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Abstract. In this paper, we present an original algorithm to generate session keys and a subsequent generalized 

ElGamal-type cryptosystem. The scheme presented here has been designed to prevent both linear and 

brute force attacks using rectangular matrices and to achieve high complexity. Our algorithm includes 

a new generalized Diffie-Hellmann scheme based on rectangular matrices and polynomial field 

operations. Two variants are presented, the first with a double exchange between the parties and the 

second with a single exchange, thus speeding up the generation of session keys. 
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1. Introduction 

It is well known that generating secure key exchange algorithms is a priority for 

implementing symmetric protocols [16]. The idea of public key cryptography goes back 

to the work of James Ellis [8] and the seminal work of Diffie-Hellman [7] and its variants, 

which were the first practical solutions universally used in SSL, TLS, SSH, IPsec, PKI, 

Signal, etc. On the other hand, the imminent appearance of quantum computers able to 

implement Shor's and Grover's algorithms [2], which seriously affect the currently used 

cryptographic methods, led to the current research efforts in post quantum cryptography 

(PQC). 

 

This paper was inspired by E. Stickels’s proposals [22], which were cryptanalyzed by V. 

Shpilrain [19] and C. Mullan [18]. More recently, S. Kanwal and R. Ali [12] published an 

interesting protocol, but it was also cryptanalyzed by J. Liu et al. [15]. A natural alternative 

was to use rank-deficient matrices, but this has been cryptanalyzed by F. Virdia using 

Jordan canonical forms [24]. More recently, Daniel Brown [4] presented a promising 

attack on our original algorithm which led to this updated version. 
 

It is worthwhile to note that in the NIST competition for standardization of postquantum 

protocols [20], there is none based on the use of noncommutative algebraic systems [19], 

those dedicated to key exchange protocols (KEP) and their canonical asymmetric 



 

 

cryptosystems, derived using a generalized ElGamal scheme. This paper aims to provide 

an alternative solution in this regard. 

 

2. Paper organization 

First, we present an overall description of the proposed algorithms and the corresponding 

protocols, the proof that Alice and Bob will derive a common key, security considerations, 

and finally some experimental results and a discussion. 

 

3. The notation used in this work 

dim: integer (rows of a square matrix), Zp: set of non-negative residuals mod p, products 

in Zp (represented by dots), ⨁: field sum of integers or matrices in F256 , ⊙: field product 

of integers or matrices in F256, X⊙k: field k-power of a X-matrix in F256, ||: concatenation 

Per[A]: the permanent of matrix A,  A(i, j): matrix component of the i-th row and j-th 

column, ∈����: random uniform selection in a closed interval. 

 

4. Overview of the key exchange algorithm 

It is a key exchange algorithm (KEM) that operates on rectangular matrices, mixing 

conventional linear operations with operations on the polynomial ring of matrices. We 

present a two-step and a single-step variation of the KEM:  

 

 

�� 
��
��, ����, ⊕, ⊙ �. The entries of the matrices are elements of the polynomial 

field  F256 / x8+x6+x3+x2+1 [13, 14] , and therefore each one is a byte.  

The algebraic security of the protocol is based on the difficulty of solving a class of the 

generalized Diffie-Hellman problem (GDHP)[16,19], that is on the difficulty of solving 

discrete log problems over matrix powers that use field operations since no classical or 

quantum P-class algorithm is known to solve it [19]. 

 

5. Diagram of each cycle of the two-pass key exchange algorithm 

ALICE BOB 

Setup F256 / x8+x6+x3+x2+1 / <x+1> operations 

dim  ∈������ ℤ  ;  cols=dim;   rows < cols;  dim� 16; h � 64 

A1 (rows x cols) ∈������ ℤ
��  

B1 (cols x rows) ∈������ ℤ
�� 

Pa = A1 . B1 (mod 256) 

                                  Pb    

A2 (rows x cols) ∈������ ℤ
��  

B2 (cols x rows) ∈������ ℤ
�� 

       Pa 

       Pb = A2 .  B2 (mod 256) 

core = Pa ⨀ Pb 

expoA  ∈������ [2h-1, 2h] 

              U =  !"#⨀$%&�'  

                                     V   

core = Pa ⨀ Pb 

expoB  ∈������ [2h-1, 2h] 

       U 

       V =  !"#⨀$%&�(   

  

Ka =  )⨀$%&�' 

compact Ka = Per [Ka]   (mod 2h) 

Kb =  *⨀$%&�( 

compact Kb= Per[Kb]   (mod 2h) 
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6. Diagram of each cycle of the single-pass key exchange algorithm 

