Abstract. Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to $t_s < n/2$ corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate $t_a < n/3$ corruptions, even when the network is well-behaved.

In this work, we ask whether one can design a protocol that achieves security guarantees in either scenario. We show a complete characterization of network-agnostic DKG protocols, showing that the tight bound is $t_a + 2t_s < n$. As a second contribution, we provide an optimized version of the network-agnostic MPC protocol by Blum, Liu-Zhang and Loss [CRYPTO’20] which improves over the communication complexity of their protocol by a linear factor. Moreover, using our DKG protocol, we can instantiate our MPC protocol in the plain PKI model, i.e., without the need to assume an expensive trusted setup.

Our protocols incur the same communication complexity as state-of-the-art DKG and MPC protocols with optimal resilience in their respective purely synchronous and asynchronous settings, thereby showing that network-agnostic security comes for free.

1 Introduction

The problem of distributed key generation (DKG) has been extensively studied in the cryptographic literature and is a fundamental building block for threshold cryptosystems. It allows a set of n parties to compute a uniform sharing
of a secret key such that a sufficiently large threshold of \(t < n \) parties must cooperate to reconstruct the secret or compute some function of it. As such, DKG has met many applications, including key escrow services, password-based authentication, threshold signing and encrypting, and many more.

Many existing protocols solve DKG for up to \(t < n/2 \) malicious corruptions, assuming that the network is synchronous \[\text{Fed91,GJR99,SBKN21}\]. In the synchronous model, message delays are upper bounded by some known delay \(\Delta \) and parties are assumed to have synchronized clocks. These protocols, however, provide no security guarantees when the network is asynchronous. Therefore, a more recent line of work has aimed at solving DKG in the asynchronous network model \[\text{KG09,AJM}^{+21,}\text{DYX}^{+22}\]. However, asynchronous protocols inherently tolerate at most \(t < \frac{n}{3} \) corrupted parties, even when the network is synchronous. This poses a vexing dilemma for a protocol designer who can not predict the behaviour of the network. On the one hand, she can choose a synchronous protocol that tolerates the maximum number of \(t < n/2 \) malicious parties. However, such a protocol might lose all security guarantees if the network ever becomes asynchronous. On the other hand, she can opt for an asynchronous protocol. While this type of protocol remains secure under arbitrary network conditions, it tolerates only \(t < n/3 \) corrupted parties even if the network behaves synchronously.

In this work, we ask the following question: Is it possible to design a network-agnostic DKG protocol that achieves security guarantees in either scenario? Moreover, can we achieve network-agnostic security with no efficiency overhead, i.e. with the same efficiency as state-of-the-art purely synchronous/asynchronous DKG schemes?

We answer these questions in the affirmative. Our contributions are motivated by a series of recent works on network-agnostic protocols for various types of consensus and MPC. Existing protocols, however, strongly rely on trusted setup, particularly in the form of threshold cryptosystems. Thus, the import of our work lies within replacing this setup at essentially no cost. In more detail, we show the following results:

- We propose the first network-agnostic DKG protocol. Our protocol tolerates \(n/3 < t_s < n/2 \) corrupted parties in the synchronous model and \(t_a < n/3 \) parties in the asynchronous model where \(t_a \) and \(t_s \) can be chosen arbitrarily subject to \(t_a + 2 \cdot t_s < n \). Our protocol works in the plain PKI model and allows parties to agree on a field element \(x \) for a \(y = g^x \) with \(O(\lambda n^3) \) communication complexity. This matches the best-known results in synchrony \[\text{SBKN21}\] and asynchrony \[\text{DYX}^{+22}\]. Thus, our DKG protocol can be used to efficiently bootstrap trusted key generation for network-agnostic consensus and MPC protocols.

- As an application of our DKG protocol, we obtain the first network-agnostic MPC protocol with optimal resilience \(t_a + 2 \cdot t_s < n \) in the plain PKI model. Moreover, as a second contribution we show an optimized version of network-agnostic MPC with communication complexity of \(O(|C|n^2) \) field elements to

\[\text{In this model, the public keys from corrupted parties can be generated arbitrarily.}\]
evaluate a circuit C, improving a linear factor over the state of the art. This matches the most efficient purely asynchronous MPC protocol (in the setting without the use of multiplicative-homomorphic encryption, see the related work for details).

In summary, our protocols incur no additional setup assumptions or asymptotic overhead over state-of-the-art protocols for the synchronous and asynchronous network models. This shows that network-agnostic DKG and MPC essentially come ‘for free’.

1.1 Background and Starting Point

We consider n parties P_1, \ldots, P_n that communicate over pairwise authenticated channels. Moreover, we assume that parties share a public key infrastructure (PKI), and denote P_i’s secret and public key, respectively, as sk_i, pk_i. We do not make any assumption on the distributions of corrupted parties’ keys and assume they can be maliciously generated. Throughout, we fix thresholds $0 < t_a < \frac{n}{3} \leq t_s < \frac{n}{2}$ such that $t_a + 2 \cdot t_s < n$. Our model assumptions can now be characterized as follows:

- If the model is synchronous, parties are assumed to have synchronized clocks and messages sent by parties are delivered within some known upper bound Δ. At most t_s parties can be maliciously corrupted.
- Otherwise, if the network is asynchronous, messages can be arbitrarily delayed, as long as they are never dropped and are delivered within finite time. Moreover, parties’ clocks can be arbitrarily out of sync. In this case, at most t_a parties may be maliciously corrupted. Note that the network can never become asynchronous once t_a or more parties have been corrupted.
- Parties do not know a priori how the network might behave.

Our goal is to design a distributed key generation (DKG) protocol for parties to securely distribute a uniform field element x corresponding to some $y = g^x$. Since parties cannot be sure whether the network is synchronous or not in general, we require that the secret reconstruction threshold is $\ell = t_s + 1$. With the aim of matching the best known DKG protocols for the synchronous and asynchronous model, we aim for our DKG to run in $O(\lambda n^3)$ communication complexity and be statically secure. In Table 1, we compare the existing state-of-the-art with our proposed DKG which, as we show, satisfies these aims.

We stress that this goal cannot be achieved by simply running a generic, network-agnostic MPC protocol \[\text{[BLL20,DHLZ21]} \text{, since these protocols require trusted setup in the form of shared keys (which is exactly the goal we are trying to achieve).} \]

Network-Agnostic Protocols: A Blueprint. To design an efficient network-agnostic DKG protocol, a natural approach is to follow the template of previous works \[\text{[BKL19,BLL20,BKL21]} \text{. Here, the protocol is divided into two components, a synchronous component Π_s and an asynchronous component Π_a. Parties begin by running Π_s which performs securely, given that up to t_s parties are} \]
Table 1: Performance comparison of state-of-the-art DKG protocols. The network is synchronous (sync), asynchronous (async) or either synchronous or asynchronous (fallback). We measure complexity via communication (CC) and round (RC) complexity. Setup assumptions include a bulletin board PKI (PKI), a random oracle (RO) or a common reference string (CRS). Abraham et al. [AJM+21]’s DKG constructs a shared group element, rather than a field element.

corrupted. In this case, parties pass the output v_s obtained from Π_s to Π_a. The final output of the protocol is the value v_a output by Π_a. Note, however, that Π_a achieves security only against t_a corruptions, as it is asynchronous. Thus, the key challenge is to prevent Π_a from simply overwriting the output v_s in a synchronous network, as this would degrade the overall corruption threshold of the protocol to t_a.

To prevent this outcome, the idea is to design Π_s and Π_a with two special properties. First, suppose that the network is synchronous and parties agree on the intermediate value v_s passed to the asynchronous component Π_a. In this case, Π_a should simply relay the correct output v_s (rather than recomputing it), even if t_s parties are corrupted. Second, if the network is asynchronous, Π_a should be able to compute the correct output v_a on its own in the presence of t_a corruptions. In addition to this, Π_s must prevent parties from computing a catastrophically incorrect intermediate output v_s that might violate the overall security properties of the protocol, given an asynchronous network with t_a corrupted parties.

Background: Synchronous DKG. The above discussion shows why naively running a synchronous DKG and then an asynchronous agreement protocol back-to-back would not produce a network-agnostic protocol. For the setting of DKG, this might lead to the resulting secret key not having enough ‘contributions’ from honest parties. Our starting point is the synchronous **New-DKG** protocol of Gennaro et al. [GJKR07], which we make amenable to our network model. Loosely speaking, **New-DKG** is divided into two phases as follows:

- **Sharing Phase.** In the first phase, each party performs verifiable secret sharing (VSS) using Pedersen’s VSS scheme [Ped92] to share two random polynomials f and f'. Parties then execute a public complaint management protocol, since some parties may try to misbehave and, e.g., not send (correct) shares to some parties. They agree on a set of parties Q that honestly executed Pedersen’s VSS.

- **Reconstruction Phase.** In the second phase, parties then reconstruct their share of the final secret. To do so, they perform the reconstruction phase of
Feldman’s VSS \cite{Fel87} from the sharing phase with respect to polynomial \(f \). The shares of misbehaving parties are reconstructed publicly to ensure termination.

By committing to a second polynomial \(f' \), Pedersen’s VSS ensures that shared secrets are unconditionally hiding and parties can efficiently blindly evaluate \(f \) in the exponent to verify their shares. Then, \(Q \) is sufficiently large to ensure that at least one party must have honestly performed VSS. Thus, the adversary has no information about the secret when \(Q \) is decided.

One may be tempted to design a simpler and more efficient DKG protocol where parties, as in the so-called Joint-Feldman DKG \cite{GJKR07}, run Feldman’s VSS in parallel. Gennaro et al. \cite{GJKR07} highlighted that the adversary can bias the distribution of the public key by manipulating the set \(Q \), thus precluding security. In general, a rushing adversary can choose to include or exclude the contributions of parties in the final secret which thus precludes any ‘one-round’ DKG protocol from outputting a uniformly random secret.

In any case, it is not hard to see that the complaint management protocols in New-DKG fail in asynchrony. This is because the complaints of honest parties may be arbitrarily delayed on the network, precluding either correctness or liveness. Dealing with this issue creates additional challenges which we address in the following section.

1.2 Technical Overview: DKG

A natural idea is to replace Pedersen’s VSS in the first phase with publicly verifiable secret sharing (PVSS) \cite{CGMA85,Sta96}. The key property of PVSS is that all parties can non-interactively verify whether a given sharing is correct. We begin by presenting a secure, but excessively expensive strawman solution which will serve as our starting point.

A Strawman Solution. To ensure that parties agree on PVSS sharings, each party (acting as the dealer) would first synchronously broadcast their PVSS sharing. In the second phase, parties could then use the asynchronous common subset (ACS) protocol of Blum et al. \cite{BKL21} to agree on a common subset of such sharings. In their protocol, each party provides an input \(v \) and the protocol lets them agree on a common subset of \(n - t_a \) outputs, given \(t_a \) corruptions in an asynchronous network. In addition, their protocol guarantees that if all honest parties start with the same input \(v \), then the protocol will remain secure for up to \(t_s \) corruptions and the output will be the singleton set \(\{ v \} \). These properties have made their protocol a staple building block in many network-agnostic protocols.

In our scenario, parties would input their common view of all sharings after the broadcast phase to ACS. Given that the synchronous phase succeeded (i.e., the network is synchronous), all parties would input the same view and hence ACS would allow them to (re-)agree on this view, given at most \(t_s \) corrupted

\footnote{Note that a possibly biased secret can still be sufficient for applications like threshold signatures, as highlighted in \cite{GJKR07,Bl22}.}
parties. If parties have not obtained any output from the synchronous phase, they would simply input their PVSS dealing as an input to ACS directly. Even in case the network is asynchronous, parties would still be able to agree on a subset of \(n - t_s \) dealings in this manner. From this, they could securely derive a common secret key.

Unfortunately, existing network-agnostic ACS protocols \([BKL21, ABKL22]\) execute \(n \) instances of binary consensus and consequently require \(O(n) \) distributed coin flips. As the best known protocol to flip coins without trusted setup requires \(O(\lambda n^3) \) communication complexity \([GLL+21]\), this step alone incurs at least \(O(\lambda n^4) \) overhead. In addition, the above solution requires all parties to broadcast \(O(\lambda n) \)-sized sets of ciphertexts containing the parties PVSS dealings. Using existing broadcast protocols, this step would incur an additional communication overhead of \(O(\lambda^2 n^4) \). Towards building a network-agnostic DKG with \(O(\lambda n^3) \) communication complexity, we introduce novel techniques to overcome the above challenges.

From ACS to Intrusion-Tolerant Consensus. Recall that under synchrony, all parties are guaranteed to output at least \(n - t_s \) values from the parallel broadcast in our above strawman protocol. However, if the network is asynchronous, parties are not guaranteed agreement or termination of sufficiently many broadcast instances. To cope, our idea is to let parties execute an asynchronous agreement protocol with an intrusion tolerance validity property \([MR10]\). Intrusion tolerance guarantees that a decided value is either one that is proposed by an honest party or a default value \(\bot \). In addition, we will require that our agreement protocol satisfies a special validity with termination property for up to \(t_s \) corruptions. This property ensures that if all parties input the same value \(v \) to the protocol, they all terminate with this value. (This property was first formalized by Blum et al. \([BKL19]\).) Given this building block, our high-level strategy (from the view of a party \(P \)) is as follows.

- If \(P \) correctly outputs in at least \(n - t_s \) broadcasts, it inputs its set of values to the intrusion-tolerant consensus protocol \(\Pi_{IT} \). Otherwise, it inputs a default value \(\bot' \).
- If a set of values is decided upon by \(\Pi_{IT} \), \(P \) continues with the protocol. Otherwise, \(P \) participates in an execution of an asynchronous DKG protocol with \(O(\lambda n^3) \) complexity with reconstruction threshold \(t_s + 1 \); the protocol of Das et al. \([DYX+22]\) satisfies these requirements.

In synchrony, by the security of broadcast, all parties will propose the same set to \(\Pi_{IT} \) and, by the validity of consensus \(\Pi_{IT} \) under \(t_s \) corruptions, this set will be decided. In this case, parties do not fall back to the asynchronous path and can cheaply agree on a \(t_s \)-sharing of a field element \(x \).

In asynchrony, the synchronous path might fail. In this case, however, agreement and intrusion tolerance of \(\Pi_{IT} \) ensure that all parties securely continue

\[6\] This discussion omits a minor technical detail: the adversary must not be able to broadcast incorrect messages on behalf of honest parties, even in asynchrony. Ensuring this, however, is easy using digital signatures.
execution of the synchronous path with the same view or collectively fall back to asynchronous DKG. In case parties do not fall back, their common view on the protocol state allows them to carry out a secure emulation of the synchronous protocol path. In either scenario, parties agree on a t_s-sharing of a field element x, even if the network behaves asynchronously. The following paragraphs describe how, for each phase of our protocol, we manage to keep communication below $O(\lambda n^3)$.

An Efficient Broadcast Protocol. The first ingredient we propose is an efficient multivalued synchronous broadcast protocol assuming $t < (1 - \epsilon) \cdot n$ corruptions for any constant $\epsilon \in (0, 1)$. Tsinos, Loss and Papamanthou [TLP22] propose an efficient binary broadcast protocol, BulletinBC, that is statically secure. BulletinBC requires $O(\lambda^2 n^2)$ communication, and is very similar to the classic Dolev-Strong protocol [DSS83] except to reduce communication complexity, parties gossip instead of multicast sets of signatures during the protocol. We modify this protocol and an extension protocol from Nayak et al. [NRS+20] in Appendix B to build synchronous broadcast with $O(n \ell + \lambda n^2)$ complexity.

We use our extension protocol in the first phase of DKG. More precisely, each party P_i broadcasts 1) n Pedersen commitments corresponding to random polynomials $f_i(\cdot)$ and $f'_i(\cdot)$; 2) n ciphertexts corresponding to each party P_j’s share of P_i’s secret, namely $f_i(j)$ and $f'_i(j)$; and 3) n NIZK proofs that proves ciphertext j, for each $j \in [1, n]$, contains encryptions of values $f_i(j)$ and $f'_i(j)$. This obviates the need for a complaint management protocol as each party can determine the well-formedness of each message broadcast themselves. With $O(\lambda)$-sized NIZKs [PHGR13,CGG+20], each party invokes broadcast with an $O(\lambda n)$-sized message, and consequently this step incurs $O(\lambda n^3)$ communication.

Our Intrusion-Tolerant Consensus Protocol. We adapt a multivalued agreement protocol from Mostéfaoui and Raynal [MR17] to ensure intrusion tolerance and validity under t_s corruptions in synchrony. We show in Appendix C that the protocol uses $O(\ell n^3 + \lambda n^3)$ communication complexity. As such, parties can not simply propose their $O(\lambda n^2)$-sized set of sharings to consensus within DKG without incurring super-cubic complexity.

Efficiently Reconstructing the Final Output. To keep the communication complexity below $O(\lambda n^3)$, we observe that each party does not require the entire contents of the $O(\lambda n^2)$-sized set to reconstruct their share and the public key of the final secret. To this end, a party accumulates n ‘personalised’ values, one per party and each of size $O(\lambda n)$, into a value z that they propose to consensus. An accumulated value for party P_i contains a description of the qualified parties Q, the $|Q|$ ciphertexts P_i needs to reconstruct their share of the secret $\sum_{q \in Q} f_q(i)$ (alongside $\sum_{q \in Q} f'_q(i)$), and a Pedersen commitment corresponding to these two summations. By intrusion-tolerance, if a non-trivial value is decided by consensus, the honest party (or parties) who proposed such a z can send the relevant part and proof of membership in z to each party. By using an accumulator with accumulated value z of size at most $O(n \lambda)$ (typically we
have $O(\lambda)$ \cite{BP97,Lip12}, we thus achieve $O(\lambda n^3)$ complexity for this step. We emphasise that without the intrusion-tolerance property that it would be possible for parties to decide a value from consensus that does not correspond to an ‘honest’ accumulation value z. One could bypass intrusion tolerance using a consensus protocol with $O(n\ell + \lambda n^3)$ complexity that ensures external validity on decided values \cite{CKP01}. However, it appears difficult to design such a protocol using erasure codes (as is typical) as parties cannot feasibly evaluate an external validity function on a message until it is reconstructed.

From each party’s personalized value, they can reconstruct their share of the secret key but not yet the public key. To reconstruct the public key, it is tempting to replace the reconstruction phase of New-DKG with another round of broadcast and agreement. However, this would allow an adversary to bias the distribution of the shared secret by deciding to fallback to asynchronous DKG depending on e.g., the first bit of the reconstructed public key. We therefore avoid this by publicly reconstructing the public key using the approach of Shrestha et al. in \cite{SBKN21}. More precisely, each party P_i computes and multicasts the value $G = g^{\sum_{q \in Q} f_q(i)}$ and their accumulated value that they prove is consistent with their Pedersen commitment via an efficient Fiat-Shamir based NIZK \cite{CGJ99,SBKN21}. Parties can thus collect $t_s + 1$ valid points in the exponent of g and then reconstruct the public key by Lagrange interpolation in the exponent and terminate.

1.3 Technical Overview: MPC

Our starting point is the protocol by Blum, Liu-Zhang and Loss \cite{BLL20}, which gave a network-agnostic MPC given an initial setup for threshold additive-homomorphic encryption.

The protocol is composed of two parts. First, a synchronous MPC with t_s-full security when the network is synchronous, and achieves t_a-agreement on output (where the output can either be correct or ⊥) when the network is asynchronous. Second, a purely asynchronous MPC with full security resilient to up to t_a corruptions.

The bottleneck for the communication complexity lies in the first protocol, since it requires the usage of n network-agnostic Byzantine agreement (BA) protocols per multiplication gate. Given that the most efficient network-agnostic BA protocol \cite{DHLZ21} incurs quadratic communication, the total communication amounts to $O(n^3|C|\lambda + \text{poly}(n, \lambda))$ bits. However, the most communication-efficient MPC in the purely asynchronous setting (in the same setting, from additive-homomorphic encryption) incurs $O(n^2|C|\lambda + \text{poly}(n, \lambda))$ communication.

In order to decrease a linear factor in the communication, we optimize the protocol using the well-known offline-online paradigm \cite{Bea92}. The offline phase generates ℓ Beaver triples with network-agnostic security, where ℓ is the number of multiplication gates in the circuit: if the network is synchronous and there are up to t_s corruptions, all parties output the same ℓ encrypted random multiplication triples, with plaintexts unknown to the adversary; and if the network
is asynchronous and there are up to t_a corruptions, each party outputs either ℓ triples as above, or \perp. With these triples, one can use standard techniques to achieve an online phase with quadratic communication, where each multiplication gate is reduced to two public reconstructions [Bea92].

The protocol makes use of a number of primitives, including 1) an efficient synchronous broadcast protocol for long messages with weak-validity and 2) a network-agnostic Byzantine agreement protocol among others. In a simplified form, the protocol works as follows:

- Each party P_i generates ℓ random encryptions A_1^i, \ldots, A_ℓ^i, and broadcasts them using the broadcast for long messages.
- Parties agree on a subset S of parties that received the encryptions using n instances of network-agnostic BA. If the set has size less than $n - t_a$, output \perp and terminate.
- The parties compute ℓ ciphertexts, where each ciphertext is the sum of all ciphertexts coming from parties in S, i.e. $A_j^i = \sum_{k \in S} A_{j k}^i$.
- Each party P_i generates ℓ random encryptions B_1^i, \ldots, B_ℓ^i, and ciphertexts C_1^i, \ldots, C_ℓ^i where $C_j^i = b_j^i \cdot A^i$ and b_j^i is the plaintext of B_j^i, and broadcasts all these values using the broadcast for long messages.
- Again, parties agree on a subset S' of parties that received the encryptions, as in Step 2.
- Compute $B_j^i = \sum_{k \in S'} B_{j k}^i$ and $C_j^i = \sum_{k \in S'} C_{j k}^i$.
- Output the triples (A_j^i, B_j^i, C_j^i) for $j = 1, \ldots, \ell$.

The communication complexity amounts to n instances of broadcast (note that the cost of the BA instances is independent of the number of multiplication gates). Since each broadcast incurs $O(n \ell + \lambda n^2)$ bits of communication, the total communication is $O(n^2 \ell + \lambda n^3)$, or $O(n^2)$ per generated triple (ignoring additive terms).

Intuitively, the protocol generates random triples because each component contains the contribution of at least an honest party. If the network is synchronous, all honest parties output the generated triples. However, if the network is asynchronous, some of the honest parties may not obtain the triples and output \perp. This will be enough in the online phase and is handled similarly as the protocol in [BLL20].

Finally, using the DKG protocol from above, and the observation that the NIZK proofs can be generated with no setup using the multi-string honest majority proof system by Groth and Ostrovsky [GO07], we can base our MPC protocol from plain PKI.

1.4 Related Work

DKG. Many synchronous DKG protocols assume the existence of broadcast channels, i.e., that essentially abstract away secure broadcast and consensus,
including the seminal protocol of Gennaro et al. [GJKR07]. In a recent work, Shrestha et al. [SBKN21] consider when broadcast is no longer assumed (as in our work), and propose a protocol with \(O(\lambda n^3) \) complexity which is the state-of-the-art. Canetti et al. [CGJ+09] propose an adaptively-secure DKG protocol, but almost all other work, including ours, consider static security.

