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Abstract. The Learning with Errors (LWE) problem is one of the most
prominent problems in lattice-based cryptography. Many practical LWE-
based schemes, including Fully Homomorphic encryption (FHE), use
sparse ternary secret for the sake of efficiency. Several (hybrid) attacks
have been proposed that benefit from such sparseness, thus researchers
believe the security of the schemes with sparse ternary secrets is not
well-understood yet. Recently, May [Crypto 2021] proposed an efficient
meet-in-the-middle attack named Meet-LWE for LWE with ternary se-
cret, which significantly improves Odlyzko’s algorithm. In this work, we
generalize May’s Meet-LWE and then introduce a new hybrid attack
which combines Meet-LWE with lattice dual attack. We implement our
algorithm to FHE-type parameters of LWE problem and compare it with
the previous hybrid dual attacks. The result shows that our attack out-
performs other attacks in a large range of parameters. We note that our
attack has no impact on the LWE-based schemes in the PQC Standard-
ization held by NIST as their secrets are not sparse and/or ternary.

Keywords: LWE · Meet-in-the-Middle · Dual Attack · Hybrid Attack.

1 Introduction

For decades, the Learning with Errors (LWE) problem [28] has brought large
number of cryptographic applications in lattice-based cryptography, from public-
key encryptions [6, 17] and digital signatures [5, 18] to homomorphic encryptions
(HE) [22, 29, 15]. Informally, for a fixed secret s sampled from some fixed distri-
bution over Znq , a set of LWE instances is defined as (A,b = As + e mod q) ∈
Zm×nq × Zmq , where A is uniformly sampled from Zm×nq and e is a short error
vector sampled from a small discrete Gaussian distribution. The search-version
LWE is to recover s given the instances above and the decision-version LWE
asks to distinguish LWE instances from uniform ones.

? Work done while with Nanyang Technological University.
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The secret in originally proposed LWE-based schemes is uniform over Znq ,
while recently many practical constructions diverted the choice of secret dis-
tribution for the sake of efficiency. For instance, as one of the most popular
implementation of LWE, most HE schemes including HElib [22], SEAL [29] and
HEAAN [15] use ternary secret. Even more, the fully HE (FHE) schemes [21,
12, 14, 11, 23] use sparse ternary secrets as it depends on a key technique named
bootstrapping which needs the sparsity of the secret. Another well-known lattice-
based hard problem NTRU [9] also uses small/sparse5 secrets.

The concrete security of these LWE-based (NTRU-based) schemes with small/
sparse secrets is still not well-understood [1]. Many works [2, 4, 16] show that they
are less secure than those with non-small/sparse secrets, but it is still inconclu-
sive whether they are unsafe.

Recently, May [27] introduced a new combinatorial attack, named Meet-
LWE, on ternary LWE that significantly improves over Odlyzko’s Meet-in-the-
Middle (MitM) attack [24]. Compared with Odlyzko’s algorithm of runtime S0.5,
Meet-LWE runs in time roughly S0.25, where S is the size of the search-space.

The main open problem proposed by May [27] is whether Meet-LWE can
improve lattice hybrid attacks. We remark that the “lattice hybrid attack” in [27]
means specifically hybrid decoding attack that combines the Nearest Plane (NP)
algorithm [7] used in decoding attack and exhaustive-search, which is initialed
by Howgrave-Graham [25] against NTRU. From the point of view of attacks
against NTRU, hybrid decoding attack is presumably the best-known attack.

For FHE schemes, which are based on LWE with sparse ternary secret, there
are two types of hybrid attacks that are usually better than hybrid decoding
attack: hybrid primal attack [31, 20, 34, 33, 30] and hybrid dual attack [2, 32, 16,
19, 10]. We note that hybrid primal attack is essentially the same as hybrid
decoding attack as it also needs NP algorithm to solve a decoding problem (in
a different lattice), while hybrid dual attack is different from them.