     KEM preparation (off-line) 

ALICE CLOUD BOB 

F256 / x8+x6+x3+x2+1 / <x+1> operations 

dim  ∈������ ℤ  ;  cols=dim;   rows < cols;  dim� 16; h � 64 

A1 (rows x cols) ∈������ ℤ
��  

B1 (cols x rows) ∈������ ℤ
�� 

Pa = A1 . B1 (mod 256) 

 

 

 

public Px storage 

A2 (rows x cols) ∈������ ℤ
��  

B2 (cols x rows) ∈������ ℤ
�� 

Pb = A2 . B2 (mod 256) 

 

fast single-step KEM protocol (on-line) 

ALICE CLOUD BOB 

setup 

                    Pb 

core = Pa ⨀ Pb 

 

 

 

 

public Px storage 

setup 

                Pa 

core = Pa ⨀ Pb 

  

expoA  ∈������ [2h-1, 2h] 

U =  !"#⨀$%&�' 

V 

expoB  ∈������ [2h-1, 2h] 

U 

V =  !"#⨀$%&�( 

Ka =  )⨀$%&�' 

compact Ka = Per [Ka]   (mod 2h) 

Kb =  *⨀$%&�( 

compact Kb= Per[Kb]   (mod 2h) 

 

7. Diagram of the coupled El Gamal cipher algorithm (for both procedures) 

     coupled cipher algorithm  

ALICE BOB 

Setup F256 / x8+x6+x3+x2+1 / <x+1> operations 

H(): SHA3-512; h � 64 

 

 

 

                 (C, D)    

msg =”any secret here” (padded to 512-bits) 

C = V =  !"#⨀$%&�(   

D = H(compact Kb) ⊕  msg 

(C,D) 

 Ka = 9⨀$%&�' 

compact Ka = Per [Ka]   (mod 2h) 

msg = D  ⊕  H(compact Ka) 

 

 

8. Key exchange algorithm 

ALGORITHM 1: PQC multiKEP (two-step protocol) 

COMMENTS 

The key exchange algorithm (KEP) uses several internal cycles as defined 

below and is therefore defined here as a multiKEP. INPUT: see the initial 

configuration. OUTPUT: shared session key of 512 bits. 

INITIAL CONFIGURATION (PUBLIC VALUES): 

dim: integer (proposed � 16� 



 

 

rows[X|, columns[X]: dimensions of the matrices X:{A, B}, where 

rowsA=columnsB=dim, columnsA=rowsB and rowsA > columnsA. 

h: integer (proposed � 64� 

t: number of iterations (proposed � 10� 

H( ): hashing SHA3-512. 

 

ALICE 

1. for k=1 to t 

2. for i=1 to rowsA 

3. for j=1 to columnsA 

4.       A1k (i,j)  ∈����  ℤ
�� 

5. next j 

6. next i 

7. for i=1 to rowsB 

8. for j=1 to columnsB 

9.      B1k (i,j)  ∈����  ℤ
�� 

10. next j 

11. next i 

12. Pak = A1k. B1k (mod 256)  

13. next k 

14. Send the vector Pa = (Pa1, …, Pat) to Bob and receive vector Pb 

 

15. for k=1 to t 

16. corek = Pak ⨀ Pbk 

17. expoAk   ∈����  [2h-1, 2h] 

18. Uk =  !"#=
⨀$%&�'= 

19. next k 

20. Send the vector U = (U1, …, Ut) to Bob and receive vector V 

BOB 

21. for k=1 to t 

22.       for i=1 to rowsB 

23.             for j=1 to columnsB 

24.                  A2k (i,j)  ∈����  ℤ
�� 

25.             next j 

26.       next i 

27.       for i=1 to rowsA 

28.             for j=1 to columnsB 

29.                   B2k (i,j)  ∈����  ℤ
�� 

30.             next j 

31.       next i 

32.       Pbk = A2k. B2k (mod 256)  

33. next k 

34. Send the vector Pb = (Pb1, …, Pbt) to Bob and receive vector Pa 
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35. for k=1 to t 

36.        corek = Pak ⨀ Pbk 

37.        expoBk  ∈����  [2h-1, 2h] 

38.        Vk =  !"#=
⨀$%&�(= 

39. next k 

40. Send the vector V = (V1, …, Vt) to Bob and receive vector U 

SESSION KEY OBTAINED BY ALICE 

41. for k=1 to t 

42.      A-KEYk =  Per[)=
⨀$%&�'=]  (mod 2h) 

43. next k 

44. A-CONCAT = A-KEY1 || A-KEY2 ||… || A-KEYt 

45. KEYalice =H(A-CONCAT) 

 

