
How to Enumerate LWE Keys as
Narrow as in Kyber/Dilithium

Timo Glaser and Alexander May

Ruhr-University Bochum, Bochum, Germany
{timo.glaser,alex.may}@rub.de

Abstract. In the Learning with Errors (LWE) problem we are given a
matrix A ∈ ZN×N

q and a target vector t ∈ ZN
q such that there exists

small-norm s, e ∈ ZN
q satisfying A · s = t + e mod q. Modern cryp-

tosystems often sample s, e from narrow distributions that take integer
values in a small range [−η, η]. Kyber and Dilithium both choose η = 2
and η = 3 using either a Centered Binomial distribution (Kyber), or a
Uniform distribution (Dilithium).
In this work, we address the fundamental question how hard the enu-
meration of LWE secret keys for narrow distributions with η ≤ 3 is. At
Crypto 21, May proposed a representation-based algorithm for enumer-
ating ternary keys, i.e. the case η = 1, with a �xed number of ±1 entries.
In this work, we extend May's algorithm in several ways.
First, we show how to deal with keys sampled from a probability distri-
bution as in many modern systems like Kyber and Dilithium, rather
than with keys having a �xed number of entries.
Second, we generalize to larger values η = 2, 3, thereby achieving asymp-
totic key guess complexities that are not far o� from lattice estimates.
E.g. for Kyber's Centered Binomial distribution we achieve heuristic
time/memory complexities of O(20.36N) for η = 2, and O(20.37N) for η =
3. For Dilithium's Uniform distribution we achieve heuristic complexity
O(20.38N) for η = 2.
Let S be the Shannon entropy of Kyber/Dilithium keys. Then our

algorithms runs in time about S
1
6 , which greatly improves over the stan-

dard combinatorial Meet-in-the-Middle attack with complexity S
1
2 .

Our results also compare well to current lattice asymptotics of 20.29β ,
where the lattice parameter β is roughly of size 4

5
N . Thus, our analysis

supports that Kyber secret keys are indeed hard to enumerate. Yet,
we �nd it remarkable that a purely combinatorial key search is almost
competitive with highly evolved lattice sieving techniques.

Keywords: LWE Key Search, Representation Technique, Asymptotics.

1 Introduction

Since the introduction of the Learning with Errors (LWE) problem by Regev
[Reg05] into the cryptographic community, LWE has shown its amazing power

Funded by Deutsche Forschungsgemeinschaft (DFG) - Project number 465120249

https://orcid.org/0000-0001-5965-5675

2 Timo Glaser and Alexander May

to realize e�cient cryptographic constructions, such as the Gödel Prize 22 award
Fully Homomorphic Encryption schemes [BV14,BGV14].

It does not come as a big surprise that LWE-type constructions play a central
role in the current NIST initiative for identifying encryption/signature schemes
resistant to quantum computers [BDK+18,DKSRV18,HPS98,CDH+19]. As solv-
ing LWE implies the solution to worst-case lattice problems, LWE is usually con-
sidered a lattice problem. However, this does not imply that lattice algorithms
necessarily provide the best way for solving LWE. Moreover, many cryptosys-
tems choose especially small secret keys for e�ciency reasons, and to keep the
probability of decryption errors low.

In this work we study the combinatorial complexity of recovering LWE keys
chosen from a narrow range {−η, . . . , η}. Our analysis also applies to common
variants of LWE, such as Ring-LWE or Module-LWE, but we make no use of the
additional structure that these LWE variants provide.

Previous Work on LWE Key Enumeration There is still much to learn about
directly enumerating LWE keys. A brute-force attack enumerates s ∈ ZN

q , and
checks whether As− t yields a small-norm error vector e. If s has Shannon en-
tropy S, then the brute-force attack takes (expected) time S, up to a polynomial
runtime factor for checking key correctness. Throughout the paper, for ease of
notation we ignore polynomial factors and round runtime exponents upwards.

In a Meet-in-the-Middle attack, attributed to Odlyzko [SO97], we split s in
two N/2-dimensional vectors s1, s2 and check whether As1 ≈ t − As2 mod q.
The approximate matching of As1 and t−As2 is realized by a locality-sensitive
hash function. Up to polynomial factors, Odlyzko's attack takes time S 1

2 .

Recently, May [May21] showed that ternary LWE keys s, e ∈ {−1, 0, 1}N can

be enumerated more e�ciently in time roughly S 1
4 . His algorithm for NTRU-type

schemes beats lattice reduction if s is overly sparse. May's technique is a natural
recursive generalization of Odlyzko's Meet-in-the-Middle attack to search trees,
using the so-called representation technique. This technique has been introduced
in [HJ10] and successfully applied in the cryptographic context of decoding al-
gorithms [MMT11,BJMM12].

Our Technical Contributions We extend May's LWE key recovery algorithm in
several ways.

� We �rst show that May's algorithm can be applied for LWE keys sam-
pled from a probabilistic distribution. Since the purely combinatorial anal-
ysis in [May21] requires to know for every element in {−η, . . . , η} the ex-
act number of appearances in s, we de�ne for any probability distribution
P = (p−η, . . . , pη) a so-called core set of vectors.

We then show that length-N LWE keys randomly sampled coordinate-wise
from P are in the core set with probability inverse polynomial inN . This core
set density shows that our key enumeration already applies to a polynomial
fraction of all keys.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 3

� We then strengthen our result to almost all LWE keys s, e by transforming

almost any LWE instance in subexponential time 2O(
√
N) to a permuted,

weight-preserving LWE instance with keys s′, e′ such that s′ lies in the core
set. Since our subsequent enumeration of s′ takes time 2O(N), the trans-
formation's subexponential overhead contributes only an o(1)-term to the
runtime exponent.

� We generalize the combinatorics of [May21] such that we can analyze secret
vectors from {−2, . . . , 2} and even from {−3, . . . , 3}. This introduces runtime
optimization parameters whose amount grows quadratically with the digit
sets and linearly in the search tree depth. The optimization complexity is
the reason that we only analyze up to η ≤ 3.

� Along this way we also generalize the ways in which the secret s can be
represented. This is crucial in the representation technique, since more rep-
resentations usually lead to better results. See as comparison the related
subset sum literature that optimized runtimes by solely analyzing more pow-
erful representations starting from {0, 1} [HJ10], over {−1, 0, 1} [BCJ11], to
{−1, 0, 1, 2} [BBSS20]. In this work, we introduce four di�erent representa-
tions, called Rep-0 to Rep-3, with increasing complexity. Rep-3 represen-
tations are most powerful, and we eventually use Rep-3 to show our best
results for the Kyber/Dilithium distributions.

� We analyze di�erent probability distributions P = (p−η, . . . , pη). For η = 1,
we revisit weighted ternary key distributions and slightly improve over [May21]
by using larger search tree depths. For η = 2, 3 we study the Centered Bi-
nomial distribution B(η) used in Kyber, and the Uniform distribution used
in Dilithium.

Our Results Table 1 shows our runtimes for s, e ∈ B(η)N , Kyber's Centered
Binomial distribution. Kyber uses η = 3 in combination with N = 256·2 = 512,
and η = 2 in combination with N = 256 · 3 = 768 and N = 256 · 4 = 1024.

As one would expect with increasing η � i.e., broader distributions � the
key entropy S and our runtime T both increase. However, let us express our
runtime as a polynomial function of the entropy T = Sc for some constant
c = logS(T). Then we see that the runtime exponent c actually decreases in
Table 1 monotonously in η.

For η = 2 and η = 3 we have complexities around only S 1
6 , as opposed

to the η = 1 ternary key case with complexity S0.225 (slightly improving over
S0.232 achieved in [May21]). Thus, our generalizations for larger digit sets are
more e�ective for larger η. This seems to be an artifact of the representation

η T S logS(T)

1 20.337N 21.500N 0.225

2 20.357N 22.031N 0.176
3 20.371N 22.334N 0.159

Table 1. Runtime T and entropy S of our LWE key enumeration algorithm for s
sampled from a Centered Binomial distribution B(η)N , η = 1, 2, 3.

4 Timo Glaser and Alexander May

method. Our analysis shows that the entropy growth with larger digit sets is
over-compensated by the growth of the number of representations, resulting in
decreased runtime exponents c = logS(T).

These results demonstrate the power of our new combinatorial LWE key
search algorithm. Recall that the best known combinatorial Meet-in-the-Middle
algorithm by Odlyzko so far achieved square root complexity S 1

2 , independent
of η. For the case η = 1 the exponent was lowered to c = 0.232 in [May21]. Our
work indicates that for Centered Binomials c as a function of η decreases strictly.

The e�ect of a strictly decreasing exponent c(η) is also re�ected in the ab-
solute runtimes T in Table 1. More precisely, when choosing keys from B(3)N
rather than ternary keys B(1)N , then our key enumeration algorithm's runtime
only mildly increases from 20.337N to 20.371N . In other words, although we sig-
ni�cantly increase the key entropy from 21.5N to 22.334N we do not signi�cantly
increase the key security. 1

Other distributions Besides the Centered Binomial distribution we also study
the enumeration of randomly sampled ternary LWE keys of di�erent weight,
thereby slightly improving the results of [May21].

