
POST-QUANTUM SIGNATURE FROM SUBSET PRODUCT WITH ERRORS

TREY LI

ABSTRACT. We propose a new identification scheme and a new signature scheme from the
multiple modular subset product with errors problem; as well as a new identification scheme
and a new signature scheme from the multiple modular subset sum with errors problem.

1. INTRODUCTION

In [Li22e] and [Li22f] we have proposed a key exchange scheme and a public key cryp-
tosystem from different settings of the multiple modular subset product with errors problem
(M-MSPE), which are conjectured to be quantum hard.

In this paper we propose a post-quantum signature scheme from another setting of M-
MSPE. We first construct an analogue of the Schnorr identification scheme using M-MSPE,
then use the Fiat-Shamir transformation to transform it into a signature scheme.

We then give simplified versions of the schemes based on the multiple modular subset
sum with errors problem (M-MSSE). A special case of M-MSSE is the learning parity with
noise problem (LPN), which is M-MSSE with the modulus q = 2.

2. HARD PROBLEM

The general version of M-MSPE is the multiple modular unique factorization domain
subset product with errors problem (M-MUSPE) [Li22d], which is defined over unique fac-
torization domains (UFD). M-MSPE is the concrete M-MUSPE with the UFD the ring Z of
rational integers.

In [Li22e] and [Li22f] we used different settings of M-MSPE to construct key exchange
scheme and public key cryptosystem. We call them M-MSPEKE and M-MSPEPKC respec-
tively. The difference between M-MSPEKE and M-MSPEPKC is that in M-MSPEKE all the
error primes are sampled from the whole error set L; while in M-MSPEPKC the error primes
are sampled from either the first or the second half of L according to the message bit. The
common parts are that both M-MSPEKE and M-MSPEPKC use two sets of primes, P and L,
for the bases and errors respectively; that both give out n+1 MSPE instances; and that both
ask for binary solutions x ∈ {0,1}n.

In this paper, we use the M-MSPE in [Li22e, Section 2] with the following changes: (1)
both the bases and errors are sampled from Z×

q rather than from integers factored over
two sets of primes P and L respectively; (2) the modulus q is not required to be within
[(n2n)2n+1, (n2n)n2/8] but can be much smaller such as q ≈ 2n or even smaller; (3) the solution
x is not required to be in {0,1}n but Zn

q−1; also (4) we use ≥ 2n MSPE instances to form an
M-MSPE so that the solution x is unique with overwhelming probability.
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Note that the corresponding settings of (1) and (2) in both [Li22e] and [Li22f] were due to
the needs of decoding in the key exchange and the public key cryptosystem. Now since we
do not need decoding in our identification scheme nor signature scheme, we do not need P
nor L, nor a large q.
Setup

Let n ∈N and let q be a prime.
Let Ox with respect to some x = (x1, . . . , xn) ∈Zn

q−1 be an oracle which samples a1, . . . ,an, e ←
Z×

q , computes X =∏n
i=1 axi

i · e (mod q), and outputs the instance (a1, . . . ,an, X ).
Problem

M-MSPE is given access to Ox, find x.1

3. IDEA

An identification scheme involves two parties, the prover and the verifier. Both of them
have access to the same public key. The prover wants to convince the verifier that she owns
the corresponding private key of the public key. They interact as the following. The prover
first sends a commitment to the verifier; the verifier then sends a challenge to the prover;
the prover then sends a response to the verifier; in the end the verifier accepts or rejects the
prover’s claim about her possession of the secret key.

To see the idea of our scheme, let us review the classical Schnorr identification scheme. It
is constructed from the discrete logarithm problem (DLP).

Let G = 〈g〉 be a DLP group of order q generated by g ∈ G. The prover’s secret key is a
random element s ←Zq; the public key is h = gs.

(1) The prover samples x ←Zq and sends t = gx to the verifier as the commitment;
(2) The verifier samples c ←Zq and sends it to the prover as the challenge;
(3) The prover computes y= x− cs (mod q) and sends it to the verifier as the response;
(4) The verifier accepts if gyhc = t or rejects if gyhc ̸= t.

Using the Fiat-Shamir transformation, the Schnorr identification scheme is transformed
into a signature.

Let a be a message. The prover now acts as the signer. Her private and public keys
remain the same. The signing is the following.

Sign(sk,a) :
(1) Sample x ←Zq and compute t = gx;
(2) Compute c = H(t,a);
(3) Compute y= x− cs (mod q);
(4) Output (y, c) as the signature.

The verification is the following.

Verify(pk,a, y, c) :
(1) Compute t′ = gyhc;
(2) Compute c′ = H(t′,a);
(3) Accept if c′ = c or reject if c′ ̸= c.

The ideas of our identification scheme and signature are to replace DLP by M-MSPE.

1A variation of the problem is to use different moduli q in different MSPE instants.
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4. IDENTIFICATION SCHEME

Let n ∈ N, m ≥ 2n, and q be a prime. The prover’s private key is (s,u) ← Zn
q−1 × (Z×

q )m.
Her public key is (M,S), where M = {ai, j}m×n is a base matrix, and S = (S1, . . . ,Sm) is an
M-MSPE product sequence with Si =

(∏n
j=1 as j

i, j

)
·ui (mod q) for i ∈ [m].

(1) The prover samples (x, e)←Zn
q−1×(Z×

q )m; computes A = (A1, . . . , Am) with A i =
(∏n

j=1 ax j
i, j

)
·

e i (mod q) for i ∈ [m]; and sends A to the verifier as the commitment;
(2) The verifier samples c ←Zq−1 and sends it to the prover as the challenge;
(3) The prover computes y = x− cs = (x1 − cs1, . . . , xn − csn) (mod q− 1) and v = e/uc =

(e1/uc
1, . . . , em/uc

m) (mod q), and sends (y,v) to the verifier as the response;
(4) The verifier computes B = (B1, . . . ,Bm) with Bi = ∏n

i=1 ayj
i, j (mod q) for i ∈ [m]; com-

putes A′ = B ·Sc · v = (B1 ·Sc
1 · v1, . . . ,Bm ·Sc

m · vm) (mod q); and accepts if A′ = A or
rejects if A′ ̸= A.

5. CORRECTNESS

Correctness is about whether the verification succeeds when every party in the scheme is
honest.

THEOREM 1. If every party in the identification scheme is honest then A′ = A.

Proof. For each i ∈ [m], we have

A′
i = Bi ·Sc

i ·vi (mod q)

=
(

n∏
j=1

ayj
i, j

)
·
((

n∏
j=1

as j
i, j

)
·ui

)c

· e i

uc
i

(mod q)

=
(

n∏
j=1

ayj+cs j
i, j

)
·uc

i ·
e i

uc
i

(mod q)

=
(

n∏
j=1

ax j
i, j

)
· e i (mod q)

= A i.

□

6. SECURITY OF HONEST-VERIFIER ZERO KNOWLEDGE

To prove that the execution of the identification scheme does not leak information about
the private key (x,u), we want to prove the existence of a simulator that simulates the
transcript distribution.

THEOREM 2. There exists a probabilistic polynomial time simulator S that simulates the
transcript distribution (t, c, y,v) := (Mxe, c, x− cs, e/uc).

Proof. S samples c′, y′,v′ ←Zq−1 and t′ ← M y′ · (Msu)c′ · v′ (mod q), and outputs (t′, c′, y′,v′).
It is not hard to see that this is the same distribution as the real transcript distribution. □
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7. SECURITY AGAINST IMPERSONATION

The security against impersonation is about the nonexistence of adversaries who do not
have the private key (s,u) but still convince the verifier to accept.

We shall assume that the adversary is given the public key pk and can eavesdrop previous
executions of the protocol for the same private key sk. Let osk be the oracle that each
time invokes a fresh execution of the protocol and returns the full transcript (t, c, y) of the
execution. Then we assume that the adversary is given pk and osk.

An identification scheme is said to be secure against impersonation if for all probabilistic
polynomial time adversaries A, there is a negligible function µ such that the probability
that A (given pk and osk) convinces the verifier is ≤µ.

THEOREM 3. If M-MSPE is hard, then the identification scheme is secure against imper-
sonation.

Proof. We use the generic proving routine illustrated in [KL14, p.457, 2nd edition], with the
only difference that we need the uniqueness of solution of M-MSPE, while in [KL14] the
DLP naturally has a unique solution.

Let A be any probabilistic polynomial time adversary, which is given pk and osk. Define
an M-MSPE solver B as the following. B takes as input M,S and Z×

q . It runs A(pk) =
A(M,S). When A outputs A, B chooses a uniform c1 ← Zq−1 as the challenge and gives it
to A; A responses with (y(1),v(1)). B then runs A(pk) a second time with c1 replaced by an
independent c2 ←Zq−1; A responses with (y(2),v(2)). If(

n∏
i=1

a
y(1)

j
i, j

)
·Sc1

i ·v(1)
i (mod q)= A i

and (
n∏

i=1
a

y(2)
j

i, j

)
·Sc2

i ·v(2)
i (mod q)= A i

for all i ∈ [m] and that

c1 ̸= c2

then B outputs

(y(1) − y(2))/(c1 − c2) (mod q−1).

Let ω be the randomness during the execution. Define V (ω, c)= 1 if and only if the target
M-MSPE (M,S) has a unique solution and that A correctly responds to challenge c when
randomness ω is used in the rest of the execution. For any fixed ω, define δω :=Prc[V (ω, c)=
1]; with ω fixed, this is the probability over c that A responds correctly.

Denote δ(n) as the probability that A succeeds. We have

δ(n)= Pr
ω,c

[V (ω, c)= 1]=∑
ω

Pr[ω] ·δω.

Again, from [Li22d] we have that the M-MSPE has a unique solution with overwhelming
probability P. Suppose that this is the case, then B successfully solves the M-MSPE (M,S)
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whenever A succeeds twice and c1 ̸= c2. We therefore have

Pr[B succeeds]=P · Pr
ω,c1,c2

[V (ω, c1)∧V (ω, c2)∧ c1 ̸= c2]

≥P ·
(

Pr
ω,c1,c2

[V (ω, c1)∧V (ω, c2)]− Pr
ω,c1,c2

[c1 = c2]
)

=P ·
(∑
ω

Pr[ω] · (δω)2 −1/(q−1)
)

≥P ·
(
(
∑
ω

Pr[ω] ·δω)2 −1/(q−1)
)

=P · (δ(n)2 −1/(q−1)
)
,

where the second-to-last step uses Jensen’s inequality.
Notice that if M-MSPE is hard then Pr[B succeeds] is negligible. Also P is overwhelm-

ing and 1/(q − 1) is negligible. Hence δ(n) is negligible. I.e., A succeeds with negligible
probability and thus the scheme is secure. □

8. SIGNATURE

Let n ∈N, m ≥ 2n, and q be a prime. The Fiat-Shamir transformation turns our identifi-
cation scheme into the following signature.

KeyGen(n,m, q):
• Sample M = {ai, j}m×n ← (Z×

q )m×n;
• Sample (s,u)←Zn

q−1 × (Z×
q )m;

• Compute S = (S1, . . . ,Sm) with Si =
(∏n

j=1 as j
i, j

)
·ui (mod q) for i ∈ [m];

• Output (sk, pk) with sk := (s,u), pk := (M,S).

Sign(sk,a):
• Sample (x, e)←Zn

q−1× (Z×
q )m and compute A = (A1, . . . , Am) with A i =

(∏n
j=1 ax j

i, j

)
·

e i (mod q) for i ∈ [m];
• Compute c = H(A,a), where H is a cryptographic hash function;
• Compute y= x− cs = (x1 − cs1, . . . , xn − csn) (mod q−1) and v = e/uc = (e1/uc

1, . . . ,
em/uc

m) (mod q);
• Output (y,v, c) as the signature.

Verify(a, y,v, c, pk):
• Compute B = (B1, . . . ,Bm) with Bi =∏n

i=1 ayj
i, j for i ∈ [m];

• Compute A′ = B ·Sc ·v = (B1 ·Sc
1 ·v1, . . . ,Bm ·Sc

m ·vm) (mod q);
• Compute c′ = H(A′,a);
• Accept if c′ = c or rejects if c′ ̸= c.

9. CORRECTNESS AND SECURITY

The correctness is obvious from the correctness of the identification scheme. We see the
security via the following well-known theorem.
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THEOREM 4. [KL14, p.454 Theorem 12.10] If an identification scheme is secure against
impersonation and the hash function is modeled as a random oracle, then the signature
scheme that results by applying the Fiat-Shamir transform is secure against impersonation.

THEOREM 5. If M-MSPE is hard and the hash function H is modeled as a random oracle,
then our signature scheme is secure against impersonation.

Proof. Immediate from Theorem 3 and 4. □

10. EFFICIENCIES

We do not calculate the concrete complexities. Instead, we point out the relation between
our schemes and the Schnorr schemes. Intuitively, if both DLP and M-MSPE use the same
modulus q, then creating an M-MSPE is creating an m× (n+1) matrix of DLPs and then
multiply every n+1 of them together to get m MSPE products.

11. SIMPLIFICATION

More efficient schemes are immediate by taking discrete logarithms of the M-MSPE
schemes. The resulting schemes are based on M-MSSE. In the following we define M-MSSE
using a prime modulus q instead of composite q−1.
Setup

Let n ∈N and let q be a prime.
Let Ox with respect to some x ∈Zn

q be the oracle that each time samples a1, . . . ,an, e ←Zq,
computes X = (∑n

i=1 xiai
)+ e (mod q), and outputs the instance (a1, . . . ,an, X ).

Problem
M-MSSE is given access to Ox, find x.
When q = 2 it is LPN2.

12. IDENTIFICATION SCHEME

Let n ∈N, m ≥ 2n, and q ≥ 2 be a prime. The prover’s private key is (s,u) ←Zn
q ×Zm

q . Her
public key is (M,S), where M = {ai, j}m×n ←Zm×n

q is the base matrix, and S = (S1, . . . ,Sm) is

the M-MSSE sum sequence with Si =
(∑n

j=1 s jai, j

)
+ui (mod q) for i ∈ [m].

(1) The prover samples (x, e)←Zn
q×Zm

q ; computes A = (A1, . . . , Am) with A i =
(∑n

j=1 x jai, j

)
+

e i (mod q) for i ∈ [m]; and sends A to the verifier as the commitment;
(2) The verifier samples c ←Zq and sends it to the prover as the challenge;
(3) The prover computes y = x− cs = (x1 − cs1, . . . , xn − csn) (mod q−1) and v = e− cu =

(e1 − cu1, . . . , em − cum) (mod q), and sends (y,v) to the verifier as the response;
(4) The verifier computes B = (B1, . . . ,Bm) with Bi =∑n

i=1 yjai, j (mod q) for i ∈ [m]; com-
putes A′ = B+c·S+v = (B1+cS1+v1, . . . ,Bm+cSm+vm) (mod q); and accepts if A′ = A
or rejects if A′ ̸= A.

THEOREM 6. If every party in the identification scheme is honest then A′ = A.

2Here we take the typical setting of LPN with uniform coefficient and noise distributions.
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Proof. For each i ∈ [m], we have

A′
i = Bi + cSi +vi (mod q)

=
(

n∑
j=1

yjai, j

)
+ c

((
n∑

j=1
s jai, j

)
+ui

)
+ (e i − cui) (mod q)

=
(

n∑
j=1

[
(yj + cs j) ·ai, j

])+ cui + (e i − cui) (mod q)

=
(

n∑
j=1

x jai, j

)
+ e i (mod q)

= A i.

□

13. SECURITY OF HONEST-VERIFIER ZERO KNOWLEDGE

THEOREM 7. There exists a probabilistic polynomial time simulator S that simulates the
transcript distribution (t, c, y,v) := (Mx+ e, c, x− cs, e− cu).

Proof. S samples c′, y′,v′ ←Zq−1 and t′ ← M y′+c′(Ms+u)+v′ (mod q), and outputs (t′, c′, y′,v′).
It is the same distribution as the real transcript distribution. □

14. SECURITY AGAINST IMPERSONATION

THEOREM 8. If M-MSSE is hard, then the identification scheme is secure against imper-
sonation.

Proof. The proof is almost the same as that of Theorem 3 with the formulas about the M-
MSPE scheme replaced by the corresponding formulas about the M-MSSE scheme. □

15. SIGNATURE

Let n ∈ N, m ≥ 2n, and q ≥ 2 be a prime. The Fiat-Shamir transformation turns the
identification scheme into the following signature.

KeyGen(n,m, q):
• Sample M = {ai, j}m×n ←Zm×n

q ;
• Sample (s,u)←Zn

q ×Zm
q ;

• Compute S = (S1, . . . ,Sm) with Si =
(∑n

j=1 ai, js j

)
+ui (mod q) for i ∈ [m];

• Output (sk, pk) with sk := (s,u), pk := (M,S).
Sign(sk,a):

• Sample (x, e)←Zn
q−1×Zm

q and compute A = (A1, . . . , Am) with A i =
(∑n

j=1 ai, jx j

)
+

e i (mod q) for i ∈ [m];
• Compute c = H(A,a), where H is a cryptographic hash function;
• Compute y = x− cs = (x1 − cs1, . . . , xn − csn) (mod q − 1) and v = e − cu = (e1 −

cu1, . . . , em − cum) (mod q);
• Output (y,v, c) as the signature.

Verify(a, y,v, c, pk):
7



• Compute B = (B1, . . . ,Bm) with Bi =∑n
i=1 ai, j yj for i ∈ [m];

• Compute A′ = B+Sc +v = (B1 + cS1 +v1, . . . ,Bm + cSm +vm) (mod q);
• Compute c′ = H(A′,a);
• Accept if c′ = c or rejects if c′ ̸= c.

The correctness and security are similar to the scheme based on M-MSPE. The efficiency
is improved in the obvious way with multiplications replaced by additions.
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