
Invertibility of multiple random functions and
its application to symmetric ciphers?

Xiutao FENG1
�, Xiaoshan GAO1, Zhangyi WANG2 and Xiangyong ZENG3

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and System Science, Chinese Academy of Sciences, Beijing 100190, China

2 School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
3 Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied

Mathematics, Hubei University, Wuhan 430062, China
fengxt@amss.ac.cn

Abstract. The invertibility of a random function (IRF, in short) is an
important problem and has wide applications in cryptography. For ex-
ample, searching a preimage of Hash functions, recovering a key of block
ciphers under the known-plaintext-attack model, solving discrete loga-
rithms over a prime field with large prime, and so on, can be viewed
as its instances. In this work we describe the invertibility of multiple
random functions (IMRF, in short), which is a generalization of the
IRF. In order to solve the IMRF, we generalize the birthday theorem.
Based on the generalized birthday theorem and time-memory tradeoff
(TMTO, in short) method, we present an efficient TMTO method of
solving an IMRF, which can be viewed as a generalization of three main
TMTO attacks, that is, Hellman’s attack, Biryukov and Shamir’s attack
with BSW sampling, and Biryukov, Mukhopadhyay and Sarkar’s time-
memory-key tradeoff attack. Our method is highly parallel and suitable
for distributed computing environments. As a generalization of Hellman’s
attack, our method overcomes its shortcoming of using only one pair of
known plaintext and ciphertext and first admits more than one datum
in a TMTO on block ciphers at the single key scenario. As a generaliza-
tion of Biryukov and Shamir’s attack with BSW sampling, our method
overcomes its shortcoming of using only a few data with specific prefix
in stream ciphers and can utilize all data without any waste. As appli-
cations, we get two new tradeoff curves: N2 = TM2D3, N = PD and
D = τ for block ciphers, and N2 = τ3TM2D2, N = τPD and D ≥ τ
for stream ciphers, where τ is the number of random functions, that is,
the number of independent computing units available to an attacker,
N is the size of key space (for block ciphers) or state (for stream ci-
phers) space, D the number of data captured by the attacker, and T , M ,
P the time/memory/precomputation cost consumed at each computing
unit respectively. As examples, assume that 4096 computing units can
be available for the attacker. Denote by 5-tuple (τ, T,M,D, P) the cost

? This work was supported by National Natural Science Foundation (Grant
61572491, 61972297) and National Key Research and Development Project(Grant
2018YFA0704705).

of our method. Then the cost of breaking DES, AES-128 and A5/1 is
(212, 225.3, 225.3, 212, 244), (212, 273.3, 273.3, 212, 2116) and (212, 222.7, 217.3,
217.3, 234.7) respectively.

Keywords: Random function, TMTO, block cipher, stream cipher,
guess-and-determine attack

1 Introduction

Let n be a positive integer and {0, 1}n be the set of all bit strings of length n. For
a given random function f over the set {0, 1}n and m images y1, y2, · · · , ym of f ,
where m is a positive integer, how to find a preimage x of some yi under f , i.e.,
yi = f(x), is an important and fundamental problem in cryptography [1], which
is called an invertibility of a random function (IRF, in short) and has very wide
applications. For example, searching a preimage of Hash functions, recovering
a key of block ciphers under the known-plaintext-attack model, solving discrete
logarithms over a prime field with large prime [2], and so on, can be viewed as
its instances.

The time-memory tradeoff (TMTO, in short) is a common method of solving
the IRF. It is mainly based on the following birthday theorem:

Lemma 1. [3] (Birthday Theorem) Let S be a finite set, A and B be two
nonempty subsets of S such that |A| · |B| ≥ |S|. Then A ∩ B is not empty with
large probability.

The TMTO of solving an IRF usually involves two stages: offline and online.
At the one-time offline stage, one needs to precompute and store some pairs
(x, f(x)) of preimage and image, which is viewed as the set A in Lemma 1. A
common treatment is to set up a lookup table. And at the online stage, he/she
will match each yi directly in the second column of the lookup table, where yi’s
are viewed as elements of the set B. If |A| ·m ≥ 2n, then he/she will obtain a
preimage x of some yi with large probability according to Lemma 1.

How to set up a more efficient lookup table is a key problem in the TMTO.
Currently, many efficient setting-up-table techniques have been proposed, in-
cluding Hellman’s table with distinguished points [4], perfect table [5], rainbow
table [6] and so on. Among them, the rainbow table is believed to be one of the
most efficient methods.