We also study the Uniform distribution U(η) = (p−η, . . . , pη) with pi =
1

2η+1 ,

widely used in cryptography, e.g. some NTRU variants [CDH+19] sample their
keys from U(1)N . Dilithium chooses s, e ∈ U(2)N for N = 1024, 2048.

Our results for the Uniform distribution are provided in Table 2. When com-
paring with Table 1, the lower entropy, more sharply zero-centered Binomial
distribution yields slightly better runtimes than the Uniform distribution in Ta-
ble 2, as one would expect. However, maybe somewhat surprisingly, our results
for U(1)N and U(2)N are not far o�, only U(3)N is signi�cantly worse.

Relative to the entropy S we achieve for η = 2 again runtime S 1
6 , but as

opposed to the Centered Binomial distribution c = logT S is for the Uniform
distribution not strictly decreasing with growing η.

Notice that we achieve for Dilithium's U(2)N a runtime T similar to Ky-
ber's B(3)N . However, since Dilithium proposes much larger key lengths, our
key enumeration is way more e�ective for Kyber parameter sets.

η T S logS T
1 20.345N 21.585N 0.218

2 20.378N 22.322N 0.163

3 20.493N 22.808N 0.176

Table 2. Runtime T and entropy S of our enumeration algorithm for LWE keys
sampled from a Uniform distribution U(η)N , η = 1, 2, 3.

1 This conclusion is of course only valid relative to our algorithm. Relative to other
algorithms like lattice reduction the key security might be behave di�erently.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 5

Asymptotics We would like to stress that our LWE key search algorithm is at
this point mainly of theoretical interest. Our runtime analysis is asymptotic,
and throughout our work we do not only generously supress polynomial run-
time factors in soft-Oh notation Õ(·), but we also supress two subexponential
factors. First, as in [May21] we have to guess r = (N/ logN) coordinates of e in
slightly subexponential time 2r. Second, our transformation to the core set of s

introduces another subexponential 2O(
√
N) runtime factor.

Our analysis solely focuses on minimizing the runtime exponent. Our memory
consumption is almost as large as the runtime exponent. Time-memory tradeo�s
are possible, as in [May21], but we do not consider them in this work.

Signi�cant further work would be required to bring our results to practice.
We would like to draw an analogy to decoding algorithms, which also �rst solely
focused on asymptotic improvements [MMT11,BJMM12]. It took a decade that
these algorithms nowadays de�ne the state-of-the-art in practical attacks against
code-based cryptosystems [EMZ22].

LWE Representation Heuristic Our LWE key enumeration uses the standard
heuristic from representation based algorithms. Namely, we iteratively construct
in our key search partial solutions as vectors sums, and treat these sums as inde-
pendent in our analysis. This heuristic has been extensively veri�ed experimen-
tally in the context of subset sum and decoding algorithms [BBSS20,EMZ22].
On the theoretical side, it has been shown in [DRX17] that the dependence be-
tween vectors sums merely a�ects the overall runtime exponent by an o(1)-term.
Our own experimental results seem to validate this heuristic w.r.t. LWE.

In addition, we require that the LWE public key A is randomly chosen from
ZN×N
q , which is the case for standard LWE. In the case of Module-LWE (MLWE)

we heuristically assume that A's structure does not a�ect our analysis.
When formulating theorems, we refer to these two heuristic assumptions as

the MLWE Representation Heuristic.

Lattices Our results are close to current lattice asymptotics of 20.29β from BKZ
reduction, where the BKZ block length β is roughly of size 4

5N . We �nd it
quite remarkable that combinatorial key enumeration, at least in the case of
quite narrow LWE keys as in Kyber and Dilithium, is not far o� from highly
evolved lattice reduction techniques. Even if key enumeration eventually cannot
outperform lattice reduction, there exist other attack scenarios where direct key
enumeration might be preferable over lattices, e.g. in the setting of partially
known keys [BBSS20,EMVW22].

Organization of paper After �xing notations in Section 2, we give a short ex-
planation of May's LWE-Search's [May21] in Section 3 and how to extend its
analysis to probabilistically sampled keys in Section 4. In Section 5, we provide
a �rst simple instantiation of LWE-Search, called Rep-0, for an introduction
into the representation technique. We then strengthen our results by introducing
more elaborated representations Rep-1 to Rep-3 in Section 6. Section 7 contains
an overview of our results for the weighted ternary, the Centered Binomial, and

6 Timo Glaser and Alexander May

the Uniform distribution. Section 8 covers the method of parameter searching
as well as our experimental results.

We provide the source code for parameter optimization and our implemen-
tation of the attack via https://github.com/timogcgn/HTELWEK/.

2 Preliminaries

Unless explicitly stated otherwise, any log is base 2. For simplicity, we denote all
vectors as column vectors and omit transposing them. The weight of i in some
vector v, i.e. the amount of times i appears in v, is denoted wti(v).

Shannon Entropy We denote with H the n-ary entropy function [MU17] where

H(p1, . . . , pn) = −
n∑

i=1

pi log(pi) for
∑

pi = 1.

Using Stirling's Approximation, we �nd for constant pi(
N

p1N , · · · , pnN

)
= Θ(N−n−1

2 · 2H(p1,··· ,pn)N) = Θ̃(2H(p1,··· ,pn)N). (1)

Distributions Probability distributions are denoted P = (p−η, . . . , pη) where pi
denotes the probability to sample i ∈ {−η, . . . , η}. We only consider distributions
symmetric around 0, i.e. where pi = p−i, so indices are generally unsigned.

Sampling from a probability distribution P will be denoted with s ∼ P. If
s ∈ ZN

q has its N coe�cients drawn i.i.d. from P, we write s ∼ PN .

For some η ∈ N, we denote the Centered Binomial Distribution with

pi =

(
2η
η+i

)
22η

. (2)

LWE Keys We attack standard LWE keys, where both s and e are randomly
drawn from some narrow probability distribution over Zq. More precisely, for
some prime q ∈ N and some N ∈ N, given a random A ∈ ZN×N

q and t ∈ ZN
q

where t = As+ e for s, e ∈ ZN
q drawn from PN , we want to �nd (s, e).

If we replace Zq with Zq [X]/P (X) and N with k, this becomes Module-LWE,
abbreviated MLWE. Our results can be applied to MLWE with N = deg(P)k.

3 How to Enumerate LWE Keys with May's Algorithm

Before we introduce May's algorithm for key enumeration [May21], let us brie�y
recall some basic techniques.

https://orcid.org/0000-0001-5965-5675
https://github.com/timogcgn/HTELWEK/

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 7

3.1 Brute-Force and Meet-in-the-Middle LWE Key Enumeration

Let q ∈ N and let (A, t) ∈ ZN×N
q × ZN

q be an instance of LWE satisfying

As+ e = t mod q for some s, e ∈ ZN
q that have small coe�cients (relative to q).

A Brute-Force LWE key enumeration searches over all potential secrets
s ∈ ZN

q , and checks whether the resulting error term t − As is su�ciently
small. By construction, there is usually a unique s that satis�es this condition.
If the potential s come from an exponential search space of size S, then one
has to iterate over Θ(S) potential s, where each candidate can be tested in
polynomial time. Thus, Brute-Force runs in time Õ(S). E.g. for random ternary
s ∈ {−1, 0, 1}N Brute-Force takes time Õ(3N).

A classical Meet-in-the-Middle (MitM) LWE key enumeration equally splits

s = (s1, s2) ∈ ZN/2
q × ZN/2

q and A = (A1, A2) ∈ ZN×N/2
q × ZN×N/2

q . One
then enumerates pairs (s1, s2) and checks whether A1s1 approximately matches
t−A2s2 modulo q, up to a small error term. The bene�t is that (s1, s2) have half
the dimension of s, and the terms A1s1, t−A2s2 can be computed independently.
The matching (up to the small error term) of A1s1, t−A2s2 that �nds the right
pairs (s1, s2) can usually be done in polynomial time, using a locality-sensitive
hashing approach due to Odlyzko [SO97]. This implies that classical MitM runs
for secret s from a search space of size S in time Õ(

√
S). For instance, for random

ternary s ∈ {−1, 0, 1}N , classical MitM takes time Õ(3N/2).

3.2 High-Level Idea of the Algorithm

May's LWE key enumeration [May21] can be seen as a Meet-in-the-Middle at-
tack, where we additively split s = s1 + s2 with s1, s2 ∈ ZN

q . As opposed to
classical MitM the bene�t of s's splitting does not come from dimension reduc-
tion, but from the following three properties.

Reduced Search Space s1, s2 are usually easier to enumerate, i.e. they are de�ned
over smaller search spaces. For instance, [May21] uses for enumerating ternary
keys s1, s2 of roughly half the Hamming weight of s.

Recursion [May21] recursively splits s1, s2 as sums ofN -dimensional vectors that
are (yet) de�ned over smaller search spaces. This recursion eventually results in
a complete binary search tree of some optimal depth d. The optimization of the
search spaces over all tree levels is a non-trivial optimization problem.

Ambiguous Representations The secret s can be expressed in exponentially many
ways as a sum s1 + s2. The algorithm uses these so-called representations of s
to �x a special representation s.t. A1s1, t − A2s2 take a �xed prede�ned value
on certain coordinates.

