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Abstract

In this paper, we prove that the classic three-round protocol for MPC Schnorr Signatures [20, 23, 26]
is fully-adaptive UC-secure. Furthermore, we show that a simple variant of the Classic protocol achieves
tight security, i.e. the security of the resulting, modified, protocol tightly reduces to the security of the
underlying non-MPC scheme.
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1 Introduction
The Schnorr signature scheme (Schnorr [25]) is the simplest discrete-log based signature scheme. In recent
years, along with its NIST-sponsored competitor, (EC)DSA, Schnorr signatures have received a lot of attention
from industry and academia alike, mostly due to their new-found popularity in the Blockchain space. In this
paper, we focus on Schnorr signatures in the context of Multi-Party Computation Signing (MPC Signing).

MPC Schnorr. MPC protocols for Schnorr are truly abundant in the literature.1 The earliest protocols
[20, 23, 26] are more than 20 years old. For the signing operation, all early protocols follow the same simple
three-round template by which (1) the signatories reach consensus on a common random datum, i.e. the
nonce, and (2) they locally calculate and release their respective signature shares. Interestingly, thanks to
the inherent “MPC friendliness” of Schnorr,2 the earliest protocols already achieve very good performance,
i.e. they are almost as efficient as the underlying non-MPC scheme.

Recent protocols improve over the above either by reducing the number of rounds from three to two, or
by realizing a deterministic variant of the signing operation where the nonce is pseudorandom. However,
the recent protocols either sacrifice on efficiency, because, compared to the underlying scheme, the signing
process is much more expensive, or, they sacrifice on so-called conservative design, because the protocols
themselves are complex or the underlying cryptographic assumptions are new, interactive, non-falsifiable, or
some combination thereof.

Furthermore, all previous works (old and new) impose the following restrictions on the security model:
either the adversary is static, i.e. the adversary corrupts parties statically at the beginning of the protocol,
or the adversarial model is standalone, i.e. the adversary is assumed to operate within the confines of the
protocol environment and the protocol does not provide security guarantees when it is composed with other
cryptographic components. As far as we know, no protocol achieves the highest level of security, i.e. fully
adaptive security, with composability.

Motivation. In the spirit of Lindell [18], we strive to design and/or identify an MPC-Schnorr protocol that
strikes the best balance between efficiency, security and conservative design for many applications of interest.
Namely, we are motivated by applications to the “threshold flavour” of the MPC-signing paradigm, i.e. where
the signatories agree on a common public key ahead of time. So, for this purpose, we formulate the following
desiderata for our optimal protocol.

Efficiency. The protocol is as costly as standard Schnorr and it supports concurrent signings.

Security. The protocol is composable (e.g. in the UC framework) with full adaptive security.

Conservative Design. The protocol is simple and the security reduces to standard Schnorr.

Our Results. We revisit the basic three-round signing protocol for Schnorr (dubbed Classic S. henceforth,
c.f. Figure 1). Our first contribution is showing that Classic S. essentially “checks all the boxes” in terms of
efficiency, security, and conservative design. As far as we know, no protocol was previously known to satisfy all
our desiderata. Specifically, we show that Classic S. achieves fully adaptive UC-security where the quality of
the security depends on the reconstruction threshold (ie. our analysis yields a security loss that is proportional
to nt, where t and n denote the reconstruction threshold and the total number of parties, respectively.)

Second, we show that a simple variant of the protocol (dubbed Zero S. henceforth) achieves fully adaptive
UC-security and its security tightly reduces to the security of the underlying non-MPC scheme (i.e. the
standard Schnorr signature scheme). We achieve this by modifying the protocol such that the parties’ secret
state is statistically hidden at all moments of the execution (we further discuss Zero S. in Section 1.1.1).

On a technical level, we prove that both protocols UC-realize the ideal threshold-signatures functionality
Ftsig of Canetti et al. [9] against adaptive adversaries, where, at a high-level, Ftsig captures the “essence” of a
secure threshold-signatures scheme. Our results hold in the generalized UC model with a strict global random

1Non-exhaustively, we mention [1, 2, 10, 13, 16, 18, 19, 20, 21, 22, 23, 26].
2Viewed as an arithmetic circuit, the functionality for Schnorr does not contain any multiplication gates, which makes it far

easier/cheaper to realize in a distributed way than, say, (EC)DSA.
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oracle (RO).3 We conclude this section with the following informal theorem-statements and we turn to our
techniques.

Theorem (Informal). The following hold under the discrete log assumtion

1. If nt ∈ poly, it holds that Classic S. UC-realizes Ftsig in the strict global RO.

2. For any n, t ∈ N, it holds that Zero S. UC-realizes Ftsig in the strict global RO.

(letting n, t denote the total number of parties and the reconstruction threshold respectively)

FIGURE 1 (Classic S.)

Parameters. Group-generator-order tuple (G, g, q), hash function H.

Key Generation.

1. Sample xi ← [q], set Xi = gxi and broadcast Vi = H(Pi, Xi).

2. When obtaining (Vj)j ̸=i, broadcast Xi.

When obtaining (Xj)j ̸=i, verify (Vj)j ̸=i and output (X1, . . . , Xn;xi).

Signing. On input msg ∈ {0, 1}∗, do:

1. Sample ki ← [q], set Ri = gki and broadcast Wi = H(Pi, Ri).

2. When obtaining (Wj)j ̸=i, broadcast Ri.

When obtaining (Rj)j ̸=i, verify (Wj)j ̸=i.

3. Calculate R =
∏n

ℓ=1Rℓ and e = H(X,R,msg) and broadcast σi = ki + exi mod q.

When obtaining (σj)j ̸=i, verify (gσj = Rj ·Xe
j )j ̸=i and output (R, σ =

∑n
ℓ=1 σℓ).

Figure 1: n-out-of-n Classic Schnorr from Pi’s perspective. G denotes a prime-order group of size q generated by
g ∈ G and H denotes the hash function. We recall that Schnorr signatures verify as follows: for public key X ∈ G and
message msg ∈ {0, 1}∗, accept signature (R, σ) ∈ G × [q] iff gσ = R · Xe where e = H(X,R,msg). In the technical
sections, we consider the t-out-of-n threshold setting, where any set of t ≤ n parties may sign. To avoid clutter, we
have suppressed the use of identifiers (sid, pid, ssid, . . .) in the above.

A recent work on Classic S. Recently, Crites et al. [11] (to appear in CRYPTO’23) investigate the
adaptive (non-composable) security of Classic S. when using stronger assumptions (namely the one-more
discrete log assumption – OMDL), and when limiting the adversarial model to algebraic attacks (where the
adversary provides the algebraic representation of any group element it outputs). They find that, assuming
OMDL, Classic S. is secure as long as 2α + σ < t, where α and σ denote the number of adaptive and static
corruptions of the adversary, and, in the algebraic model, Classic S. has full adaptive security (under OMDL).

We note that (while beyond the primary goals of the present paper) we can combine the result of [11]
with our proof technique to show that partially-adaptive UC-security of Classic S. (under OMDL) and fully-
adaptive UC-security of Classic S.(in the global algebraic group model). We provide an informal discussion of
this claim in Appendix A and we intend to provide more details in the next iteration of our paper.

1.1 Our Techniques
We give an overview of our techniques by discussing Zero S. and presenting our security proof technique.

1.1.1 Zero S.

Intuitively, Classic S. admits a security loss because, baring some powerful resource (e.g. a dlog oracle), it is
not possible for the simulator to “explain”, i.e. calculate the secret state, for all not-yet-corrupted parties in
the protocol (if it could, then it could also derive the master secret key). The main reason for this is that the

3We recall that in this model the simulator is not allowed to observe or program the oracle.
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transcript of the protocol is binding (specifically the Xi’s from Figure 1), meaning that for any given party
in the protocol, there exists a single secret state that aligns with the information the adversary has acquired
from observing the protocol.

Pedersen Commitments. To overcome the above, we use Pedersen commitments instead of the “naive”
commitments Xi = gxi . (We recall that Pedersen commtments have the form Ci = gxihµi for random µi where
h ∈ G denote an arbitrary element with unknown discrete log relation to g). This way, during the signing
phase, it suffices for the parties to calculate additive shares of 0 on top the classic three-round signature process
(the purpose of the additive shares of zero is to mask the signature share of each party because it leaks gxi

which we want to avoid).
However, generating the Ci’s in an oblivious way is not straightforward and we devise a novel protocol

for this purpose. Our key idea is to blind the standard t-out-of-n verifiable secret sharing of the key x in the
exponent of g with a (n + 1)-out-of-(n + 1) secret sharing of a random value in the exponent of h. In more
detail:

1. Each Pi samples two polynomials αi(z) =
∑t−1

j=0 αi,jz
j and βi(z) =

∑n
j=0 αi,jz

j of degree t − 1 and n
respectively and they send {Bi,k}nk=0 to the other parties where

Bi,k =

{
gαi,khβi,k if k ≤ t− 1

hβi,k if k ≥ t

(The above is enforced using dlog-style online extractable zero-knowledge proofs.)

2. The parties exchange secret data in typical verifiable-secret-sharing fashion, i.e. Player Pi sends αi(j)
and βi(j) to Pj and in the end each Pi holds a decommitment (xi, µi) of their “blind” public share
Ci =

∏n
j=1

∏n
k=0B

ik

j,k.

3. To calculate the public key, the parties reveal (in ZK) Âi = gαi,0+δi where δ1, . . . , δn are additive shares
of zero and

∑
i αi,0 = x. The key-generation phase concludes with the parties outputting X =

∏n
i=1 Âi

and their respective secret states.

Remark 1.1. We note that the more natural (but naive) approach of restricting the degree of βi to t − 1
does not seem to work because the transcript of the protocol still contains many binding relations (there are
easy-to-find relations between t+ 1 public values, because any t values determine the rest).

1.1.2 Proof Technique

The present section assumes some familiarity with the UC framework.

Ideal Threshold-Signatures Functionality. Our main security claim is that Classic/Zero S. UC-realizes
the ideal ideal threshold-signatures functionality Ftsig from [9].4 As mentioned earlier, the purpose of Ftsig is
to capture the “essence” of a secure threshold-signatures scheme where, letting P denote the set of signatories,
Ftsig provides the following functionality/security:

1. Key Generation. Upon activation, the functionality requests a verification algorithm V from the ideal
adversary; for us, V is simply the verification algorithm for Schnorr that depends on the public key.

2. Signing. When obtaining input msg ∈ {0, 1}∗ from a subset Q ⊆ P of size at least t, the functionality
records the message msg as “signed”.

3. Verification. When prompted on a message msg and a signature σ for verification, the functionality
returns V(msg, σ) ∈ {true, false} if it has record of this message. If there is no record of msg, the
functionality returns false regardless of V(·).

4The results of [9] were published in [8] (CCS’20) as part of a combined work with Gennaro and Goldfeder [14].
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Notice that the functionality will accept a pair (msg, σ) only if msg was authorized by a suitable a set of
parties in Item 2 above and V(msg, σ) = true. In any other case, i.e. either msg was not authorized or σ does
not conform to V, the functionality will reject the pair. Furthermore, we stress that Ftsig does not hold any
internal secrets so it does not know the secret key associated with the verification algorithm V (because V was
supplied from the outside by the ideal adversary).

Simulatability & Unforgeability imply UC Security. We modify the key technique from [9] to show
that Classic/Zero S. UC-realizes Ftsig by way of reduction to the assumed unforgeability of the underlying
non-threshold scheme. This technique was recently generalized in [3] for general threshold-signatures protocols
as follows: starting from a signature scheme Sig and a threshold protocol Σ for computing Sig, [3] show that
if (1) Sig is unforgeable according to the usual game-based definition and (2) Σ can be standalone-simulated5

using an oracle to Sig (the same oracle from the unforgeability game), then Σ UC-realizes the ideal threshold-
signatures functionality Ftsig.

In this paper, we model the internal hash functionH of Schnorr as a random oracle (it is an interesting open
problem to see if this can be avoided). In doing so, however, the theorem from [3] is no longer applicable.6,7 To
overcome this issue, we generalize the result of [3] to so-called oracle-aided signatures where the signing and/or
verification process of Sig depends on message-dependent query-answer pairs to some oracle O (c.f. Section 2.3,
Theorem 2.6).

As a corollary, we find that since Schnorr signatures are unforgeable in the random oracle model (assuming
discrete log [24]), and Classic/Zero S. can be simulated against adaptive adversaries using a suitable signature
oracle, it follows that Classic/Zero S. UC-realizes Ftsig against adaptive adversaries under the discrete log
assumption.

No ZK? No Problem! A surprising aspect of Classic S. (and the signing phase of Zero S.) is the total
absence of ZK proofs, especially given the advertised security. To explain in one sentence, Classic S. does
not contain ZK proofs because the security analysis does not require extraction of the adversary’s secrets.
To elaborate further, typically the simulator extracts the adversary’s secrets in order to calculate the honest
party’s simulated messages, e.g. for a Schnorr signature (R, σ) with e = H(X,R,msg), the simulator calculates
the adversary’s share (RA, σA) = (gkA , kA + exA) using the extracted secrets kA and xA, and then it sets the
(simulated) honest party’s share as (R̂, σ̂) = (R ·R−1

A , σ − σA).
In this work, we completely circumvent extraction (and any penalties it may induce) because we simulate

the honest party’s share directly by suitably programming the random oracle, i.e. the simulator is instructed
to sample σ̂ and e at random and set R̂ = gσ̂ · X̂−e, where X̂ is the public-key share of the honest party.
So, by programming the oracle accordingly, i.e. return e to the adversary when queried on (X,R,msg) for
R = R̂ ·RA, the honest party’s simulated share σ̂ is identically distributed with the real one.8

Remark 1.2 (Conservative Design & Random Oracles). It may seem odd to use random oracles in the context
of conservative design and the “cryptography purist” will proclaim that random oracles are not compatible
with conservative design. To counter this obvious criticism, we offer the following arguments. First, random
oracles are ubiquitous in practical real-world cryptography, e.g. there is no NIZK deployed in the real world
that does not assume a random oracle, as far as we know. Thus, many Schnorr protocols in the wild implicitly
assume random oracles (because many Schnorr protocols use NIZKs). Second, conservative design is also
concerned with the simplicity of the protocol itself, i.e. a simple protocol in an idealized model may compare
favorably to a complicated protocol under minimal assumptions. In this regard, Classic S. has no match.
Finally, our security analysis uses the random oracle in the same fashion as the seminal work of Pointcheval
and Stern [24], or, as mentioned in Footnote 8, the standard ZKPoK for discrete log. So, our use of the oracle
is not innovative or sophisticated, and thus the principle of conservative design is not violated.

5i.e., the simulator has access to the adversary’s code and it can provide simulated answers to random-oracle queries.
6Because the simulator may inadvertently create a non-suitable forgery when tinkering with the oracle in the reduction.
7[9] and [3] use a random oracle to show that the simulation is indistinguishable and they make no assumptions on the internal

hash function of ECDSA.
8The astute reader will notice that we are simply running the simulator for the standard ZK Proof of Knowledge (ZKPoK)

for Discrete Log.
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2 Preliminaries
Notation. Throughout the paper (G, g, q) will denote the group-generator-order tuple for Schnorr. It is
assumed that the description of G is efficiently generated by an algorithm group in input 1κ. We let Z,N denote
the set of integer and natural numbers, respectively. We use sans-serif letters (enc,dec, . . .) or calligraphic
(S,A, . . .) to denote algorithms. Secret values are always denoted with lower case letters (x, α, . . .) and
public values are usually denoted with upper case letters (A,X, . . .). Furthermore, for a tuple of both public
and secret values, e.g. an RSA modulus and its factors (N, p, q), we use a semi-colon to differentiate public
from secret values (so we write (N ; p, q) instead of (N, p, q)). Bold letters X, s, . . . denote sets and we write
2X = {A s.t. A ⊆X} for the power set of X. Bold letters may also denote random variables.

We write x← E for sampling x uniformly from a set E, and x← A or x← gen for sampling x according
to (probabilistic) algorithms A or gen. A distribution ensemble {vκ}κ∈N is a sequence of random variables
indexed by the natural numbers. We say two ensembles {vκ} and {uκ} are indistingushable and we write
{vκ} ≡ {uκ} if Pr[D(1κ,uκ) = 1]−Pr[D(1κ,vκ) = 1] is negligible for every efficient distinguisher D. We write
SD(u,v) for the statistical distance of u and v. Finally, we also define oracles and oracle-aided algorithms.
An oracle O is a (not-necessarily-efficient) Turing machine and we say that AO is an oracle-aided algorithm
(OA-algorithm) for oracle O if it can make queries and receive answers from O; formally the PPTM A(·) has
an additional oracle tape for this purpose.

2.1 Oracle-Aided Signatures and Unforgeability
Definition 2.1 (OA-Signatures). SigO = (gen, sign, vrfy) is a tuple of OA-algorithms for oracle O s.t.

1. (pk, sk)← gen(1κ), where κ is the security parameter.

2. For msg ∈ {0, 1}∗, σ ← signsk(msg).

3. For msg, σ ∈ {0, 1}∗, vrfypk(σ,msg) = b ∈ {0, 1}.

Correctness. For σ ← signsk(msg), it holds that vrfypk(σ,msg) = 1.

Existential Unforgeability. Next, we define security for OA-signature schemes. In Figure 2, we define a
generic oracle for defining the security game in Figure 3 (and thus the security definition below, Definition 2.2,
is parameterized by the oracle G). Later, in Figure 5, we will define a specific oracle G∗ for Schnorr and
unforgeability will be defined with respect to G∗.

FIGURE 2 (Augmented Signature Oracle G)

Parameters. OA-Signature scheme SigO and randomized OA-functionality FO.

Operation.

1. On input (gen, 1κ), generate a key pair (pk, sk)← gen(1κ), initialize state = (sk, pk), and return pk.

Ignore future calls to gen.

2. On input (FO, x), sample r ← $ and return τ = FO(x, state; r).

Update state := state ∪ {(x, τ ; r)}.

Figure 2: Augmented Signature Oracle G

Definition 2.2 (G-Existential Unforgeability.). We say that SigO satisfies G-Existential unforgeability if there
exists ν ∈ negl(κ) such that for all A, it holds that Pr[G-EU(A, 1κ) = 1] ≤ ν(κ), where G-EU(·) denotes the
security game from Figure 3.

2.2 MPC and Universal Composability
We use the simplified variant of the UC framework (which is sufficient for our purposes because the identities of
all parties are assumed to be fixed in advance). In this section we provide a quick reminder of the framework.
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FIGURE 3 (G-Existential Unforgeability Experiment G-EU(A, 1κ))
1. Call G on (gen, 1κ) and hand pk to A.

2. The adversary A makes n(κ) adaptive calls to G and O.

3. A outputs (m,σ) given its view (randomness and query-answer pairs to G and O)

• Output: G-EU(A, 1κ) = 1 if vrfypk(m,σ) = 1 and m was not queried by A when calling G.

Figure 3: G-Existential Unforgeability Experiment G-EU(A, 1κ)

The model for n-party protocol Π. For the purpose of modeling the protocols in this work, we consider
a system that consists of the following n + 2 machines, where each machine is a computing element (say,
an interactive Turing machine) with a specified program and and identity. First, we have n machines with
program Π and identities P1, . . . ,Pn. Next, we have a machine A representing the adversary an a machine Z
representing the environment. All machines are initialized on a security parameter κ and are polynomial in
κ. The environment Z is activated first, with an external input z. Z activates the parties, chooses their input
and reads their output. A can corrupt parties and instruct them to leak information to A and to perform
arbitrary instructions. Z and A communicate freely throughout the computation. The real process terminates
when the environment terminates. Let EXECZ

Π,A(1
κ, z) denote the environment’s output in the above process.

In this work we assume for simplicity that the parties are connected via an authenticated, synchronous
broadcast channel. That is, the computation proceeds in rounds, and each message sent by any of of the parties
at some round is made available to all parties at the next round. Formally, synchronous communication is
modeled within the UC framework by way of Fsyn, the ideal synchronous communication functionality from
[5, Section 7.3.3]. The broadcast property is modeled by having Fsyn require that all messages are addressed
at all parties.

Ideal Process. the ideal process is identical to the real process, with the exception that now the machines
P1, . . . ,Pn do not run Π, Instead, they all forward all their inputs to a subroutine machine, called the ideal
functionality F . Functionality F then processes all the inputs locally and returns outputs to P1, . . . ,Pn. Let
EXECZ

F,S(1
κ, z) denote the environment’s output in the above process.

Definition 2.3. We say that Π UC-realizes F if for every adversary A there exists a simulator S such that
for every environment Z it holds that

{EXECZ
Π,A(1

κ, z)}z∈{0,1}∗ ≡ {EXECZ
F,S(1

κ, z)}z∈{0,1}∗

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once
corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions
of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes
executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption. Finally, the real adversary is
assumed to be rushing, i.e. it receives the honest parties messages before it sends messages on behalf of the
corrupted parties.

Global Functionalities. It is possible to capture UC with global functionalities within the plain UC frame-
work. Specifically, having Π UC-realize ideal functionality F in the presence of global functionality G is represented
by having the protocol [Π,G] UC-realize the protocol [F ,G] within the plain UC framework. Here [Π,G] is the
n + 1-party protocol where machines P1, . . . ,Pn run Π, and the remaining machine runs G. Protocol [F ,G]
is defined analogously, namely it is the n+ 2-party protocol where the first n+ 1 machines execute the ideal
protocol for F , and the remaining machine runs G.

Secret Channels. We assume that the parties are connected with point-to-point secret channels. Formally,
it is assumed that all pairs of parties admit a pairwise secret key for communicating secretly over the broadcast
channel.
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2.2.1 Threshold Signatures

The definition below is a restricted version of [3] because the protocol herein does not support presigning (we
refer the reader to [3] for the definition of presigning).

Definition 2.4 (Threshold Signatures). Let Σ = (Σkgen,Σrefr,Σsign) denote a protocol for parties in P =

{P0,P1, . . . ,Pn} parametrized by Q ⊆ 2P . We say that Σ is a threshold signatures scheme for SigO = (. . . , vrfy)
if it provides the following functionality.

1. Σkgen takes input 1κ from Pi ∈ P and returns (pk, si) to each Pi ∈ P .

2. Σsign takes input msg ∈ {0, 1}∗ and (pk, si,Q) from Pi ∈ Q ∈ Q and returns σ to (at least one) Pi.

Correctness. It holds that vrfypk(σ,msg) = 1 in an honest execution.

Sets Q ∈ Q are called quorums.

A protocol Σ is said to be secure if it UC-realizes functionality Ftsig, defined below.

2.2.2 Ideal Threshold-Signatures Functionality

We use the ideal functionality Ftsig of [9], which generalizes the non-threshold signature functionality of Canetti
[6]. We briefly outline Ftsig next and we refer the reader to the appendix (p. 19) for the full description.

For each signing request for a message msg, the functionality requests a signature string σ from the
adversary, which is submitted from the outside, i.e. the signature string σ is not calculated internally from the
ideal functionality. Once σ is submitted by the adversary, the functionality keeps record of (msg, σ). When
a party submits a pair (msg′, σ′) for verification, the functionality simply returns true if it has record of that
pair and false otherwise.

2.2.3 Global Random Oracle

We follow formalism of [4, 7] for incorporating the random oracle into the UC framework. In particular, we
use the strict global random oracle paradigm which is the most restrictive way of defining a random oracle,
defined in Figure 4.

FIGURE 4 (The Global Random Oracle Functionality H)

Parameter: Output length h.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .

– Else sample a← {0, 1}h and store (m, a).

Output (answer, a) to X .

Figure 4: The Global Random Oracle Functionality H

2.3 Unforgeability & Simulatability imply UC Security
Write κ for the security parameter. For OA-signature scheme SigO and associated threshold-protocol Σ, for
adversary A, write RealΣA(1

κ, z) for the adversary’s view in an execution of Σ in the presence of an adaptive
PPTM adversary A given external advice z. Without loss of generality assume that RealΣA(1κ, z) = (pkΣ, . . .),
where pkΣ denotes the public key resulting from the execution of Σ. Next, for an oracle-aided algorithm S
with black-box access to A and oracle access to G and O, write IdealGS(1

κ, z) = (pkG ,OutS) for the pair of
random variables consisting of the public key generated by G and the simulator’s, S, output given external
input z.
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Definition 2.5 (Simulatability). Using the notation above, we say that Σ is (G, τ)-simulatable with O-
consistency if the following holds for every adversary A. For every z ∈ {0, 1}∗, there exists S with oracle
access to G and O and black-box access to A such that

1. G is queried by S only on messages intended for signing as prescribed by Σ.

(The simulator is not allowed query messages that are not intended for signing)

2. If A does not corrupt all parties in some Q ∈ Q simultaneously in any given epoch, then

{RealΣA(1κ, z)}≡{Ideal
G
S(1

κ, z)}.

(The simulator is indistinguishable from the adversary’s view with distinguishing advantage at most ε –
and S may depend on ε)

3. All oracle queries for vrfy(·)(msg) are consistent with O, i.e. they are “real” oracle queries, or they are
undefined by the simulation, unless they are intended for signing as prescribed by Σ.

(i.e. the simulator is restricted when vrfy(·)(msg) is invoked to avoid inadvertently creating “fake” forgeries
for messages that the adversary attempts to forge.)

4. The running time of S is Õ(τ · timeΣ) where timeΣ the running time of Σ.

The theorem below is a generalization of [3] for OA-signatures.

Theorem 2.6. Let SigO denote an OA-signature scheme and let Σ denote a threshold protocol for SigO. Let
G denote an augmented signature oracle such that

• SigO is G-existentially unforgeable.

• Σ is (G, τ)-simulatable with O-consistency.

If τ ∈ poly, then Σ UC-realizes Ftsig in the presence of global functionality O.

Proof. Like in [3], the UC simulation is trivial; the simulator simply runs the code of the honest parties (we
reiterate that UC simulation is trivial because the simulator “knows” all the honest parties’ secrets – the
simulator samples those secrets by itself). When interacting with the functionality in the UC simulation, the
simulator does two things: (1) every time the honest parties output a signature, the simulator submits the
resulting signature-string to the functionality, and, (2) depending on the environment’s corruption pattern,
the simulator registers parties as corrupted with the functionality.

It is not hard to see that the environment Z can distinguish real from ideal execution only if it can forge
signatures in the protocol (i.e. in the real world) because the simulation is perfect otherwise. However, since Σ
is G-simulatable with O-consistency, it follows by Definition 2.5 that the interaction between Z and the honest
parties can be simulated using G and O, and the simulation yields a “true” forgery because it is O-consistent.
In turn, this implies that G is useful for forging signatures of SigO, in contradiction with the hypothesis of the
theorem.

In other words, if there exists a PPTM Z0 that can forge signatures in the real protocol (so that the
environment can distinguish between real and ideal), then, by G-simulatability, we can construct (using the
simulator from the G-simulatability experiment) a PPTM B with black-box access to Z0 that breaks the
unforgeability of the underlying non-threshold scheme SigO, which yields a contradiction. Therefore, no such
Z0 exists, and it holds that our UC simulator yields indeed a perfect simulation.

2.4 Schnorr Signatures & Discrete Log
Definition 2.7 (Schnorr). Let (G, g, q) denote the group-generator-order tuple.

Parameters: (G, q, g) and (random) oracle H : {0, 1}∗ → Fq.

1. (X;x)← gen(G, q, g) such that x← Fq and X = gx.

2. For msg ∈M , let signx(msg; k) = (R, σ) ∈ G× Fq, for R = gk, m = H(X,R,msg), σ = k +mx mod q.

10



FIGURE 5 (Oracle G∗ for Schnorr)

Parameters. Random Oracle H : {0, 1}∗ → Fq.

Operation.

1. On input (gen, (G, g, q)), sample sk = x← Fq and return pk = X = gx.

Store (sk, pk) in memory and ignore future calls to gen.

2. Ignore all other prompts.

Figure 5: Oracle G∗ for Schnorr

3. For (R, σ) ∈ F2
q, define vrfyX(msg, σ) = 1 iff gσ = R ·Xm and m = H(X,R,msg).

Notice that Schnorr signatures are G∗-existentially unforgeable if no adversary can forge signatures only
given the public key; in particular, the adversary is not allowed to query the oracle for additional signa-
tures. Thus, by the seminal result of Pointcheval and Stern (Theorem 2.9 below), Schnorr signatures are
G∗-existentially unforgeable under the discrete logarithm assumption. For completeness, we also give the
definition for DLOG.

Definition 2.8. DLOG holds true if there exists a negligible function ν(·) such that for every PPTM A

Pr[(G, g, q)← group(1κ) ∧ X ← G ∧ α← A(1κ, X) ∧ gα = X] ≤ ν(κ)

Theorem 2.9 (Pointcheval and Stern [24]). Assuming DLOG, letting G∗ denote the oracle from Figure 5, it
holds that Schnorr signatures are G∗-existentially unforgeable.

2.5 Pedersen Commitments and ZK-PoK
The present section is only relevant for the Zero S. protocol.

Definition 2.10 (Pedersen Commitments). For group-generators-order tuple (G, g, h, q) define algorithm com
that takes input x ∈ Fq × G and returns (B;µ) such that B = hµgx for “randomizer” µ ← Fq, and we write
B = com(x, µ).

Definition 2.11 (Dlog PoK). Fix (aux,G, g, q) and define the following process ΠFi
dlog parameterized by and

r, b ∈ N and hash function H : {0, 1} → {0, 1}κ. On common input (aux, B), auxiliary input aux, and P
holding secret input µ such that B = hµ,

1. P samples δ1, . . . , δr ← Fq and sets A = (Ai)
r
i=1, where Ai = hδi for all i ∈ [r].

2. Compute e1, . . . , er ∈ Fq s.t. H(aux, B,A, ei, wi) ∈ {0}b × {0, 1}κ−b and wi = δi + eiµ, for all i ∈ [r].

The e’s are sampled randomly until suitable e’s are found.

Output. ψ = (Ai, ei, wi)
r
i=1

Furthermore, we say that (ΠFi
dlog, x, ψ) is accepting iff

∀i ∈ [r],

{
hwi = Ai ·Bei

H(aux, B,A, ei, wi) ∈ {0}b × {0, 1}κ−b
.

Notation 2.12. We write ψ ← ΠFi
dlog(B, x;µ) for the prover’s output resulting from the above process (recall

that ΠFi
dlog is defined by H and the tuple (aux,G, g, h, q)).

Remark 2.13. The above corresponds to the so-called Fischlin transform [12] of the standard three-round zero-
knowledge proof-of-knowldge of discrete log. We present the Fischlin transform in the “vanilla version” and
we ignore many optimizations that are beyond the scope of our paper, e.g. batching [15] or finding collisions
instead of pre-images of zero [17].
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Next, we state the security properties of ΠFi
dlog, without proof.

Theorem 2.14 (Security of ΠFi
dlog). It holds that ΠFi

dlog satisfies the following security properties.

Knowledge Soundness. For random oracle H, let A(·) denote an oracle-aided non-uniform PPTM
taking advice z ∈ {0, 1}∗ and let b, r such that b · r ∈ ω(log(κ)), where κ denotes the security parameter.
With all-but-negligible probability over ψ ← AH(aux,G, g, h, q, B, z), if (ΠFi, B, ψ) is accepting, then
there exists E given A’s oracle tape that outputs w ∈ Fq s.t. B = hw ∈ G

Zero-Knowledge. Define SIM s.t. (Ai, ei, wi)
r
i=1 ← SIM where (ei, wi)

r
i=1 ← Fr

q and Ai = hwi ·B−ei .
Then, there exists S taking input ΠFi

dlog, B and ψ ∈ {0, 1}∗ s.t. for every (OA) distinguisher D(·), it
holds that

Pr[DH(ψ) = 1 ∧ψ ← ΠFi
dlog(B, x;µ)]− Pr[DS(ψ)(ψ) = 1 ∧ψ ← SIM] ∈ negl(κ).

2.5.1 Pedersen Equality ZK-PoK.

We note that ΠFi
dlog can easily be extended to any “dlog-style” relation. Three such relation of interest which

(we will use in our protocol) are defined as follows: Let ped1 consist of all tuples (G, g, h, q, B;x, µ) such that
B = com(x, µ) = gxhµ. Let ped2 consist of all tuples (G, g, h, q, B,C;x, µ) such that B = com(x, µ) = gxhµ

and C = gx.

Definition 2.15 (Pederen Eq. PoK). Analogously to ΠFi
dlog, let ΠFi

ped1
and ΠFi

ped2
denote the Fischlin transform

of the three-round proof-of-knowledge for relation ped1 and ped2, and we write ψ ← ΠFi
ped(·)

(. . .) for the prover’s
output resulting from each process.

3 Protocol(s)
In this section, we define the two protocols Σclassic and Σzero. Since the protocols are very similar to each
other, we opt to present the two together, c.f. Figure 6 for the key-generation Σkgen and Figure 7 for the signing
phase Σsign, were suitable color coding is used to distinguish between the two (we use brick red for Classic S.).

Notation and Conventions. Prior to key-generation, the parties hold a common input that specifies the
supper-session identifier (ssid) which, in particular, specifies the parties’ identities (pid’s in P ) and the access
structure Q. Similarly, during signing, it is assumed that the parties start with the same message to be
signed as the session identifier (sid) for that signing request; i.e., in this paper, we are agnostic about how
the parties reach consensus on the relevant identifiers, or the message to be signed in each signature request.
In the protocol description below, all the aforementioned data is in the common input aux ∈ {0, 1}∗ which
is appropriately updated for each phase of the protocol. Finally, it is assumed that the parties store their
respective output of each phase of the protocol and they erase all other data.

In the second round of the key-generation, we write enc(·)(β) to signify that β is sent over the secret channel
(or it is encrypted using the appropriate key and sent over the broadcast channel). Finally, let λi(Q) denote
the Lagrange coefficient for Pi with respect to set Q, i.e. λi(Q) =

∏
j∈Q(−j)/

∏
j∈Q\{i}(i− j).

3.1 Identifiable Abort.
We note that all errors in both protocols can be attributed to a well defined corrupted party except when a
signature fails. Indeed, a quick inspection of the protocol(s) reveal that in such a case errors occur because
of a failed decommitment or ZK proof verification (for Zero S.). Thus, it suffices to explain how identifiable
abort is achieved when the signature fails during signing. For this purpose, we will augment the protocol(s)
as follows.
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FIGURE 6 (Classic/Zero Schnorr: Key Generation – Σkgen)

On input (kgen, ssid = (G, g, h, q, . . . ,Q,P ),Pi) for Pi ∈ P , do:

1. Sample {αi,k ← Fq}t−1
k=0 and {µi,k, γi,k, ρi,k ← Fq}nk=1, and compute:

– Bi,k = gαi,khµi,k = com(αi,k, µi,k) for k ≤ t− 1 and Bi,k = hµi,k = com(0, µi,k) for k ≥ t.
Generate {ψi,j ← ΠFi

ped1
(Bi,j ;αi,j , µi,j)}t−1

k=0 and {ψi,j ← ΠFi
dlog(Bi,j ;µi,j)}nk=t

– Di,j = com(γi,j , ρi,j) and Ci,j =
∏n

j=0B
jk

i,k = com(βi,j , νi,j) for j ∈ [n]

For Classic S., ignore the above and set Ai,k = com(αi,k, 0) for k ≤ t− 1.

Broadcast (ssid,Pi, Vi) for Vi = H(ssid,Pi, Ui) s.t.

Ui =

{
(Ai,0, Ai,1, . . . , Ai,t−1) for Classic S.
(Bi,0, ψi,0 . . . , Bi,n, ψi,n) for Zero S.

2. When obtaining (ssid,Pj , Vj) from all Pj send (ssid,Pi, Ui,Wi,j) to each Pj where

Wi,j =

{
encj(βi,j) for Classic S.
encj(βi,j , νi,j , γi,j , ρi,j) for Zero S.

3. When obtaining (ssid,Pj , Uj ,Wj,i) from Pj , verify Vj = H(ssid,Pj , Uj), and do:

– Set {Âj = Aj,0}nj=1 and check gβj,i = Âj ·
∏t−1

k=1A
ik

j,k (Classic S. ends here).
– Check gβj,ihνj,i = Cj,i and gγj,ihρj,i = Dj,i for Zero S..

When passing the above verification for all j ∈ [n], do:

– Set D̂i = Bi,0 ·
∏n

j=1(Di,j ·D−1
j,i ) = com(α̂i, µ̂i) and Âi = gα̂i

– Generate proof θi ← ΠFi
ped2

(D̂i, Âi; α̂i, µ̂i)

Send (ssid,Pi, Âi, θi) to all.

Output. If no error is detected, output (X;xi) where X =
∏n

j=1 Âj and xi =
∑n

j=1 βj,i.

Figure 6: Classic/Zero Schnorr: Key Generation – Σkgen

FIGURE 7 (Classic/Zero Schnorr: Signing – Σsign)

On input (sign, sid = (ssid, . . . ,Q,msg),Pi) for Pi ∈ Q, set wi = λi(Q) · xi, and do:

1. Sample ki ← Fq and set Ri = gki .

Broadcast (ssid,Pi, Vi) for Vi = H(ssid,Pi, Ri).

2. When obtaining (ssid,Pj , Vj) from all Pj , send (ssid,Pi, Ri, Si,j) to each Pj s.t.

Si,j =

{
⊥ for Classic S.
encj(δi,j) where δi,j ← Fq for Zero S.

3. When obtaining (ssid,Pj , Rj , Sj,i) from all Pj , send (ssid,Pi, σi) to all Pj s.t.

σi =

{
ki + wi · H(X,R,msg) mod q for Classic S.
ki + wi · H(X,R,msg) +

∑
j∈Q\{i}(δi,j − δj,i) mod q for Zero S.

Output. When obtaining (ssid,Pj , σj) from all Pj , output (R, σ) where σ =
∑

j∈Q σj iff

gσ = R ·Xe and e = H(X,R,msg)

Figure 7: Classic/Zero Schnorr: Signing – Σsign
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Classic S. In this case, the process is essentially trivial and it suffices for the parties to store the “public-key
shares” {Xi}ni=1 where

Xi =

t−1∏
k=0

(

n∏
j=1

Aj,k)
ik = gxi . (1)

Then, when a quorum Q ∈ Q is formed for signing msg ∈ {0, 1}∗, using the notation from Figure 7 the parties
check that gσj = Rj ·X

fj
j for fj = λj(Q) · H(X,R,m), for every j ∈ Q.

Remark 3.1. We emphasize that all parties can calculate {Xi}ni=1 given their respective views of the key-
generation phase using the left-hand side of Equation (1).

Zero S. Achieving identifiable abort for Zero S. is slightly more involved. First, similarly to Classic S., we
instruct the parties to store the values (C1, . . . , Cn) during key-generation where

Ci = ·
n∏

k=0

(

n∏
j=1

Bj,k)
ik = gxihνi . (2)

Then, when a signature fails, the parties are instructed to follow the following identification process.

1. Each Pi calculates Pedersen commitments Zi,j = com(δi,j , ρi,j) for random ρi,j ← Fq for all j ∈ Q.

The parties are instructed to broadcast {Zi,j}i,j∈[n] and each Pj receives {ρi,j}i∈[n] over the secret
channel. We note that if a corrupted party sends Zi,j = com(δ′i,j , ρi,j), for δ′i,j ̸= δi,j , then Pi may
be reported as corrupted, e.g. by “opening” Si,j and revealing δi,j , δ′i,j , ρi,j to all parties.9

2. When completing the above for all parties in Q, for e = H(X,R,msg), each Pi proves that Yi =

g−σi · Cλi(Q)·e
i,j ·

∏n
j=1 Zi,j · Z−1

j,i is a 0-commitment. That is, Pi sends ψi ← ΠFi
dlog(Yi; ηi) for ηi =

λi(Q) · eγi +
∑n

j=1(ρi,j − ρj,i), and the other parties report Pi as corrupted if the tuple (ψi, Yi, 0) is
rejecting (notice that Yi is a 0-commitment iff Pi sends the right σi at the end of the signing phase).

4 Security
Next, we state our main security claims.

Theorem 4.1. For t-out-of-n Σclassic, the following holds under the discrete log assumption (wlog t < n− t).
If nt ∈ poly(κ), then Σclassic UC-realizes functionality Ftsig in the presence of a global random oracle H.

The above theorem is a corollary of Theorems 2.6, 2.9 and 4.3. In more detail, in Section 4.1 we show that
Σclassic is G∗-simulatable with H-consistency according to Definition 2.5 against adaptive adversaries. Thus,
since Schnorr signatures are G∗-existentially unforgeable (Pointcheval and Stern [24]), it follows that Σclassic

UC-realizes Ftsig against adaptive adversaries in the random oracle model.

Theorem 4.2. For t-out-of-n Σzero, the following holds under the discrete log assumption. For every n, t ∈
poly(κ), it holds that Σzero UC-realizes functionality Ftsig in the presence of a global random oracle H.

The above theorem is a corollary of Theorems 2.6, 2.9 and 4.4.

4.1 Simulatability of Σclassic

Theorem 4.3. It holds that Σclassic is (G∗, nt)-simulatable with H-consistency. (wlog t < n− t)

Proof. At the beginning of the simulation (The simulator is described in Figure 8), our simulator chooses
n − t honest parties randomly which are called the special parties and all other parties are simulated by
running their code as prescribed. To deal with adaptive corruptions, we assume that the special parties are
chosen afresh every time Σrefr is simulated (the simulation is reset, via rewinding, to the last key refresh if

9For example, δi,j may be signed when sent over the secret channel.
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FIGURE 8 (G∗-simulation for Σclassic)

Parameters. Adversary A, RO H.

Operation.

init. Call G∗ on input (G, g, q). Obtain pk = X.

– (Σkgen) Choose B ⊆H = P \C of size n− t+ 1 and do:

1. For b ∈ B, hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j /∈B , retrieve (Aj,0, . . . , Aj,t−1)j /∈B and do:

(a) Set XB = X · (
∏

j /∈B Aj,0)
−1 and sample {Ab,0}b∈B subject to

∏
b∈B Ab,0 = XB .

(b) Sample {βb,j ← Fq}b∈B,j /∈B and set {Ab,1, . . . , Ab,t−1}b∈B s.t.
∏t−1

k=1A
jk

b,k = A−1
b,0 · g

βb,j .
Use the Vandermonde matrix for the above.

(c) Calculate all other values as prescribed.
Hand over (Ab,0, . . . , Ab,t−1)b∈B and (βb,j)b∈B,j∈C to A.

– (Σrefr) Reasign B ⊆H = P \C of size n− t+ 1 and do

Run simulator for Σkgen using {Ab,0 = X
λb(P )
b }b∈B in Item 2a and verify {Aj,0 = X

λj(P )

j }j /∈B .

– (Σsign) If |Q| ≥ t, do: Letting {Yi = X
λi(Q)
i }i∈Q,

1. For b ∈ Q ∩B, hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j /∈B , retrieve (Rj)j /∈B and do:

(a) Sample e← Fq.
(b) For b ∈ Q ∩B, sample σb ← Fq and set Rb = gσb · Y −e

b .
(c) Calculate all other values as prescribed and hand over (Rb)b∈Q∩B to A.

3. When obtaining (Rj)j∈Q\B , do:
Hand over (σb)b∈Q∩B

Figure 8: G∗-simulation for Σclassic. In the above, every time S “retrieves” a value, we mean that it obtains
the relevant value from A’s queries. Furthermore, it assumed S’s messages are consistent with the simulated
oracle (by programming the simulated random oracle accordingly whenever needed). So, e.g., for Ri chosen
by S for special party Pi during signing, if the adversary queries H on input (aux,Pi, Ri), then the simulator
provides “answer” that leads to an error-free execution, namely Vi chosen by the simulator in the first round.

the adversary decides to corrupt any of the special parties). Furthermore, S simulates the random oracle and
thus A “queries” S when it requests to query H and S returns answers according to the “real” oracle H unless
these were programmed by the simulator itself (specifically the V ’s in Item 1 of key-generation and Item 1 of
signing respectively, or the e’s in Item 2a of signing). Thus, the simulation is consistent with the oracle. The
reader is referred to Figure 8 for the full description of the simulation.

It is not hard to see that the simulation is statistically close to the real distribution. To conclude, we
note that the simulation concludes with overwhelming probability in time

(
n
t

)
· log(κ) · timeΣ and timeΣ is the

running time of Σ (because the simulator is required to guess the correct identities of the simulated honest
parties).

4.2 Simulatability of Σzero

Theorem 4.4. Assuming discrete log, it holds that Σclassic is (G∗, 1)-simulatable with H-consistency.

Proof. Contrary to the Classic S. cas, the simulator(s) we will define next do not perform any guesswork and
there is no rewinding when something “bad” happens (because there is no such event in this case). Similarly
to Figure 8, we write H, C for the set of honest and corrupted parties (these sets change as the interaction
progresses).

We consider a two experiments (hybrids) where the first experiment is indistinguishable from the real
execution (assuming discrete log) and the second experiment corresponds to the G∗-simulation. In the second
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hybrid, we will assume that the simulator is given the discrete log of h relative to g (this additional input may
be viewed as a trapdoor of the CRS).

Hybrid 1. In the first experiment, the simulator proceeds as follows: The simulator merely runs the code
of the honest parties as prescribed with the following caveats:

1. The simulator extracts the adversary’s tuples (αj,k, µj,k)j∈C,k≥0 and (α̂j , µj) from the key-generation
using the Fischlin extractor (Theorem 2.14) and the simulator calculates the corrupted parties’ secret
shares {(xj , ρj)}j∈C where ρj =

∑
k∈[n] ρk,j .

2. During signing, instead of calculating the honest parties’ shares as prescribed, S simulates the signature
using Y =

∏
X · (

∏
j∈Q∩C g

λj(Q)·xj )−1 analogously to Item 2b of the signing simulation in Figure 8.
That is, the simulator calculates R̂ = g−σ̂ · Y −e for (σ̂, e) ← F2

q and returns (independent) sharings
(R̂i)i∈H of R̂ and {τ̂i}i∈H of τ̂ such that, letting {δi,j}i,j denote the shifts exposed to the adversary
during the experiment:

τ̂ = σ̂ +
∑

i∈H,j∈C

δi,j − δj,i mod q (3)

New Corruptions. When the adversary decides to corrupt Pi ∈H, the simulator returns correspond-
ing secret state (sampled/calculated by S during the simulation).

It straightforward to see that the above experiment is distinguishable from the real experiment only if
the simulator calculates the wrong Y when calculating the signature above (all other values are identically
distributed). In that case, however, it means that there is a discrepancy between the values extracted from
the adversary and the “honestly” generated values. So, since the adversary controls all “honest” values, it can
deduce a non-trivial relation between g and h using the witnesses extracted in round 1 witness extracted in
round 3 (if they are consistent, i.e. {Bi,k} and {Âi} yield the same g-component, then there is no distinguishing
opportunity).

Hybrid 2 (G∗-Simulation). For the second and last experiment, the simulator S is given trapdoor input
w ∈ Fq such that h = gw ∈ G. We describe the simulator by explaining how it interacts with G∗ and how it
calculates all the “honest” simulated values. First, the simulator requests a public key pk from G∗ and it sets
X = pk. Then, S samples {Ci = gyi}ni=1 for yi ← Fq and sets

B0

B1

B2

...
Bn

 =


1 0 0 · · · 0
1 1 1 · · · 1n

1 2 4 · · · 2n

...
...

...
. . .

...
1 n n2 · · · nn


−1

·


C0

C1

C2

...
Cn


1. In the first round of the key generation, the simulator retrieves {Bj,k}nk=0 from the oracle queries and

it extracts the tuples (αj,k, µj,k)j∈C,k≥0 using the Fischlin extractor. Then, S calculates {Bi,k}i∈H,k≥0

where each tuple (Bi,k)i∈H for fixed k is a random secret sharing of Bj ·
∏

j∈C B
−1
j,k .

By construction, S knows the discrete logarithms with respect to g of all Bj,k.

2. When sending (βi,j , µi,j , γi,j , ρi,j)i∈H,j∈C , the simulator chooses the tuple as follows:

– Calculate yi,j such that gyi,j =
∏n

k=0B
jk

i,k and set (βi,j , γi,j , ρi,j)← F3
q and µi,j = z−1 · (yi,j − βi,j).

3. When sending (Âi, θi)i∈H , letting {γi,j} denote the γ’s exposed to the adversary, choose (Âi)i∈H as a
random sharing of gŷ ·X where

ŷ = −
∑
j∈C

λjxj +
∑

i∈H,j∈C

γi,j − γi,j .

(the simulator calculates {xj}j∈C at the end of the previous simulated round using the Fishlin extractor.)

16



4. The signing process is handled exactly like the previous experiment.

New Corruptions. When the adversary decides to corrupt Pi ∈ H, the simulator samples xi ← Fq

and returns (xi, νi) as Pi’s secret state, where νi = z−1 · (yi − xi).

It is easy to see that the two hybrids are identically distributed. This concludes the proof.
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FIGURE 9 (Ideal Threshold Signature Functionality Ftsig)

Key-generation:

1. Upon receiving (keygen, ssid) from some party Pi, interpret ssid = (. . . ,P ,Q), where P = (P1, . . . ,Pn).

– If Pi ∈ P , send to S and record (keygen, ssid,Pi).

– Otherwise ignore the message.

2. Once (keygen, ssid, j) is recorded for all Pj ∈ P , send (pubkey, ssid) to the adversary S and do:

(a) Upon receiving (pubkey, ssid,X,V) from S, record (ssid,X,V).
(b) Upon receiving (pubkey, ssid) from Pi ∈ P , output (pubkey, ssid,X) if it is recorded.

Else ignore the message.

Signing:

1. Upon receiving (sign, sid = (ssid, . . .),m) from Pi, send to S and record (sign, sid,m, i).

2. Upon receiving (sign, sid = (ssid, . . .),m, j) from S, record (sign, sid,m, j) if Pj is corrupted.
Else ignore the message.

3. Once (sign, sid,m, i) is recorded for all Pi ∈ Q ⊆ P and Q ∈ Q, send (sign, sid,m) to S and do:

(a) Upon receiving (signature, sid,m, σ) from S,

– If the tuple (sid,m, σ, 0) is recorded, output an error.
– Else, record (sid,m, σ, 1).

(b) Upon receiving (signature, sid,m) from Pi ∈ Q:

– If (sid,m, σ, 1) is recorded, output (signature, sid,m, σ) to Pi.
– Else ignore the message.

Verification:

Upon receiving (sig-vrfy, sid,m, σ,X) from a party X , do:

– If a tuple (m,σ, β′) is recorded, then set β = β′.

– Else, if m was never signed and not all parties in some Q ∈ Q are corrupted/quarantined, set β = 0.

“Unforgeability”

– Else, set β = V(m,σ,X).

Record (m,σ, β) and output (istrue, sid,m, σ, β) to X .

Figure 9: Ideal Threshold Signature Functionality Ftsig
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A (OM) Discrete Log & Algebraic Model
Using OMDL. It is easy to show that Classic S. is adaptive UC-secure using the result of [11] for the case
of 2α + σ < t where α and σ represent the adaptive or static number of corruptions respectively. To see
why, we note that by augmenting signing oracle G∗dlog to include discrete-log queries for previously generated
group elements (representing the parties’ public-key shares), we apply Crites et al. [11]’s result to claim that
Schnorr signatures are G∗dlog-unforgeable under the OMDL assumption. On the other hand, Classic S. is
G∗dlog-simulatable without any security loss (since the discrete log oracle removes all the guesswork).

Using AGM. In a second result, [11] show that in the algebraic group model achieves full adaptivity under
the OMDL. The intuition is quite simple: in the reduction to (OM) discrete log, the adversary outputting a
forgery also outputs a non-trivial discrete log relation when it supplies the representation of the forgery, thus
breaking OMDL.

We believe that the above results easily extends to the UC case by forcing adversaries to be algebraic via a
strict global functionality (like the RO in our work). So, using such an algebraic oracle (AO), we can extend
our theorem to show that Classic S. UC-realizes Ftsig in the presence of the global AO and RO.

Remark A.1. We want to emphasize that the strictness of the AO, rendering it non-observable and non-
programmable, has no impact on our analysis. In fact, it strengthens the composability result. The security of
Classic S. remains preserved even when it is composed with other protocols utilizing the same group. As far as
we know, this guarantee of composability fails when the AO is not strict (i.e., observable or programmable).
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