Das et al. [DYX+22] propose an asynchronous DKG protocol with \(O(\lambda n^3) \) communication complexity. In order to bypass the need for direct coin flipping, which incurs \(O(\lambda n^3) \) overhead, they perform a clever reduction to \(n \) instances of binary consensus which uses \(O(\lambda n^2) \) for coin flips from honest parties. Their technique relies on asynchronous complete secret sharing and is not straightforward to adapt to the network-agnostic setting. Abraham et al. use a so-called aggregatable DKG protocol [GJM+21] to also build a protocol with \(O(\lambda n^3) \) overhead that only requires an efficient Byzantine agreement primitive. One can likely adopt this approach to the network-agnostic setting by optimising an protocol. However, the only efficient construction of aggregatable DKG we are aware of allows parties to agree on a shared group element as a secret which can thus be applied only to less standard cryptosystems.

Communication complexity in MPC. The literature in communication complexity is extensive, so we are only able to cover a part of it.

In the synchronous model, solutions with linear communication, i.e. \(O(\lambda n) \) bits per multiplication gate, have been known for a while (see e.g. [HN06,DI06,BTH08,BFO12,GLS19,GSZ20]), for several settings: \(t < n/3 \) without setup and \(t < n/2 \) with setup, as well as cryptographic and information-theoretic.

In the asynchronous model, information-theoretic solutions with optimal resilience \(t < n/3 \) were provided by Ben-Or et al. [BKR94], and later improved by Patra et al. [PCR10,PCR08] to \(O(\lambda n^5) \) per multiplication, and by Choudhury [Cho20] to \(O(\lambda n^4) \) per multiplication. Solutions with suboptimal resilience \(t < n/4 \) were achieved with linear communication \(O(\lambda n) \) [SR00,PSR02,CHP13,PCR15]. For cryptographic security and optimal resilience \(t < n/3 \), current solutions require trusted setup, typically in the form of threshold cryptosystems. The works by [HNP05,HNP08,CHLZ21] make use of additive threshold homomorphic encryption, with the protocols [HNP08,CHLZ21] communicating \(O(\lambda n^2) \) per multiplication. The work by Choudhury and Patra [CP15] achieves \(O(\lambda n) \) per multiplication at the cost of using somewhat-homomorphic encryption, and the work by Cohen [Coh10] achieves communication independent of the circuit size using fully-homomorphic encryption.

In the setting with network-agnostic security, the protocols [BLL20,DHLZ21] achieve optimal resilience \(t_a + 2 \cdot t_s < n \) and cryptographic security, with the first being more communication-efficient with \(O(\lambda n^3|C|) \) bits per multiplication gate (using the network-agnostic BA [DHLZ21]). The recent protocol [ACC22] achieves optimal resilience \(t_a + 3 \cdot t_s < n \) in the setting of perfect security, and has communication complexity \(O(\lambda n^4|C|) \).
1.5 Paper Organisation

In Section 2, we define our model and relevant cryptographic and distributed primitives. In Section 3, we present our DKG protocol and argue for its security. In Section 4, we present our MPC protocol. In the appendices, we first define some security notions for cryptographic primitives (Appendix A). We then describe and prove secure our secure broadcast protocols (Appendix B), our intrusion-tolerant consensus protocol, defining some building blocks along the way (Appendix C), and a binary consensus protocol it requires (Appendix D), proofs deferred from the main body (Appendix E) and a figure for a synchronous MPC algorithm with unanimous output in asynchrony (Figures 14 and 15).

2 Preliminaries and Definitions

Throughout the paper, we consider a network of \(n \) parties \(P_1, \ldots, P_n \) that communicate over point-to-point authenticated channels. Some fraction of these parties are controlled by an adversary and may deviate arbitrarily from the protocol. We call the uncorrupted parties honest and the corrupted parties dishonest. When we say that a party multicasts a message, we mean that it sends it to all \(n \) parties in the network. We denote the security parameter by \(\lambda \) and the random variable \(X \) output by some probabilistic experiment \(\Pi \) by \(X \leftarrow \Pi \). We denote the set of integers from \(a \) to \(b \) by \([a,b] \). For an element \(x \) in a set \(S \), \(x \leftarrow S \) denotes \(x \) being sampled from \(S \) uniformly at random. We sometimes use maps or key-value stores, which are data structures of the form \(\text{map}[k] = v \) for lookup key \(k \) which outputs value \(v \).

We assume that global parameters \(\text{par} = (\mathbb{G}, p, g, h) \) are fixed and known to all parties. Here, \(\mathbb{G} \) is a cyclic group of prime order \(p \) with independent generators \(g \) and \(h \). Given \(\text{par} \) that does not contain \(h \), we can choose \(h \) appropriately as, e.g., \(H(1) \) where \(H \) is a random oracle of the form \(H : \{0,1\}^* \rightarrow \mathbb{G}^* \).

Public Key Infrastructure. We assume that the parties have established a public key infrastructure before the protocol execution, which is a bulletin board or plain PKI. Namely, each party \(P_i \) has an encryption/decryption key pair \(ek_i/dk_i \) for a public-key encryption scheme and a signing/verification key pair \(sk_i/vk_i \) for a signature scheme, where \(ek_i \) and \(vk_i \) are known to all parties. We do not assume that these keys are computed in a trusted manner and instead we assume only that each party generates them locally and then makes the public components known to everybody using a public bulletin board. In particular, malicious parties may choose their keys arbitrarily, corrupt honest parties after seeing they generate their keys and choose keys maliciously based on keys registered by honest parties. We define the function \(\mathcal{VK}(P') \) callable by each party which takes as input a sequence of parties \(P' = (P_{i(1)}, \ldots, P_{i(k)}) \) and outputs the corresponding registered verification keys as a sequence \((vk_{i(1)}, \ldots, vk_{i(k)}) \).

Communication Model. Our network has two possible states, the synchronous and the asynchronous state. When the network is synchronous, all parties begin the protocol at the same time, the clocks of the parties progress at the same rate,
and all messages are delivered within some known finite time $\Delta > 0$ (called the network delay) after being sent. In particular, messages of honest parties can not be dropped from the network and are always delivered. Thus, we can consider protocols that execute in rounds of length Δ where parties start executing round r at time $(r - 1)\Delta$. When the network is asynchronous, the adversary can delay messages arbitrarily as long as the messages exchanged between honest parties are eventually delivered. In contrast to the synchronous model, parties may start the protocol at different times in an asynchronous network, since their clocks and processing speeds are not necessarily synchronized. Finally, honest parties do not know a priori in which type of network they are in.

Adversarial Model. We assume a probabilistic polynomial-time adversary that can corrupt up to t parties. The adversary may cause the corrupted parties to deviate from the protocol arbitrarily. Furthermore, we assume a rushing adversary who may obtain messages sent to it before choosing and sending messages of its own. Moreover, we assume a static adversary, who chooses which parties to immediately corrupt before protocol execution begins.

2.1 Cryptographic Primitives

Definitions and properties that we introduce hereafter are only required to hold with probability $1 - \negl(\lambda)$. We defer formal definitions of correctness and security to Appendix A. We first introduce a standard definition for public-key encryption.

Definition 1 (Public-key encryption (PKE)). A public key encryption scheme is a tuple of PPT algorithms $(\text{KeyGen}, \text{Enc}, \text{Dec})$ such that:

- **KeyGen**: This is a key generation protocol that takes as input the security parameter λ. It outputs a public-secret key pair (ek, dk), denoted as $(ek, dk) \leftarrow \text{KeyGen}(\lambda)$.

- **Enc**: This is a probabilistic encryption algorithm that takes as input a public key ek and a message $m \in \{0, 1\}^*$ (a bit string). It outputs a ciphertext c, denoted as $c \leftarrow \text{Enc}(ek, m)$.

- **Dec**: This is a deterministic decryption algorithm that takes as input a decryption key dk and a ciphertext c. It outputs a message m, denoted as $m \leftarrow \text{Dec}(dk, c)$, where possibly $m = \bot$ denoting failure.

Next, we define non-interactive zero-knowledge proofs (NIZKs). NIZKs enable a prover to non-interactively (i.e., generate a message that is then verified) to prove to a verifier the validity of a statement without revealing anything else.

Definition 2 (Non-interactive zero-knowledge proof (NIZK) [Gro06]). Let R be an NP relation and L the corresponding language. A non-interactive zero-knowledge proof is a tuple of PPT algorithms $(\text{Gen}, \text{Prove}, \text{Verify})$ such that:

- **Gen**: This is a parameter generation algorithm that takes as input the security parameter λ. It outputs parameters par.

– **Prove**: This is a probabilistic proving algorithm that takes as input a statement X to be proven and the corresponding witness w where $(X, w) \in L$. It outputs a proof π, denoted as $\pi \leftarrow \text{Prove}(X, w)$.

– **Verify**: This is a deterministic verification algorithm that takes as input a statement X and a proof π. It outputs an acceptance bit b, denoted as $b \leftarrow \text{Verify}(X, \pi)$.

We assume that NIZKs are of size $O(\lambda)$. The NIZKs that we use in our DKG construction can be constructed using efficient, Fiat-Shamir style proofs in the random oracle model \cite{SBKN21,CGG+20}. Alternatively, one can use SNARKs with a common reference string setup \cite{PHGR13}.

We then define accumulators, a primitive that enables a party to accumulate several values from some set D into an accumulated value z. At this point, the party can generate (compact) proofs that verify that a given value is in D. A secure accumulator is in particular one where ‘invalid’ proofs are hard to forge.

Definition 3 (Cryptographic accumulator). A cryptographic accumulator is a tuple of PPT algorithms $(\text{Gen}, \text{Eval}, \text{CreateWit}, \text{Verify})$ such that:

– **Gen**: This is an accumulator key generation algorithm that takes as input the security parameter λ and an accumulation threshold n. It outputs a (public) accumulator key ak.

– **Eval**: This is a deterministic evaluation algorithm that takes as input an accumulator key ak and a set $D = \{d_1, \ldots, d_n\}$ to be accumulated. It outputs an accumulation value z for D, denoted as $z \leftarrow \text{Eval}(ak, D)$.

– **CreateWit**: This is a probabilistic witness creation algorithm that takes as input an accumulator key ak, an accumulation value z for D, and a value d_i. It outputs \perp if $d_i \notin D$, and a witness w_i otherwise, denoted as $w_i \leftarrow \text{CreateWit}(ak, z, d_i)$.

– **Verify**: This takes as input an accumulator key ak, an accumulation value z for D, a witness w_i, and a value d_i. It outputs an acceptance bit b, denoted as $b \leftarrow \text{Verify}(ak, z, w_i, d_i)$, where $b = 1$ when w_i proves that $d_i \in D$.

The helper function CreateWits, denoted as $(w_1, \ldots, w_n) \leftarrow \text{CreateWits}(ak, z, D)$ for set $D = \{d_1, \ldots, d_n\}$, is shorthand for the n calls $(\text{CreateWit}(ak, z, d_1), \ldots, \text{CreateWit}(ak, z, d_n))$.

Note that the above definition does not consider updates or removals of elements from the accumulated value z, and so our definition is weaker than that of much of the literature. We require an accumulator with witnesses w and accumulation values z of size $O(\lambda)$. We also require that operations after ak was generated are deterministic. The classic RSA accumulator satisfies these requirements with trusted setup in the standard model \cite{BP97}; without trusted setup, one can use, for instance, the accumulator from Lipmaa in \cite{Lip12}. Looking further, it can be seen that our protocols can use vector commitments instead of accumulators, which can also be built without trusted setup with constant-sized openings \cite{CFT13}.

Definition 4 (Linear erasure codes). A Reed-Solomon (RS) code \([\text{RS60}] \) is a linear error correction code in the finite field \(\mathbb{F}_{2^n} \), parameterized by \(n \) and \(b \) with \(n \leq 2^n - 1 \), given by the tuple of algorithms \((\text{Encode}, \text{Decode})\) such that:

- **Encode:** This is an encoding algorithm that takes as input \(b \) data symbols \((m_1, \ldots, m_b) \in \mathbb{F}_{2^n}^b\) and outputs a codeword \((s_1, \ldots, s_n) \in \mathbb{F}_{2^n}^n\) of length \(n \), denoted as \((s_1, \ldots, s_n) \leftarrow \text{Encode}(m_1, \ldots, m_b)\). Knowledge of any \(b \) elements of the codeword uniquely determines the input message and the rest of the codeword.

- **Decode:** This is a decoding algorithm that takes as input a codeword \((s_1, \ldots, s_n)\) of length \(n \) and outputs \(b \) symbols \((m_1, \ldots, m_b) \in \mathbb{F}_{2^n}^b\), denoted as \((m_1, \ldots, m_b) \leftarrow \text{Decode}(s_1, \ldots, s_n)\). It can tolerate up to \(c \) errors and \(d \) erasures in codewords \((s_1, \ldots, s_n)\) if and only if \(n - b \geq 2c + d \).

Our protocol that uses erasure codes will use \(b = n - t \). Finally, we assume that parties have a threshold additively homomorphic encryption setup available. That is, it provides to each party \(P_i \) a global public key \(e_k \) and a private key share \(d_k_i \).

Definition 5 (Threshold homomorphic encryption). A threshold homomorphic encryption scheme is a tuple of PPT algorithms \((\text{Keygen}, \text{TEnc}, \text{TDec})\) such that:

- **Keygen:** This key generation algorithm takes as input integers \((t, n)\) and outputs key pair \((e_k, d_k)\), where \(e_k \) is the public key, and \(d_k = (d_k_1, \ldots, d_k_n) \) is the list of private keys, denoted as \((e_k, d_k) = \text{Keygen}(t, n)(1^\lambda)\).

- **TEnc:** This takes as input an encryption key \(e_k \) and plaintext \(m \) and outputs an encryption \(\text{TEnc}_{e_k}(m) \) of \(m \), which we denote explicitly.

- **TDec:** Given a ciphertext \(c \) and a secret key share \(d_k_i \), there is an algorithm that outputs \(d_i = \text{TDec}_{d_k}(c) \), such that \((d_1, \ldots, d_n)\) forms a \(t \)-out-of-\(n \) sharing of the plaintext \(m = \text{Dec}_{e_k}(c) \). Moreover, with \(t \) decryption shares \(\{d_i\} \), one can reconstruct the plaintext \(m = \text{TRec}(\{d_i\}) \).

It further satisfies the following properties:

- **Additively homomorphic:** Given \(e_k \) and two encryptions \(\text{Enc}_{e_k}(a) \) and \(\text{TEnc}_{e_k}(b) \), one can efficiently compute an encryption \(\text{Enc}_{e_k}(a + b) \).

- **Multiplication by constant:** Given \(e_k \), a plaintext \(\alpha \) and an encryption \(\text{Enc}_{e_k}(\alpha) \), one can efficiently compute a random encryption \(\text{Enc}_{e_k}(\alpha a) \).

Such a threshold encryption scheme can be based on, for example, the Paillier cryptosystem \([\text{Pa99}]\).

2.2 Distributed Primitives

When relevant, our primitives take input from a value set \(V \) with \(|V| \geq 2 \); we assume that default value \(\bot \not\in V \). We distinguish between algorithms that generate output (generally called liveness), and algorithms that additionally terminate.
particular, an algorithm may be live but not terminating, since it may need to still remain online and send more messages to help other parties output. Our treatment of liveness and termination varies between the primitives we introduce below. Note that ⊥ is considered as a valid output in each protocol.

We first introduce intrusion-tolerant Byzantine agreement and secure broadcast, the two main building blocks we use to build DKG. Byzantine agreement is a classic primitive that allows parties which each input a value to agree on a common output value. We define liveness (generating output) and termination in two separate properties below. We emphasise that our definition captures the standard Byzantine agreement problem.

Definition 6 (Byzantine agreement). Let Π be a protocol executed by parties P_1, \ldots, P_n, where each party P_i begins holding input $v_i \in V$.

- **Validity:** Π is t-valid if the following holds whenever at most t parties are corrupted: if every honest party’s input is equal to the same value v, then every honest party outputs v.
- **Consistency:** Π is t-consistent if whenever at most t parties are corrupted, every honest party that outputs a value outputs the same value v.
- **Liveness:** Π is t-live if whenever at most t parties are corrupted, every honest party outputs a value $v \in V \cup \{\perp\}$.
- **Termination:** Π is t-terminating if whenever at most t parties are corrupted, every honest party terminates.
- **Intrusion tolerance:** Π is t-intrusion tolerant if whenever at most t parties are corrupted, every honest party that outputs a value either outputs an honest party’s input v or \perp.
- **Validity with termination:** Π is t-valid with termination if the following holds whenever at most t parties are corrupted: if every honest party’s input is equal to the same value v, then every honest party outputs v and terminates.

If Π is t-valid, t-consistent, t-live, and t-terminating, we say it is t-secure. If Π is t-secure and is t-intrusion tolerant, we say it is t-secure with intrusion tolerance.

In secure broadcast (or just broadcast), parties aim to agree on a value which is either the value chosen by the designated sender or a default value (in case the sender is corrupted). Our definition handles termination directly, even in asynchrony (where we only guarantee weak validity). As for Byzantine agreement, the following captures the standard broadcast primitive.

Definition 7 (Secure broadcast (BC)). Let Π be a protocol executed by parties P_1, \ldots, P_n, where a designated party P begins holding input $v \in V$.

- **Validity:** Π is t-valid if whenever at most t parties are corrupted: if party P is honest and inputs v, then all honest parties P_j output $v = v'$.
- **Consistency:** Π is t-consistent if whenever at most t parties are corrupted, every honest party outputs the same value v'.
- **Liveness:** Π is t-live if whenever at most t parties are corrupted, every honest party outputs a value $v' \in V \cup \{\perp\}$.
– **Termination:** \(\Pi \) is \(t \)-terminating if whenever at most \(t \) parties are corrupted, every honest party terminates.

– **External validity:** \(\Pi \) is \(t \)-externally valid if the following holds whenever at most \(t \) parties are corrupted: if honest party \(P_i \) outputs \(v' \), then for validity predicate \(Q \), \(Q(v) \) is true.

– **Weak validity:** \(\Pi \) is \(t \)-weakly valid if whenever at most \(t \) parties are corrupted: if \(P \) is honest and inputs \(v \), then all honest parties \(P_i \) output either \(v \) or \(\bot \) and terminate upon generating output.

If \(\Pi \) is \(t \)-valid, \(t \)-consistent, \(t \)-live and \(t \)-terminating, we say it is \(t \)-secure.

Note that weak validity was defined in [BKL19] and external validity was introduced in [CKPS01] for Byzantine agreement.

We define our distributed key generation (DKG) primitive. In DKG, a set of parties collaborates to share a uniformly random secret. Each party outputs the public key corresponding to the secret, their own secret share and a set of public shares that parties can use to prove ownership of their share. We restrict our definition to the case where parties share a uniform field element associated to some group generated by \(g \), i.e. a public key \(y = g^x \) and secret \(x \); one can generalise or vary the definition to capture other settings.

Definition 8 (Distributed key generation (DKG)). Let \(\Pi \) be a protocol executed by parties \(P_1, \ldots, P_n \), where each party \(P_i \) outputs a secret key share \(ss_i \), a vector of public key shares \((ps_1, \ldots, ps_n) \), a public key \(pk \) and parties terminate upon generating output.

– **Correctness:** \(\Pi \) is \((t, d) \)-correct for \(d > t \) if whenever at most \(t \) parties are corrupted, there exists a polynomial \(f \in \mathbb{Z}_p[X] \) of degree \(d - 1 \) such that for all \(i \in [1, n] \), \(ss_i = f(i) \) and \(ps_i = g^{ss_i} \). Moreover, \(pk = g^{f(0)} \).

– **Consistency:** \(\Pi \) is \(t \)-consistent if whenever at most \(t \) parties are corrupted, all honest parties output the same public key \(pk \) and the same vector of public key shares \((ps_1, \ldots, ps_n) \).

– **Secrecy:** \(\Pi \) is \(t \)-secret if the following holds whenever at most \(t \) parties are corrupted: For every (PPT) adversary \(A \), there exists a (PPT) simulator \(S \) with the following property. On input an element \(y \in \mathbb{G} \) and a set of corrupted parties \(B \) with \(|B| \leq t \), \(S \) generates a transcript whose distribution is computationally indistinguishable from \(A \)'s view of a run of \(\Pi \) with corrupted set \(B \) in which all honest parties output \(y \) as their public key.

– **Uniformity:** \(\Pi \) is \(t \)-uniform if the following holds whenever at most \(t \) parties are corrupted: Fix \(y \in \mathbb{G} \). Then, for every (PPT) adversary \(A \), for every honest party that outputs public key \(pk \), \(pk = y \) holds with probability negligibly close to \(1/p \), where the probability is taken over \(A \)'s randomness (and not the coins used in setup).

If \(\Pi \) is \((t, d) \)-correct, \(t \)-consistent, \(t \)-secret, and \(t \)-uniform, we say it is \((t, d) \)-secure.
Our definition is adapted from that of Bacho and Loss [BL22] except we only require a standard secrecy notion akin to that of Gennaro et al. [GJKR07]. As we consider static security, our simulator is parametrised by the set of corrupted parties B chosen by the adversary. Apart from our additional uniformity property, the main difference is that we allow the secret threshold to be a value d that exceeds the number of corruptions t by more than 1. Looking forward, our DKG protocol will satisfy (t_s, d)-security in synchrony and (t_a, d)-security in asynchrony for $d = t_s + 1$. In particular, our protocol achieves t_a-secrecy in asynchrony. The definition of secrecy is not well-defined in asynchrony when considering more than t_a corruptions, because in particular not all parties may output y (or worse yet they may output different keys). One could define a variant of secrecy that guarantees ‘secrecy with abort’ but its usefulness is less clear given only a subset of honest parties could output a secret share.

2.3 Multi-Party Computation

A multi-party computation (MPC) protocol allows n parties P_1, \ldots, P_n, where each party P_i has a private input x_i, to jointly compute a function over the inputs $f(x_1, \ldots, x_n)$ in such a way that nothing beyond the output is revealed.

Different levels of security guarantees have been considered in the MPC literature, such as guaranteed output delivery (a.k.a. full security), where honest parties are guaranteed to obtain the correct output, or security with selective abort [IOZ14,CL17], where the adversary can choose any subset of parties to receive \bot instead of the correct output. In the case of unanimous abort [GMW87,FGH02], the adversary can choose whether all honest parties receive the correct output or all honest parties receive \bot as output.

When the network is asynchronous, it is provably impossible that the computed function takes into account all inputs from honest parties [BCG93,BKR94], since one cannot distinguish between a dishonest party not sending its input, or an honest party’s input being delayed. Hence, we say that a protocol achieves L-output quality, if the output to be computed contains the inputs from at least L parties. This is modeled in the ideal functionality as allowing the ideal adversary to choose a subset S of L parties. The functionality then computes $f(x_1, \ldots, x_n)$, where $x_i = v_i$ is the input of P_i in the case that $P_i \in S$, and otherwise $x_i = \bot$.

We describe the ideal functionality $F_{\text{sfe}}^{\text{sec},L}$ for MPC with full security and L-output quality below.