In order to use representations, for some candidate s1, s2 we thus have to
�x the values A1s1, t−A2s2 on certain r coordinates. Let us �x zeros on these
coordinates for simplicity. Recall however that the values A1s1, t − A2s2 still

8 Timo Glaser and Alexander May

Algorithm 1: LWE-Search [May21]

Input : A ∈ ZN×N
q , t ∈ ZN

q

Output: Small norm s ∈ ZN
q s.t. e := As− t has small norm

1 Guess r coordinates of e, denoted er.
2 for all s1, s2 such that As1 = 0r = t−As2 + er on these r coordinates and

As1 ≈ t−As2 on the remaining n− r coordinates do
3 Output s = s1 + s2

4 end

di�er by the unknown error vector e. Thus, May's algorithm �rst guesses r
coordinates of e. The algorithm's high-level structure is described in Algorithm 1.

Algorithm 1 was instantiated and analyzed in [May21] only for ternary vec-
tors s ∈ {−1, 0, 1}N with a prede�ned number of ±1-entries. However, the al-
gorithm may as well be instantiated with any notion of smallness of s, e (in
comparison to q). Throughout the paper, we assume that s, e are sampled from
a constant size range {−η, . . . , η}. I.e., the max-norm of s, e does not grow as a
function of q, as opposed to e.g. Regev's original cryptosystem [Reg05].

The narrow max-norm distributions that we address in this work are typical
for highly practical lattice-based schemes like Kyber and Dilithium. In the
narrow max-norm distribution setting for e (we do not need constant max-norm
s at this point) the following holds.

Subexponential Key Guessing Let R be the number of representations of s.
In Algorithm 1 we choose r, the number of guessed error coordinates, such
that on expectation at least one representation survives. The probability that a
representation (s1, s2) satis�es the condition As1 = 0r in the last r coordinates
in Algorithm 1 is q−r. Thus, a representation survives if Rq−r ≥ 1. Since in
the following R = 2O(N) and q = Θ(N), we obtain r = O(N

logN). Thus, for
every constant max-norm e, Algorithm 1 requires for the key guessing in step 1
subexponential time

(O(1))r = 2O(N/logN).

As a consequence, the (exponential) runtime of LWE-Search includes an ad-
ditional slightly subexponential factor. Asymptotically, this contributes a factor
of (1 + o(1)) to the exponent, and can be ignored by rounding the runtime ex-
ponent upwards. However, in practice, this factor might a�ect concrete runtime
estimates on a signi�cant scale.

E�cient LSH An approximate matching A1s1 ≈ t−A2s2 mod q with Odlyzko's
locality sensitive hash function (LSH) includes a constant runtime overhead O(1)
over an exact matching of lists (via sorting), when we match up to a constant
max-norm error vector e, see [May21]. Consequently, we can ignore LSH costs.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 9

4 Enumerating Keys from a Probabilistic Distribution

Larger Range LWE-Search originally was instantiated and analyzed for ternary
s, e ∈ {−1, 0, 1}N , where s has a �xed number of −1, 0, 1 that sum to 0, i.e.,
we have to know the weights wt−1(s),wt0(s),wt1(s). In subsequent sections, we
extend it to vectors s, e ∈ {−η, . . . , η}N , where η = 2, 3. These calculations with
wider ranges can be seen as a generalization of May's analysis for ternary keys.

Handling Probabilism Motivated by our applications Kyber and Dilithium,
we want to deal with keys s, e that are sampled from a probabilistic distribution
P. This causes problems, since LWE-Search requires explicit knowledge of the
weights of s. This case is not covered by [May21], and per se it is not clear that
LWE-Search permits a proper analysis for probabilistic distributions.

In this section, we �rst show that for any probabilistic distribution
P = (p−η, . . . , pη) with constant η, a polynomial fraction of all secret keys
s ∈ PN has weights wt−η(s) = p−ηN, . . . ,wtη(s) = pηN . I.e., all weights achieve
their expected values, ignoring rounding issues.

Thus, if we analyze LWE-Search with weights �xed to their expectation,
we already obtain an algorithm that succeeds for a polynomial fraction of keys.

Attacking (Almost) All Keys In Section 5, we show that the runtime of LWE-

Search can be expressed as a function T (wt−η, . . . ,wtη) which grows exponen-
tially in N . Instinctively, one might think that iterating LWE-Search over all
possible O(Nη) many weight distributions would solve the problem presented
by randomly sampling keys. However, this would result in worst-case runtime

O(Nη ·max{T (wt−η, . . . ,wtη)) |
∑

wti = N},

where the latter term can be exponentially larger than the runtime of LWE-

Search for a vector with wti = piN . Instead, we utilize a permutation technique.
In a nutshell, we permute the entries of s, e ∈ PN , until s achieves its expected
weights. It turns out than, on expectation, this happens within a subexponential

number 2O(
√
N) of iterations for all but a (tunably very small) fraction of keys

and yields a runtime of

2O(
√
N) · O(T (p−ηN, . . . , pηN)),

i.e. subexponential many iterations of exponentially less runtime. In other words,
we show that, for any probability distribution, one may analyze LWE-Search

w.l.o.g. with the weights of s �xed to their expectation. As a consequence, our
results hold for a (1− o(1))-fraction of all randomly sampled s, e ∼ PN .

4.1 A Polynomial Fraction of All Keys Achieves Expectations

Let us de�ne what we mean by the event that a vector v sampled from some
probability distribution P achieves its expected number of entries. We call the
set of these vectors a core set.

10 Timo Glaser and Alexander May

De�nition 1 (core set). Let N, η ∈ N. Let P = (p−η, . . . , pη) be a probability
distribution. We de�ne the core set of N -dimensional vectors over P as

C(P) := {v ∈ {−η, . . . , η}N | wti(v) = piN for all − η ≤ i ≤ η},

where w.l.o.g. (asymptotically in N) we assume that piN ∈ N for all i.

Next, we show that for any discrete probability distribution P = (p−η, . . . , pη)
with constant η, a length-N vector v randomly sampled coordinate-wise accord-
ing to P belongs to the core set C(P) with probability inverse polynomial in N .

Lemma 1. Let P = (p−η, . . . , pη) be some probability distribution, and let
N ∈ N be such that Ni := piN ∈ N for all i. Then, v ∼ PN is in the core
set C(P) with probability at least Ω(1

Nη).

Proof. Let v ∼ PN . Then we have for all i that wti(v) := Ni := piN with
probability

Pr[v ∈ C(P)] =

(
N

N−η , · · · , Nη

)
·
∏

−η≤i≤η

pNi
i .

We bound the multinomial coe�cient using Eq. (1) as

Pr[v ∈ C(P)] = Ω

(
1

Nη
· 2H(p−η,··· ,pη)N

)
· 2

∑
−η≤i≤η Ni log pi

= Ω

(
1

Nη

)
· 2H(p−η,··· ,pη)N · 2−H(p−η,··· ,pη)N = Ω

(
1

Nη

)
.

By Lemma 1, any attack that works for LWE keys s from the core set C(P)
with probability ε also works for any key s ∼ PN with probability Ω(1

Nη) · ε,
where the last probability is taken over the random choice of s.

4.2 Attacking Almost All Keys via Permutations

In order to attack almost all keys we devise a simple permutation technique that
exchanges coordinates in s and e. Our goal is to show that for almost all keys a
subexponential number of permutations yields a permuted s′ from the core set.

Permutation Technique Let As+e = t mod q be an LWE instance with a square
A ∈ ZN×N

q . We can rewrite this equation in the form

(A | IN) · (s | e) = t mod q.

Let P ∈ Z2N×2N
q be a permutation matrix, and let (A | In) · P−1 = (B | C),

where B,C ∈ ZN×N
q . Then clearly

(B | C) · P (s | e) = t mod q.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 11

Algorithm 2: Permute-LWE

Input : LWE instance (A, t) such that As+ e = t mod q
Output: LWE instance (A′, t′) such that A′s′ + e′ = t′ mod q , where (s′, e′)

is a permutation of (s, e)
1 repeat

2 Choose a random permutation matrix P ∈ Z2N×2N
q . ;

3 Compute (B | C) = (A | IN) · P−1 with B,C ∈ ZN×N
q .

4 until C is invertible;
5 (A′, t′) := (C−1B,C−1t) ;

Assume that C is invertible with inverse C−1 ∈ ZN×N
q . Then

(C−1B|IN) · P (s | e) = C−1t mod q.

De�ne A′ := C−1B ∈ ZN×N
q , (s′, e′) := P (s | e), and t′ = C−1t. Then we

obtain a new LWE instance
A′s′ + e′ = t′,

where the coordinates of (s′, e′) are a permutation of the coordinates of (s, e).
Notice that a random matrix is invertible over Zq with probability∏N

i=1(1− q−i) ≥ 1
4 [Wat87].

This gives us the algorithm Permute-LWE (Algorithm 2) with expected
polynomial runtime O(N3).

Any LWE key v = (s, e) ∼ P2N has expected weight wti(v) = 2Npi for
all i. Intuitively, if wti(v) is not signi�cantly smaller than 2Npi for any i, then
Permute-LWE should have a good chance to produce some s′ ∈ C(P). This
motivates our following de�nition of well-balanced vectors.

De�nition 2. Let P = (p−η, . . . , pη) be a probability distribution. We call an
LWE key (s, e) ∼ P2N c-well-balanced if for any −η ≤ i ≤ η and some constant
c, (s, e) contains at least 2Npi − c

√
Npi many i-entries.

