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Abstract

We study the security of the random oblivious transfer extension protocol of Keller, Orsini, and Scholl
(CRYPTO ’15), whose security proof was recently invalidated by Roy (CRYPTO ’22). We show that KOS
is asymptotically secure. Our proof involves a subtle analysis of the protocol’s “correlation check”, and
introduces several new techniques. We also study the protocol’s concrete security. We establish concrete
security for security parameter values on the order of 5,000. We present evidence that a stronger result
than ours—if possible—is likely to require radically new ideas.

1 Introduction

The oblivious transfer extension protocol of Keller, Orsini and Scholl [KOS15, Fig. 7] (henceforth “KOS”) is
widely known and used. Key to that protocol is a certain “correlation check”, in which a number of extension
OTs are “sacrificed” in a linear combination. This check is very difficult to analyze. In recent work, Roy
[Roy22, § 4.1] disproves a key lemma [KOS15, Lem. 1], upon which KOS’s security analysis relies. Roy’s
work invalidates the security proof [KOS15, Thm. 1], as originally written.

In a recent update to their work, Keller, Orsini and Scholl propose an adjusted variant of their protocol
[KOS22, Fig. 10]; essentially, they suggest a special case of Roy’s construction. Though the efficiency of the
updated protocol is comparable to the original, it is more complex, and uses different ideas. Indeed, we note
that the analysis of [Roy22] is very theoretically involved. It is of interest to prove the security of KOS, as
originally written; this open problem is noted explicitly by Roy [Roy22, § 1.1], for example.

We show that, asymptotically, KOS is secure. Our proof begins by introducing a certain numerical metric,
which captures the extent of the corrupt receiver’s compliance with the protocol. We moreover introduce
a new simulation strategy, based on this metric, and show that—as this degree of compliance varies—the
receiver must choose between facing negligible odds in the correlation check, on the one hand, and handing
the distinguisher a negligible advantage, on the other. Our proof’s key step has a coding-theoretic flavor;
we show that a binary matrix with sufficiently many random columns is unlikely to reside near the matrix
representation of any field element (in the space of matrices, where distance is measured in rank).

We also extract effective bounds from our proof. We show that, in order to achieve statistical security of
2−40 against an adversary making up to 280 hash evaluations, the security parameter κ = 5,122 suffices (see
Example 3.17). More abstractly, we show that KOS, instantiated with security parameter κ, withstands an

attacker making up to 1
2 ·
√
κ · 2 1

2 ·
√
κ hash evaluations with statistical security 2−

1
2 ·
√
κ (see Corollary 3.19).

Obviously, this sort of κ results in a barely-practical protocol. On the other hand, we give evidence
that this limitation might be intrinsic. As it turns out, our proof applies equally well to the security of
Patra, Sarkar and Suresh [PSS17] (henceforth “PSS”), another protocol attacked by Roy [Roy22, § 4.1].
(Indeed, our proof invokes only properties of KOS which are shared by PSS; we discuss this fact further
below.) Interestingly, our lower-bound tightly matches—up to the factor of 1

2 present in both exponents—the
upper-bound achieved by Roy [Roy22, § 4.1] on PSS. Our proof thus definitively settles the question of PSS’s
security, up to these constants. (As we explain in Remark 3.20 below, these constants may in fact be taken
as high as 1√

2
− ε, for ε > 0 arbitrarily small.) It also shows that a sharper analysis of KOS—if possible at

all—would have to rely on features of KOS’s correlation check more delicate than those our proof considers.
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We briefly recall the details of KOS. The correlation check (see [KOS15, Fig. 7]) serves to control the

row-vectors (xi)
l′−1
i=0 the receiver submits to the correlated OT with errors hybrid functionality Fκ,l

′

COTe. If the
receiver is honest, then each row xi ∈ Fκ2 is necessarily “monochromatic” (in the sense that its components
are identical); if the receiver’s rows xi are not monochromatic, then the corrupt receiver may facilitate
the distinguisher’s learning certain bits of the sender’s correlation vector ∆ ∈ Fκ2 , by means of brute-force
queries to the random oracle. The correlation check prescribes that the parties jointly sample random

elements (χi)
l′−1
i=0 from F2κ , using a coin-flipping functionality, that they subject their intermediate values—

i.e., those they obtained from Fκ,l
′

COTe—to a linear combination using these coefficients, and finally that they

exchange the results. Specifically, the sender and receiver, having received (qi)
l′−1
i=0 and (ti)

l′−1
i=0 , respectively,

from Fκ,l
′

COTe, compute q :=
∑l′−1
i=0 χi · qi and t :=

∑l′−1
i=0 χi · ti, respectively; the (honest) receiver moreover

computes x :=
∑l′−1
i=0 χi · xi, where (xi)

l′−1
i=0 is its choice vector. Finally, the receiver sends x and t to the

sender, who checks q
?
= t+ x ·∆. All multiplications here take place in the binary field F2κ .

Informally, the correlation check controls whether the individual equalities qi
?
= ti + xi ·∆ hold, for each

i ∈ {0, . . . , l′ − 1}, or—equivalently—whether the vector (qi + ti + xi ·∆)
l′−1
i=0 ∈ Fl′2κ is the zero vector. In

actuality, however, the correlation check merely checks whether this latter vector resides within the random

hyperplane in Fl′2κ given by the coefficients (χi)
l′−1
i=0 . The difficulty is that the corrupt receiver sees these

coefficients—and the resulting hyperplane—before sending x and t; as a result, the receiver could conceivably

select these values in such a way that the vector (qi + ti + xi ·∆)
l′−1
i=0 —though nonzero—nonetheless resides

within this hyperplane, and causes the check to pass. This is precisely the subtlety overlooked by [KOS15,
Thm. 1]; we refer to [Roy22, § 4.1] for discussion.

We now sketch the technical details of our proof (see also Theorem 3.1). Our treatment of the corrupt
sender is similar to that of [KOS15, Thm. 1] (though we supply certain details which were omitted from that
proof). Our treatment of the corrupt receiver—the more difficult case—relies on a new simulation strategy
for that case, as well as on a careful analysis of the adversary’s and distinguisher’s success conditions.

We begin by introducing a numerical characterization of the extent of A’s matrix’s monochromaticity.
This metric—which we call the matrix’s modesty—ranges throughout m ∈ {1, . . . , κ}; an honest receiver

necessarily has modesty κ. Informally, m measures the feasibility of assigning choice bits (xi)
l−1
i=0 to (xi)

l′−1
i=0 ’s

first l rows in such a way that it becomes difficult to use vectors of the form xi + xi · (1, . . . , 1) to assemble
vectors of the form xi+xi·(1, . . . , 1) (we write ei and ei, respectively, for these latter two vectors). Specifically,

we say that (xi)
l−1
i=0 has modesty m if there exists an assignment (xi)

l−1
i=0 with the property that, even

after arbitrarily including vectors ei which each successively introduce fewer than m new bit positions, we
nonetheless remain at least m bit positions away from each vector ei, where, here, i ∈ {0, . . . , l − 1} varies
arbitrarily (and if moreover m ∈ {1, . . . , κ} is the largest integer with this property). Our Definition 3.3
below serves the dual role of determining m ∈ {1, . . . , κ} and of producing the assignment (xi)

l−1
i=0.

We show that as m ∈ {1, . . . , κ} varies, A smoothly trades off between two different bad outcomes. (A
graphical depiction of our proof strategy is given in Figure 1 below.) On the one hand, if A’s modesty
is low—that is, if A cheats brazenly—then A’s probability of passing the correlation check becomes low.

Indeed, we note that—up to a uniform resampling of the random combination coefficients (χi)
l′−1
i=0 used in

the check—we may freely assume that the matrix (ei)
l′−1
i=0 is in reduced row-echelon form; we further note

that, as m decreases, this reduced matrix accumulates pivots. These pivots impose independently random
F2-linear conditions on the unknown vector ∆, and make the correlation check harder to pass. We reduce
A’s success to a coding-inspired condition on the space of binary matrices, and upper-bound its probability
of passing using a union bound (see Proposition 3.9).