In addition, we denote the functionality $F_{\text{sfe}}^{\text{sout},L}$ (resp. $F_{\text{sfe}}^{\text{uout},L}$), the above functionality, where the adversary can selectively choose any subset of parties to obtain \bot as the output (resp. choose that either all honest parties receive $f(x_1, \ldots, x_n)$ or \bot).

Definition 9. A protocol π achieves full security (resp. selective abort; unanimous abort) with L output-quality if it UC-realizes functionality $F_{\text{sfe}}^{\text{sec},L}$ ($F_{\text{sfe}}^{\text{sout},L}$, $F_{\text{sfe}}^{\text{uout},L}$).
– \mathcal{F}_{se} is parameterized by a set \mathcal{P} of n parties and a function $f : \{(0,1)^* \cup \{\bot\}\}^n \to \{(0,1)^*\}^n$. For each $P_i \in \mathcal{P}$, initialize the variables $x_i = y_i = \bot$. Set $S = \mathcal{P}$.
– On input (Input,v) from $P_i \in \mathcal{P}$, if $P_i \in S$, set $x_i = v$ and send a message (Input,P_i) to the adversary.
– On input $(\text{OutputSet},S')$ from the ideal adversary, where $S' \subseteq \mathcal{P}$ and $|S'| = L$, set $S = S'$ and $x_i = \bot$ for each $P_i \notin S$.
– Once all inputs from honest parties in S have been input, set each $y_i = f(x_1,\ldots,x_n)$.
– On input (GetOutput) from P_i, output (Output,y_i,sid) to P_i.

Fig. 1: Secure Function Evaluation Functionality.

Since protocols run in a synchronous network typically achieve n-output quality, we implicitly assume that all synchronous protocols we discuss achieve n-output quality (unless otherwise specified).

Weak termination. In this work, similar to that of [BLL20], we consider protocols with the following weaker termination property: we say that a protocol has weak termination, if parties are guaranteed to terminate upon receiving an output different than \bot, but do not necessarily terminate if the output is \bot.

3 Communication-Efficient Network-Agnostic DKG

In this section, we construct our distributed key generation protocol $\Pi_{\text{DKG}}^{t_a,t_s}$ with threshold $d = t_s + 1$ which we will show is t_s- (resp. t_a-) secure when run over a synchronous (resp. asynchronous) network. We present Π_{DKG} in Figure 2 which uses two helper functions that we define separately in Figure 3. We recall public parameters $\text{par} = (G,p,g,h)$ introduced in Section 2 where g and h are independent generators of group G of prime order p. Π_{DKG} relies on the following underlying protocols:

– Π_{ADKG}, an asynchronous DKG protocol. We assume that Π_{ADKG} is (t_a,d)-secure with threshold $d = t_s + 1$ and has $O(\lambda n^3)$ communication complexity. The protocol from Das et al. [DYX+22] satisfies these requirements.
– $\Pi_{\text{BC-Ext}}$, a secure broadcast protocol with default value \bot_{bc}. We assume that $\Pi_{\text{BC-Ext}}$ is t_s-secure when run on a synchronous network, t_a-weakly valid on an asynchronous network, t_s-externally valid and t_s-intrusion tolerant. For a message of length ℓ, we require that $\Pi_{\text{BC-Ext}}$ has communication complexity $O(\ell n + \lambda n^2)$. The protocol $\Pi_{\text{BC-Ext}}$ defined in Figure 7 satisfies these requirements.
– Π_{IT}, a multivalued Byzantine agreement protocol with default value \bot_{it}. We assume that Π_{IT} is t_a-secure with intrusion tolerance and t_s-valid with
Fig. 2: DKG protocol with threshold $d = t_s + 1$ from the perspective of party P_1. Note that under synchrony that each step will be executed in sequence.
Fig. 3: DKG helper functions from the perspective of party P_i.

We also assume the existence of a public-key encryption scheme pke, an accumulator acc and a linear erasure coding scheme rs. Finally, we require two NIZKS, nizk_1 and nizk_2, which define the following relations:

- nizk_1: Statements X_1 and witnesses $(s_{ij}, u_{ij}) \in \mathbb{Z}_p^2$, where X_1 is the statement that $\prod_{i=0}^{s_i} (C_{ik})^k = c_{ij}$, and c_{ij} is an encryption of (s_{ij}, u_{ij}) under ek_{ij}, where variables C_{ik} and c_{ij} are introduced in step 1 of Π_{DKG}.
- nizk_2: Statements X_2 and witnesses $(x_i, x_i') \in \mathbb{Z}_p^2$, where X_2 is the statement, given (public) values A and B, that $A = g^{x_i}$ and $B = g^{x_i} h^{x_i'}$.

Π_{DKG} proceeds as follows.

Step 1: Let P_i be an honest party executing Π_{DKG}. P_i chooses two random polynomials $f_i(j)$, $f_i(j)'$ of degree t_s with coefficients a_{ik} and b_{ik} for $k \in [0, t_s]$. In this step, P_i will share points $(j, f_i(j))$ and $(j, f_i(j)')$ with each party P_j, $j \in [1, n]$, using public-key encryption scheme pke. As in Pedersen’s verifiable secret sharing scheme [Ped92], P_i will also compute Pedersen commitments $C_{ik} = g^{a_{ik}} h^{b_{ik}}$ that allow parties to evaluate the polynomials in the exponents g and h together. In particular, the inclusion of polynomial f' blinds f such that values that contribute to the final secret are hidden from the adversary until after it has been decided, preventing the adversary from biasing the secret. In order for all parties to verify that all parties have received correct sharings, P_i will further compute a NIZK π_{ij} via nizk_1 for each P_j that verifies that the encrypted values under P_j’s key are exactly $f_i(j)$ and $f_i(j)'$. All n parties then invoke $\Pi_{\text{BC-Ext}}$ (secure broadcast), inputting a message to the i-th instance containing these Pedersen commitments, encryptions for all n parties and the corresponding NIZK proofs.

Steps 2 and 3: If the network is synchronous, then by t_s-security of $\Pi_{\text{BC-Ext}}$ and since at least $n-t_s$ honest parties broadcast, all parties will agree on the same set of values of size $\geq n-t_s$ once all instances of $\Pi_{\text{BC-Ext}}$ terminate at the
same time T. By t_s-external validity of $Π_{BC}$, only messages that are Valid (Figure 3) – namely, those which are well-formed and contain n valid NIZKs – can be output. Note in asynchrony that $Π_{BC}$ does not satisfy consistency, so honest parties could output different messages. To resolve this, it would be natural for parties to execute consensus on the output of $Π_{BC}$ that ensures t_s-validity in synchrony and t_s-security in asynchrony. However, not all parties may output $n-t_s$ values from $Π_{BC}$, so parties require a mechanism to ‘abort’ if not enough values are obtained from consensus.

We use intrusion-tolerant consensus $Π_T$ to efficiently solve this problem. Rather than proposing the entire, $O(\lambda n^2)$-sized output of $Π_{BC}$ to consensus, P_i instead proposes an accumulated value z to $Π_T$. Intuitively, z accumulates n values (one per party) each of size $O(\lambda n)$ corresponding to the information that each party ‘needs’ to eventually reconstruct their secret share and the common public key; we describe these values further below. If an honest party does not output enough values from $Π_{BC}$, they instead propose \bot_{dkg} to $Π_T$. $Π_T$ guarantees that a decided value is either one proposed by an honest party or \bot. Consequently, if $Π_T$ outputs $v \in \{\bot, \bot_{dkg}\}$, all honest parties fallback to $Π_{DKG}$. This will not occur in synchrony and may or may not occur in asynchrony. Otherwise, all honest parties output the same accumulated value z.

Steps 4 and 5: If $z \notin \{\bot, \bot_{dkg}\}$ is decided by $Π_T$, then z must have been proposed by an honest party, say P_j. Assuming this is true, P_j (plus any other honest party that output z) sends each party their ‘value’ accumulated in z alongside a proof of membership. Party P_i obtains their value L_i this way, where L_i is computed using Split (Figure 3). More precisely, L_i contains:

- The same Q for all n parties, corresponding to the ‘qualified’ set of parties of size $\geq n-t_s$ from which P_j received values from $Π_{BC}$;
- $|Q|$ ciphertexts encrypting $f_q(i)$ and $f_q'(i)$ to P_i for all $q \in Q$; and
- Commitment $C_j^* = g^{\sum_{q \in Q} f_q(i)} h^{\sum_{q \in Q} f_q'(i)}$.

These messages allow each party to reconstruct a sharing of a secret $\sum_{q \in Q} f_q(0)$. After deciding z from $Π_T$, P_j sends the relevant part message to all parties, which parties verify is correct with acc.Verify.

Steps 6 and 7: At this point, P_i has received a valid message of the form $(\text{part}, L_i = (c_j^*, C_j^*, Q), w_i)$. By decrypting values in c_j^*, P_i can deduce its own secret share $x_i = \sum_{j \in Q} f_j(i)$ but not necessarily the corresponding public shares $g^{F(1)}, \ldots, g^{F(n)}$ and public key $g^{F(0)}$. Thus, parties will collaborate to compute g^z by reconstructing the polynomial $F(\cdot) = \sum_{j \in Q} f_j(\cdot)$ in the exponent of g to this end, parties will reveal their share g^x_i and then compute a proof with nizk2 that shows that it is consistent with the sharings of polynomials $f_j(\cdot)$ and $f_j'(\cdot)$ in step 1 of the protocol (which were previously hidden). More precisely, P_i computes $D_i = g^{x_i}, x_i' = \sum_{j \in Q} f_j'(i)$ (by decryption of c_j^*), $C_j'' = g^{x_i} h^{x_i'}$, and $\pi_j' = \text{nizk2.Prove}(X_2, (x_i, x_i'))$. Then, P_i multicasts a reconstruction message
overhead, again assuming nizk step 5, O

Theorem 1. Let G

cryptographic group using the efficient NIZK used in [SBKN21] in the random oracle model in any send n 4 to 7 are ignored, and Π group under the decisional composite residuosity assumption [CGG + NIZKs, one can instantiate nizk and O with Communication Complexity. At step 1, each party invokes secure broadcast such values, Pg be of the form [135x422]t

Lemma 1. Let d

Communication Complexity. At step 1, each party invokes secure broadcast with O(λn)-sized input (assuming NIZKs are size O(λ), each which costs O(nℓ + λn^2), so this step incurs O(λn^3) overhead. Apart from using generic NIZKs, one can instantiate nizk1 with O(λ)-sized proofs in a suitable Paillier group under the decisional composite residuosity assumption [CGG +20]. At step 2, ΠIT takes O(λn^3) communication. If parties invoke ΠADKG, then steps 4 to 7 are ignored, and ΠADKG costs O(λn^3) itself. At step 4, O(n) parties send n part messages, each of size O(λn), so this incurs O(λn^3) overhead. At step 5, O(n) parties multicast a recon message of size O(λn), incurring O(λn^3) overhead, again assuming nizk2 has O(λ)-sized proofs. nizk2 can be instantiated using the efficient NIZK used in [SBKN21] in the random oracle model in any cryptographic group G. Thus, ΠDKG has a communication complexity of O(λn^3).

We defer proofs for results stated in the main body hereafter to Appendix E.

Theorem 1. Let n, t_s, t_a be such that 0 ≤ t_a < \frac{n}{2} ≤ t_s < \frac{n}{2} and t_a + 2 \cdot t_s < n, and let d = t_s + 1. Then distributed key generation protocol ΠDKG (Figures 2 and 3) is (t_s, d)-secure when run on a synchronous network and (t_a, d)-secure when run on an asynchronous network.

Corruption Thresholds. Our construction shows that t_a + 2 \cdot t_s < n corruptions are sufficient to ensure (t_s, d)-security in synchrony and (t_a, d)-security in asynchrony for d = t_s + 1. We also note that it is also necessary:

Lemma 1. Let n, t_a, t_s be such that t_a + 2 \cdot t_s ≥ n. Then, if DKG protocol Π is t_s-uniform in a synchronous network, then it cannot also be t_a-consistent in an asynchronous network.

4 Multi-Party Computation with Asynchronous Fallback Guarantees

4.1 Multi-Party Zero-Knowledge Protocols

Let us assume a binary relation R, consisting of pairs (x, w), where x is the statement, and w is a witness to the statement. A zero-knowledge proof allows a

recon containing D_i, the proof π'_j and P_i’s value L_i alongside w_i, the proof of inclusion in z.

On receipt of a recon message from P_j, P_i can verify that 1) L_j was accumulated in z (using acc.Verify), and 2) the NIZK π'_j is correct and, in particular, is consistent with the value C'_i = g^{\epsilon_i}h^{x'_i} contained in L_j. Because these checks pass, the value C'_i must be of the form g^{\epsilon_i}h^{x'_i} computed by a honest party that output z from ΠIT, and thus the value D_j contained in the recon message must be of the form g^{\sum_{k=0}^{j} f_k(j)}, i.e. it must be a valid share. When P_i receives t_s + 1 such values, P_i evaluates F(0) in the exponent of g to derive public key g^z and F(j) for j ∈ [1, n] to derive the n public shares. At this point, P_i terminates.
prover P to prove to a verifier V knowledge of w such that $R(x, w) = 1$. We are interested in zero-knowledge proofs for three types of relations, parameterized by a threshold encryption scheme with public encryption key ek.

1. **Proof of Plaintext Knowledge**: The statement consists of ek, and a ciphertext c. The witness consists of a plaintext m and randomness r such that $c = TEnc_{ek}(m, r)$.

2. **Proof of Correct Multiplication**: The statement consists of ek, and ciphertexts c_1, c_2 and c_3. The witness consists of a plaintext m_1 and randomness r_1, r_3 such that $c_1 = TEnc_{ek}(m_1, r_1)$ and $c_3 = m_1 \cdot c_2 + TEnc_{ek}(0; r_3)$.

3. **Proof of Correct Decryption**: The statement consists of ek, a ciphertext c, and a decryption share d. The witness consists of a decryption key share dk_i, such that $d = TDec_{dk_i}(c)$.

Assuming a PKI infrastructure and honest majority, one can realize a Non-interactive Zero-Knowledge Proof (NIZK) system (without the need to assume a trusted CRS setup) using the multi-string honest majority NIZK by Groth and Ostrovsky [GO07]. By distributing the NIZK proof with a (multivalued) secure broadcast protocol Π_{t_s, t_a} that is t_s-secure in synchrony and t_a-weak-validity when the network is asynchronous, we obtain the following lemma:

Lemma 2. Let R be a relation. Let n, t_s, t_a be such that $t_a, t_s < n/2$. Assuming honest majority, there is a protocol that realizes the multi-party zero-knowledge functionality for P as prover with the following guarantees:

1. When run in a synchronous network, it achieves full security up to t_s corruptions.
2. When run in an asynchronous network, it achieves security with selective abort up to t_a corruptions.

4.2 Protocol Description

We describe an optimized version of the MPC protocol with fallback by Blum, Liu-Zhang and Loss [BLZ20], with communication complexity $O(n^2 \lambda)$ bits per multiplication gate. This matches the asymptotic communication complexity of the current most efficient purely asynchronous MPC protocols [HNP08,CHLZ21] in the setting of optimal resilience $t < n/3$, without the use of multiplicative-homomorphic threshold encryption schemes.

The protocol makes use of a threshold additive homomorphic encryption scheme ($\text{Keygen}, TEnc, TDec, TRec$) and a secure broadcast protocol $\Pi_{BC}^{t_s,1/2}$ that achieves t_s-security when the network is synchronous and t_a-weak validity when the network is asynchronous and with communication complexity $O(n\ell + \text{poly}(n, \lambda))$, where ℓ is the input size.

The protocol is divided into two phases: an offline and an online phase. The offline phase generates Beaver multiplication triples (in encrypted form) and can be executed without the knowledge of the inputs. In the online phase, parties distribute their inputs and process the circuit to evaluate in a gate-by-gate fashion, where addition gates are processed locally and multiplication gates are processed with the help of the Beaver triples, via two public reconstructions.
Triple Generation. In order to generate Beaver triples (Figure 4), we make use of a multi-valued broadcast protocol $\Pi^{t_{s},t_{a}}_{BC}$ that is t_{s}-secure when run on a synchronous network and t_{a}-weakly valid that terminates after T_{bc} rounds.

\[
H^{\ell}_{\text{triples}}(\ell)
\]

- Each P_j computes random values a_1^j, \ldots, a_ℓ^j and computes corresponding encryptions A_1^j, \ldots, A_ℓ^j, where $A_i^j = \text{TEnc}(a_i^j)$. Then, use the multi-valued broadcast protocol with weak-validity $\Pi^{t_{s},t_{a}}_{BC}$ to broadcast all these values. Also use the multi-party zero-knowledge F_{mak} to prove plaintext knowledge of the ciphertexts. Wait for T_{bc} time.
- Let S_i be the subset of the parties succeeding with the proof towards party P_i. Run n times the protocol $H^{n,\ell}_{BA}$, each one to decide for each party P_j’s proof. Input 1 to party j’s BA if and only if $j \in S_i$. Wait for T_{ba}.
- Let S be the subset of the parties for which $H^{n,\ell}_{BA}$ outputs 1. Check that $|S| \geq n - t_s$. If not, output \bot and terminate.
- Compute $A^i = \sum_{k \in S} A_k^i$.
- Each P_j computes random values b_1^j, \ldots, b_ℓ^j and computes corresponding encryptions B_1^j, \ldots, B_ℓ^j, where $B_j^i = \text{TEnc}(b_j)$ and $C_j^i = b_j \cdot A_i$. Then, use the multi-valued broadcast protocol $\Pi^{t_{s},t_{a}}_{BC}$ to broadcast all these values. Also use the multi-party zero-knowledge F_{mak} to give proofs of correct multiplication for each (B_j^i, A_i, C_j^i). Wait for T_{bc} time.
- Let S'_i be the subset of the parties succeeding with the proof towards party P_i. Run n times the protocol $H^{n,\ell}_{BA}$, each one to decide for each party P_j’s proof. Input 1 to party j’s BA if and only if $j \in S'_i$. Wait for T_{ba}.
- Let S' be the subset of the parties for which $H^{n,\ell}_{BA}$ outputs 1. Check that $|S'| \geq n - t_s$. If not, output \bot and terminate.
- Compute $B^i = \sum_{k \in S'} B_k^i$ and $C^i = \sum_{k \in S'} C_k^i$.
- Output the triples (A^i, B^i, C^i) for each $i = 1, \ldots, \ell$.

![Fig. 4: Beaver Triple Generation.](image-url)

Communication Complexity. The communication complexity amounts to n parallel instances of secure broadcast with input size ℓ encryptions and non-interactive zero-knowledge proofs, and an additive term (independent of the number ℓ) corresponding to n parallel instances of BA. This incurs a total communication of $O(n^2 \ell + \text{poly}(n, \lambda))$ bits.

Lemma 3. Let n, t_s, t_a be such that $t_s, t_a < n$. $H^{n,\ell}_{\text{triples}}(\ell)$ is an n-party protocol with communication complexity $O(n^2 \ell + \text{poly}(n, \lambda))$, achieving the following guarantees:

- When the network is synchronous and there are up to t_s corruptions, all parties output the same ℓ encrypted random multiplication triples, with the plaintexts unknown to the adversary.
When the network is asynchronous and there are up to \(t_a \) corruptions, the output of each party \(P_i \) is either \(\ell \) encrypted random multiplication triples with the plaintexts unknown to the adversary or \(\perp \).

Synchronous Protocol with Unanimous Output. We present the synchronous MPC protocol that achieves full security when the network is synchronous and there are \(t_s \) corruptions, but also achieves unanimous output up to \(t_a \) corruptions under an asynchronous network. The protocol is an optimized version of the one in [BLL20], where the multiplication gates are executed using Beaver triples generated during an Offline Phase, and incurs a communication complexity of \(O(n^2) \) field elements per multiplication gate. We defer the protocol description to the appendices (Figures 14 and 15), and only provide a high level description here.

The protocol closely follows the one by Blum, Liu-Zhang and Loss [BLL20], which uses a setup for threshold additive-homomorphic encryption. This approach was initially introduced by Cramer, Damgard and Nielsen [CDN01], and the idea is that parties keep threshold encryptions of the circuit wires and perform computations on a gate-by-gate fashion. First, the inputs are distributed in the form of a threshold encryption. Since the threshold encryption scheme is additively homomorphic, the addition gates can be performed locally by the parties. Multiplication gates are processed in a standard manner using Beaver triples. The only difference in the network-agnostic setting is that in some parts of the protocol (such as the input distribution, or the triples generation), in the case the network is asynchronous, there might be information missing (e.g. input ciphertexts or encrypted triples). For that, the protocol in [BLL20] makes use of an abort flag. As soon as a party detects that not enough information has arrived by a certain amount of time, it sets the flag to 1, and stops executing further steps of the protocol. This can only make the protocol stall, but will not compromise security. Before the output is decrypted, an agreement on a core-set sub-primitive also known as ACS (see [BLL20] for details on this primitive) is run to see whether parties must decrypt or not. This ensures that parties agree on whether the output was computed. If yes, they can jointly (and safely) decrypt the output ciphertext. If not, all parties output \(\perp \).

Lemma 4. Let \(n, t_s, t_a \) be such that \(0 \leq t_a < n/3 \leq t_s < n/2 \) and \(t_a + 2t_s < n \). Protocol \(\Pi_{\text{mpc}}^{t_s,t_a} \) has communication complexity \(O(\lambda n^2|C| + \text{poly}(n, \lambda)) \) bits, where the \(C \) is the circuit to evaluate, and satisfies:

- When run in a synchronous network, it achieves full security up to \(t_s \) corruptions.
- When run in an asynchronous network, it achieves unanimous output with weak termination up to \(t_a \) corruptions and has \(n - t_s \) output quality.

4.3 Protocol Compiler

In this section, we restate the protocol \(\Pi_{\text{mpc}}^{t_s,t_a} \) for secure function evaluation presented in [BLL20] which tolerates up to \(t_s \) (resp. \(t_a \)) corruptions when the
network is synchronous (resp. asynchronous), for any \(0 \leq t_a < \frac{n}{3} \leq t_s < \frac{n}{2}\) satisfying \(t_a + 2t_s < n\). The protocol is based on two sub-protocols:

- \(\Pi_{\text{smpc}}^{t_s, t_a}\) is a secure function evaluation protocol which gives full security up to \(t_s\) corruptions when run in a synchronous network, and achieves unanimous output with weak termination up to \(t_a\) corruptions and has \(n - t_s\) output quality when run in an asynchronous network.

- \(\Pi_{\text{ampc}}^{t_a}\) is a secure function evaluation protocol which gives full security up to \(t_a\) corruptions and has \(n - t_a\) output quality when run in an asynchronous network.

Theorem 2 ([BLL20]). Let \(n, t_s, t_a\) be such that \(0 \leq t_a < \frac{n}{3} \leq t_s < \frac{n}{2}\) and \(t_a + 2t_s < n\). Given sub-protocols \(\Pi_{\text{smpc}}^{t_s, t_a}\) and \(\Pi_{\text{ampc}}^{t_a}\) with the guarantees described above, there is a protocol \(\Pi_{\text{mpc}}^{t_s, t_a}\) with communication complexity the sum of the communication of the two sub-protocols, satisfying the following properties:

1. When run in a synchronous network, it achieves full security up to \(t_s\) corruptions.
2. When run in an asynchronous network, it achieves full security up to \(t_a\) corruptions and has \(n - t_s\) output quality.