We want to show that any randomly sampled vector (s, e) ∼ P2N is c-well-
balanced with constant probability.

Lemma 2. Let P = (p−η, . . . , pη) be a probability distribution. Then an LWE-

key (s, e) ∼ P2N is c-well-balanced with probability at least 1− (2η + 1)e−c2/4.

Proof. Let Xi be a random variable for the number of i-entries in (s, e) ∼ P2N .
Then µ := E[Xi] = 2Npi. We apply the Cherno� bound

Pr[Xi ≤ (1− δ)µ] ≤ e−
µδ2

2

with the choice δ = c
2
√
Npi

, which yields

Pr[Xi ≤ 2Npi − c
√

Npi] ≤ e−
c2

4 .

An application of the union bound shows the statement.

12 Timo Glaser and Alexander May

With Lemma 2, we know that, for large enough c, almost all keys are c-well-
balanced. Now, we want to show that any LWE instance with c-well-balanced
keys (s, e) can be turned via Permute-LWE into an LWE-instance with a secret
s′ in the core set in subexponential time, for which we analyze our instantiations
of LWE-Search (Algorithm 1) in subsequent sections.

Lemma 3. Let P = (p−η, . . . , pη) be a probability distribution, and (A, t) be an
LWE instance with c-well-balanced LWE-key (s, e) ∼ P2N . Then on expectation

Permute-LWE outputs an LWE instance (A, t′) with s′ ∈ C(P) after 2O(
√
N)

trials.

Proof. Since (s, e) is c-well-balanced, we have wti(s, e) ≥ 2Npi−c
√
Npi for any

i ∈ {−η, . . . , η}. Thus, we obtain

Pr[s ∈ C(P)] ≥
(2Np−η−c

√
Np−η

Np−η

)
· . . . ·

(2Npη−c
√

Npη

Npη

)(
2N
N

) .

Using Eq. (1) and neglecting polynomial terms we obtain for the exponent

log Pr[s ∈ C(P)] ≥ −2N +

η∑
i=−η

H

(
1

2− c
Npi

)
·
(
2− c√

Npi

)
Npi.

For any x ≤ 1
2 we have H(x, 1− x) ≥ 2(1− x), leading to

log Pr[s ∈ C(P)] ≥ −2N +

η∑
i=−η

2

(
1− 1

2− c
Npi

)
·
(
2− c√

Npi

)
Npi.

= −2N + 2

η∑
i=−η

(
1− c√

Npi

)
Npi

= −2c

η∑
i=−η

√
Npi = −Θ(

√
N).

Thus, we expect that after (Pr[s ∈ C(P)])−1 = 2O(
√
N) iterations for Permute-

LWE to output an LWE-instance with a secret s in the core set C(P).

5 Instantiating LWE-Search with Simple (Rep-0)
Representations

In this section, we show how to instantiate LWE-Search (Algorithm 1) from
Section 3 with both s, e sampled from the Centered Binomial distribution B(3)N .
In the previous Section 4 we showed that for any distribution P it su�ces to
instantiate LWE-Search with secret s chosen from the core set C(P), that �xes
all weights to their expectations, see De�nition 1. Therefore, in the following we
assume that s ∈ C(P)N .

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 13

Our �rst LWE-Search instantiation is mainly for didactic reasons. We as-
sume that the reader is not familiar with the representation technique. There-
fore, we de�ne an especially simple representation, called Rep-0, to illustrate the
analysis. In subsequent sections, we further re�ne and parametrize our represen-
tations, called Rep-1, Rep-2 and Rep-3. While these re�nements complicate
the analysis, they also lead to signi�cantly stronger results.

Representation Warmup To introduce the basic concept of representations, let us
start for simplicity with a secret binary vector s ∈ {0, 1}N with an even weight
wt1(s) ≡ 0 mod 2. We represent s as the sum of two vectors s(1), s(2) ∈ {0, 1}N
where s(1), s(2) both have half the weight wt1(s

(1)) = wt1(s
(2)) = wt1(s)

2 .
Now, every 1-coe�cient of s can either be presented as 1 + 0, i.e., a 1 in

s(1) and a 0 in s(2), or vice versa as 0 + 1. Every 0-coe�cient of s is uniquely
represent by 0 + 0, i.e., by a zero in both coe�cients of s(1), s(2).

As an example, for the weight-4 vector s = (1 1 1 1 0 0) we obtain the
following 6 =

(
4
2

)
representations

s = (1 1 0 0 0 0) + (0 0 1 1 0 0) = (1 0 1 0 0 0) + (0 1 0 1 0 0)

= (1 0 0 1 0 0) + (0 1 1 0 0 0) = (0 1 1 0 0 0) + (1 0 0 1 0 0)

= (0 1 0 1 0 0) + (1 0 1 0 0 0) = (0 0 1 1 0 0) + (1 1 0 0 0 0).

Rep-0 Let us de�ne simple representations, called Rep-0, for s ∈ {−3, . . . , 3}N .
Our representations are illustrated in Table 3. For instance, we represent a 3
in s as either 1 + 2 or 2 + 1, whereas a 2 is represented uniquely as 1 + 1. For
negative numbers we simply change sign, e.g. -1 is represented as either 0+(−1)
or (−1) + 0. If a coe�cient i has two representations, then we represent half of
its occurrences in s with either representation.

As an example, for s = (3 3 2 1 1 0 0), we obtain the 4 =
(
2
1

)
·
(
2
1

)
represen-

tations

s = (2 1 1 1 0 0 0) + (1 2 1 0 1 0 0) = (1 2 1 1 0 0 0) + (2 1 1 0 1 0 0)

= (2 1 1 0 1 0 0) + (1 2 1 1 0 0 0) = (1 2 1 0 1 0 0) + (2 1 1 1 0 0 0).

Counting Representations Let R denote the number of representations of
s ∈ {−3, . . . , 3}N . Let Ri denote the number of representations for entry i.

i Representations of i

−3 −2− 1 −1− 2
−2 −1− 1
−1 −1+ 0 0− 1
0 0+ 0
1 0+ 1 1+ 0
2 1+ 1
3 1+ 2 2+ 1

Table 3. Rep-0 representations of i ∈ {−3, . . . , 3}. Note the symmetry between i and
−i, allowing us to omit negative values in later versions of this table.

14 Timo Glaser and Alexander May

L
(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7 L

(3)
8

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

L
(1)
1 L

(1)
2

r(2)

r(1)

L
(0)
1

weight distribution

L
(3)
i :

452
512 0’s 30

512 ±1’s

L
(2)
i :

196
256 0’s 30

256 ±1’s

L
(1)
i :

70
128 0’s 28

128 ±1’s
1

128 ±2’s

L
(0)
i :

20
64 0’s 15

64 ±1’s
6
64 ±2’s 1

64 ±3’s

Fig. 1. LWE-Search tree in depth d = 3 with relative weights for B(3).

Then R =
∏3

i=−3 Ri. Since we only consider distributions that are symmetric
in 0, we obtain R−i = Ri. For i ∈ {−2, 0, 2} we have unique representations and
therefore R0 = R2 = R−2 = 1. For i ∈ {−3,−1, 1, 3} we have two representa-
tions with equal splits instead, i.e.,

R1 = R−1 =

(
wt1(s)
wt1(s)

2

)
, R3 = R−3 =

(
wt3(s)
wt3(s)

2

)
.

As a conclusion, using Eq. (1) the number R of Rep-0 representations is

R =

(
wt1(s)
wt1(s)

2

)2

·
(

wt3(s)
wt3(s)

2

)2

= Θ̃(22wt1(s)+2wt3(s)). (3)

5.1 Rep-0 Instantiation of LWE-Search

In a nutshell, LWE-Search enumerates candidates for the LWE secret s in a list

L
(0)
1 . The candidates for s are represented as sums of s

(1)
1 and s

(1)
2 , enumerated

in lists L
(1)
1 and L

(1)
2 , respectively, see Fig. 1 for an illustration. LWE-Search

constructs candidates recursively, i.e., on level j in the search tree of Fig. 1 we

construct all candidates s
(j)
i in list L

(j)
i as the sum of candidates s

(j+1)
2i−1 and s

(j+1)
2i

in lists L
(j+1)
2i−1 and L

(j+1)
2i . In the simpli�ed illustration of Fig. 1 we stopped the

recursion in depth d = 3, but in general we have to optimize d.

Weights In the root list L
(0)
1 we eventually enumerate the candidates for s. Recall

that s ∈ B(3)N and B(3) has by Eq. (2) probability distribution

(p−3, . . . , p3) =

(
1

64
,
6

64
,
15

64
,
20

64
,
15

64
,
6

64
,
1

64

)
.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 15

As shown in Section 4, in the root list L
(0)
1 , it su�ces to enumerate only vectors

s ∈ C(B(3)N) from the core set with weights p−3N, . . . , p3N . For notational

convenience let us de�ne relative (to N) weights ω
(j)
i := wti(s)

N for entry i on
level j of our LWE-search tree, see also Fig. 1. On the root level, we have

relative weights ω
(0)
i = pi. Since we only consider symmetric distributions, for

ease of exposition, we write ω
(j)
−i := ω

(j)
i on all levels j.