The TMTO was first used in symmetric ciphers in 1980. Hellman [7] first
applied it to the security evaluation of the block cipher DES, and got a gen-
eral tradeoff curve N2 = TM2 on block ciphers, where N is the size of key
space, and T , M are the time/memory cost respectively. A common tradeoff

point is taken T = M = N
2
3 . In the rest of this paper we will refer to it as

Hellman attack. It is noticed that in Hellman attack he viewed a mapping from
the key space to the ciphertext space under a fixed plaintext P0 as a random
function c = fP0

(k). It led to a consequence that no matter how many plaintext-
ciphertext pairs are captured in reality, only one pair of plaintext and ciphertext

2

will be utilized in Hellman attack. In order to utilize multiple data at the on-
line stage, some significant works were done from two aspects: a) as for block
ciphers, Biryukov, Mukhopadhyay and Sarkar extended Hellman attack to a
time-memory-key tradeoff at the multiple key scenario, where a fixed plaintext
is encrypted by several different keys and the goal is to recover one among those
keys [8], which will be referred to as BMS attack; b) as for stream ciphers, Bab-
bage [9] and Golic [10] independently proposed a TMTO, which will be referred
to as BG attack. They viewed a mapping from an internal state to a truncation
of output keystream as a random function and got a tradeoff curve N = TM ,
T = D and P = M , where N , D and P denote the size of state space, the num-
ber of required data at the online stage and the time cost at the offline stage
respectively. However, a problem is open till now:

Open problem 1 How does one utilize several pairs of known plaintext and
ciphertext during Hellman attack against block ciphers at the single key scenario?

In 2000, Biryukov and Shamir [11] combined Hellman attack and GS attack
together, and further presented a time-memory-data tradeoff (TMDTO, in short)
for stream ciphers, which will be referred to as BS attack. The tradeoff curve of
BS attack is N2 = TM2D2, where T ≥ D2, and one suggested tradeoff point
is T = N

2
3 and M = D = N

1
3 . In order to remove the restriction between T

and D, Biryukov, Shamir and Wagner [12] improved BS attack by introducing
a BSW sampling, which is indeed a simple combination of BS attack and the
guess and determine attack (GDA, in short) [13,14] and reduces the time cost by
increasing the amount of data. There is a shortcoming in BS attack with BSW
sampling, that is, large amounts of data are filtered at the online stage and only
a few data with specific prefix are used. An interesting problem in BS attack
with BSW sampling is shown as below:

Open problem 2 How does one utilize all data instead of a few data with a
specific prefix in BS attack with BSW sampling?

In this work we try to give an answer to the above two open problems. Firstly,
we generalize the IRF from one dimension to high dimension, and introduce an
invertibility of multiple random functions (IMRF, in short). Secondly, as for an
IMRF, we generalize the birthday theorem, and propose a general algorithm of
solving it. Finally, we apply it to the cryptanalysis of symmetric ciphers and
get two new tradeoff curves. Let τ be the number of random functions in an
IMRF, N be the size of key for block ciphers or state space for stream ciphers,
and D be the number of data captured by an attacker. Here we assume that the
attacker can access τ independent computing units, each containing a core and
some memory and dealing with all computations related to one random function.
Denote by T , M and P the time/memory/precomputation costs consumed for
single computing unit respectively. Then two new tradeoff curves are N2 =
TM2D3, N = PD and D = τ for block ciphers, and N2 = τ3TM2D2, N = τPD
and D ≥ τ for stream ciphers. An intuitive comparison of our method to existing
methods is shown in Table 1.

3

Table 1. A comparison of our method to existing methods

Method Tradeoff curve Data Scenario Ref.

Hellman attack N2 = TM2, P = N D = 1
block ciphers

with single key
[7]

BMS attack
N2 = TM2D2

N = PD
T ≥ D2 block ciphers

with multiple keys
[8]

BG attack N = TM , P = M D ≥ 1 stream ciphers [9,10]

BS attack
N2 = TM2D2

N = PD
T ≥ D2 stream ciphers [11]

BS attack

with BSW sampling

N2 = TM2D2

N = PD

only a few data

among D are used
stream ciphers [11]

Our method

N2 = TM2D3

N = PD
D = τ ≥ 1

block ciphers

with single key
Sec. 3.1

N2 = τ3TM2D2
k

N = τPDk

T ≥ τD2
k

block ciphers

with multiple keys
Sec. 3.2

N2 = τ3TM2D2

N = τPD
D ≥ τ stream ciphers Sec. 3.3

More precisely, our method has the following advantages:

1. It is highly parallel. The number τ of independent computing units available
to an attacker is also a key parameter in our method. Each computing unit
can do TMDTO attack for a target function independently. The larger τ
is, the smaller the time/memory/precomputation cost consumed at each
computing unit will be.