Therefore, except for the open problem proposed by May [27], another prob-
lem follows from [27] is whether Meet-LWE can be used to improve hybrid dual
attack for LWE with sparse ternary secret. We study this problem in this paper.

1.1 Related Work

Hybrid dual attack is an efficient attack against LWE, especially LWE with
small/sparse secrets. Albrecht [2] introduced the first hybrid dual attack on LWE
with small/sparse secret, which is a combination of dual attack and exhaustive-
search. Accordingly, the hybrid dual attack consists of two phases, which we name
them as the lattice-phase and the guess-phase, where the first phase uses dual
attack to construct a new LWE instance and the second phase uses exhaustive-
search to solve the new instance.

5 In this paper, when we refer to “small”, we mean that the secret is binary/ternary and
has no fixed Hamming weight, i.e., uniform in {0, 1} or {0,±1}. While for “sparse”,
we mean that the secret is binary/ternary with a small fixed Hamming weight w.
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The works following [2] improve the attack by accelerating the guess-phase.
Espitau-Joux-Kharchenko [19] proposed an efficient matrix multiplication method
to accelerate exhaustive-search. Bi-Lu-Luo-Wang-Zhang [10] generalized Albrecht’s
hybrid dual attack to arbitrary secret and error by using both optimal pruning
and generalized efficient matrix multiplication. Cheon-Hhan-Hong-Son [16] re-
placed the exhaustive-search with MitM technique in [25] and showed that the
resulting hybrid attack outperforms other attacks for sparse ternary LWE with
large modulus. Our attack follows a similar strategy as in [16] but we replace
the exhaustive-search with the more efficient algorithm Meet-LWE.

1.2 Contributions

In this paper, we combine Meet-LWE with dual attack and introduce a new
hybrid dual attack, which we call hybrid dual Meet-LWE attack. The idea is
to replace the exhaustive-search for sub-secret in hybrid dual attack by Meet-
LWE. One key step in Meet-LWE is to guess k coordinates of error e such that
we can get k LWE equations without error. These equations will then be used
to decrease the size of the candidate set of secrets in the MitM step. The main
difficulty in replacing the exhaustive-search by Meet-LWE in hybrid decoding
attacks (and also hybrid primal attacks) is that we cannot use the k error-free
LWE equations on the projected sub-secret anymore [27].

Fig. 1: Comparison of our attack, Hybrid1 [10], Hybrid2 [16] for different LWE
parameters settings (log n, log q, w). For each case, the color indicates the best
attack and its bit security.

However, this is not a problem for hybrid dual attacks, since we can view the
lattice-phase of hybrid dual attacks as a dimension-error trade-off, as observed
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by Albrecht [2]. More precisely, in hybrid dual attacks, the lattice-phase pro-
duces a new LWE instance that has a smaller dimension but a larger error. Our
attack solves the new LWE instance by a generalized version of Meet-LWE. One
feature of this generalization is that the secret of the new LWE instance follows
an atypical ternary distribution while the original Meet-LWE is performed on
ternary secret with exactly w/2 entries of 1 and w/2 entries of −1. In addition,
the large error of the new LWE instance makes the analysis of Meet-LWE dif-
ferent from the original setting. We generalize Meet-LWE for the new setting in
hybrid dual attacks and give a rigorous analysis for it.

We also compare our attack with previous hybrid dual attacks on sparse
ternary LWE problems with FHE-type parameters and find out that our attack
outperforms those attacks in a large range of parameters, especially when the
Hamming weight of secret is small and the modulus q is not too large. See Fig.1
for an overview of the comparison. The main advantage of our attack is its high
efficiency in the guess-phase due to Meet-LWE.

We remark that our result does not invalidate the security claims of the
schemes in PQC Standardization held by NIST since their secrets are not sparse/
ternary or they use large enough Hamming weight.