From Table 3 we deduce the relative weights on level j < d recursively as

ω
(j)
0 =

2ω
(j−1)
0 + 2ω

(j−1)
1

2
, ω

(j)
1 =

ω
(j−1)
1 + 2ω

(j−1)
2 + ω

(j−1)
3

2
,

ω
(j)
2 =

ω
(j−1)
3

2
, ω

(j)
3 = 0.

On level d, LWE-Search uses a classical Meet-in-the-Middle strategy (without
representations) that splits the weights evenly. Thus, we obtain

ω
(d)
1 =

ω
(d−1)
1

2
, ω

(d)
2 =

ω
(d−1)
2

2
,

ω
(d)
3 =

ω
(d−1)
3

2
, ω

(d)
0 = 1− 2(ω

(d)
1 + ω

(d)
2 + ω

(d)
3).

The values of all relative weights for B(3) on all levels are summarized in Fig. 1.

As an example, in both level-1 lists L
(1)
1 , L

(1)
2 all vectors s

(1)
i have

wt0(s
(1)
i) = 70

128N many 0-entries, wt1(s
(1)
i) = 28

128N many ±1-entries each,

wt2(s
(1)
i) = 1

128N many ±2-entries each, and no ±3-entries.

Search Spaces Now that we �xed the weight distributions on all levels of our
LWE-Search tree we can de�ne search spaces, i.e., the amount S(j) of vectors
on level j that satisfy our weight distributions. We obtain

S(j) =

(
N

ω
(j)
0 N , ω

(j)
1 N , ω

(j)
1 N , . . . , ω

(j)
3 N , ω

(j)
3 N

)
= Θ̃(2H(ω

(j)
0 ,ω

(j)
1 ,ω

(j)
1 ,...,ω

(j)
3 ,ω

(j)
3)N). (4)

Representations and Lists. Recall that our secret s has many representations as
the sum of two vectors. LWE-Search uses the representations to signi�cantly
reduce search spaces. More precisely, if on level j we have R(j) representations,
then we cut the search space by a random 1

R(j) -factor such that on expecta-
tion only a single representation remains. This search space reduction is the
representation technique's core idea.

From Eq. (3), we already know the amount of representations on level 1. Let
R(j) denote the amount of level-j representations, then R(1) := R, and Eq. (3)
easily generalizes to

R(j+1) = Θ̃(2(2ω
(j)
1 +2ω

(j)
3)N). (5)

16 Timo Glaser and Alexander May

Recall that in the root list L
(0)
1 we store candidate secret keys s, i.e.,

L
(0)
1 = {s ∈ C(B(3)) | A · s− t ∈ {−3, . . . , 3}N}.

At level 1 of the search tree, we have R(1) many representations of s. There-
fore, we have to cut the search space S(1) by an 1

R(1) -fraction. Let

r(1) := ⌊logq(R(1))⌋ = O
(N

logN

)
.

Let πr denote the projection on the last r coordinates. In LWE-Search we

guess er := πr(1)(e) in subexponential time O(7r
(1)

) = 2O(N
log N).

Let s
(1)
1 , s

(1)
2 be a representation of the secret key s. Then

As
(1)
1 + e = t−As

(1)
2 , which implies

πr(1)(As
(1)
1) + er = πr(1)(t−As

(1)
2). (6)

By the randomness of A, the left and right hand side of Eq. (6) takes random

values in Zr(1)

q . Thus, for every target value v ∈ Zr(1)

q any representation s1, s2

of s takes on both sides of Eq. (6) value v with probability q−r(1) . As a conse-

quence, we expect that R(1) · q−r(1) ≥ 1 representations take value v. For ease

of exposition, we choose v = 0r(1) in the following, but in a real implementation
one could randomize target values v. Hence, we de�ne level-1 lists

L
(1)
1 := {s(1)1 | πr(1)(As

(1)
1) = −er}, L

(1)
2 := {s(1)2 | πr(1)(t−As

(1)
2) = 0r(1)}.

On level 2 to d− 1, we algorithmically take the same approach as on level 1.
As an example, let us derive the level-2 list descriptions. On level 2, we have
R(2) representations, and thus cut the search space S(2) by an 1

R(2) -fraction. To

this end, de�ne r(2) := ⌊logq(R(2))⌋ (We generally assume that r(j) ≥ r(j−1),

this can be achieved by using r̃(j) := maxj′≤j{r(j
′)} instead). Let s

(2)
1 , s

(2)
2 and

s
(2)
3 , s

(2)
4 be representations of s

(1)
1 and s

(1)
2 , respectively. Then we obtain level-2

lists

L
(2)
1 := {s(2)1 | πr(2)(As

(2)
1) = 0r(2)}, L

(2)
2 := {s(2)2 | πr(2)(As

(2)
2 + er) = 0r(2)},

L
(2)
3 := {s(2)3 | πr(2)(t−As

(2)
3) = 0r(2)}, L

(2)
4 := {s(2)4 | πr(2)(As

(2)
4)) = 0r(2)}.

Eventually, all level-d lists are constructed in a standard Meet-in-the-Middle

manner by splitting each s
(d−1)
i in two N/2-dimensional vectors s

(d)
2i−1, s

(d)
2i .

Runtime Analysis. The level-d lists are constructed by a classical square-root
complexity Meet-in-the-Middle approach for a search space of size S(d−1). On
levels 1 ≤ j < d, we enumerate an 1

R(j) -fraction of the search space size S(j).
Overall, we obtain lists of sizes

L(d) =
√
S(d−1), L(j) =

S(j)

R(j)
for 1 ≤ j < d. (7)

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 17

d log T (0) log T (1) log T (2) log T (3) log T (4) logM
3 1.090N 1.103N .583N .510N - 1.045N
4 1.090N 1.103N .605N .405N .320N 1.045N

Table 4. Rep-0 complexity exponents for B(3)N using LWE-Search with depths
d = 3, 4. Bold exponents indicate the dominating term.

Since root list L
(0)
1 can be constructed on-the-�y and must not be stored, we

obtain a total memory consumption of M = max{L(j)}.
Let r(d) = 0. For constructing lists on level 1 ≤ j < d, we match two

neighboring lists L
(j+1)
2i−1 , L

(j+1)
2i of size L(j+1) on r(j) − r(j+1) coordinates into a

list L
(j)
i . Neglecting low order terms (e.g. for sorting), this can be done in time

T (j) = max

{
L(j+1),

(L(j+1))2

qr(j)−r(j+1)

}
. (8)

We then �lter out all s
(j)
i ∈ L

(j)
i that do not have the correct weight distri-

bution, resulting in list size L(j).

The root list L
(0)
1 results from approximately matching both level-1 lists of

size L(1) via Odlyzko's hash function on the remaining N −r(1) coordinates that
were previously unmatched. This can be done in time

T (0) = max

{
L(1),

(L(1))2

2N−r(1)

}
. (9)

We obtain as total runtime complexity

T = max{T (0), . . . , T (d−1)}. (10)

We analyzed LWE-Search in depths d = 3, 4. All runtime exponents are
given in Table 4. We observe that depth 3 is already su�cient, since depth 4
does not reduce the maximal exponent. The analysis for d = 3 is detailed in the
proof of the following theorem.

Theorem 1 (Rep-0). Under the MLWE Representation Heuristic the follow-
ing holds. Let (A, t) ∈ ZN×N

q ×ZN
q be an (M)LWE instance with q = Ω(N) and

secret keys s, e ∼ B(3)N , where N = nk for MLWE. Then LWE-Search in-
stantiated with Rep-0 representations �nds s (with constant probability) within
time O(21.103N).

Proof. The correctness of LWE-Search follows by the discussion above. It re-
mains to show that LWE-Search terminates in time O(21.103N).

18 Timo Glaser and Alexander May

We use the runtime formulas from Eqs. (8) and (9). Using Eqs. (7),(4) and
(5) for list size, search space size and representations, this results in

T (0) =
(L(1))2

2N−r(1)
= 2(2(H(1

128 ,
28
128 ,

70
128 ,

28
128 ,

1
128)−2 15

64−2 1
64)−1+o(1))N = O(21.090N),

T (1) =
(L(2))2

qr(1)−r(2)
= Θ̃(2(2H(30

256 ,
196
256 ,

30
256)−2 15

64−2 1
64−2 28

128)N) = O(21.103N),

T (2) =
(L(3))2

qr(2)−r(3)
= Θ̃(2(2H(30

256 ,
196
256 ,

30
256)/2−2 28

128)N) = O(20.583N),

T (3) = L(3) = Θ̃(2(H(30
256 ,

196
256 ,

30
256)/2)N) = O(20.51N).

Thus, due to (10), LWE-Search terminates in time max T (j) = O(21.103N).

6 More Representations

In this section, we enhance our representations to signi�cantly reduce the LWE-

Search runtime from Theorem 1. Our �rst re�ned representation Rep-1 can
be seen as an introduction to parametrization in the representation technique,
where we add additional ±1's to represent 0-entries as 1 + (−1) and (−1) + 1.

We then parametrize to the full extent by adding in additional ±2's and ±3's
inRep-2 andRep-3. The parameters used in Theorems 2 and 3 were found using
the method described in Appendix 8.