2. As for block ciphers, our method is a generalization of Hellman attack. Com-
pared to the latter, our method admits more than one datum at the single
key scenario. When a lot of plaintext/ciphertext pairs under the same key
are captured, an attacker can utilize them to reduce the cost consumed at
single computing unit. It is very significant for him/her to break block ci-
phers in the real world, especially, when he/she has access to a large amount
of computing resources in a network or distributed computing environment.
At the multiple key scenario, our method is a generalization of BMS attack.
Compared to the latter, our method is more flexible and practical, and can
utilize several data for each key.

3. As for stream ciphers, our method is a generalization of BS attack with BSW
sampling. Compared to the latter, our method overcomes the shortcoming
of BS attack with BSW sampling that only a few data are used at the online
stage, and can utilize all data to do TMDTO attack for a target cipher. Our
method can be viewed as a nice combination of TMTO attack and GDA.

As applications, we give some tradeoff points on some classical symmetric
ciphers, including DES, AES-128, A5/1 [17], Grain-v1 [18], Grain-128 [19], etc.

4

Here we assume that 4096 computing units can be available for the attacker in
Table 2, and the number of computing units are not restricted in Table 3.

Table 2. Our method with a fixed τ = 212

Algorithm Time T Memory M Data D Precomp. T

DES 225.3 225.3 212 244

AES-128 273.3 273.3 212 2116

A5/1 220.8 220.8 220.8 231.2

Grain-v1 265.3 254.7 254.7 293.3

Grain-128 2102.7 293.3 293.3 2150.7

Table 3. Our method on DES and AES

Algorithm Comp. Unit τ Time T Memory M Data D Precomp. T

DES 218.7 218.7 218.7 218.7 237.3

AES 242.7 242.7 242.7 242.7 285.3

The rest of this paper is organized as follows. In Section 2 we first describe an
IMRF, then generalize the birthday theorem, and finally provide an algorithm of
solving the IMRF based on the generalized birthday theorem. As its application,
Some tradeoff curves and points to block ciphers and stream ciphers are given
in Sections 3.1, 3.2 and 3.3 respectively.

2 Invertibility of multiple random functions

2.1 Description

In this section we describe an invertibility of multiple random functions (IMRF,
in short), which can be viewed as a generalization of an IRF.

Definition 1. Let n and τ be two positive integers, and f1, f2, · · · , fτ be τ in-
dependent random functions from {0, 1}n to {0, 1}n. For any given D data:

y1,1, y1,2, · · · , y1,d1 ∈ Img(f1),

y2,1, y2,2, · · · , y2,d2 ∈ Img(f2),
...

yτ,1, yτ,2, · · · , yτ,dτ ∈ Img(fτ),

(1)

where D =
∑i=τ
i=1 di, di ≥ 1, and Img(fi) denotes the set of all images of fi, 1 ≤

i ≤ τ , we call how to find a preimage x of some yi,j under fi, i.e., yi,j = fi(x),
to be an invertibility of multiple random functions, where 1 ≤ i ≤ τ , 1 ≤ j ≤ di.

5

Here it should be reminded of the following problem:

Question 1. Let n and τ be two positive integers, and f1, f2, · · · , fτ be τ in-
dependent random functions from {0, 1}n to {0, 1}n. For any given D data

yi,j ∈ Img(fi), where 1 ≤ i ≤ τ , 1 ≤ j ≤ di, D =
∑i=τ
i=1 di, for each fi,

how to find a preimage xi of some yi,j under fi, i.e., yi,j = fi(xi).

Though Question 1 looks very similar to an IMRF, they are two entirely different
problems. The former is required to find a preimage of some yi,j for each fi, that
is, total τ preimages, which can be viewed to invoke an IRF simply τ times,
but the latter is required to find a preimage of some yi,j for only one of fi’s.
Obviously, an IMRF looks easier than Question 1. Thus we believe that an IMRF
might have a more efficient solution than Question 1 in theory. In the next two
sections we will discuss how to give a more efficient algorithm for an IMRF.

2.2 Generalized birthday theorem

In order to solve the IMRF, we will introduce a new birthday theorem, which is
viewed as a generalization of the birthday theorem, that is, Lemma 1.