SESSION KEY OBTAINED BY BOB 

46. for k=1 to t 

47.           B-KEYk =  Per[*=
⨀$%&�(=]  (mod 2h) 

48. next k 

49. B-CONCAT = B-KEY1 || B-KEY2 ||… || B-KEYt 

50. KEYbob =H(B-CONCAT) 

 

9. Algorithm 1:  keys equality proof 

Lemma 1: 

The keys given by Algorithm 1 are equal, A-KEYalice =  B-KEYbob 

 

Proof:  

The result follows from the fact that the matrix powers of equal base commute in the matrix 

ring, and hence U =  !"#⨀$%&�'  ?@� V =  !"#⨀$%&�(  satisfy 

U⊙V=V⊙U= !"#⨀$%&�'.$%&�( =  !"#⨀$%&�(.$%&�'    ∎ 

10. Derived cipher algorithm 

ALGORITHM 2: PQC multiKEP + ElGamal cipher 

Observation: Bob sends a message to Alice. Vector U was received by Bob 

Insert here algorithm 1 

ELGAMAL (C, D): 

1. Select msg string padded to 512-bits 

2. C = V     

3. D = H(compact Kb) ⊕  msg 

4. Send (C, D) to Alice 



 

 

ALICE RECOVERS THE MESSAGE FROM BOB 

5. Ka = 9⨀$%&�' 

6. compact Ka = Per[Ka]   (mod 2h) 

7. msg = D  ⊕  H(compact Ka) 

 

11. KEP and ELGAMAL cipher protocols 

It is necessary to define a protocol allowing for an interchange of information between 

Alice and Bob asynchronously to achieve the following objectives: 

 

 deferred communications 

 check the integrity of the exchanged information 

 mutual authentication to avoid attacks from active adversaries (e.g., man-in-the-

middle) 

 block replay attacks 

 availability of the exchanged information 

 perfectly defined formats 

 

The following protocol aims to fulfill these requirements. 

 

PROTOCOL: KEP AND CIPHER PUBLIC DATA EXCHANGES 

INPUT: any kind of data to be exchanged between entities. 

OUTPUT: encapsulated message (msg). 

INITIAL CONFIGURATION: 

msg: any kind of information to be exchanged between entities. 

Universal-Keyed Message Authentication Code (UMAC): here proposed to 

assure strong symmetric authentication [3, 11]. 

ID: any elsewhere predefined and sender-receiver shared identification tag. 

K: sender-receiver shared key. 

Tag: a smart label that can store any sort of information from identification 

numbers as a brief description for each entity. Here, the tag is Tag = HMAC-

SHA3-512 (HM ∥ Nonce). See Fig 1 and more in [3] 

HM: NHK(msg1) ∥ NHK(msg2) ∥ · · · ∥ NHK(msgr) ∥ Len; see the NH 

definition in [3]. 

Nonce: pseudorandom and unique number that changes with each generated 

tag. 

Timestamp: formatted date and time. 

 

MESSAGE AUTHENTICATION 

1. Acquire K and msg 

2. Define a fixed-length Nonce 

3. Generation of UMAC/SHA3-512/ID/Data 

4. Encapsulate the concatenation of msg || UMAC/SHA3-512 (HM || 

Nonce) || Timestamp into a file 

5. Send the file and Nonce to the receiver 
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MESSAGE VALIDATION 

1. Acquire at any time the sent file 

2. Recover msg and UMAC/SHA3-512 (HM || Nonce) 

3. Verify integrity and sender’s identity using K, Nonce, and msg 

4. Accept or Dismiss msg according to the verification result 

 

12. Security of the public storage of Px products against analytical attacks 

 

The factorizations Uk = A1k. B1k (mod p), k=1,…,t can be solved in Uk ∈ Rn×n, A1k ∈ Rn×m, 

B1k ∈ Rm×n (real realm), using the SVD (Singular Value Decomposition) if there are no 

restrictions regarding the nonnegativity of the factors, but if they are imposed as in our 

proposal, then Vavasis and references therein [23] proved that the problem is NP-hard in 

the continuous case. For the Boolean case, N. Gillis [10] wrote: “…for exact factorizations, 

the rank-one problem is trivial. For higher ranks, Boolean factorization is equivalent to 

finding a rectangle covering the matrix U. This is equivalent to the so-called biclique 

problem (given a bipartite graph defined by U, find the smallest number of complete 

bipartite subgraphs that cover the graph), which is NP-complete, as proved in [21]. (sic)”. 