6.1 Rep-1 Representations

Our Rep-1 representations are illustrated in Table 5. We introduce a parameter
ε(j) ∈ [0, 1], 1 ≤ j < d for the additional number of ±1's on level j. I.e., if we

have ω
(j−1)
0 N many entries 0 on level j−1, we represent ε(j)N many as 1+(−1),

and ε(j)N many as (−1)+ 1. The remaining (ω
(j−1)
0 − 2ε(j))N 0-entries are still

represented as 0 + 0.

Recall that Rep-0 represented s = (3 3 2 1 1 0 0) as

s = (2 1 1 1 0 0 0) + (1 2 1 0 1 0 0) = (1 2 1 1 0 0 0) + (2 1 1 0 1 0 0)

= (2 1 1 0 1 0 0) + (1 2 1 1 0 0 0) = (1 2 1 0 1 0 0) + (2 1 1 1 0 0 0).

With Rep-1 and ε = 1
7 , we obtain the 8 =

(
2

1,1,0

)(
2
1

)(
2
1

)
representations

s = (2 1 1 1 0 1 −1) + (1 2 1 0 1 −1 1) = (1 2 1 1 0 1 −1) + (2 1 1 0 1 −1 1)

= (2 1 1 1 0 −1 1) + (1 2 1 0 1 1 −1) = (1 2 1 1 0 −1 1) + (2 1 1 0 1 1 −1)

= (2 1 1 0 1 1 −1) + (1 2 1 1 0 −1 1) = (1 2 1 0 1 1 −1) + (2 1 1 1 0 −1 1)

= (2 1 1 0 1 −1 1) + (1 2 1 1 0 1 −1) = (1 2 1 0 1 −1 1) + (2 1 1 1 0 1 −1).

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 19

i Representations of i

0 −1+ 1 0+ 0 1− 1
1 0+ 1 1+ 0
2 1+ 1
3 1+ 2 2+ 1

Table 5. Rep-1 representations of i ∈ {0, 1, 2, 3}, magenta-colored representations are
new.

Most formulas from Section 5 remain unchanged. We only increase the num-
ber of 0-representations

R(j)
0 =

(
ω

(j−1)
0 N

ε(j)N , ε(j)N , ·

)
at the cost of slightly increased search spaces S(j), re�ected by di�erent weights

ω
(j)
0 =

2ω
(j−1)
0 + 2ω

(j−1)
1 − 4ε(j)

2
, ω

(j)
1 =

ω
(j−1)
1 + 2ω

(j−1)
2 + ω

(j−1)
3 + 2ε(j)

2
.

Theorem 2 (Rep-1). Under the MLWE Representation Heuristic the follow-
ing holds. Let (A, t) ∈ ZN×N

q ×ZN
q be an (M)LWE instance with q = Ω(N) and

secret keys s, e ∼ B(3)N , where N = nk for MLWE. Then LWE-Search in-
stantiated with Rep-1 representations �nds s (with constant probability) within
time O(20.787N).

Proof. Analogous to the proof of Theorem 1, parameters are presented in Ta-
ble 6. The desired complexity O(20.787N) is achieved with tree depth d = 3.

Notice that the �in comparison to Rep-0� only slightly more advanced
Rep-1 representations lowered the exponent 1.103N from Theorem 1 already
signi�cantly down to 0.787N . In Section 6.2 we study way more advanced repre-
sentations that lower to even 0.388N (Rep-2) and 0.371N (Rep-3). The small
improvement from Rep-3 over Rep-2 however indicates that we are converg-
ing. We conjecture that even more complex representations would only provide
marginal improvements over Rep-3.

6.2 Rep-2, Rep-3 Representations

Our Rep-2 and Rep-3 representations are illustrated in Table 7. While our Rep-
1 representations only allowed for two more representations of 0, our Rep-2 and
eventually Rep-3 representations heavily increase the number of representations
(e.g. 7 representations for 0) for all elements (e.g. still 4 representations of 3).

20 Timo Glaser and Alexander May

Parametrization Note that we de�ne Rep-k such that for every 0 ≤ ℓ ≤ k the
parameters of Rep-ℓ are contained in Rep-k.

To express the amount of additionally added ±1,±2,±3, we de�ne param-

eters ε
(j)
10 , ε

(j)
20 , ε

(j)
21 , ε

(j)
22 , ε

(j)
30 , ε

(j)
31 , ε

(j)
32 , ε

(j)
33 ∈ [0, 1], where ε

(j)
10 = ε(j) from Rep-1

and ε
(j)
30 , ε

(j)
31 , ε

(j)
32 , ε

(j)
33 are Rep-3 parameters only.

These parameters are to be understood as follows. Let s
(j−1)
i be a level-

(j − 1) vector, represented by s
(j)
2i−1, s

(j)
2i . On level j, we replace 2ε

(j)
ik N of the

Rep-0 representations of k with ε
(j)
ik N representations i + (k − i) and ε

(j)
ik N

representations (k − i) + i in s
(j)
2i−1, s

(j)
2i .

To unify notation, we always choose i such that i ≥ k − i (e.g. we write

ε
(j)
22 instead of ε

(j)
02). In summary, ε

(j)
ik is a parameter for Rep-ℓ if and only if

max{0, k+1
2 } < i ≤ ℓ.

Example Let us have a look at s(j−1) = (2 2 2 2 2 2). Let ε
(j)
22 = ε

(j)
32 = 1

6 and

ε
(j)
ik = 0 for all other possible ik. By de�nition of ε

(j)
ik , we represent exactly one

coe�cient of s as 2 = 3− 1, 2 = 2 + 0, 2 = 0 + 2, 2 = −1 + 3 each. The two
remaining coe�cients are represented as 2 = 1+1, i.e., the Rep-0 representation.

This leads to
(

6
1,1,1,1,2

)
= 360 representations, where for comparison with

Rep-1 we only had the unique representation s = (1 1 1 1 1 1) + (1 1 1 1 1 1).

For �xed ε
(j)
ik , we calculate the new formulas for R(j)

i as

R(j)
0 =

(
ω
(j−1)
0 N

ε
(j)
10 N , ε

(j)
10 N , ε

(j)
20 N , ε

(j)
20 N , ε

(j)
30 N , ε

(j)
30 N , ·

)
,

R(j)
1 =

(
ω
(j−1)
1 N

ε
(j)
21 N , ε

(j)
21 N , ε

(j)
31 N , ε

(j)
31 N ,

ω
(j−1)
1 −2ε

(j)
21 −2ε

(j)
31

2 N ,
ω

(j−1)
1 −2ε

(j)
21 −2ε

(j)
31

2 N

)
,

R(j)
2 =

(
ω
(j−1)
2 N

ε
(j)
22 N , ε

(j)
22 N , ε

(j)
32 N , ε

(j)
32 N , ·

)
,

R(j)
3 =

(
ω
(j−1)
3 N

ε
(j)
33 N , ε

(j)
33 N ,

ω
(j−1)
3 −2ε

(j)
33

2 N ,
ω

(j−1)
3 −2ε

(j)
33

2 N

)

d j ε(j) log T (j) logL(j)

2
0 - .810N 0
1 .036 .813N .810N
2 - .813N .813N

3

0 - .718N 0
1 .073 .787N .718N
2 .028 .655N .436N
3 - .655N .655N

d j ε(j) log T (j) logL(j)

4

0 - .718N 0
1 .073 .787N .718N
2 .028 .503N .436N
3 .503N .503N
4 - .433N .433N

Table 6. Rep-1 complexity exponents for B(3)N using LWE-Search with depths
d = 2, 3, 4 and optimized ε(j). Bold exponents indicate the dominating term.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 21

i Representations of i

0 −3+ 3 −2+ 2 −1+ 1 0+ 0 1− 1 2− 2 3− 3
1 −2+ 3 −1+ 2 0+ 1 1+ 0 2− 1 3− 2
2 −1+ 3 0+ 2 1+ 1 2+ 0 3− 1
3 0+ 3 1+ 2 2+ 1 3+ 0

Table 7. Representations of i ∈ {0, 1, 2, 3} under Rep-2 and Rep-3; magenta-colored
representations are added with Rep-1; orange-colored representations are added with
Rep-2; blue-colored representations are added with Rep-3.

and for ω
(j)
i as

ω
(j)
1 =

ω
(j−1)
1 + 2ω

(j−1)
2 + ω

(j−1)
3 + 2ε

(j)
10 − 4ε

(j)
22 − 2ε

(j)
31 − 2ε

(j)
32 − 2ε

(j)
33

2
,

ω
(j)
2 =

ω
(j−1)
3 + 2ε

(j)
20 + 2ε

(j)
21 + 2ε

(j)
22 + 2ε

(j)
31 − 2ε

(j)
33

2
,

ω
(j)
3 =

2ε
(j)
30 + 2ε

(j)
31 + 2ε

(j)
32 + 2ε

(j)
33

2
,

ω
(j)
0 =

2ω
(j−1)
0 + 2ω

(j−1)
1 − 4ε

(j)
10 − 4ε

(j)
20 − 4ε

(j)
21 + 4ε

(j)
22 − 4ε

(j)
30 − 4ε

(j)
31 + 4ε

(j)
33

2
.

For a consistency check, verify that

ω
(j)
0 + 2ω

(j)
1 + 2ω

(j)
2 + 2ω

(j)
3 = ω

(j−1)
0 + 2ω

(j−1)
1 + 2ω

(j−1)
2 + 2ω

(j−1)
3 .