Theorem 1. (Generalized Birthday Theorem) Let S be a set of size N ,
and A1, · · · , Aτ , B1, · · · , Bτ be 2τ independent random subsets of S such that
|A1| = · · · = |Aτ | = n and |B1| = · · · = |Bτ | = m, where τ , n and m are three
positive integers. If τnm ≥ N , then there exists an integer i such that Ai ∩ Bi
is nonempty with high probability, where 1 ≤ i ≤ τ .

Proof. When n+m > N , the conclusion is trivial. Below we always assume that
n+m ≤ N .

Denote by p the probability of the event that Ai ∩Bi = ∅. Then we have

p = Pr[Ai ∩Bi = ∅] =

(
N
n

)
·
(
N−n
m

)(
N
n

)
·
(
N
m

) =
(N − n)!(N −m)!

N !(N − n−m)!
. (2)

Let q be the probability of the event that there exists an integer i (1 ≤ i ≤ τ)
such that Ai ∩ Bi 6= ∅. Due to the independence of all Ai and Bi, we have
q = 1− pτ . It is expected that q > 1

2 , that is, pτ < 1
2 .

By (2),

p =
(N −m)(N −m− 1) · · · (N −m− n+ 1)

N(N − 1) · · · (N − n+ 1)
=

n−1∏
i=0

(1− m

N − i
).

As a consequence, we have

pτ ≤ (1− m

N
)nτ ≤ (1− m

N
)
N
m (3)

6

due to nτ ≥ N
m . Note that (1− x)

1
x < 1

e for any 0 < x < 11, we have

q = 1− pτ > 1− 1

e
>

1

2
.

So the conclusion follows. �

2.3 An efficient algorithm for an IMRF

Take S = {0, 1}n and N = 2n. For a given IMRF, a simple method of solving it
is to choose one function fi arbitrarily as a target and invoke the IRF once for
it. Obviously, it is not optimal since it does not make efficient use of all known
data. In this section we will provide a more efficient algorithm of solving an

1 Consider the function F (x) = x + ln(1 − x) with x ∈ [0, 1). Note that F ′(x) =
1 − 1

1−x
< 0 for each x ∈ (0, 1), consequently it is shown that F (x) is a strictly

monotone decreasing function in [0, 1). Thus F (x) < F (0) = 0 for any x ∈ (0, 1),

which implies that 1
x

ln(1− x) < −1, that is, (1− x)
1
x < 1

e
.

7

IMRF and give its complexity evaluation, which is mainly based on the above
generalized birthday theorem.

Algorithm 1: Set up lookup tables at the one-time offline stage

Input: τ random functions f1, f2, · · · , fτ ;
Output: lookup tables Ti,u;

1 choose two suitable integers m and t such that mt2 = N ;
2 for each function fi, set up r = t/D lookup tables Ti,u (1 ≤ u ≤ r), do
3 choose r simple permutations σi,u and let gi,u = σi,u ◦ fi, 1 ≤ u ≤ r;
4 choose m startpoints si,u,v,0 (1 ≤ v ≤ m) randomly for each Ti,u;
5 for each startpoint si,u,v,0 do
6 compute a chain Ci,u,v of length t

si,u,v,0
gi,u−−→ si,u,v,1

gi,u−−→ · · · gi,u−−→ si,u,v,t (4)

and store the pair (si,u,v,0, si,u,v,t) into Ti,u;
7 end

8 end
9 return lookup tables Ti,u;

Algorithm 2: Find a preimage x of some yi,j under fi at the online stage

Input: D data yi,j ∈ Img(fi), 1 ≤ i ≤ τ , 1 ≤ j ≤ di, D =
∑τ
i=1 di;

Output: a preimage x of some yi,j under fi or failure message;
1 for i = 1, 2, · · · , τ do
2 for j = 1, 2, · · · , di do
3 for u = 1, 2, · · · , r do
4 compute yi,j,1 = σi,u(yi,j) and look up yi,j,1 in the second

column of Ti,u;
5 if ∃v s.t. yi,j,1 = si,u,v,t then
6 compute si,u,v,t−1 from the startpoint si,u,v,0 along the

chain Ci,u,v under gi,u;
7 return x = si,u,v,t−1 as a preimage of yi,j under fi;

8 end
9 compute yi,j,k = gi,u(yi,j,k−1) and look up yi,j,k in the second

column of Ti,u for 2 ≤ k ≤ t;
10 if ∃v s.t. yi,j,k = si,u,v,t then
11 compute si,u,v,t−k from the startpoint si,u,v,0 along the

chain Ci,u,v under gi,u;
12 return x = si,u,v,t−k as a preimage of yi,j under fi;

13 end

14 end

15 end

16 end
17 return failure message that no preimage x is found;

8

Here we explain simply why it holds that yi,j = fi(x) with high probability
when Algorithm 2 returns x. If x is returned at Step 7 in Algorithm 2, then we
have

σi,u(yi,j) = yi,j,1 = si,u,v,t = σi,u(fi(si,u,v,t−1)) = σi,u(fi(x)).

Note that σi,u is a permutation, it follows that yi,j = fi(x). If x is returned at
Step 12 in Algorithm 2, we have

gi,u(yi,j,k−1) = yi,j,k = si,u,v,t = gi,u(si,u,v,t−1).

Since gi,u = σi,u ◦ fi is also a random function, thus yi,j,k−1 = si,u,v,t−1 holds
with high probability. We can approximate that yi,j,k−1 is just equal to si,u,v,t−1.
And so on, we further get yi,j,1 = si,u,v,t−k+1. So

σi,u(yi,j) = yi,j,1 = si,u,v,t−k+1 = σi,u(fi(si,u,v,t−k)) = σi,u(fi(x)),

which implies that yi,j = fi(x).
As for Algorithms 1 and 2, it should be pointed out that:

1. We assume that an attacker has access to τ computing units, each having
independent core and memory. Our assumption is indeed easy to meet in
reality when τ is not too large. Since the attacker has τ independent com-
puting units, thus he/she can set up the lookup tables Ti,u simultaneously for
one function fi on one computing unit in Algorithm 1, and match one group
yi,1, yi,2, · · · , yi,di in the lookup tables Ti,u simultaneously on one computing
unit in Algorithm 2, too. It shows that Algorithms 1 and 2 can be done in
high parallel at the level of functions.

2. At the offline stage, a technique of Hellman attack with distinguishing points [4]
can be used to set up the lookup tables Ti,u to avoid data collision. Since
mt will be far smaller than N , there are fewer collisions and merges in each
Ti,u in a practical attack.

Below we discuss the cost of Algorithms 1 and 2. Denote by T , M and
P the time/memory/precomputation cost at each computing unit respectively.
For simplification, we assume that d1 = · · · = dτ = d. Then D = τd. At the
offline stage, each computing unit needs to store r lookup tables Ti,u, each Ti,u
containing m pairs of startpoint and endpoint and covering about mt data. Thus
we have M = rm = mt/D. Since each pair of startpoint and endpoint stored in
Ti,u is obtained by means of a chain Ci,u,v of length t, thus the precomputation
needs to invoke gi,u total rmt times, that is, P = rmt = mt2/D. At the online
stage, for each yi,j , it needs t queries in a lookup table Ti,u, and t calls for
gi,u. Thus each computing unit needs at most rtd queries for a group of images
yi,1, yi,2, · · · , yi,d of fi and total rtd calls for all gi,u. In a practical attack, we
can speed up one query in the lookup table Ti,u by means of sorting or hash
mapping when m is not too large. Here we approximate T = rtd = t2/τ , which
implies T queries and T calls. In order to find a collision with high probability,

by Theorem 1, it is expected that τ × mt2

D × d = N . So we get the following
conclusion:

9

Theorem 2. For a given IMRF defined as in Definition 1, let T , M and P the
time/memory/precomputation cost at each computing unit in Algorithms 1 and
2 respectively. Then we have

N2 = τTM2D2 and PD = N, (5)

where T ≥ D2/τ and D ≥ τ .

Proof. The conclusion follows directly from M = mt/D, P = mt2/D, T = t2/τ ,
mt2 = N and r = t/D ≥ 1.

3 Application

3.1 Block ciphers at the single key scenario

Block cipher is one of classical symmetric ciphers and has been widely used in
information processing to protect the confidentiality of message. A typical block
cipher contains three main parameters: key, plaintext and ciphertext. Plaintexts
are encrypted to ciphertexts under the control of keys in a block cipher. Due
to the recovery of ciphertexts, the block cipher must be a permutation on the
plaintext space. Therefore the plaintext space and the cipher space are the same
in block ciphers.

Let K and C be the key space and the plaintext space of a block cipher
respectively. Here we consider the scenario of single key analysis of block ciphers.
In Hellman attack, a fixed plaintext P0 is chosen and the ciphertext C is viewed as
a function fP0

(K) on the key K, where C = fP0
(K) = EK(P0), and EK denotes

the encryption function of the block cipher. Since it is required to recover the
specific unknown key K, Hellman attack uses exactly one datum at the online
stage though an attacker may capture many plaintext/ciphertext data easily.
Below we will provide a new TMDTO method, which overcomes the disadvantage
of Hellman attack and can use more than one plaintext/ciphertext datum got
under the same key. To the best of our knowledge, this is the first multi-data
TMTO attack against block ciphers at the single key scenario.