1.3 Roadmap

In Section 2, we give some notations and a brief introduction of lattice reduction
algorithms and LWE problem. We recall May’s Meet-LWE in Section 3 and recall
previous hybrid dual attacks in Section 4. Our new hybrid dual Meet-LWE attack
is given in Section 5. In Section 6, we compare the complexity of our algorithm
with previous hybrid dual attacks on LWE problem with FHE-type parameters.
Finally, in Section 7 we present the conclusion of this paper.

2 Preliminaries

2.1 Notations

Denote log short for log2 and denote ln for the natural logarithm. Denote vectors
in bold, e.g. v. The Euclidean norm of v is ||v||. Denote 〈·, ·〉 the product of
two vectors. Matrices are denoted in upper-case bold, e.g. A. Denote hm(·)
the Hamming weight of a vector. For a compact set S ∈ Rn, denote U(S) the
uniform distribution over S. Denote Gc,s the Gaussian distribution of center c
and deviation s, and denote Gs short for G0,s. Denote the combinatorial number(
M
N1

)(
M−N1

N2

)
as
(

M
N1,N2

)
.

2.2 Lattice and Lattice Reduction

Lattice. A lattice of dimension m is a discrete additive subgroup of Rm for
some m ∈ N. A basis B of a lattice Λ is a set of n linearly independent vectors
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{b1, . . . ,bn} ⊂ Rm satisfies

Λ = Λ(B) = B · Zm =

∑
i∈[n]

zi · bi : zi ∈ Z

 .

We call n the rank of the lattice. If n = m, Λ is called a full-rank lattice. Denote
det(Λ) =

√
det (BTB) the determinant of Λ = Λ(B). The shortest vector of Λ

is a non-zero vector in a lattice Λ that has the minimum norm. Denote λ1(Λ)
the norm of the shortest non-zero vector, i.e., λ1(Λ) = minv∈Λ,v 6=0 ||v||.

Lattice reduction algorithm. Given a basis of a lattice as input, the lattice
reduction algorithm outputs a new basis of the lattice that consists of relatively
shorter and relatively pairwise not so skew vectors. The quality of basis outputted
by a lattice reduction algorithm is characterized by the root-Hermite factor δ0
which satisfies δm0 = ||b1||

det(Λ)
1
m
, where b1 is the first and shortest vector in the

output basis.
The BKZ algorithm [13], which is a successful generalization of the famous

LLL algorithm, is now a commonly used lattice reduction algorithm. The most
important parameter for BKZ is the blocksize β, whose relation with δ0 is given
in the following heuristic.

Heuristic 1 BKZ with blocksize β yields a basis with root-Hermite factor

δ0 ≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

This heuristic is experimentally verified by Chen [13].

2.3 The Learning with Errors Problem

Definition 1 (LWE [28]). Let n, q ∈ N. S is the secret distribution over Znq
and χ is a small error distribution over Z. For a secret s← S, denote LWEn,q,s,χ
the probability distribution on Znq × Zq obtained by sampling a ∈ Znq uniformly

random, sampling e $← χ and returning (a, 〈a, s〉 + e) ∈ Znq × Zq. Given access
to the outputs from LWEn,q,s,χ, we define two versions of LWE problem:

• Decision-LWE. Given m instances, distinguish LWEn,q,s,χ from U(Znq ×Zq)
for a fixed s← S.
• Search-LWE. Given m instances sampled from LWEn,q,s,χ with a fixed s ←
S, recover s.

The LWE instances can be rewrite in matrix form as follows:

(A,b = As + e mod q)

with s← S,A $← Zm×nq , e
$← χm,b ∈ Zmq .
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In this paper, we focus on LWE with sparse ternary secrets. We consider three
different distributions of sparse ternary s, where the last type of distribution
characterizes the error of the new LWE instance in the guess-phase of hybrid
dual attacks.

– Ternary-0 : T n0 (w) =
{
s ∈ {0,±1}n : s has w

2 (±1)-entries each
}

– Ternary-1 : T n1 (w) = {s ∈ {0,±1}n : s has w non-zero entries}
– Ternary-2 : T n2 (w) =

∑w
h=0 ps(h)T n1 (h), where

∑w
h=0 ps(h) = 1, i.e., T n2 (w)

is a mixture distribution of T n1 (h) with weight ps(h) for h ≤ w.

