ)((w − w2)(n− 2f)κ/n− (1− w + 3w2)κ)

except with exp(−Ω(κ)) probability.

26



Algorithm 3 A player-replaceable, partially synchronous SMR protocol

1: tH ← ⌈2λ/3⌉
2: TC[0]← ∅, Votes[0]← ∅
3: lockedQC← qcgenesis ▷ the lock variable
4: for curRound← 1, 2, . . . do

▷ At time 0 of curRound
5: TC[curRound]← ∅
6: Votes[curRound]← ∅
7: if VRF(seed||curRound||''leader '') < τ/n then ▷ as the leader of curRound
8: if ∃h, s.t.|Votes[curRound− 1][h]| ≥ tH ← ∅ then
9: lockedQC ← QC generated from Votes[curRound− 1][h]

10: create block b∗ where b∗.justify ← lockedQC; b∗.cmd ← commands from
clients; b∗.parent← lockedQC.block

11: broadcast ⟨proposal, curRound, b∗, TC[curRound− 1]⟩
12: m← ∅
13: upon receiving m′ ← ⟨proposal, curRound, b∗, TC[curRound − 1]⟩ from a

leader whose cryptographic sortition is valid do
14: if (m = ∅) ∨ (m′.vrf < m.vrf) then
15: m← m′ ▷ m is the proposal with the min VRF hash

▷ At time 2∆ of curRound
16: blockHash = ∅
17: if m is not empty and m.b∗ extends from lockedQC.block then
18: ProcessProposal(m) (line 30)
19: blockHash = H(m.b∗)

20: if VRF(seed||curRound||''committee'') < λ/n then▷ as a committee member of
curRound

21: broadcast ⟨vote, curRound, blockHash, lockedQC, TC[curRound− 1]⟩
22: while |TC[curRound]| < tH or before 4∆ of curRound do
23: wait for ⟨vote, curRound, h∗, lockedQC, TC[curRound − 1]⟩ whose crypto-

graphic sortition is valid

▷ At any time (triggered by receiving a vote)
24: upon receiving ⟨vote, r, h∗, lockedQC∗, TC∗[r − 1]⟩ s.t. sender’s cryptographic

sortition is valid do
25: add Vote message to set Votes[r][h∗]
26: if sender id has no entry in TC[r] then
27: TC[r]← TC[r] ∪ {(id, lockedQC∗)}
28: lockedQC← maxround{lockedQC∗, lockedQC} ▷ do not update in case of a

draw
29: TC[r − 1]← TC[r − 1] ∪ TC∗[r − 1]▷ do not update in case an entry for an id

exists
30: procedure ProcessProposal(⟨proposal, r, b∗, TC∗[r − 1]⟩)
31: lockedQC← maxround{b∗.justify, lockedQC} ▷ do not update in case of a draw
32: TC[r − 1]← TC[r − 1] ∪ TC∗[r − 1]▷ do not update in case an entry for an id

exists
33: b′ ← b∗.parent, b← b′.parent
34: if b, b′, b∗ are in consecutive rounds then
35: finalize block b (directly) and all blocks before b (indirectly), execute com-

mands in the finalized blocks

27


	Player-Replaceability and Forensic Support are Two Sides of the Same (Crypto) Coin