On the other hand, we show that as m grows—that is, asA becomes more compliant—A begins producing
transcripts which make the presence of our simulation harder to detect. Indeed, any given distinguisher may
learn bits of the hidden choice vector ∆ only by means of brute-force queries of the form H(i ‖ ti + ei ∗∆),
where ei introduces few new bit positions not already learned. On the other hand, the distinguisher may
successfully distinguish the real and ideal distributions only if it manages to queryH(i‖ti+ei∗∆). Effectively,
m controls the size of the the minimal-length “stretch” of bits which the distinguisher must brute-force, if it
is to succeed (see Proposition 3.12).

By combining these two cases, we establish the result (see Theorem 3.1).
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2 Background and Notation

We identify {0, 1} ∼= F2 as sets. We occasionally identify vectors in {0, 1}κ ∼= Fκ2 with subsets of {0, . . . , κ−1},
in the standard way; that is, for each vector d ∈ {0, 1}κ, corresponding to the map d̂ : {0, . . . , κ−1} → {0, 1},
say, we identify d with the subset d̂−1(1) ⊂ {0, . . . , κ− 1} (i.e., with the set of components at which d is 1).
We use the symbol ∗ to denote bitwise AND in Fκ2 , and write w for Hamming weight. We use the symbol
\ to denote set subtraction. We fix a field structure on F2κ—that is, an irreducible polynomial of degree κ
in F2[X]—and identify F2κ with the F2-vectorspace Fκ2 , by means of the basis (1, X, . . . ,Xκ−1). We write
· for field multiplication. In what follows, we make use of linear and affine-linear algebra over F2, without
further comment; for this, we suggest the reference Cohn [Coh82, § 5].

Following [KOS15, § 2], we write κ for a security parameter. We write λ and s for desired levels of

computational and statistical security, respectively. We write (xi)
l′−1
i=0 for the rows of an l′ × κ matrix. We

write xi for the bitwise complement of a row-vector xi ∈ Fκ2 , and xi for the complement of a bit xi ∈ F2.

2.1 Secure computation

Given two probability distributions Y0 and Y1 on {0, 1}κ, the statistical distance between Y0 and Y1 is defined
to be 1

2 ·
∑

y∈{0,1}κ |Pr[Y0 = y]− Pr[Y1 = y]|. We say that two distribution ensembles {Y0(a, κ)}a∈{0,1}∗,κ∈N
and {Y1(a, κ)}a∈{0,1}∗,κ∈N are statistically indistinguishable if there is a negligible function µ such that for

each a ∈ {0, 1}∗ and each κ ∈ N, the statistical distance between Y0(a, κ) and Y1(a, κ) is at most µ(κ). We
say that two distribution ensembles {Y0(a, κ)}a∈{0,1}∗,κ∈N and {Y1(a, κ)}a∈{0,1}∗,κ∈N are computationally
indistinguishable if, for each probabilistic, polynomial-time distinguisher D, the distributions ensembles
{D(Y0(a, κ))}a∈{0,1}∗,κ∈N and {D(Y1(a, κ))}a∈{0,1}∗,κ∈N on {0, 1} are statistically indistinguishable.

We record the definition of maliciously secure two-party computation, following Lindell [Lin17, § 6.6.2].

Definition 2.1. For each functionality F , a protocol Π, real-world adversary A, simulator S, and corrupt
party C ∈ {0, 1}, we have the distributions:

• RealΠ,A,C((x0,x1), κ): Run Π with security parameter κ, where the honest party P1−C uses the input
x1−C , and A controls the messages of the corrupt party. Return the outputs of A and P1−C .

• IdealF,S,C((x0,x1), κ): Run S(1κ, C,xC) until it outputs a value x′C , or else outputs (abort) to F ,
who halts. Give x1−C and x′C to F , and obtain outputs (v0, v1). Give vC to S; if S outputs (abort),
then F outputs (abort) to P1−C ; otherwise, F gives P1−C v1−C . Return the outputs of S and P1−C .

We say that Π securely computes F in the presence of one static malicious corruption with abort, or that Π
securely computes F , if, for each corrupt party C ∈ {0, 1} and each probabilistic polynomial-time adversary
A corrupting PC , there is a probabilistic expected polynomial-time simulator S corrupting PC in the ideal
world such that the distributions {RealΠ,A,C((x0,x1), κ)}(x0,x1),κ and {IdealF,S,C((x0,x1), κ)}(x0,x1),κ are

computationally indistinguishable, where x0 and x1 are required throughout to have equal lengths.

2.2 Oblivious transfer

We recall background material on oblivious transfer, following [KOS15].

FUNCTIONALITY 2.2 (FκRand—coin-flipping functionality [KOS15, Fig. 5]).
The security parameter κ and players S and R are fixed.

• Upon receiving (random, i) from both players, FκRand samples χi ← Fκ2 , and outputs (random, i, χi)
to both players.

FUNCTIONALITY 2.3 (Fκ,lCOTe—correlated OT with errors [KOS15, Fig. 2]).
The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

3



• Upon receiving (initialize,∆) from S, where ∆ ∈ Fκ2 , Fκ,lCOTe stores ∆.

• If both parties are honest, R submits
(
input, (xi)

l−1
i=0

)
to Fκ,lCOTe, which, for each i ∈ {0, . . . , l− 1},

samples ti ← Fκ2 randomly and computes qi := ti + xi ∗∆.

• If R is corrupt, R submits
(
input, (xi)

l−1
i=0, (ti)

l−1
i=0

)
to Fκ,lCOTe, which computes (qi)

l−1
i=0 identically.

• If S is corrupt, S submits
(
input, (qi)

l−1
i=0

)
to Fκ,lCOTe, which, for each i ∈ {0, . . . , l − 1}, sets

ti := qi + xi ∗∆.

• In each case, Fκ,lCOTe outputs
(
output, (ti)

l−1
i=0

)
to R and

(
output, (qi)

l−1
i=0

)
to S.

We note that Fκ,lCOTe can be securely instantiated by the protocol of [KOS15, Fig. 3].

Remark 2.4. We slightly alter the treatment of [KOS15, Fig. 2], in that we permit the corrupt sender S

to choose its values (qi)
l−1
i=0. This privilege appears necessary for the secure instantiation of Fκ,lCOTe (in the

FκOT-hybrid model) to go through; its omission appears to have been an oversight on the part of [KOS15].

We moreover recall the random OT functionality:

FUNCTIONALITY 2.5 (Fκ,lROT—random OT functionality [KOS15, Fig. 6]).
The security parameter κ, the number l of resulting OTs, and players S and R are fixed.

• If both parties are honest, R submits
(
input, (xi)

l−1
i=0

)
to Fκ,lROT, which, for each i ∈ {0, . . . , l− 1},

samples (vi,0,vi,1)← {0, 1}κ × {0, 1}κ.

• If R is corrupt, R submits
(
input, (xi)

l−1
i=0, (vi,xi)

l−1
i=0

)
to Fκ,lROT, which, for each i ∈ {0, . . . , l− 1},

samples vi,xi ← {0, 1}κ.

• If S is corrupt, then S submits
(
input, (vi,0,vi,1)

l−1
i=0

)
to Fκ,lROT.

• In each case, Fκ,lROT outputs
(
output, (vi,0,vi,1)

l−1
i=0

)
to S and

(
output, (vi,xi)

l−1
i=0

)
to R.