Using Lemma 4 and Theorem 2 and a quadratic asynchronous protocol (see e.g. [HNP08]) we obtain a protocol \(\Pi_{\text{mpc}}^{t_s, t_a}\) with communication complexity \(O(n^2)\) field elements per multiplication gate. Moreover, using Theorem 1 we can base our protocol on a plain public-key infrastructure.

Corollary 1. Assuming a plain PKI, there is an MPC protocol \(\Pi_{\text{mpc}}^{t_s, t_a}\) with communication complexity \(O(n^2|C|\lambda + \text{poly}(n, \lambda))\) bits, satisfying the following properties:

1. When run in a synchronous network, it achieves full security up to \(t_s\) corruptions.
2. When run in an asynchronous network, it achieves full security up to \(t_a\) corruptions and has \(n - t_s\) output quality.

References

Appendices

A Deferred Definitions and Security Notions

We first define aggregate signatures which we use later in these appendices. In an aggregate signature scheme, a party can use their signing key to sign a message individually. All parties can also call Combine to combine several (possibly already aggregated) signatures with respect to the same message to form a new signature on the same message. As usual, signatures can also be verified via Verify. We emphasise that Combine and Verify are non-interactive algorithms in this work.

Definition 10 (Aggregate signatures). An aggregate signature scheme is a 4-tuple of PPT algorithms (KeyGen, Sign, Combine, Verify) such that:

- KeyGen: This is a key generation protocol that takes as input the security parameter \(\lambda \) and outputs \(n \) independent public-secret key pairs \((vk_i, sk_i)\), \(i \in [1, n] \).
- Sign: This is a probabilistic signing algorithm that takes as input a secret key \(sk_i \) and a message \(m \in \{0, 1\}^* \). It outputs a signature \(\sigma_i \), denoted as \(\sigma_i \leftarrow \text{Sign}(sk_i, m) \).
- Combine: This is a deterministic signature combining algorithm that takes as input a sequence of signatures \(\Sigma = (\sigma_{i(1)}, \ldots, \sigma_{i(k)}) \), the corresponding sequence of sets of verification keys \(VK = (vk_{i(1)}, \ldots, vk_{i(k)}) \) and a message \(m \). It outputs either an aggregate signature \(\sigma \) with respect to public keys \(\cup_{j \in [1, k]} vk_{i(j)} \), denoted as \(\sigma \leftarrow \text{Combine}(\Sigma, VK, m) \), or \(\perp \).
- Verify: This is a deterministic signature verification algorithm that takes as input a message \(m \), an aggregate signature \(\sigma \), and the set of verification keys \(VK = \{vk_1, \ldots, vk_k\} \) corresponding to \(\sigma \). It outputs an acceptance bit \(b \), denoted as \(b \leftarrow \text{Verify}(VK, \sigma, m) \), where \(1 \) denotes acceptance.

We sometimes write \(\langle m \rangle_i \), which is defined as \((m, \sigma) \) where \(\sigma \leftarrow \text{Sign}(sk_i, m) \). For a single verification key \(vk \) (resp. signature \(\sigma \)), we sometimes write \(vk \) (resp. \(\sigma \)) instead of \(\{vk\} \) (resp. \(\{\sigma\} \)) as input to Combine and Verify.

One can instantiate aggregate signatures of size \(O(\lambda) + P \) in the random oracle model, where \(P \) is the size of representing the signers (in our work \(P = n \) using a bitmask and PKI for parties to map indices to public keys locally) \[BGLS03\].

Similarly, we require individual (non-aggregated) signatures of size \(O(\lambda) \). We implicitly assume domain separation when signing messages in protocols we introduce.

We introduce relevant security definitions for a public key encryption scheme (PKE), an aggregate signature scheme, an cryptographic accumulator and a non-interactive zero-knowledge proof (NIZK). We begin with the definition of CPA-security of a PKE scheme.
Definition 11 (CPA-Security of PKE). Let $\Pi_{PKE} = (\text{KeyGen}, \text{Enc}, \text{Dec})$ be a public key encryption scheme. For $b \in \{0, 1\}$ and an algorithm A, define experiment $\text{CPA}_A^{\Pi_{PKE}}(\lambda, b)$ as follows:

1. Run the key generation algorithm and get $(e_k, d_k) \leftarrow \text{KeyGen}(\lambda)$.
2. Run A on input (e_k, d_k) and get a pair of same-length messages m_0, m_1.
3. Compute the ciphertext $c \leftarrow \text{Enc}(e_k, m_b)$ and run A on input c.
4. When A returns $b' \in \{0, 1\}$, the experiment returns b'.

We say that Π_{PKE} has indistinguishable encryptions against chosen plaintext attacks (CPA-security) if for all PPT algorithms A, we have

$$\left| \Pr[\text{CPA}_A^{\Pi_{PKE}}(\lambda, 1) = 1] - \Pr[\text{CPA}_A^{\Pi_{PKE}}(\lambda, 0) = 1] \right| \leq \text{negl}(\lambda).$$

We proceed with the definition of a collision-resistant accumulator, which we see as the notion of a secure accumulator.

Definition 12 (Collision-Resistant Accumulator). Let $\Pi_{Acc} = (\text{Gen}, \text{Eval}, \text{CreateWit}, \text{Verify})$ be a cryptographic accumulator. For set size n and an algorithm A, define experiment $\text{CR}_A^{\Pi_{Acc}}(\lambda, n)$ as follows:

1. Run the generation algorithm and get $a_k \leftarrow \text{Gen}(\lambda, n)$.
2. Run A on input (n, a_k) and get $((d_1, \ldots, d_n), d', w')$.
3. Compute the accumulation value $z \leftarrow \text{Eval}(a_k, \{d_1, \ldots, d_n\})$.
4. If $d' \notin \{d_1, \ldots, d_n\}$ and $\text{Verify}(a_k, z, w', d') = 1$, the experiment returns 1. Otherwise it returns 0.

We say that Π_{Acc} is collision-resistant or secure if for all PPT algorithms A and any n, we have

$$\Pr[\text{CR}_A^{\Pi_{Acc}}(\lambda, n) = 1] \leq \text{negl}(\lambda).$$

We proceed with the definition of the security of an aggregate signature scheme, which is given by the unforgeability (under chosen message attack) of aggregate signatures.

Definition 13 (Unforgeability under Chosen Message Attack). Let $\Pi_{AggSgn} = (\text{KeyGen}, \text{Sign}, \text{Combine}, \text{Verify})$ be an aggregate signature scheme. For an algorithm A, define experiment $\text{UF-CMA}_A^{\Pi_{AggSgn}}(\lambda)$ as follows:

1. Run the key generation algorithm and get public-secret key pair (v_{k_1}, s_{k_1}). A is given a public key v_{k_1}.
2. At any time of the experiment, A gets access to a signing oracle that answers oracle queries of the following type: When A submits a message $m \in \{0, 1\}^*$ of its choice, return $\sigma_1 \leftarrow \text{Sign}(s_{k_1}, m)$.
3. A outputs $k - 1$ additional public keys v_{k_2}, \ldots, v_{k_k} for some $k \geq 1$ and a message m^*. A outputs an aggregate signature σ^* with respect to public keys $VK = \{v_{k_1}, \ldots, v_{k_k}\}$ and message m^*.
4. If $\text{Verify}(VK, \sigma^*, m^*) = 1$ and m^* was not queried previously by A, the experiment returns 1. Otherwise it returns 0.
We say that \(\Pi_{\text{AggSgn}} \) is unforgeable under chosen message attack (UF-CMA) or just secure if for all PPT algorithms \(A \), we have \(\Pr[\text{UF-CMA}_{\Pi_{\text{AggSgn}}}^{A}(\lambda) = 1] \leq \text{negl}(\lambda) \).

We end this section with some security notions for a non-interactive zero-knowledge proof. For this, we require perfect completeness, zero-knowledge and simulation-sound extractability. Henceforth, we let \(R \) be an NP relation and \(L \) the corresponding language.

Definition 14 (Perfect Completeness of NIZK). Let \(\Pi_{\text{NIZK}} = (\text{Gen}, \text{Prove}, \text{Verify}) \) be a non-interactive zero-knowledge proof. For an algorithm \(A \), define experiment \(\text{PerfComp}_{\Pi_{\text{NIZK}}}^{A}(\lambda) \) as follows:

1. Run the parameter generation algorithm and get \(\text{par} \leftarrow \text{Gen}(\lambda) \).
2. Run \(A \) on input \(\text{par} \) and get \((X, w) \leftarrow A(\text{par}) \).
3. Compute the proof \(\pi \leftarrow \text{Prove}(X, w) \).
4. If \((X, w) \in L \) and \(\text{Verify}(X, \pi) = 1 \), the experiment returns 1. Otherwise it returns 0.

We say that \(\Pi_{\text{NIZK}} \) has perfect completeness if for all algorithms \(A \), we have \(\Pr[\text{PerfComp}_{\Pi_{\text{NIZK}}}^{A}(\lambda) = 1] = 1 \).

Definition 15 (Zero-Knowledge of NIZK). Let \(\Pi_{\text{NIZK}} = (\text{Gen}, \text{Prove}, \text{Verify}) \) be a non-interactive zero-knowledge proof. Let \(S = (S_1, S_2) \) be a pair of PPT algorithms (called the simulator). Furthermore, let \(S'(\text{par}, \tau, X, w) = S_2(\text{par}, \tau, X) \) if \((X, w) \in L \) and \(S'(\text{par}, \tau, X, w) = 0 \) if \((X, w) \notin L \). For an algorithm \(A \), we define the advantage of \(A \) as

\[
\text{Adv-ZK}_{\Pi_{\text{NIZK}}}^{A}(\lambda) = |\Pr[\text{par} \leftarrow \text{Gen}(\lambda) : A^{\text{Prove}(\text{par}, \cdot, \cdot)}(\text{par}) = 1] - \Pr[(\text{par}, \tau) \leftarrow S_1(\lambda) : A^{S'(\text{par}, \tau, \cdot, \cdot)}(\text{par}) = 1]|.
\]

We say that \(\Pi_{\text{NIZK}} \) has zero-knowledge if there exists a simulator \(S \) as above such that for all non-uniform PPT algorithms \(A \), we have \(\text{Adv-ZK}_{\Pi_{\text{NIZK}}}^{A}(\lambda) \leq \text{negl}(\lambda) \).

Definition 16 (Simulation-Soundness of NIZK). Let \(\Pi_{\text{NIZK}} = (\text{Gen}, \text{Prove}, \text{Verify}) \) be a non-interactive zero-knowledge proof. Let \(S = (S_1, S_2) \) be a pair of PPT algorithms (called the simulator). For an algorithm \(A \), we define the advantage of \(A \), where \(Q \) is the list of simulation queries and responses, as

\[
\text{Adv-ss}_{\Pi_{\text{NIZK}}}^{A}(\lambda) = \Pr[(\text{par}, \tau) \leftarrow S_1(\lambda), (X, \pi) \leftarrow A^{S_2(\text{par}, \tau, \cdot, \cdot)}(\text{par}), w \leftarrow \text{Verify}(\text{par}, X, \pi) = 1, (X, w) \notin Q \cup L].
\]

We say that \(\Pi_{\text{NIZK}} \) has simulation soundness if there exists a simulator \(S \) as above such that for all non-uniform PPT algorithms \(A \), we have \(\text{Adv-ss}_{\Pi_{\text{NIZK}}}^{A}(\lambda) \leq \text{negl}(\lambda) \).
B Communication-Efficient Synchronous Broadcast

In this section, we construct a synchronous secure broadcast protocol with complexity $O(\ell n + \lambda n^2)$ that tolerates $t < (1 - \epsilon) \cdot n$ corruptions for $\epsilon \in (0, 1)$ for messages of length ℓ. To do so, we adapt the extension protocol proposed by Nayak et al. \cite{NRS20}. Their protocol, however, relies on a λ-bit broadcast module with the same corruption tolerance and communication complexity $O(\lambda n^2)$. We therefore first construct such a protocol.

B.1 Short Message Broadcast Module

We present our protocol $\Pi_{BC}^{t,\epsilon}$ in Figure 5 that allows λ-bit messages to be broadcast in $O(\lambda n^2)$ communication complexity. We assume the existence of an aggregate signature scheme as. Let $R = O(\log n)$ and $q = O(1/\epsilon)$ be two constants that we use in the protocol and proof below.

Our protocol is similar to BulletinBC from \cite{TLP22} (Fig. 2), which is in turn similar to the well-known Dolev-Strong protocol. Whereas signatures are multicast to all users in Dolev-Strong, signatures are sent to each party with probability q/n in BulletinBC. To ensure security, BulletinBC thus requires an additional $R = O(\log n)$ rounds to ensure that the ‘gossiped’ message propagates to all parties except with negligible probability. Notably, we extend BulletinBC to support multivalued broadcast and improve communication complexity by using aggregate signatures.

In $\Pi_{BC}^{t,\epsilon}$, each party P_i manages the two local maps $\text{sent}, \text{detect} : M \rightarrow \{\text{false}, \text{true}\}$ and initially sets $\text{sent}[m] = \text{detect}[m] = \text{false}$ for all $m \in M$. Then, the designated sender P^* multicasts its signed input value m_i and sets $\text{sent}[m_i] = \text{detect}[m_i] = \text{true}$ (step 1).

The protocol then runs in $t + R$ rounds. In rounds $1 \leq r \leq t + R$, for each $m \in M$, if P_i has received a signature on m signed by the sender P^*, then if P_i can form a valid aggregate signature with $\min\{r - 1, t\}$ signers and their set $\{m' \in M : \text{sent}[m'] = \text{true}\}$ is of size ≤ 1, P_i sets $\text{sent}[m] = \text{true}$, computes an aggregate signature on it and sends this plus P^*’s signature to each party with probability q/n.

Note if we simply replace the (deterministic) multicast from Dolev-Strong with probabilistic sending, then consistency may not hold if P^* signs more than two messages. In particular, messages received by honest parties may not reach all honest parties, since we require for efficiency that they do not gossip more than two messages. To deal with this, we consider P^*’s signatures separately to those of other parties. In particular, when P_i receives a signature σ of P^* on m, if $\text{detect}[m] = \text{false}$ and $|\{m' : \text{detect}[m'] = \text{true}\}| < 2$, P_i multicasts m and the signature σ and sets $\text{detect}[m] = \text{true}$.

8For rounds $r \geq t + 1$ we do not require r signatures but just $t + 1$ including the sender’s.

9We conjecture that the protocol without these extra messages also satisfies consistency but the protocol as written has the same asymptotic complexity so we leave it as future work to prove it.
Finally, in step 3 of the protocol, if the maps \textsc{sent} and \textsc{detect} are equal and there is only one value \(m' \in M \) such that \textsc{sent}[m'] = true, then \(P_t \) outputs this value and terminates, otherwise it outputs \(\perp \) and terminates. Note if there are two or more messages \(m \) such that some honest party sets \textsc{sent}[m] = true, then the corresponding honest parties will broadcast the signer’s signature on each \(m \) which all honest parties will process and thus terminate with \(|\text{detect}| = 2 \) and output \(\perp \).

Communication Complexity. Each party gossips at most two messages of size \(O(\lambda + n + \ell) \) and multicasts at most two messages of size \(O(\lambda + \ell) \). Since below we assume that \(q = \Theta(\lambda) \), each gossip step requires sending an expected \(O(\lambda) \) messages. Thus, communication complexity is overall \(O(\lambda^2 + n^2 + \ell(n + \lambda^2)) \) which, when \(\ell = O(\lambda) \), is \(O(\lambda n^2 + \lambda^2 n) = O(\lambda n^2) \).
Theorem 3. Let \(n, t \) be such that \(t < (1 - \epsilon) \cdot n \) for constant \(\epsilon \in (0, 1) \). Then \(\Pi_{\text{BC}}^{t,\epsilon} \) (Figure 5) is \(t \)-secure when run on a synchronous network and \(n \)-weakly valid when run on an asynchronous network.

We prove this by proving the lemmas in the remainder of this subsection. Towards this goal, we begin by modeling probabilistic dissemination by the procedure \(\text{AddRandomEdges} \) (Figure 6) and prove some results used to prove \(t \)-security of our BC protocol. The techniques that follow are from [TLP22], where however they use binary input instead of multivalued one.

- Input: Set of \(n \) nodes \(W \), disjoint subsets \(S_2, S_3 \subset W, S \subset W \setminus (S_2 \cup S_3) \), integer \(q \leq n \).
- Output: The graph \(G \).
1. Let \(G \) be the empty graph with node set \(W \).
2. For every \(u \in S \) and \(v \in W \), add an edge \(\{u, v\} \) to \(G \) with probability \(q/n \).
3. Return graph \(G \).

Fig. 6: \(\text{AddRandomEdges}(W, S_2, S_3, S, q) \) procedure.

\(\text{AddRandomEdges} \) is defined over a set of nodes \(W \) that is partitioned into three disjoint subsets \(S_1, S_2, S_3 \subset W \) with \(S_1 = W \setminus (S_2 \cup S_3) \). The way \(\text{AddRandomEdges} \) works is as follows. At the beginning, we have an empty graph \(G \) with node set \(W \). Now given \(S \subset S_1 \), \(\text{AddRandomEdges} \) adds the edge \(\{u, v\} \) to the graph \(G \) with probability \(q/n \) for every pair of nodes \(u \in S \) and \(v \in W \). At the end, the resulting graph with all the added edges is output. In the context of our protocol, \(S \) will be the set of parties that send a message \(m \) at a specific round \(r \) and \(S_2 \) will be the set of parties that have not received \(m \) in a previous round. An edge from \(u \in S \) to \(v \in W \) represents that party \(u \) sends \(m \) to party \(v \) in round \(r \). Our goal is to determine how many parties in \(S_2 \) receive message \(m \) for the first time during round \(r \). For this, we define the following indicator random variables.

Definition 17. Let \(G \leftarrow \text{AddRandomEdges}(W, S_2, S_3, S, q) \). For all \(u \in S_2 \), let \(Z_u \in \{0, 1\} \) with \(Z_u = 1 \) if and only if \(u \) has nonzero degree in \(G \).

We find that the number of nodes in \(S_2 \) with nonzero degree in \(G \) is at least twice the number of nodes in \(S \). This will allow us to show that messages propagate exponentially fast in our broadcast protocol. The proof of the following lemma can be found in the Appendix of [TLP22] (Proof of Lemma 1).

Lemma 5. Let \((S_1, S_2, S_3) \) be a partition of \(n \) nodes into (disjoint) sets with \(\tau = |S_1| \leq cn/3, |S_2| = cn - |S_1|, |S_3| = n - c n, \) where \(c \in (0, 1) \) is a constant.
Let $S \subseteq S_1$ with $|S| \geq 2\tau/3$, and let $\{Z_u\}_{u \in S_2}$ be the random variables defined above. Then for $q \geq 15/\epsilon$, we have

$$\Pr \left[\sum_{u \in S_2} Z_u \geq 2\tau \right] = 1 - p,$$

where

$$p = \max \left\{ en \cdot e^{-eq/9}, \left(\frac{e}{2}\right)^{-eq/4} \right\}.$$

For our proof of t_s-security and t_a-weak validity, we define the following sets of parties w.r.t. a value $m \in V$ and a round r:

1. $S(m, r)$: honest parties P_i that set $\text{sent}[m] = \text{true}$ at round r.
2. $S_1(m, r)$: honest parties P_i that set $\text{sent}[m] = \text{true}$ by round r.
3. $S_2(m, r)$: honest parties P_i that still have $\text{sent}[m] = \text{false}$ in round r.

Additionally, we let S_3 be the set of malicious parties (in particular, $|S_3| = n - en$). Before we start we our proof of security for the Core BC Protocol, we show that the number of parties that receive a message at round \tilde{r} that was sent at round $r < \tilde{r}$ increases exponentially with $\tilde{r} - r$ (with overwhelming probability). The proof of the following theorem can be found in the Appendix of [1LP22] (Proof of Lemma 2) with the difference that their set V is of order 2. However, this difference does not have any impact on the proof itself and therefore the same proof applies for our case of V being of order ≥ 2.

Lemma 6. For a specific value $m \in V$, let r be the first round of the Core BC Protocol $\Pi_{BC}^{\epsilon^c}$ where an honest party P_i sets $\text{sent}[m] = \text{true}$. Let $R = \lceil \log_3(en) \rceil$, and let p be as in Lemma 5. Then we have the following bounds:

1. For all rounds ρ such that $r \leq \rho \leq r + R$ and $|S_1(m, \rho - 1)| \leq en/3$, we have with probability at least $(1 - p)^{\rho - r}$ that

$$|S(m, \rho)| \geq 2/3 \cdot |S_1(m, \rho)| \quad \text{and} \quad |S_1(m, \rho)| \geq 3^{\rho - r}.$$

2. Let $\tilde{r} > r$ be a round such that $|S_1(m, \tilde{r} - 1)| > en/3$. Then $|S_1(m, \tilde{r})| = cn$ with probability at least $(1 - \tilde{p})(1 - p)^{\tilde{r} - r - 1}$ where

$$\tilde{p} = \frac{en}{3} e^{-2q/3}.$$

For the proofs hereafter, we let $R = \lceil \log_3(en) \rceil$ and $q = \Theta(\lambda)$, where λ is the security parameter. Furthermore, all our statements hold with probability $1 - \negl(\lambda)$.

Lemma 7. Let $t_s < (1 - \epsilon) \cdot n$. Then $\Pi_{BC}^{\epsilon^c}$ achieves t_s-consistency when run in a synchronous network.

Proof. Let $\mathcal{M} = \{m_1, \ldots, m_k\}$ be the set of messages for which at least one honest party sets $\text{sent}[m_i] \leftarrow \text{true}$ during one run of the protocol. We consider three cases separately, namely when $|\mathcal{M}| = 0$, $|\mathcal{M}| = 1$ and $|\mathcal{M}| > 1$. Suppose first that $|\mathcal{M}| = 0$. Then all honest parties will never update v and consequently output \bot at step 3.

Suppose $|\mathcal{M}| = 1$. We show that if an honest party P_i sets $\text{sent}[m] = \text{true}$ for some value $m \in V$ at some round r, then by the end of the protocol all honest parties have set $\text{sent}[m] = \text{true}$ with probability $1 - \negl(\lambda)$. We consider the following two cases.
(i) Suppose $r < t_s + 1$. For this, we distinguish the two cases $S_1(m, r) > \frac{cn}{3}$ and $S_1(m, r) \leq \frac{cn}{3}$. If $S_1(m, r) > \frac{cn}{3}$, then by item 2 of Lemma 6, all cn honest parties set $\text{sent}[m] = \text{true}$ by the next round with probability at least $(1 - \hat{p})(1 - p)^{r+1} - r - 1 = 1 - \epsilon n \cdot e^{-2\epsilon q}/9$. Since $n = \text{poly}(\lambda)$, this probability is $1 - \text{negl}(\lambda)$. On the other hand, if $S_1(m, r) \leq \frac{cn}{3}$, then by item 2 of Lemma 6, all cn honest parties set $\text{sent}[m] = \text{true}$ by the next round with probability at least $(1 - p)^{r_0}$. Since $-p \geq -1$ and $R \geq 1$, Bernoulli’s inequality applies and gives $(1 - p)^{r_0} \geq 1 - pR$. Since $n = \text{poly}(\lambda)$ and $q = \Theta(\lambda)$, this probability is $1 - \text{negl}(\lambda)$.