Boolean NP-complete complexity was formally proven by Miettinen and Neumann [17]. 

 

13. Semantic security of algorithm 2 

Here, we provide an informal view of this aspect based on concepts mostly derived from 
Bellare’s work [1]. In summary, semantical security measures the resistance of any 
encryption algorithm to attacks using chosen plaintext or ciphertext selected by the 
attacker, who has access to the encryption and decryption modules working as oracles 
without knowledge of the key selected for enciphering. The semantic security term is 
strongly related to other definitions: the one-way functions and the non-malleability of 
ciphertexts. 
Indistinguishability under a chosen plaintext attack (represented as IND-CPA) is 
equivalent to the property of semantic security and is considered a basic requirement for 
most provably secure public-key cryptosystems [1]. One-way refers to bidirectional 
functions that have a probabilistic-polynomial time algorithm that converts domains into 
codomains, but no such algorithm is known that inverts the procedure. Non-malleability 
refers to the resistance to slightly modifying the ciphertext to obtain meaningful recovered 
plaintext. The next concept to define is the indistinguishability of different ciphertexts of 
two similar but different plaintexts; an attacker cannot assign a ciphertext of one of them 
to any one of the plaintexts. This feature is generally presented as a game between a 
challenger (the algorithm defender) and an adversary (the algorithm attacker) [1]. The 
challenger generates a key pair PK, SK (public key and secret key, respectively), based on 
any security parameter k (which can be the key size in bits), and publishes PK to the 
adversary. The challenger retains SK.  
 
Here, we describe the adaptative version of the game. The adversary may perform any 
number of encryptions, decryptions, or any other operations. (The adversary is a 
probabilistic polynomial Turing Machine) [1]. Eventually, the adversary submits two 
distinct chosen plaintexts m0 and m1 to the challenger (of the same length). The challenger 

selects a bit b ∈ {0, 1} uniformly at random and sends the challenge ciphertext C = E (PK, 
mb) back to the adversary. The adversary is free to perform any number of additional 
computations or decryptions (except C, this step is the adaptative phase of the attack). 
Finally, its outputs in polynomial time a guess for the value of b [1]. 
 



 

 

The adversary wins the game if it guesses the bit b, and winning means the algorithm is 
not indistinguishable and secure; otherwise, the algorithm reaches the strongest available 
security level: IND-CCA2. (Indistinguishable chosen ciphertext adaptative attack). 
Formally, a cryptosystem is indistinguishable under an adaptative chosen ciphertext attack 

if no adversary can win the above game with probability p greater than 1/2+ ∈k, where ∈k 

≤ 1/πK (πK arbitrary polynomial function) and ∈k is defined as a negligible function in the 
security parameter k [1]. For Algorithm 2, we prove the IND-CPA security level and 
explain how it could be easily adapted to reach the IND-CCA2 security level.  
 
The use of the UMAC function [3, 11] in our Protocol fills this need in such a way that the 
practical implementation of Algorithms 1 and 2 culminates with the desired provable-
security level. 
 

14. A toy numerical example 

a. Setup 

 

dim=8;  rows=dim;  cols=2; h=32        

 

b. First exchange 

 

A1 =

9 204

23 4

214 49

126 138

240 132

159 236

61 109

1 240

    B1 =
67 152 149 3 19 61 159 42

254 187 152 44 74 225 166 152
  

 

   Pa =  

195 92 93 43 163 113 223 154

253 148 195 245 221 255 225 38

160 219 166 238 12 15 176 52

230 158 70 50 62 80 190 156

200 236 16 128 248 52 168 192

197 204 171 109 5 79 201 54

29 215 57 115 9 86 145 186

99 232 21 67 115 45 63 170

   

 

A2 =

100 159

172 11

117 6

59 108

60 215

192 71

204 75

61 155

  B2 =
112 156 30 127 34 159 189 202

12 232 252 111 75 182 221 213
  

 

Pb =

52 8 60 141 221 38 23 51

196 200 252 25 17 166 123 223

120 188 158 165 76 239 143 80

224 212 58 25 122 109 203 106

84 104 172 253 245 30 231 59

84 88 100 9 77 186 11 147

196 72 188 185 17 6 91 95

244 164 186 120 131 21 216 25
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c. Second exchange 

core �by Alice�  =

53 218 13 25 238 59 1 17

141 163 69 64 239 3 54 39

57 191 140 121 68 167 239 208

83 183 146 138 176 24 166 202

45 23 198 51 246 77 87 131

232 132 138 155 144 19 49 236

61 36 142 134 253 223 212 204

115 61 111 187 190 137 48 46

    