Remark 2.6. We likewise give the adversary slightly more power than does [KOS15, Fig. 6], in that we

let the corrupt receiver choose (vi,xi)
l−1
i=0. This concession appears necessary; indeed—aside from its other

issues—the simulator [KOS15, Fig. 8] programs H(i ‖ qi + xi ·∆) := vi,xi only after receiving ti from A. A
can easily arrange to make this query before this programming step occurs, thereby breaking the simulation.
We note that issue, as well as further discussion, appears in Masny and Rindal’s Endemic OT [MR19, § 5.1].

For self-containedness, we finally recall the full protocol for Fκ,lROT, exactly as in [KOS15, Fig. 7].

PROTOCOL 2.7 (Πκ,l
ROT—random OT protocol [KOS15, Fig. 7]).

The parameters κ and l, and players S and R, are fixed. R has input bits (x0, . . . , xl−1).

• The parties write l′ := l + κ+ s. S samples ∆← Fκ2 , and sends (intialize,∆) to Fκ,l
′

COTe.

• R samples random bits xi ← F2, for i ∈ {l, . . . , l′ − 1}. For each i ∈ {0, . . . , l′ − 1}, R constructs

the monochromatic vector xi := xi · (1, . . . , 1). R sends
(
input, (xi)

l′−1
i=0

)
to Fκ,l

′

COTe. S and R

receive
(
output, (qi)

l′−1
i=0

)
and

(
output, (ti)

l′−1
i=0

)
, respectively, from Fκ,l

′

COTe.

• For each i ∈ {0, . . . , l′−1}, both parties submit (random, i) to FκRand, and receive (random, i, χi). R

sends S x :=
∑l′−1
i=0 χi ·xi and t :=

∑l′−1
i=0 χi · ti. S sets q :=

∑l′−1
i=0 χi ·qi, and checks q

?
= t+x ·∆.
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• For each i ∈ {0, . . . , l − 1}, R sets vi,xi := H(i ‖ ti), and outputs (vi,xi)
l−1
i=0. For each i ∈

{0, . . . , l − 1}, S sets vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆), and outputs (vi,0,vi,1)
l−1
i=0.

3 Security proof

We now prove the security of Protocol 2.7.

Theorem 3.1. In the FRO,FκRand,F
κ,l′

COTe hybrid model, Protocol 2.7 securely computes Functionality 2.5.

Proof. We define an appropriate simulator S.

Corrupt sender. We first handle the case in which S is corrupt. Our treatment of this case is similar to
that of [KOS15, Thm. 1]. Given a real-world adversary A corrupting S, S operates in the following way.

1. S intercepts A’s messages (initialize,∆) and
(
input, (qi)

l′−1
i=0

)
to Fκ,l

′

COTe. For each i ∈ {0, . . . , l−1},

S computes vi,0 := H(i ‖ qi) and vi,1 := H(i ‖ qi + ∆). S submits
(
input, (vi,0,vi,1)

l−1
i=0

)
to Fκ,lROT.

2. S receives
(
output, (vi,0,vi,1)

l−1
i=0

)
from Fκ,lROT, and simulates Fκ,l

′

COTe sending
(
output, (qi)

l′−1
i=0

)
to A.

3. For each i ∈ {0, . . . , l′ − 1}, S intercepts A’s message (random, i) intended for FκRand, samples χi ← Fκ2
randomly, and simulates FκRand sending A (random, i, χi). S samples x ← Fκ2 randomly, computes

q :=
∑l′−1
i=0 χi · qi, and sets t := q + x ·∆. S simulates R sending A t and x.

The perfection of this simulation is self-evident, except perhaps for the distribution of x. For self-
containedness, we present a full proof of the relevant lemma, whose proof is omitted from [KOS15, Lem. 2].

Lemma 3.2. Given a random κ× (κ+ s) matrix X over F2, where s ≥ 0, Pr[rank(X) = κ] ≥ 1− 2−s.

Proof. For each fixed value s ≥ 0, the probability that the random matrix X’s κ rows are independent is
equal to the probability that each of its successive rows resides outside of the linear subspace spanned by its
previous rows. This probability is given by product expression below, which we manipulate as follows:

(1− 2−s−1) · · · · · (1− 2−s−κ) ≥ 1−
(
2−s−1 + · · ·+ 2−s−κ

)
= 1− 2−s ·

(
2−1 + · · ·+ 2−κ

)
≥ 1− 2−s.

The first inequality follows from a simple union bound, which we now explain. The expression 1−
∏κ−1
i=0 (1−

2−s−1−i) gives the probability that a certain product of Bernoulli distributions resides away from the origin in

{0, 1}κ. By the union bound, this probability is bounded from above by the sum of faces
∑κ−1
i=0 2−s−1−i.

The second summand of the quantity x =
∑l−1
i=0 χi · xi +

∑l′−1
i=l χi · xi computed by the receiver can be

viewed as the image of (xi)
l′−1
i=l ∈ Fκ+s

2 under the linear map Fκ+s
2 → Fκ2 defined by the matrix:χl · · · χl′−1

.
The lemma implies that, with probability at least 1− 2s over the choice of (χi)

l′−1
i=l , the map induced by this

matrix is surjective; it follows that, in the real-world distribution, with overwhelming probability, the image

of the uniformly random point (xi)
l′−1
i=l ∈ Fκ+s

2 under this matrix is itself uniform in Fκ2 , and so perfectly

hides the first term
∑l−1
i=0 χi · xi. This completes the treatment of the corrupt sender.
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Corrupt receiver. We now handle the case in which the receiver R is corrupt. We begin by formulating a
numerical metric—called the modesty, a quantity m ∈ {1, . . . , κ}—describing the extent to which A’s initial

matrix (xi)
l′−1
i=0 is monochromatic. We identify vectors in Fκ2 with subsets of {0, . . . , κ− 1} in what follows,

in the obvious way. We emphasize that the definition below acts only on the l-row submatrix (xi)
l−1
i=0.

Definition 3.3. The modesty of (xi)
l−1
i=0 is the largest m ∈ {1, . . . , κ} for which Modest

(
(xi)

l−1
i=0,m

)
?
= false:

1: function Modest
(

(xi)
l−1
i=0,m

)
2: set d := ∅, and initialize (xi)

l−1
i=0 arbitrarily, with each index i ∈ {0, . . . , l − 1} marked white.

3: for l repetitions do
4: for i ∈ {0, . . . , l − 1} do
5: if i is white and either |xi \ d| < m or |xi \ d| < m then
6: overwrite xi ∈ {0, 1} so that, for ei := xi + xi · (1, . . . , 1), we have that |ei \ d| < m.
7: if ei ⊂ d then mark the index i ∈ {0, . . . , l − 1} grey.
8: else update d ∪= ei and mark the index i ∈ {0, . . . , l − 1} black.

9: if |ei \ d| < m then return true.

10: break the inner loop 4.

11: return false.

Informally, Definition 3.3 captures an attempt by an adversary to iteratively “reach” some (i.e., any)
off-vector ei, by progressively incorporating the bit-positions indicated by various on-vectors ei. Indeed,
d ⊂ {0, . . . , κ− 1} represents the positions which an adversary—whose “tolerance” for new stretches of bits
is controlled by m—can feasibly reach. The routine returns true if the adversary succeeds in reaching an
off-vector. We note that for each input m, the vector d and the assignment (xi)

l−1
i=0 necessarily eventually

stabilize, in at most l iterations of the outer loop 3; indeed, in each iteration, the algorithm either marks
exactly one vector grey or black, or else stabilizes (possibly by returning true).

The following lemma captures the key correctness property of Definition 3.3.

Lemma 3.4. For each (xi)
l′−1
i=0 , and each m ∈ {1, . . . , κ} for which Modest

(
(xi)

l−1
i=0,m

)
= false, if d is the

vector assembled during the course of Modest
(

(xi)
l−1
i=0,m

)
, then, for each i ∈ {0, . . . , l − 1}, |ei \ d| ≥ m.