2.4 Lemma

Lemma 1 ([8]). For any real s > 0 and C > 0, and any x ∈ Rd, we have

Pr [|〈x,Gs〉| ≥ C · s||x||] < 2 · exp

(
−C

2

2

)
.

3 May’s Meet-LWE Attack

In this section, we review May’s Meet-LWE [27] attack on LWE with s ∈ T n0 (w)
and e ∈ {0,±1}m, and show that it can be straightforwardly generalized to the
case with s ∈ T n1 (w).

3.1 Ternary-0

We recall May’s Meet-LWE in its simplest form (Rep-0 in [27]). Given LWE
instance (A,b =As + e mod q) ∈ Zm×nq × Zmq , where s ∈ T n0 (w) and e ∈
{0,±1}m, a typical MitM works by splitting the secret into s = s1 +s2, rewriting
the LWE equation as

As1 = b−As2 − e mod q,

and hashing As1 and b−As2 for all enumerated s1, s2 ∈ T n0 (w/2). Then for
each pair of s1 and s2 with colliding hash values, we check whether

b−A(s1 + s2) mod q ∈ {0± 1}m.

In order to reduce the number of doing hash, which is the main runtime of the
process, Meet-LWE chooses only a subset of T n0 (w/2) for s1 and s2 as follows.

Notice that the number of representations s = s1 + s2 is R =
(
w/2
w/4

)2
. We

define the mapping

πmk : Zmq → Zkq ,x = (x1, · · · , xm)→ (x1, · · · , xk)

and fix a random target t ∈ Zkq and then look for s1 and s2 satisfying

πmk (As1 + e1) = t mod q and πmk (b−As2 + e2) = t mod q, (1)
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Algorithm 1 Meet-LWE on LWE with Ternary-0 Secret
Require: (A,b = As + e mod q) ∈ Zm×n

q × Zm
q with s ∈ T n

0 (w) and e ∈ {0,±1}m
Ensure: s ∈ T n

0 (w) satisfying As− b mod q ∈ {0,±1}m
1: compute the number R of representations of s = s1 + s2 where s1, s2 ∈ T n

0 (w/2)
2: compute k = blogq(R)c
3: sample a random t ∈ Zk

q

4: for all πm
k (e1) ∈ {0,±1}k/2 × 0k/2 do

5: construct L(1)
1 = {(s1, ϕ(As1)) : πm

k (As1 +e1) = t mod q} via a standard MitM
on u1 ∈ T n/2

0 (w/4)× 0n/2 and u2 ∈ 0n/2 × T n/2
0 (w/4) .

6: for all πm
k (e2) ∈ 0k/2 × {0,±1}k/2 do

7: construct L(1)
2 = {(s2, ϕ(b−As2)) : πm

k (b−As2 + e2) = t mod q} analogously
8: for all matched of (s1, ·) and (s2, ·) in the second component of L(1)

1 and L(2)
2 do

9: if s = s1 + s2 ∈ {±1, 0}n has weight w and As− b mod q ∈ {0,±1}m then
10: return s

where e1, e2 ∈ {0,±1}m satisfies e1 − e2 = e. To ensure that there is at least
one couple of s1 and s2 satisfying Eq.(1), we choose k such that k = blogq Rc
and therefore we have qk ≤ R. Note that the probability that Eq.(1) holds for

at least one representation of s1 + s2 is pπ =
(

1− 1
qk

)R
≈ 1

e . In order to find
such s1 and s2, we make up two lists

L
(1)
1 = {(s1, ϕ (As1)) : πmk (As1 + e1) = t mod q} ,

L
(1)
2 = {(s2, ϕ(b−As2)) : πmk (b−As2 + e2) = t mod q},

where the hash function ϕ : Zmq → {0, 1}m is defined as

ϕ(x)i =


0 if xi ∈

[
− q2 ,−1

)
1 if xi ∈

[
0, q2 − 1

)
0, 1 if xi ∈ [−1, 0) ∪

[
q
2 − 1, q2

) .
Notice that for entries in the two border ranges [−1, 0) and

[
q
2 − 1, q2

)
, we assign

both 0 and 1 to them. The lists L(1)
1 , L

(1)
2 can be constructed in a standard MitM

manner, i.e., enumerate s1 as the sum of

u1 ∈ T n/20 (w/4)× 0n/2 and u2 ∈ 0n/2 × T n/20 (w/4) .

Analogously, we proceed with s2 = u3 + u4.
To summarize, we first compute a number k based on the number of repre-

sentations R. Next for each enumeration of the first k coordinates of e (via some
standard MitM approach as e = e1 + e2), we construct lists L(1)

1 and L(1)
2 and

then search for a representation s1 + s2 of s based on the second component of
L

(1)
1 and L(1)

2 . The full algorithm is listed in Algorithm 1.
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Analysis. The size of lists L(1)
1 and L(1)

2 is

L(1) =
S(1)

qk
≈ S(1)

R
=

(
n

w/4, w/4

)(
w/2

w/4

)−2

,

where S(1) =
(

n
w/4,w/4

)
is the search-space of s1 and s2. Notice that L(1) is much

smaller than S(1) and this is the main advantage of Meet-LWE. We remark that
here we only count one in L(1) for each element in the lists L(1)

1 and L(1)
2 , and

omit possible multiple labels for elements, since the expected number of labels
for each element is 2

q ·m = Θ(1). However, in Section 5 when we study our hybrid
attack we cannot omit this as the error becomes much larger. We will discuss
this in more detail in Section 5 . The size of the four lists for u1,u2,u3,u4 is

L(2) = S(2) =

(
n/2

w/8, w/8

)
,

where S(2) is the search-space of u1,u2,u3,u4.
The time T (1) to construct list L(1)

1 (respectively L(1)
2 ) is

T (1) = max
{
L(1), L(2)

}
.

Finding a representation s1 +s2 from L
(1)
1 and L(1)

2 can be realized via Odlyzko’s
hash function on the m− k coordinates in time

T (0) = max

{
L(1), 2−(m−k)

(
L(1)

)2
}

= L(1).

Here we assume that L(1) ≤ 2m−k, otherwise we can modify Odlyzko’s hash
function by assigning more than two labels to ensure this.

Then the time complexity of list construction is

Ts = max{T (1), T (0)} = max{L(1), L(2)}.

In addition, the time of enumerating

πmk (e1) ∈ {0,±1}k/2 × 0k/2 and πmk (e2) ∈ 0k/2 × {0,±1}k/2

is Te = 3k/2. We summarize these results in lemma 2.

Lemma 2. The runtime of Meet-LWE attack on LWE with Ternary-0 secret
shown in Algorithm 1 is computed as

TMitM-0 = Ts · Te = max

{(
n

w/4, w/4

)(
w/2

w/4

)−2

,

(
n/2

w/8, w/8

)}
· 3k/2,

and the success probability is pMitM-0 = pπ = 1
e .
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3.2 Ternary-1

Recall that T n1 (w) contains s ∈ {0,±1}n with w non-zero entries. This type of
secret is very similar to Ternary-0. Given LWE instance with secret s ∈ T n1 (w),
we can split s into s1 +s2 with s1, s2 ∈ T n1 (w/2). The number of representations
is R =

(
w
w/2

)
. The two levels of lists is constructed similarly as Section 3.1.

Accordingly, we can compute the size of the lists as

L(1) =
S(1)

R
=

(
n

w/2

)
· 2w/2/

(
w

w/2

)
L(2) = S(2) =

(
n/2

w/4

)
· 2w/4.

The total runtime is

TMitM-1 = Ts · Te = max

{(
n

w/2

)
· 2w/2/

(
w

w/2

)
,

(
n/2

w/4

)
· 2w/4

}
· 3k/2,

where k = blogq Rc, and the success probability is also pMitM-1 = pπ = 1
e .

4 Hybrid Dual Attacks

In this section, we review previous hybrid dual attacks [2, 10, 16, 19]. Hybrid dual
attacks have two phases: the lattice-phase and the guess-phase. The lattice-phase
is the same for all hybrid dual attacks and we can view it as a dimension-error
trade-off, i.e., after the first phase, we get a new decision-LWE instance with a
smaller dimension but a larger error. In the guess-phase, there are two different
approaches to solve the new instance. A detailed description follows.

Lattice-phase. In order to distinguish whether the given instance (A,b) is sam-
pled from U(Zm×nq ×Zmq ) or LWEn,q,s,Gσ with s ∈ T n1 (w), we divide A into two
parts:

A = (A1,A2) ∈ Zm×rq × Zm×(n−r)
q .

Accordingly, we also divide s into two parts: s = (s1, s2) ∈ {0,±1}r×{0,±1}n−r.
In this phase, the attack constructs the dual lattice over A2:

Λ(A2) =

{
(w,v) ∈ Zm ×

(
1

c
· Z
)n−r

: w ·A2 = c · v mod q

}

with scale factor c = σ ·
√

m
wn−r

, where wn−r is the expected hamming weight

of s2. If the given instance follows LWEn,q,s,Gσ , by obtaining short vector (w,v)
from Λ(A2), we compute 〈w,b〉 mod q as

〈w,b〉 = w(As + e)

= wA1s1 + wA2s2 + 〈w, e〉
= wA1s1 + c · 〈v, s2〉+ 〈w, e〉 mod q.
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This can be viewed as a new LWE instance
(
ā, b̄ = 〈ā, s1〉+ ē mod q

)
, where

b̄ = 〈w,b〉 mod q,
ā = wA1 mod q,
ē = c · 〈v, s2〉+ 〈w, e〉 mod q.

(2)

Denote M the number of short vectors (w,v) ∈ Λ(A2). We write Eq.(2) in the
matrix form as b̄ = Ās1 + ē mod q, where b̄, ē ∈ ZMq and Ā ∈ ZM×rq . This
instance follows distribution LWEr,q,s1,Gρ with ρ = `σ where ` = ||(w,v)|| [6]. If
the given instance is from U

(
Zm×nq × Zmq

)
, then the new instance

(
Ā, b̄

)
is also

uniform over ZM×rq ×ZMq . So next we are going to solve this new decision-LWE
instance in the second phase.

Guess-phase. The difference between different hybrid dual attacks is the method
of solving the new instance in this phase.

The first method works by checking the distribution of b̄−Ās̃1 mod q, where
s̃1 is some guessed candidate of s1. By enumerating s̃1 in some way, we can
compute b̄−Ās̃1 mod q. It equals to a Gaussian error ē if (Ā, b̄) ∼ LWEr,q,s1,Gρ ,
otherwise it is uniform over ZMq . We can compute the statistical distance to
distinguish LWEn,q,s1,Gρ from U

(
ZM×rq × ZMq

)
. This method is used in the first

hybrid dual attack [2] and also in [10, 19]. Note that [19] defined the distance by
themselves instead of using statistical distance while the results are similar.

The second method is to check whether all entries of b̄ − Ās̃1 mod q are
in some range [−B,B] for a chosen B. If this holds for one enumerated s̃1, we
decide the original instance is from LWEn,q,s,Gσ . The hybrid dual attack in [16]
uses this method and it additionally accelerates the guessing of s1 by a MitM
approach. Notice that compared with the first method, the second method has a
stricter requirement on the error size of the new LWE instance, and thus shorter
vectors from the dual lattice are required in the lattice-phase.