 

core �by Bob� =

53 218 13 25 238 59 1 17

141 163 69 64 239 3 54 39

57 191 140 121 68 167 239 208

83 183 146 138 176 24 166 202

45 23 198 51 246 77 87 131

232 132 138 155 144 19 49 236

61 36 142 134 253 223 212 204

115 61 111 187 190 137 48 46

         

 

expoA = 2027723037    

expoB = 1962405525 

 

 U =

102 220 129 55 136 241 29 74

52 55 33 115 106 162 101 10

105 108 31 247 132 21 51 105

226 246 168 104 93 64 39 225

101 50 167 135 26 150 236 164

182 253 34 118 13 36 179 59

80 198 47 251 166 252 63 104

104 90 199 189 134 166 228 196

     

 

V =

48 178 46 2 54 35 43 255

1 30 231 89 249 71 188 58

44 228 56 63 230 132 93 100

107 27 77 104 144 137 196 215

155 237 134 215 69 212 249 86

231 186 190 211 113 221 174 159

101 11 194 13 233 227 212 74

159 51 241 233 93 164 90 127

 

 

 

d. Session keys 

Ka =

8 142 81 79 249 129 125 84

51 137 68 84 161 209 209 30

107 49 60 164 147 238 81 129

32 51 28 250 76 1 17 175

42 220 216 21 210 96 202 249

224 224 52 153 94 78 7 68

51 177 26 22 54 248 90 246

181 51 246 202 188 192 33 35

  

 

Kb =

8 142 81 79 249 129 125 84

51 137 68 84 161 209 209 30

107 49 60 164 147 238 81 129

32 51 28 250 76 1 17 175

42 220 216 21 210 96 202 249

224 224 52 153 94 78 7 68

51 177 26 22 54 248 90 246

181 51  246 202 188 192 33 35

 

 

Compact Ka = 940671506 

Compact Kb = 940671506 

 

  



 

 

e. Bob to Alice enciphered message 

PLAINTEXT msg =  secret string      (padded to 512-bita) 

CIPHERTEXT C = V =  

��155,172,125,25,19,186,176,176�, �31,113,22,102,164,214,92,213�, 

�153,152,105,47,28,210,155,66�, �207,172,118,190,115,224,88,155�, 

�58,186,55,245,127,58,46,212�, �48,138,194,247,234,37,149,115�, 

�211,254,118,16,89,233,7,37�, �172,205,217,27,204,77,79,219�� 

HASH (Kb)= 

623f543dd1968404add50ce2a3c10a66a9ab182290414544fd0b 

4f5218c9b1612487783a08c423b9c5c71e965ee9eb23ca9fdd95e4 

5eee79d0759e6868f89163  

CIPHERTEXT D =   

{17,90,55,79,180,226,164,119,217,167,101,140,196,225,42,70,137, 

139,56,2,176,97,101,100,221,43,111,114,56,233,145,65,4,167,88,26 

,40,228,3,153,229,231,62,182,126,201,203,3,234,191,253,181,196, 

126,206,89,240,85,190,72,72,216,177,67} 

 

f. Alice recovers the message 

Compact Ka = 940671506   

RECOVERED msg =  [\]^\_ [_^`ab 

 

15. Discussion 

 

Algorithm 1 has been implemented in different computer languages and shows that 

extremely high complexity can be easily achieved on a standard processor. The fact that 

by modifying the input variables (dim, number of rows, columns, iterations), practically 

any security level can be easily obtained without resorting to multiple precision leads to 
very fast implementations. Depending upon the computer architecture and software 

implementation, larger dim values can be used for reaching higher complexity levels.  

It is particularly important to use the UMAC function in the Protocol because it is similar 

to Merkle's trees for PQC digital signatures [2] and plays the role of achieving maximal 

semantic security [1] and simultaneously strengthening its postquantum character. 

 

Note: as Black et al. [3] state, "the security of UMAC is rigorously proven, in the sense of 

giving exact and quantitatively strong results which demonstrate an inability to forge 

UMAC-authenticated messages assuming an inability to break the underlying 

cryptographic primitive. (sic)” 

 

16. Conclusions 

This paper presents a variant of interest in the framework of non-commutative 

algebraic cryptography. By employing rectangular matrices and their NP-

complete factorization products, together with high order powers of these products 

using finite field operations, potentially significant levels of security could be 

achieved considering the difficulty of solving the generalized discrete logarithm 

Diffie-Hellman problem. Increasing the matrices' dimensions, using high-order 

prime fields, and the number of the algorithm internal cycles increase the security. 

We propose using the single-step variant to achieve good time performance. 
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