Proof. We introduce notation. The vectors (ei)
l−1
i=0 in the lemma’s hypothesis, of course, are given meaning

by means of the bit assignment (xi)
l−1
i=0 assembled internally throughout the course of Modest

(
(xi)

l−1
i=0,m

)
.

We suppose for contradiction that, though Modest
(

(xi)
l−1
i=0,m

)
= false, the index i∗ ∈ {0, . . . , l − 1}, say,

is such that |ei∗ \ d| < m holds. We first note that i∗ is necessarily either grey or black. Indeed, if i∗ were
white, then we would deduce the failure of i∗ to fulfill the algorithm’s condition 5 on its last iteration, and,
in particular, the inequalities |xi∗ \ d| ≥ m and |xi∗ \ d| ≥ m. These would contradict our assumption that
|ei∗ \ d| < m. We conclude that i∗ is grey or black, and that ei∗ ⊂ d.

We write i′ ∈ {0, . . . , l − 1} for the last index marked non-white by the algorithm. Since ei∗ ⊂ d,
d = ei∗ ∩d. We conclude that ei′ ∩d = ei′ ∩ei∗ ∩d ⊂ ei∗ ∩d, so that ei′ \d ⊂ ei∗ \d. Using our hypothesis
whereby |ei∗ \ d| < m, we see finally that |ei′ \ d| < m. This implies that the escape condition 9 was fulfilled

just after ei′ was marked non-white, contradicting our assumption that Modest
(

(xi)
l−1
i=0,m

)
= false.

Informally, Lemma 3.4 states that the only way for d to reach within distance m of some vector ei∗ , in
Definition 3.3, is for both |xi∗ \ d| < m and |xi∗ \ d| < m to become true simultaneously. In particular,
it can’t happen that the vector d, upon being made to include the contents of some vector ei′ for which
|ei′ \ d| < m and yet |ei′ \ d| ≥ m, simultaneously comes to fulfill the inequality |ei∗ \ d| < m.

Were Lemma 3.4 unproven, or even false, we could apparently compensate, at least for the purposes of
our proof below, by appending to the routine of Definition 3.3 an artificial “check”, which—before returning

false—tested the inequalities |ei \ d|
?
< m for each i ∈ {0, . . . , l − 1} (returning true upon detecting a

fulfillment). This “remedy”, of course, would leave unanswered whether this check was effectual (i.e., whether
it was actually capable of inducing the algorithm to return true).
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The following two lemmas are, as it turns out, not necessary to establish the proof of our main result.
Nonetheless, they establish the “well-behavedness” of Definition 3.3.

Lemma 3.5. For each input matrix (xi)
l′−1
i=0 and each m ∈ {1, . . . , κ}, the boolean return value of

Modest
(

(xi)
l−1
i=0,m

)
, and, if Modest

(
(xi)

l−1
i=0,m

)
?
= false, the vector d ⊂ {0, . . . , κ−1} assembled through-

out the course of the routine, depend only on the input rows (xi)
l−1
i=0, and not on the ordering of these rows.

Proof. We first argue that the boolean return value of Modest
(

(xi)
l−1
i=0,m

)
is independent of the ordering

of the input rows (xi)
l−1
i=0. We suppose that m ∈ {1, . . . , κ} is such that Modest

(
(xi)

l−1
i=0,m

)
= true, and

that, for some permutation (x′i)
l−1
i=0 of (xi)

l−1
i=0, Modest

(
(x′i)

l−1
i=0,m

)
= false. We write (xi)

l−1
i=0 and d for the

internal values ultimately assembled during Modest
(

(xi)
l−1
i=0,m

)
, and (x′i)

l−1
i=0 and d′ for the corresponding

values assembled during Modest
(

(x′i)
l−1
i=0,m

)
. Throughout, we give meaning to the symbols (ei)

l−1
i=0 by

means of the ordering (xi)
l−1
i=0 and the bit assignment (xi)

l−1
i=0; we moreover write (c′i)

l−1
i=0 for the colors

respectively assigned to the vectors (xi)
l−1
i=0 during Modest

(
(x′i)

l−1
i=0,m

)
. Finally, we write (i0, . . . , ir−1) for

the ordered sequence of indices i ∈ {0, . . . , l − 1} marked black during the course of Modest
(

(xi)
l−1
i=0,m

)
,

and ∅ = di0 ⊂ · · · ⊂ dir−1 for the sequence of values taken by d immediately before the respective updates
d ∪= eij , for j ∈ {0, . . . , r − 1}.

Since Modest
(

(x′i)
l−1
i=0,m

)
= false, Lemma 3.4 applies to that execution. Applying that lemma, we see

that, if x′ir−1
6= xir−1 , then

∣∣eir−1 \ d′
∣∣ ≥ m; on the other hand, if x′ir−1

= xir−1 , then
∣∣eir−1 \ d′

∣∣ ≥ m.
If d ⊂ d′ held, then these two possibilities would, respectively, contradict the inequalities eir−1 ⊂ d and∣∣eir−1

\ d
∣∣ < m, themselves immediate consequences of our assumption whereby Modest

(
(xi)

l−1
i=0,m

)
=

true. We thus see that, regardless of x′ir−1
, d 6⊂ d′.

We select an element α0 ∈ d \ d′, and write j0 ∈ {i0, . . . , ir−1} for the index for which the update
d ∪= ej0 first caused the inclusion α0 ∈ d to become true. Immediately before this update was performed,

|ej0 \ dj0 | < m held. On other hand, we claim that |ej0 \ d′| ≥ m. If c′j0
?
= white, then this inequality

certainly holds (since, in this case, both |xj0 \ d′| ≥ m and |xj0 \ d′| ≥ m hold). Assuming that c′j0 6= white,

the equality x′j0
?
= xj0 would imply that ej0 ⊂ d′, contradicting α0 6∈ d′. We conclude that x′j0 6= xj0 . In

this setting, Lemma 3.4 implies that |ej0 \ d′| ≥ m, as desired. Since |ej0 \ dj0 | < m and |ej0 \ d′| ≥ m both
hold, we conclude that dj0 6⊂ d′.

We iteratively repeat this process as follows. We select, as before, an element α1 ∈ dj0 \ d′, and write
j1 ∈ {i0, . . . , ir−1} for the index for which the update d ∪= ej1 first caused α1 ∈ d to become true. We note
that j1 < j0, since, by definition of dj0 , α1 ∈ d held before the update d ∪= ej0 was applied. As above, we

see that, if c′j1
?
= white, then |ej1 \ d′| ≥ m necessarily holds; otherwise, since x′j1

?
= xj1 would contradict

α1 6∈ d′, we conclude that x′j1 6= xj1 , and that, again by Lemma 3.4, |ej1 \ d′| ≥ m holds in any case. This
conclusion, in light of the inequality |ej1 \ dj1 | < m, implies that dj1 6⊂ d′.

Iteratively proceeding in this way, we obtain a descending sequence of indices j0 > · · · > js−1, say, which
must eventually terminate, so that js−1 = i0. Since di0 = ∅, we conclude that ∅ 6⊂ d′, an absurdity. It

follows that Modest
(

(xi)
l−1
i=0,m

)
= false.

In fact, the second half of the proof just given shows that the assumptions Modest
(

(x′i)
l−1
i=0,m

)
=

false and d 6⊂ d′ alone suffice to derive a contradiction. Applying that argument symmetrically to

Modest
(

(xi)
l−1
i=0,m

)
, we conclude that d = d′. This completes the proof.

Remark 3.6. The bit assignment (xi)
l−1
i=0 ultimately constructed during Modest

(
(xi)

l−1
i=0,m

)
can ac-

tually vary as the ordering of the rows (xi)
l−1
i=0 varies, even when Modest

(
(xi)

l−1
i=0,m

)
= false. If

Modest
(

(xi)
l−1
i=0,m

)
= true, then neither d nor (xi)

l−1
i=0 are independent of the ordering of the rows (xi)

l−1
i=0.
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Lemma 3.7. For each input matrix (xi)
l′−1
i=0 , the function Modest

(
(xi)

l−1
i=0,m

)
is monotone on its domain

{1, . . . , κ}; that is, for each pair of arguments m ≤ m′, Modest
(

(xi)
l−1
i=0,m

)
=⇒ Modest

(
(xi)

l−1
i=0,m

′
)

.