5 Combine Meet-LWE with Dual Attack

We are now ready to present our hybrid dual Meet-LWE attack. The idea is
to replace the exhaustive-search in the guess-phase of hybrid dual attacks by
Meet-LWE. That is, in the guess-phase, we use generalized Meet-LWE to solve
the new instance

(
Ā, b̄

)
∈ ZM×rq × ZMq .

There are two problems we need to overcome when applying Meet-LWE to
the new setting. The first one is that the secret of the new LWE instance has
a different distribution, which will influence the choices of k and the analysis of
success probability. The second one is that the error of the new LWE instance
becomes large. For this we need to re-analyze the runtime of Meet-LWE as some
constant omitted in the original setting with ternary error now becomes too
large to be omitted. We solve these two problems in Section 5.1 and Section 5.2
respectively, and then present the complete algorithm and analysis in Section 5.3.
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5.1 Meet-LWE on Ternary-2 LWE

We first consider the secret distribution of the new instance(
Ā, b̄ = Ās1 + ē mod q

)
∈ ZM×rq × ZMq .

Note that in this subsection, we follow May [27] to set the error ternary and
defer the discussion of the Gaussian error to the next subsection.

As the secret s1 ∈ {0,±1}r is part of the original secret s, we have hm(s1) ≤
wr := min(r, w). Thus s1 ∈ T r2 (wr) and for each h ≤ wr the probability ps(h)
for s1 to have weight h is

ps(h) =

(
w
h

)(
n−w
r−h

)(
n
r

) .

To apply Meet-LWE attack to this type of secret, we first need to choose
a weight parameter ŵ ≤ wr and use u1,u2 ∈ T r1 (ŵ/2) to form s1. Then the
search-space of u1,u2 is

S(1) =

(
r

ŵ/2

)
· 2ŵ/2.

Notice that for a fixed parameter ŵ, we can only form the secrets in

ŵ/2⋃
h=0

T r1 (2h),

and hence the success probability is at most
∑ŵ/2
h=0 ps(2h).

The next step is to identify the dimension k of the random target t ∈ Zkq .
Recall that in Section 3.1 and Section 3.2, we just set k = blogq Rc based on
the number of representations R. However, for T r2 (wr) we cannot identify k
directly as we have different number of representations for different cases of
s1 with different weights. More precisely, for each h ≤ ŵ/2, the number of
representations of u1 + u2 for s1 with hm(s1) = 2h is

R(h) =

(
2h

h

)(
r − 2h

ŵ/2− h

)
· 2ŵ/2−h.

Notice that since hm(s1) = 2h and u1,u2 ∈ T r1 (ŵ/2), there are ŵ/2 − h non-
zero entries of u1 and ŵ/2− h non-zero entries of u2 that cancel each other out
among the r − 2h 0-entries of s1, and for each cancel out entry, we have two
possibilities 1 + (−1) = 0 or (−1) + 1 = 0. This gives us

(
r−2h
ŵ/2−h

)
· 2ŵ/2−h. For

the 2h non-zero entries of s1, there are ŵ/2− (ŵ/2−h) = h entries from u1 and
u2 respectively, which gives us

(
2h
h

)
.

For each R(h), let k(h) = blogq(R(h))c. Thus we need to choose

k ∈
[
min
h

(k(h)),max
h

(k(h))

]
.
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Algorithm 2 Generalized Meet-LWE on LWE with Ternary-2 Secret
Require:

(
Ā, b̄

)
∈ ZM×r

q × ZM
q , ŵ

Ensure: s1 ∈ T r
2 (ŵ) satisfying Ās1 − b̄ mod q ∈ {0,±1}M or ⊥

1: for each h ∈ [0, ŵ/2] do
2: compute the number R(h) of representations of s1 = u1 + u2 where u1,u2 ∈

T r
1 (ŵ/2)

