The Generalized Montgomery Coordinate: A New Computational Tool for Isogeny-based Cryptography

Tomoki Moriya¹, Hiroshi Onuki¹, Yusuke Aikawa², and Tsuyoshi Takagi¹

¹ Department of Mathematical Informatics, The University of Tokyo, Japan
{tomoki.moriya, onuki, takagi}@mist.i.u-tokyo.ac.jp

² Information Technology R&D Center, Mitsubishi Electric Corporation, Japan
Aikawa.Yusuke@bc.mitsubishielectric.co.jp

Abstract. Recently, some studies have constructed one-coordinate arithmetics on elliptic curves. For example, formulas of the x-coordinate of Montgomery curves, x-coordinate of Montgomery curves, w-coordinate of Edwards curves, w-coordinate of Huf’s curves, ω-coordinates of twisted Jacobi intersections have been proposed. These formulas are useful for isogeny-based cryptography because of their compactness and efficiency. In this paper, we define a novel function on elliptic curves called the generalized Montgomery coordinate that has the five coordinates described above as special cases. For a generalized Montgomery coordinate, we construct an explicit formula of scalar multiplication that includes the division polynomial, and both a formula of an image point under an isogeny and that of a coefficient of the codomain curve.

Finally, we present two applications of the theory of a generalized Montgomery coordinate. The first one is the construction of a new efficient formula to compute isogenies on Montgomery curves. This formula is more efficient than the previous one for high degree isogenies as the Vélu’s formula in our implementation. The second one is the construction of a new generalized Montgomery coordinate for Montgomery curves used for CSURF.

Keywords: isogeny-based cryptography; Vélu’s formulas; elliptic curves; Kummer line; generalized Montgomery coordinates.

1 Introduction

For both mathematics and cryptography, it is an interesting problem for abelian varieties to construct formulas using few coordinates for their group arithmetics. In fact, there have been several studies that have used Kummer varieties to construct such formulas describing arithmetic of abelian varieties in unified coordinates. These theories are classically known to be due to theta functions of level 2. In 1986, D.V. and G.V Chudnovsky constructed some algorithms by using this theory [CC86]. Montgomery provided a scalar multiplication algorithm via x-coordinates of Montgomery curves [Mon87]. In 2009, Gaudry and Lubicz constructed formulas of group arithmetics of characteristic 2 in [GL09]. Moreover,
Lubicz and Robert proposed compatible group arithmetics of Kummer varieties in [LR16]. Karati and Sarker investigated the connection between elliptic curves of Legendre form and Kummer lines [KS19]. In 2018, Hisil and Renes described the relationship of Kummer lines and some popular elliptic curves (Montgomery curves and twisted Edwards curves) [HR19].

Apart from the above, recently, the development of researches about isogeny-based cryptography has increased interest in efficient and compact isogeny computations of elliptic curves. Indeed, several studies have proposed formulas of scalar multiplications and isogeny computations by using only one-coordinate systems of elliptic curves. For example, formulas via the x-coordinates of Montgomery curves, w-coordinates of Edwards curves, w-coordinates of Huff’s curves, and ω-coordinates of twisted Jacobi intersections are known. These constructions have been performed individually. Table 1 summarizes such studies. These one-coordinate formulas are often used in isogeny-based cryptography owing to their compactness and efficiency. Studies have constructed efficient formula for each of the coordinates. Meyer and Reith constructed efficient formulas for isogeny computations of the x-coordinate of Montgomery curves [MR18], and Bernstein et al. developed a method of computing this formula in $O(\sqrt{\ell})$ times [BDFTLS20], while the original Vélu’s formulas are computed in $O(\ell)$ times. They described this method on the x-coordinates of Montgomery curves. This method has been extended to the w-coordinate of Edwards curves [MOT20a] and the w-coordinate of Huff’s curves [Wro21, Kim21].

The greatness of these coordinates is that they write down both scalar multiplications and isogeny computations in the language of one-coordinate systems. Unfortunately, as mentioned above, these coordinates have been proposed individually, and there is no framework for handling these coordinates in a unified way as far as we know. As a classical trial to unify some one-coordinate type formulas, we know the theory of Kummer varieties (especially Kummer lines). Even using this theory, we cannot unify formulas of the coordinates in the previous paragraph. Indeed, the theory of Kummer lines is a framework for some one-coordinate type formulas of “scalar multiplications”; however, this theory cannot unify formulas of isogeny computations. Certainly, there are some studies about isogeny computations from the theory of Kummer varieties. For example, Lubicz and Robert constructed higher dimensional analogs of Vélu’s formulas via theta functions [LR12], and Cosset and Robert proposed the algorithm to compute (ℓ, ℓ)-isogenies via the theory of theta functions [CR15]. Unfortunately, these methods of computing isogenies seem not suitable to unify the target formulas, because these methods focus on higher degree abelian varieties and are very complex. Moreover, Costello proposed an algorithm to compute Richelot isogenies of Kummer surfaces of Jacobian varieties of genus-2 curves [Cos18]. This study excels at computing Richelot isogenies; however, it is hard to adapt the method to unify formulas of isogeny computations on curves because this study considers special cases of isogenies. Therefore, we propose the following question:
Table 1. Previous results on one-coordinate arithmetic

<table>
<thead>
<tr>
<th>Forms</th>
<th>Scalar multiplication</th>
<th>Isogeny computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery</td>
<td>Montgomery [Mon87]</td>
<td>Renes [Ren18], Costello and Hisil [CH17]</td>
</tr>
<tr>
<td>Montgomery*</td>
<td>Castryck and Decru [CD20]</td>
<td></td>
</tr>
<tr>
<td>Edwards</td>
<td>Farashahi and Hosseini [FH17]</td>
<td>Kim, Yoon, Park, and Hong [KYPH19]</td>
</tr>
<tr>
<td>Huff</td>
<td>Huang et al. [HZHL20], Drylo, Kijko, and Wróński [DKW20]</td>
<td></td>
</tr>
<tr>
<td>Twisted Jacobi intersections</td>
<td>Hu, Wang, and Zhou [HWZ21]</td>
<td></td>
</tr>
</tbody>
</table>

Can we construct one-coordinate formulas of scalar multiplication and isogeny computation of elliptic curves for isogeny-based cryptography in a unified manner like the theory of Kummer lines?

From the theory of divisors of functions, we can define a generalized coordinate of elliptic curves, and construct explicit one-coordinate type formulas to compute scalar multiplications and isogeny computations. Unfortunately, the use of divisors instead of theta functions makes it difficult to extend the theory to higher dimensional abelian varieties. On the other hand, as far as we focus on the computational aspects of elliptic curves, the construction from divisors is more natural than that from theta functions.

1.1 Contribution

In this paper, we provide an affirmative answer to the above research question. We contribute to the literature by improving the visibility of the isogeny computation of different forms of elliptic curves (see Figure 1). The followings are specific contributions of the paper.

Defining a generalized Montgomery coordinate

The core of our research is the introduction of a novel function on elliptic curves, which we call a generalized Montgomery coordinate (Definition 1). This is a generalization of coordinates that can be used to construct one-coordinate formulas on elliptic curves, e.g., the \(x \)-coordinates of Montgomery curves, \(x \)-coordinates of Montgomery* curves, \(w \)-coordinates of Edwards curves, \(w \)-coordinates of Huff’s curves, and \(\omega \)-coordinates of twisted Jacobi intersections. Because these coordinates have similar divisors, we can obtain a generalization of them by considering divisors with the appropriate form. In particular, the set of poles and zero points of these coordinates can be considered a finite subgroup \(\mathcal{G} \) of elliptic curve \(E \) and the shifted set of \(\mathcal{G} \) by one point in \(E \), respectively. More precisely, a generalized Montgomery coordinate for an elliptic curve \(E \) can be defined by specifying a finite subgroup \(\mathcal{G} \subset E \) as poles and the set \(\mathcal{R}_0 = \mathcal{R}_0 + \mathcal{G} \) as zero points, where \(\mathcal{R}_0 \) is a point such that \(2\mathcal{R}_0 \in \mathcal{G} \) and \(\mathcal{R}_0 \not\in \mathcal{G} \). Indeed, we can demonstrate that a generalized Montgomery coordinate is essentially the same as the composition of an isogeny and the \(x \)-coordinate of a (standard) Montgomery curve (Theorem 1).
Constructing explicit formulas
Moreover, we construct explicit formulas for scalar multiplications and isogeny computations via a generalized Montgomery coordinate. Two formulas are used to construct a formula for scalar multiplication: one is for differential addition, and the other is for doubling. We construct both formulas by considering the divisors of the functions of the computational results of each formula. For example, the doubling formula is constructed from the divisor of the function $h \circ [2]$, where h is a generalized Montgomery coordinate. This method of construction has a high affinity with the definition of a generalized Montgomery coordinate. Furthermore, two formulas are used to construct the formula of isogeny computation: one is for computing an image point under an isogeny, and the other is for computing a coefficient of the codomain curve under an isogeny. We construct the first formula in the same manner as the formula of scalar multiplication. However, the second formula cannot be constructed using divisors because it is not a function over an elliptic curve. We construct the second formula using the 2-torsion method provided in [CH17].

Analyzing the difference between multiple formulas
As mentioned earlier, the formula to compute a coefficient of a codomain curve under an isogeny is not constructed using its divisor. Therefore, this formula has several representations. We know that the formula of Montgomery curves proposed in [Ren18] and that proposed in [MR18] are different. We analyze these differences to describe all formulas using generalized Montgomery coordinates, and we prove that this difference is due to the division polynomial of the generalized Montgomery coordinates (Theorem 28).

Applications
We believe that the theory of a generalized Montgomery coordinate has many applications. In this paper, we consider two applications as an initial trial. First, we construct a new efficient formula to compute isogenies on Montgomery curves. This formula is obtained by transplanting the formula of Edwards curves to Montgomery curves, and it is more efficient than the previous formula for high degree isogenies in our implementation. Next, we propose a new generalized Montgomery coordinate of Montgomery curves called the w-coordinate. We can construct a new CSURF algorithm [CD20] via the w-coordinate. Some accelerating techniques have been used in previous algorithms of CSURF, and we must consider a proper isogeny from a Montgomery curve to a Montgomery curve to use these techniques. However, our proposed algorithm can use these techniques through the w-coordinate without considering any isogenies. Thus, our new algorithm provides a simple implementation of CSURF.

1.2 Organization.
In Section 2, we introduce some mathematical concepts as preliminaries. In Section 3.1, we define the generalized Montgomery coordinate and basic notations.
related to it, and in Section 3.2, we prove some important properties of a generalized Montgomery coordinate. Section 3.3 provides some examples of a generalized Montgomery coordinate. We prove theorems of formulas of differential addition and doubling in Section 4.1, and we define division polynomials of the generalized Montgomery coordinates in Section 4.2. In Section 5, we construct formulas to compute isogenies via a generalized Montgomery coordinate. Section 6 shows some applications of the theory of a generalized Montgomery coordinate. Finally, we conclude this paper in Section 7.

2 Preliminaries

In this section, we introduce some important mathematical concepts for our study. The details of the following facts are provided in [Sil09, Gal12].

Let K be a field. An elliptic curve defined over K is a pair (E, O_E) of a smooth algebraic curve E defined over K with genus 1 and a point O_E in $E(K)$. It is known that $E(L)$ has a group structure whose identity element is O_E, where L is an algebraic extension field of K. In this paper, we often use a genus-1 curve E for representing an elliptic curve (omit the identity point O_E), we fix K, and if not mentioned, we always fix E over \overline{K} (i.e., it is defined over the algebraic closure of K). A Montgomery curve is an elliptic curve defined by the equation $y^2 = x^3 + \alpha x^2 + x$ ($\alpha \neq \pm 2$). The identity point of a Montgomery curve is a point at infinity. We call a coefficient α a Montgomery coefficient.

Let n be an integer. We denote the multiplication-by-n map between elliptic curves by $[n]$, and denote a point $[n](P)$ by nP. We define the n-torsion subgroup $T_n(E)$, and so on.

<table>
<thead>
<tr>
<th>Previous</th>
<th>This work</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery curve, x-coordinate</td>
<td></td>
<td>Generalized Montgomery coordinate</td>
</tr>
<tr>
<td>[Mon87, Ren18, CH17]</td>
<td></td>
<td>Montgomery curve $G = {O_E}$, x-coordinate $R_0 = {(0,0)}$</td>
</tr>
<tr>
<td>Edwards curve, w-coordinate</td>
<td></td>
<td>Montgomery curve $G = {O_E}$, x-coordinate $R_0 = {(0,0)}$</td>
</tr>
<tr>
<td>[FH17, KYPH19]</td>
<td>Edwards curve, $(1/w)$-coordinate $G = {O_E}$, x-coordinate $R_0 = {(0,0)}$</td>
<td></td>
</tr>
<tr>
<td>Huff’s curve, w-coordinate</td>
<td></td>
<td>Huff’s curve, w-coordinate $G = {O_E}$, x-coordinate $R_0 = {(0,0)}$</td>
</tr>
<tr>
<td>[HZHL20, DKW20]</td>
<td>Twisted Jacobi intersections, ω-coordinate $G = {O_E}$, x-coordinate $R_0 = {(0,0)}$</td>
<td></td>
</tr>
<tr>
<td>Twisted Jacobi intersections, ω-coordinate</td>
<td></td>
<td>and so on.</td>
</tr>
</tbody>
</table>

Fig. 1. Our unified one-coordinate formulas
of \(E(\overline{K}) \) as \(E[n] = \{ P \in E(\overline{K}) \mid nP = O_E \} \). If \(\text{ch}(K) = 0 \) or \(\text{ch}(K) \nmid n \), then it holds that \(E[n] \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} \). Here, \(\text{ch}(K) \) is the characteristic of \(K \). For a subset \(S \subseteq E \), we define the set \(\frac{1}{2}S \) as \(\frac{1}{2}S := \{ P \in E \mid 2P \in S \} \).

Let \(E \) and \(E' \) be elliptic curves defined over \(K \). An isogeny \(\phi : E \to E' \) defined over \(K \) is a nontrivial morphism defined over \(K \) of algebraic curves such that \(\phi(O_E) = O_{E'} \). It is known that \(\phi \) is a group morphism of elliptic curves. From an isogeny \(\phi \), we obtain an injective map \(\phi^*: \overline{K}(E') \to \overline{K}(E) \), where \(\overline{K}(E) \) and \(\overline{K}(E') \) are the function fields of \(E \) and \(E' \) respectively. The degree of \(\phi \) denoted by \(\text{deg} \phi \) is the degree of the finite extension \(\overline{K}(E)/\overline{K}(E') \). If this extension is separable, then an isogeny \(\phi \) is called a separable isogeny. If an isogeny \(\phi \) is separable, it holds that \(\text{deg} \phi = \# \ker \phi \). An \(\ell \)-isogeny is a separable isogeny whose kernel is a cyclic subgroup of order \(\ell \). For any isogeny \(\phi : E \to E' \), there is an isogeny \(\phi^* : E' \to E \) such that \(\phi \circ \phi^* = [\text{deg} \phi] : E' \to E' \) and \(\phi \circ \phi^* = [\text{deg} \phi] : E \to E \). This isogeny is called the dual isogeny of \(\phi \). Let \(G \) be a finite subgroup of \(E \). There is a unique elliptic curve \(E/G \) up to isomorphism and a separable isogeny \(\phi : E \to E/G \) such that \(\ker \phi = G \). Vélu proposed formulas to compute this isogeny in [Vélu1]. We call these Vélu’s formulas.

Let \(P \in E \). Let \(\text{ord}_P \) be the normalized valuation on the local ring of \(E \) at \(P \). The divisor group of an elliptic curve \(E \) is the free commutative group generated by points of \(E \), and a divisor is an element of the divisor group of \(E \). Let \(f \) be a function in \(\overline{K}(E)^\times \). The divisor of \(f \), denoted by \(\text{div} f \), is defined as follows:

\[
\text{div} f = \sum_{P \in E} \text{ord}_P(f)(P).
\]

Let \(D = \sum n_P(P) \) be a divisor. There is a function \(f \in \overline{K}(E) \) such that \(D = \text{div} f \) if and only if \(\sum n_P = 0 \) and \(\sum n_PP = O_E \) in \(E \). Let \(g \in \overline{K}(E)^\times \). It holds that \(\text{div} f = \text{div} g \) if and only if there is a constant value \(c \in \overline{K}^\times \) such that \(f = c \cdot g \).

3 Generalized Montgomery coordinates and their basic properties

In this section, we define a new function on elliptic curves called the generalized Montgomery coordinate. This function gives formulas to compute isogenies, which are independent of the forms of elliptic curves.

In this paper, we always let \(K \) be a field whose characteristic is not 2. It is not a problem for isogeny-based cryptography, because fields with large characteristic are always used in it so far.

3.1 Definition of a generalized Montgomery coordinate

In this subsection, we define a generalized Montgomery coordinate.

Before defining a generalized Montgomery coordinate, we consider properties common to the \(x \)-coordinate of Montgomery curves, the \(x \)-coordinate of
Montgomery curves, the \(w \)-coordinate of Edwards curves, and the \(w \)-coordinate of Huff’s curves. These curves have several common properties. Particularly, we think that the following four properties are important as coordinates used in computations. Here, we denote a coordinate on an elliptic curve \(E \) as \(h \).

i) It holds that \(h \in \overline{K}(E) \).

ii) There is a finite subgroup \(G \subset E \) such that

\[
h(P) = h(Q) \iff P + Q \in G \text{ or } P - Q \in G.
\]

iii) It holds that \(O_E \) is a pole of \(h \).

iv) There is a point \(R_0 \) satisfying \(2R_0 \in G \) and \(h(R_0) = 0 \).

The property (i) indicates that \(h \) is a morphism between \(E \) and the projective line \(\mathbb{P}^1 \). The property (ii) claims that \(h(P) = h(Q) \) if and only if the addition of \(P \) and \(Q \) or their difference belongs to a finite subgroup \(G \). This property comes from the intuition that coordinates with good symmetry may be related to a subgroup of elliptic curves. This intuition is also found in other papers. For example, Kohel constructed an efficient model of elliptic curves in characteristic 2 based on this intuition \[Koh11\]. The property (iii) means \(h(O_E) = \infty = (1 : 0) \in \mathbb{P}^1 \), and the property (iv) means there is a zero point of \(h \) whose doubling belongs to \(G \).

From the properties (ii-iv), we obtain zero points and poles of \(h \). Therefore, we can write down the condition of the divisor of \(h \). By considering the simplest condition of \(\text{div} \ h \), we can construct the following definition of a generalized Montgomery coordinate.

Definition 1 (Generalized Montgomery coordinate). Let \(E \) be an elliptic curve defined over \(\overline{K} \). Let \(G \) be a finite subgroup of \(E \), and let \(R_0 \) be a point satisfying \(2R_0 \notin G \) and \(2R_0 \in G \). We denote the set \(R_0 + G \) by \(\mathcal{R}_0 \). If a function \(h_{G,R_0} \in \overline{K}(E) \) satisfies the following equality, we call \(h_{G,R_0} \) the generalized Montgomery coordinate of \(E \) with respect to \(G \) and \(R_0 \):

\[
\text{div} \ h_{G,R_0} = 2 \sum_{P \in G} (P + R_0) - 2 \sum_{P \in G} (P).
\]

Here, \(P + R_0 \) means a point addition of \(P \) and \(R_0 \) in \(E \).

Remark 2. When we fix \(G \) and \(\mathcal{R}_0 \), a generalized Montgomery coordinate with respect to \(G \) and \(\mathcal{R}_0 \) always exists, because it holds that

\[
2 \sum_{P \in G} P + (2\#G)R_0 - 2 \sum_{P \in G} P = O_E.
\]

Remark 3. Let \(\vartheta_0 \) and \(\vartheta_1 \) be functions of \(\mathbb{C} \times \mathcal{H} \) defined by

\[
\vartheta_0(z, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i n^2 \tau + 2\pi i n z}, \quad \vartheta_1(z, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i n^2 \tau + 2\pi i n z + \pi i n},
\]

where \(\mathcal{H} \) is the upper half-plane. Let \(A_\tau \) be a \(\mathbb{Z} \)-lattice generated by 1 and \(\tau \), and \(E_\tau \) an elliptic curve over \(\mathbb{C} \) biholomorphic to \(\mathbb{C}/A_\tau \). Now, we fix \(\tau \). In the theory
Table 2. Examples of normalized generalized Montgomery coordinates (Definition 1)

<table>
<thead>
<tr>
<th>Forms</th>
<th>Coordinate</th>
<th>(h_{G,R_0}) normalized</th>
<th>(\mathcal{G})</th>
<th>(R_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery</td>
<td>(x)</td>
<td>(x)</td>
<td>({O_E})</td>
<td>{(0, 0)}</td>
</tr>
<tr>
<td>Montgomery*</td>
<td>(x)</td>
<td>(\sqrt{-4x})</td>
<td>({O_E})</td>
<td>{(0, 0)}</td>
</tr>
<tr>
<td>Edwards</td>
<td>(w = dx^2y^2)</td>
<td>(w^{-1})</td>
<td>(C_4)</td>
<td>(\infty_1 + C_4)</td>
</tr>
<tr>
<td>Huff</td>
<td>(w = 1/(xy))</td>
<td>(w)</td>
<td>({O_E})</td>
<td>{\infty_3}</td>
</tr>
<tr>
<td>Twisted Jacobi intersections</td>
<td>(\omega = \sqrt{abx^2})</td>
<td>(\omega^{-1})</td>
<td>(E[2])</td>
<td>{points at infinity}</td>
</tr>
</tbody>
</table>

of Kummer lines, we use a composition of a function \(\vartheta_0^2/\vartheta_1^2\) and an automorphism of \(\mathbb{P}^1\) as a unify coordinate. Because \(\vartheta_0^2/\vartheta_1^2\) is well-defined over \(\mathbb{C}/\Lambda\), we consider this function as a coordinate of \(E_\tau\). It is easy to see that the divisor of a function \(\vartheta_0^2/(\vartheta_0^2(0)\vartheta_1^2 - \vartheta_1^2(0)\vartheta_0^2)\) is \(2(R) - 2(O_{E_\tau})\), where \(R\) is a point of order 2 in \(E_\tau\). Therefore, as far as we concentrate on elliptic curves, a generalized Montgomery coordinate is a generalization of a coordinate from theta functions.

Remark 4. The name “generalized Montgomery coordinate” comes from Theorem 13.

Let \(E\) be a Montgomery curve, let \(\mathcal{G} = \{O_E\}\), and let \(R_0 = \{(0, 0)\}\); then, the \(x\)-coordinate of \(E\) is a normalized generalized Montgomery coordinate with respect to \(\mathcal{G}\) and \(R_0\). As shown in Table 2, other coordinates are also obtained by determining \(\mathcal{G}\) and \(R_0\) properly. The definition of a normalized generalized Montgomery coordinate is given in Definition 11. In subsection 3.3, we show that these coordinates are generalized Montgomery coordinates.

Next, we introduce an important notation regarding a generalized Montgomery coordinate which plays a role as a standard Montgomery coefficient. Before defining this notation, we prove the following lemma.

Lemma 5. Let \(E\) be an elliptic curve, and let \(\mathcal{G}\) be a finite subgroup of \(E\). Then, the set \(\frac{1}{2}\mathcal{G}\) is a subgroup of \(E\) including \(\mathcal{G}\) and is decomposed as follows:

\[
\frac{1}{2}\mathcal{G} = \mathcal{G} \cup (R_0 + \mathcal{G}) \cup (R_1 + \mathcal{G}) \cup (R_0 + R_1 + \mathcal{G}),
\]

where \(R_0\) is a point in \(\frac{1}{2}\mathcal{G} \setminus \mathcal{G}\), and \(R_1\) is a point in \(\frac{1}{2}\mathcal{G} \setminus (\mathcal{G} \cup (R_0 + \mathcal{G}))\).

We denote \(R_1 + \mathcal{G}\) by \(\mathcal{R}_1\).

Proof. Let \([2]\) be a doubling map. Since \([2]^{-1}(\mathcal{G}) = \frac{1}{2}\mathcal{G}\), \(\frac{1}{2}\mathcal{G}\) is a subgroup of \(E\). Note that \([2]|_{\frac{1}{4}\mathcal{G}}: \frac{1}{4}\mathcal{G} \to \mathcal{G}\) is surjective. As the kernel of \([2]|_{\frac{1}{4}\mathcal{G}}\) is \(E[2]\), the index of \(\mathcal{G}\) in \(\frac{1}{2}\mathcal{G}\) is 4. Since \([2](\frac{1}{4}\mathcal{G}) \subset \mathcal{G}\), it holds that

\[
\left(\frac{1}{2}\mathcal{G}\right)/\mathcal{G} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.
\]

This completes the proof of Lemma 5.
Now, we define a generalized Montgomery coefficient.

Definition 6 (Generalized Montgomery coefficient). Let \((E, h_{G, R_0})\) be a pair of an elliptic curve defined over \(K\) and its normalized generalized Montgomery coordinate. Let \(R_1\) be the set defined in Lemma 7 and let \(R_1\) be a point in \(R_1\). We call a value \(\alpha_{h_{G, R_0}} \in \mathbb{K}\) defined by

\[
\alpha_{h_{G, R_0}} = -h_{G, R_0}(R_1) - \frac{1}{h_{G, R_0}(R_1)}
\]

the generalized Montgomery coefficient of \(h_{G, R_0}\).

Remark 7. We can easily show that \(\alpha_{h_{G, R_0}}\) is uniquely determined regardless of the way to decide \(R_1\) and \(R_1\) from Theorem 12 and Lemma 10.

Remark 8. If \(h_{G, R_0}\) is the \(x\)-coordinate of a Montgomery curve, then the generalized Montgomery coefficient is the standard Montgomery coefficient.

Remark 9. Let \(E\) be an elliptic curve, and let \(h\) be a generalized Montgomery coordinate with respect to a finite subgroup \(G \subset E\). Though a Montgomery curve can be determined from its standard Montgomery coefficient, it is not always possible to determine \(E\) from the generalized Montgomery coefficient of \(h\) and the group structure of \(G\).

As shown in the following lemma, there is a constant ambiguity in a generalized Montgomery coordinate. For the sake of brevity in future discussions, we define a “normalized” generalized Montgomery coordinate.

Lemma 10. For the generalized Montgomery coordinate \(h_{G, R_0}\), there exists a constant value \(c\) in \(\mathbb{K}^\times\) such that

\[
h_{G, R_0}(P + R_0) = \frac{c}{h_{G, R_0}(P)}
\]

for any \(P\) in \(E\) and \(R_0\) in \(R_0\).

Proof. We define the two maps \(\phi_1\) and \(\phi_2\) mapping from \(E\) to \(\mathbb{P}^1\) as

\[
\phi_1(z) = h_{G, R_0}(z + R_0), \quad \phi_2(z) = \frac{1}{h_{G, R_0}(z)}.
\]

By considering zero points and poles of \(\phi_1\) and \(\phi_2\) from these definitions (Definition 3.1), we have \(\text{div} \phi_1 = \text{div} \phi_2\). Therefore, there is a constant value \(c \neq 0\) such that \(\phi_1 = c \cdot \phi_2\).

Definition 11 (Normalized generalized Montgomery coordinate). If \(c = 1\) in Lemma 10, we call \(h_{G, R_0}\) the normalized generalized Montgomery coordinate.

By replacing \(h_{G, R_0}\) with \(\frac{1}{\sqrt{c}}h_{G, R_0}\), we can always take \(h_{G, R_0}\) as normalized.
3.2 Basic properties of a generalized Montgomery coordinate

In this subsection, we see some basic properties of a generalized Montgomery coordinate. Theorem 12 shows that a generalized Montgomery coordinate satisfies property ii) in Section 3.1 and Theorem 13 tells us that a normalized generalized Montgomery coordinate is a composition of the x-coordinate of a Montgomery curve and an isogeny.

Theorem 12. Let \mathcal{G} be a finite subgroup of E, let R_0 be a point such that $2R_0 \in \mathcal{G}$ and $R_0 \notin \mathcal{G}$, and let \mathcal{R}_0 be the set $\mathcal{R}_0 + \mathcal{G}$. Let $h_{\mathcal{G},\mathcal{R}_0}$ be a generalized Montgomery coordinate with respect to \mathcal{G} and \mathcal{R}_0. Then, for $P, Q \in E$, it holds that
\[h_{\mathcal{G},\mathcal{R}_0}(P) = h_{\mathcal{G},\mathcal{R}_0}(Q) \iff P + Q \in \mathcal{G} \text{ or } P - Q \in \mathcal{G}. \]

Proof. First, we prove that the left-hand side follows from the right-hand side. We show
\[h_{\mathcal{G},\mathcal{R}_0}(P) = h_{\mathcal{G},\mathcal{R}_0}(-P + S), \]
for all $S \in \mathcal{G}$ and $P \in E$. For $S \in \mathcal{G}$, we define a map $\phi_S \in K(E)$ as follows:
\[\phi_S(z) = h_{\mathcal{G},\mathcal{R}_0}(-z + S). \]
It is clear that $\text{div } h_{\mathcal{G},\mathcal{R}_0} = \text{div } \phi_S$. We now prove that the constant function $h_{\mathcal{G},\mathcal{R}_0}/\phi_S$ is 1 in two cases. If there is a point \tilde{S} such that $2\tilde{S} = S$, $\tilde{S} \notin \mathcal{G}$, and $\tilde{S} \notin \mathcal{R}_0$, we have $h_{\mathcal{G},\mathcal{R}_0}(\tilde{S}) = \phi_S(\tilde{S})$. Because $h_{\mathcal{G},\mathcal{R}_0}(\tilde{S})$ is neither 0 nor ∞, it holds that $h_{\mathcal{G},\mathcal{R}_0} = \phi_S$. Suppose that there is no point satisfying the above property. Take a point \tilde{S} as a point satisfying $2\tilde{S} = S$. Note that $\tilde{S} \in \mathcal{G}$ or $\tilde{S} \in \mathcal{R}_0$. Let R be a point of order 2, and define a function $f \in K(E)$ satisfying
\[\text{div } f = \begin{cases} 2(\tilde{S} + R) - 2(\tilde{S}) & \text{if } \tilde{S} \in \mathcal{G}, \\ 2(\tilde{S}) - 2(\tilde{S} + R) & \text{if } \tilde{S} \in \mathcal{R}_0. \end{cases} \]

Let R' be a point in $E[2] \setminus \{O_E, R\}$. Because we have
\[f(\tilde{S} + R') = f(-(\tilde{S} + R') + S) \neq 0, \infty, \]
it holds that $f(z) = f(-z + S)$ from considering their divisors. It holds that
\[(h_{\mathcal{G},\mathcal{R}_0} / f)(z) = c \cdot (h_{\mathcal{G},\mathcal{R}_0} / f)(-z + S), \]
where c is a constant value. Since
\[(h_{\mathcal{G},\mathcal{R}_0} / f)(\tilde{S}) = (h_{\mathcal{G},\mathcal{R}_0} / f)(-\tilde{S} + S) \neq 0, \infty, \]
it holds that $c = 1$. Therefore, $h_{\mathcal{G},\mathcal{R}_0}(z) = h_{\mathcal{G},\mathcal{R}_0}(-z + S)$. Note that $h_{\mathcal{G},\mathcal{R}_0}(z) = h_{\mathcal{G},\mathcal{R}_0}(-z)$ by substituting $S = O_E$. We have
\[h_{\mathcal{G},\mathcal{R}_0}(P) = h_{\mathcal{G},\mathcal{R}_0}(Q) \iff P + Q \in \mathcal{G} \text{ or } P - Q \in \mathcal{G}. \]

Next, we prove the converse. If $P \in \mathcal{G}$ or $P \in \mathcal{R}_0$, the converse is true. Suppose that $P \notin \frac{1}{2} \mathcal{G}$. Then, we have
\[\# \{Q \in E \mid P + Q \in \mathcal{G} \text{ or } P - Q \in \mathcal{G} \} = 2\# \mathcal{G}. \]
Because \(\deg h_{\mathcal{G}, \mathcal{R}_0} = 2 \# \mathcal{G} \), the converse holds. Suppose that \(P \in \mathcal{R}_1 \cup (\mathcal{R}_0 + \mathcal{R}_1) \), where \(\mathcal{R}_1 \) is the set defined in Lemma~\ref{lem:iso}. From Lemma~\ref{lem:iso} and the above discussion, if \(Q \notin \mathcal{R}_1 \cup (\mathcal{R}_0 + \mathcal{R}_1) \), then it holds that \(h_{\mathcal{G}, \mathcal{R}_0}(P) \neq h_{\mathcal{G}, \mathcal{R}_0}(Q) \). Therefore, it suffices to show that \(h_{\mathcal{G}, \mathcal{R}_0}(P) \neq h_{\mathcal{G}, \mathcal{R}_0}(P + R_0) \). We define a map \(\psi \in \Pi(E) \) as \(\psi(z) = h_{\mathcal{G}, \mathcal{R}_0}(z) - h_{\mathcal{G}, \mathcal{R}_0}(z + R_0) \). Let \(\bar{R}_0 \) be a point such that \(2\bar{R}_0 = R_0 \).

By considering poles of \(\psi \), we have \(\deg \psi = 4\# \mathcal{G} \). Note that points belonging to \(\bar{R}_0 + \mathcal{G}, -\bar{R}_0 + \mathcal{G}, \bar{R}_0 + \mathcal{R}_1 \), or \(-\bar{R}_0 + \mathcal{R}_1 \) are zero points of \(\psi \). From Lemma~\ref{lem:iso} these sets are disjoint. Therefore, there are no zero points other than those belonging to these sets. Because \(P \pm \bar{R}_0 \notin \mathcal{G} \) and \(P \pm \bar{R}_0 \notin \mathcal{R}_1 \), we have \(P \) does not belong to the set of zero points of \(\psi \). Hence, it holds that \(\psi(P) \neq 0 \). This completes the proof of Theorem~\ref{thm:main}.

Next, we state the important theorem (Theorem~\ref{thm:general}). This theorem shows that a generalized Montgomery coordinate can be seen as a natural generalization of \(x \)-coordinates of Montgomery curves.

Theorem 13. Let \(\mathcal{G} \) be a finite subgroup of \(E \) with \(\text{ch}(K) \nmid \# \mathcal{G} \), let \(R_0 \) be a point satisfying \(R_0 \in \frac{1}{2} \mathcal{G} \setminus \mathcal{G} \), let \(\mathcal{R}_0 \) be the set \(\mathcal{R}_0 + \mathcal{G} \), and let \(h_{\mathcal{G}, \mathcal{R}_0} \) be a normalized generalized Montgomery coordinate with respect to \(\mathcal{G} \) and \(\mathcal{R}_0 \). Then, there is a Montgomery curve \(E' \) and a separable isogeny \(\phi: E \to E' \) with \(\ker \phi = \mathcal{G} \) such that \(h_{\mathcal{G}, \mathcal{R}_0} = x \circ \phi \), where \(x \) is the \(x \)-coordinate of \(E' \). Moreover, the Montgomery coefficient of \(E' \) is the generalized Montgomery coefficient of \(h_{\mathcal{G}, \mathcal{R}_0} \).

Before proving this theorem, we prove the following lemma.

Lemma 14. If a point \(\bar{R} \) satisfies \(h_{\mathcal{G}, \mathcal{R}_0}(2\bar{R}) = 0 \), then \(h_{\mathcal{G}, \mathcal{R}_0}(\bar{R})^2 = 1 \).

Proof. Because \(h_{\mathcal{G}, \mathcal{R}_0}(2\bar{R}) = 0 \), we have \(2\bar{R} \in \mathcal{R}_0 \). Thus, \(4\bar{R} \) belongs to \(\mathcal{G} \). From Lemma~\ref{lem:2R}

\[
h_{\mathcal{G}, \mathcal{R}_0}(\bar{R} + R_0) = \frac{1}{h_{\mathcal{G}, \mathcal{R}_0}(\bar{R})},
\]

where \(R_0 \in \mathcal{R}_0 \). Therefore, by Theorem~\ref{thm:main}

\[
\frac{1}{h_{\mathcal{G}, \mathcal{R}_0}(\bar{R})} = h_{\mathcal{G}, \mathcal{R}_0}(\bar{R} + R_0) = h_{\mathcal{G}, \mathcal{R}_0}(3\bar{R}) = h_{\mathcal{G}, \mathcal{R}_0}(-\bar{R}) = h_{\mathcal{G}, \mathcal{R}_0}(\bar{R}).
\]

This completes the proof of Lemma~\ref{lem:2R}

Now, we prove Theorem~\ref{thm:general}

Proof (Proof of Theorem~\ref{thm:general}). Let \(\phi \) be a separable isogeny \(\phi: E \to E/\mathcal{G} \) with \(\ker \phi = \mathcal{G} \). Let \(\bar{R}_0 \) be a point in \(E \) such that \(h_{\mathcal{G}, \mathcal{R}_0}(2\bar{R}_0) = 0 \). It is easy to see that there is an isomorphism between \(E/\mathcal{G} \) and a Montgomery curve \(E' \) mapping \(2\phi(\bar{R}_0) \) to \((0, 0)\). If necessary, we compose this isomorphism and the map \(E' \to E'' \); \((x, y) \mapsto (-x, \sqrt{-1}y)\), and we denote \(E'' \) by \(E' \). Then, the \(x \)-coordinate of \(\phi(\bar{R}_0) \) in \(E' \) is \(h_{\mathcal{G}, \mathcal{R}_0}(\bar{R}_0) \), because \(h_{\mathcal{G}, \mathcal{R}_0}(\bar{R}_0) = \pm 1 \) from Lemma~\ref{lem:2R}.

It is easy to check that

\[
\text{div } h_{\mathcal{G}, \mathcal{R}_0} = \text{div } (x \circ \phi).
\]
Therefore, $h_{G,R_0} = x \circ \phi$.

Let R_1 be a point of E defined in Lemma 5. Then, the generalized Montgomery coefficient of h_{G,R_0} is $-h_{G,R_0}(R_1) - \frac{1}{h_{G,R_0}(R_1)}$. In contrast, $\phi(R_1)$ is a point of order 2 in E' other than $(0,0)$. Therefore, the Montgomery coefficient of E' can be represented by $-x(\phi(R_1)) - \frac{1}{x(\phi(R_1))}$. From $h_{G,R_0} = x \circ \phi$, this completes the proof of Theorem 13.

Although we can define a normalized generalized Montgomery coordinate as the composition of an isogeny and the x-coordinate of a Montgomery curve from Theorem 13, we adopt Definition 1 (i.e., the definition from its divisor). The main reason to define generalized Montgomery coordinates in this way is that this definition does not need to consider explicit forms of elliptic curves. This means that our definition seems to be more essential than that from a Montgomery curve. In fact, by the similar proof of Theorem 13, we can also prove naturally that a normalized generalized Montgomery coordinate is the composition of an isogeny and the w-coordinate of a Huff’s curve. That is to say, it is not crucial to describe a generalized Montgomery coordinate via a Montgomery curve. Moreover, if we consider an extension of a generalized Montgomery coordinate in the future, Definition 1 looks more suitable than the definition from a Montgomery curve. It is because divisors are basic concepts for algebraic varieties, and have a wide scope of application. For the same reason as above, though it is trivial that the formula of scalar multiplication and the formula of isogeny computation via a generalized Montgomery coordinate immediately hold from Theorem 13 and the formulas on the x-coordinate of Montgomery curves, we prove these formulas from the theory of divisors without using formulas on Montgomery curves.

3.3 Examples of generalized Montgomery coordinates

In this subsection, we show some examples of generalized Montgomery coordinates already used for computations of isogenies. Table 2 is the summary of this subsection.

Montgomery curves. Montgomery curves are elliptic curves named after Montgomery [Mon87] defined by the equation $y^2 = x^3 + \alpha x^2 + x$, where $\alpha \neq \pm 2$. It is known that some computations of Montgomery curves are realized using x-coordinates [BL17, CH17]. Note that the pole of a x-coordinate is a point at infinity, that is O_E. One can see that the x-coordinate of Montgomery curves is a generalized Montgomery coordinate with respect to $\{O_E\}$ and $R_0 = \{(0,0)\}$. In fact, it holds that

$$\text{div } x = 2((0,0)) - 2(O_E).$$

Moreover, direct calculations lead to the fact that $x(P+(0,0)) = 1/x(P)$. Therefore, x-coordinates are normalized.
Montgomery curves. Montgomery curves are defined by the equation
\[y^2 = x^3 + \alpha x^2 - x, \]
where \(\alpha \neq \pm 2 \sqrt{-1}. \) From [CD20], it holds that some computations of Montgomery curves are computed only using \(x \)-coordinates. Since it holds that
\[\text{div} x = 2((0, 0)) - 2(O_E), \]
we have that the \(x \)-coordinate of Montgomery curves is a generalized Montgomery coordinate with respect to \(R_0 = \{(0, 0)\}. \) Moreover, direct calculations lead to the fact that \(x(P + (0, 0)) = -1/x(P). \) Therefore, \(\sqrt{-1}x \) is a normalized generalized Montgomery coordinate.

Remark 15. Formulas of Montgomery curves shown in [CD20] are obtained by applying formulas of a normalized generalized Montgomery coordinate, which we will prove in Section 4 to \(\sqrt{-1}x. \)

Edwards curves. Edwards curves are elliptic curves defined by the equation
\[x^2 + y^2 = 1 + dx^2 y^2, \]
where \(d \neq 0, 1 \) [Edw07, BL07]. Note that the projective model of an Edwards curve is
\[X^2 + Y^2 = Z^2 + dT^2, \]
\[XY = ZT. \]
The \(w \)-coordinates of Edwards curves are defined as \(w = dx^2 y^2. \) It is known that there are some formulas on the \(w \)-coordinate of Edwards curves [FH17, KYPH19]. For an Edwards curve \(E, \) we denote a cyclic group \(\{(0, \pm 1), (\pm 1, 0)\} \) in \(E(K) \) by \(C_4. \) Because
\[\text{div} x = ((0, 1)) + ((0, -1)) - (\infty_1) - (\infty_2), \]
\[\text{div} y = ((1, 0)) + ((-1, 0)) - (\infty_3) - (\infty_4), \]
it holds that
\[\text{div} w = 2 \sum_{P \in C_4} (P) - 2 \sum_{P \in C_4} (P + \infty_1), \]
where \(\infty_1 \) and \(\infty_2 \) are points at infinity of order 2, and \(\infty_3 \) and \(\infty_4 \) are points at infinity of order 4. Therefore, \(w^{-1} \) is a generalized Montgomery coordinate with respect to \(C_4 \) and \(R_0 = \infty_1 + C_4. \) From direct calculations, we have \(w(P + \infty_1) = 1/w(P). \) Hence, \(w^{-1} \) is a normalized generalized Montgomery coordinate.

Moreover, there are some well-known formulas using the \(y \)-coordinates of Edwards curves. In fact, [CVCCD+19] shows formulas for scalar multiplications and isogeny computations via \(y \)-coordinates of Edwards curves. It is easy to check that the \(y \)-coordinate is not a generalized Montgomery coordinate; however, from the following three equations:
\[\text{div} (1 - y) = 2((0, 1)) - (\infty_3) - (\infty_4), \]
\[\text{div} (1 + y) = 2((0, -1)) - (\infty_3) - (\infty_4), \]
\[y(P + (0, -1)) = -y(P), \]
it holds that a function \((1 + y)/(1 - y)\) is a normalized generalized Montgomery coordinate. Therefore, formulas of \(y \)-coordinates of Edwards curves are obtained by formulas of generalized Montgomery curves.
Remark 16. The above discussions about Edwards curves can be adapted to twisted Edwards curves proposed in [BBJ+08] defined by the following equation:

\[ax^2 + y^2 = 1 + dx^2y^2. \]

It is because this curve is isomorphic to an Edwards curve \(x^2 + y^2 = 1 + (d/a)x^2y^2 \).