Proof. Exploiting Lemma 3.5, we obtain a simple proof. Indeed, before running Modest
(

(xi)
l−1
i=0,m

′
)

, we

may freely assume that the rows (xi)
l−1
i=0 are sorted in precisely the order in which they are marked non-white

during the execution of Modest
(

(xi)
l−1
i=0,m

)
(with white rows deferred). Since the condition 5 only becomes

weaker when m is replaced by m′, we see that the same rows marked non-white during Modest
(

(xi)
l−1
i=0,m

)
will likewise be marked non-white during Modest

(
(xi)

l−1
i=0,m

′
)

, and in the same order. Finally, the condition

9 too becomes weaker, and will be fulfilled if it was fulfilled during Modest
(

(xi)
l−1
i=0,m

)
.

Remark 3.8. It is interesting that the easiest proof of Lemma 3.7 seems to be that—just given—which
proceeds via the aid of the more-complicated Lemma 3.5. Though a direct proof would be interesting, and is
probably possible, we have restricted ourselves, for the sake of brevity, to the approach already taken above.

We now define our simulator. Given a real-world adversary A corrupting the receiver R, S operates as
follows.

1. S simulates the existence of Fκ,l
′

COTe, including S’s role. S begins by sampling ∆← Fκ2 , as S would.

2. Upon intercepting A’s message
(
input, (xi)

l′−1
i=0 , (ti)

l′−1
i=0

)
intended for Fκ,l

′

COTe, S sets qi := ti + xi ∗∆

for each i ∈ {0, . . . , l′ − 1}. Running Definition 3.3, S extracts the assignment (xi)
l−1
i=0 constructed

during the course of Modest
(

(xi)
l−1
i=0,m

)
, where m ∈ {1, . . . , κ} is the modesty of (xi)

l−1
i=0. S sets

vi,xi := H(i ‖ qi + xi ·∆) for each i ∈ {0, . . . , l − 1}. S submits
(
input, (xi)

l−1
i=0, (vi,xi)

l−1
i=0

)
to Fκ,lROT.

3. S receives
(
output, (vi,xi)

l−1
i=0

)
from Fκ,lROT, and simulates Fκ,l

′

COTe returning
(
output, (ti)

l′−1
i=0

)
to A.

4. For each i ∈ {0, . . . , l′ − 1}, S intercepts A’s message (random, i) intended for FκRand, samples χi ← Fκ2
randomly, and simulates FκRand sending A (rand, i, χi). Upon receiving x and t from A, S independently

computes q :=
∑l′−1
i=0 χi · qi, and runs the correlation check q

?
= t+ x ·∆. If the check fails, S submits

(abort) to Fκ,lROT; otherwise, S proceeds, and Fκ,lROT releases the output to the ideal honest party S.

We now claim that the resulting real and ideal distributions are computationally indistinguishable. More pre-
cisely, these distributions are statistically indistinguishable to any computationally unbounded distinguisher
which makes only polynomially many queries to the random oracle. We fix a distinguisher D attacking these
distributions.

Following [KOS15], for each i ∈ {0, . . . , l− 1}, we write ei := xi + xi · (1, . . . , 1), where xi is as extracted
by S above. We observe that the strings qi+xi ·∆ and qi+xi ·∆ respectively equal ti+ei∗∆ and ti+ei∗∆;
the values ti and ei are known to the distinguisher, while ∆ is not. If the correlation check fails, then the
real and ideal distributions are identical. If the correlation check succeeds, the simulation is perfect except
for the fact that, for each i ∈ {0, . . . , l − 1}, in the real world, the relation vi,xi = H(i ‖ ti + ei ∗∆) holds,
whereas, in the ideal world, vi,xi is independently random.

For notational purposes, given x ∈ F2κ , we introduce the map Fx : Fκ2 → Fκ2 defined by:

Fx : ∆ 7→
l′−1∑
i=0

χi · (ti + xi ∗∆) + x ·∆ + t.

We note, in light of the equalities qi = ti + xi ∗∆, that this map exactly reflects the correlation check run

by the sender on its (secret) correlation vector ∆ (i.e., the check passes if and only if Fx(∆)
?
= 0, where x

is as is sent by A). We view all quantities above as fixed constants—known to the distinguisher—except for
the unknown vector ∆.
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Clearly, Fx : Fκ2 → Fκ2 is an F2-affine linear map. We argue that we may assume once and for all that A
submits an “honest” value t =

∑l′−1
i=0 χi · ti. Indeed, our below arguments depend only on the dimension of

the affine subspace {∆ ∈ Fκ2 | Fx(∆) = 0}, and not on its contents; A’s use of a value t 6=
∑l′−1
i=0 χi · ti has

merely the effect of replacing this subspace either with an affine-linear subspace of Fκ2 of identical dimension

or with the empty affine subspace (i.e., depending on whether t +
∑l′−1
i=0 χi · ti resides within the image of

∆ 7→
∑l′−1
i=0 χi · (xi ∗∆) + x ·∆ or not). If the subspace is empty, then the correlation check is guaranteed

to fail, and the simulation becomes trivially secure. We thus introduce a simplified variant of Fx, in which
the affine constants are dropped:

F ′x : ∆ 7→
l′−1∑
i=0

χi · (xi ∗∆) + x ·∆.

In particular, we refer to rank(F ′x) and ker(F ′x) throughout. We treat only F ′x throughout the remainder of
the proof.

We denote by r the minimal rank achieved across all maps {F ′x}x∈F2κ
, so that:

r := min
x∈F2κ

rank(F ′x). (1)

In what follows, we view r as a random variable, a function of the randomly sampled coefficients (χi)
l′−1
i=0 .

We now pause to sketch the details of our proof. We consider the protocol in steps, corresponding, re-

spectively, to A’s choice of (xi)
l′−1
i=0 (and hence of modesty), to the random sampling of (χi)

l′−1
i=0 (which causes

the minimal rank r to be defined), to whether A passes the correlation check, and, finally, to whether the
distinguisher succeeds. The resulting structure is depicted in the figure below, which should be understood
as a probability tree, in which each edge represents a conditional probability.

A sends (xi)
l′−1
i=0 ; modesty m is fixed.

(χi)
l′−1
i=0 gets sampled; r is determined.

A passes or fails the correlation check.

D succeeds or fails to distinguish.

1 . . .

fails

fails to distinguish distinguishes

passes

low min-rank r < r∗

fails passes

high min-rank r ≥ r∗

m . . . κ

Figure 1: A depiction of the case structure considered by our proof.

We analyze an instance of the above tree for each execution (i.e., for each modesty m). We may immedi-
ately ignore those executions in which A fails the correlation check, since the real and ideal distributions are
identical in each such execution. Beyond this, we set a rank cutoff r∗. If we choose for our cutoff r∗ = r∗(κ)
a superlogarithmic function of κ, then we may likewise ignore the subtree in which r ≥ r∗ and A passes the
correlation check, since A’s chance of passing the correlation check is 2−rank(F ′x), which—in light of our choice
of r∗—is negligible whenever r ≥ r∗, since rank(F ′x) ≥ r. (We discuss our specific choice of r∗ below.) We
are thus left with one relevant path through the tree. Our proof hinges on analyzing the two edges bolded
in the diagram above. Roughly, we show that as A’s matrix’s modesty varies, either the lowermost bolded
edge or the uppermost bolded edge (or both) must be negligible in κ (these cases happen when A’s matrix
is and isn’t modest, respectively). This suffices to demonstrate the result.
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We first study the probability that the minimal rank r of (1) is low. Instead of precisely describing
the distribution of r as a random variable, we instead fix a cutoff r∗ ∈ {1, . . . , κ}, and upper-bound the
probability that r < r∗. Our main result is as follows.