(ii) Suppose $r \geq t_s + 1$. Suppose an honest party P_i sets $\text{sent}[m] = \text{true}$ at some round $r \geq t_s + 1$. Then, P_i has received a valid multisignature on m of degree at least $t_s + 1$ and $\{|m' \in M : \text{sent}[m'] = \text{true}\} \leq 1$. In particular, an honest party P_j already set $\text{sent}[m] = \text{true}$ at some round $r' < t_s + 1$. Hence, former case (i) applies to honest party P_j. Ultimately, all honest parties set $\text{sent}[m] = \text{true}$ by the end of the protocol with probability $1 - \text{negl}(\lambda)$.

Finally, suppose that $|M| \geq 2$. By the above logic, $\text{sent}[m]$ was set true for an honest party P_i in round $r < t_s + 1$ for each $m \in M$. By construction of Π^t_{BC}, P_i will set $\text{detect}[m] = \text{true}$ and multicast $(\sigma, (.), (.), m)$ if not already done, where σ is the signature of the designated sender P^* on message m. Thus, in the next round (given $R \geq 1$), all honest parties will receive $(\sigma, (.), (.), m)$, which correctly verifies. If $|M| = 2$, then all honest parties will set $\text{detect}[m] = \text{true}$ for both messages, and consequently at step 3 all output \bot by construction of the protocol. If $|M| > 2$, then it follows that for the first two messages that each honest party receives, they will set $\text{detect}[m] = \text{true}$, and similarly output \bot. □

Lemma 8. Let $t_s < (1 - \epsilon) \cdot n$. Then Π^t_{BC} achieves t_s-liveness and t_s-termination when run in a synchronous network.

Proof. This follows trivially from the fact that all parties will terminate at step 3 after some finite amount of time regardless of whether or not they change the value v they output. □

Lemma 9. Let $t_s < (1 - \epsilon) \cdot n$. Then Π^t_{BC} achieves t_s-validity when run in a synchronous network.

Proof. In order to prove t_s-validity, we show that if the sender P^* is honest and inputs $m \in V$, then all honest parties output $v = m$. This directly follows from the proof of t_s-consistency and the fact that no honest party sets $\text{sent}[m] = \text{true}$ on a message not signed by P^*. After $R = \lceil \log_3(cn) \rceil$ rounds, all honest parties have set $\text{sent}[m] = \text{true}$ with probability $1 - \text{negl}(\lambda)$ and will output $v = m$. □

Lemma 10. Let $t_s \leq t_a$ and $t_a + 2 \cdot t_s < n$. Then Π^t_{BC} achieves t_a-weak validity even when run in an asynchronous network.\(^\text{10}\)

\(^\text{10}\)Note that n-weak validity trivially follows.
Proof. In order to prove t_a-weak validity, we show that if the sender P^* is honest and inputs $m = m_j \in V$, then all honest parties output either $v = m_j$ or $v = \bot$. This directly follows from the proof of t_a-validity in the synchronous case: in case an honest party does not receive a valid multisignature on m_j by the end of the protocol run, it just outputs $v = \bot$.

\[\Box\]

B.2 Broadcast Extension Protocol for Dishonest Majority

We construct our broadcast extension protocol $\Pi_{BC,Ext}^{t,\epsilon}$ which, for $t < (1-\epsilon) \cdot n$, allows for broadcast with $O(n \ell / \epsilon + \lambda n^2)$ communication complexity. This implies a $O(n \ell + \lambda n^2)$ honest majority broadcast algorithm (by setting $\epsilon = \frac{1}{2}$). Let $\Pi_{BC}^{t,\epsilon}$ be a broadcast protocol (e.g. the one in the previous subsection) that terminates after T time with default value \bot_{bc}. We present the core protocol in Figure 7 which makes use of several helper functions defined in Figure 8.

Our protocol is very close to the dishonest majority broadcast protocol of Nayak et al. [NRS20] (Figure 3). The only notable difference (modulo presentation differences) is that we gossip signatures at step 2(a) instead of multicasting.

$\Pi_{BC,Ext}^{t,\epsilon}$ proceeds as follows. Consider the designated sender P^* with input message m^\star. Supposing P^* is honest, P^* splits up m^\star into n blocks $D = \{D_1, \ldots, D_n\}$ using the erasure coding scheme rs, where block D_j corresponds to party P_j. P^* then accumulates D into z using acc except that each value D_j is accumulated as (j, D_j). P^* then invokes $\Pi_{BC}^{t,\epsilon,z}$ with input z. Hereafter, we assume that a value $z \neq \bot$ is then output by each honest P_i; if $z = \bot$, all honest parties wait and eventually output \bot.

As in Π_{BC} in the previous subsection, the protocol proceeds in $t + R$ rounds. Consider a value $z \neq \bot$ output by Π_{BC}. Supposing that P^* is honest, once Π_{BC} outputs, P^* first multicasts a signature on message HAPPY (after setting their own variable happy to true). Then, P^* computes witnesses w_j corresponding to block D_j for $j \in [1, n]$, and sends each party their respective block and the witness w_j (step 2(a)). On receipt of their witness (which they can verify is valid), P_i multicasts their block and share (step 2(b)). Note that P_i multicasts a block at most once. P_i then waits Δ time and collects blocks from all parties. On receipt of the first message (wit, s_j, w_j) from P_j, P_i can determine whether it is valid (and was accumulated in z) via $acc.Verify(ak, z, w_j, (j, s_j))$. Finally, after Δ time, if P_i has received enough valid blocks, P_i can reconstruct a message m (step 2(c)). Then, by splitting up m and comparing the output of $acc.Eval$ with z (output by Π_{BC}), P_i can determine whether they reconstructed a message that all other parties are able to or not. If so, they set variable happy = 1.

Suppose an honest party sets happy = 1. Then, that party splits up the message it learnt (or input to $\Pi_{BC,Ext}$, if it is the sender P^*) into blocks, propagates signatures via gossip, and propagates blocks and their corresponding witnesses to each party individually. We show that all parties will eventually output the message, even with the use of gossip in step 2(a).
\[\Pi_{\text{BC}}^{t,\epsilon}(m^*)\]

1. At time 0:
 - Set \(o = \bot\) and \(\text{happy} = 0\).
 - Set \(\text{dist} = \text{share} = \text{recon} = \text{false}\) and \(\Sigma = VK = \bar{P} = \bar{D} = \bot\).
 - If \(P_i = P^*\): set \(o = m^*\) and \(\text{happy} = 1\). Compute \(\bar{D} = \text{EncodeBlocks}(m^*, n - t) = (D_1, \ldots, D_n)\) and \(z^* = \text{acc.Eval}(ak, \bar{D})\). Invoke \(\Pi_{\text{BC}}^{t,\epsilon}\) with sender \(P^*\) using input \(z^*\).

2. At time \(T\): If \(z \neq \bot_{bc}\) is output by \(\Pi_{\text{BC}}^{t,\epsilon}\): for \(r = 1, \ldots, t + R\):
 - At time \(T + (2r - 2) \cdot \Delta\):
 - If \(\text{happy} = 1\) and \(\text{dist} = \text{false}\):
 - Set \(\text{dist} = \text{true}\).
 - If \(P_i = P^*\): multicast \((\text{as.Sign}(sk_i, \text{HAPPY}), \{P_i\})\). Otherwise, compute \(\sigma = \text{MultiSign}(\Sigma, VK)\), then for all \(j \in [1, n]\), send \((\sigma, \bar{P} \cup \{P_i\})\) to \(P_j\) with probability \(q/n\).
 - Compute \((w_1, \ldots, w_n) = \text{acc.CreateWits}(ak, z, \bar{D})\).
 - For all \(j \in [1, n]\), send \((\text{wit}, s_j, w_j)\) to \(P_j\) (where the \(j\)-th element of \(\bar{D}\) is \((j, s_j)\)).
 - At time \(T + (2r - 1) \cdot \Delta\):
 - If \(\text{share} = \text{false}\) and received \((\text{wit}, s_i, w_i)\) such that \(\text{acc.Verify}(ak, z, w, (i, s_i)) = 1\):
 - Set \(\text{share} = \text{true}\) and multicast \((\text{wit}, s_i, w_i)\).
 - At time \(T + 2r \cdot \Delta\):
 - If \(\text{recon} = \text{false}\):
 - For \(j \in [1, n]\), let \((\text{wit}, s_j, w_j)\) be the first message \((\text{wit}, \cdot, \cdot)\) received from \(P_j\) (set to \((\text{wit}, \bot, \bot)\) if not received).
 - Set \(S = ((1, s_1), w_1), \ldots, ((n, s_n), w_n))\).
 - Compute \(M = \text{Reconstruct}(S, ak, z, t)\) and \(\bar{D} = \text{EncodeBlocks}(M, n - t)\).
 - If \(\text{acc.Eval}(ak, \bar{D}) = z\), \(\text{recon} = \text{false}\), \(\text{HappyCheck}(r) = \text{true}\) and \(\text{Valid}(M)\) (HappyCheck checks \(r\) signatures were received):
 * Set \(\text{happy} = 1, o = M\) and \(\text{recon} = \text{true}\).
 * Invoke \(\text{SigCombine}(r)\).

3. At time \(T + 2 \cdot (t + R) \cdot \Delta\): Output \(o\) and terminate.

Fig. 7: BC extension protocol with sender \(P^*\) for \(t < (1 - \epsilon) \cdot n\) and \(\epsilon \in (0, 1)\) from the perspective of party \(P_i\) with respect to external validity predicate Valid.

Communication Complexity. Each party participates in \(\Pi_{\text{BC}}\) where the sender’s input is of size \(O(\lambda n^2)\) which, using \(\Pi_{\text{BC}}^{t,\epsilon}\) from Figure 3 requires \(O(\lambda n^2)\) communication. Each party sends at most one wit message to each party at step 2(b), which costs \(O(n(\ell/b + \lambda)) = O(\ell/\epsilon + \lambda n)\) for each party (recall \(b = n - t\)). The sender multicasts an \(O(\lambda)\)-sized message, and all parties gossip at most one

\[\text{Note that, to tame the communication complexity, that parties should disregard messages signed by a (dishonest) sender in } \Pi_{\text{BC}} \text{ that are larger than the expected size of } O(\lambda)\]
Compute Output

In order to prove
Proof.

Furthermore, all our statements hold with probability 1

message = 1

happy

Lemma 12.

step 3.

v

Lemma 11.

- HappyCheck(r): Output true if and only if received messages

\((\Sigma^i, P^i), \ldots, (\Sigma^j, P^j)\) for distinct \(P^i, \ldots, P^j\) from distinct parties such that for \(P = \bigcup_{k \in [1,j]} P_k\)

1. For each \(k \in [1,j]\), \(\text{as.Verify}(VK(P^k), \Sigma^k, \text{HAPPY}) = 1\);
2. \(|P| \geq \min\{r, t+1\}\); and
3. \(P_i \notin P\).

- SigCombine(r): Consider the messages \((\Sigma_1, P_1), \ldots, (\Sigma_j, P_j)\) received that lead to \(\text{HAPPYCheck}(r)\) outputting true.
 - Set \(\Sigma = \text{as.Combine}(\Sigma = (\Sigma_1, \ldots, \Sigma_j), (VK(P_1), \ldots, VK(P_j)), \text{HAPPY})\), \(VK = \bigcap_{k \in [1,j]} VK(P_k)\) and \(P = \bigcup_{k \in [1,j]} P_k\).

- EncodeBlocks(m, b): Divide \(m\) into \(b\) evenly sized blocks \(m_1, \ldots, m_b\) of length \(\left\lceil \frac{\lambda n}{2} \right\rceil\) where \(\ell = \log_m 2\) and \(a = \min\{i : n \leq 2^i - 1\}\). Compute \((s_1, \ldots, s_a) = \text{rs.Encode}(m_1, \ldots, m_b)\). Output \(((1, s_1), \ldots, (n, s_n))\).

- Reconstruct(((1, s_1), w_1), \ldots, ((n, s_n), w_n), ak, z, do); For \(j \in [1, n]\): If \(\text{acc.Verify}(ak, z, w_j, (j, s_j)) = 0\), set \(s_j = \perp\). Compute \(m_1, \ldots, m_b = \text{rs.Decode}(s_1, \ldots, s_n)\) and \(m = (m_1 | \cdots | m_b)\). Output \(m\).

Fig. 8: BC extension protocol (Fig. 7) helper functions from the perspective of party \(P_1\).

message of size \(O(\lambda + n)\), which costs an expected \(O(\lambda^2 + \lambda n)\) per party. Thus the protocol incurs \(O(n\ell/\epsilon + \lambda n^2 + \lambda^2 n) = O(n\ell/\epsilon + \lambda n^2) \) communication.

Theorem 4. Let \(n, t\) be such that \(t < (1 - \epsilon) \cdot n\) for constant \(\epsilon \in (0, 1)\). Then \(\Pi_{BC-Ext}^{t, \epsilon}\) (Figures 7 and 8) is \(t\)-secure when run on a synchronous network and \(n\)-weakly valid when run on an asynchronous network.

We prove this by proving the following lemmas. For the remainder of this section, we let \(R = \lfloor \log_\lambda (\epsilon n) \rfloor\) and \(q = \Theta(\lambda)\), where \(\lambda\) is the security parameter. Furthermore, all our statements hold with probability \(1 - \text{negl}(\lambda)\).

Lemma 11. Let \(t_s < (1 - \epsilon) \cdot n\). Then \(\Pi_{BC-Ext}^{t_s, \epsilon}\) achieves \(t_s\)-liveness when run in a synchronous network.

Proof. In order to prove \(t_s\)-liveness, we show that every honest party outputs a value \(v'\) and terminates. But this is clear from the protocol \(\Pi_{BC-Ext}^{t_s, \epsilon}\), especially step 3.

Lemma 12. If an honest party \(P_i\) reaches item (i) of step 2 of \(\Pi_{BC-Ext}^{t, \epsilon}\) by setting happy = 1 and dist = false and invokes the instructions of this step with input message \(m \in V\), then every honest party \(P_j\) outputs \(\sigma_j = m\).

42
Lemma 14. Let t_s-consistency of the Core BC Protocol $\Pi_{BC}^{t_s,e}$, the output z_i of $\Pi_{BC}^{t_s,e}$ is the same at every honest party. If an honest party executes item (i) of step 2 with message m, then by definition $z_i = \text{acc.Eval}(ak, \text{EncodeBlocks}(m, n - t))$. If another honest party P_j sets $\sigma_j = m'$ after initialization, then it has to satisfy $\text{acc.Eval}(ak, \text{EncodeBlocks}(m', n - t)) = z_j = z_i$. By the properties of the Reed-Solomon code, the same codewords correspond to the same message. So if $m \neq m'$, then $\vec{D} \neq \vec{D}'$. In particular, there exists a component $D_i = (i, s_i) \in \vec{D}$ such that $D_i \notin \vec{D}'$. But a witness for $D_i \notin \vec{D}'$ with respect to the accumulation value $z_i = \text{acc.Eval}(ak, \vec{D}) = \text{acc.Eval}(ak, \vec{D}')$ exists, which happens only with probability $\negl(\lambda)$ by security of the cryptographic accumulator. Therefore, we may assume $m = m'$ and only need to show that every other honest party P_j sets σ_j to a value.

Suppose that P_i executes item (i) of step 2 in some round r. In that case, P_i computes witnesses $(w_1, \ldots, w_n) = \text{acc.CreateWits}(ak, z, \vec{D})$ and sends (wit, s_j, w_j) to each party P_j (where the j-th element of \vec{D} is (j, s_j)). In item (ii) of step 2 of the same round r, every honest party can verify and multicast the valid (wit, s_j, w_j) to all the other parties if it has not done that already in a previous round. Note that verification of the tuples (wit, s_j, w_j) can be done safely because of the security of the accumulator. In item (iii) of step 2, every honest party gets at least $n - t_s$ correct coded values, since there are at least $n - t_s$ honest parties. In particular, every party P_j can identify the corrupted values and remove them, of which there are at most t_s. By the properties of the Reed-Solomon code, P_j with $\text{happy} = 0$ is able to recover the message m. Now, the exact same analysis as in the proof of t_s-consistency of the Core BC Protocol $\Pi_{BC}^{t_s,e}$ shows that with probability $1 - \negl(\lambda)$ after sufficiently many rounds in the domain $[1, t + R]$, every honest parties P_j has set its value $\text{happy} = 1$ and $\sigma_j = m$. Note that an honest party does not set its output again in future rounds, since the multisignature already contains its signature. Once P_j sets σ_j, it will skip item (ii) of step 2 in all future round and the value of σ_j will not be changed. Therefore, in step 3 all honest parties output m and terminate. \hfill \square

Lemma 13. Let $t_s < (1 - \epsilon) \cdot n$. Then $\Pi_{BC,\text{Ext}}^{t_s,e}$ achieves t_s-validity when run in a synchronous network.

Proof. In order to prove t_s-validity, we show that if the sender P_j is honest and inputs $m = m_j \in V$, then all honest parties outputs $v = m_j$. In round $r = 1$, the sender executes item (i) of step 2 with message m_j. By the previous lemma, every honest party P_i outputs $\sigma_i = m_j$ by the end of the protocol and terminates. \hfill \square

Lemma 14. Let $t_s < (1 - \epsilon) \cdot n$. Then $\Pi_{BC,\text{Ext}}^{t_s,e}$ achieves t_s-consistency when run in a synchronous network.

Proof. In order to prove t_s-consistency, we show that every honest party outputs the same value σ'. If all honest parties output \perp, then they trivially output the same value $\sigma' = \perp$. Therefore, assume some honest party P_j outputs $\sigma_i = m \neq \perp$. In case P_i is the sender, t_s-validity of $\Pi_{BC,\text{Ext}}^{t_s,e}$ tells us that all honest parties output m. So assume that P_i is not the sender. If P_i sets $\sigma_i = m \neq \perp$ in item
(iii) of step 2 of round 1 \(\leq r \leq t_s\), then \(P_i\) will execute the distribution item (i) of step 2 with message \(m\) in the next round \(r+1\). By Lemma 12 all honest parties output the same value \(\sigma' = m\). On the other hand, if \(P_i\) sets \(\sigma_i = m \neq \bot\) in round \(r \geq t_s+1\), then it receives a multisignature of degree at least \(t_s+1\). In particular, one of these signatures comes from an honest party \(P_j \neq P_i\) that has sent its signature (with probability \(q/n\)) and executed item (i) of step 2 in some previous round \(1 \leq r' \leq t_s\). Again by Lemma 12 all honest parties (including \(P_i\)) output \(m'\) and therefore \(m' = m\). So every honest party outputs the same value \(\sigma' = m\).

\[\Box\]

Lemma 15. Let \(t_a \leq t_s\) and \(t_a + 2 \cdot t_s < n\). Then \(\Pi_{t_a, t_s}^{bc, ext}\) achieves \(t_a\)-weak validity even when run in an asynchronous network.

Proof. In order to prove \(t_a\)-weak validity, we show that if the sender \(P_j\) is honest and inputs \(m = m_j \in V\), then all honest parties output either \(v = m_j\) or \(v = \bot\). This is clear from the proof of \(t_s\)-validity in the synchronous case and the construction of the protocol \(\Pi_{t_a, t_s}^{bc, ext}\).

\[\Box\]

C Asynchronous Agreement with Intrusion Tolerance

In this section, we modify the (multivalued) intrusion-tolerant Byzantine agreement protocol of Mostéfaoui and Raynal [MR17] that is \(t\)-secure (in asynchrony) given up to \(t < n/3\) corruptions. Namely, we construct a protocol which is \(t_a\)-secure and \(t_s\)-valid with termination for \(t_a, t_s\) such that \(0 \leq t_a < n/3 \leq t_s < n/2\) and \(t_a + 2 \cdot t_s < n\). In the process, we extract a multivalued graded consensus protocol which may be of independent interest.

We introduce two primitives that we use to build Byzantine agreement, both of which are weaker primitives and thus do not require additional assumptions in asynchrony to solve (i.e. coin flipping). Looking forward, neither primitive guarantees termination itself but will terminate when used in our Byzantine agreement protocol. We note that for our MV-broadcast and graded consensus protocols in this section we assume that at most one message per 'type' is accepted by a party (which is trivial to implement). This step is taken in order to ensure security of the protocols and bound their communication complexity.

C.1 Towards Intrusion Tolerance: MV-Broadcast

The first primitive is MV-broadcast which was defined in [MR17] for the asynchronous setting. The goal of MV-broadcast is to 'filter' messages for consensus: parties input a value \(v\) and output a set \(S\) such that each value inside was either MV-broadcasted by an honest party (validity 1) or is a default value. It guarantees a limited form of agreement on values (validity 2 and inclusion). For MV-broadcast, we consider default value \(\bot_{mv} \notin V\).

Definition 18 (Multivalued broadcast (MV-broadcast) [MR17]). Let \(\Pi\) be a protocol executed by parties \(P_1, \ldots, P_n\), where each party \(P_i\) begins holding input \(v_i \in V\).
- **Validity 1:** \(II \) achieves \(t \)-validity 1 if whenever at most \(t \) parties are corrupted, if an honest party outputs a set \(S \) such that \(v \in S \) and \(v \neq \perp_{mv} \), then \(v \) was input by an honest party.

- **Validity 2:** \(II \) achieves \(t \)-validity 2 if the following holds whenever at most \(t \) parties are corrupted: if every honest party’s input is equal to the same value \(v \), then no honest party outputs a set containing \(\perp_{mv} \).

- **Inclusion:** \(II \) achieves \(t \)-inclusion if the following holds whenever at most \(t \) parties are corrupted: if honest \(P_i \) and \(P_j \) output sets \(S_i \) and \(S_j \) respectively, then \(S_i = \{ w \} \implies w \in S_j \) (note \(w = \perp_{mv} \) is possible).

- **Liveness:** \(II \) achieves \(t \)-liveness if whenever at most \(t \) parties are corrupted, every honest party outputs a set \(S \) where each \(v \in S \) is such that \(v \in V \cup \{ \perp_{mv} \} \).

- **Validity with liveness:** \(II \) achieves \(t \)-validity with liveness if the following holds whenever at most \(t \) parties are corrupted: if every honest party’s input is equal to the same value \(v \), every honest party outputs the set \(S = \{ v \} \).

In [MR17], validity 1 and validity 2 are denoted as justification and obligation, respectively. We additionally define validity with liveness which our protocol will satisfy with \(t_s \) corruptions in synchrony. We present our MV-broadcast construction in Figure 9.

\[II_{MV}^{t_s,t_s}(v_i) \]

1. Set output = \(\text{ready} = \text{false} \) and \(M_2(v) = \emptyset \) for all \(v \in V \).
2. For every \(v \in V \), let \(M_1(v) \) be the (initially empty) set of parties from which \(P_i \) has received \((mv1, v) \).
3. Multicast \((mv1, v_i) \).
4. Upon receiving \((mv1, v) \) messages on the same value \(v \) (possibly \(\perp_{mv} \)) from \(n - t_s \) distinct parties: if \(\text{ready} = \text{false} \), set \(\text{ready} = \text{true} \) and multicast \((mv2, v) \).
5. Upon receiving \((mv1, v) \) messages on the same value \(v \) from \(t_s + 1 \) distinct parties: if \((mv1, v) \) not yet multicast, multicast \((mv1, v) \).
6. Upon receiving \((mv1, v_{max}) \) for \(v_{max} \) such that \(v_{max} = \arg \max_{v' \in V} |M_1(v')| \): if \(| \bigcup_{v' \in V} M_1(v') | - |M_1(v_{max})| \geq t_s + 1 \) and \((mv1, \perp_{mv}) \) not yet multicast, multicast \((mv1, \perp_{mv}) \).
7. Upon having \(| \bigcup_{v \in V} M_2(v) | \geq n - t_s \): if output = \(\text{false} \), set output = \(\text{true} \) and output \(\{ v : |M_2(v)| > 0 \} \).

Updating \(M_2(v) \):

(i) Upon receiving \((mv2, v) \) from \(P_j \): if previously received messages \((mv1, v) \) on the same value from \(n - t_s \) distinct parties, set \(M_2(v) = M_2(v) \cup \{ j \} \).

(ii) Upon receiving \((mv1, v) \) messages on the same value \(v \) from \(n - t_s \) distinct parties: set \(M_2(v) = M_2(v) \cup \{ j : P_j \text{ previously sent } (mv2, v) \} \).

Fig. 9: MV-broadcast from the perspective of party \(P_i \).
$\Pi_{MV}^{t_s,t_a}$ works as follows. Consider honest P_i with input value $v_i \in V$. For each $v \in V$, P_i manages tracks two local initially empty sets $M_1(v)$ and $M_2(v)$. There are two types of messages multicast by P_i, (mv1, v) and (mv2, v) for $v \in V$. The distinction between mv1 and mv2 is simply to multicast (mv2, v) as soon as enough (mv1, v) messages (on the same value v) were received, which is tracked via the set $M_1(v)$. By definition, $M_1(v)$ is the set of parties from which P_i has received a (mv1, v) message. On the other hand, $M_2(v)$ keeps track of whether value v is validated (was input by an honest party) or not.

After variable initialisation, P_i multicasts (mv1, v_i) (step 3). For a given v, on first receipt of (mv1, v) from $t_s + 1$ parties, P_i multicasts it (step 5). On first receipt of (mv1, v) from $n - t_s$ parties for any v (step 4), P_i sets $\text{ready} = \text{true}$ and multicasts (mv2, v) i.e. P_i champions v for output. At this time, $M_2(v)$ is also updated (step (i)). If too many values were received, i.e. $|\bigcup_{v' \in V} M_1(v')| - |M_1(v_{\text{max}})| \geq t_s + 1$ where $v_{\text{max}} = \arg \max_{v' \in V} |M_1(v')|$, then P_i signals this by multicasting (mv1, \bot_{mv}) (step 6). At any time, P_i updates the set $M_2(v)$ as $M_2(v) = M_2(v) \cup \{j\}$ after it receives proposal (mv2, v) by party P_j whenever P_j has received the message (mv1, v) from $\geq n - t_s$ distinct parties. Finally, when P_i first receives $n - t_s$ (mv2, w) messages where $n - t_s$ (mv1, w) messages were also received (on possibly different values w), captured by the predicate $|\bigcup_{v \in V} M_2(v)| \geq n - t_s$ in step 7, P_i outputs $\{v : |M_2(v)| > 0\}$.

Communication Complexity. We argue in the following that the communication complexity of our MV-broadcast protocol Π_{MV} is bounded by $O(n^3)$. Having a look at Figure 9, we see that every honest party multicasts at most one message of the form (mv2, $-$) (line 4). Furthermore, a message of the form (mv1, v) for some $v \neq \bot_{mv}$ is multicast if it was received from at least $t_s + 1$ distinct parties, ensuring that the message had to come from at least one honest party (line 5). In particular, an honest party only mv1-multicasts at most $n - t_s$ times. Moreover, every honest party multicasts at most one message of the form (mv1, \bot_{mv}) (line 6). As a result, the overall communication complexity of Π_{MV} is bounded by $O(n^3)$.

Theorem 5. Let n, t_s, t_a be such that $0 \leq t_s < \frac{n}{4} \leq t_a < \frac{n}{2}$ and $t_a + 2 \cdot t_s < n$. Then MV-broadcast protocol $\Pi_{MV}^{t_s,t_a}$ (Figure 9) satisfies t_s-validity 1, t_a-validity 2, t_s-validity with liveness, t_a-inclusion and t_a-liveness.

We prove this by proving the following lemmas.

Lemma 16. Let $t_s < n/2$. Then $\Pi_{MV}^{t_s,t_a}$ achieves t_s-validity 1.

Proof. Recall that a party P_i only outputs values v such that $|M_2(v)| > 0$ (line 7, Figure 9). In order to prove t_s-validity 1, we show that no honest party P_i adds a value $v \in V$ to $M_2(v)$ such that (mv1, v) was multicast only by dishonest parties. For this, let there be t_s dishonest parties that multicast (mv1, v) such that (mv1, v) is not multicast by any honest party. Since $t_s + 1 > t_a$, no honest party echoes the value v and thus v can be received only from the dishonest parties (line 5). As a consequence, no honest party P_i receives (mv1, v) from
Lemma 17. Let $t_s < n/2$. Then $\Pi_{M^s,V}^{t_s,t_2}$ achieves t_s-validity with liveness.

Proof. In order to prove t_s-validity with liveness, we show that if every honest party's input is equal to the same value $v \in V$, then every honest party outputs the set $S = \{v\}$.

Let every honest party multicast (mv_1, v) on the same value $v \in V$ (line 3, Figure 9). As argued in the previous proof, no honest party echoes a value different from v (line 5). Therefore, at most t_s values different from v are multicast as $(mv_1, -)$ messages. Now we consider an honest party P_i in the worst case execution, in which the t_s dishonest parties multicast (mv_1, w) on the same value $w \neq v$. In that case, $|M_1(v)|$ increases monotonically from 0 to $n - t_s$ and $|M_1(w)|$ increases monotonically from 0 to t_s. There are the following two cases.

(i) Suppose that $|M_1(w)| \geq |M_1(v)|$. In this case, the predicate $|\bigcup_{v' \in V} M_1(v')| - |M_1(t_{max})| \geq t_s + 1$ in line 6 reduces to $|M_1(v)| \geq t_s + 1$ and returns false, since $|M_1(v)| \leq |M_1(w)| \leq t_s$. Hence, P_i never multicasts (mv_1, \bot_{mv}) (line 6).

(ii) Suppose that $|M_1(v)| \geq |M_1(w)|$. In this case, the predicate $|\bigcup_{v' \in V} M_1(v')| - |M_1(t_{max})| \geq t_s + 1$ in line 6 reduces to $|M_1(w)| \geq t_s + 1$ and returns false, since $|M_1(w)| \leq t_s$. Hence, P_i never multicasts (mv_1, \bot_{mv}) (line 6).

As a result, no honest party multicasts (mv_1, \bot_{mv}). Therefore, no honest party P_i receives (mv_1, \bot_{mv}) from $n - t_s > t_s$ distinct parties and $M_2(\bot_{mv})$ is never populated by P_i (line 'Updating $M_2(\bot)$' (i) and (ii)). The same is true for the value w. Consequently, every honest party outputs the same set $S = \{v\}$ (line 7).

Lemma 18. Let $t_s < n/2$. Then $\Pi_{M^s,V}^{t_s,t_2}$ achieves t_s-validity 2.

Proof. This follows directly from t_s-validity with liveness.

Lemma 19. Let $t_a \leq t_s$ and $t_a + 2 \cdot t_s < n$. Then $\Pi_{M^s,V}^{t_s,t_2}$ achieves t_a-inclusion.

Proof. In order to prove t_a-inclusion, we show that if honest parties P_i and P_j output sets S_i and S_j respectively, then $S_i = \{w\}$ implies $w \in S_j$ (note that $w = \bot_{mv}$ is possible).

Let honest party P_i output the set $S_i = \{w\}$ (line 7, Figure 9). This is conditioned on $|\bigcup_{v \in V} M_2(v)| \geq n - t_s$ by line 7 and implies that P_i has received (mv_2, w) from at least $n - t_s$ distinct parties by definition of the set $M_2(\bot)$ in line 'Updating $M_2(\bot)$' (i) and (ii). Now consider an honest party $P_j \neq P_i$. Before P_j outputs the set S_j, it has received messages $(mv_2, -)$ from $n - t_s$ distinct parties, that is from at least $n - t_s - t_a > t_s$ honest parties. Since $(n - t_s) + (t_s + 1) > n$, it follows that there is an honest party P_k that sent the same message (mv_2, v) to both P_i and P_j. But since P_i has received only messages (mv_2, w) from $n - t_s$ parties, it follows that $v = w$ and thus $w \in S_j$.

□
Lemma 20. Let \(t_a \leq t_s \) and \(t_a + 2 \cdot t_s < n \). Then \(\Pi_{t_a,t_s}^{\text{MV}} \) achieves \(t_a \)-liveness.

Proof. In order to prove \(t_s \)-liveness, we show that every honest party outputs some set. For this, we first show that every honest party eventually multicasts some \((\text{mv2}, -)\) message (line 4, Figure 9). We consider the following predicate \(P \): There is a value \(v \in V \) such that after some finite time at least \(t_s + 1 \) honest parties have multicast \((\text{mv1}, v)\). Consider the following two cases.

(i) The predicate \(P \) is satisfied. In this case, every honest party eventually multicasts \((\text{mv1}, v)\) by construction of \(\Pi_{t_a,t_s}^{\text{MV}} \) (line 5). Since there are at least \(n - t_a \geq n - t_s \) honest parties, \(\text{ready} \) eventually is set to \text{true} by every honest party due to delivering \((\text{mv1}, v)\) from \(n - t_s \) distinct parties (line 4).

(ii) The predicate \(P \) is not satisfied. We consider an honest party \(P_i \). Let \(v_{\text{max}} = \max_{v' \in V} |M_1(v')| \), i.e. the most frequent \(\text{mv1} \) value received, and let \(r \) be the number of honest parties that multicast \((\text{mv1}, v_{\text{max}})\). Since \(P \) is not satisfied, \(r \leq t_s \). Since there are at least \(n - t_a \) honest parties, \(P_i \) receives at least \(n - t_a + k \) messages \((\text{mv1}, -)\) with some \(k \in [0, t_a) \). At most \(r + k \) of these parties sent message \((\text{mv1}, v_{\text{max}})\) to \(P_i \), and therefore at least \((n - t_a + k) - (r + k) = n - t_a - r \) of them sent values different from \(v_{\text{max}} \) to \(P_i \). But since \(n - t_a - r \geq n - t_a - t_s > t_s \), the predicate \(\bigcup_{v' \in V} |M_1(v')| - |M_1(v_{\text{max}})| \geq t_s + 1 \) in line 6 is satisfied and \(P_i \) multicasts \((\text{mv1}, \bot)\) (line 6). Analogously, this applies to all honest parties. And thus, every honest party receives messages \((\text{mv1}, \bot)\) from at least \(n - t_a \geq n - t_s \) distinct parties. As a result, \(\text{ready} \) becomes eventually \text{true} for every honest party (line 4).

This concludes our initial assertion that every honest party eventually multicasts some message \((\text{mv2}, -)\) (by setting \(\text{ready} \) to \text{true} \) by line 4.

For the final step, we show that every honest party eventually receives \text{validated} messages \((\text{mv2}, -)\) from at least \(n - t_s \) distinct parties and thus outputs a set \(\{v : M_2(v) \neq \emptyset\} \) by line 7. Here, by a \text{validated} message \((\text{mv2}, w)\) we mean one such that the party has also received messages \((\text{mv1}, w)\) on the same value \(w \) from at least \(n - t_s \) distinct parties (as is declared in line 4). By the previous assertion, each honest party \(P_i \) multicasts some message \((\text{mv2}, v_i)\) where \(v_i \) is such that \(|M_1(v_i)| \geq n - t_s \). Since \((n - t_a) - t_s > t_s \), at least \(t_s + 1 \) honest parties have multicast \((\text{mv1}, v_i)\). Thus, every honest party eventually multicasts \((\text{mv1}, v_i)\) and for every honest party \(P_j \) we have \(|M_1(v_i)| \geq n - t_a \geq n - t_s \). As a consequence, every honest party \(P_j \) adds \(\{j\} \) to its set \(M_2(v_i) \). Since this proof hitherto also applies to every honest party \(P_j \) (in place of \(P_i \)), eventually every honest party receives validated messages \((\text{mv2}, -)\) from at least \(n - t_a \geq n - t_s \) distinct parties and thus outputs the set \(\{v : M_2(v) \neq \emptyset\} \) (line 7). \(\square \)

C.2 Validity-Optimized Graded Consensus

Next, we define a graded consensus primitive. In graded consensus, each party inputs a value but outputs both a value \(v \in V \cup \{\bot\} \) and a corresponding grade \(\varphi \in \{0, 1, 2\} \). \text{Binary} graded consensus (i.e., where \(V = \{0, 1\} \)) was previously considered for building network-agnostic binary agreement in \cite{BKL19}.
Our primitive will also require an intrusion tolerance property that we define below.

Definition 19 (Graded consensus). Let \(\Pi \) be a protocol executed by parties \(P_1, \ldots, P_n \), where each party \(P_i \) begins holding input \(v_i \in V \).

- **Graded validity:** \(\Pi \) achieves \(t \)-graded validity if the following holds whenever at most \(t \) parties are corrupted: if every honest party’s input is equal to the same value \(v \), then all honest parties output \((v, 2) \).
- **Graded consistency:** \(\Pi \) achieves \(t \)-graded consistency if the following holds whenever at most \(t \) parties are corrupted: (1) If two honest parties output grades \(g, g' \), then \(|g - g'| \leq 1 \). (2) If two honest parties output \((v, g) \) and \((v', g') \) with \(g, g' \geq 1 \), then \(v = v' \).
- **Liveness:** \(\Pi \) achieves \(t \)-liveness if whenever at most \(t \) parties are corrupted, every honest party outputs \((v, g) \) with either \(v \in V \) and \(g \geq 1 \), or \(v = \bot \) and \(g = 0 \).
- **Intrusion tolerance:** \(\Pi \) achieves \(t \)-intrusion tolerance if whenever at most \(t \) parties are corrupted, if \((v, g) \) is output by an honest party and \(g \geq 1 \), then \(v \) was input by an honest party.

We construct a multivalued graded consensus protocol \(\Pi_{GC}^{t,v,t,s} \) (Figure 10). Our protocol requires two (implicitly domain separated) instances of \(\Pi_{MV}^{t,v} \), which we denote by \(MV_1 \) and \(MV_2 \) with default values \(\bot_{mv1} \) and \(\bot_{mv2} \) respectively.

<table>
<thead>
<tr>
<th>(\Pi_{GC}^{t,v,t,s}(v_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set output = false, val = (\bot), aux = (\bot).</td>
</tr>
<tr>
<td>2. For every (v \in V), let (R(v)) be the set of parties from which (P_i) has received ((msg, v)) for (msg \in {init, echo}). Initially, set (R(v) = \emptyset) for all (v \in V).</td>
</tr>
<tr>
<td>3. Multicast the message ((init, v_i)).</td>
</tr>
<tr>
<td>4. Upon receiving ((init, v)) messages on the same value (v) from (t_s + 1) distinct parties: if (v \neq v_i) and ((echo, v)) not yet multicast, multicast ((echo, v)).</td>
</tr>
<tr>
<td>5. Upon receiving ((msg, v)) for some (msg \in {init, echo}) and (v) when output = false:</td>
</tr>
<tr>
<td>(a) If (v \neq v_i) and (</td>
</tr>
<tr>
<td>(b) If (</td>
</tr>
<tr>
<td>(c) If (</td>
</tr>
<tr>
<td>(d) If output = true, run (MV_1) using input val.</td>
</tr>
<tr>
<td>6. Upon receiving output (S_1) from (MV_1): if (S_1 = {v}), set aux = (v). Run (MV_2) using input aux.</td>
</tr>
<tr>
<td>7. Upon receiving output (S_2) from (MV_2):</td>
</tr>
<tr>
<td>(a) If (S_2 = {v}) and (v \notin {\bot_{rd}, \bot_{mv1}, \bot_{mv2}, \bot}), output ((v, 2)).</td>
</tr>
<tr>
<td>(b) Otherwise, if (\exists v \in S_2) s.t. (v \notin {\bot_{rd}, \bot_{mv1}, \bot_{mv2}, \bot}), output ((v, 1)).</td>
</tr>
<tr>
<td>(c) Otherwise, output ((\bot, 0)).</td>
</tr>
</tbody>
</table>

Fig. 10: Multivalued graded consensus from the perspective of party \(P_i \).
\(\Pi_{GC}^{t_a, t_s} \) works as follows. Suppose (honest) \(P_i \) inputs \(v_i \). In addition to messages from MV-broadcast, \(\Pi_{GC} \) uses two message types, namely (init, \(v \)) and (echo, \(v \)) for some \(v \in V \). After initialising variables, \(P_i \) multicasts (init, \(v_i \)) (and doesn’t send init messages hereafter). On receipt of messages (msg, \(v \)) (where \(\text{msg} \in \{ \text{init}, \text{echo} \} \) from \(t_s + 1 \) parties (and thus an honest party input \(v \)), \(P_i \) multicasts (echo, \(v \)) if not yet done. Except for these steps, communication takes place through MV1 and MV2.

Let \(R(v) \) be the set of parties from which \(P_i \) has received a message of the form (init, \(v \)) or (echo, \(v \)) (step 2). Then, whenever \(P_i \) receives a message (msg, \(v \)), \(P_i \) checks some conditions to determine whether it can input a value to MV1 (after which the conditions are ignored). If \(|R(v)| \geq t_s + 1 \) and \(v \neq v_i \), \(P_i \) inputs \(\perp = \) \(\perp \) to MV1, indicating disagreement between two honest parties. Similarly, if \(|\bigcup_{v' \in V} R(v')|-\max_{v' \in V} |R(v')| \geq t_s + 1 \), \(P_i \) inputs \(\perp = \) \(\perp \) to MV1. If \(|R(v)| \geq n-t_s \), indicating enough parties received \(v \), \(P_i \) sends \(v \) to MV1.

Then, \(P_i \) eventually outputs a set \(S_1 \) from MV1. If \(|S| = \{ v \} \), \(P_i \) runs MV2 with that input; otherwise \(P_i \) runs MV2 on input \(\perp \) (step 6). On outputting \(S_2 \) from MV2 (step 2), if \(S_2 = \{ v \} \) and not a default value, then it outputs \(v \), (2). Otherwise, if \(S_2 \) contains a non-default value, \(P_i \) outputs that value and \(g = 1 \); else, \(P_i \) outputs \(\perp = \) \(\perp \).

Communication Complexity. We argue in Lemma 25 that the communication complexity of our graded consensus protocol \(\Pi_{GC}^{t_a, t_s} \) is bounded by \(O(n^3) \).

Theorem 6. Let \(n, t_s, t_a \) be such that \(0 \leq t_a < \frac{n}{2} \leq t_s < \frac{2}{3} \) and \(t_a + 2 \cdot t_s < n \). Then graded consensus protocol \(\Pi_{GC}^{t_a, t_s} \) satisfies \(t_s \)-intrusion tolerance, \(t_a \)-graded validity, \(t_s \)-intrusion tolerance, \(t_a \)-intruded consistency and \(t_a \)-liveness.

We prove this by proving the following lemmas.

Lemma 21. Let \(t_s < n/2 \). Then \(\Pi_{GC}^{t_a, t_s} \) achieves \(t_s \)-graded validity.

Proof. In order to prove \(t_s \)-graded validity, we show that if every honest party’s input is equal to the same value \(v \), then all honest parties output \((v, 2) \). Let every honest party multicast (init, \(v \)) (line 3, Figure 10). Since there are at most \(t_s < t_s + 1 \) dishonest parties, no honest party echos a value different from \(v \) (line 4). Therefore, from the perspective of every honest party \(P_i \), the set \(R(v) \) is of size \(\leq t_s \) for every \(v \neq v \). In particular, conditions (a) and (c) of line 5 are not satisfied for the value \(v \). On the other hand, since there are at least \(n-t_s \) honest parties that multicast (init, \(v \)), it is \(|R(v)| \geq n-t_s \), and \(P_i \) sets output = true and val = \(v \) (line 5, condition (b)). As this applies to every honest party, each of them run MV1 on the same input \(v \) (line 5 (d)). Now, \(t_s \)-validity with liveness from MV1 ensures that every honest party outputs the set \(S_1 = \{ v \} \). As a result, each of them sets aux = \(v \) and runs MV2 again on input \(v \) (line 6). The same argument yields that every honest party outputs the set \(S_2 = \{ v \} \). Finally, as \(v \notin \{ \perp = \) \(\perp \), \(\perp = \) \(\perp \}, \) every honest party outputs \((v, 2) \) (line 7 (a)). \(\square \)

Lemma 22. Let \(t_a \leq t_s \) and \(t_a + 2 \cdot t_s < n \). Then \(\Pi_{GC}^{t_a, t_s} \) achieves \(t_a \)-graded consistency.
Proof. In order to prove t_α-graded consistency, we show that (1) if two honest parties output grades g, g', then $|g - g'| \leq 1$, and (2) if two honest parties output (v, g) and (v', g') with $g, g' \geq 1$, then $v = v'$.

For the first clause, assume that there are two honest parties P_1 and P_2 where P_1 outputs $(v, 2)$. This means P_1’s output S_2 from MV_2 is $S_2 = \{v\}$ with $v \notin \{⊥_{rd}, ⊥_{mv1}, ⊥_{mv2}, ⊥\}$ (line 7 (a), Figure 10). By t_α-inclusion of MV_2, every honest party P_2 outputs a set S_2 such that $v \in S_2$ and therefore can not output grade $g' = 0$ for its final decision (line 7 (c)). This proves the first clause.

For the second clause, consider two honest parties P_1 and P_2 that output (v, g) and (v', g') respectively with $g, g' \geq 1$. We write $S_2 (P_k)$ for the output set S_2 from MV_2 of party P_k; for the output set S_1 we likewise define $S_1 (P_k)$. In particular, $v \in S_2 (P_1)$ and $v' \in S_2 (P_2)$ with $v, v' \notin \{⊥_{rd}, ⊥_{mv1}, ⊥_{mv2}, ⊥\}$ (line 7 (a) and (b)). By t_α-inclusion of MV_2, it follows that $v \in S_2 (P_j)$ and thus $\{v, v'\} \subseteq S_2 (P_j)$. By t_α-validity 1 of MV_2, v' was input by some honest party P_k to MV_2. In particular, $aux = v'$ for party P_k and thus $S_1 (P_k) = \{v'\}$ (line 6). Analogously, there is some honest party P_1 that input v to MV_2 and hence $S_1 (P_1) = \{v\}$. But by t_α-inclusion of MV_1, it follows that $v = v'$, which concludes the proof.

Lemma 23. Let $t_\alpha \leq t_\sigma$ and $t_\sigma + 2 \cdot t_\alpha < n$. Then $\PiGT_{L}^{\alpha, \sigma}$ achieves t_α-liveness.

Proof. In order to prove t_α-liveness, we show that every honest party outputs (v, g) with either $v \in V$ and $g \geq 1$, or $v = ⊥$ and $g = 0$ (line 7, Figure 10). We consider the following predicate P: There is a value $v \in V$ such that after some finite time at least $t_\sigma + 1$ honest parties have multicast $(init, v)$. Consider the following two cases.

(i) The predicate P is satisfied. It follows that every honest party eventually multicasts $(echo, v)$ (if not yet multicast $(init, v)$) (line 4). As there are at least $n - t_\sigma \geq n - t_\sigma$ honest parties, the predicate $|R(v)| \geq n - t_\sigma$ in line 5 (b) becomes eventually true for every honest party and each of them sets output $= true$ and runs MV_1 (line 5 (d)). By t_α-liveness of MV_1, every honest party outputs some set S_1 and runs MV_2 on input aux (line 6). And by t_α-liveness of MV_2, every honest party outputs some set S_2 and finally outputs some graded value (v, g) (line 7). The requirement $|v \in V$ and $g \geq 1$, or $v = ⊥$ and $g = 0|$ is trivially satisfied by construction of $\PiGT_{L}^{\alpha, \sigma}$ in its final step (line 7).

(ii) The predicate P is not satisfied. This means there is no value v that is multicast $(init, v)$ by at least $t_\sigma + 1$ honest parties. We consider an honest party P_i. Let v_{max} be its most often received value from distinct parties as defined in line 5 (c) and let r be the number of honest parties that multicast $(init, v_{max})$. By assumption, we have $r \leq t_\sigma$. Let $k \in [0, t_\sigma]$ be the number of distinct dishonest parties from which P_i has received the message $(init, v_{max})$.

Clearly, at most $t_\sigma + k \geq r + k$ distinct parties have sent the value v_{max} to P_i. Now assume that the waiting predicates $|R(v)| \geq n - t_\sigma$ and $|w \neq v_{i}$ and $|R(w)| \geq t_\sigma + 1|$ in line 5 (a) and (b) are never satisfied (otherwise P_i sets output $= true$ and proceeds with the execution of MV_1). Since P_i does not
Lemma 24. Let $t_s < n/2$. Then Π^{t_a,t_r}_{GC} achieves t_s-intrusion tolerance.

Proof. In order to prove t_s-intrusion tolerance, we show that no honest party P_i outputs a graded value (v, g) with $g \geq 1$ that was multicast (init, v) by dishonest parties only. For this, let there be t_s dishonest parties that multicast (init, v) such that (init, v) is not multicast by any honest party. Since $t_s + 1 > t_s$, no honest party echoes (echo, v) the value v and thus v can be received only from the t_s dishonest parties (line 4, Figure 10). As a consequence, for every honest party P_i, it is $|R(v)| \leq t_s < n - t_s$ and thus no honest party sets $\text{val} = v$ (line 5 (b)). The claim follows from t_s-validity 1 of MV$_1$ and MV$_2$.

Finally, we bound the complexity of the protocol.

Lemma 25. Let $t_s < n/2$. The total communication complexity of the graded consensus protocol Π^{t_a,t_r}_{GC} is bounded by $O(n^3)$.

Proof. First, we show that each honest party may echo at most one message $(\text{echo}, -)$. For this, let $n = 2t_s + 1$. Consider an honest party P_i. Clearly, P_i receives at most one message $(\text{init}, -)$ from any other party, as it otherwise would know that the sender is dishonest. In order to multicast message (echo, v) for some $v \neq v_i$, P_i needs to receive (init, v) from $t_s + 1$ distinct parties (line 4, Figure 10). Since $n = (t_s + 1) + (t_s)$, it follows that P_i can echo at most one message $(\text{echo}, -)$. This gives a communication complexity of $O(n^2)$ up to line 5 (c).

Next, we show that the communication complexity of MV$_1$ is bounded by $O(n^3)$. Having a look at Figure 9 we see that every honest party multicasts at most one message of the form $(\text{mv}_2, -)$ (line 4). Furthermore, a message of the form (mv_1, v) for some $v \neq \bot_{mv}$ is multicast if it was received from at least $t_s + 1$ distinct parties, ensuring that the message had to come from at least one honest party (line 5). In particular, an honest party only (mv_1, v) at most $n - t_s$ times. Moreover, every honest party multicasts at most one message of the form (mv_1, \bot_{mv}) (line 6). As a result, the overall communication complexity of MV$_1$ is bounded by $O(n^3)$. Getting back to Figure 10, line 5 (d) and line 6 give two instances of the MV-broadcast protocol with communication complexity $O(n^3)$, so that the overall communication complexity of Π^{t_a,t_r}_{GC} is bounded by $O(n^3)$.

\[Q.E.D. \]
C.3 Intrusion-Tolerant Multivalued Agreement

Let $\Pi_{BA}^{t_a,t_s}$ be a Byzantine agreement protocol with input domain $\{0, 1\}$ that is t_a-secure and t_s-valid with termination. We present a modified version of the protocol from [BKL19] in Appendix D with expected communication complexity $O(\lambda n^3)$ that satisfies these requirements. Let $\Pi_{GC}^{t_a,t_s}$ be a multivalued graded consensus protocol that is t_a-secure and t_s-graded valid. We present intrusion-tolerant (multivalued) Byzantine agreement protocol $\Pi_{IT}^{t_a,t_s}$ in Figure 11.

\begin{itemize}
 \item 1. Set $\text{aux}_i = \bot$, $\text{bp} = 0$.
 \item 2. Run $\Pi_{GC}^{t_a,t_s}$ using input v_i.
 \item 3. Upon receiving output (v,g) from $\Pi_{GC}^{t_a,t_s}$: set $\text{aux}_i = v$. If $g = 2$, set $\text{bp} = 1$.
 Run $\Pi_{BA}^{t_a,t_s}$ using input bp.
 \item 4. Upon receiving output b from $\Pi_{BA}^{t_a,t_s}$: if $b = 1$, then multicast $\langle \text{commit}, \text{aux}_i \rangle$.
 Otherwise, multicast $\langle \text{commit}, \bot \rangle$.
 \item 5. Upon receiving $t_s + 1$ signatures of $(\text{commit}, \text{aux})$ from distinct parties: collate signatures into Σ, multicast $(\text{commit}, \text{aux}, \Sigma)$, output aux and terminate.
 \item 6. Upon receiving $(\text{commit}, \text{aux}, \Sigma)$ where Σ consists of $t_s + 1$ valid signatures from distinct parties of $(\text{commit}, \text{aux})$: multicast $(\text{commit}, \text{aux}, \Sigma)$, output aux and terminate.
\end{itemize}

Fig. 11: Intrusion-tolerant multivalued Byzantine agreement from the perspective of party P_i.

Communications Complexity. We argue in the following that the expected communication complexity of our intrusion-tolerant Byzantine agreement protocol $\Pi_{IT}^{t_a,t_s}$ is $O(\lambda n^3)$. The graded consensus protocol $\Pi_{GC}^{t_a,t_s}$ in line 2 has a communication complexity bounded by $O(n^3)$. The Byzantine agreement protocol $\Pi_{BA}^{t_a,t_s}$ in line 3 has an expected communication complexity of $O(\lambda n^3)$. The multicast of commit messages in line 4 to 6 give an additional complexity of $O(n^2)$. As a result, the overall expected communication complexity of $\Pi_{IT}^{t_a,t_s}$ is
\(O(\lambda n^3)\). We note that we achieve this complexity by implementing the Byzantine agreement protocol \(\Pi_{BA}^{t_s,t_a}\) with a particular coin flip protocol from \cite{GLL+21} (Algorithm 4).

Theorem 7. Let \(n, t_s, t_a\) be such that \(0 \leq t_a < \frac{n}{3} \leq t_s < \frac{n}{2}\) and \(t_a + 2 \cdot t_s < n\). Then Byzantine agreement protocol \(\Pi_{IT}^{t_s,t_a}\) (Figure 11) is \(t_s\)-valid and \(t_a\)-secure with intrusion tolerance.

We prove this by proving the following lemmas.

Lemma 26. Let \(t_a \leq t_s\) and \(t_a + 2 \cdot t_s < n\). Then \(\Pi_{IT}^{t_s,t_a}\) achieves \(t_s\)-validity with termination. It follows that \(\Pi_{IT}^{t_s,t_a}\) achieves \(t_a\)-validity.

Proof. In order to prove \(t_s\)-validity with termination, we show that if every honest party’s input is equal to the same value \(v\), then every honest party outputs \(w\) and terminates. First, suppose that all honest parties receive output \(v\) from \(\Pi_{BA}^{t_s,t_a}\) and output \(a\) from \(\Pi_{GC}^{t_s,t_a}\) before terminating (line 3 and 4, Figure 11).

Since all parties input \(v\) into \(\Pi_{GC}^{t_s,t_a}\), by \(t_s\)-graded validity of \(\Pi_{GC}^{t_s,t_a}\) all parties eventually receive output \((v, 2)\) from \(\Pi_{GC}^{t_s,t_a}\) (line 3). By construction of \(\Pi_{IT}^{t_s,t_a}\), all honest parties then propose \(bp = 1\) to \(\Pi_{BA}^{t_s,t_a}\) (line 3). By the \(t_s\)-validity of \(\Pi_{BA}^{t_s,t_a}\), all honest parties eventually output \(a = 1\) from \(\Pi_{BA}^{t_s,t_a}\) (line 4). All \(n - t_s\) honest parties \(P_i\) then multicast \((commit, v)\); since \(n - t_s \geq t_s + 1\), all honest parties eventually deliver enough valid \((commit, v)\) signatures or a valid \((commit, v, \Sigma)\) message (line 5 and 6). Moreover, since \(t_s + 1 > t_a\), no honest party receives a valid commit message for any other \(v' \neq v\).

Suppose now that some honest \(P_i\) terminates before both outputting from \(\Pi_{BA}^{t_s,t_a}\) and outputting \(b\) from \(\Pi_{BA}^{t_a,t_a}\). That is, \(P_i\) delivered a valid \((commit, v, \Sigma)\) or \(t_s + 1\) valid \((commit, v)\) messages from distinct parties before multicasting \((commit, v, \Sigma)\) to all honest parties (line 5 and 6), since by the \(t_s\)-validity of \(\Pi_{BA}^{t_s,t_a}\), bit \(b = 0\) is never output by \(\Pi_{BA}^{t_s,t_a}\). Similarly, honest parties only multicast their individual commit message upon \(\Pi_{GC}^{t_s,t_a}\) outputting a value (which must be \((v, 2)\) as argued above). It follows that all honest parties output the same \(v\) and terminate either on receipt of \(P_i\)’s message \((commit, v, \Sigma)\) or otherwise (line 5 and 6).

Lemma 27. Let \(t_a \leq t_s\) and \(t_a + 2 \cdot t_s < n\). Then \(\Pi_{IT}^{t_s,t_a}\) achieves \(t_a\)-consistency.

Proof. Suppose that all honest parties that terminate receive output from \(\Pi_{BA}^{t_s,t_a}\) and \(\Pi_{GC}^{t_s,t_a}\) before terminating; we argue similarly to above Lemma 26 if this is not the case. Suppose that some honest party outputs \((v, 2)\) from graded consensus (line 3). Then, by \(t_a\)-graded consistency, all honest parties output...
Thus, all honest parties eventually multicast \langle \text{commit}, v \rangle_i if \(b = 1 \) or \langle \text{commit}, \perp \rangle_i if \(b = 0 \) (line 4). It follows that all honest parties who terminate output the same \(v \) by a similar argument to above.

Otherwise, if no party outputs \((v, 2) \), then by \(t_a \)-graded consistency no honest party proposes \(bp = 1 \) to \(P_{BA}^{t_a,t_s} \), and so by \(t_a \)-validity all parties output \(b = 0 \). Thus, as no honest party \(P_i \) multicasts \langle \text{commit}, v \rangle_i for \(v \neq \perp \) and \(t_a + 1 > t_a \) (line 4), all parties who terminate agree on output \(\perp \).

Lemma 28. Let \(t_a \leq t_s \) and \(t_a + 2 \cdot t_s < n \). Then \(I_{IT}^{t_a,t_s} \) achieves \(t_a \)-liveness and \(t_a \)-termination.

Proof. Note that, in \(I_{IT}^{t_a,t_s} \), \(t_a \)-liveness holds if and only if \(t_a \)-termination holds since all parties terminate directly after outputting.

Suppose that all honest parties that terminate receive output from \(I_{BA}^{t_a,t_s} \) and \(I_{GC}^{t_a,t_s} \) before terminating; we argue similarly to above Lemma 26 if this is not the case. By the \(t_a \)-liveness of \(I_{GC}^{t_a,t_s} \), all honest parties that output eventually output \((v, g) \) (line 3), and by \(t_a \)-agreement and \(t_a \)-liveness of \(I_{BA}^{t_a,t_s} \), all honest parties output the same \(b \) (line 4). All honest parties then multicast the same signed \(\langle \text{commit}, v \rangle \) pair (line 4), and then since \(n - t_a > t_a + 1 \) and similarly to before all honest parties eventually output a value and terminate (line 5 and 6).

Lemma 29. Let \(t_a \leq t_s \) and \(t_a + 2 \cdot t_s < n \). Then \(I_{IT}^{t_a,t_s} \) achieves \(t_s \)-intrusion tolerance.

Proof. This follows similarly from the proof of \(t_s \)-validity with termination, Lemma 26. Suppose that some honest party \(P_i \) outputs \((v, 2) \) from the graded consensus, i.e. \(I_{GC}^{t_a,t_s} \) (line 3). By its \(t_s \)-intrusion tolerance, \(v \) must have been input to \(I_{GC}^{t_a,t_s} \), and thus \(I_{IT}^{t_a,t_s} \), by an honest party. Then by \(t_s \)-consistency of \(I_{GC}^{t_a,t_s} \), all honest parties who output will output \((v, g) \) with \(g \geq 1 \) (line 3). Thus, if 1 is output by all honest parties in \(I_{BA}^{t_a,t_s} \) (by properties of \(I_{BA}^{t_a,t_s} \)), it follows that \(aux = v \) will be output by all honest parties; otherwise, \(\perp \) will be output. Thus, \(t_s \)-intrusion tolerance holds in this case.

Suppose now that no honest party outputs \((v, g) \) from \(I_{GC}^{t_a,t_s} \) such that \(g = 2 \). By construction of \(I_{IT}^{t_a,t_s} \), no honest party sets \(bp = 1 \) (note all parties output from \(I_{GC}^{t_a,t_s} \) by its \(t_s \)-liveness) and thus all honest parties propose \(bp = 0 \) to \(I_{BA}^{t_a,t_s} \). By \(t_s \)-validity of \(I_{BA}^{t_a,t_s} \), it follows that all honest parties decide 0, and thus by construction of \(I_{IT}^{t_a,t_s} \) will eventually output \(\perp \). That is, they will not output a value proposed by a dishonest party.

D Binary Agreement Protocol

We present a Byzantine binary agreement protocol \(I_{BA}^{t_a,t_s} \). Let \(I_{GC}^{t_a,t_s} \) be a (binary) graded consensus protocol, i.e. takes as input a value in \(\{0, 1\} \) where
each party outputs a value $v \in \{0, 1, \perp\}$ and a grade $g \in \{0, 1, 2\}$. We require that $\Pi_{\text{GC}}^{t_s, t_c}$ satisfies t_s-graded validity and is t_s-secure: the protocol from [BKL19] (Figure 4) satisfies these properties with $O(n^2)$ communication complexity. We also require a coin-flip mechanism CoinFlip which allows all parties to generate and know an unbiased binary value $\text{Coin}_r \in \{0, 1\}$ for $r \geq 2$. Upon receiving input $r \geq 2$ from $t_s + 1$ parties, the coin flip mechanism generates an unbiased coin $\text{Coin}_r \in \{0, 1\}$ and sends (r, Coin_r) to all parties. In particular, if at most t_s parties are corrupted, at least one honest party must send r to CoinFlip before the adversary can learn the coin Coin_r. We will rely on a \tilde{p}-weak coin flip with $\tilde{p} = 1/3$, where honest parties agree on the coin only with probability $\tilde{p} < 1$. This comes with an increase in the expected round complexity by a factor of $O(1/\tilde{p}) = O(1)$. Our coin flip mechanism is the one from [GLL+21] (Algorithm 4), which costs only $O(\lambda n^3)$ bits and has expected constant rounds (and ensures that with probability at least $1/3$, all honest parties output an unbiased common coin).

Our asynchronous Byzantine agreement protocol $\Pi_{\text{BA}}^{t_s, t_c}$ (Figure 12) works as follows. We describe it from the perspective of a party P_i with input value v_i. In the protocol, we say message $(\text{commit}, b, \sigma)$ from party P_i (as in ‘Termination procedure’, steps (i) and (ii)) is valid if $b \in \{0, 1\}$ and σ is a valid signature from P_i on (commit, b), i.e $\sigma \leftarrow (\text{commit}, b)$. Also, we say that a set of signatures is a certificate for b (as in step (i) and (ii)) if the set contains valid signatures on (commit, b) from at least $t_s + 1$ distinct parties.

As usual, at the beginning helper variables are set (step 1). Afterwards, the protocol proceeds in round defined by the parameter r. In such a round, P_i first runs the graded consensus protocol $\Pi_{\text{GC}}^{t_s}$ on input $b = v_i$ with (b, g) being the output (step 2). Note that for rounds $r < 3$ we set the coin to some deterministic default value (which does not affect the safety of the algorithm). We do this because we can then assume our coin flip mechanism only works in asynchrony (and thus use the algorithm from [GLL+21] so that when we show t_s-validity with termination, it will also hold that the coin is never used. Otherwise, $\text{CoinFlip}(r)$ is invoked.

Then, if $g < 2$, P_i runs $\Pi_{\text{GC}}^{t_s}$ on input Coin_r (step 4), otherwise on input b (steps 4 and 5), with (b', g) being the output. Now if $g > 0$, set $b = b'$ (step 5). In case $g = 2$, the next step is done only once (which is guaranteed by setting helper variable cm to true): compute the signature σ on (commit, b) and multicast the message $(\text{commit}, b, \sigma)$ (step 7). Finally, the next round starts by increasing r by one (step 8) with a small restriction: As soon as P_i computes a commit message, it only executes one additional round of the protocol and then stops (this is ensures by the variable stop in steps 7 and 8). Furthermore, party P_i terminates and ends the protocol as soon as (i) it receives valid commit messages on the same value b from at least $t_s + 1$ distinct parties (before termination, P_i combines the signatures into a certificate Σ, multicasts $(\text{notify}, b, \Sigma)$ and outputs b), or (ii) it receives $(\text{notify}, b, \Sigma)$ with Σ being a certificate on messages (commit, b) for the same value b (before termination, P_i multicasts $(\text{notify}, b, \Sigma)$ and outputs b).
The purpose of the \texttt{stop} variable is to ensure that the communication complexity of the protocol stays bounded. The protocol is well-defined and terminates, since we have the following: if one honest party set \texttt{cm} = \texttt{true} in round \(r\), then all parties set \texttt{cm} = \texttt{true} in (at most) round \(r + 1\). We sketch the argument for this claim in the following. We will say a party \texttt{committed} if it sets \texttt{cm} = \texttt{true}. Suppose an honest party committed in round \(r\). By construction, it must have \(g = 2\) and by graded consistency of \(\Pi_{GC}^t\), it is |\(g - g'\)| \(\leq 1\) for all \(g'\) output by honest parties. Therefore, all honest parties output \(g = 1\) or \(g = 2\). Furthermore, graded consistency implies that if one honest party outputs \((v, g = 2)\), then all honest parties output the same \(v\), and so all honest parties will input \(v\) in the next round. Again by graded validity, all honest parties will output \(g = 2\) from the first execution of \(\Pi_{GC}^t\) and by similar arguments every honest party will have committed in that round (we will see this argumentation more thoroughly in the proof for \(t_s\)-graded validity below).

\[
\Pi_{BA}^{t_s,t_s}(v_i)
\]

1. Set \texttt{cm} = \texttt{output} = \texttt{false}, \texttt{stop} = 0, \(b = v_i\), and \(r = 1\). While \texttt{output} = \texttt{false} do:
2. Run \(\Pi_{GC}^t\) on input \(b\). Let \((b, g)\) be the output.
3. If \(r < 3\), set \(\text{Coin}_r = 1\). Otherwise, let \(\text{Coin}_r \leftarrow \text{CoinFlip}(r)\).
4. If \(g < 2\), set \(b = \text{Coin}_r\).
5. Run \(\Pi_{GC}^t\) on input \(b\). Let \((b', g)\) be the output.
6. If \(g > 0\), set \(b = b'\).
7. If \(g = 2\) and \texttt{cm} = \texttt{false}:
 \begin{itemize}
 \item Set \texttt{cm} = \texttt{true} and \texttt{stop} = \(r + 1\).
 \item Compute \(\sigma \leftarrow \langle \text{commit}, b_1 \rangle\).
 \item Multicast \((\text{commit}, b, \sigma)\).
 \end{itemize}
8. If \texttt{stop} > \(r\), set \(r = r + 1\) (and repeat from step 2).

Termination procedure:

(i) Upon receiving (valid) commit messages \((\text{commit}, b, \sigma)\) on the same value \(b\) from \(t_s + 1\) distinct parties:
 \begin{itemize}
 \item Combine the signatures into a certificate \(\Sigma = (\sigma_1, \ldots, \sigma_{t_s+1})\).
 \item Multicast \((\text{notify}, b, \Sigma)\).
 \item Output \(b\), set \texttt{output} = \texttt{true}, and terminate.
 \end{itemize}
(ii) Upon receiving \((\text{notify}, b, \Sigma)\) such that \(\Sigma\) contains valid signatures on commit messages \((\text{commit}, b)\) on the same value \(b\) from \(t_s + 1\) distinct parties:
 \begin{itemize}
 \item Multicast \((\text{notify}, b, \Sigma)\).
 \item Output \(b\), set \texttt{output} = \texttt{true}, and terminate.
 \end{itemize}

Fig. 12: Binary agreement protocol from the perspective of party \(P_i\).

We have the following theorem.
Theorem 8. Let $t_a \leq t_s$ and $t_a + 2 \cdot t_s < n$. Then Π_{BA} achieves t_s-validity with termination and is t_a-secure.

Proof. First, we prove the t_s-validity with termination. For this, assume all honest parties initially hold the same value $v \in \{0, 1\}$. All honest parties use v as input in the first execution of the graded consensus protocol $\Pi^{t_s}_G$ (step 2). By t_s-graded validity of $\Pi^{t_s}_G$, all honest parties output $(v, 2)$ from that execution. Thus, all honest parties run a second instance of $\Pi^{t_s}_G$ using input v (step 5), again receiving $(v, 2)$ as output. Therefore, all honest parties multicast a commit message on v (step 7). Additionally, by the stop variable, all honest parties will only execute one additional round of the protocol. Furthermore, the honest parties will receive at most $t_s < t_s + 1$ commit messages on some $w \neq v$. Therefore, all honest parties eventually receive valid commit messages on v from $n - t_s \geq t_s + 1$ distinct parties, output v, and terminate (step (i) and (ii) of 'Termination procedure').