Inductively, by de�nition of level 0, we obtain

ω
(j)
0 + 2ω

(j)
1 + 2ω

(j)
2 + 2ω

(j)
3 = ω

(0)
0 + 2ω

(0)
1 + 2ω

(0)
2 + 2ω

(0)
3 =

3∑
−3

pi = 1.

Optimization of parameters leads to our following main result.

Theorem 3 (main result). Under the MLWE Representation Heuristic the
following holds. Let (A, t) ∈ ZN×N

q × ZN
q be an (M)LWE instance with q =

Ω(N) and secret keys s, e ∼ B(3)N , where N = nk for MLWE. Then LWE-

Search �nds s (with constant probability) within time O(20.388N) (for Rep-2),
respectively O(20.371N) (for Rep-3).

Proof. Analogous to the proof of Theorem 1. Optimization parameters for re-
spective tree depths can be found in Table 8.

7 Other Distributions � Ternary, B(2), and Uniform

We apply our in previous sections developed representation technique to other
distributions of cryptographic interest. Throughout this section, we only focus

22 Timo Glaser and Alexander May

on the best results that we achieve with Rep-3 representations. Every parameter
set was found by using the method described in Appendix 8.

First, we analyze ternary keys s ∈ {−1, 0, 1}N of varying weight, as used
e.g. in the cryptosystems NTRU [CDH+19,BCLvV19], BLISS [DDLL13], and
GLP [GLP12]. We slightly improve over [May21] for large weight keys.

Second, we study the Centered Binomial distribution B(η) for η = 1, 2, 3.
Notice that B(3)nk is used in Kyber with nk = 512, whereas B(2)nk is used in
Kyber with larger security parameters nk = 768 and nk = 1024.

Eventually, we study Uniform distributions in the range [−η, . . . , η] for
η = 1, 2, 3. Naturally, uniformly distributed keys are widely used in cryptogra-
phy, a prominent example being Dilithium with secret keys uniformly sampled
from {−2, . . . , 2}nk, where nk = 1024 or nk = 2048.

7.1 Ternary Keys � Featuring NTRU, BLISS and GLP

We de�ne a weighted ternary distribution as follows.

De�nition 3. Let 0 ≤ ω ≤ 1. We denote the weighted ternary distribution

T (ω) := (p−1, p0, p1) =
(ω
2
, 1− ω,

ω

2

)
.

Some NTRU versions [HPS98] sample keys from the core set C(T (ω)), see
De�nition 1, i.e., with �xed expected weights. Other NTRU versions [CDH+19]
sample directly from T (ω)N . Our new techniques also apply to the latter prob-
abilistic versions.

Rep. j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 ε

(j)
30 ε

(j)
31 ε

(j)
32 ε

(j)
33 log T (j) logL(j)

Rep-2

0 - .316N 0
1 .075 .018 .032 .023 .388N .316N
2 .061 .004 .014 .019 .388N .350N
3 .053 .001 .004 .007 .388N .366N
4 .028 .001 .002 .388N .382N
5 .007 .388N .388N
6 - .382N .382N

Rep-3

0 - .297N 0
1 .072 .011 .024 .020 .003 .003 .001 .371N .297N
2 .078 .004 .016 .015 .001 .001 .371N .316N
3 .070 .001 .007 .007 .371N .329N
4 .046 .002 .002 .371N .348N
5 .023 .371N .360N
6 .003 .356N .356N
7 - .316N .316N

Table 8. Rep-2 and Rep-3 complexity exponents for B(3)N using LWE-Search

with optimized depths d = 6 (Rep-2) and d = 7 (Rep-3), and optimized ε
(j)
ik . Bold

exponents indicate the dominating term.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 23

ω 0.3 0.375 0.441
d log T logM d log T logM d log T logM

[May21] 4 .295N .294N 4 .318N .316N 4 .334N .333N
Ours 4 .295N .294N 5 .315N .312N 6 .326N .320N

ω 0.5 0.62 0.667
d log T logM d log T logM d log T logM

[May21] 4 .348N .346N 4 .371N .371N 4 .379N .379N
Ours 5 .337N .337N 6 .342N .336N 6 .345N .338N

Table 9. Ternary Key Results for di�erent weights ω, and comparison with [May21].

Our ternary key results are summarized in Table 9. More detailed optimiza-
tion parameters are provided in Table 12, Appendix A. In particular, we see that
for ternary keys Rep-2 is su�cient, and Rep-3 provides no further bene�t.

Whereas [May21] analyzed only depths d ≤ 4, we obtain slightly better run-
time exponents for increasing weights ω ≥ 0.375 in depths 5 and 6. In particular,
we are interested in weights ω = 1

2 ,
2
3 , which denote B(1) and U(1), respectively.

7.2 B(2) and B(3) � Featuring Kyber-512 and Kyber-768,1024

Our results for B(η), η = 1, 2, 3 are illustrated in Table 10. Our full optimization
parameters can be found in Table 12, Appendix A.

We �nd it remarkable that despite a signi�cant growth in entropy from B(1)
with exponent 1.5N to B(3) with exponent 2.3N , the actual key security against
LWE-Search with Rep-3 increases only slightly with exponent 0.034N . It ap-
pears that, in the case of Centered Binomial distributions, the number of repre-
sentations grows much faster than the search space sizes. Consequently, whereas
we obtain a ∼ S 1

4 algorithm for B(1)N , for B(3)N , we obtain an algorithm with

approximate runtime S 1
6 , i.e., we achieve the 6th root of the search space.

7.3 Uniform Distribution � Featuring Dilithium-1024,2048

We de�ne the Uniform distribution as follows.

De�nition 4. Let η ∈ N. We denote by U(η) the Uniform distribution having
for all i = −η, . . . , η constant probability pi =

1
2η+1 .

B(η) U(η)
η d log T logM logS logS T d log T logM logS logS T
1 5 .337N .337N 1.500N .225 6 .345N .338N 1.585N .218
2 7 .357N .357N 2.031N .176 8 .378N .372N 2.322N .163
3 7 .371N .360N 2.334N .159 6 .493N .481N 2.808N .176

Table 10. Results for Centered Binomial distributions B(η) (left) and Uniform distri-
bution D(η) (right) for η = 1, 2, 3.

24 Timo Glaser and Alexander May

Notice that U(1) = T (23). Two Dilithium parameter sets use U(2)nk for
nk = 1024 and nk = 2048. Our U(η) results for η = 1, 2, 3 are provided in
Table 10. Our optimization parameters can be found in Table 12, Appendix A.

The complexity exponent 0.378N for U(2) is of a similar size than 0.371N
for B(3). But since Kyber uses signi�cantly smaller key lengths N = nk in
comparison to Dilithium, our LWE-Search algorithm can be considered much
more e�ective for Kyber keys.

8 Parameter Optimization and Implementation

In this section, we discuss our practical e�orts, which include our parameter
optimization method as well as our implementation of the algorithm. Either
program can be accessed under https://github.com/timogcgn/HTELWEK/ and
contains a readme with more in-depth description of its respective program.

8.1 Parameter Search

Let us �rst discuss our method of �nding our (near)-optimal parameters.

Hill Climbing Our goal was to �nd parameters which would minimize the run-

time T = max{T (j)}, a function that is continuous but not di�erentiable in ε
(j)
ik .

Therefore, applying a regular gradient descent search to �nd the optimal param-
eters is not possible. Instead, we opted to use a variant of the Hill Climbing
(HC) method:

For some parameter set ε := (ε
(j)
ik), consider the set of ε' neighbors

Γ (ε) := {(ε(j)ik

′
) | ε(j)ik

′
= ε

(j)
ik or |ε(j)ik

′
− ε

(j)
ik | = γ for all ik, j}

for some �xed γ, say 0.001. Γ (ε) contains the parameter sets ε′ where each
singular parameter di�ers by either ±γ or not at all from their counterpart in ε.

Let ε0 := (0)8(d−1). With HC, instead of trying to �nd the steepest descent
by using the derivative of T , we instead only look for the next best parameter
set in Γ (ε) greedily, i.e., given εi, the next parameter set is

εi+1 = arg min
ε′∈Γ (εi)

T .

Since we only consider ε
(j)
ik that are multiples of γ, this method guarantees to

�nd a proximate local minimum after a �nite amount of steps.

Partial Hill Climbing It is easy to see that, ignoring invalid neighboring param-

eter sets (for example when ε
(j)
ik < 0), the size of Γ (ε) is 38(d−1), as there are 8

parameters on a single level and every level from 1 to d−1 is parametrized. Even
for moderate tree depths d, this is a search space that is impractical to traverse
over multiple iterations, so we need a re�ned method that trades o� runtime for
result optimality, and then iterate this method multiple times.

https://orcid.org/0000-0001-5965-5675
https://github.com/timogcgn/HTELWEK/

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 25

The new idea is simple: Instead of optimizing all 8(d−1) parameters at once,
�x, say, (8−t) parameters per level and only optimize the remaining t parameters
via Hill Climbing. Obviously, this implies a trade o� between runtime and op-
timality of the resulting parameter set, where the parameters tuples considered
per optimization step are now upper bounded by 3t(d−1).