Huff’s curves. Huff’s curves are defined by the equation \(cx(y^2 - 1) = y(x^2 - 1) \), where \(c \neq \pm 1 \) [Huf48, JTV10]. It is known that some formulas of Huff curves can be computed using \(w \)-coordinates defined as \(w = 1/(xy) \) [DKW20, HZHL20]. Since

\[
\begin{align*}
div x &= (O_E) + (\infty_1) - (\infty_2) - (\infty_3), \\
div y &= (O_E) + (\infty_2) - (\infty_1) - (\infty_3),
\end{align*}
\]

it holds that

\[
div w = 2(\infty_3) - 2(O_E),
\]

where \(\infty_1, \infty_2, \) and \(\infty_3 \) are points at infinity of order 2. Therefore, \(w \) is a generalized Montgomery coordinate with respect to \(O_E \) and \(R_0 = \{ \infty_3 \} \). From direct calculations, we have \(w(P + \infty_3) = 1/w(P) \). Therefore, \(w \) is a normalized generalized Montgomery coordinate.

Twisted Jacobi intersections. Twisted Jacobi intersections are defined by the equation

\[
J_{a,b} : \begin{cases}
ax^2 + y^2 = 1, \\
bx^2 + z^2 = 1,
\end{cases}
\]

where \(ab(a - b) \neq 0 \) [FNW10]. It is known that some formulas of twisted Jacobi intersections can be computed using \(\omega \)-coordinates defined as \(\omega(x, y, z) = \sqrt{abx^2} \) [HWZ21]. By the direct computation, we have

\[
\begin{align*}
div x &= (O_{J_{a,b}}) + ((0, -1, 1)) + ((0, 1, -1)) + ((0, 1, -1)) - (\infty_1) - (\infty_2) - (\infty_3) - (\infty_4),
\end{align*}
\]

where \(\infty_1, \ldots, \infty_4 \) are points at infinity of \(J_{a,b} \). We now show that \((\sqrt{abx^2})^{-1} \) is a normalized generalized Montgomery coordinate. From [FNW10, Theorem 1] and some computations, there is an isomorphism

\[
E_M : v^2 = u^3 - \frac{a+b}{\sqrt{ab}} u^2 + u \longrightarrow (u, v) \quad \longrightarrow \quad \left(-\frac{2u}{\sqrt{ab}(u^2-1)}, \frac{u^3-2\sqrt{b}u+1}{u^2-1}, \frac{u^3-2\sqrt{a}u+1}{u^2-1} \right).
\]

Therefore, \(\omega \)-coordinate is the same as the function \(\frac{4v^2}{(u^2-1)^2} = \frac{1}{(u^2)(v^2)} \) on \(E_M \). Since \(u \) is a normalized generalized Montgomery coordinate, \(\omega^{-1} \) is also a normalized generalized Montgomery coordinate.
4 Scalar multiplication

In this section, we construct the formula of scalar multiplication via a generalized Montgomery coordinate and define the division polynomial of the generalized Montgomery coordinates. Basic pseudo-operations of a generalized Montgomery coordinate are given in Theorem [17] and Theorem [18]. These theorems lead to the scalar multiplication algorithm on an elliptic curve using a generalized Montgomery coordinate using the same method as the Montgomery ladder [BL17CS18].

4.1 Formulas for scalar multiplication

In this subsection, we fix a field K with characteristic other than 2, an elliptic curve E defined over K, its subgroup G, a point R_0 such that $R_0 \in \frac{1}{2}G \setminus G$, and the set $\mathcal{R}_0 = R_0 + G$, and we let h_{G,\mathcal{R}_0} be a normalized generalized Montgomery coordinate with respect to G and \mathcal{R}_0.

We get the following theorems.

Theorem 17 (differential addition). Let P, Q be points of E such that $P \pm Q \not\in G$. Then, it holds that

$$h_{G,\mathcal{R}_0}(P + Q)h_{G,\mathcal{R}_0}(P - Q) = \frac{(h_{G,\mathcal{R}_0}(Q)h_{G,\mathcal{R}_0}(P) - 1)^2}{(h_{G,\mathcal{R}_0}(P) - h_{G,\mathcal{R}_0}(Q))^2}.$$

Theorem 18 (doubling). Let P be a point in E such that $2P \not\in G$. Then, it holds that

$$h_{G,\mathcal{R}_0}(2P) = \frac{(h_{G,\mathcal{R}_0}(P) - 1)^2(h_{G,\mathcal{R}_0}(P) + 1)^2}{4h_{G,\mathcal{R}_0}(P)(h_{G,\mathcal{R}_0}(P)^2 + \alpha_{h_{G,\mathcal{R}_0}}h_{G,\mathcal{R}_0}(P) + 1)},$$

where $\alpha_{h_{G,\mathcal{R}_0}}$ is the generalized Montgomery coefficient of h_{G,\mathcal{R}_0} (Definition 2).

Before proving these theorems, we prove some lemmas.

Lemma 19. It holds that

$$h_{G,\mathcal{R}_0}(P + Q)h_{G,\mathcal{R}_0}(P - Q) = \frac{h_{G,\mathcal{R}_0}(Q)^2(h_{G,\mathcal{R}_0}(P) - h_{G,\mathcal{R}_0}(R_0 + Q))^2}{(h_{G,\mathcal{R}_0}(P) - h_{G,\mathcal{R}_0}(Q))^2}.$$

Proof. We define the two maps ϕ_1 and ϕ_2 mapping from $E \times E$ to \mathbb{P}^1 as

$$\phi_1(P, Q) = h_{G,\mathcal{R}_0}(P + Q)h_{G,\mathcal{R}_0}(P - Q),$$

$$\phi_2(P, Q) = \frac{h_{G,\mathcal{R}_0}(Q)^2(h_{G,\mathcal{R}_0}(P) - h_{G,\mathcal{R}_0}(R_0 + Q))^2}{(h_{G,\mathcal{R}_0}(P) - h_{G,\mathcal{R}_0}(Q))^2}.$$

Suppose $Q \not\in \mathcal{R}_0 \cup G$. Let $\phi_{1,Q}(z) = \phi_1(z, Q)$ and $\phi_{2,Q}(z) = \phi_2(z, Q)$. By considering zero points and poles of $\phi_{1,Q}$ and $\phi_{2,Q}$, we have $\text{div} \phi_{1,Q} = \text{div} \phi_{2,Q}$.

Therefore, there is a constant value c such that $\phi_{1,Q} = c \cdot \phi_{2,Q}$. We have $c = 1$ because

$$
\phi_{1,Q}(R_0) = h_{G,R_0}(R_0 + Q)h_{G,R_0}(R_0 - Q) = h_{G,R_0}(R_0 + Q)^2,
\phi_{2,Q}(R_0) = h_{G,R_0}(R_0 + Q)^2.
$$

As $\mathcal{R}_0 \cup \mathcal{G}$ is a finite set, it holds that $\phi_1(P,z) = \phi_2(P,z)$ for a fixed point P. Therefore, we have $\phi_1 = \phi_2$.

Lemma 20. The set $\frac{1}{2}R_0$ can be decomposed as follows:

$$(\tilde{R}_0 + \mathcal{G}) \cup (\tilde{R}_0 + \mathcal{R}_0) \cup (\tilde{R}_0 + \mathcal{R}_1) \cup (\tilde{R}_0 + \mathcal{R}_0 + \mathcal{R}_1),$$

where \tilde{R}_0 is a point satisfying $2\tilde{R}_0 \in \mathcal{R}_0$, and \mathcal{R}_1 is the set defined in Lemma 5. Moreover, one of the following holds:

1. $h_{G,R_0}(\tilde{R}_0 + \mathcal{G}) = h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0) = \{1\}$ and
2. $h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0) = h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0 + \mathcal{R}_1) = \{-1\}$;
3. $h_{G,R_0}(\tilde{R}_0 + \mathcal{G}) = h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0) = \{-1\}$ and
4. $h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0) = h_{G,R_0}(\tilde{R}_0 + \mathcal{R}_0 + \mathcal{R}_1) = \{1\}$.

Proof. Because $E[2] \subset \frac{1}{2}\mathcal{G}$, we have $\frac{1}{2}R_0 = \tilde{R}_0 + \frac{1}{2}\mathcal{G}$. From Lemma 5, the first part of Lemma 20 holds.

Let R_1 be a point in \mathcal{R}_1. By Lemma 14 we have

$$h_{G,R_0}(\tilde{R}_0) = h_{G,R_0}(\tilde{R}_0 + R_0)^2 = h_{G,R_0}(\tilde{R}_0 + R_1) = h_{G,R_0}(\tilde{R}_0 + R_0 + R_1).$$

Therefore, from Lemma 10

$$h_{G,R_0}(\tilde{R}_0) = h_{G,R_0}(\tilde{R}_0 + R_0) \text{ and } h_{G,R_0}(\tilde{R}_0 + R_1) = h_{G,R_0}(\tilde{R}_0 + R_0 + R_1).$$

Since the number of points in $h_{G,R_0}(z)$ for some $z \in \mathbb{P}^1$ is at most $2\#\mathcal{G}$, it holds that $h_{G,R_0}(\tilde{R}_0 + R_0) \neq h_{G,R_0}(\tilde{R}_0 + R_1)$. From Theorem 12 this completes the proof of Lemma 20.

Now, we prove Theorem 17 and Theorem 18.

Proof (Proof of Theorem 17). It follows from Lemma 10 and Lemma 11.

Proof (Proof of Theorem 18). We define the two maps $\phi_1, \phi_2 : E \to \mathbb{P}^1$ as follows:

$$
\phi_1(z) = h_{G,R_0}(2z),
\phi_2(z) = \frac{(h_{G,R_0}(z) - 1)^2(h_{G,R_0}(z) + 1)^2}{h_{G,R_0}(z)(h_{G,R_0}(z) - h_{G,R_0}(R_1))(h_{G,R_0}(z) - h_{G,R_0}(R_0 + R_1))},
$$

where R_1 is a point in \mathcal{R}_1. Note that the set of zero points of ϕ_1 is $\frac{1}{2}R_0$, and the set of poles of ϕ_1 is $\frac{1}{2}\mathcal{G}$. Therefore, from Lemma 5 and Lemma 20 we have $\text{div } \phi_1 = \text{div } \phi_2$. Hence, it holds that $\phi_1 = c \cdot \phi_2$, where c is a constant value.
From Theorem 17, it holds that
\[h_{G,R_0}(4z)h_{G,R_0}(2z) = \frac{(h_{G,R_0}(3z)h_{G,R_0}(z) - 1)^2}{(h_{G,R_0}(3z) - h_{G,R_0}(z))^2}, \]
Note that \(\alpha_{h_{G,R_0}} = -(h_{G,R_0}(R_1) + h_{G,R_0}(R_0 + R_1)) \). We also have
\[h_{G,R_0}(4z)h_{G,R_0}(2z) = c \cdot \frac{(h_{G,R_0}(2z))^2 - 1)^2}{(h_{G,R_0}(2z))^2 + \alpha_{h_{G,R_0}}h_{G,R_0}(2z) + 1}. \]
Using Theorem 17 again, we get
\[h_{G,R_0}(3z)h_{G,R_0}(z) = \frac{(h_{G,R_0}(2z)h_{G,R_0}(z) - 1)^2}{(h_{G,R_0}(2z) - h_{G,R_0}(z))^2}. \]
Therefore, it holds that
\[c \cdot \frac{(h_{G,R_0}(2z))^2 - 1)^2}{(h_{G,R_0}(2z))^2 + \alpha_{h_{G,R_0}}h_{G,R_0}(2z) + 1} = \left(\frac{(h_{G,R_0}(2z)h_{G,R_0}(z) - 1)^2}{(h_{G,R_0}(2z) - h_{G,R_0}(z))^2} \right)^2 h_{G,R_0}(z)^2 \]
The right-hand side of this identity can be transformed as follows:
\[\frac{(h_{G,R_0}(2z)h_{G,R_0}(z) - 1)^2}{(h_{G,R_0}(2z) - h_{G,R_0}(z))^2} \]
\[h_{G,R_0}(z)^2 - 1)^2 h_{G,R_0}(z)^2 \]
Hence, we have
\[c \cdot h_{G,R_0}(2z) + \alpha_{h_{G,R_0}}h_{G,R_0}(2z) + 1 = \frac{(2h_{G,R_0}(2z)h_{G,R_0}(z) - h_{G,R_0}(z)^2 - 1)^2}{(2h_{G,R_0}(2z)h_{G,R_0}(z) - h_{G,R_0}(z)^2 - 1)^2}. \]
Let \(\hat{R}_0 \) be a point satisfying \(2\hat{R}_0 \in R_0 \). Note that \(h_{G,R_0}(\hat{R}_0) = \pm 1 \), and \(h_{G,R_0}(2\hat{R}_0) = 0 \). By substituting \(\hat{R}_0 \) for \(z \), we get \(c = \frac{1}{4} \).

4.2 Division polynomials of the generalized Montgomery coordinates

In this subsection, we define the division polynomials of the generalized Montgomery coordinates. This definition is not the same as that of standard division polynomials. In fact, there appears \(x \) and \(y \)-coordinates in the standard division polynomials, while our division polynomials are represented by one-coordinate systems. However, both our \(m \)-th division polynomials and standard ones are minimal polynomials holding all information of \(m \)-torsion points. Thus, in this meaning, they are essentially the same.

Before defining the division polynomials, we need the following proposition which can be proven by induction.
Proposition 21. Let $\Psi = 4(h^2 + ah + 1) \in \mathbb{Z}[\alpha, h]$. For any $m \in \mathbb{Z}_{\geq 1}$, there exist polynomials $\Phi_m, \Psi_m \in \mathbb{Z}[\alpha, h]$ such that, for any elliptic curve E and any normalized generalized Montgomery coordinate h_{G, R_0}, the following three properties hold: If m is odd,

- It holds that
 \[h_{G, R_0}(mP) = \frac{h_{G, R_0}(P)\Phi_m^2(\alpha h_{G, R_0}, h_{G, R_0}(P))}{\Psi_m^2(\alpha h_{G, R_0}, h_{G, R_0}(P))}; \]

- The highest term of $\Phi_m(\alpha, h)$ in the variable h is $h^{\frac{m^2-1}{2}}$;

- The highest term of $\Psi_m(\alpha, h)$ in the variable h is $m \cdot h^{\frac{m^2-1}{2}}$.

If m is even,

- It holds that
 \[h_{G, R_0}(mP) = \frac{\Phi_m^2(\alpha h_{G, R_0}, h_{G, R_0}(P))}{h_{G, R_0}(P)\Phi_m^2(\alpha h_{G, R_0}, h_{G, R_0}(P)) \cdot \Psi(\alpha h_{G, R_0}, h_{G, R_0}(P))}; \]

- The highest term of $\Phi_m(\alpha, h)$ in the variable h is $h^{\frac{m^2-2}{4}}$;

- The highest term of $\Psi_m(\alpha, h)$ in the variable h is $\frac{m}{2} \cdot h^{\frac{m^2-4}{4}}$.

Here, $\alpha h_{G, R_0}$ is the generalized Montgomery coefficient of h_{G, R_0}.

Proof. We prove this proposition by mathematical induction. In the case of $m = 1$, we have $\Phi_1(\alpha, h) = 1$, and $\Psi_1(\alpha, h) = 1$. In the case of $m = 2$, from Theorem 18, we have $\Phi_2(\alpha, h) = h^2 - 1$, and $\Psi_2(\alpha, h) = 1$. Let s be an odd integer greater than or equal to one. Suppose that Proposition 21 holds for $m = s$ and $m = s + 1$. From Theorem 17, it holds that

\[
h_{G, R_0}((2s + 1)P) = \frac{(h_{G, R_0}(sP)h_{G, R_0}((s + 1)P) - 1)^2}{h_{G, R_0}(P)(h_{G, R_0}(sP) - h_{G, R_0}((s + 1)P))} = \frac{h_{G, R_0}(P)(\Phi_s^2 \Phi_{s+1} - \Psi_s^2 \Psi_{s+1}^2)^2}{h_{G, R_0}(P)^2(\Phi_s^2 \Phi_{s+1} - \Psi_s^2 \Psi_{s+1}^2)^2}.
\]

In this proof, as in the equation above, we often omit $(\alpha h_{G, R_0}, h_{G, R_0}(P))$. We define

\[
\Phi_{2s+1}(\alpha, h) = \Phi_s(\alpha, h)^2 \Phi_{s+1}(\alpha, h)^2 - \Psi_s(\alpha, h)^2 \Phi_{s+1}(\alpha, h)^2 \Psi_s(\alpha, h),
\]

\[
\Psi_{2s+1}(\alpha, h) = h^2 \Phi_s(\alpha, h)^2 \Psi_{s+1}(\alpha, h)^2 \Psi_s(\alpha, h) - \Phi_{s+1}(\alpha, h)^2 \Psi_s(\alpha, h)^2.
\]

It is easy to show that the highest term of $\Phi_{2s+1}(\alpha, h)$ in the variable h is $h^{\frac{(2s+1)^2-1}{2}}$, and that of $\Psi_{2s+1}(\alpha, h)$ in the variable h is $(2s+1) \cdot h^{\frac{(2s+1)^2-1}{2}}$. Therefore, Proposition 21 holds for $m = 2s + 1$ for odd s. From Theorem 18, it holds
We define
\[
\Phi_{2s}(\alpha, h) = (h^2 - 1)(\Phi_s(\alpha, (h^2 - 1)^2/(h\psi(\alpha, h))) \cdot (h\psi(\alpha, h))^{2-1}),
\]
\[
\Psi_{2s}(\alpha, h) = \Psi_s(\alpha, (h^2 - 1)^2/(h\psi(\alpha, h))) \cdot (h\psi(\alpha, h))^{2-1}.
\]
It is easy to show that the highest term of \(\Phi_{2s}(\alpha, h)\) in the variable \(h\) is \(h^{(2s)^2}\),
and that of \(\Psi_{2s}(\alpha, h)\) in the variable \(h\) is \(s \cdot h^{(2s)^2}\). Therefore, Proposition \(21\)
holds for \(m = 2s\) for odd \(s\).

Next, we consider the case that \(s\) is even. Suppose that Proposition \(21\) holds
for \(m = s\) and \(m = s + 1\). From Theorem \(17\) it holds that
\[
h_{G,R_0}(2s + 1)P = \frac{h_{G,R_0}(P)\Phi_{2s + 1}^2 - \Psi_{2s + 1}^2 \Psi - \Phi_{2s + 1}^2 \Psi}{h_{G,R_0}(P)^2 \Phi_{2s + 1}^2 - \Psi_{2s + 1}^2 \Psi - \Phi_{2s + 1}^2 \Psi}.
\]
We define
\[
\Phi_{2s + 1}(\alpha, h) = \Phi_s(\alpha, h)^2\Phi_{s + 1}(\alpha, h)^2 - \Psi_s(\alpha, h)^2\Psi_{s + 1}(\alpha, h)^2\Psi(\alpha, h),
\]
\[
\Psi_{2s + 1}(\alpha, h) = \Phi_s(\alpha, h)^2\Psi_{s + 1}(\alpha, h)^2 - h^2\Phi_{s + 1}(\alpha, h)^2\Psi_s(\alpha, h)^2\Psi(\alpha, h).
\]
It is easy to show that the highest term of \(\Phi_{2s + 1}\) in the variable \(h\) is \(h^{(2s + 1)^2 - 1}\),
and that of \(\Psi_{2s + 1}\) in the variable \(h\) is \((2s + 1) \cdot h^{(2s + 1)^2 - 1}\). Therefore, Proposition \(21\)
holds for \(m = 2s + 1\) for even \(s\). From Theorem \(18\) it holds that
\[
h_{G,R_0}(2s)P = \frac{\Phi_{2s}^2(\alpha_{G,R_0}, h_{G,R_0}(2P))}{h_{G,R_0}(2P)^2 \Psi_s^2(\alpha_{G,R_0}, h_{G,R_0}(2P)) \Psi(\alpha_{G,R_0}, h_{G,R_0}(2P))}
\]
\[
= \frac{\Phi_{2s}^2(\alpha_{G,R_0}, h_{G,R_0}(2P)^2 - 1)^2}{h_{G,R_0}(P)^2 \Psi(\alpha_{G,R_0}, h_{G,R_0}(P)^2 - 1)^2} \cdot \Psi(\alpha_{G,R_0}, h_{G,R_0}(P)^2 - 1)^2\Psi(\alpha_{G,R_0}, h_{G,R_0}(P)^2 - 1)^2.
\]
Note that
\[
\psi\left(\alpha, \frac{(h^2 - 1)^2}{h\psi}\right) \cdot h^2\psi^2
\]
\[
= 4 \cdot ((h^2 - 1)^4 + \alpha(h^2 - 1)^2h\psi + h^2\psi^2)
\]
\[
= 4 \cdot ((h^2 - 1)^4 + \alpha(h^2 - 1)^2h \cdot 4(h^2 + ah + 1) + h^2 \cdot 16(h^2 + ah + 1)^2)
\]
\[
= 4 \cdot (h^4 + 2ah^3 + 6h^2 + 2ah + 1)^2.
\]
Therefore, $h_{G,R_0}(2sP)$ is equal to

$$
\frac{1}{h_{G,R_0}(P)^2} \frac{\Phi_s^2(\alpha_{h_{G,R_0}}, \frac{(h_{G,R_0}(P)^2-1)^2}{h_{G,R_0}(P)^2}) \cdot (h_{G,R_0}(P)^2)^2}{\Psi(\frac{(h_{G,R_0}(P)^2-1)^2}{h_{G,R_0}(P)^2}) \cdot (h_{G,R_0}(P)^2-1)^2} = \frac{2(\Psi(\alpha,h))^2}{\Psi(\alpha,h)^2 - 4},
$$

where $\Psi(\alpha,h)$ is a polynomial

$$
\Psi(\alpha,h) = 2(h^4 + 2ah^3 + 6h^2 + 2ah + 1).
$$

We define

$$
\Phi_s(\alpha,h) = \Phi_s(\alpha,(h^2 - 1)^2/(h\Psi(\alpha,h))) \cdot (h\Psi(\alpha,h))^2,
$$

$$
\Psi_s(\alpha,h) = (h^2 - 1) \cdot \Psi_s(\alpha,(h^2 - 1)^2/(h\Psi(\alpha,h))) \cdot (h\Psi(\alpha,h))^2 - 4.
$$

It is easy to show that the highest term of $\Phi_s(\alpha,h)$ in the variable h is $h^{(2s)^2}$, and that of $\Psi_s(\alpha,h)$ in the variable h is $s \cdot h^{(2s)^2 - 4}$. Therefore, Proposition 21 holds for $m = 2s$ for even s. This completes the proof of Proposition 21.

Now, we define the division polynomials of the generalized Montgomery coordinates.

Definition 22 (Division polynomials of the generalized Montgomery coordinates). Let $m \in \mathbb{Z}_{\geq 1}$, and let Ψ_m and Ψ be polynomials defined in the proof of Proposition 21. We define a polynomial $\psi_m \in \mathbb{Z}[\alpha,h]$ as

$$
\psi_m(\alpha,h) = \begin{cases}
\Phi_m(\alpha,h) & \text{if } \psi_{m'} = 0 \text{ for } m' \text{ odd}, \\
2h \cdot \Phi_m(\alpha,h) \cdot (h \Psi(\alpha,h))^2 & \text{if } \psi_{m'} = 0 \text{ for } m' \text{ even}.
\end{cases}
$$

We define a polynomial $\psi_m \in \mathbb{Z}[\alpha,h]$ as $\psi_m = \psi_{m'}/d$, where d is the maximal integer such that $\psi_{m'}/d$ is in $\mathbb{Z}[\alpha,h]$. That is, ψ_m is primitive. We call the polynomial ψ_m the m-th division polynomial of the generalized Montgomery coordinates.

The following theorem reveals the identity of division polynomials of the generalized Montgomery coordinates. That is, the m-th division polynomial of the generalized Montgomery coordinates is the most basic polynomial that has information on images of all points of order m of any elliptic curve under their generalized Montgomery coordinates. This identity provides the condition for the equality of the computational results of different formulas (Theorem 28).

Theorem 23. Let p be the characteristic of \overline{K}, and let $m \in \mathbb{Z}_{\geq 1}$ satisfy $p \mid m$ if $p \neq 0$. We define an ideal I_m in a polynomial ring $\mathbb{Z}[\alpha,h]$ as follows:

$$
I_m = \{ \psi(\alpha_{h_{G,R_0}}, h_{G,R_0}(P)) = 0 \in \overline{K} \text{ for all } (E,h_{G,R_0}) \text{ and } P \in E[m] \setminus \mathcal{G} \}.
$$

Then, it holds that I_m is generated by ψ_m, where ψ_m is the m-th division polynomial of the generalized Montgomery coordinates.
First, we consider the case of $\psi = I_{21}. Therefore, we prove that $\psi_m^\overline{F}_p[\alpha, h] = \overline{T_m}$, where ψ_m is the image of ψ_m under the canonical map $\mathbb{Z}[\alpha, h] \rightarrow F_p[\alpha, h]$, and $\overline{T_m}$ is the ideal generated by an image of T_m under the canonical map $\mathbb{Z}[\alpha, h] \rightarrow F_p[\alpha, h]$. Because $p \nmid m$, we have $\psi_m \neq 0$ from Proposition [21]. We define the ideal J_m of $F_p(\alpha)[h]$ as

$$\left\{ \psi \in F_p(\alpha)[h] \mid \exists f \in F_p[\alpha] \setminus \{0\} \text{ s.t. } (f \cdot \psi)(\alpha_{hG, R_n}, hG, R_n(P)) = 0 \right\}.$$

Since $F_p(\alpha)$ is a field, J_m is a principal ideal. We now prove that $J_m = \psi_m F_p(\alpha)[h]$. From the construction of ψ_m, it is clear that $\psi_m \in J_m$. Suppose that ψ_m is not a generator of J_m. Then, there is a polynomial ψ_0 such that deg$_h \psi_0 <$ deg$_h \overline{\psi_m}$ and $J_m = \psi_0 F_p(\alpha)[h]$. We now find a lower bound of deg$_h \psi_0$. Note that it holds that deg$_h \psi_0(\alpha_{hG, R_n}, h) \leq$ deg$_h \psi_0$ for any (E, hG, R_n). Let hG, R_n be a normalized generalized Montgomery coordinate with respect to $\{O_E\}$ (e.g., x-coordinates of Montgomery curves). By the definition of J_m, elements in $hG, R_n(E[m] \setminus \{O_E\})$ are the roots of $(f \cdot \psi_0)(\alpha_{hG, R_n}, h)$ for some $f \in F_p[\alpha] \setminus \{0\}$. We redefine ψ_0 as $f \cdot \psi_0$. Note that all elements in $K \setminus \{\pm 1\}$ can be a Montgomery coefficient of some elliptic curve. Changing E if necessary, we may assume that $\psi_0(\alpha_{hG, R_n}, h) \neq 0$. Therefore, we have deg$_h \psi_0(\alpha_{hG, R_n}, h) >$ larger than $\#hG, R_n(E[m] \setminus \{O_E\})$. Note that $\#hG, R_n(E[m] \setminus \{O_E\}) = \frac{m^2 - 1}{2}$ if m is odd, and it is $\frac{m^2 - 1}{2} + \#(E[2] \setminus \{O_E\}) = \frac{m^2 - 2}{2}$. Therefore, from Proposition [21] it holds that deg$_h \overline{\psi_m}$ is the number of elements in $hG, R_n(E[m] \setminus \{O_E\})$. However, we have deg$_h \psi_0(\alpha_{hG, R_n}, h) \leq$ deg$_h \psi_0 <$ deg$_h \overline{\psi_m}$. This is a contradiction. Hence, it holds that $J_m = \psi_m F_p(\alpha)[h]$.

Let ψ be a polynomial in $\overline{T_m}$. It is easy to see that $\psi \in J_m = \psi_m F_p(\alpha)[h]$. Therefore, ψ/ψ_m is in $F_p(\alpha)[h]$. We denote ψ/ψ_m by $F(\alpha, h)$. From Proposition [21], we get that the coefficient of the highest term in the variable h of $\overline{\psi_m}$ is in $\overline{F_p} \setminus \{0\}$. Therefore, ψ_m is primitive as a polynomial in $F_p(\alpha)[h]$. Note that $\psi \in \overline{\psi_m F_p(\alpha)[h]}$. From Gauss’s Lemma, we have $F(\alpha, h) \in F_p(\alpha, h)$. Therefore, $\psi \in \psi_m F_p(\alpha)[h]$. In other words, it holds that $\overline{T_m} \subseteq \psi_m F_p(\alpha)[h]$. Because it is clear that $\psi_m \in \overline{T_m}$, we have $J_m = \psi_m F_p(\alpha, h)$. This completes the proof of the case of $p > 0$.

We now consider the case of $p = 0$. We can prove the most part by changing $F_p[\alpha, h]$ to $\mathbb{Q}[\alpha, h]$ and having a similar discussion. The rest is the part that proves $F(\alpha, h) \subseteq \mathbb{Z}[\alpha, h]$, where $F(\alpha, h)$ is a polynomial in $\mathbb{Q}(\alpha)[h]$ such that $F(\alpha, h) = \psi/\psi_m$ for some $\psi \in I_m$. Remember that ψ_m is primitive by its definition. From Gauss’s Lemma, $F(\alpha, h) \subseteq \mathbb{Z}[\alpha, h]$.

5 Isogeny computation

In this section, we construct formulas to compute isogenies via a generalized Montgomery coordinate. Throughout this section, we fix an elliptic curve E defined over K, its subgroup G, a point R_0 such that $R_0 \notin G$ and $2R_0 \in G$, and
We define a map $\text{ker}(\phi) = R_0 + G$, and we let $h_{\mathcal{G}, R_0}$ be a normalized generalized Montgomery coordinate with respect to \mathcal{G} and R_0.

To compute isogenies, we need two formulas: the formula to compute an image point under the isogeny and the formula to compute the coefficient of the codomain elliptic curve. In the subsection 5.1, we construct the first formula, and in the subsection 5.2, we construct one of the second formulas. The second formulas are known to be of various types. In subsection 5.3, we explain that this difference comes from the division polynomial of the generalized Montgomery coordinates.

5.1 Formula for image points

In this subsection, we explain the formula for computing image points under isogenies using a generalized Montgomery coordinate.

Theorem 24 (odd degree isogeny). Let G be a finite subgroup of E satisfying $G \cap (\mathcal{G} \cup R_0) = \{O_E\}$.

Let ϕ be a separable isogeny $\phi: E \to E/G$ with $\ker \phi = G$. Then, there is a normalized generalized Montgomery coordinate of E/G with respect to $\phi(\mathcal{G})$ and $\phi(R_0)$ satisfying

$$h_{\phi(G), \phi(R_0)}(\phi(P)) = h_{\mathcal{G}, R_0}(P) \prod_{Q \in \mathcal{G} \setminus \{O_E\}} \frac{(h_{\mathcal{G}, R_0}(P)h_{\mathcal{G}, R_0}(Q) - 1)}{(h_{\mathcal{G}, R_0}(P) - h_{\mathcal{G}, R_0}(Q))}.$$

Proof. We define a map $h_{\phi(G), \phi(R_0)} \in K(E/G)$ satisfying

$$\text{div } h_{\phi(G), \phi(R_0)} = 2 \sum_{R \in \phi(R_0)} (R) - 2 \sum_{P \in \phi(G)} (P).$$

It is clear that $h_{\phi(G), \phi(R_0)}$ is a generalized Montgomery coordinate of E/G with respect to $\phi(\mathcal{G})$ and $\phi(R_0)$. By multiplying by a constant value, we can assume that $h_{\phi(G), \phi(R_0)}$ is normalized. Let \bar{R}_0 be a point of E satisfying $h_{\mathcal{G}, R_0}(\bar{R}_0) = 1$. Note that $h_{\mathcal{G}, R_0}(2\bar{R}_0) = 0$ from Theorem 12 and Lemma 20. We have $h_{\phi(G), \phi(R_0)}(2\phi(\bar{R}_0)) = 0$. Therefore, by Lemma 20, $h_{\phi(G), \phi(R_0)}(\phi(\bar{R}_0)) = \pm 1$. If this value is -1, we multiply $h_{\phi(G), \phi(R_0)}$ by -1. We define two maps $\phi_1, \phi_2 \in K(E)$ as

$$\phi_1(z) = h_{\phi(G), \phi(R_0)}(\phi(z)),$$

$$\phi_2(z) = h_{\mathcal{G}, R_0}(z) \prod_{Q \in \mathcal{G} \setminus \{O_E\}} \frac{(h_{\mathcal{G}, R_0}(z)h_{\mathcal{G}, R_0}(Q) - 1)}{(h_{\mathcal{G}, R_0}(z) - h_{\mathcal{G}, R_0}(Q))}.$$

It is easy to check that $\text{div } \phi_1 = \text{div } \phi_2$. Since $\phi_1(\bar{R}_0) = \phi_2(\bar{R}_0) = 1$, it holds that $\phi_1 = \phi_2$. This completes the proof of Theorem 24.
The Generalized Montgomery Coordinate

Theorem 24 gives us the formula for computing an isogeny whose kernel is \(G \), which satisfies \(G \cap (\mathcal{G} \cup R_0) = \{ O_E \} \). If \(E[2] \sim \mathcal{G} \neq \emptyset \), and \(R_0 \) is a point of order 2 with \(R_0 \not\in G \), then we can construct the natural formula of a 2-isogeny whose kernel is \(\langle R_0 \rangle \).

Theorem 25 (2-isogeny). We assume that \(E[2] \sim \mathcal{G} \neq \emptyset \), and \(R_0 \) is a point of order 2 with \(R_0 \not\in G \). Let \(G = \langle R_0 \rangle \), and let \(\phi : E \to E/G \) be a separable isogeny with ker \(\phi = G \). Then, there are six normalized generalized Montgomery coordinates of \(E/G \) with respect to \(\phi(G) \) satisfying the following equalities:

\[
\begin{align*}
 h_{1,\pm}(\phi(P)) &= \pm \frac{1}{2\sqrt{\alpha_{\mathcal{G},\infty} + 2}} \cdot \left(\frac{(h_{\mathcal{G},\infty}(P) - 1)^2}{h_{\mathcal{G},\infty}(P)} \right), \\
 h_{2,\pm}(\phi(P)) &= \pm \frac{1}{2\sqrt{-\alpha_{\mathcal{G},\infty} + 2}} \cdot \left(\frac{(h_{\mathcal{G},\infty}(P) + 1)^2}{h_{\mathcal{G},\infty}(P)} \right), \\
 h_{3,\pm}(\phi(P)) &= \pm \frac{1}{\sqrt{\alpha_{\mathcal{G},\infty}^2 - 4}} \cdot \frac{h_{\mathcal{G},\infty}(P)^2 + \alpha_{\mathcal{G},\infty} h_{\mathcal{G},\infty}(P) + 1}{h_{\mathcal{G},\infty}(P)},
\end{align*}
\]

where \(\alpha_{\mathcal{G},\infty} \) is the generalized Montgomery coefficient of \(h_{\mathcal{G},\infty} \).

Proof. Let \(\mathcal{R}_1 \) be the set defined in Lemma 5 let \(R_1 \) be a point in \(\mathcal{R}_1 \), and let \(\tilde{R}_0 \) be a point satisfying \(2\tilde{R}_0 = R_0 \). One can check that \(2\phi(\tilde{R}_0) \in \phi(G) \) and \(\phi(\tilde{R}_0) \not\in \phi(G) \cup \phi(\mathcal{R}_1) \). Therefore, from Lemma 5 we have

\[
\frac{1}{2} \phi(G) = \phi(G) \sqcup \phi(\mathcal{R}_1) \sqcup (\phi(\tilde{R}_0) + \phi(G)) \sqcup (\phi(\tilde{R}_0) + \phi(\mathcal{R}_1)).
\]

Hence, we get the following normalized generalized Montgomery coordinates:

- \(h_{1,\pm} \) and \(h_{1,-} \) with respect to \(\phi(G) \) and \(\phi(\tilde{R}_0) + \phi(G) \),
- \(h_{2,\pm} \) and \(h_{2,-} \) with respect to \(\phi(G) \) and \(\phi(\tilde{R}_0) + \phi(\mathcal{R}_1) + \phi(G) \),
- \(h_{3,\pm} \) and \(h_{3,-} \) with respect to \(\phi(G) \) and \(\phi(\tilde{R}_1) + \phi(G) \),

where \(h_{i,-} = -h_{i,\pm} \) for \(i = 1, 2, 3 \). Note that \(h_{\mathcal{G},\infty}(\tilde{R}_0 + \mathcal{R}_1) = -1 \) from Lemma 20. By considering zero points and poles, we have

\[
\begin{align*}
 h_{1,\pm}(\phi(P)) &= \pm c_1 \cdot \frac{(h_{\mathcal{G},\infty}(P) - 1)^2}{h_{\mathcal{G},\infty}(P)}, \\
 h_{2,\pm}(\phi(P)) &= \pm c_2 \cdot \frac{(h_{\mathcal{G},\infty}(P) + 1)^2}{h_{\mathcal{G},\infty}(P)}, \\
 h_{3,\pm}(\phi(P)) &= \pm c_3 \cdot \frac{h_{\mathcal{G},\infty}(P)^2 + \alpha_{\mathcal{G},\infty} h_{\mathcal{G},\infty}(P) + 1}{h_{\mathcal{G},\infty}(P)},
\end{align*}
\]

where \(c_1, c_2, \) and \(c_3 \) are constant values of \(K \).

Next, we find these constant values. From Lemma 10 it holds that

\[
h_1(\phi(\tilde{R}_0) + \phi(\mathcal{R}_1)) \cdot h_1(\phi(\mathcal{R}_1)) = 1.
\]
Therefore, it holds that
\[c_1^2 \cdot (-4) \cdot \frac{(h_{G,R_0}(R_1) - 1)^2}{h_{G,R_0}(R_1)} = 1. \]

Thus, we have \(c_1 = \frac{1}{\sqrt{\alpha h_{G,R_0}} \cdot 2}. \) It also holds that
\[h_2(\phi(R_0)) = 1. \]

Therefore, by a similar calculation, we also have \(c_2 = \frac{1}{\sqrt{\alpha h_{G,R_0}} \cdot 2}. \) It also holds that
\[h_3(\phi(\tilde{R}_0) + \phi(R_1)) = 1. \]

Hence, we also have \(c_3 = \frac{1}{\sqrt{\alpha h_{G,R_0}} \cdot 4}. \) This completes the proof of Theorem 25.

5.2 Formula for generalized Montgomery coefficients

In this subsection, we construct a formula to compute generalized Montgomery coefficients of target curves of isogenies by Theorem 1. The following theorem gives the formula, which corresponds to the formula constructed from the 2-torsion method proposed in [CH17].

Theorem 26 (odd degree isogeny). Let \(\mathcal{R}_1 \) be a subset of \(E \) defined in Lemma 5, let \(R_1 \) be a point in \(\mathcal{R}_1 \), and let \(G \) be a subgroup of \(E \) satisfying
\[G \cap (\mathcal{G} \cup \mathcal{R}_0 \cup \mathcal{R}_1) = \{ O_E \}. \]

Let \(\phi \) be a separable isogeny \(\phi: E \to E/G \) with \(\ker \phi = G \), and let \(h_{\phi(G),\phi(R_0)} \) be a normalized generalized Montgomery coordinate of \(E/G \) that is defined in Theorem 24. Then, the generalized Montgomery coefficient of \(h_{\phi(G),\phi(R_0)} \) is
\[
\alpha_{h_{\phi(G),\phi(R_0)}} = -h_{G,R_0}(R_1) \prod_{Q \in \mathcal{G} \setminus \{ O_E \}} \frac{(h_{G,R_0}(R_1)h_{G,R_0}(Q) - 1)}{(h_{G,R_0}(R_1) - h_{G,R_0}(Q))} \\
- \frac{1}{h_{G,R_0}(R_1)} \prod_{Q \in \mathcal{G} \setminus \{ O_E \}} \frac{(h_{G,R_0}(R_1) - h_{G,R_0}(Q))}{(h_{G,R_0}(R_1)h_{G,R_0}(Q) - 1)}.
\]

Proof. Because \(2\phi(R_1) = \phi(2R_1) \in \phi(\mathcal{G}) \) and \(R_1 \notin G \), the generalized Montgomery coefficient of \(h_{\phi(G),\phi(R_0)} \) is
\[
-h_{\phi(G),\phi(R_0)}(\phi(R_1)) = \frac{1}{h_{\phi(G),\phi(R_0)}(\phi(R_1))}.
\]

Theorem 24 completes the proof.
Theorem 27 (2-isogeny). Assume that $E[2] \cap G \neq \emptyset$, and R_0 is a point of order 2 with $R_0 \not\in G$. Let $G = \langle R_0 \rangle$, and let $\phi: E \rightarrow E/G$ be a separable isogeny with ker $\phi = G$. Let $h_{1,\pm}$, $h_{2,\pm}$, and $h_{3,\pm}$ be normalized generalized Montgomery coordinates in Theorem 24. Then, the generalized Montgomery coefficients of these generalized Montgomery coordinates are as follows:

$$
\alpha_{h_{1,\pm}} = \pm \frac{\alpha_{h,\pi_0} + 6}{2\sqrt{\alpha_{h,\pi_0} + 2}}, \quad \alpha_{h_{2,\pm}} = \pm \frac{-\alpha_{h,\pi_0} - 6}{2\sqrt{\alpha_{h,\pi_0} + 2}}, \quad \alpha_{h_{3,\pm}} = \pm \frac{-2\alpha_{h,\pi_0}}{\sqrt{\alpha_{h,\pi_0} + 4}},
$$

where α_{h,π_0} is the generalized Montgomery coefficient of h_{G,R_0}.

Proof. Most parts of the proof can be shown in the same way as the proof of Theorem 26. The remaining part is that of $\alpha_{h_{3,\pm}}$. Since $h_{3,\pm}(\phi(R_1)) = 0$, we cannot use the same discussion as the previous proofs. It is easy to see that a point $\phi(R_0)$ represents the generalized Montgomery coefficients of $h_{3,\pm}$, where R_0 is a point such that $2R_0 = R_0$. From the fact that $h_{G,R_0}(R_0) = 1$ or $h_{G,R_0}(R_0) = -1$, we get the formulas to compute the generalized Montgomery coefficients of $h_{3,\pm}$. This completes the proof of Theorem 27. \[\square\]

5.3 Difference of some formulas for generalized Montgomery coefficients

Now, we focus on the formulas for odd-degree isogenies. By considering the symmetry of the equality and formulas of scalar multiplications, we show that these formulas in Theorem 26 can be represented by the ratio of two polynomials in $Z[\alpha_{h,\pi_0}, h_{G,R_0}(Q)]$. These formulas are correct; however, one may know that there are some different formulas to compute generalized Montgomery coefficients on Montgomery curves (e.g., those proposed in CH17, and those proposed in MR18). Thus, a question arises: Are these formulas generalized by formulas via a generalized Montgomery coordinate? The answer is yes. The following theorem claims that we can construct these formulas by considering division polynomials of the generalized Montgomery coordinates (Definition 22).

Theorem 28. Let ℓ be an odd prime, and K be a field whose characteristic is neither 2 nor ℓ. Let E be an arbitrary elliptic curve defined over K, h_{G,R_0} be its arbitrary normalized generalized Montgomery coordinate, Q be an arbitrary point of order ℓ in E, ϕ be a separable isogeny with ker $\phi = \langle Q \rangle$, and $h_{G,R_0}(Q)$ be a normalized generalized Montgomery coordinate of E/Q defined in Theorem 24. Suppose that $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ are polynomials in $Z[\alpha, h]$ always satisfying $\varphi_2(\alpha_{h,\pi_0}, h_{G,R_0}(Q)) \neq 0, \varphi_4(\alpha_{h,\pi_0}, h_{G,R_0}(Q)) \neq 0$, and

$$
\alpha_{h_{G,R_0}(Q)} = \frac{\varphi_1(\alpha_{h,\pi_0}, h_{G,R_0}(Q))}{\varphi_2(\alpha_{h,\pi_0}, h_{G,R_0}(Q))} = \frac{\varphi_3(\alpha_{h,\pi_0}, h_{G,R_0}(Q))}{\varphi_4(\alpha_{h,\pi_0}, h_{G,R_0}(Q))}.
$$

Then, it holds that if the characteristic of K is $p > 0$,

$$
\frac{\varphi_1(\alpha, h)}{\varphi_2(\alpha, h)} \equiv \frac{\varphi_3(\alpha, h)}{\varphi_4(\alpha, h)} \quad \text{(mod } p\text{),}
$$

where $\varphi_i(\alpha, h)$ are polynomials in α and h. This completes the proof of Theorem 28.
and if the characteristic of \(K \) is 0,
\[
\frac{\varphi_1(\alpha, h)}{\varphi_2(\alpha, h)} = \frac{\varphi_4(\alpha, h)}{\varphi_4(\alpha, h)} = \psi(\alpha, h) \cdot \frac{\varphi_1(\alpha, h)}{\varphi_2(\alpha, h)},
\]
where \(\psi \) is the \(\ell \)-th division polynomial of the generalized Montgomery coordinates, and \(\varphi_1 \) and \(\varphi_2 \) are polynomials in \(\mathbb{Z}[\alpha, h] \) such that \(\varphi_2(\alpha_{\mathcal{G}, \mathcal{R}_a}(Q)) \neq 0 \) for all \((E, h_{\mathcal{G}, \mathcal{R}_a}(Q)) \) and \(Q \).

Proof. Suppose that the characteristic of \(K \) is \(p > 0 \). We define \(\phi(\alpha, h) \in \mathbb{Z}[\alpha, h] \) as
\[
\phi(\alpha, h) = \phi_1(\alpha, h)\phi_4(\alpha, h) - \phi_2(\alpha, h)\phi_3(\alpha, h).
\]
Then, it holds that \(\phi(\alpha_{\mathcal{G}, \mathcal{R}_a}(Q)) = 0 \) for all \((E, h_{\mathcal{G}, \mathcal{R}_a}(Q)) \) and \(Q \in E[\ell] \setminus \{O_E\} \) because \(\ell \) is a prime number. Therefore, from Theorem 23 there is a polynomial \(\varphi_1 \) in \(\mathbb{Z}[\alpha, h] \) such that \(\phi(\alpha, h) \equiv \varphi_1(\alpha, h) \cdot \varphi_1(\alpha, h) \mod p \). We define \(\varphi_2 \in \mathbb{Z}[\alpha, h] \) as \(\varphi_2(\alpha, h) = \phi_2(\alpha, h)\phi_4(\alpha, h) \). It is clear that \(\varphi_2(\alpha_{\mathcal{G}, \mathcal{R}_a}(Q)) \neq 0 \) for all \((E, h_{\mathcal{G}, \mathcal{R}_a}, Q) \) and \(Q \in E[\ell] \setminus \{O_E\} \). This completes the proof in the case that the characteristic of \(K \) is \(p > 0 \).

The case that the characteristic of \(K \) is 0 can be proved similarly.

Remark 29. In Theorem 28 we fix that \(\ell \) is a prime number. However, if \(\ell \) is not prime, similar theorems also hold. In these theorems, the parts of division polynomials of their equalities get slightly complicated.

Example 30. Let \(\ell = 3 \). We now consider the difference of the formula proposed in [Ren18] and that proposed in [MRT18]. The difference satisfies
\[
(-6h^3 + ah^2 + 6h) - \frac{2((a + 2)^3(h + 1)^8 + (a - 2)^3(h - 1)^8)}{(a + 2)^3(h + 1)^8 - (a - 2)^3(h - 1)^8} \cdot \frac{4(6a^2h^7 + 8h^7 - a^3h^6 + \cdots - 40h - a^3 - 12a)}{(a + 2)^3(h + 1)^8 - (a - 2)^3(h - 1)^8}.
\]
It is easy to see that \(3h^4 + 4ah^3 + 6h^2 - 1 \) is the 3-rd division polynomial of the generalized Montgomery coordinates.

From Theorem 28 the problem of constructing an efficient formula is reduced to the problem of finding a proper element in an ideal \(I_m \) defined in Theorem 23. As a simple application of this fact, we may find more efficient formulas by trying to add previous formulas and some elements in \(I_m \). Moreover, we believe that we can use this consideration to estimate the lower bound of the cost of formulas of isogeny computation. This will be done in our future works.

6 Applications of a generalized Montgomery coordinate

In this section, we explain two applications of a generalized Montgomery coordinate. The first is the construction of a new efficient formula to compute isogenies on Montgomery curves. The second is the construction of a new generalized Montgomery coordinate on Montgomery curves that can be used to new CSURF algorithm.
6.1 New formulas to compute isogenies on Montgomery curves

As discussed in subsection 6.3, the inverse of the \(w\)-coordinate on an Edwards curve is a normalized generalized Montgomery coordinate. Therefore, we know that formulas of Montgomery and Edwards curves are essentially the same. This insight results in a formula of \(x\)-coordinates from that of \(w\)-coordinates.

Kim, Yoon, Park, and Hong proposed formulas to compute odd degree isogenies [KYPH19]. Let \(\ell\) be an odd integer, and let \(P\) be a point of order \(\ell\). Let \(\phi\) be an isogeny \(E \to E/\langle P \rangle\) with \(\ker \phi = \langle P \rangle\). Thus, we can compute an Edwards coefficient of \(E/\langle P \rangle\), denoted by \(d'\), as follows [KYPH19]:

\[
d' = d \prod_{k=1}^{s} \frac{(w(kP) + 1)^8}{2^s},
\]

where \(d\) is the Edwards coefficient of \(E\), and \(s\) is an integer such that \(\ell = 2^s + 1\).

From the doubling formula of \(w\)-coordinates of Edwards curves in [FH17], we obtain the generalized Montgomery coefficient of \(w^{-1}\) as \(2 - 4/d\). Hence, from Theorem 15, we obtain the isogeny \(\phi: E \to F\) of degree 4 such that \(x \circ \phi = w^{-1}\), where \(F\) is a Montgomery curve whose coefficient is \(2 - 4/d\). Now, we can construct a new formula of Montgomery curves. Let \(\phi'\) be an isogeny \(F \to F'/\langle Q \rangle\) with \(\ker \phi' = \langle Q \rangle\), where \(Q\) is a point in \(F\) of order \(\ell\). Since \(\ell\) is odd, we easily observe that the Montgomery coefficient of \(F'/\langle Q \rangle\) is \(2 - 4/d'\). Note that for any \(\alpha \in K \setminus \{\pm 2\}\), the curve

\[
x^2 + y^2 = 1 + \frac{4}{2 - \alpha} x^2 y^2
\]

is an Edwards curve, and its \(w\)-coordinate corresponds to the \(x\)-coordinate of the Montgomery curve \(y^2 = x^3 + \alpha x^2 + x\). Thus, we can compute the Montgomery coefficient of \(F'/\langle Q \rangle\) denoted by \(\alpha'\) as follows:

\[
\frac{2 - \alpha'}{4} = \left(2 - \alpha \right) \prod_{k=1}^{s} \frac{(2x(kQ))^8}{(1 + x(kQ))^8},
\]

where \(\alpha\) is the Montgomery coefficient of \(F\). Moreover, by considering the quadratic twist, we can also construct the following formula:

\[
\frac{\alpha' + 2}{4} = \left(\alpha + 2 \right) \prod_{k=1}^{s} \frac{(2x(kQ))^8}{(1 - x(kQ))^8}.
\]

One may translate the formula of Edwards curves to Montgomery curves using an isomorphism between these curves. However, this process is more complicated than the construction using a generalized Montgomery coordinate. That is, by considering a generalized Montgomery coordinate, we can naturally transplant formulas.

This formula is as efficient as that proposed by Meyer and Reith [MR18] for basic calculations. In addition, as the \(\sqrt{\phi}\)’s formula, this formula is more efficient than that proposed in [BDFLS20]. The \(\sqrt{\phi}\)’s formula is a method of more
efficiently computing large prime degree isogenies. In [BDFLS20], Bernstein, De Feo, Leroux, and Smith first proposed the √ℓ-ℓu’s formula via x-coordinates of Montgomery curves. In this method, we calculate resultants of a polynomial of degree $2|\sqrt{\ell - 1}/2|$ and a polynomial of degree about $|\sqrt{\ell - 1}/2|$ to compute an ℓ-isogeny. In [MOT20a], Moriya, Onuki, and Takagi suggested that the √ℓ-ℓu’s formula via w-coordinates of Edwards curves is more efficient than the original √ℓ-ℓu’s formula for large degree isogenies. It is because one resultant in the computation on Edwards curves can be replaced by a resultant of two polynomials of degree about $|\sqrt{\ell - 1}/2|$, which is a half degree in the computation on Montgomery curves. Since we can adapt the method of [MOT20a] to our new formula, this is more efficient than that proposed in [BDFLS20] for large degree isogenies.

We implemented our new formula based on the SIBC Python library [ACDRH21] in [ACDRH20], and compared its cost to that obtained by the previous formula implemented by [ACDRH21] at various prime degrees. The implementation results are in Figure 2. Here, we use the 4096-bits prime defined in [ACDRH21] as p, and measured the number of multiplications and squarings in \mathbb{F}_p as the cost. The vertical line shows the ratio of the cost of our new formula to that of the previous formula, and the horizontal line shows the degree of isogenies. That is, at the points below the line of 1.00, our new formula is more efficient than the previous one. Therefore, for large degree isogenies, our proposed formula is faster in terms of the number of multiplications and squarings in \mathbb{F}_p in our implementation. In future study, we intend to confirm if this formula is faster than previous one when implemented in low-level programming languages (e.g., C) in practice. Our source code is available from http://tomoriya.work/code.html
6.2 New generalized Montgomery coordinate to compute isogenies on Montgomery curves

In this subsection, we construct a new normalized generalized Montgomery coordinate on a Montgomery curve. Montgomery curves are primarily used for CSURF [CD20]. This coordinate enables us to compute isogenies on Montgomery curves using the same formulas for Montgomery curves.

Let E be a Montgomery curve $y^2 = x^3 + ax^2 - x$, and $(a, 0)$ and $(-1/a, 0)$ be points of order 2 other than $(0, 0)$. We obtain

$$\text{div } x = 2((0, 0)) - 2(O_E),$$
$$\text{div } y = ((a, 0)) + ((-1/a, 0)) + ((0, 0)) - 3(O_E).$$

Therefore, it holds that

$$\text{div } (y^2/x^2) = 2((a, 0)) + 2((-1/a, 0)) - 2((0, 0)) - 2(O_E).$$

A direct calculation results in

$$y(P) = x(P)^2 - (a^2 + 1)x^2 = \alpha^2 + 4.$$

Therefore, $\sqrt{\alpha^2 + 4}y^2/x^2$ is a normalized generalized Montgomery coordinate on E with respect to $h(0, 0)$ and $(a, 0)$. Here, we use p that satisfies $p \equiv 3 \pmod{4}$, and fix $\sqrt{\cdot} : \mathbb{F}_p \to \mathbb{F}_p$ such that $\sqrt{\mathbb{F}_p}^2 : (\mathbb{F}_p)^2 \to \mathbb{F}_p$ to $\sqrt{A} = A^{\frac{p+1}{2}}$. We denote $\sqrt{\alpha^2 + 4}y^2/x^2$ as w. Because the double of $(\sqrt{-1}, \sqrt{-\alpha - 2\sqrt{-1}})$ is $(0, 0)$, the generalized Montgomery coefficient of w is

$$\alpha_w = -w(\sqrt{-1}, \sqrt{-\alpha - 2\sqrt{-1}}) = -\frac{1}{w(\sqrt{-1}, \sqrt{-\alpha - 2\sqrt{-1}})} = -\frac{2\alpha}{\sqrt{\alpha^2 + 4}}.$$

Remark 31. If a supersingular elliptic curve E defined over \mathbb{F}_p has the \mathbb{F}_p-endomorphism ring isomorphic to $\mathbb{Z}\left[\sqrt{-p} \right]$, we say E is on the surface, and if a supersingular elliptic curve E defined over \mathbb{F}_p has the \mathbb{F}_p-endomorphism ring isomorphic to $\mathbb{Z}[\sqrt{-p}]$, we say E is on the floor.

From Theorem [13], the w-coordinate of the Montgomery curve can be represented by $w = x \circ \phi$, where ϕ is an isogeny with $\ker \phi = \langle (0, 0) \rangle$. This isogeny is the 2-isogeny that maps an elliptic curve on the surface to that on the floor [CD20 Lemma 2].

Since $\# \langle (0, 0) \rangle = 2$, we can compute isogenies of odd degrees of Montgomery curves using the same formulas as on Montgomery curves via the w-coordinates. In [CDV20], the authors mentioned that by considering an isogeny from Montgomery curves to curves on the floor, the CSURF algorithm becomes more efficient because formulas on Montgomery curves are used. As Remark [31] indicates, this technique is the same as considering the w-coordinate of Montgomery curves.

However, the calculation of 2-isogenies is not possible via the w-coordinates. Let $\phi : E \to E'$ be a 2-isogeny between Montgomery curves with $\ker \phi =$
Let \(w\). We denote the \(w\)-coordinates on \(E\) and \(E'\) as \(w_E\) and \(w_{E'}\), respectively. Let us assume that there is a map \(f: \mathbb{P}^1 \rightarrow \mathbb{P}^1\) such that \(w_{E'}(\phi(P)) = f(w_E(P))\). As \(w_E(P + (0, 0)) = w_E(P)\), it holds that \(f(w_E(P + (0, 0))) = f(w_E(P))\). In contrast, because \(\phi(0, 0)\) is the back track point of \(\phi\) (i.e., \(\ker \phi = \langle \phi(0, 0) \rangle\)), it holds that \(w_{E'}(\phi(P + (0, 0))) = 1/w_E(\phi(P))\). This is a contradiction. Therefore, we cannot compute \(w_{E'}(P)\) using \(w_E(P)\). However, we can compute the generalized Montgomery coefficient of \(w_{E'}\) from that of \(w_E\) using the following theorems.

Theorem 32 (2-isogeny). Let \(p \equiv 7 \pmod{8}\), let \(E\) and \(E'\) be supersingular Montgomery curves, and let \(\phi: E \rightarrow E'\) be a 2-isogeny defined over \(\mathbb{F}_p\) with \(\ker \phi = \langle P \rangle\). We denote the \(w\)-coordinates on \(E\) and \(E'\) as \(w_E\) and \(w_{E'}\), respectively. We denote the generalized Montgomery coefficients of these coordinates as \(\alpha_{w_E}\) and \(\alpha_{w_{E'}}\), respectively. Thus, if the halves of \(P\) are defined over \(\mathbb{F}_p\), it holds that

\[
\alpha_{w_{E'}} = -2\frac{\alpha_{w_E} + 6 - 32\sqrt{\alpha_{w_E} + 2}}{\alpha_{w_E} + 6 + 4\sqrt{\alpha_{w_E} + 2} + 2} = -2 + \frac{32\sqrt{\alpha_{w_E} + 2}}{(\sqrt{\alpha_{w_E} + 2} + 2)^2},
\]

and if the halves of \(P\) are in \(\ker (\pi_p + 1)\), the formula is obtained by replacing \(\alpha_{w_{E'}}\) and \(\alpha_{w_E}\) in Equation (1) with \(-\alpha_{w_{E'}}\) and \(-\alpha_{w_E}\), respectively, where \(\pi_p\) is the \(p\)-Frobenius map on \(E\).

Theorem 33 (4-isogeny). Let \(p \equiv 7 \pmod{8}\), let \(E\) and \(E'\) be supersingular Montgomery curves, and let \(\phi: E \rightarrow E'\) be a 4-isogeny defined over \(\mathbb{F}_p\) with \(\ker \phi = \langle P \rangle\) defined over \(\mathbb{F}_p^r\). We denote the \(w\)-coordinates on \(E\) and \(E'\) as \(w_E\) and \(w_{E'}\), respectively. We denote the generalized Montgomery coefficients of these coordinates as \(\alpha_{w_E}\) and \(\alpha_{w_{E'}}\), respectively. Thus, if \(P\) is defined over \(\mathbb{F}_p\), it holds that

\[
\frac{\alpha_{w_{E'}} + 2}{4} = \frac{8\sqrt{\frac{\alpha_{w_E} + 2}{4} + \sqrt{\alpha_{w_E} + 2}}}{\left(\sqrt{\frac{\alpha_{w_E} + 2}{4} + 1}\right)^2},
\]

where \(\varepsilon = (-1)^{\frac{p+1}{2}}\), and if \(P\) is in \(\ker (\pi_p + 1)\), the formula is obtained by replacing \(\alpha_{w_{E'}}\) and \(\alpha_{w_E}\) in Equation (1) with \(-\alpha_{w_{E'}}\) and \(-\alpha_{w_E}\), respectively.

To prove these theorems, we first prove the following lemmas.

Lemma 34. Let \(p \equiv 7 \pmod{8}\), and let \(\alpha\) be the generalized Montgomery coefficient of the \(w\)-coordinate of a supersingular Montgomery curve defined over \(\mathbb{F}_p\). Therefore, it holds that \(\alpha + 2 \in (\mathbb{F}_p)^2\) and \(2 - \alpha \in (\mathbb{F}_p)^2\).

Proof. Let \(E\) be a Montgomery curve \(y^2 = x^3 + ax^2 + x\). From Remark [31], it holds that \(\text{End}_p(E) \cong \mathbb{Z}[\pi_p]\). Therefore, we obtain \(E[8] \cap \ker (\pi_p - 1) \cong \mathbb{Z}/8\mathbb{Z}\) and \(E[8] \cap \ker (\pi_p + 1) \cong \mathbb{Z}/8\mathbb{Z}\). Since \((1, \sqrt{\alpha + 2}) \in E[4]\), \((1, \sqrt{\alpha + 2})\) belongs to \(2(\ker (\pi_p - 1))\) or \(2(\ker (\pi_p + 1))\). From [MOT20a] Proposition 1, we have
(1, √(α + 2)) ∈ ker (πp − 1). Therefore, α + 2 ∈ (Fp)2. Note that E has only one point of order 2 defined over Fp. Hence, it holds that α² − 4 /∈ (Fp)². Since α + 2 ∈ (Fp)², it holds that −(α − 2) ∈ (Fp)².

Lemma 35. Let p ≡ 7 (mod 8), and let α be the generalized Montgomery coefficient of the w-coordinate of a supersingular Montgomery⁻¹ curve defined over Fp. If p ≡ 15 (mod 16), then √(α + 2) + 2 ∈ (Fp)² and √(2 − α) + 2 ∈ (Fp)², and if p ≡ 7 (mod 16), then √(α + 2) + 2 /∈ (Fp)² and √(2 − α) + 2 /∈ (Fp)².

Proof. Since −α is also the generalized Montgomery coefficient of some supersingular Montgomery⁻¹ curve, it is sufficient to consider whether √(α + 2) + 2 is square. Let E be a Montgomery curve y² = x³ + αx² + x. Since E is on the floor, it holds that E(Fp)[8] ≅ Z/8Z. From Lemma 34, we obtain (1, √(α + 2)) ∈ E(Fp)[4]. Therefore, the following equation has the roots in Fp:

\[
4(x^3 + αx^2 + x) = (x^2 - 1)^2.
\]

It is easy to observe that the roots of this equation are \(-\frac{1}{2}(\sqrt{α + 2 ± \sqrt{α + 2 - 2}})²\) and \(\frac{1}{2}(\sqrt{α + 2 ± \sqrt{α + 2 + 2}})²\). From Lemma 34, it holds that \(\sqrt{α + 2} \in F_p\) and

\[
(\sqrt{α + 2 - 2})(\sqrt{α + 2 + 2}) = α - 2 /∈ (Fp)².
\]

Therefore, if \(\sqrt{α + 2 + 2}\) is square in Fp, then \(\frac{1}{2}(\sqrt{α + 2 ± \sqrt{α + 2 + 2}})²\) is a x-coordinate of a point of order 8 defined over Fp, and if \(\sqrt{α + 2 + 2}\) is not square in Fp, then \(-\frac{1}{2}(\sqrt{α + 2 + 2})²\) is a x-coordinate of a point of order 8 defined over Fp. We let P be a point of order 8 defined over Fp. From Mot205 Proposition 1, if \(\sqrt{α + 2 + 2}\) is square in Fp, then P ∈ 2E(Fp). Hence, it holds that 16 | #E(Fp) and p ≡ 15 (mod 16). If \(\sqrt{α + 2 + 2}\) is not square in Fp, then P /∈ 2E(Fp). Hence, it holds that 16 / #E(Fp) and p ≡ 7 (mod 16). This completes the proof of Lemma 35.

Now, we prove Theorems 32 and 33.

Proof (Theorem 32). From CD20 Lemma 2 and Lemma 5, the halves of P are in ker (πp − 1), or they are in ker (πp + 1). We first consider a 4-isogeny from F: y² = x³ + αwₑ x² + x. From JDF11 equation (20) and Lemma 34, it holds that

\[
F_1 := F/((1, \sqrt{αwₑ + 2})) : y^2 = x^3 - 2\frac{αwₑ + 6}{2 - αwₑ}x^2 + x,
\]

\[
F_2 := F/((-1, \sqrt{-1}(2 - αwₑ))) : y^2 = x^3 - 2\frac{αwₑ - 6}{αwₑ + 2}x^2 + x.
\]

We denote one of the halves of P as Q. Let ψ: E → F be a 2-isogeny satisfying wₑ = x o ψ. It is clear that if Q ∈ ker (πp − 1) (resp. Q ∈ ker (πp + 1)), then ψ(Q) ∈ ker (πp − 1) (resp. ψ(Q) ∈ ker (πp + 1)). Therefore, if Q ∈ ker (πp − 1), then Q = (1, \sqrt{αwₑ + 2}), and if Q ∈ ker (πp + 1), then Q = (−1, \sqrt{αwₑ - 2}). Hence, if Q ∈ ker (πp − 1), then E' ≅ F₁, and if Q ∈ ker (πp + 1), then E' ≅ F₂.
We now fix \(Q \in \ker (\pi_p - 1) \). From Remark \([31]\) it is sufficient to consider a 2-isogeny from \(F_1 \) to an elliptic curve on the floor. The points of order 2 are \((0,0)\) and
\[
\left(\alpha_{wE} + 6 \pm 4\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} \right,0 \right).
\]
Since \((0,0)\) is the backtrack point of the isogeny \(F \to F_1 \), the codomain of the isogeny whose kernel is \(\{(0,0)\} \) is on the surface. From [CD20] Lemma 2 and Lemma 5], the generator of the kernel of the isogeny mapping from \(F \) to an elliptic curve on the floor satisfies the \(x \)-coordinates of its halves are not in \(\mathbb{F}_p \).

Let
\[
\tilde{\alpha}_\pm := \frac{\alpha_{wE} + 6 \pm 4\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}}}{2 - \alpha_{wE}}
\]
respectively. The \(x \)-coordinates of the halves of \((\tilde{\alpha}_\pm,0)\) are the roots of the equation
\[
\tilde{\alpha}_\pm = \frac{(x^2 - 1)^2}{4(x^3 - (\tilde{\alpha}_\pm + 1/\tilde{\alpha}_\pm)x^2 + x)}.
\]
The roots of this equation is \(x = \tilde{\alpha}_\pm \pm \sqrt{\tilde{\alpha}_\pm^2 - 1} \). Therefore, if \(\tilde{\alpha}_\pm^2 - 1 \not\in (\mathbb{F}_p)^2 \), then \((\tilde{\alpha}_\pm,0)\) is the generator of the kernel of the isogeny mapping from \(F \) to an elliptic curve on the floor. We have
\[
\tilde{\alpha}_+^2 - 1 = \frac{8\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} + 2}{(2 - \alpha_{wE})^2} (\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} + 2)^2;
\]
\[
\tilde{\alpha}_-^2 - 1 = \frac{8\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} + 2}{(2 - \alpha_{wE})^2} (\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} - 2)^2.
\]
From Lemma \([34]\) it holds that \(\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} = (\alpha_{wE} + 2)^{\frac{p+1}{2}} \) is in \(\mathbb{F}_p \). Since \(p \equiv 7 \pmod{8} \), we have \(8 \in (\mathbb{F}_p)^2 \). Therefore, \(\tilde{\alpha}_+^2 - 1 \in (\mathbb{F}_p)^2 \) and \(\tilde{\alpha}_-^2 - 1 \not\in (\mathbb{F}_p)^2 \). Hence, the generator of the kernel of the target isogeny is \((\tilde{\alpha}_-,0)\). Note that \(\tilde{\alpha}_- = (\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} - 2)^2 / (2 - \alpha_{wE}) \in (\mathbb{F}_p)^2 \). From [Ren18] Proposition 2], we obtain \(F_1 / \langle (\tilde{\alpha}_-,0) \rangle \) as
\[
y^2 = x^3 - 2\alpha_{wE} + 6 - 12\sqrt{\alpha_{wE} + \frac{2}{2 - \alpha_{wE}}} x^2 + x.
\]
Since \(\alpha_{wE} \) is the Montgomery coefficient of this curve, we have completed the half of the proof.

If \(Q \in \ker (\pi_p + 1) \), we have the following equation using the same discussion as above:
\[
\alpha_{wE'} = 2\alpha_{wE} - 6 + 12\sqrt{2 - \alpha_{wE}}.
\]
This completes the proof of Theorem \([32]\).

Proof (Theorem \([33]\)). Since Montgomery curves defined over \(\mathbb{F}_p \) are on the surface [CD20] Figure 1 and Figure 2], the given 4-isogeny is the composition of 2-isogenies in Theorem \([32]\) Lemma \([35]\) provides the proof of Theorem \([33]\).
As [CD20, Figure 2] and Theorem [33] show, the generalized Montgomery coefficient of the \(w \)-coordinate is unique for an \(\mathbb{F}_q \)-isomorphism class. Subsequently, using the above theorems, we can construct a new CSURF algorithm via the \(w \)-coordinate of Montgomery\(^{-}\) curves. In the previous CSURF algorithm, we had to move from the elliptic curves on the surface to those on the floor because of some speed-up techniques (e.g., Radical isogenies [CDV20, OM22]). In contrast, because our proposed algorithm consists only of the arithmetic of curves on the floor, we can use these speed-up techniques without moving from one curve to another. Thus, this algorithm realizes a simple implementation using only one coordinate.

By this simplification, we can improve the efficiency of the algorithm of CSURF; however, unfortunately, the effect is likely be small.

7 Conclusion

In this paper, we proposed a novel function of elliptic curves called the generalized Montgomery coordinate. This is a generalization of some standard coordinates for one-coordinate arithmetics on elliptic curves that have been studied separately, e.g., the \(x \)-coordinate of Montgomery curves, \(x \)-coordinate of Montgomery\(^{-}\) curves, \(w \)-coordinate of Edwards curves, \(w \)-coordinate of Huff’s curves, and \(\omega \)-coordinates of twisted Jacobi intersections.

Next, we constructed explicit formulas of scalar multiplication including the division polynomial and isogeny computation via a generalized Montgomery coordinate. We obtained these formulas by considering the divisors of the functions related to scalar multiplication and isogeny computation. Note that our new formulas are independently constructed from the forms of elliptic curves that decide the above conventional coordinates. Moreover, two formulas are available for isogeny computation: one for an image point and the other for a target elliptic curve. The formula for an image point is unique for any generalized Montgomery coordinate; however, that for a target elliptic curve has some different forms. We proved that this difference is due to the division polynomial of the generalized Montgomery coordinates.

We believe the theory of a generalized Montgomery coordinate has many applications. In this paper, we considered two applications as an initial trial. First, we constructed a new formula for isogeny computation of Montgomery curves. This formula is based on that of \(w \)-coordinates on Edwards curves and is more efficient for large degree isogenies than previous formulas of Montgomery curves in our implementation. Furthermore, we proposed a new generalized Montgomery coordinate of Montgomery\(^{-}\) curves. This coordinate enables us to construct the new CSURF algorithm that provides a simple implementation. An open problem remains to construct further applications of the generalized Montgomery coordinate.
Acknowledgements.

This work was supported by JSPS KAKENHI Grant Number JP21J10711, JP21K17739, JST ACT-X Grant Number JPMJAX2001, and JST CREST Grant Number JPMJCR2113.

References