Suppose that τ computing units are available for us. We first choose τ fixed
plaintexts P1, P2, · · · , Pτ and τ functions fi from the key space K to the cipher-
text space C, where Ci = fi(K) = EK(Pi), 1 ≤ i ≤ τ . If the size of K is not
equal to that of C, for example, DES, a reduction function R is required. At this
time we let fi(K) = R(EK(Pi)). It is noticed that each fi in a block cipher is
viewed as a random function, and they are mutually independent for different
plaintexts. At the online stage, the attacker has known τ plaintext/ciphertext
pairs (Pi, Ci) of a block cipher under an unknown key K, where Ci = EK(Pi),
1 ≤ i ≤ τ . So the attacker attempts to recover K by Algorithms 1 and 2 in
Section 2.3. Note that there is only one datum used for each fi, that is, d = 1,
thus D = τ . Then we get the following tradeoff curve:

N2 = TM2D3, D = τ, PD = N, (6)

10

where T ≥ D. Let n be the bit length of the key, i.e., N = 2n. Set τ = 2l. For
a given τ such that l ≤ n

3 , a common tradeoff point is T = M = 2
1
3 (2n−3l) and

P = 2n−l. If τ is not fixed, then the curve T = M = D = 2
n
3 and P = 2

2n
3 is

suggested.
It is shown in (6) that the number τ of available computing units is also a

key parameter. Obviously, the larger τ is, the smaller the time/memory cost T
and M at each computing unit will be. This is a very important property in
the real world, which will help us to execute some practical attacks for some
block ciphers in a distributed computing environment. Due to the restriction of
practical computing resource, l is usually very small, for example, l ≤ 20.

Here we provide a simple comparison with Hellman attack. Let Ttotal, Mtotal

and Ptotal be the total time/memory/precomputation cost of all computing units,
that is, Ttotal = τT , Mtotal = τM and Ptotal = τP . Note that D = τ , by Formula
(6), we have

N2 = TtotalM
2
total and Ptotal = N,

which is the same as that of Hellman attack. Thus we have the following con-
clusion:

Theorem 3. For a block cipher, the time/memory/precomputation costs T , M
and P at each computing unit are reduced linearly when τ or D is increased.

Finally, as examples, we apply the above method to the well-known block
ciphers DES and AES with 128-bit key (AES-128, in short). The results for a
fixed τ = 212 are listed in Table 4, and for a varied τ in Table 5.

Table 4. Our method on DES and AES-128 for a fixed τ = 212

Time cost T Memory cost M Data D Precomp. cost P

DES 225.3 225.3 212 244

AES-128 273.3 273.3 212 2116

Table 5. Our method on DES and AES-128

Comp. Unit τ Time cost T Memory cost M Data D Precomp. cost P

DES 218.7 218.7 218.7 218.7 237.3

AES-128 242.7 242.7 242.7 242.7 285.3

3.2 Block ciphers at the multiple key scenario

In [8] Biryukov, Mukhopadhyay and Sarkar described a multiple key scenario
on block ciphers, where a fixed plaintext was encrypted repeatedly by several

11

different keys. At such a scenario they naturally extended Hellman attack to a
time-memory-key tradeoff on block ciphers, and got the same tradeoff curve as
that of BS attack on stream ciphers:

N2 = TM2D2
k,

where Dk is the number of possible keys on the online stage. It is referred to as
BMS attack. When we pay our eyes on an IMRF, it is found that our method is
more suitable for the multiple key scenario on block ciphers, where the arbitrary
number of plaintexts can be encrypted repeatedly by several different keys. Let
τ be the number of known plaintexts, denoted by P1, P2, · · · , Pτ , and each plain-
text Pi be encrypted repeatedly by Dk different keys k1, k2, · · · , kDk . So we get
total τDk data yi,j = fi(kj) = Ekj (Pi) at the online stage, where 1 ≤ i ≤ τ and
1 ≤ j ≤ Dk. We take each fi as a random function and view them as an instance
of the IMRF. By Theorem 1, we get a new tradeoff curve for block ciphers at
the multiple key scenario:

N2 = τ3TM2D2
k and τPDk = N, (7)

where T ≥ τD2
k. A common tradeoff point is that P = T = N

3
5 , M = Dk =

τ = N
1
5 . A comparison of our method to BMS attack on AES-128 is shown as

in Table 6.

Table 6. A comparison of our method to BMS attack on AES-128

Plaintexts (τ) Time (T) Memory (M) Key (Dk) Precomp. (P)

BMS attack 1 280 256 232 296

Our method 220 260 248 220 280

3.3 Stream ciphers

Stream ciphers are another of classical symmetric ciphers and are mainly used
in network communication. Stream ciphers have a very different behavior from
block ciphers. A typical stream cipher usually contains a number of internal
registers, a seed key and an initial vector (optional), and mainly consists of a
state function and a filter function. In a stream cipher, the state function involves
in the update of states of the internal registers, and the filter function derives
a key sequence from states of the internal registers, which is used to encrypt
plaintexts to ciphertexts.

TMTO can be applied to stream ciphers by several methods, for example,
BG/BS attack, HS attack [15], DK attack [16], and so on. Compared with the
TMTO for block ciphers, the TMTO for stream ciphers has the advantage that
it can utilize many data at the online stage. Here we focus on BS attack with
BSW sampling. In BS attack, a mapping y = f(x) from the state x to the prefix

12

y of the output keystream is viewed as a random function on the state space of
size N , and its goal is to recover some state x of the internal registers from a
piece of output keystream bits. The BSW sampling is a technique of combining
TMTO attack and GD attack together, and is used to improve BS attack. For a
stream cipher, let n be the bit length of its states. Suppose that an attacker can
determine the rest l-bit value x0 of a state x from y0 by guessing the (n− l)-bit
value x′ of x, where y = y0 ‖ y′ = f(x) = f(x0 ‖ x′), x0 and y0 have l bits, and
x′ and y′ have (n − l) bits. Then a new function y′ = fy0(x′) on a (n − l)-bit
subspace of the state space can be derived from y = f(x), which is dependent
on the value of y0 and shown in Fig. 1.

Fig. 1 Diagram of deriving fy0 from f

In BS attack with BSW sampling, the prefix y0 is chosen to a fixed value,
denoted by a, and the function y′ = fa(x′) is viewed as a random function on
the space of dimension n− l. BS attack with BSW sampling reduces the target
space from n bits to n− l bits, but leads to a disadvantage: though an attacker
has captured D prefixes y, only the prefixes y whose first l-bit y0 matches a
are valid, that is to say, only 2−lD data can be used at the online stage, and
most data (about (1− 2−l)D) are useless indeed. Below we give a new TMDTO
method, which overcomes the disadvantage of BS attack with BSW sampling
and utilizes all D prefixes y at the online stage. Our method can be viewed as a
nice combination of TMTO attack and GD attack.

Similarly, here we still assume that at least τ computing units are available for
an attacker. For a given stream cipher, we first analyze its security by means of
GD attack. Suppose that the state x can be recovered from a prefix y by guessing
the (n− l)-bit value of x. Then we analyze its security again by means of TMTO
attack. We choose τ fixed distinct l-bit prefixes a1, a2, · · · , aτ and τ functions
fa1 , fa2 , · · · , faτ , and run Algorithms 1 and 2 as described in Section 2.3 . Let
D be the number of prefixes y, which can be extracted from a (n + D − 1)-bit
successive keystream. For each fa, on average, about 2−lD prefixes y belong to
the image of fa, that is, d = 2−lD. Note that τ must be no more than 2l and
the preimage space of fa has size 2−lN for any a, thus we have

N2 = τ3TM2D2 and τPD = N, (8)

where τ ≤ 2l ≤ D and T ≥ 2−2lτD2.
For a given stream cipher, let n and k be the bit lengths of the state and seed

key respectively. Since log2 τ is usually very small due to the limit of computing
resource, it is easy to meet the condition l ≥ log2 τ for a maximal l got in GD

13

attack. Thus we usually take l = log2 τ . In this case all D data are used at the
online stage without any waste. Below we take l = log2 τ such that l ≤ n

4 and
give several common tradeoff points:

– T = 2
1
3 (2n−5l), M = D = 2

1
3 (n−l) and P = 2

2
3 (n−l);

– T = M = 2k−l, D = 2
1
2k and P = 2

3
2k−l if n = 2k.

It should be pointed out that it is also meaningful when l > log2 τ . Though not
all data are used in this case, the time/memory/precomputation cost at each
computing unit can also be reduced. Let L be the maximal value of l got by
GD attack for a stream cipher. If L > log2 τ , then the following tradeoff point
is taken:

– T = M = D = (τ−3N2)
1
5 , P = (τ−2N3)

1
5 and l = d 15 log2(τN)e when

L ≥ 1
5 log2(τN);

– T = (τ−12−4lN2)
1
3 , M = D = (2lτ−2N)

1
3 , P = (2−lτ−1N2)

1
3 and l = L

when log2 τ < L < 1
2 log2(τ−2N).

Below we provide a simple comparison with BS attack with BSW sampling.
Let Ttotal, Mtotal and Ptotal be the total time/memory/precomputation cost of
all computing units, that is, Ttotal = τT , Mtotal = τM and Ptotal = τP . By
Formula (8), we have

N2 = TtotalM
2
totalD

2 and PtotalD = N,

which is the same as that of BS attack. Thus we have the following conclusion:

Theorem 4. For a stream cipher, the time/memory/precomputation costs T ,
M and P at each computing unit are reduced linearly when τ is increased.

Finally, as examples, our method is applied to the stream ciphers A5/1 [17],
Grain-v1 [18] and Grain-128 [19] respectively. Note that l is taken at most 16,
28 and 48 in A5/1, Grain-v1 and Grain-128 respectively [20], the results of our
analysis for a fixed τ = 212 are listed in Table 7.

Table 7. Our method on A5/1, Grain-v1 and Grain-128 for a fixed τ = 212

Units τ GD param. l Time T Mem. M Data D Prep. P

A5/1 212 12 220.8 220.8 220.8 231.2

Grain-v1 212 28 265.3 254.7 254.7 293.3

Grain-128 212 48 2102.7 293.3 293.3 2150.7

References

1. Goldreich O.: Foundations of cryptography volume I basic tools. Cambridge Uni-
versity Press (2008)

14

2. Pohlig S.C. and Hellman M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transaction on Information
Theory, vol. 24, pp.106-110 (1978)

3. Feller W.: An introduction to probability theory and its applications. 3rd ed. New
York: Wiley (1968)

4. Denning D.E.: Attributed to rivest in cryptography and data security. Addison-
Wesley, page 100 (1982)

5. Avoine G., Junod P. and Oechslin P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Transaction Information System
Security, 11(4), 17:117:22 (2008).

6. Oechslin P.: Making a faster cryptanalytic time-memory trade-off. Crypto 2003,
LNCS 2729, pp.617-630 (2003)

7. Hellman M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), pp.401-406 (1980)

8. Biryukov A., Mukhopadhyay S. and Sarkar P.: Improved time-memory trade-offs
with multiple data. SAC 2005, LNCS 3897, pp.110-127 (2006)

9. Babbage S.: Improved exhaustive search attacks on stream ciphers. European Con-
vention on Security and Detection 1995. IEE Conference Publication, pp.161-166
(1995)

10. Golic J.D.: Cryptanalysis of alleged A5 stream cipher. EUROCRYPT 1997, LNCS
1233, pp.239-255 (1997)

11. Biryukov A. and Shamir A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. ASIACRYPT 2000, LNCS 1976, pp.1-13 (2000)

12. Biryukov A., Shamir A. and Wagner D.: Real time cryptanalysis of A5/1 on a PC.
FSE 2000, LNCS 1978, pp.1-18 (2001)

13. Hawkes P. and Rose G.: Guess and determine attacks on SNOW. SAC 2002, LNCS
2595, pp.37-46 (2003)

14. Feng X., Liu J., Zhou Z., Wu C. and Feng D.: A byte-based guess and determine
attack on SOSEMANUK. ASIACRYPT 2010, LNCS 6477, pp.146-157 (2010)

15. Hong J. and Sarkar P.: New applications of time memory data tradeoffs. ASI-
ACRYPT 2005, LNCS 3788, pp.353-372 (2005)

16. Dunkelman O. and Keller N.: Treatment of the initial value in time-memory-data
trade-off attacks on stream ciphers. Information Processing Letters, 107(5), pp.133-
137 (2008)

17. Anderson R.: A5. Newsgroup Communication (1994)
18. Hell M., Johansson T., Maximov A. and Meier W.: The Grain family of stream

ciphers. New stream cipher designs, LNCS 4986, pp.179-190 (2008)
19. Hell M., Johansson T., Maximov A. and Meier W.: A stream cipher proposal:

Grain-128. IEEE International Symposium on Information Theory, ISIT 2006
(2006)

20. Wei Y., Pasalic E., Zhang F. and Wu W.: Key recovery attacks on Grain
family using BSW sampling and certain weaknesses of the filtering function.
http://eprint.iacr.org/2014/971.pdf (2014)

15