Proposition 3.9. For each arbitrary rank cutoff r∗ ∈ {1, . . . , κ}, and each initial matrix (xi)
l′−1
i=0 , of modesty

m ∈ {1, . . . , κ}, say, the probability—over the choice of (χi)
l′−1
i=0 —that r < r∗ is at most 2κ·(r

∗+1)−κ·κ−r
∗+1
m .

Proof. We begin by further simplifying F ′x in certain ways. We first note that adding some fixed constant
x∗ ∈ Fq to each index x in the expression (1) above merely permutes the resulting elements {F ′x}x∈F2κ

, and

has no effect on r. We run the procedure Modest(m+ 1) on the matrix (xi)
l−1
i=0, and write (x′i)

l−1
i=0 for the

resulting vector of assignments; we moreover assign the further components (x′i)
l′−1
i=l arbitrarily. We write

(e′i)
l′−1
i=0 for the list of vectors e′i := xi +x′i · (1, . . . , 1), for i ∈ {0, . . . , l′− 1}. After adding x∗ :=

∑l′−1
i=0 x′i ·χi

to each x in (1), we may freely replace each xi with e′i in F ′x’s definition. We thus rewrite F ′x as follows:

F ′′x : ∆ 7→
l′−1∑
i=0

χi · (e′i ∗∆) + x ·∆.

We finally argue that the random variable r of (1)—viewed, again, as a function of the random coefficients

(χi)
l′−1
i=0 —remains identical if we replace the matrix (e′i)

l′−1
i=0 with its reduced row-echelon form over F2.

Indeed, each map F ′′x may be decomposed into the F2-linear map ∆ 7→ (e′i ∗∆)
l′−1
i=0 from Fκ2 → Fl′2κ , on the

one hand, followed by the application of the random F2κ -hyperplane given by (χi)
l′−1
i=0 , on the other (and

finally by the addition of x ·∆). Row-reducing (e′i)
l′−1
i=0 amounts to interposing between these first two maps

a further l′ × l′ invertible matrix over F2κ . Up to a fresh uniform resampling of the hyperplane coefficients

(χi)
l′−1
i=0 , this matrix multiplication has no effect.

Lemma 3.10. The reduced row-echelon form of the binary matrix (e′i)
l′−1
i=0 has at least κ

m − 1 pivots.

Proof. As each matrix’s number of pivots depends only on its rank, it suffices to prove the lemma after

arbitrarily permuting (e′i)
l′−1
i=0 ’s rows and columns. We thus freely sort the rows (e′i)

l′−1
i=0 in the order in

which they are marked black by the procedure Modest(m+ 1) (deferring all white and grey rows, as well as
rows indexed i ∈ {l, . . . , l′ − 1}). Moreover, we apply the following modification to the Gaussian elimination
algorithm. By construction, each row marked black introduces a 1 to some column which thus far has
lacked one. Upon each such row’s treatment by the algorithm, after possibly transposing the column being
considered for a pivot with some column strictly to its right, we may assume that this 1 resides precisely
at the column being considered for a pivot, and thus becomes a pivot. This transposition preserves the
invariant whereby each further black row introduces a 1 at some new column. (Indeed, each row which
admits some cell containing the highest 1 in its column will continue to do so, even after this transposition,
albeit possibly at a new column-index.) Likewise, using the new pivot row to clear the pivot column also
preserves this invariant. (Indeed, for each black row strictly beneath the one being treated, which, by the
invariant, necessarily features some cell containing its column’s highest 1, the clearing process will have no
effect on that particular column, since the row containing the newly minted pivot necessarily features a 0 at
that column.) We thus conclude that there are at least as many pivots as there are black rows.

Finally, we note that Modest(m+1) must mark at least κ−m
m = κ

m −1 rows black. Indeed, by our choice
of m, Modest(m + 1) = true, so that the vector d′ (say) assembled during the course of Modest(m + 1)

simultaneously satisfies e′i∗ ⊂ d′ and
∣∣∣e′i∗ \ d′

∣∣∣ ≤ m, where i∗ ∈ {0, . . . , l−1}, say, is the last row marked grey

or black by the algorithm (for which the condition 9 was fulfilled necessarily fulfilled). The first inclusion
directly implies that d′ ⊂ e′i∗ \d′; applying the second inequality, we see that

∣∣d′∣∣ ≤ m, so that |d′| ≥ κ−m.
Since each index i ∈ {0, . . . , l − 1} marked black within Modest(m + 1) can only increase |d′| by at most
m, we conclude the result.

In light of the above, we freely assume throughout what follows that (e′i)
l′−1
i=0 is in fact row-reduced. We

moreover write κ̂ for the number of pivots in this matrix.
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We continue our study of the maps F ′′x . We note that each such map can be written using the following
matrix expression:

F ′′x : ∆ 7→

 . . .χ0

 + · · ·+ . . .χl′−1

 + . . .x

 
 · ∆

 ,
where the field elements x and (χi)

l′−1
i=0 are viewed as F2-linear operators on Fκ2 , and hence represented as

κ× κ F2-matrices, and the shaded boxes indicate that certain columns have been “struck out”. Indeed, we

keep or strike columns of the matrices of (χi)
l′−1
i=0 according to the (row-reduced) data (e′i)

l′−1
i=0 ; specifically,

if e′i,j = 1, we keep the jth column of χi’s matrix intact, and otherwise replace it with a column of 0s.

In light of our assumption that (e′i)
l′−1
i=0 is row-reduced, we see that each pivot in the matrix (e′i)

l′−1
i=0 adds

an independent random column to the matrix expression above (i.e., to its left-hand sum, excluding x). We
argue that we may, conservatively, consider the pivot columns alone in our study of (1). Indeed, replacing
each non-pivot column with a column of 0s—in all matrices within the expression above, including that of
x—can only decrease the rank of F ′′x ; we shall lower-bound this rank regardless.

We’re thus left to consider the following modified expression for F ′′x :

F ′′′x : ∆ 7→

 . . .X

 + . . .x

 
 · ∆

 ,
where the first matrix, say X, contains κ̂ independently random columns, with its further columns identically
0, and where the second matrix is merely the field-multiplication matrix of x, with the same set of κ̂ columns
kept and the rest struck out. We emphasize that, necessarily, rank(F ′′′x ) ≤ rank(F ′′x ).

We now consider the probability, over the uniformly random submatrix X, that minx∈F2κ
rank(F ′′′x ) < r∗.

We make use of a counting argument in Fκ×κ2 ; more precisely, the argument takes place in Fκ×κ̂2 . Slightly
abusing notation, we identify field elements x ∈ F2κ with (appropriately stricken) matrices in Fκ×κ̂2 . We
note that there are exactly 2κ distinct field elements x ∈ F2κ , and hence at most 2κ distinct corresponding
matrices. On the other hand, for each matrix X ∈ Fκ×κ̂2 for which, for some x ∈ F2κ , rank(X + x) < r∗

holds, we necessarily have that X + x = Y , where Y ∈ Fκ×κ̂2 is of rank less than r∗. We undertake to count
such matrices Y .

Lemma 3.11. For each rank r∗ ∈ {1, . . . , κ}, at most 2(κ+κ̂)·(r∗−1) matrices Y ∈ Fκ×κ̂2 satisfy rank(Y ) < r∗.

Proof. Each matrix Y ∈ Fκ×κ̂2 of rank less than r∗ can be written (possibly non-uniquely) as the product of
a κ× (r∗ − 1) matrix and an (r∗ − 1)× κ̂ matrix.