The parameters we present in Appendix A are the result of 100 iterations of
this method per t ∈ {2, 3, 4}, i.e. 300 iterations overall (with t randomly drawn
parameters per level per iteration). Additional iterations did not improve the
runtime, so we assume that the parameters that we found are in close enough
proximity to the optimal parameter set.

8.2 Implementation

In this section, we discuss the validity of the (M)LWE Representation Heuristic
via an implementation of our algorithm. We would like to stress that our goal
is not to show runtime superiority over the usual Meet-in-the-Middle algorithm
(which follows from our runtime analysis), but to test our heuristic. Especially,
we have to show that we obtain list sizes which do not di�er too much from their
expectation, which eventually guarantees that the �nal list contains solution with
good probability.

We attack an LWE instance over B(2) and N = 32, q = 3329, a scaled-down

version of Kyber. Aside from ε
(1)
10 = 1

16 , every optimization parameter we found
using our optimization tool from Section 8 is equal to 0. We use a search tree of
depth d = 3. For a detailed description of each tree level, consider Table 11.

j ω
(j)
0 N ω

(j)
1 N ω

(j)
2 N S(j) R(j) r(j) E[L(j)] L(j)

0 12 8 2 ∼ 8.4 · 1016 1 − 1 0.65
1 16 8 0 ∼ 7.7 · 1013 ∼ 1.5 · 108 2 698045.2 590153
2 24 4 0 ∼ 7.4 · 109 4900 1 221171.8 221187
3 28 2 0 215760 36 0 215760 215760

Table 11. Level description and resulting list sizes for parameters d = 3, N = 32,
q = 3329,P = B(2).

We removed the enumeration of r(1) coordinates of e, and the permutation of
s to an element from the core set C(B(2)) in our algorithm, since these procedures
just a�ect the runtime, but not the success probability.

We let our algorithm run for 20 iterations. In 13 of those iterations, we
successfully recovered the secret s from an element in L(0). In the remaing 7
iterations L(0) was empty.

Table 11 details the resulting average list sizes L(j) of these 20 iterations.
Level 3 achieves its expectation, since we construct the list exhaustively, but
level 2 also achieves its expectation. On level 1 we only get a 1

7 -fraction loss, and
on level 0 we obtain a 1

3 -fraction loss. Therefore, we still have success probability

26 Timo Glaser and Alexander May

2
3 showing that on expectation we have to run our algorithm only 3

2 times, until
we succeed to recover an LWE key. This implies the validity of our heuristic.

References

BBSS20. Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen.
Improved classical and quantum algorithms for subset-sum. In Shiho Mo-
riai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 633�666. Springer, Heidelberg, December 2020.

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic
algorithms for hard knapsacks. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 364�385. Springer, Heidelberg,
May 2011.

BCLvV19. Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU Prime: Round 2 Speci�cation. 2019.

BDK+18. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
353�367. IEEE, 2018.

BGV14. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1�36, 2014.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves in-
formation set decoding. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 520�536. Springer,
Heidelberg, April 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. E�cient fully homomorphic
encryption from (standard) lwe. SIAM Journal on computing, 43(2):831�
871, 2014.

CDH+19. Cong Chen, Oussama Danba, Je�rey Ho�stein, Andreas Hülsing, Joost
Rijneveld, John M Schanck, Peter Schwabe, William Whyte, and Zhenfei
Zhang. NTRU Algorithm Speci�cations And Supporting Documentation.
Brown University and Onboard security company, Wilmington USA, 2019.

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40�56.
Springer, Heidelberg, August 2013.

DKSRV18. Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-lwr based key exchange, cpa-secure en-
cryption and cca-secure kem. In International Conference on Cryptology
in Africa, pages 282�305. Springer, 2018.

DRX17. Srinivas Devadas, Ling Ren, and Hanshen Xiao. On iterative collision
search for lpn and subset sum. In Theory of Cryptography Conference,
pages 729�746. Springer, 2017.

EMVW22. Andre Esser, Alexander May, Javier Verbel, and Weiqiang Wen. Partial
key exposure attacks on bike, rainbow and ntru. In CRYPTO 2022, Lecture
Notes in Computer Science. Springer, 2022.

https://orcid.org/0000-0001-5965-5675

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 27

EMZ22. Andre Esser, Alexander May, and Floyd Zweydinger. Mceliece needs a
break - solving mceliece-1284 and quasi-cyclic-2918 with modern ISD. In
EUROCRYPT (3), volume 13277 of Lecture Notes in Computer Science,
pages 433�457. Springer, 2022.

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prou� and Patrick Schaumont, editors, CHES 2012, volume
7428 of LNCS, pages 530�547. Springer, Heidelberg, September 2012.

HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for
hard knapsacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 235�256. Springer, Heidelberg, May / June 2010.

HPS98. Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-
based public key cryptosystem. In Third Algorithmic Number Theory Sym-
posium (ANTS), volume 1423 of LNCS, pages 267�288. Springer, Heidel-
berg, June 1998.

May21. Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
701�731, Virtual Event, August 2021. Springer, Heidelberg.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 107�124. Springer, Hei-
delberg, December 2011.

MU17. Michael Mitzenmacher and Eli Upfal. Probability and computing: Ran-
domization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

Reg05. Oded Regev. On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC '05, page 84�93, New York,
NY, USA, 2005. Association for Computing Machinery.

SO97. Joseph H Silverman and A Odlyzko. A meet-in-the-middle attack on an
ntru private key. preprint, 1997.

Wat87. William CWaterhouse. How often do determinants over �nite �elds vanish?
Discrete Mathematics, 65(1):103�104, 1987.

28 Timo Glaser and Alexander May

A Full Parameter Sets: Ternary, Binomial, and Uniform

P j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 log T (j) logL(j)

T (0.3)

0 - .239N 0
1 .050 .001 .295N .239N
2 .026 .295N .283N
3 .006 .294N .294N
4 - .288N .288N

T (0.375)

0 - .251N 0
1 .052 .001 .003 .313N .251N
2 .031 .001 .001 .315N .299N
3 .012 .315N .312N
4 .001 .275N .275N
5 - .216N .216N

T (0.441)

0 - .254N 0
1 .056 .001 .005 .325N .254N
2 .042 .001 .001 .326N .298N
3 .019 .326N .320N
4 .002 .316N .313N
5 .220N .220N
6 - .155N .155N

T (0.5)

0 - .268N 0
1 .049 .001 .009 .337N .268N
2 .040 .001 .002 .002 .337N .311N
3 .017 .001 .001 .337N .337N
4 .002 .333N .333N
5 - .273N .273N

T (0.62)

0 - .250N 0
1 .063 .001 .011 .341N .250N
2 .061 .001 .003 .002 .342N .290N
3 .036 .001 .001 .342N .324N
4 .015 .342N .336N
5 .001 .313N .313N
6 - .249N .249N

T (0.667)

0 - .258N 0
1 .056 .001 .013 .345N .258N
2 .060 .001 .004 .002 .345N .294N
3 .038 .001 .001 .345N .325N
4 .016 .345N .338N
5 .001 .321N .321N
6 - .257N .257N

P j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 ε

(j)
30 ε

(j)
31 ε

(j)
32 ε

(j)
33 log T (j) logL(j)

B(1)

0 - .268N 0
1 .049 .001 .009 .337N .268N
2 .040 .001 .002 .002 .337N .311N
3 .017 .001 .001 .337N .337N
4 .002 .333N .333N
5 - .273N .273N

B(2)

0 - .264N 0
1 .076 .007 .022 .014 .001 .357N .264N
2 .084 .003 .010 .009 .357N .289N
3 .061 .001 .004 .004 .357N .315N
4 .038 .001 .001 .357N .340N
5 .015 .357N .351N
6 .002 .316N .316N
7 - .265N .265N

B(3)

0 - .297N 0
1 .072 .011 .024 .020 .003 .003 .001 .371N .297N
2 .078 .004 .016 .015 .001 .001 .371N .316N
3 .070 .001 .007 .007 .371N .329N
4 .046 .002 .002 .371N .348N
5 .023 .371N .360N
6 .003 .356N .356N
7 - .316N .316N

U(1)

0 - .258N 0
1 .056 .001 .013 .345N .258N
2 .060 .001 .004 .002 .345N .294N
3 .038 .001 .001 .345N .325N
4 .016 .345N .338N
5 .001 .321N .321N
6 - .257N .257N

U(2)

0 - .308N 0
1 .046 .014 .029 .040 .001 .005 .010 .377N .308N
2 .072 .007 .024 .020 .001 .002 .001 .378N .322N
3 .071 .003 .014 .012 .378N .331N
4 .051 .001 .005 .006 .378N .351N
5 .031 .001 .002 .375N .370N
6 .010 .378N .372N
7 .001 .307N .307N
8 - .244N .244N

U(3)

0 - .451N 0
1 .030 .018 .025 .022 .006 .011 .013 .028 .493N .451N
2 .056 .007 .025 .027 .001 .001 .002 .492N .475N
3 .048 .001 .007 .012 .493N .481N
4 .023 .001 .001 .492N .476N
5 .004 .449N .449N
6 - .423N .423N

Table 12. Parameter sets for Ternary distributions (left, Rep-2) and Centered Bino-
mial and Uniform distributions (right, Rep-3).

https://orcid.org/0000-0001-5965-5675

	How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium

