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Abstract. Firstly, we improve the evaluation theory of differential prop-
agation for modular additions and XORs, respectively. By introducing
the concept of additive sums and using signed differences, we can add
more information of value propagation to XOR differential propagation
to calculate the probabilities of differential characteristics more precisely.
Based on our theory, we propose the first modeling method to describe
the general ARX differential propagation, which is not based on the
Markov cipher assumption. Secondly, we propose an automatic search
tool for differential characteristics with more precise probabilities in ARX
ciphers. We find that some differential characteristics that used to be
valid become impossible, and some probabilities that used to be under-
estimated increase. In applications, for CHAM-64/128 (one of the un-
derlying block ciphers in COMET, one of 32 second-round candidates in
NIST’s lightweight cryptography standardization process), we find that
there is no valid 39-round differential characteristic with a probability
of 2−63 computed using previous methods, and we correct the probabili-
ties to 2−64 and 2−64 instead of 2−65 and 2−65 computed using previous
methods for two 39-round differential characteristics starting from the
1-st round, respectively; however, if we search for differential character-
istics starting from the 5-th round, the two differential characteristics
are invalid, which means that the round constants can affect the secu-
rity of ARX ciphers against differential cryptanalysis; for Alzette with
c = 0xb7e15162 (one of the S-boxes in SPARKLE, one of 10 finalists in
NIST’s lightweight cryptography standardization process), we correct the
probabilities to 0 and 2−22 instead of 2−23 and 2−23 computed using pre-
vious methods for two 4-round differential characteristics, respectively;
for XTEA, we correct the probabilities to 0 and 2−49 instead of 2−58

and 2−56 computed using previous methods for two 10-round differential



characteristics, respectively. Moreover, for Alzette with c = 0xb7e15162,
XTEA, the quarterround function of Salsa20, and the round function
of Chaskey, we find some invalid DCs that Leurent’s ARX Toolkit can-
not detect. Thirdly, we propose a SAT-based automatic search tool for
impossible differential characteristics in ARX ciphers. We find some dis-
tinguishers ignored by previous methods. In applications, for CHAM-
64/128, we find five 20-round and nineteen 19-round impossible differen-
tial characteristics starting from the 3-rd round for the first time. How-
ever, if we search for impossible differential characteristics starting from
the 1-st round, we cannot find any 20-round impossible differential char-
acteristic, which means that the round constants can affect the security of
ARX ciphers against impossible differential cryptanalysis. Moreover, we
find more impossible differential characteristics for 18-round, 16-round,
14-round, and 12-round CHAM-64/128, respectively. According to our
results, the differential (resp. impossible differential) attack constructed
by the previous methods of placing a DC (resp. an ID) anywhere in a
block cipher may be invalid.

Keywords: Differential cryptanalysis · Differential probability · Impos-
sible differential · ARX · SAT solver.

1 Introduction

The three components: modular addition, rotation, and XOR, constitute the
basic operations in ARX cryptographic primitives [10]. By using these three
operations, good diffusion and confusion can be achieved, as well as a cheap and
fast implementation in both hardware and software. There are many noteworthy
ARX algorithms, such as block ciphers SPECK [6], TEA [35], XTEA [28], and
CHAM [18], MAC algorithm Chaskey [25], stream cipher Salsa20 [9], and hash
functions MD4 [29], MD5 [30], SHA-1 [1], and BLAKE [4].

The security of ARX ciphers is evaluated by analyzing their robustness
against various attacks. Some of the most successful attacks applied to ARX al-
gorithms are differential cryptanalysis and impossible differential cryptanalysis.
Since ARX ciphers use modular addition as a source of non-linearity, these at-
tacks essentially exploit the non-randomness of differential propagation of mod-
ular addition.

Differential properties of modular additions have been studied for several
decades. In 2001, Lipmaa and Moriai [22] proposed a fundamental method to
determine whether a differential over the n-bit modular addition with two vari-
able inputs is invalid and compute the differential probability with complexity
O(log2 n). Their method is widely used to evaluate the security of ARX ciphers
against differential cryptanalysis. In 2010, Mouha et al. [27] introduced the con-
cept of S-functions and used it to evaluate the probability of the modular addi-
tion with an arbitrary number of inputs. It is impressive to study the differential
properties of modular additions by using S-functions. At ASIACRYPT’20, Az-
imi et al. [5] present the first bit-vector differential model for the n-bit modular
addition by a constant input. The differential model in [5] is an elegant model
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that can determine whether a differential over the constant addition has non-zero
probability and compute the binary logarithm of the differential probability.

In order to evaluate the security of block ciphers against differential crypt-
analysis, Lai et al. [19] introduced Markov ciphers in 1991. Following the Markov
cipher assumption, the probability of a differential characteristic (DC) can be
computed by multiplying the probability of differential propagation of each
round. Then, the Markov cipher assumption is used in practically all differential
attacks and impossible differential attacks on block ciphers.

In the past 20 years, using automatic tools to search for DCs and impossible
differentials (IDs) has become a new trend. The automatic tools are mainly of
three types at present: Matsui’s algorithm [24] by using the branch and bound
search algorithm [11,12,16,23], mixed integer linear programming (MILP) mod-
els by converting the cryptographic properties into inequalities characterization
problems [13, 36], and using SAT/SMT solvers by characterizing the properties
of components in ARX ciphers as a set of satisfiability problems [3,15,17,26,31].

All of these methods of searching for DCs and IDs are based on the Markov
cipher assumption. Under the Markov cipher assumption, the probability of a DC
in an ARX cipher is the product of the differential probability of each modular
addition in each round because modular addition is the only nonlinear oper-
ation for an ARX cipher. However, some common ARX-based components do
not follow the Markov cipher assumption since the operations contained may
not keep independent and uniformly random without key injection, such as two
consecutive modular additions, two parallel modular additions, and the XOR
of a branch and a round constant. Therefore, searching for DCs and IDs un-
der the Markov cipher assumption may lead to incorrect probabilities of DCs
computed by simple segmented differential probability multiplications, ignoring
some distinguishers, or deriving other improper cryptanalysis results. Thus, it
is important to propose a method to better filter invalid DCs and obtain tight
bounds for the probabilities of DCs.

To better filter invalid DCs and obtain tight bounds for the probabilities of
DCs, cryptanalysts focus on the relations between differential bits and partially
solve the above problem. In the groundbreaking works of Wang et al. [32–34]
at EUROCRYPT’05 and CRYPTO’05, they used signed differences to find col-
lisions in MD4, MD5, and full SHA-1. In 2012, Leurent [20] introduced the
multi-bit constraints for consecutive bits of an XOR difference and proposed a
notable automatic tool, ARX Toolkit, to search for valid DCs. However, using
Leurent’s ARX Toolkit, cryptanalysts can only get precise probabilities for the
DCs with sparse differences since they cannot capture complete relations that
involve a larger number of bits (i.e. inconsecutive bits). In 2013, Mouha et al. [26]
used Lipmaa et al.’s conditions [22] and signed differences to capture complete
relations between active bits. Furthermore, they presented an example that not
all relations between bits can be captured by using Leurent’s ARX Toolkit. The
observation in [26] is rather subtle. However, Mouha et al. did not give a general
calculation method for the probabilities of DCs. Besides, their method was a
manual method, which means that the method can only be used to evaluate the
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security of ARX ciphers against differential cryptanalysis for a few rounds. An-
other shortcoming of only using Lipmaa et al.’s conditions and signed differences
is that one cannot capture the relations between non-active bits, which leads to
incorrect probability calculations and failure to filter invalid DCs.

Therefore, to better evaluate the security of ARX ciphers against differential
cryptanalysis and impossible differential cryptanalysis, it is important to use
Lipmaa et al.’s conditions, the complete relations between active bits, and the
relations between non-active bits to build an automatic search model for DCs
and IDs in ARX ciphers.

Our Contributions. In this paper, we revisit the differential properties of ARX
ciphers. For ARX ciphers, we propose the first automatic method to search for
DCs and IDs in ARX ciphers using Lipmaa et al.’s conditions, the complete
relations between active bits, and the relations between non-active bits. The
comparison of our method with previous methods is listed in Table 1. Our con-
tributions are mainly three-fold.

Table 1. The comparison of our method with previous methods.

Method Type active bits non-active bits consecutive bits inconsecutive bits

Wang et al.’s method and Mouha
et al’s method

manual ! % ! !

Leurent’s method automatic ! ! ! %
Other automaic methods based
on the Markov cipher assumption

automatic % % % %

Our method automatic ! ! ! !

More precise ARX differential propagation model. We improve the evalu-
ation theory of differential propagation for modular additions and XORs, respec-
tively. By introducing the concept of additive sums and using signed differences,
we can add more information of value propagation to XOR differential propaga-
tion to calculate the probabilities of DCs more precisely. Based on our theory,
we propose the first modeling method to describe the general ARX differential
propagation using Lipmaa et al.’s conditions, signed differences, and additive
sums. The method is not based on the Markov cipher assumption. For active
bits and non-active bits, our method can handle the constraints between consec-
utive bits and the constraints between inconsecutive bits. Moreover, using our
theory, we can evaluate the validity of a differential over a constant addition.
Using our method, more precise ARX differential propagation can be modeled.

Automatic search algorithm for DCs with more precise probabili-
ties in ARX ciphers. According to our new modeling method, we propose
an automatic algorithm to search for DCs with more precise probabilities in
ARX ciphers. We demonstrate the proposed algorithm on block ciphers CHAM-
64/128 [18] and XTEA [28], a 64-bit ARX-box Alzette [7], the quarterround

function of stream cipher Salsa20 [9], and the round function of MAC algorithm
Chaskey [25]. Then, we find that some DCs that used to be valid become im-
possible, and some probabilities that used to be underestimated increase using
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this more precise tool. CHAM-64/128 is an ultra-lightweight block cipher that
has remarkable efficiency on resource-constrained devices and very small hard-
ware footprint [18]. COMET [14], one of 32 second-round candidates in NIST’s
lightweight cryptography standardization process [2], uses CHAM-64/128 as one
of the underlying block ciphers.

For CHAM-64/128, we search for DCs starting from the 1-st round:
(i) We find that there is no valid 39-round DC with a probability of 2−63

computed following the Markov cipher assumption, which means that
the 39-round optimal DC found by Roh et al. [31] is invalid.

(ii) We find eight valid 39-round DCs with a probability of 2−64 computed
following the Markov cipher assumption (including the one found by
Huang et al. [16]). Moreover, we confirm that the refined probabilities of
the eight valid 39-round DCs are indeed 2−64.

(iii) We find eighty-four valid 39-round DCs with a probability of 2−65 com-
puted following the Markov cipher assumption. Then, we find that the
refined probabilities of two of them are both 2−64 and the refined prob-
abilities of the remaining eighty-two DCs are all 2−65. However, if we
search for DCs starting from the 5-th round, the two DCs with
a refined probability of 2−64 are invalid, which means that the choice
of the round constants can affect the security of ARX ciphers against
differential cryptanalysis.

At CRYPTO’20, Beierle et al. presented a 64-bit ARX-box Alzette [7], which
can be evaluated in constant time using only 12 instructions on modern CPUs.
SPARKLE [8], one of 10 finalists in NIST’s lightweight cryptography standard-
ization process, provides the first application of the Alzette S-box.

For Alzette with c = 0xb7e15162,
(i) we correct the probabilities to 0 and 2−22 instead of 2−23 and 2−23

computed using previous methods for two 4-round DCs, respectively;
then, we experimentally verify the probabilities;

(ii) we find a 4-round invalid DC that Leurent’s ARX Toolkit cannot detect;
then, we experimentally verify the probability.

XTEA is a lightweight block cipher proposed by Needham et al. [28]. Because
XTEA is easy to implement, it is used in the encryption of some network pro-
tocols and databases (e.g. KCP Protocol5 and H2 Database6).

For XTEA,
(i) we find the 18-round related-key DC found by Azimi et al. [5] is valid,

and the probability is correct;
(ii) we correct the probabilities to 0 and 2−49 instead of 2−58 and 2−56

computed using previous methods for two 10-round DCs, respectively;
(iii) we find a 9-round invalid DC that Leurent’s ARX Toolkit cannot detect.

5 https://github.com/skywind3000/kcp
6 http://www.h2database.com/html/main.html
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Salsa20 [9] is a stream cipher designed by Bernstein in 2005 as a candidate for
the eSTREAM competition. The 12-round variant of Salsa20, Salsa20/12, was
accepted into the final eSTREAM software portfolio.

For the quarterround function of Salsa20, we find an invalid DC that
Leurent’s ARX Toolkit cannot detect.

Chaskey [25] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction. The 12-round vari-
ant of Chaskey, Chaskey-12, is standardized in ISO/IEC 29192-6.

For the round function of Chaskey, we find an invalid DC that Leurent’s
ARX Toolkit cannot detect.

SAT-based automatic search tool for IDs in ARX ciphers. Based on our
new modeling method, we propose a SAT-based automatic search tool for IDs in
ARX ciphers. We demonstrate the proposed tool on block cipher CHAM-64/128.
Then, we find some new IDs ignored by previous methods.

For CHAM-64/128, we search for IDs starting from the 3-rd round:

(i) We find five 20-round and nineteen 19-round IDs for the first time.
Among the 24 IDs, only one 19-round ID can be found by using pre-
vious methods. However, if we search for IDs starting from the 1-st
round, we cannot find any 20-round ID, which means that the choice
of the round constants can affect the security of ARX ciphers against
impossible differential cryptanalysis.

(ii) We find more IDs (47, 704, 2537, and 3836, respectively) for 18 rounds,
16 rounds, 14 rounds, and 12 rounds, respectively, which cover the results
obtained by using previous methods.

In the past view, one can place a DC (resp. an ID) anywhere in a block
cipher to construct a differential attack (resp. an impossible differential attack).
However, according to our results, the differential attack (resp. impossible dif-
ferential attack) may be invalid. Therefore, our methods are helpful for better
evaluating the security of ARX ciphers against differential and impossible differ-
ential cryptanalysis. The comparison of our results with those given by previous
methods is listed in Table 2.

Outline. The paper is organized as follows. Some preliminaries are given in
Section 2. In Section 3, we propose a more precise evaluation theory of differential
propagation for ARX operations and a new modeling method accordingly. Then,
we propose a general automatic algorithm to search for DCs with more precise
probabilities in ARX ciphers and apply it to CHAM-64/128, Alzette, XTEA,
the quarterround of Salsa20, and the round function of Chaskey in Section 4.
Besides, we propose a new SAT-based automatic search tool for IDs in ARX
ciphers and apply it to CHAM-64/128 in Section 5. In Section 6, we conclude
this paper.
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Table 2. The comparison of our results with those given by previous methods.

Type Cipher Round OP1 (Ref.) RP2 (Ref.)

DC

CHAM-64/128 39
2−63 ( [31]) 0 (this paper)

2−64 ( [16]) 2−64 (this paper)

2−65 (this paper) 2−64 (this paper)

Alzette 4
2−23 (this paper) 0 (this paper)

2−23 (this paper) 2−22 (this paper)

2−38 (this paper) 0 (this paper)

XTEA

18 2−57 ( [5]) 2−57 (this paper)

10
2−58 (this paper) 0 (this paper)

2−56 (this paper) 2−49 (this paper)

9 2−60 (this paper) 0 (this paper)

the quarterround of Salsa20 1 2−13 (this paper) 0 (this paper)

the round function of Chaskey 1 2−11 (this paper) 0 (this paper)

Type Cipher Round NIDPM
3 (Ref.) NIDOM

4 (Ref.)

ID CHAM-64/128
20 0 (this paper) 5 (this paper)
19 1 (this paper) 19 (this paper)
18 1 [18] 47 (this paper)

1 The original probability of a DC calculated using previous methods.
2 The refined probability of a DC calculated using our method.
3 The number of IDs found using previous methods.
4 The number of IDs found using our method.

2 Preliminaries

Notations used in this paper are as follows:

- x‖y: concatenation of bit strings x and y.
- x ∧ y: bitwise AND of x and y.
- x⊕ y: bitwise exclusive OR of x and y.
- x� y: addition of x and y modulo 2n.
- x: bitwise NOT of x.
- wt(x): the Hamming weight of x.
- x[i]: bit at position i of word x, where i = 0 is the least significant bit; or the

i-th element in set x.
- x� r: shift of x to the left by r positions.
- x� r: shift of x to the right by r positions.
- x≪ r: rotation of x to the left by r positions.
- x≫ r: rotation of x to the right by r positions.
- ∆x: XOR difference of x and x′: ∆x = x⊕ x′.
- ∆+x: additive difference of x and x′: ∆+x = x− x′ mod 2n.
- ∆±x: signed difference of x and x′: ∆±x[i] = x[i]− x′[i] ∈ {−1, 0, 1}.
- ∇+x: additive sum of x and x′: ∇+x[i] = x[i] + x′[i] ∈ {0, 1, 2}.
- InD: input difference.
- OutD: output difference.
- DC: differential characteristic.
- ID: impossible differential.

Definition 1 (Addition modulo 2n [22]). Let x, y ∈ Fn2 , then

x� y = x⊕ y ⊕ carry(x, y),
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where carry(x, y) = (c[n− 1], . . . , c[1], c[0]) ∈ Fn2 is the carry bit vector of x� y,
defined recursively as: c[0] = 0; c[i+ 1] = (x[i]∧ y[i])⊕ (x[i]∧ c[i])⊕ (y[i]∧ c[i]),
0 ≤ i ≤ n− 2.

Definition 2 (XOR differential probability of modular addition [22]).
An XOR differential of addition modulo 2n is defined as a triplet (α, β 7→ γ),
where α, β ∈ Fn2 are the two input differences and γ ∈ Fn2 is the output difference.
Then, the XOR differential probability of modular addition is defined as

P (α, β 7→ γ) =
#{(x, y)|(x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ}

#{(x, y)} .

In [22], Lipmaa and Moriai studied the XOR differential probability of modular
addition and proved that an XOR differential triplet (α, β 7→ γ) is valid if and
only if

eq(α� 1, β � 1, γ � 1) ∧ (α⊕ β ⊕ γ ⊕ (β � 1)) = 0, (1)

where
eq(x, y, z) = (x⊕ y) ∧ (x⊕ z). (2)

Then, if (α, β 7→ γ) is valid, the XOR differential probability of modular addition
can be calculated as follows:

P (α, β 7→ γ) = 2−wt(eq(α,β,γ)∧mask(n−1)),

where mask(n− 1) denotes 0‖1n−1.

Definition 3 (Signed differences [32,34]). The signed differences ∆±x split
up the XOR differences into three possible cases:

(i) ∆±x[i] = 0, for x[i] = x′[i];
(ii) ∆±x[i] = +1, for x[i] = 1 and x′[i] = 0;

(iii) ∆±x[i] = −1, for x[i] = 0 and x′[i] = 1.

A signed difference ∆±x corresponds to exactly one XOR difference ∆x and one
additive difference ∆+x as follows:

∆x =

n−1⊕
i=0

|∆±x[i]| · 2i,

∆+x =

n−1∑
i=0

∆±x[i] · 2i mod 2n. (3)

Then, according to Equation (3), we have the following corollary.

Corollary 1. Let x, x′, y, y′, z, z′ ∈ Fn2 , z = x� y, and z′ = x′ � y′. For a valid
differential triplet (∆x,∆y 7→ ∆z), ∆±x, ∆±y, and ∆±z have the following
relations:

n−1∑
i=0

∆±x[i] · 2i mod 2n �
n−1∑
i=0

∆±y[i] · 2i mod 2n =

n−1∑
i=0

∆±z[i] · 2i mod 2n.

(4)
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Definition 4 (Additive sums). For x, x′ ∈ Fn2 , we introduce a new concept of
additive sums ∇+x to denote the additive sum of x and x′: ∇+x[i] = x[i]+x′[i].
The additive sums ∇+x split up the XOR differences into three possible cases:

(i) ∇+x[i] = 0, for x[i] = x′[i] = 0;
(ii) ∇+x[i] = 1, for x[i] 6= x′[i];

(iii) ∇+x[i] = 2, for x[i] = x′[i] = 1.

Then, we have

∇+x =

n−1∑
i=0

∇+x[i] · 2i mod 2n+1. (5)

Definition 5 (Markov cipher [19]). An iterated cipher with round function
Y = f(X,K) is a Markov cipher if there is a group operation ⊗ for defining
differences such that, for all choices of α and β (α 6= e, β 6= e),

P (∆Y = β|∆X = α,X = γ)

is independent of γ, where the subkey is uniformly random.

A cipher is always assumed to be a Markov cipher in its security evaluation
against differential and impossible differential cryptanalysis. Under the Markov
cipher assumption, the probability of a DC in an ARX cipher is the product
of the differential probability of each modular addition in each round because
modular addition is the only nonlinear operation for an ARX cipher [3, 11–13,
15, 16, 23, 26, 31]. Let Ni and (αi,j , βi,j 7→ γi,j) denote the number of modular
additions in the i-th round and the XOR differential triplet of the j-th modular
addition in the i-th round. For an r-round DC Ω, the probability PΩ of Ω is
computed by

PΩ =

r∏
i=1

Ni∏
j=1

P (αi,j , βi,j 7→ γi,j).

3 More Precise Evaluation Theory of ARX Differential
Propagation

In this section, we rebuild the evaluation framework of ARX differential propa-
gation.

3.1 Improved Description Method of XOR Differential Propagation
for ARX Operations

We find that some common ARX-based components do not follow the Markov
cipher assumption since the operations contained may not keep independent and
uniformly random without key injection, which may lead to incorrect probabil-
ities of DCs computed by simple segmented differential probability multiplica-
tions. Here, we present such cases in terms of modular additions and XORs,
respectively.

9



Modular Additions. Two consecutive modular additions without any key injec-
tion and two parallel modular additions that share an identical input branch
are widely used in ARX ciphers. However, these cases do not follow the Markov
cipher assumption. We present some counter-examples, which are further ex-
plained later.

a

b

c

d

e

a

b c

d e

Fig. 1. Two consecutive modular additions and two parallel modular additions that
share an identical input branch

Counter-example 1 For two consecutive modular additions without any key
injection shown in Fig. 1.A, we evaluate the probabilities of DCs for two situa-
tions using enumeration experiments and get the following results:

(i) the probability is 0 for ∆a = 0x05, ∆b = 0x01, ∆c = 0x3c, ∆d = 0x01, and
∆e = 0x35;

(ii) the probability is 2−7 for ∆a = 0x09, ∆b = 0x03, ∆c = 0x78, ∆d = 0x01,
and ∆e = 0x09.

However, the probabilities of these two situations are 2−10 and 2−11, respectively,
if we evaluate them under the Markov cipher assumption.

Counter-example 2 For two parallel modular additions that share an identical
input branch shown in Fig. 1.B, we evaluate the probabilities of DCs for two
situations using enumeration experiments and get the following results:

(i) the probability is 0 for ∆a = 0x78, ∆b = 0x03, ∆c = 0x01, ∆d = 0x09, and
∆e = 0x69;

(ii) the probability is 2−6 for ∆a = 0x78, ∆b = 0x01, ∆c = 0x01, ∆d = 0x09,
and ∆e = 0x09.

However, the probabilities of these two situations are 2−11 and 2−10, respectively,
if we evaluate them under the Markov cipher assumption.

To explore the reasons for such contradictions and describe the XOR differen-
tial propagation more precisely, we use the concept of signed differences and the
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concept of additive sums to add more information of value propagation to XOR
differential propagation. For a valid XOR differential triplet (∆x,∆y 7→ ∆z),
we can derive the relations between signed differential bits and the relations
between additive sum bits of the modular addition using Corollary 1 and the
following method, respectively.

Theorem 1. Let x, x′, y, y′, z, z′ ∈ Fn2 , z = x � y, and z′ = x′ � y′. For a
valid XOR differential triplet (∆x,∆y 7→ ∆z), ∇+x, ∇+y, and ∇+z have the
following relations:

for ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] 6= 0,

(

n−1∑
i=0

∇+x[i] · 2i +

n−1∑
i=0

∇+y[i] · 2i) mod 2n =

n−1∑
i=0

∇+z[i] · 2i mod 2n; (6)

for ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] = 0,

(

n−1∑
i=0

∇+x[i] · 2i +

n−1∑
i=0

∇+y[i] · 2i) mod 2n+1 =

n−1∑
i=0

∇+z[i] · 2i mod 2n+1.

(7)

Remark 1. At ASIACRYPT’20, Azimi et al. [5] presented a bit-vector differential
model for the modular addition by a constant. For x � c = z and x′ � c = z′,
Azimi et al. proposed a method to evaluate the validity of (∆x 7→ ∆z) for fixed
∆x = x ⊕ x′ and ∆z = z ⊕ z′, where c is a constant. However, for x � y = z,
x′�y′ = z′, and y = y′ (y and y′ can be constants or not), we can use Theorem 1
to get the relations between the bits of y and y′ for fixed ∆x = x ⊕ x′ and
∆z = z ⊕ z′ when the XOR differential triplet (∆x,∆y 7→ ∆z) is valid. Then,
for a valid XOR differential triplet (∆x,∆y 7→ ∆z) and a constant c, where
y = y′ (y and y′ can be constants or not), if the relations between the bits of c
and the relations between the bits of y and y′ are compatible, (∆x 7→ ∆z) is valid
under the constant c. Therefore, we emphasize that, according to Theorem 1,
we can evaluate whether a differential over the constant addition is valid.

Next, we propose a method for precisely calculating the overall probability
of a DC.

Theorem 2. Let Pr1 and Pr2 denote the differential probabilities of the first
modular addition and the second modular addition, respectively. Then the fol-
lowing statements hold.

(1) Suppose there are contradictions in the relations between the bits of the two
modular additions, then the overall probability Pr of the DC equals 0.

(2) Suppose there are no contradictions in the relations between the bits of the
two modular additions. Let N denote the number of relations that have to
be satisfied by the second modular addition and have been satisfied by the
first modular addition. Then, the overall probability Pr of the DC can be
calculated as

Pr = Pr1 × Pr2 × 2N .
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Remark 2. For completeness, the proofs of Theorem 1 and Theorem 2 are given
in Supplementary Material.

Remark 3. We emphasize that, for the case of two consecutive modular additions
without a branch injection in the middle, we treat them as two modular additions
rather than a single modular addition with three inputs and one output. This
approach can help us capture the relations between bits. Furthermore, we can
find the repetitive relations and the incompatible relations between the bits of
the two modular additions.

In the rest of this section, since the behavior of signed differences propagating
through XORs is similar to the behavior of additive sums propagating through
XORs, we only show the counter-example of signed differential propagation.

XORs. The XOR of a branch and a round constant is widely used in ARX ci-
phers. However, this case may make the distribution of output signed differences
(resp. additive sums) not keep independent and uniformly random, and make
subsequent operations not follow the Markov cipher assumption. We present a
counter-example, which is further explained later.

Counter-example 3 For z = x ⊕ c and z′ = x′ ⊕ c, assume that x = 0b01,
x′ = 0b10, and c = 0b01, where c is the round constant. Therefore, we can easily
know that ∆±z = 0b(−1)(−1). However, we will get ∆±z = 0b(±1)(±1) using
only XOR differential propagation.

To describe differential propagation more precisely, we use signed differences
(resp. additive sums) to add more information of value propagation to XOR
differential propagation.

Theorem 3. Let x, x′, z, z′, c ∈ Fn2 . For z = x ⊕ c and z′ = x′ ⊕ c, where c is
the round constant, we have ∆z = ∆x and the following relations between signed
differential (resp. additive sum) bits:

(i) for ∆z[i] = 1, ∆±z[i] 6= 0 (resp. ∇+z[i] = 1);
(ii) for ∆z[i] = 0, ∆±z[i] = 0 (resp. ∇+z[i] 6= 1);

(iii) for c[i] = 0, ∆±z[i] = ∆±x[i] (resp. ∇+z[i] = ∇+x[i]);
(iv) for c[i] = 1, ∆±z[i] = −∆±x[i] (resp. ∇+z[i] +∇+x[i] = 2);

where 0 ≤ i ≤ n− 1.

To simplify our analysis, we process the case of the XOR of two branches
(none of the branches are key) following the whitening outputs assumption.
That is, for a particular output XOR difference, the values of the output pairs
are uniformly distributed [26]. This assumption is valid when we consider very
sparse DCs [26].

Remark 4. For all these examples, we have verified them experimentally.
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Remark 5. Using the above method, we can handle the case of a branch injec-
tion between two consecutive modular additions. In contrast, Mouha et al. [27]
treated the case of two consecutive modular additions without a branch injection
in the middle as one modular addition with three inputs and one output. Then,
they applied it to XTEA and found that the probability of the XOR differential
quartet (α, 0, α 7→ 0) with α = 0x80402010 over the two consecutive modular
additions in one round of XTEA is 2−3 instead of 2−6 computed by consider-
ing the two modular additions to be independent of each other. Although their
method can improve the probability because they actually calculate the differen-
tial probability instead of the probability of a DC, their method is not suitable
for the case of a branch injection between two consecutive modular additions,
which means that the calculation result proposed in [27] is incorrect. The details
are shown in Appendix A.

3.2 New Modeling Method for ARX Differential Propagation

Based on the theory in Section 3.1, we propose the first modeling method to
describe the general ARX differential propagation using Lipmaa et al.’s condi-
tions, signed differences, and additive sums. The method is not based on the
Markov cipher assumption. For active bits and non-active bits, our new method
can handle the constraints between consecutive bits and the constraints between
inconsecutive bits.

Suppose that modular additions, rotations, and XORs all operate on n-bit
words, where n > 1. Then, one can use the following steps to model more precise
ARX differential propagation:

Step 1. For each addition modulo 2n, z = x � y and z′ = x′ � y′, we use
Equation (1) and Equation (2) to ensure that (∆x,∆y 7→ ∆z) is valid.

Step 2. For each addition modulo 2n, z = x � y and z′ = x′ � y′, we use
Equation (4) to get the relations between the bits of ∆±x, ∆±y, and ∆±z.

Step 3. For each addition modulo 2n, z = x � y and z′ = x′ � y′, we use
Equation (6) and Equation (7) to get the relations between the bits of ∇+x,
∇+y, and ∇+z.

Step 4. For each rotation of a word to the left, y = x≪ t and y′ = x′≪ t,
we have ∆y = ∆x≪ t, ∆±y = ∆±x≪ t, and ∇+y = ∇+x≪ t. We use
a similar method to process the cases of rotation of a word to the right and
shift of a word.

Step 5. For the XOR of two branches, z = x ⊕ y and z′ = x′ ⊕ y′, let J ⊆
{0, 1, . . . , n−1}. Suppose that (x, x′) and (y[j′], y′[j′]) are random, and y[j] =
y′[j] = C, where j′ /∈ J , 0 ≤ j′ < n, j ∈ J , and C ∈ {0, 1}. According to
Theorem 3, we process XOR differential propagation as ∆z = ∆x ⊕ ∆y,
and process signed differential propagation and additive sum propagation as
follows:
(1) for ∆z[i] = 1, ∆±z[i] 6= 0 and ∇+z[i] = 1;
(2) for ∆z[i] = 0, ∆±z[i] = 0 and ∇+z[i] 6= 1;
(3) for y[j] = y′[j] = 0, ∆±z[j] = ∆±x[j] and ∇+z[j] = ∇+x[j];
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(4) for y[j] = y′[j] = 1, ∆±z[j] = −∆±x[j] and ∇+z[j] +∇+x[j] = 2;
where 0 ≤ i < n.

Step 6. For propagation between operations (resp. rounds), the output XOR
difference, signed difference, and additive sum of the former operation (resp.
round) have to equal the input XOR difference, signed difference, and addi-
tive sum of the later operation (resp. round), respectively.

4 Automatic Search Tool for Differential Characteristics

In this section, we propose an automatic algorithm to search for DCs with more
precise probabilities according to the modeling method in Section 3.2 and further
apply the algorithm to several ARX ciphers.

4.1 Automatic Search Algorithm for Differential Characteristics

We list our automatic algorithms with pseudo-codes in Appendix C. The auto-
matic search algorithm for DCs consists of one main algorithm and three sub
algorithms. Algorithm 2 is the main algorithm of searching for DCs with more
precise probabilities and consists of two parts:

(i) automatically searching for DCs with a weight limit of w using any existing
method;

(ii) automatically evaluating the probabilities of DCs.

Algorithm 2 is essentially a recursive algorithm. For automatically searching for
DCs with a weight limit of w, the first part of Algorithm 2 calls Algorithm 1
to search for DCs with PrOriginal = 2−w using any existing method, where
PrOriginal denotes the original probabilities computed following the Markov ci-
pher assumption. Since we add the corresponding constraints of Equation (4),
Equation (6), and Equation (7) to Algorithm 1, all the DCs found by our algo-
rithm are valid. For automatically evaluating probabilities, the second part of
Algorithm 2 performs the following two steps in each recursive call:

(i) calling Algorithm 4 to derive the relations between the bits of each modular
addition;

(ii) calling Algorithm 3 to derive the factor count that modifies the original
probability in each round and derive the sets of relations between the output
bits in each round.

When the first part of Algorithm 2 finds a valid DC, the second part of Algo-
rithm 2 automatically derives the relations between the bits of each modular
addition, and automatically derives the factor count that modifies the original
probability for each round, and then refines the original probability of the DC.

This algorithm series, which is based on the theory we built in Section 3,
exploits signed differential propagation and additive sum propagation to better
evaluate the security of ARX ciphers against differential cryptanalysis. Using
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this new automatic tool, we find that some DCs that used to be valid become
impossible, and some probabilities that used to be underestimated increase.

Then, we present a technique to improve the efficiency of our algorithm.
For each modular addition, the value of #{(∆±x,∆±y,∆±z)|∆±x � ∆±y =
∆±z mod 2n} is important to derive the relations between bits. However, since
modular addition usually operates on 16, 32, 48, or 64-bit words, it is not efficient
enough if we use an exhaustive search to calculate the value of #{(∆±x,∆±y,
∆±z)|∆±x � ∆±y = ∆±z mod 2n}. Therefore, we introduce a new method
for efficiently calculating the value of #{(∆±x, ∆±y,∆±z)|∆±x�∆±y = ∆±z
mod 2n} as the following theorem.

Theorem 4. Let ∆x,∆y,∆z ∈ Fn2 . For a modular addition, if an XOR differ-
ential triplet (∆x,∆y 7→ ∆z) is valid, the probability can be calculated as

P (∆x,∆y 7→ ∆z) =
#{(∆±x,∆±y,∆±z)|∆±x�∆±y = ∆±z mod 2n}

2wt(∆x)+wt(∆y)+wt(∆z)
.

Remark 6. For completeness, the proof of Theorem 4 is given in Supplementary
Material.

For a valid XOR differential triplet (∆x,∆y 7→ ∆z), we can easily get the
probability using Lipmaa et al.’s algorithm. Therefore, we can efficiently cal-
culate the value of #{(∆±x,∆±y,∆±z)|∆±x � ∆±y = ∆±z mod 2n} using
Theorem 4. Based on this, using Corollary 1, Theorem 1, and Theorem 2, our
automatic tool can efficiently derive the relations between bits for each modular
addition and efficiently evaluate the probability of a DC.

Finally, we give a rough estimation of the complexity of the automatic search
algorithm. Without loss of generality, we assume that the number of modular
additions is m and the word size of each modular addition is n. Let Ni denote the
sum of the Hamming weight of the input and output XOR differences of the i-th
modular addition, and Nmax denote the maximum value of Ni, where 1 ≤ i ≤ m.
As the complexity of the second part of Algorithm 2 is dominated by the value of
Nmax, the complexity of this part has the form O(2Nmax). Thus, the complexity
of the automatic search algorithm is dominated by the higher one between the
complexity of the second part of Algorithm 2 (i.e. O(2Nmax)) and the complexity
of the existing search method applied by Algorithm 2. Note that although the
second part of Algorithm 2 seems to have relatively high complexity, DCs used
in a differential attack have reasonable probabilities, which means that Nmax is
relatively small. Therefore, the automatic search algorithm is actually efficient.

In the rest of this section, we use the method proposed by Mouha et al. [26]
to search for DCs and further get more precise probabilities.

Remark 7. In 2012, Leurent [20] introduced the multi-bit constraints for consec-
utive bits of an XOR difference and proposed a notable automatic tool, ARX
Toolkit, to search for valid DCs. Then, Leurent updated the ARX Toolkit in
2013 [21]. However, Leurent’s ARX Toolkit cannot filter all invalid DCs because
Leurent’s ARX Toolkit cannot capture complete relations that involve a larger
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number of bits (i.e. inconsecutive bits). In contrast, since our automatic tool is
based on Lipmaa et al.’s conditions, the complete relations between active bits,
and the relations between non-active bits, our automatic tool can better filter
invalid DCs and obtain tight bounds for the probabilities of DCs. In the rest of
this section, we show some invalid DCs that cannot be detected by Leurent’s
ARX Toolkit but can be detected by our automatic tool.

4.2 Application to CHAM-64/128

CHAM is a family of lightweight block ciphers designed by Koo et al. [18]. We
present the description of CHAM in Supplementary Material. In [16], Huang et
al. found a 39-round DC with the original probability of 2−64 using an adapted
Matsui’s algorithm proposed by Liu et al. [23]. Huang et al. claimed that the
39-round DC is the 39-round optimal DC for CHAM-64/128. However, using a
SAT-based method, Roh et al. [31] found another 39-round DC with the original
probability of 2−63. Although Roh et al. only proposed the input and output
differences, we use the same method to find the DC, and we verify that the DC
is the only one under the same setting. The two DCs are shown in Table 7 in
Appendix B, and we use DC1 and DC2 to denote the DC found by Huang et al.
and the DC found by Roh et al. We believe that maybe Huang et al.’s application
is incorrect because the above two methods both only include Lipmaa et al.’s
conditions to ensure the validity of the XOR differential triplets of modular
additions and follow the Markov cipher assumption to compute the probabilities
of DCs. Therefore, under the Markov cipher assumption, the DC found by Roh
et al. is the 39-round optimal DC for CHAM-64/128.

For CHAM-64/128, we use our automatic tool to search for DCs starting
from the 1-st round.

Setting r = 39 and w = 63, we cannot find any valid 39-round DC with the
original probability of 2−63. This is an interesting result, which means that
the 39-round DC found by Roh et al. is invalid.

Setting r = 39 and w = 64, we can find all valid 39-round DCs with the
original probability of 2−64. Besides the one found by Huang et al. [16],
we find seven valid 39-round DCs. Moreover, we confirm that the refined
probabilities of the eight valid 39-round DCs are indeed 2−64.

Setting r = 39 and w = 65, we can find all valid 39-round DCs with the
original probability of 2−65. We find eighty-four valid 39-round DCs. It is
worth noting that the refined probabilities of two of them are both 2−64

and the refined probabilities of the remaining eighty-two DCs are all 2−65.
Interestingly, if we search for DCs starting from the 5-th round, the two DCs
are invalid, which means that the choice of the round constants can affect
the security of ARX ciphers against differential cryptanalysis. The two DCs
with a refined probability of 2−64 are shown in Table 9 in Appendix B, and
we use DC1 and DC2 to denote them, respectively.
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4.3 Application to Alzette

At CRYPTO’20, Beierle et al. [7] proposed a 64-bit ARX-based S-box called
Alzette. We present the description of Alzette in Supplementary Material. Since
Alzette is an S-box, it is important to evaluate the probabilities of differentials.
Therefore, the probabilities of DCs need to be precisely evaluated.

We use our automatic tool to search for DCs of Alzette with c = 0xb7e15162,
one of the S-boxes used in SPARKLE [8], one of 10 finalists in NIST’s lightweight
cryptography standardization process.

Setting r = 4 and w = 23, we can find 4-round DCs with the original
probability of 2−23. Furthermore, we find that the refined probabilities of
two of them are 0 and 2−22, respectively. The two DCs are shown in Table 11
in Appendix B, and we use DC1 and DC2 to denote the invalid DC and the
valid DC with incorrect probability computed following the Markov cipher
assumption, respectively.

Setting r = 4 and w = 38, we can find a 4-round DC with the original
probability of 2−38, and we find that the refined probability of the DC is
0. However, the invalidity of the DC cannot be detected by Leurent’s ARX
Toolkit, which means that Leurent’s ARX Toolkit cannot filter all invalid
DCs. The DC is shown in Table 11 in Appendix B, and we use DC3 to denote
the DC.

Experimental Verification of Probabilities. Since Alzette has no key injec-
tion, the probabilities of DCs for Alzette can be well evaluated using experiments.
In this section, we evaluate the probabilities of DC1, DC2, and DC3 experimen-
tally. We randomly select 238, 238, and 245 samples to evaluate the probabilities
of DC1, DC2, and DC3, respectively. The results of our calculations are given
in Table 3. According to the results, we claim that cryptanalysts can get more
precise probabilities of DCs using our new method.

Table 3. Experimental Probabilities of DC1, DC2, and DC3. wO: the logarithm of
the original probability. wR: the logarithm of the refined probability. SS: Sample Size.
EV: Experimental Value. EVO: Expected Value under the Original probability. EVR:
Expected Value under the Refined probability. DEO: Difference between EV and EVO.
DER: Difference between EV and EVR.

Name wO wR SS EV EVO EVR DEO DER

DC1 -23 −∞ 238 0 32768 0 -32768 0
DC2 -23 -22 238 74232 32768 65536 41464 8696
DC3 -38 −∞ 245 0 128 0 -128 0

For the probability of DC2, according to the results shown in Table 3, there
is a 126.54% deviation between the experimental value and the theoretical value
under the original probability. In contrast, there is a 13.27% deviation between
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the experimental value and the theoretical value under the refined probability.
We believe that the deviation between the experimental value and the theo-
retical value under the refined probability is caused by the XOR of one of the
input branches and the output branch of the modular addition in each round,
which means that the whitening outputs assumption may affect the accuracy
of the calculation. However, in this paper, we emphasize that our main concern
is how to automatically find DCs with more precise probabilities than previous
methods, how to automatically refine the probabilities of DCs, and how to au-
tomatically find new IDs. Therefore, although there is a deviation between the
experimental value and the theoretical value under the refined probability, our
results are more precise than the results derived by previous methods.

4.4 Application to XTEA

XTEA [28] has a 64-bit block size and a 128-bit key size. We present the de-
scription of XTEA in Supplementary Material. At ASIACRYPT’20, Azimi et
al. [5] applied an SMT-based method to search for DCs in ARX ciphers, and
they found an 18-round related-key DC with a probability of 2−57 for XTEA.
The related-key DC is shown in Table 8 in Appendix B.

Setting r = 18 and w = 57, we find that the 18-round related-key DC is
valid, and the probability is correct.

Setting r = 10 and w = 58,56, we find two 10-round DCs with refined
probabilities of 0 and 2−49, respectively. The two DCs are shown in Table 10
in Appendix B, and we use DC1 and DC2 to denote the invalid DC and the
valid DC with incorrect probability computed following the Markov cipher
assumption, respectively.

Setting r = 9 and w = 60, we find a 9-round invalid DC. However, the
invalidity of the DC cannot be detected by Leurent’s ARX Toolkit, which
means that Leurent’s ARX Toolkit cannot filter all invalid DCs. The DC is
shown in Table 10 in Appendix B, and we use DC3 to denote the DC.

4.5 Application to the quarterround of Salsa20

Salsa20 [9] is a stream cipher designed by Bernstein in 2005 as a candidate
for the eSTREAM competition. The original proposal was for 20 rounds. A
Salsa20 round consists of four parallel quarterround functions. We present the
description of Salsa20 in Supplementary Material.

For quarterround, setting r = 1 and w = 13, we find an invalid DC.
However, if we use differences to represent the DC in Leurent’s ARX Toolkit,
the invalidity of the DC cannot be detected by Leurent’s ARX Toolkit, which
means that Leurent’s ARX Toolkit cannot filter all invalid DCs. The DC is
shown in Table 12 in Appendix B, and we use DCSa to denote the DC.
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4.6 Application to the round function of Chaskey

Chaskey [25] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction. The permutation
operates on four 32-bit words and consists of 12 applications of a round function.
We present the description of Chaskey in Supplementary Material.

For the round function of Chaskey, setting r = 1 andw = 11, we find an
invalid DC. However, if we use differences to represent the DC in Leurent’s
ARX Toolkit, the invalidity of the DC cannot be detected by Leurent’s ARX
Toolkit, which means that Leurent’s ARX Toolkit cannot filter all invalid
DCs. The DC is shown in Table 13 in Appendix B, and we use DCCh to
denote the DC.

Remark 8. We randomly select 229 and 227 samples to experimentally verify
the probabilities of DCSa and DCCh, respectively. The results are given in Ta-
ble 4. According to the results, we claim that cryptanalysts can get more precise
probabilities of DCs using our new method.

Table 4. Experimental Probabilities of DCSa and DCCh. wO: the logarithm of the
original probability. wR: the logarithm of the refined probability. SS: Sample Size.
EV: Experimental Value. EVO: Expected Value under the Original probability. EVR:
Expected Value under the Refined probability. DEO: Difference between EV and EVO.
DER: Difference between EV and EVR.

Name wO wR SS EV EVO EVR DEO DER

DCSa -13 −∞ 229 0 65536 0 -65536 0
DCCh -11 −∞ 227 0 65536 0 -65536 0

5 Automatic Search Tool for Impossible Differential
Distinguishers

In this section, according to the modeling method in Section 3.2, we propose a
SAT-based automatic search tool for IDs and further apply the tool to CHAM-
64/128.

5.1 Modeling the Automatic Search Tool with a SAT/SMT Solver

In [26], Mouha et al. used a SAT/SMT solver to automatically search for DCs for
Salsa20. Although they found that the probabilities of some DCs were incorrect,
their method only includes Lipmaa et al.’s conditions and follows the Markov
cipher assumption, which means that they cannot automatically find the correct
probability. Similarly, the previous methods of searching for IDs may ignore some
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IDs because the previous methods only include Lipmaa et al.’s conditions and
follow the Markov cipher assumption.

To better evaluate the security of ARX ciphers against impossible differential
cryptanalysis, our automatic search model includes the constraints included in
previous methods and includes signed differential propagation and additive sum
propagation to add more information of value propagation to XOR differential
propagation.

For the description of XOR differences, we use the method proposed by
Mouha et al. We refer the readers to [26] for details. In the rest of this sec-
tion, without loss of generality, we assume that all XOR differential variables
∆a have the same word size n.

For the description of signed differences, we create A = {as0, as1, . . . , asn−1}
for each ∆a, where as0, a

s
1, . . . , a

s
n−1 ∈ Fm2 . Then, we can use asi to represent

∆±a[i]. However, since the formula of a SAT/SMT problem does not contain
signed variables, we cannot represent signed differences directly. To overcome
this problem, when ∆±a[i] = −1, we use the complement of asi to represent
∆±a[i], where 0 ≤ i ≤ n−1. Besides, since rotations (resp. shifts) may move the
most significant bit to another bit position, ∆±a[n − 1] = −1 is different from
∆±a[n− 1] = 1. Therefore, we need m > n. Then, we have

asi =


0m if ∆±a[i] = 0

1m−i ‖ 0i if ∆±a[i] = −1

0m−i−1 ‖ 1 ‖ 0i if ∆±a[i] = 1,

where 0 ≤ i ≤ n−1. For the description of additive sums, the situation is similar
to the description of signed differences. We name the new variables as bit-signed
differential variables and bit-additive sum variables, respectively.

Then, we can use the method in Section 3.2 to model XOR differential prop-
agation, signed differential propagation, and additive sum propagation.

Finally, for each modular addition, we parse each bit-signed differential vari-
able and each bit-additive sum variable to get the values of corresponding input
and output bits. We make the sum (i.e. addition modulo 2n) of two input texts
equal to the corresponding output text to ensure the input and output texts are
valid.

So far, we can build an automatic search tool for IDs using the above com-
plete architecture descriptions. Moreover, the automatic tool can also be used to
evaluate whether a DC is valid. In applications, we find some new IDs ignored
by previous methods.

5.2 Application to CHAM-64/128

To the best of our knowledge, the existing longest ID for CHAM-64/128 covers
18 rounds [18] with wt(InD) = 1 and wt(OutD) = 2. Using our automatic tool,
we search for IDs starting from the 3-rd round. We find five 20-round IDs with
wt(InD) = wt(OutD) = 1 for the first time. The five 20-round IDs cannot be
found by using previous methods. Then, we find nineteen 19-round IDs and one
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19-round ID with wt(InD) = wt(OutD) = 1 for the first time using our method
and previous methods, respectively. Besides, using our method, we find 47, 704,
2537, and 3836 IDs with wt(InD) = wt(OutD) = 1 for 18-round, 16-round, 14-
round, and 12-round CHAM-64/128, respectively. In contrast, using previous
methods, we find 2, 392, 1915, and 3477 IDs with wt(InD) = wt(OutD) = 1
for 18-round, 16-round, 14-round, and 12-round CHAM-64/128, respectively.
Therefore, using our automatic tool to search for IDs, we can find some new
distinguishers ignored by previous methods. Interestingly, if we search for IDs
starting from the 1-st round, we cannot find any 20-round ID using our tool
or previous methods, which means that the choice of the round constants can
affect the security of ARX ciphers against impossible differential cryptanalysis.
The numbers of IDs for CHAM-64/128 are shown in Table 5. Furthermore, the
20-round IDs are shown in Table 14 in Appendix B.

Table 5. The numbers of IDs for CHAM-64/128.

Method (wt(InD), wt(OutD)) 20r 19r 18r 16r 14r 12r Ref.
Previous methods (1, 2) - - 1 - - - [18]
Previous methods (1, 1) 0 1 2 392 1915 3477 this paper
Our method (1, 1) 5 19 47 704 2537 3836 this paper

6 Conclusion

In this paper, we focus on solving the problem that general ARX-based compo-
nents do not follow the Markov cipher assumption.We improve the evaluation
theory of differential propagation for ARX operations by using signed differ-
ences and additive sums, and then we propose the first corresponding modeling
method. We further propose an automatic search algorithm for DCs with more
precise probabilities and a SAT-based automatic search tool for IDs. As an appli-
cation, we derive more precise probabilities of DCs for CHAM-64/128, Alzette,
XTEA, the quarterround of Salsa20, and the round function of Chaskey, and
we also find some new IDs for CHAM-64/128.

Our new theory presents a profound description of differential propagation
for ARX operations. The new proposed tools support more precise automatic
search results. According to our results, the differential (resp. impossible dif-
ferential) attack constructed by the previous methods of placing a DC (resp.
an ID) anywhere in a block cipher may be invalid. Our new theory and tools
are helpful for evaluating the security of ARX ciphers against differential and
impossible differential cryptanalysis. On the other hand, for the design of ARX
ciphers, we believe that if two modular additions share an identical branch (e.g.
two consecutive modular additions or two parallel modular additions that share
an identical input branch), then this branch should be whitened (e.g. XORing
the state with a key). Furthermore, we believe that the round constants should
be chosen carefully because the choice of the round constants can affect the
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probabilities of DCs, affect the validity of DCs, and affect the number of rounds
covered by IDs.
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A Inapplicability of the Method Proposed in [27]

In [27], Mouha et al. treated two consecutive modular additions as a single
modular addition with three inputs and one output to improve the differential
probability. Then, they applied it to the two consecutive modular additions in
one round of XTEA. However, we find that their method is not suitable for the
case of two consecutive modular additions with a branch injection in the middle,
which means that the method cannot be used to evaluate the probabilities of
DCs for CHAM, Alzette, and XTEA. We present a counter-example, which is
further explained later.

Counter-example 4 For two consecutive modular additions with a branch in-
jection in the middle shown in Fig. 2, we evaluate the XOR differential (not a
DC) probability for each value of the injecting branch f with enumeration exper-
iments, where f can be a key, a round constant, or an internal state. Without
loss of generality, suppose that ∆a = 0x1, ∆b = 0x0, ∆d = 0x1, and ∆e = 0x0.
Then, we find that the XOR differential probability is 2−1 iff f ∈ {0, 7, 8, 15}.
In contrast, for f ∈ F4

2, the XOR differential probability is 2−1 using Mouha et
al.’s method. The results are shown in Table 6.

a

<latexit sha1_base64="Yf7V05o/yiIDak5XNsqY/MB9vaI="></latexit>

b

<latexit sha1_base64="WLMfLI1+Nf/51pZbLtbHH9flDHQ="></latexit>

f

<latexit sha1_base64="O97dKu5ByENgSnZ9gEKm2lOngpU="></latexit>

d

<latexit sha1_base64="2JnE9DzfkTFZ4MQA/uH/yDJd9SY=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKp6LIoiMsW7ANqkWQ6raGTB5mJUIr+gFv9NvEP9C+8M6agFtEJSc6ce8+Zuff6iQikcpzXgrWwuLS8Ulwtra1vbG6Vt3faMs5SxlssFnHa9T3JRRDxlgqU4N0k5V7oC97xx+c63rnjqQzi6EpNEt4PvVEUDAPmKaKag5tyxak6ZtnzwM1BBflqxOUXXGOAGAwZQnBEUIQFPEh6enDhICGujylxKaHAxDnuUSJtRlmcMjxix/Qd0a6XsxHttac0akanCHpTUto4IE1MeSlhfZpt4plx1uxv3lPjqe82ob+fe4XEKtwS+5dulvlfna5FYYhTU0NANSWG0dWx3CUzXdE3t79UpcghIU7jAcVTwswoZ322jUaa2nVvPRN/M5ma1XuW52Z417ekAbs/xzkP2kdVt1Y9btYq9bN81EXsYR+HNM8T1HGJBlrG+xFPeLYuLGFJK/tMtQq5ZhfflvXwAT40j3E=</latexit>

e

<latexit sha1_base64="YELYTsqZ6CC6bv6BIDQr8U4KtuU="></latexit>

Fig. 2. Two modular additions with a branch injection in the middle

Table 6. Experimental Probabilities of two consecutive modular additions with a
branch injection in the middle.

f #{ (a, a’, b, b’, d, d’)} Pr

0 2048 2−1

1 1024 2−2

2 1024 2−2

3 1536 2−1.415

4 1536 2−1.415

5 1024 2−2

6 1024 2−2

7 2048 2−1

8 2048 2−1

9 1024 2−2

10 1024 2−2

11 1536 2−1.415

12 1536 2−1.415

13 1024 2−2

14 1024 2−2

15 2048 2−1

According to the results shown in Table 6, Mouha et al.’s method is not
suitable for the case of two consecutive modular additions with a branch injec-
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tion in the middle. Thus, the calculation result of the probability of the XOR
differential quartet (α, 0, α 7→ 0) with α = 0x80402010 over the two consec-
utive modular additions in one round of XTEA proposed in [27] is incorrect.
Furthermore, the method is not suitable for evaluating the probabilities of DCs
for CHAM, Alzette, and XTEA. In contrast, using our method, one can easily
handle all cases of the injecting branch. Therefore, for the case of two consec-
utive modular additions with a branch injection in the middle, we believe that
the two modular additions should be considered independent, which means that
it is more appropriate to evaluate the probability of a DC than the probability
of a differential. Then, one can get clear relations between bits using Corollary 1
and Theorem 1, and precisely evaluate the probability using Theorem 2.

B Differential and Impossible Differential Characteristics

In the rest of this section, we use wO and wR to denote the logarithm of the
probability computed following the Markov cipher assumption and the logarithm
of the probability refined by our automatic algorithm, respectively.

Table 7. The 39-round DCs for CHAM-64/128. DC1 and DC2 denote the DC proposed
in [16] and the DC proposed in [31], respectively.

DC1 DC2
r ∆Xr−1 wO wR ∆Xr−1 wO wR
1 0x0020 0x0010 0x1020 0x2800 0 0 0x0102 0x0280 0x0000 0x0400 0 0
2 0x0010 0x1020 0x2800 0x0000 −1 −1 0x0280 0x0000 0x0400 0x0204 −3 −3
3 0x1020 0x2800 0x0000 0x4000 −2 −2 0x0000 0x0400 0x0204 0x0500 −2 −2
4 0x2800 0x0000 0x4000 0x2040 −3 −3 0x0400 0x0204 0x0500 0x0008 −1 −1
5 0x0000 0x4000 0x2040 0x5000 −2 −2 0x0204 0x0500 0x0008 0x0004 −2 −2
6 0x4000 0x2040 0x5000 0x0080 0 0 0x0500 0x0008 0x0004 0x0408 −3 −3
7 0x2040 0x5000 0x0080 0x0040 −2 −2 0x0008 0x0004 0x0408 0x0a00 −3 −3
8 0x5000 0x0080 0x0040 0x4080 −2 −2 0x0004 0x0408 0x0a00 0x0000 −1 −1
9 0x0080 0x0040 0x4080 0xa000 −2 −2 0x0408 0x0a00 0x0000 0x1000 −2 −2
10 0x0040 0x4080 0xa000 0x0000 −1 −1 0x0a00 0x0000 0x1000 0x0810 −3 −3
11 0x4080 0xa000 0x0000 0x0001 −1 −1 0x0000 0x1000 0x0810 0x1400 −2 −2
12 0xa000 0x0000 0x0001 0x8100 −3 −3 0x1000 0x0810 0x1400 0x0020 −1 −1
13 0x0000 0x0001 0x8100 0x4001 −1 −1 0x0810 0x1400 0x0020 0x0010 −2 −2
14 0x0001 0x8100 0x4001 0x0200 −1 −1 0x1400 0x0020 0x0010 0x1020 −3 −3
15 0x8100 0x4001 0x0200 0x0100 −2 −2 0x0020 0x0010 0x1020 0x2800 −3 −3
16 0x4001 0x0200 0x0100 0x0201 −2 −2 0x0010 0x1020 0x2800 0x0000 −1 −1
17 0x0200 0x0100 0x0201 0x8003 −3 −3 0x1020 0x2800 0x0000 0x4000 −2 −2
18 0x0100 0x0201 0x8003 0x0000 −1 −1 0x2800 0x0000 0x4000 0x2040 −3 −3
19 0x0201 0x8003 0x0000 0x0004 −2 −2 0x0000 0x4000 0x2040 0x7000 −3 −3
20 0x8003 0x0000 0x0004 0x0402 −4 −4 0x4000 0x2040 0x7000 0x0080 0 0
21 0x0000 0x0004 0x0402 0x0007 −2 −2 0x2040 0x7000 0x0080 0x0040 −2 −2
22 0x0004 0x0402 0x0007 0x0800 −1 −1 0x7000 0x0080 0x0040 0x4000 −3 −3
23 0x0402 0x0007 0x0800 0x0400 −2 −2 0x0080 0x0040 0x4000 0x2000 −3 −∞
24 0x0007 0x0800 0x0400 0x0004 −4 −4 0x0040 0x4000 0x2000 0x0000 −1 −1
25 0x0800 0x0400 0x0004 0x0002 −4 −4 0x4000 0x2000 0x0000 0x0000 −1 −1
26 0x0400 0x0004 0x0002 0x0000 −1 −1 0x2000 0x0000 0x0000 0x0000 −1 −1
27 0x0004 0x0002 0x0000 0x0000 −1 −1 0x0000 0x0000 0x0000 0x4000 −1 −1
28 0x0002 0x0000 0x0000 0x0000 −1 −1 0x0000 0x0000 0x4000 0x0000 0 0
29 0x0000 0x0000 0x0000 0x0004 −1 −1 0x0000 0x4000 0x0000 0x0000 0 0
30 0x0000 0x0000 0x0040 0x0000 0 0 0x4000 0x0000 0x0000 0x0080 0 0
31 0x0000 0x0004 0x0000 0x0000 0 0 0x0000 0x0000 0x0080 0x8000 −1 −1
32 0x0004 0x0000 0x0000 0x0800 −1 −1 0x0000 0x0080 0x8000 0x0000 0 0
33 0x0000 0x0000 0x0800 0x0008 −1 −1 0x0080 0x8000 0x0000 0x0001 0 0
34 0x0000 0x0800 0x0008 0x0000 0 0 0x8000 0x0000 0x0001 0x8100 −2 −2
35 0x0800 0x0008 0x0000 0x0010 −1 −1 0x0000 0x0001 0x8100 0x0001 0 0
36 0x0008 0x0000 0x0010 0x1008 −2 −2 0x0001 0x8100 0x0001 0x0200 −1 −1
37 0x0000 0x0010 0x1008 0x0010 −1 −1 0x8100 0x0001 0x0200 0x0100 −2 −2
38 0x0010 0x1008 0x0010 0x2000 −1 −1 0x0001 0x0200 0x0100 0x0281 −2 −2
39 0x1008 0x0010 0x2000 0x1000 −2 −2 0x0200 0x0100 0x0281 0x0002 −2 −2
40 0x0010 0x2000 0x1000 0x2810 −3 −3 0x0100 0x0281 0x0002 0x0000 −1 −1∑
r wO −64 −63∑
r wR −64 −∞

25



Table 8. The 18-round related-key DC [5] for XTEA. wK denotes the logarithm of
the probability of the round-key DC.

r ∆Lr ∆Rr wO wR ∆Kr wK
1 0xc4310800 0x00010000 0 0 0x00000000 0
2 0x00010000 0x44200000 −9 −9 0x00000000 0
3 0x44200000 0x04000000 −6 −6 0x00000000 0
4 0x04000000 0x80000000 −6 −6 0x80000000 0
5 0x80000000 0x00000000 −2 −2 0x80000000 0
6 0x00000000 0x00000000 0 0 0x00000000 0
7 0x00000000 0x00000000 0 0 0x00000000 0
8 0x00000000 0x00000000 0 0 0x00000000 0
9 0x00000000 0x00000000 0 0 0x00000000 0
10 0x00000000 0x00000000 0 0 0x00000000 0
11 0x00000000 0x00000000 0 0 0x00000000 0
12 0x00000000 0x00000000 0 0 0x00000000 0
13 0x00000000 0x00000000 0 0 0x80000000 0
14 0x00000000 0x80000000 0 0 0x80000000 0
15 0x80000000 0x04000000 −2 −2 0x00000000 0
16 0x04000000 0x44200000 −6 −6 0x00000000 0
17 0x44200000 0x00010000 −6 −6 0x00000000 0
18 0x00010000 0xc4310800 −9 −9 0x00000000 0
19 0xc4310800 0x01010040 −11 −11∑
r wO −57∑
r wR −57

Table 9. The 39-round DCs for CHAM-64/128 with the original probability of 2−65

and a refined probability of 2−64.

DC1 DC2
r ∆Xr−1 wO wR ∆Xr−1 wO wR
1 0x0000 0x4000 0x2040 0x5000 0 0 0x2040 0x5000 0x0080 0x0040 0 0
2 0x4000 0x2040 0x5000 0x0080 0 0 0x5000 0x0080 0x0040 0x4080 −2 −2
3 0x2040 0x5000 0x0080 0x0040 −2 −2 0x0080 0x0040 0x4080 0xa000 −2 −2
4 0x5000 0x0080 0x0040 0x4080 −2 −2 0x0040 0x4080 0xa000 0x0000 −1 −1
5 0x0080 0x0040 0x4080 0xa000 −2 −2 0x4080 0xa000 0x0000 0x0001 −1 −1
6 0x0040 0x4080 0xa000 0x0000 −1 −1 0xa000 0x0000 0x0001 0x8100 −3 −3
7 0x4080 0xa000 0x0000 0x0001 −1 −1 0x0000 0x0001 0x8100 0x4001 −1 −1
8 0xa000 0x0000 0x0001 0x8100 −3 −3 0x0001 0x8100 0x4001 0x0200 −1 −1
9 0x0000 0x0001 0x8100 0x4001 −1 −1 0x8100 0x4001 0x0200 0x0100 −2 −2
10 0x0001 0x8100 0x4001 0x0200 −1 −1 0x4001 0x0200 0x0100 0x0201 −2 −2
11 0x8100 0x4001 0x0200 0x0100 −2 −2 0x0200 0x0100 0x0201 0x8002 −3 −3
12 0x4001 0x0200 0x0100 0x0201 −2 −2 0x0100 0x0201 0x8002 0x0000 −1 −1
13 0x0200 0x0100 0x0201 0x8002 −3 −3 0x0201 0x8002 0x0000 0x0004 −2 −2
14 0x0100 0x0201 0x8002 0x0000 −1 −1 0x8002 0x0000 0x0004 0x0402 −3 −3
15 0x0201 0x8002 0x0000 0x0004 −2 −2 0x0000 0x0004 0x0402 0x0005 −1 −1
16 0x8002 0x0000 0x0004 0x0402 −3 −3 0x0004 0x0402 0x0005 0x0800 −1 −1
17 0x0000 0x0004 0x0402 0x0005 −1 −1 0x0402 0x0005 0x0800 0x0400 −2 −2
18 0x0004 0x0402 0x0005 0x0800 −1 −1 0x0005 0x0800 0x0400 0x0804 −3 −3
19 0x0402 0x0005 0x0800 0x0400 −2 −2 0x0800 0x0400 0x0804 0x000a −3 −3
20 0x0005 0x0800 0x0400 0x0804 −3 −3 0x0400 0x0804 0x000a 0x0000 −1 −1
21 0x0800 0x0400 0x0804 0x000a −3 −3 0x0804 0x000a 0x0000 0x0010 −2 −2
22 0x0400 0x0804 0x000a 0x0000 −1 −1 0x000a 0x0000 0x0010 0x1008 −3 −3
23 0x0804 0x000a 0x0000 0x0010 −2 −2 0x0000 0x0010 0x1008 0x001c −3 −3
24 0x000a 0x0000 0x0010 0x1008 −3 −3 0x0010 0x1008 0x001c 0x2000 −1 −1
25 0x0000 0x0010 0x1008 0x001c −3 −3 0x1008 0x001c 0x2000 0x1000 −2 −2
26 0x0010 0x1008 0x001c 0x2000 −1 −1 0x001c 0x2000 0x1000 0x0010 −4 −4
27 0x1008 0x001c 0x2000 0x1000 −2 −2 0x2000 0x1000 0x0010 0x0008 −4 −3
28 0x001c 0x2000 0x1000 0x0010 −4 −4 0x1000 0x0010 0x0008 0x0000 −1 −1
29 0x2000 0x1000 0x0010 0x0008 −4 −3 0x0010 0x0008 0x0000 0x0000 −1 −1
30 0x1000 0x0010 0x0008 0x0000 −1 −1 0x0008 0x0000 0x0000 0x0000 −1 −1
31 0x0010 0x0008 0x0000 0x0000 −1 −1 0x0000 0x0000 0x0000 0x0010 −1 −1
32 0x0008 0x0000 0x0000 0x0000 −1 −1 0x0000 0x0000 0x0010 0x0000 0 0
33 0x0000 0x0000 0x0000 0x0010 −1 −1 0x0000 0x0010 0x0000 0x0000 0 0
34 0x0000 0x0000 0x0010 0x0000 0 0 0x0010 0x0000 0x0000 0x2000 −1 −1
35 0x0000 0x0010 0x0000 0x0000 0 0 0x0000 0x0000 0x2000 0x0020 −1 −1
36 0x0010 0x0000 0x0000 0x2000 −1 −1 0x0000 0x2000 0x0020 0x0000 0 0
37 0x0000 0x0000 0x2000 0x0020 −1 −1 0x2000 0x0020 0x0000 0x0040 −1 −1
38 0x0000 0x2000 0x0020 0x0000 0 0 0x0020 0x0000 0x0040 0x4020 −2 −2
39 0x2000 0x0020 0x0000 0x0040 −1 −1 0x0000 0x0040 0x4020 0x0040 −1 −1
40 0x0020 0x0000 0x0040 0x4020 −2 −2 0x0040 0x4020 0x0040 0x8000 −1 −1∑
r wO −65 −65∑
r wR −64 −64
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Table 10. The 10-round and 9-round DCs for XTEA. DC1 and DC3 denote the invalid
DCs, and DC2 denotes the valid DC with incorrect probability.

DC1 DC2 DC3
r ∆Lr ∆Rr wO wR ∆Lr ∆Rr wO wR ∆Lr ∆Rr wO wR
1 0x00000100 0x00000011 0 0 0x00003109 0x00000100 0 0 0x00000017 0x00000000 0 0
2 0x00000011 0x00000001 −5 −5 0x00000100 0x00000011 −9 −9 0x00000000 0x00000009 −5 −5
3 0x00000001 0x00000000 −4 −4 0x00000011 0x00000001 −5 −5 0x00000009 0x0000000f −13 −13
4 0x00000000 0x00000001 −1 −1 0x00000001 0x00000000 −4 −4 0x0000000f 0x00000000 −12 −∞
5 0x00000001 0x00000001 −9 −9 0x00000000 0x00000001 −1 −1 0x00000000 0x0000000f −4 −4
6 0x00000001 0x00000000 −9 −9 0x00000001 0x0000003f −8 −8 0x0000000f 0x00000001 −9 −∞
7 0x00000000 0x00000001 −1 −1 0x0000003f 0x00000001 −11 −8 0x00000001 0x00000000 −7 −∞
8 0x00000001 0x000000f3 −8 −8 0x00000001 0x00000000 −8 −4 0x00000000 0x00000001 −1 −1
9 0x000000f3 0x00000001 −12 −∞ 0x00000000 0x00000001 −1 −1 0x00000001 0x00000011 −4 −4
10 0x00000001 0x00000000 −8 −4 0x00000001 0x00000011 −4 −4 0x00000011 0x00000100 −5 −5
11 0x00000000 0x00000001 −1 −1 0x00000011 0x00000100 −5 −5∑
r wO −58 −56 −60∑
r wR −∞ −49 −∞

Table 11. The 4-round DCs for Alzette. DC1 and DC3 denote the invalid DCs, and
DC2 denotes the valid DC with incorrect probability.

DC1 DC2 DC3
r ∆Lr ∆Rr wO wR ∆Lr ∆Rr wO wR ∆Lr ∆Rr wO wR
1 0x00000001 0x00000000 0 0 0x00000004 0x00000000 0 0 0x00000000 0x00000007 0 0
2 0x00000003 0x00000300 −2 −2 0x0000000c 0x00000c00 −2 −2 0x00000012 0x00001207 −4 −4
3 0x01800001 0x000083c0 −4 −∞ 0x06000004 0x00020f00 −4 −3 0x0903800e 0xc0071686 −9 −∞
4 0x008080c1 0x01018242 −8 −8 0x02020504 0x04060508 −8 −8 0xc9038f80 0x52000987 −14 −14
5 0x0102c240 0xc3418340 −9 −9 0x04070500 0x0106010f −9 −9 0x49090752 0x5552408e −11 −11∑
r wO −23 −23 −38∑
r wR −∞ −22 −∞

Table 12. The DC for quarterround with the original probability of 2−13 and a refined
probability of 0.

DCSa
r ∆a

r−1
0 ∆a

r−1
1 ∆a

r−1
2 ∆a

r−1
3 wO wR

1 0x00000009 0x00000000 0x00000e00 0x00000017 0 0
2 0x00440009 0x00000000 0x00000000 0x00000017 −13 −∞∑
r wO −13∑
r wR −∞

Table 13. The DC for the round function of Chaskey with the original probability of
2−11 and a refined probability of 0.

DCCh
r ∆v

r−1
0 ∆v

r−1
1 ∆v

r−1
2 ∆v

r−1
3 wO wR

1 0x00000000 0x00000000 0x00000017 0x00000000 0 0
2 0x00000007 0x00000009 0x00070000 0x00012009 −11 −∞∑
r wO −11∑
r wR −∞

Table 14. The 20-round IDs for CHAM-64/128.

Round Characteristic

20 (0x8000, 0x0000, 0x0000, 0x0000) = (0x0000, 0x8000, 0x0000, 0x0000)

20 (0x8000, 0x0000, 0x0000, 0x0000) = (0x0000, 0x4000, 0x0000, 0x0000)

20 (0x8000, 0x0000, 0x0000, 0x0000) = (0x0000, 0x2000, 0x0000, 0x0000)

20 (0x8000, 0x0000, 0x0000, 0x0000) = (0x0000, 0x1000, 0x0000, 0x0000)

20 (0x8000, 0x0000, 0x0000, 0x0000) = (0x0000, 0x0001, 0x0000, 0x0000)
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C Automatic Search Algorithm for Differential
Characteristics

Algorithm 1 Automatic Search Algorithm for Differential Characteristics with
Weight Limit
Input: The number of round r; the weight limit w; the set of Ω Ωs.

Output: The DC Ω with the probability of PrOriginal = 2−w computed following the Markov cipher assumption.

1: Let Ω ← ∅;
2: Convert Equation (4), Equation (6), Equation (7), and the probability limit PrOriginal = 2−w to the corre-

sponding constraints;
3: Add the constraints to any existing automatic search algorithm for differential characteristics in ARX ciphers;
4: for Ω ∈ Ωs do
5: Convert Ω to the corresponding constraints, then add the constraints to any existing automatic search algo-

rithm for differential characteristics in ARX ciphers;
6: end for
7: Apply the improved automatic search algorithm to any ARX cipher;
8: if there is no valid DC Ωr then
9: if Ωs = ∅ then

10: return ⊥;
11: end if
12: if Ωs 6= ∅ then
13: Ω ← ∅;
14: end if
15: end if
16: if there is a valid DC Ωr with the probability of PrOriginal = 2−w then

17: Ω ← Ωr ;
18: end if
19: return Ω;

Remark 9. Note that we use signed differential propagation and additive sum
propagation in the first part of Algorithm 2 to ensure that the output DCs are
valid. However, in the second part of Algorithm 2, we only use signed differen-
tial propagation and the least significant bits (LSB) of additive sums to refine
the probabilities of the output DCs. This is because only in rare cases can the
probabilities of the DCs be improved by using the relations between the other
bits of additive sums. Nevertheless, to the best of our knowledge, our algorithm
can get more precise results than previous methods.
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Algorithm 2 Automatic Search Algorithm for Differential Characteristics
Input: The number of round r; the weight limit w; (NMA1, NMA2, . . . , NMAr) the list of the number of modular

addition in the 1-st, 2-nd, . . . , r-th round.
Output: Ω the set of valid r-round differential characteristics; PrReal the list of the refined probabilities of dif-

ferential characteristics in Ω.
1: Procedure Main:
2: Begin the program
3: Let Ωs ← ∅, t ← 0, and flag ← 1;
4: while flag = 1 do
5: Call Algorithm 1;
6: if Ω 6= ∅ then
7: t ← t + 1, count ← 0, Ωs.add(Ω);
8: Call Procedure Round-1;
9: end if

10: if Ω = ∅ then
11: PrReal ← ∅;
12: (Ω,PrReal) ← (Ωs, (Pr

1
Real, Pr

2
Real, . . . , Pr

t
Real));

13: flag ← 0;
14: end if
15: end while
16: return (Ω,PrReal);
17: Exit the program

18: Procedure Round-1:
19: for 1 ≤ j ≤ NMA1 do
20: Call Algorithm 4;
21: end for
22: Call Algorithm 3;
23: Call Procedure Round-2;

24: PrtReal ← 2−w × 2count;
25: Return to the upper procedure;

26: Procedure Round-i (2 ≤ i ≤ r − 1):

27: Convert the sets outputPi−1, outputNi−1, and outputNAi−1 of the relations between the output bits of the (i−1)-

th round to the corresponding sets inputPi , inputNi , and inputNAi of the relations between the input bits of
the i-th round, respectively;

28: Let tmpPi ← inputPi , tmpNi ← inputNi , and tmpNAi ← inputNAi ;

29: for u ∈ tmpPi , v ∈ tmpNi , and w ∈ tmpNAi do
30: if u includes any differential bit of the modular additions in the i-th round then

31: tmpPi .remove(u);
32: end if
33: if v includes any differential bit of the modular additions in the i-th round then

34: tmpNi .remove(v);
35: end if
36: if w includes any differential bit of the modular additions in the i-th round then

37: tmpNAi .remove(w);
38: end if
39: end for
40: According to Section 3.1, convert tmpPi , tmpNi , and tmpNAi to the corresponding sets input to outputPi ,

input to outputNi , and input to outputNAi of the relations between the output bits of the i-th round not
involved in the modular additions in the i-th round, respectively;

41: for 1 ≤ j ≤ NMAi do
42: Call Algorithm 4;
43: end for
44: Call Algorithm 3;
45: Call Procedure Round-i + 1;
46: Return to the upper procedure;

47: Procedure Round-r:
48: Convert outputPr−1, outputNr−1, and outputNAr−1 to the corresponding inputPr , inputNr , and inputNAr of the

r-th round, respectively;
49: for 1 ≤ j ≤ NMAr do
50: Call Algorithm 4;
51: end for
52: Call Algorithm 3;
53: Return to the upper procedure;

29



Algorithm 3 Automatic Derivation Algorithm for Modifying Factors
Input: The sets of relations between the bits of the modular additions in the i-th round; the sets of relations between

the input bits of the i-th round; the round index i; the modifying factor count.
Output: The modifying factor count; the sets of relations between the output bits of the i-th round.
1: Let RR0 ← ∅, and RR1 ← ∅;
2: for 1 ≤ k < NMAi do
3: for k < l ≤ NMAi do

4: for p ∈ Pki do

5: for q ∈ Pli do
6: if p = q then
7: RR1.add(p);
8: end if
9: end for

10: end for
11: for p ∈ Nki do

12: for q ∈ Nli do
13: if p = q then
14: RR1.add(p);
15: end if
16: end for
17: end for
18: if NAki 6= ∅ AND NAli 6= ∅ then

19: if NAki [0] = NAli[0] then

20: RR0.add(NAki [0]);
21: end if
22: end if
23: end for
24: end for
25: if 2 ≤ i ≤ r then
26: for 1 ≤ k ≤ NMAi do

27: for p ∈ Pki do

28: for q ∈ inputPi do
29: if p = q then
30: RR1.add(p);
31: end if
32: end for
33: end for
34: for p ∈ Nki do

35: for q ∈ inputNi do
36: if p = q then
37: RR1.add(p);
38: end if
39: end for
40: end for
41: if NAki 6= ∅ AND inputNAi 6= ∅ then

42: for p ∈ inputNAi do

43: if NAki [0] = p then

44: RR0.add(NAki [0]);
45: end if
46: end for
47: end if
48: end for
49: end if
50: Remove redundant relations in RR0 and RR1; //Suppose RR1 = {{“∆±x[l1]”, “∆±x[l2]”},
{“∆±x[l1]”, “∆±x[l3]”}, {“∆±x[l2]”, “∆±x[l3]”}}, where 0 ≤ l1 6= l2 6= l3 ≤ n − 1. After removing re-

dundant relations, RR1 = {{“∆±x[l1]”, “∆±x[l2]”}, {“∆±x[l1]”, “∆±x[l3]”}}.
51: count ← count + |RR0| + |RR1|;
52: Let outputPi ← ∅, output

N
i ← ∅, and outputNAi ← ∅;

53: if i < r then
54: for 1 ≤ j ≤ NMAi do

55: outputPi .add(P
j
i
);

56: outputNi .add(N
j
i
);

57: outputNAi .add(NA
j
i
);

58: end for
59: end if
60: if 2 ≤ i < r then

61: outputPi .add(input to outputPi );

62: outputNi .add(input to outputNi );

63: outputNAi .add(input to outputNAi );
64: end if
65: return (count, outputPi , output

N
i , output

NA
i );
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Algorithm 4 Automatic Derivation Algorithm for Relations between Bits
Input: The input and output XOR differences of the j-th modular addition in the i-th round. (Without loss of

generality, we assume that the word size of the modular addition is n.)
Output: The sets of relations between the bits of the j-th modular addition in the i-th round.

1: Let Index ← ∅, Inits ← ∅, P
j
i
← ∅, Nj

i
← ∅, and NA

j
i
← ∅;

2: Let (∆x,∆y 7→ ∆z) denote the XOR differential triplet of the modular addition;

3: Index.add({“∆±x[l]”|∆±x[l] 6= 0, 0 ≤ l ≤ n − 1});
4: Index.add({“∆±y[l]”|∆±y[l] 6= 0, 0 ≤ l ≤ n − 1});
5: Index.add({“∆±z[l]”|∆±z[l] 6= 0, 0 ≤ l ≤ n − 1});
6: for each corresponding candidate ∆±x, ∆±y, and ∆±z do

7: if ∆±x �∆±y = ∆±z mod 2n then

8: Inits.add({∆±x[l]|∆±x[l] 6= 0, 0 ≤ l ≤ n − 1});
9: Inits.add({∆±y[l]|∆±y[l] 6= 0, 0 ≤ l ≤ n − 1});

10: Inits.add({∆±z[l]|∆±z[l] 6= 0, 0 ≤ l ≤ n − 1});
11: end if
12: end for
13: Let HW ← wt(∆x) + wt(∆y) + wt(∆z);

14: Let NC ← #{(∆±x,∆±y,∆±z)|∆±x �∆±y = ∆±z mod 2n};
15: for 0 ≤ p < HW − 1 do
16: for p < q ≤ HW − 1 do
17: for 0 ≤ s ≤ NC − 1 do
18: Let PF ← 0, and NF ← 0;
19: if Inits[HW × s + p] × Inits[HW × s + q] = 1 then
20: PF ← PF + 1;
21: end if
22: if Inits[HW × s + p] × Inits[HW × s + q] = −1 then
23: NF ← NF + 1;
24: end if
25: end for
26: if PF = NC then

27: P
j
i
.add({Index[p], Index[q]});

28: end if
29: if NF = NC then

30: N
j
i
.add({Index[p], Index[q]});

31: end if
32: end for
33: end for
34: if ∆x[0] +∆y[0] +∆z[0] = 2 then
35: if ∆x[0] = 0 then

36: NA
j
i
.add(∇+x[0] 6= 1)

37: end if
38: if ∆y[0] = 0 then

39: NA
j
i
.add(∇+y[0] 6= 1)

40: end if
41: if ∆z[0] = 0 then

42: NA
j
i
.add(∇+z[0] 6= 1)

43: end if
44: end if

45: return (P
j
i
, N

j
i
, NA

j
i
);
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Supplementary Material

A Proofs

A.1 Proof of Theorem 1

Proof. According to Equation (5), we have

n−1∑
i=0

∇+x[i] · 2i = (x+ x′) mod 2n+1,

n−1∑
i=0

∇+y[i] · 2i = (y + y′) mod 2n+1,

and
n−1∑
i=0

∇+z[i] · 2i = (z + z′) mod 2n+1.

Then, we have

∇+x�∇+y = (x+ x′) mod 2n+1 � (y + y′) mod 2n+1 = z � z′.

Let t, t′ ∈ Fn2 , and t⊕ t′ = ∆z. Then, for the case of ∆x[n− 1] +∆y[n− 1] +
∆z[n− 1] 6= 0, we have three situations.

(i) For z[n − 1] ⊕ z′[n − 1] = 1, we need to prove that z � z′ = t � t′ iff
(z, z′) = (t, t′). Suppose that z � z′ = t � t′ holds for some (z, z′) 6= (t, t′),
then we have

z + z′ + 2n = t+ t′ or z + z′ = t+ t′ + 2n.

For the case of z + z′ + 2n = t+ t′, we have two incompatible conditions

z + z′ + 2n ≥ 2n + 2n−1 and t+ t′ ≤ 2n + 2n−1 − 2.

For the case of z + z′ = t + t′ + 2n, the situation is similar to the above.
Therefore, we have ∇+x�∇+y = ∇+z mod 2n.

(ii) For z[n − 1] ⊕ z′[n − 1] = 0 and ∆x[n − 1] = ∆y[n − 1] = 1, suppose that
∇+x �∇+y = z � z′ when ∆±x[n − 1] ×∆±y[n − 1] = 1 (resp. -1). Then
we have

(x⊕ 1 ‖ 0n−1)� y = z � 2n−1, (x′ ⊕ 1 ‖ 0n−1)� y′ = z′ � 2n−1

and

x� (y ⊕ 1 ‖ 0n−1) = z � 2n−1, x′ � (y′ ⊕ 1 ‖ 0n−1) = z′ � 2n−1.

Therefore, we have ∇+x�∇+y = ∇+z mod 2n.
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(iii) For z[n − 1] ⊕ z′[n − 1] = 0 and ∆x[n − 1] 6= ∆y[n − 1], suppose that
∇+x �∇+y = z � z′ when ∆±x[n − 1] + ∆±y[n − 1] = 1 (resp. -1). Then
we have

(x⊕ 1 ‖ 0n−1)� y = z � 2n−1, (x′ ⊕ 1 ‖ 0n−1)� y′ = z′ � 2n−1

and

x� (y ⊕ 1 ‖ 0n−1) = z � 2n−1, x′ � (y′ ⊕ 1 ‖ 0n−1) = z′ � 2n−1.

Therefore, we have ∇+x�∇+y = ∇+z mod 2n.

Then, for ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] 6= 0, Equation (6) holds.
For the case of ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] = 0, we have

(

n−1∑
i=0

∇+x[i] · 2i +

n−1∑
i=0

∇+y[i] · 2i) mod 2n+1 6=
n−1∑
i=0

∇+z[i] · 2i mod 2n+1

iff x+y ≥ 2n and x′+y′ < 2n or x+y < 2n and x′+y′ ≥ 2n. Suppose x+y ≥ 2n

and x′ + y′ < 2n or x+ y < 2n and x′ + y′ ≥ 2n, we have

∇+x[n− 1] +∇+y[n− 1] = 2,

which means that

n−2∑
i=0

x[i] · 2i +

n−2∑
i=0

y[i] · 2i ≥ 2n or

n−2∑
i=0

x′[i] · 2i +

n−2∑
i=0

y′[i] · 2i ≥ 2n.

Therefore, we have (∇+x+∇+y) mod 2n+1 = ∇+z mod 2n+1. Then, for∆x[n−
1] +∆y[n− 1] +∆z[n− 1] = 0, Equation (7) holds. ut

A.2 Proof of Theorem 2

Proof. The first statement is obvious, and we prove the second statement for the
case of two consecutive modular additions.

Let w = x � y, and u = w � z. Let A denote that (∆x,∆y 7→ ∆w) is a
valid triplet, and B denote that (∆w,∆z 7→ ∆u) is a valid triplet. According
to Corollary 1, we can use Equation (4) to get the set RsW f

s of the relations
between the bits of ∆±x, ∆±y, and ∆±w, and the set RsW s

s of the relations
between the bits of ∆±w, ∆±z, and ∆±u. Similarly, according to Theorem 1,
we can use Equation (6) and Equation (7) to get the set RsW f

a of the relations
between the bits of ∇+x, ∇+y, and ∇+w, and the set RsW s

a of the relations
between the bits of ∇+w, ∇+z, and ∇+u. Let RsWs denote the set of relations
between the bits of ∆±w that appear in RsW f

s and RsW s
s simultaneously, and

RsWa denote the set of relations between the bits of ∇+w that appear in RsW f
a

and RsW s
a simultaneously. Then according to the condition of the theorem, we

know that |RsWs|+ |RsWa| = N .
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Let I = {i|w[i] = 1, 0 ≤ i < |w|}. Since each relation in RsWs is of the form∏
isub∈Isub

∆±w[isub] = 1 or
∏

isub∈Isub
∆±w[isub] = −1,

where Isub ⊆ I, we get that

P (RsWsHold) = 2−|RsWs|,

where RsWsHold denotes that the relations in RsWs are held simultaneously.
Let J = {j|w[j] = 0, 0 ≤ j < |w|}. Since each relation in RsWa is of the form⊕

jsub∈Jsub
∇+w[jsub]� 1 = 0 or

⊕
jsub∈Jsub

∇+w[jsub]� 1 = 1,

where Jsub ⊆ J , we get that

P (RsWaHold) = 2−|RsWa|,

where RsWaHold denotes that the relations in RsWa are held simultaneously.
Let RsW denote the set of relations between the bits of ∆±w and ∇+w that

appear in the two modular additions simultaneously. Then, we have

P (RsWHold) = P (RsWsHold)× P (RsWaHold) = 2−(|RsWs|+|RsWa|) = 2−N ,

where RsWHold denotes that the relations in RsW are held simultaneously.
Furthermore, we have

P ((∆x,∆y) 7→ (∆w,∆z) 7→ ∆u) = P (A) · P (B|RsWHold)

= P (A) · P (B,RsWHold)
P (RsWHold) = P (A) · P (B)

P (RsWHold) = P (A) · P (B) · 2N .

The case of two parallel modular additions that share an identical input branch
can be proved similarly. Then we complete the proof. ut

A.3 Proof of Theorem 4

Proof. (i) For∆x[n−1]+∆y[n−1]+∆z[n−1] = 0, let S± denote the set
of signed differential triples (∆±x,∆±y 7→ ∆±z) corresponding to the XOR
differential triplet (∆x,∆y 7→ ∆z). According to Definition 3, we have

|S±| = 2wt(∆x)+wt(∆y)+wt(∆z).

Let S+ denote the set of additive differential triples (∆+x,∆+y 7→ ∆+z)
corresponding to the XOR differential triplet (∆x,∆y 7→ ∆z). According to
Equation (3), a signed difference corresponds to exactly one additive differ-
ence. Moreover, since ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] = 0, we have

|S+| = 2wt(∆x)+wt(∆y)+wt(∆z).
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Since addition modulo 2n is a linear operation for additive differences, an
additive differential triplet (∆+x,∆+y 7→ ∆+z) is valid iff

∆+x�∆+y = ∆+z mod 2n.

Therefore, according to Equation (3), an additive differential triplet (∆+x,
∆+y 7→ ∆+z) is valid iff

∆±x�∆±y = ∆±z mod 2n.

Let
SS± = {(∆±x,∆±y,∆±z)|∆±x�∆±y = ∆±z mod 2n}

and
SS+ = {(∆+x,∆+y,∆+z)|∆±x�∆±y = ∆±z mod 2n}.

According to Equation (3) and the condition of ∆x[n − 1] + ∆y[n − 1] +
∆z[n− 1] = 0, we have

|SS±| = |SS+|.
Therefore, the probability P (∆x,∆y 7→ ∆z) can be calculated as

P (∆x,∆y 7→ ∆z) =
|SS+|
|S+|

=
#{(∆±x,∆±y,∆±z)|∆±x�∆±y = ∆±z mod 2n}

2wt(∆x)+wt(∆y)+wt(∆z)
.

(ii) For∆x[n− 1] +∆y[n− 1] +∆z[n− 1] 6= 0, let S± denote the set of
signed differential triples (∆±x,∆±y 7→ ∆±z) corresponding to the XOR
differential triplet (∆x,∆y 7→ ∆z). According to Definition 3, we have

|S±| = 2wt(∆x)+wt(∆y)+wt(∆z).

Let S+ denote the set of additive differential triples (∆+x,∆+y 7→ ∆+z)
corresponding to the XOR differential triplet (∆x,∆y 7→ ∆z). According to
Equation (3), a signed difference corresponds to exactly one additive differ-
ence. However, since ∆x[n− 1] +∆y[n− 1] +∆z[n− 1] 6= 0, we have

|S+| < 2wt(∆x)+wt(∆y)+wt(∆z).

Let ∆x[n − 1] + ∆y[n − 1] + ∆z[n − 1] = i, where 1 ≤ i ≤ 3. According to
Equation (3), we have

|S+| = 2wt(∆x)+wt(∆y)+wt(∆z)−i.

Since addition modulo 2n is a linear operation for additive differences, an
additive differential triplet (∆+x,∆+y 7→ ∆+z) is valid iff

∆+x�∆+y = ∆+z mod 2n.
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Therefore, according to Equation (3), an additive differential triplet (∆+x,
∆+y 7→ ∆+z) is valid iff

∆±x�∆±y = ∆±z mod 2n.

Let
SS± = {(∆±x,∆±y,∆±z)|∆±x�∆±y = ∆±z mod 2n}

and
SS+ = {(∆+x,∆+y,∆+z)|∆±x�∆±y = ∆±z mod 2n}.

According to Equation (3) and the condition of ∆x[n − 1] + ∆y[n − 1] +
∆z[n− 1] 6= 0, we have

|SS±| = 2i × |SS+|.

Moreover, since
|S±| = 2i × |S+|,

the probability P (∆x,∆y 7→ ∆z) can be calculated as

P (∆x,∆y 7→ ∆z) =
|SS+|
|S+|

=
#{(∆±x,∆±y,∆±z)|∆±x�∆±y = ∆±z mod 2n}

2wt(∆x)+wt(∆y)+wt(∆z)
.

Then we complete the proof. ut

B Descriptions of CHAM, Alzette, XTEA, Salsa20, and
Chaskey

At ICISC’17, Koo et al. [18] presented a family of lightweight block ciphers
CHAM. It adopts a 4-branch generalized Feistel structure. Each cipher is denoted
by CHAM-n/k, where n and k are the block size and key size, respectively. For
CHAM-64/128 (resp. CHAM-128/128 and CHAM-128/256), the word size of
each branch is 16 (resp. 32 and 32), and the number of rounds is 80 (resp. 80
and 96).

By applying r iterations of the key-dependent round function, CHAM-n/k
encrypts a plaintext X0 = X0

0 ‖ X1
0 ‖ X2

0 ‖ X3
0 to a ciphertext Xr = X0

r ‖ X1
r ‖

X2
r ‖ X3

r . For 0 ≤ i < r, the i-th round outputs

X3
i+1 ← ((X0

i ⊕ i)� ((X1
i ≪ ra)⊕RK[i mod 2k/w]))≪ rb, X

j
i+1 ← Xj+1

i ,

where 0 ≤ j ≤ 2, and RK[i mod 2k/w] is the round key. When i is even, (ra, rb)
= (8, 1), otherwise (ra, rb) = (1, 8). The round function of CHAM is shown in
Fig. 3.

At CRYPTO’20, Beierle et al. [7] proposed a 64-bit ARX-based S-box called
Alzette. It is a 4-round SPECK-like structure with 2-branch and is parameterized
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Fig. 3. The round function of CHAM

by an arbitrary constant c ∈ F32
2 . The algorithm evaluating this permutation is

given in Algorithm 5 and depicted in Fig. 4.

Algorithm 5 The Alzette instance Ac

Input: (x, y) ∈ F32
2 × F32

2

Output: (u, v) ∈ F32
2 × F32

2

1: x← x� (y≫ 31)
2: y ← y ⊕ (x≫ 24)
3: x← x⊕ c
4: x← x� (y≫ 17)
5: y ← y ⊕ (x≫ 17)
6: x← x⊕ c
7: x← x� (y≫ 0)
8: y ← y ⊕ (x≫ 31)
9: x← x⊕ c

10: x← x� (y≫ 24)
11: v ← y ⊕ (x≫ 16)
12: u← x⊕ c
13: return (u, v)

x y

>>>31

>>>24

>>>17

>>>17

>>>31

>>>24

>>>16

u v

c

c

c

c

Fig. 4. The Alzette instance Ac

In 1997, Needham et al. [28] proposed a block cipher XTEA which is an
extended version of TEA [35]. It has a Feistel structure composed of 64 rounds.
Each round operates on 64-bit blocks using a 128-bit key. Let (Li, Ri) be the
input of the i-th round, and the output of the i-th round is computed as follows:

Ri+1 = Li � (F (i, δ, k)⊕ (Ri � ((Ri � 4)⊕ (Ri � 5)))), Li+1 = Ri,

where F (i, δ, k) is the round key and δ = 0x9e3779b9. The round function of
XTEA is shown in Fig. 5.

Salsa20 [9] is a stream cipher designed by Bernstein in 2005 as a candidate
for the eSTREAM competition. The original proposal was for 20 rounds. The 12-
round variant of Salsa20, Salsa20/12 was accepted into the final eSTREAM soft-
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Fig. 5. The round function of XTEA

ware portfolio. A Salsa20 round consists of four parallel quarterround functions
that operate on 32-bit words. Let (a0

0, a
0
1, a

0
2, a

0
3) be the input of the quarterround

function of Salsa20, and the output of the quarterround function of Salsa20 is
computed as follows: 

a1
1 = a0

1 ⊕ ((a0
0 � a0

3)≪ 7),

a1
2 = a0

2 ⊕ ((a0
0 � a1

1)≪ 9),

a1
3 = a0

3 ⊕ ((a1
1 � a1

2)≪ 13),

a1
0 = a0

0 ⊕ ((a1
2 � a1

3)≪ 18).

The quarterround function of Salsa20 is shown in Fig. 6.

≪ 7

≪ 9

≪ 13

≪ 18

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 1. The Salsa20 quarterround function is defined as: (b0, b1, b2, b3) ←
quarterround(a0, a1, a2, a3)

input differences α and β and output difference γ. Lipmaa and Moriai prove that
the differential (α,β → γ) is valid if and only if:

eq(α" 1,β " 1, γ " 1) ∧ (α⊕ β ⊕ γ ⊕ (β " 1)) = 0 , (8)

where
eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z) . (9)

For every valid differential (α,β → γ), we define the weight w(α,β → γ) of the
differential as follows:

w(α,β → γ) := − log2(xdp+(α,β → γ)) . (10)

The weight of a valid differential can then be calculated as:

w(α,β → γ) := h∗(¬eq(α,β, γ)) , (11)

6

a0
0

<latexit sha1_base64="ybnkZBh6SGnnNsxVL9M8mdDf/X4="></latexit>

a0
1

<latexit sha1_base64="wnnKUbzCO7RQNcWlu3KymZY/OPs="></latexit>

a0
2

<latexit sha1_base64="R0XHOQmhCoWXM7/2mewwbH+K2RI="></latexit>

a0
3

<latexit sha1_base64="iPBv6kWII0DL1JEHnv+8+RIC+d8="></latexit>

a1
3

<latexit sha1_base64="YJDmdwFlZ3LyePMOzVMbomzp7/M="></latexit>

a1
2

<latexit sha1_base64="5HPR5dqeuROYx/vHIqj+ZoVtVfU="></latexit>

a1
1

<latexit sha1_base64="ocLHcSZcoaaPdmfIjZ1E9M5dFmo="></latexit>

a1
0

<latexit sha1_base64="i7UnYmzNMKGpcwJfRsUgIpCagSM="></latexit>

Fig. 6. The quarterround function of Salsa20
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Chaskey [25] is a lightweight MAC algorithm whose underlying primitive is
an ARX-based permutation in an Even-Mansour construction. The permutation
operates on four 32-bit words and employs 12 rounds of the form as depicted in
Fig. 7.

312 N. Mouha et al.

≪ 5

v1 v0 v2 v3

v1 v0 v2 v3

≪ 16

≪ 8

≪ 13≪ 7

≪ 16

Fig. 2. A round of the Chaskey permutation π, defined as: v0‖v1‖v2‖v3 ←
π(v0‖v1‖v2‖v3). We intentionally swapped v0 and v1, as this reduces the number of
crossing lines in the figure.

8- and 16-bit microcontrollers will be more efficient than had these constants
been chosen at random. They furthermore allow us to implement Chaskey effi-
ciently on a wide range of 32-bit microcontrollers, yet we have found that they
do not seem to make π weaker against cryptanalytical attacks.

4 Implementation Results

We implemented Chaskey on several microcontroller platforms. We provide imple-
mentation results on ARM Cortex-M0 and -M4 platforms, and compare these to
AES-128-CMAC on the same platforms. All our implementations have been com-
piled with GNU Tools for ARM Embedded Processors version 4.7.3 20121207.
The Cortex-M0 benchmarks are executed on an STM32F030R8 microcontroller
of STMicroelectronics, the Cortex-M4 ones on an STM32F401RE.

We compare the results for our Chaskey implementation with what is, to
the best of our knowledge, the fastest available AES implementation for the
ARM Cortex-M series: SharkSSL [55,56]. Since no AES-128-CMAC benchmarks
are available for this implementation, we instead compare with AES-128-ECB,
which is guaranteed to be at least as fast and small as AES-128-CMAC. Note

v1
0

<latexit sha1_base64="XPd/HqaJPXRMYIH2r9MWeyEsTfY="></latexit>

v1
1

<latexit sha1_base64="9Oml9tYzck6WYpwGXi/VFF0sjqo="></latexit>

v1
2

<latexit sha1_base64="ttPFQH5EyC2arG0ECoPsH1G7A6Y="></latexit>

v1
3

<latexit sha1_base64="3VNhc9l2KvGunPxXDegQzWsNm0Q="></latexit>

v0
3

<latexit sha1_base64="sZ93StidacSWEETI9/d0XjQ4yRo="></latexit>

v0
2

<latexit sha1_base64="2qUhXB97lFnUi10yW9M0S4xPX7Q="></latexit>

v0
1

<latexit sha1_base64="iHpWzTt+IUS4bWCoyahOo+YpHik="></latexit>

v0
0

<latexit sha1_base64="KrFgv2GxuL5WGhHPn/VOfl5eJZ4="></latexit>

Fig. 7. The round function of Chaskey
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