The set of matrices X ∈ Fκ×κ̂2 for which minx∈F2κ
rank(X + x) < r∗ is exactly the union, over all

field elements x ∈ F2κ , of the sets {x+ Y | rank(Y ) < r∗} ⊂ Fκ×κ̂2 . In light of Lemma 3.11, we conclude
that the cardinality of this union is at most 2κ · 2(κ+κ̂)·(r∗−1) = 2(κ+κ̂)·(r∗−1)+κ. Finally, the total num-

ber of κ × κ̂ matrices X is obviously 2κ·κ̂. The probability, over the random coefficients (χi)
l′−1
i=0 , that

minx∈F2κ
rank(F ′′′x ) < r∗ is thus at most 2(κ+κ̂)·(r∗−1)+κ−κ·κ̂. As this quantity, for each fixed κ and r∗, is

decreasing in κ̂ (since r∗ ≤ κ), and as Lemma 3.10 implies that κ̂ ≥ κ
m − 1, we conclude that the probability

in question is at most

2(κ+ κ
m−1)·(r∗−1)+κ−κ·( κm−1) = 2κ·(r

∗−1)−κ·κ−r
∗+1
m −(r∗−1)+2·κ ≤ 2κ·(r

∗+1)−κ·κ−r
∗+1
m .

This completes the proof of the proposition.

We now consider the distinguisher’s distinguishing probability. We recall that the real and ideal dis-
tributions are identical unless A passes the correlation check and D queries H(i ‖ ti + ei ∗ ∆), for some
i ∈ {0, . . . , l − 1}. On the other hand—if A passes the correlation check—D may learn information

about ∆ by means of brute-force queries of the form vi,xi
?
= H(i ‖ ti + r), where i ∈ {0, . . . , l − 1} and

r ∈ {ei ∗∆ |∆ ∈ ker(F ′x)}. Specifically, upon each such query, D may rule in or out (i.e., depending on
whether equality holds) the candidate r for the value of the projection ei ∗∆. The proposition below argues
that D, with high probability, gains no information about the bits of ∆ outside of d, throughout its queries.
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Proposition 3.12. For each computationally unbounded distinguisher D, which makes at most Q(κ) queries
to the random oracle, say, and each modesty m ∈ {1, . . . , κ} and rank cutoff r∗ ∈ {1, . . . , κ}, we have

that
∣∣∣Pr
[
D
(
RealΠκ,lROT,A,R

(κ)
)

= 1
]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣ ≤ Q(κ) · 2−m, where we condition both

distributions on A’s matrix having modesty m and on the rank relation r < r∗.

Proof. We write d for the vector constructed during the course of Modest
(

(xi)
l−1
i=0,m

)
, and w := d ∗∆ for

the projection of the sender’s secret choice vector ∆ onto d. It suffices to prove the result after giving D w,
since this information can only make D more effective.

We write Y := {∆ ∈ Fκ2 | d ∗∆ = w ∧∆ ∈ ker(F ′x)} for the intersection in Fκ2 between ker(F ′x) and the∣∣d∣∣-dimensional affine-linear subspace {∆ ∈ Fκ2 | d ∗∆ = w}. Clearly, D’s view of ∆ begins as precisely

uniform over Y . We note that dim(Y ) ≥
∣∣d∣∣− rank(F ′x); this fact follows from a straightforward dimension-

count. For each vector f ∈ Fκ2 , we write Yf := {f ∗∆ |∆ ∈ Y } for the projection of Y onto f . Slightly
abusing notation, we moreover write f : Y → Yf for the natural projection map. For each f , as the image
point r ∈ Yf varies, the fibers f−1(r) ⊂ Y partition Y into equally-sized, parallel affine subspaces.

For f ∈ Fκ2 again arbitrary, the rank–nullity theorem entails that dim(Y ) − dim
(
f−1(r)

)
= dim(Yf ) for

each r ∈ Yf . We note that each f−1(r) ⊂ Y is the intersection in Fκ2 between ker(F ′x) and affine subspace
{∆ ∈ Fκ2 | d ∗∆ = w ∧ f ∗∆ = r}, and so is of dimension at most that of this latter space, which is clearly∣∣d ∪ f

∣∣ =
∣∣d ∩ f

∣∣. Using these facts, we obtain the following estimate for dim(Yf ), valid for each r ∈ Yf :

dim(Yf ) = dim(Y )− dim
(
f−1(r)

)
≥
∣∣d∣∣− ∣∣d ∩ f

∣∣− rank(F ′x) = |f \ d| − rank(F ′x).

For each i ∈ {0, . . . , l − 1}, there are three cases of interest: f = ei, where ei ⊂ d, f = ei, where ei 6⊂ d,
and f = ei. In the first case, the projection Yf consists of the single point r = ei ∗w, and the fiber e−1

i (r)

consists of the entirety of Y . Moreover, the equality vi,xi
?
= H(i ‖ ti + r) is guaranteed to hold precisely

when r = ei ∗w, which D already knows. We thus ignore this case. We note that each ei 6⊂ d is necessarily
white, and so satisfies |ei \ d| ≥ m. Similarly, Lemma 3.4 implies that each ei satisfies |ei \ d| ≥ m. We thus
conclude that, in the second and third cases, |f \ d| ≥ m, so that dim(Yf ) ≥ m− rank(F ′x).

Definition 3.13. If, for some i ∈ {0, . . . , l − 1}, and for a vector f satisfying f 6⊂ d and equal either to ei
or to ei, D submits the query H(i ‖ ti + r), where r ∈ Yf , then we say D has checked the fiber f−1(r) ⊂ Y .

By the calculation given above, each fiber f−1(r) ⊂ Y as in Definition 3.13 is of codimension at least
m − rank(F ′x) in Y , and so covers a proportion consisting of at most 2rank(F ′x)−m among Y ’s points. We
thus conclude that D can check, in total, a proportion consisting of at most Q(κ) · 2rank(F ′x)−m among Y ’s
points. On the other hand, if D never checks a fiber containing ∆, then D’s view is identical in the real and
ideal worlds. Indeed, these distributions differ only if ∆ ∈ ei

−1(r) holds for some fiber ei
−1(r) checked by

D (equivalently, if D queries H(i ‖ ti + ei ∗∆)). Moreover, D can learn information about ∆—beyond the
string w it already received—only if ∆ ∈ e−1

i (r) holds for some fiber e−1
i (r) checked by D (i.e., if D queries

H(i ‖ ti + ei ∗∆)). If neither of these events happen, then D’s view is completely independent of d ∗∆, and
of whether it’s in the real or ideal world.

Finally, A’s chance of passing the correlation check is exactly 2−rank(F ′x). The probability with which D’s
environment differs in the two worlds is thus at most 2−rank(F ′x) ·Q(κ) · 2rank(F ′x)−m = Q(κ) · 2−m.

We are now in a position to prove the theorem. We set r∗ :=
√
κ for the rest of the proof. Traversing the

tree of Figure 1, and invoking Propositions 3.9 and 3.12, we see that for each distinguisher D as above and

each modestym ∈ {1, . . . , κ}, the difference
∣∣∣Pr
[
D
(
RealΠκ,lROT,A,R

(κ)
)

= 1
]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣—

where, here, we condition the two distributions only on the modesty m—is at most:

min
(

1, 2κ·(r
∗+1)−κ·κ−r

∗+1
m

)
·min

(
1, Q(κ) · 2−m

)
+ 2−r

∗
. (2)

We handle two cases, corresponding to whether m < 1
2 ·
√
κ or not. If m < 1

2 ·
√
κ, then the first factor of (2)’s

exponent is at most κ
3/2+κ− κ2−κ3/2+κ

m < κ
3/2+κ−2·κ3/2+2·κ−2·

√
κ ∈ −Ω(κ

3/2), so this factor is negligible,
and the result holds. If m ≥ 1

2 ·
√
κ, then the second factor’s exponent is at most − 1

2 ·
√
κ ∈ −Ω(

√
κ),

so this factor instead is negligible (provided that Q(κ) is polynomial). The final summand’s exponent is
−
√
κ ∈ −Ω(

√
κ), so this term is negligible. This completes the proof of the theorem.
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We now extract effective bounds from our proof. Our proof can be made to yield concrete values κ at
which KOS achieves prescribed security guarantees.

Theorem 3.14. For given computational and statistical security parameters λ and s, respectively, in order

for it to be the case that
∣∣∣Pr
[
D
(
RealΠκ,lROT,A,R

(κ)
)

= 1
]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣ ≤ 2−s holds for each

distinguisher D making at most 2λ hash evaluations, it suffices that κ ≥ s2 + s · λ+ 4 · s+ 2 · λ+ 2.

Proof. We set r∗ := s+ 1 once and for all, and assume Q(κ) = 2λ. We describe a selection procedure for κ
which bounds (2) from above by 2−s (i.e., for each m ∈ {1, . . . , κ}).

Indeed, we set κ so that κ·(r∗+1)−κ· κ−r
∗+1

λ+r∗ ≤ 0 holds. As a simple algebraic manipulation demonstrates,

this inequality occurs precisely when κ ≥ r∗2 + r∗ · λ+ 2 · r∗ + λ− 1; substituting r∗ = s+ 1, we obtain the
expression κ ≥ s2 + s · λ + 4 · s + 2 · λ + 2. For each fixed κ, λ, and r∗, we view the exponent expressions
κ · (r∗ + 1)− κ · κ−r

∗+1
m and λ−m of (2) as functions of the rational variable m ∈ (0, κ]; we note that these

functions are increasing and decreasing, respectively, over the interval m ∈ (0, κ]. For κ chosen as above, we
write m∗ ∈ (0, κ] for the (generally non-integral) intersection point for which κ · (r∗ + 1) − κ · κ−r

∗+1
m∗ = 0.

By the above, and by our choice of κ, we necessarily have that m∗ ≥ λ + r∗, so that λ −m∗ ≤ −r∗. We
conclude that (2) is bounded from above by 2−r

∗
+ 2−r

∗
= 2−s at the point m∗ ∈ Q. It thus suffices to

show that—for λ and r∗ fixed, and for κ as selected above—the rational modesty m∗ chosen above in fact
maximizes (2).

Since (by choice of m∗) κ · (r∗+ 1)− κ · κ−r
∗+1
m ≥ 0 whenever m ≥ m∗, and because λ−m is decreasing,

we conclude that that (2) is decreasing over the interval [m∗, κ]. It thus suffices to show that the sum of the
two exponent expressions is itself increasing over the interval (0,m∗].

To this end, we show that the upward slope of κ · (r∗+1)−κ · κ−r
∗+1
m is steeper than the downward slope

of λ−m throughout the interval (0,m∗]. The derivative in m of the former expression is κ·(κ−r∗+1)
m2 , which

is at least κ·(κ−r∗+1)
m∗2 whenever m ≤ m∗. Since m∗ = κ−r∗+1

r∗+1 , this derivative is thus at least κ·(r∗+1)2

κ−r∗+1 ≥
(r∗ + 1)2 ≥ 1, as desired. This completes the proof.

Remark 3.15. Theorem 3.14 can be viewed as a precise variant of the final argument of Theorem 3.1, in
which s and λ are prescribed, and where we moreover select the modesty cutoff optimally (i.e., in such a
way as to make (2) decay as quickly as possible). Indeed, for κ chosen as in Theorem 3.14, the optimal

cutoff—and the most effective attack strategy for the adversary—appears at the modesty dm∗e =
⌈
κ−r∗+1
r∗+1

⌉
.

Example 3.16. For s := 30, and λ := 60, Theorem 3.14 guarantees security as long as κ ≥ 2,942.

Example 3.17. For s := 40 and λ := 80, Theorem 3.14 guarantees security as long as κ ≥ 5,122.

Example 3.18. For s := 80 and λ := 128, Theorem 3.14 guarantees security as long as κ ≥ 17,218.

Theorem 3.14 yields parameter sizes which are barely practicable, if at all. It is, of course, possible that
our proof could be strengthened (or another proof found), so as to yield stronger bounds, and security under
more reasonable parameter sizes. On the other hand, an improvement to our result seems out of reach,
barring strikingly new techniques. We explain this as follows.

Corollary 3.19. For κ sufficiently large, for each distinguisher D making at most 1
2 ·
√
κ · 2 1

2 ·
√
κ hash eval-

uations, the probability of success
∣∣∣Pr
[
D
(
RealΠκ,lROT,A,R

(κ)
)

= 1
]
− Pr

[
D
(
IdealFκ,lROT,S,R

(κ)
)

= 1
]∣∣∣ ≤ 2−

1
2 ·
√
κ.

Proof. For arbitrary κ, we set s := 1
2 ·
√
κ and λ := 1

2 ·
√
κ+ 1

2 · log(κ)−1. We observe that for s and λ chosen
this way—at least if κ ≥ 93—we have κ ≥ s2 + s · λ+ 4 · s+ 2 · λ+ 2. Theorem 3.14 thus implies that any
attack using at most 2λ = 1

2 ·
√
κ · 2 1

2 ·
√
κ hashes must succeed with probability at most 2−s = 2−

1
2 ·
√
κ.

In other words, there does not exist an attack on KOS which uses only 1
2 ·
√
κ · 2 1

2 ·
√
κ hash evaluations

and succeeds with probability greater than 2−
1
2 ·
√
κ.

Remark 3.20. In Corollary 3.19, the constant of 1
2 present in both exponents can be improved to 1√

2
−ε—for

ε arbitrarily small—at the cost of increasing the implicit cutoff κ at which the corollary becomes effective.
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Roy [Roy22, § 4.1] describes a “subfield attack” on KOS, which requires 2
1
5 ·κ oracle queries and succeeds

with probability 2−
3
5 ·κ. This attack is significantly more costly and unlikely to succeed than those which our

proof rules out; the analysis of KOS thus still contains a gap. (Of course, the attack is nonetheless stronger
than those which KOS’s original proof sought to rule out.) On the other hand, Roy [Roy22, § 4.1] describes
a further attack on a different protocol—namely, “PSS”, for Patra, Sarkar and Suresh [PSS17]—which is
much more devastating; that attack requires 1

2 ·
√
κ · 2

√
κ hash evaluations and succeeds with probability

2−
√
κ. As it turns out, our proof serves equally well—without change—to describe the security of PSS.

Indeed, we use only the property of the field elements (χi)
l′−1
i=0 whereby, for χi ← F2κ sampled randomly,

each individual column of χi’s matrix representation is itself uniformly random in {0, 1}κ. (Of course, the
columns, considered jointly, are not independently random.) This property holds also for PSS, in fact, even
though they construct their matrices differently (with a single random column repeated).

The lower-bound established by our Corollary 3.19, which applies to both KOS and PSS, exactly
matches—up to the constant 1

2 appearing in the expressions’ exponents—the upper-bound achieved by
Roy [Roy22, § 4.1] on PSS. Our proof thus definitively settles the question of PSS’s security (up to the
constant). Moreover, it demonstrates that any better security argument for KOS—if one exists—would have

to rely in some special way on the structure of the field elements (χi)
l′−1
i=0 , and on the nature of their role in

the correlation check. We emphasize that Roy’s attack on PSS is not known to apply to KOS. Rather, the
opposite is true; our defense of KOS applies to PSS. The security of KOS thus resides somewhere between
the lower-bound established by our Theorem 3.14 and the upper-bound achieved by Roy’s subfield attack. In
any case, our result furnishes the only currently-known lower-bound for KOS, and its only proof of security.

We leave the task of exactly settling KOS’s security to future work. In the meantime, we suggest that
an alternative known to be concretely secure—like Roy’s SoftSpokenOT [Roy22]—be used when possible.
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