The proof of the t_s-security follows the same argumentation as the proof of Lemma 11 in [BKL19] and therefore we skip it here.

E Deferred Security Proofs

Lemma 30. Let $0 \leq t_a < n/3 \leq t_s < n/2$, $t_a + 2 \cdot t_s < n$ and $d = t_s + 1$. Then distributed key generation protocol $\Pi^{t_a,t_s}_{\text{DKG}}$ (Figure 2) achieves (t_s,d)-correctness and t_a-consistency when run in a synchronous network and (t_a,d)-correctness and t_a-consistency when run in an asynchronous network.

Proof. First, suppose that at most t_s parties are corrupted and that the network is synchronous.

Note that all parties terminate the n instances of $\Pi_{\text{BC-Ext}}$ at time T (t_s-liveness) with the same values (M'_1, \ldots, M'_n) (t_s-consistency) at step 2. By t_s-validity and t_a-external validity of $\Pi_{\text{BC-Ext}}$ and since at least $n - t_s$ parties are honest, at least $n - t_s$ instances of $\Pi_{\text{BC-Ext}}$ terminate with valid input from honest parties. Thus, all honest parties satisfy the condition at step 2(a) and invoke Split with the same input. Since acc.Eval and acc.CreateWits are deterministic, all honest parties invoke Π^{t_a,t_s}_IT with the same input z. Thus by t_s-validity of Π_{IT} all honest parties output z.

By n-external validity of $\Pi_{\text{BC-Ext}}$, each value $M'_i \neq \bot_{bc}$ output by instance i is of the form $(C_i = (C_{i0}, \ldots, C_{it}), c_i = (c_{i1}, \ldots, c_{in}), \pi_i = (\pi_{i1}, \ldots, \pi_{in}))$. By the completeness and soundness of \texttt{zikj}, each c_{ij} is an encryption of $(s_{ij}, u_{ij}) = (f_i(j), f'_i(j))$ under \texttt{ekj} for polynomials f_i, f'_i defined by the values in C_i in the exponent of g, h. Note that Split is defined such that each message L_j contains:

- The same set of qualified parties Q;
- c'_j, i.e. encryptions of $f_q(j)$ under \texttt{pkj} for $q \in Q$; and
- $C'_j = \Pi_{q \in Q} C^*_j$, where C^*_j is $f_q(j)$ and $f'_q(j)$ evaluated in the exponent of g and h respectively. Thus, C'_j is $\sum_{q \in Q} f_q(j)$, $\sum_{q \in Q} f'_q(j)$ evaluated in the exponent of g, h.

58
By construction of steps 4 and 5 and the security of acc, all honest parties eventually reach step 6 on receipt of their valid part message derived from the output of the n instances of Π_{BC-Ext} which all parties agree on. Each party then multicasts a recon message. Similarly to the above, by the security and correctness of acc and nizk$_2$, all honest parties eventually reach step 7. By construction, each honest party performs Lagrange interpolation in the exponent of g with respect to $t_s + 1$ valid shares with respect to the polynomial $F(\cdot) = \sum_{q \in \mathbb{Q}} f_q(\cdot)$.

Now, t_s-consistency follows since all honest parties evaluate $F(\cdot)$ at 0 in the exponent to derive the same y and at $[1,n]$ to derive the same sequence sequence (p_1,\ldots,p_n). (t_s,d)-correctness follows where the polynomial F in the definition of DKG (Definition 8) is as described above.

Suppose now that the network is asynchronous and at most t_a parties are corrupted. By n-external validity of Π_{BC-Ext}, all non-bottom messages that honest parties output at the beginning of step 2 satisfy Valid(), and by construction all parties then invoke Π_{IT} with some input.

- Suppose that honest party P_i outputs $v \in \{\perp_{it}, \perp_{dkg}\}$ from Π_{IT}. Then all honest parties eventually (t_a-consistency) output the same value v (t_a-validity). It follows that no honest party sets ready = true. Since all honest parties thus invoke Π_{ADKG}, (t_a,d)-correctness and t_a-consistency follows from the (t_a,d)-security of Π_{ADKG}.

- Otherwise, by t_a-intrusion tolerance (and t_a-security) of Π_{IT}, all parties eventually output the same value z_{it} which is such that z_{it} was proposed by an honest party, say P_i. Similarly to the synchronous case, P_i must have output at least $n - t_s$ well-formed values M_i' at step 2, and then at step 4 sent valid part messages to all parties. Thus, all honest parties eventually set ready = true. Since there are at least $t_s + 1$ honest parties and by similar arguments to the synchronous case, it follows that all parties eventually reach step 7, from which the two claimed properties similarly follow.

We note also that honest parties can terminate upon generating output since they do not send any new messages thereafter. \(\square\)

Lemma 31. Let $0 \leq t_a < n/3 \leq t_s < n/2$, $t_a + 2 \cdot t_s < n$. Then distributed key generation protocol $\Pi_{DKG}^{t_a,t_s}$ (Figure 2) achieves t_s-secrecy and t_s-uniformity when run in a synchronous network and t_a-secrecy and t_a-uniformity when run on an asynchronous network.

Proof. We first consider secrecy. We follow the same high-level strategy used in previous work [GJKR99,GJKR07,SBKN21]. We construct a simulator S which takes as input a public key y, and the set of initially corrupted parties by adversary \mathcal{A} (recall we consider static corruptions), which w.l.o.g. we write as $B = \{P_1,\ldots,P_t\}$ with $t \leq t_s$. \mathcal{A} controls the network and co-ordinates the actions of parties in B. To prove t_s-secrecy, we show that S can simulate interaction with \mathcal{A} such that, conditioned on the output public key being y, the view of the run from \mathcal{A}’s perspective is indistinguishable from one where the specification of Π_{DKG} is exactly executed. We present the simulator S in Figure 13.
Fig. 13: Simulator for $\Pi_{DKG}^{t_s,t_a}$ (Fig. 2) from the perspective of the simulator S interacting with adversary A, where $B = \{P_1,\ldots, P_i\}$ is the set of parties that A initially corrupts, where $t \leq t_s$ (resp. $t \leq t_a$) in synchrony (resp. asynchrony), and $G = \{P_{t+1},\ldots, P_n\}$ (without loss of generality). We refer to a party P_i’s local variables from Figure 2 directly when clear from context.

We first assume synchrony with at most t_s corruptions. Note, as argued in Lemma 30, that all honest parties in Π_{DKG} eventually output the same value z from Π_{IT}, and thus no honest party invokes Π_{ADKG}. Then, since S is specified to perfectly simulate steps 1 to 5 of Π_{DKG} (step 1 of Figure 13), A’s view is identically distributed to that of a run of Π_{DKG} until the condition at step 2 of Figure 13 is satisfied.

The simulation strategy after this point is essentially that of the simulator in Figure 10 of [SBKN21]. The goal is to ‘hit’ (in the language of [GJKR99]) the input public key y by modifying the contribution of one or more simulated parties to the final secret from the view of A. Recall that at step 6 of Π_{DKG}, a party P_k’s share of the final secret is computed as $\sum_{j \in Q} s_{jk}$ where each value s_{jk} corresponds to (the y-coordinate of) a point on a polynomial $f_j(\cdot)$ and is derived by decryption using dk_k. In particular, A knows, for each $j \in Q$, at most t_s points on $f_j(\cdot)$, since by the security of pke, except with negligible probability,
the other encryptions give \(A \) any information about their contents. Moreover, the simulator cannot ‘lie’ about these points since \(A \) decrypted ciphertexts to learn this information. Thus, \(S \)’s strategy is to modify the values (\(\text{recon}, \ldots \)) multicast by honest parties (the simulator) at line 6 of \(\Pi_{\text{DKG}} \) to force the public key to be exactly \(y = g^x \).

Consider the first party \(P_i \) to reach step 6 of \(\Pi_{\text{DKG}} \) with \(\text{ready} = \text{true} \) (step 2 of Figure 13). By \(t_s \)-intrusion tolerance of \(\Pi_{\text{IT}} \), there exists an honest party \(P_j \) that correctly executes step 4 of \(\Pi_{\text{DKG}} \). Note that the simulator has the state of the \(\geq n - t_s \) honest parties and thus can reconstruct all polynomials \(f_k(\cdot) \) where \(k \in Q \) (in particular using information that \(P_i \) sent in \(\text{part} \) messages as written in Figure 13). To ‘hit’ \(y = g^x \), the simulator needs to send \(\text{recon} \) messages consistent with a polynomial \(F(\cdot) \) such that \(F(0) = x \). To this end, \(S \) reconstructs such a polynomial \(F(\cdot) \) in the exponent of \(g \) by interpolating \(t \) points from the ‘real’ secret plus the point \((0, y) \).

Note that at the end of step 6, each \(P_j \in G \) sends a message of the form \(M_j = (\text{recon}, D_j, \pi'_j, L_j = (c'_{j}, C'_{j}, Q), w_j) \), where \(L_j \) and \(w_j \) are contained in \(\text{part} \) messages sent at step 4 and (due to the security of accumulator \(\text{acc} \) and \(\Pi_{\text{IT}} \)) cannot be changed in the simulation. For each \(P_j \in G \), we therefore set \(D_j = g^{F(j)} \) and use the zero-knowledge property of \(\text{nizk}_2 \) to simulate a proof that is consistent with \(L_j \). More precisely, \(S \) simulates a proof for \(\text{nizk}_2 \) that proves knowledge of \((F(j), x^*) \) such that \(D_j = g^{F(j)} \) and \(C^*_j = g^{F(j)h^{x^*}} \) for some \(x^* \). By the same argument in [SBKN21], \(\text{recon} \) messages are correctly distributed and moreover verification passes at step 7 for \(A \)’s corrupted parties, from which secrecy follows.

We now consider \(t_s \)-uniformity, where the aim is to show, for an a priori fixed \(y' \in \mathbb{G} \), the probability that the protocol run outputs \(y' \) is negligibly close to \(1/p \). By \(t_s \)-correctness and \(t_s \)-consistency, all parties output a share of the secret \(x = \sum_{j \in Q} x_j \), where \(x_j = f_j(0) \) sampled uniformly in step 1. Note that the final secret is built from the sharings of \(|Q| \geq n - t_s \) parties. Since \(n - 2t_s \geq 1 \), at least one honest party’s contribution is included in \(x \), and as argued the adversary has no information except with negligible probability about the contributions of honest parties until after \(Q \) has been fixed. Uniformity then follows from the fact that \(f_j(0) \) is uniformly sampled.

Suppose now that the network is asynchronous and there are at most \(t_s \) corruptions. Suppose that one honest party outputs \(z_{it} \notin \{\bot_{dkg}, \bot_{it}\} \). Then, since \(\Pi_{\text{IT}} \) is \(t_s \)-secure with intrusion tolerance, all honest parties will eventually output \(z_{it} \), where \(z_{it} \) was proposed by an honest party. Since we did not use the synchrony of the network in the proof follows from above in this case. Otherwise, by \(t_s \)-security, all honest parties will invoke \(\Pi_{\text{ADKG}} \). The result then follows from the \((t_d, d)\)-security of \(\Pi_{\text{ADKG}} \).

Proof of Lemma 4 Our proof (sketch) is very similar to that of [BKL19] for Byzantine agreement, except that we rely on \(t_s \)-uniformity instead of \(t_s \)-validity to reach a contradiction. Let \(t_s + 2 \cdot t_s = n \). Partition the \(n \) parties into sets \(S_0, S_1, S_t \) with \(|S_0| = |S_1| = t_s \) and \(|S_t| = t_a \). Consider an experiment \(E \) where communication between \(S_0 \) and \(S_1 \) is blocked by the adversary but all messages
are otherwise delivered in Δ time, and two virtual copies of S_a, namely S_0^a and S_1^a, exist that interact only with parties in $S_0 \cup S_0^a$ and $S_1 \cup S_1^a$ respectively. We construct two executions:

1. In execution 1, the network is synchronous, and parties in S_1 are corrupted and abort immediately.
2. In execution 2, the network is asynchronous, parties in S_a are corrupted and execute two independent runs of the protocol as S_0^a and S_1^a, and all communication between S_0 and S_1 is delayed indefinitely.

In execution 1, the view of honest parties $S_0 \cup S_0^a$ is distributed identically to the views of $S_0 \cup S_0^a$ in E. Then t_s-uniformity guarantees that all parties in S_0 output a uniformly random secret. Similarly, all parties in S_1 output a secret which is uniform, and since S_0 and S_1 are disjoint, they must be independent. In execution 2, the view of honest parties $S_0 \cup S_1$ is distributed identically to $S_0 \cup S_1$ in E. But this violates t_a-consistency because, except with negligible probability, the keys output by S_0 and S_1 are different (since they are independent and uniform). \[\square\]

Proof of Lemma 3 Assume the network is synchronous and there are up to t_s corruptions. The sub-protocols $\Pi^{t_s,1/2}_{BC}$ and Π^{t_a,t_s}_{BA} are secure, and therefore all parties agree on the same set S. Moreover, the set has size at least $n - t_s$, since each tuple from an honest party P_i is correctly distributed via $\Pi^{t_s,1/2}_{BC}$ due to validity, and by validity of Π^{t_a,t_s}_{BA}, all honest parties include P_i in the set S. This implies that each A^i is an encryption of a sum of values that includes at least an honest party’s value (since $n - t_s > t_s$). Moreover, the ciphertexts from the adversary are chosen independently of the ciphertext from honest parties due to the zero-knowledge proofs of plaintext knowledge, and therefore all parties compute the same tuple of encryptions of random values A^1, \ldots, A^ℓ, with plaintexts unknown to the adversary.

Each tuple (A^i, B^i, C^i) then encodes a correct multiplication triple. This is because all parties agree on the same set S', and each B^i is an encryption of a sum of values that include an honest value, and C^i contains the product of the plaintexts from A^i and B^i due to the proof of correct multiplication.

Now assume the network is asynchronous and there are up to t_a corruptions. The only difference is that the sub-protocol $\Pi^{t_s,1/2}_{BC}$ only provides weak validity. This means that the sets S or S' are not guaranteed to have size $n - t_s$, given that after time T_{bc} many of the honest parties may have obtained ⊥. Moreover, even if any of the sets do contain $n - t_s$ parties, it is not guaranteed that all honest parties received their broadcasted values. However, any party that receives all the broadcasted values will output ℓ encrypted random multiplication triples with the plaintexts unknown to the adversary. In any other case, the output is ⊥. \[\square\]

Proof of Lemma 4 We prove each of the cases individually. We simulate in the hybrid where there is a setup generating the keys for the PKI and the threshold encryption scheme (see Definition 5). This setup can be generated using our DKG scheme from Section 3.
Case 1: Synchronous network. We describe the simulator Sim for the case where the network is synchronous and there are up to t_s corruptions.

- **Triple Generation**: Emulate the triples protocol. For that, the simulator emulates an execution of the protocol generating all the intermediate values on behalf of the honest parties. That is, for each honest party P_j, it generates random values a_{ij}^i, $i \in [1, \ell]$ and encrypts these values and emulates all broadcasted messages (for the zero-knowledge proofs, it emulates accepted proofs). Then, it emulates the n instances of BA to agree on a set S. If the size of the set is less than $n-t_s$, then it emulates the party outputting \bot in the triple generation protocol. Otherwise, it computes the values A^i for each $i \in [1, \ell]$. Similarly, the execution is emulated to possibly obtain the values B^i and C^i. If no triples have been computed for P_j, set the local variable $\text{abort}_j = 1$.

- **Input Distribution**: Emulate the messages of the broadcast protocol. This means that, on behalf of each honest party, emulate the broadcast protocol using an encryption of 0 as the input. Also, emulate the F_{mzk} functionality by outputting 1 on behalf of each honest parties, and from each corrupted party, on input $(c, (x, r))$ check that $c = \text{Enc}_{ek}(x, r)$ and output 1 to the adversary and 0 otherwise. The simulator waits for $\max\{T_{bc}, T_{zk}\}$. For each honest party P_j, it keeps track of the correct encrypted inputs I_j that P_j received. If the number of correct ciphertexts is less than $n-t_s$, the simulator does not compute on its ciphertexts on his behalf and sets a local variable $\text{abort}_j = 1$.

- **Addition Gates**: Sim simply adds the corresponding ciphertexts locally.

- **Multiplication Gates**: Sim locally computes the ciphertexts $X \odot A$ and $Y \odot B$, and The simulator emulates the threshold decryption sub-protocol for each of these values: it sends threshold decryption shares of both ciphertexts to all parties, and outputs 1 when emulating F_{mzk} on behalf of them. After waiting for T_{dec}, it locally computes the output ciphertext of the multiplication gate as in the protocol.

- **Output Determination**: For each party P_j, emulate the messages in the asynchronous common subset protocol with the corresponding input (either a ciphertext, which is the result of the computation, or \bot in the case $\text{abort}_j = 1$). If the output is a single ciphertext c, emulate the threshold decryption sub-protocol.

- **Threshold Decryption**: In a multiplication gate, simply compute the decryption shares and emulate the sending messages. In the Output Determination stage, Sim obtains the output y of the computation, and adjusts the shares such that the shares decrypt to y. In both cases, the simulator always outputs 1 on behalf of the honest parties indicating that the proofs of correct decryptions are correct.

Case 2: Asynchronous network. The only difference with respect to the case where the network is synchronous, is that the protocol $\text{BC}^{1, \ell}^t_{\text{s}}$ only provides weak-validity. In the simulation, it implies that the simulator will also need to
simulate the \perp messages from the broadcast protocols, and not simulate on behalf of the honest parties which stop participating in the protocol after they aborted.

We define a series of hybrids to argue that no environment can distinguish between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the simulator knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the zero-knowledge proofs. In the case of a synchronous network, when a corrupted party requests a proof of any kind from an honest party, the simulator simply gives a valid response without checking the witness from the honest party. In the case of an asynchronous network, the simulator is allowed to set outputs to \perp as the real-world adversary.

Hybrid 3. This is similar to Hybrid 2, but the computation of the decryption shares is different. Here, the simulator obtains the output y from the ideal functionality, and if it is not \perp, it computes the decryption shares of corrupted parties, and then adjusts the decryption shares of honest parties such that the decryption shares (d_1, \ldots, d_n) form a secret sharing of the output value y.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, the honest parties, instead of sending an encryption of the actual input, they send an encryption of 0.

Hybrid 5. This corresponds to the ideal world execution.

In order to prove that no environment can distinguish between the real world and the ideal world, we prove that no environment can distinguish between any two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and Hybrid 2.

Proof. This follows trivially, since the honest parties always send a valid witness to F_{zk} in the case of a synchronous network. In the case of an asynchronous network, the simulator chooses the set of parties that get \perp as the real-world adversary.

Claim 2. No efficient environment can distinguish between Hybrid 2 and Hybrid 3.

Proof. This follows from properties of a secret sharing scheme and the security of the threshold encryption scheme. Given that the threshold is $t_s + 1$, any number corrupted decryption shares below $t_s + 1$ does not reveal anything about the output y. Moreover, one can find shares for honest parties such that (d_1, \ldots, d_n) is a sharing of y.

64
Claim 4. No efficient environment can distinguish between Hybrid 3 and Hybrid 4.

Proof. This follows from the semantic security of the used threshold encryption scheme.

Claim 5. No efficient environment can distinguish between Hybrid 4 and Hybrid 5.

Proof. The simulator in the ideal world and the simulator in Hybrid 4 emulate the joint behavior of the ideal functionalities exactly in the same way.

We conclude that the real world and the ideal world are indistinguishable.

Finally, let us argue why the protocol has weak termination. Observe that when the protocol outputs ⊥, parties do not terminate. This is because the protocol $Π_{ts}^{ts}$ does not guarantee termination, i.e. might need to run forever (see [BKL21]). However, when parties have agreement on a ciphertext to decrypt (in particular, this is the case when the network is synchronous), the threshold decryption sub-protocol ensures that honest parties can jointly collect $t_s + 1 \leq n - t_s \leq n - t_a$ decryption shares, decrypt the ciphertext and terminate. \Box
Let c_M be the number of multiplication gates in the circuit.

Setup. The protocol assumes a threshold additive homomorphic encryption setup, which can be generated securely using the protocol Π_{DKG} (see Section 3).

Offline Phase.
- Parties jointly run the protocol $\Pi_{\text{triples}}(\ell)$ to generate $\ell = c_M$ Beaver multiplication triples.

Let x_i denote the input value of party P_i. Let $\text{abort} = 0$ if a sequence of triples is received from the offline phase. Otherwise, set $\text{abort} = 1$.

Input Distribution.
- P_i computes $\text{TEnc}(x_i)$ and broadcasts using $\Pi_{\text{bc}}^{1/2}$ the ciphertext $\text{TEnc}(x_i)$ and uses the multi-party zero-knowledge functionality F_{zk} to prove knowledge of the plaintext of $\text{TEnc}(x_i)$ towards all parties. Wait until $\max\{T_{\text{bc}}, T_{\text{zk}}\}$ clock ticks passed.
- If there is a broadcast or zero-knowledge proof that has not terminated, or the number of correct encryptions received is less than $n - t$, inputs, set $\text{abort} = 1$. Continue participating in the sub-protocols, but do not compute any ciphertext.

Addition Gates. Input: $X = \text{TEnc}(x)$, $Y = \text{TEnc}(y)$. Output: $Z = \text{TEnc}(z)$.
- P_i locally computes $Z = X \boxplus Y$.

Fig. 14: Synchronous MPC with unanimous output (part 1).
Multiplication Gates. Input: $X = \text{TEnc}(x), Y = \text{TEnc}(y)$, and a triple (A, B, C). Output: $Z = \text{TEnc}(z)$.

- P_i locally computes $X \boxplus A$ and $Y \boxplus B$, and sends threshold decryption shares of both ciphertexts to all parties. In addition, use the zero-knowledge functionality F_{mk} to prove correct decryption of the decryption shares with respect to the ciphertexts.
- Upon receiving $t_s + 1$ decryption shares with correct proofs of decryption for each of the two ciphertexts, reconstruct the plaintexts $x - a$ and $y - b$.
- Compute $E = \text{TEnc}((x - a) \cdot (y - b); e)$, where e is the neutral element of the randomness space. Then compute $Z = E \oplus [(x - a)B] \oplus [(y - b)A] \oplus C$.
- Output Z.

Output Determination. Input x, where $x = c_i$ is the output ciphertext of the circuit if $\text{abort} = 0$, and otherwise $x = \perp$.

- P_i executes the protocol $\Pi_{\text{absc}^t}^{x_i}$ with x as input. Let S_i be the output of the protocol.
- If $S_i = \{c\}$, execute the Threshold Decryption sub-protocol on c, and after an output is given, terminate. Else, output \perp.

Threshold Decryption. Input: ciphertext c.

- P_i computes its decryption share s_i sends it to every other party.
- P_i proves that the value s_i is a correct decryption share of c bilaterally.
- Once $t_s + 1$ correct decryption shares are collected, send the list to every party and output the corresponding plaintext.

Fig. 15: Synchronous MPC with unanimous output (part 2).