3: compute k(h) = blogq(R)c
4: choose a k ∈ [minh(k(h),maxh(k(h))] (we will brute-force all possible values for k

and choose the optimal one in Section 6)
5: sample a random t ∈ Zk

q

6: for all πM
k (e1) ∈ {0,±1}k/2 × 0k/2 do

7: construct L(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πM

k

(
Āu1 + e1

)
= t mod q

}
via a standard

MitM
8: for all πM

k (e2) ∈ 0k/2 × {0,±1}k/2 do
9: construct L(1)

2 =
{(

u2, ϕ
(
b̄− Āu2

))
: πM

k

(
b̄− Āu2 + e2

)
= t mod q

}
analo-

gously
10: for all matched of (u1, ·) and (u2, ·) in the second component of L(1)

1 and L(1)
2 do

11: if s1 = u1 + u2 ∈ T r
2 (ŵ) and Ās1 − b̄ mod q ∈ {0,±1}M then

12: return s1
13: return ⊥

For a fixed k, if hm(s1) = 2h, then

πMk
(
Āu1 + e1

)
= t mod q and πMk

(
b̄− Āu2 + e2

)
= t mod q

holds with probability pπ(h) = 1 −
(

1− 1
qk

)R(h)

, where ē = e1 − e2. Then
overall success probability is

ŵ/2∑
h=0

ps(2h) · pπ(h) =

ŵ/2∑
h=0

ps(2h) ·

(
1−

(
1− 1

qk

)R(h)
)
. (3)

The remaining part of the algorithm is the same as before. We give the
pseudo-code of the generalized Meet-LWE on LWE with Ternary-2 Secret in
Algorithm 2.

Analysis. The runtime analysis is similarly as before. The sizes of the lists are
L(1) = S(1)

qk
and L(2) = S(2) =

(
r/2
ŵ/4

)
· 2ŵ/4. The time T (1) to construct list

L
(1)
1 , respectively L

(1)
2 , is T (1) = max

{
L(1), L(2)

}
, and the time T (0) of ap-

proximately matching on the M − k coordinates via Odlyzko’s hash function is
T (0) = max

{
L(1), 2−(M−k)

(
L(1)

)2}
= L(1). The time of list construction is

Ts = max
{
T (1), T (0)

}
= max

{
L(1), L(2)

}
.

The time of enumerating πMk (e1) and πMk (e2) is Te = 3k/2.
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Combining the runtime and the success probability given in Eq.(3), we con-
clude with the following lemma.

Lemma 3. The runtime of Meet-LWE algorithm in Algorithm 2 is

TMitM-2 = Ts · Te = max

{(
r

ŵ/2

)
· 2ŵ/2/qk,

(
r/2

ŵ/4

)
· 2ŵ/4

}
· 3k/2,

and the success probability is pMitM-2 =
∑ŵ/2
h=0 ps(2h) · pπ(h).

5.2 The larger error

When performing Meet-LWE in the guess-phase of hybrid dual attack, the error
of the new LWE instance is Gaussian instead of in {0,±1}M . In this case, we
need to reconsider the runtime of the attack. We first choose a boundary B to
cover the new error with a high probability6 as in the following lemma, which
can be proved by using Lemma 1.

Lemma 4. Error ē of the new LWE instance given in Eq.(2) satisfies

Pr [|ē| < B] ≥ 1− 2 · exp(−4π),

where B = (2
√

2π + 1) ·
√

m
m+n−r · `σ and ` is the length of (w,v) ∈ Λ(A2).

Thus, we have that

pM := Pr
[
ē ∈ [−B,B]M

]
≥ (1− 2 · exp(−4π))M .

Now we have to enumerate πMk (e1) and πMk (e2) in a larger range [−B,B] using
time Te = (2B + 1)k/2.

Note that for the estimation in Section 6 we usually have k = 1 as q and
B are large. In this case we can still use MitM for πM1 (e1) and πM1 (e2) in one
dimension to get time Te. We note that this case is not considered in [27] as the
parameter k in [27] is large, which is different from ours.

Specifically, now we can use

πM1 (e1) ∈ [0, c) and πM1 (e2) ∈ {c · i−B | i ∈ [0, c)}

to form πM1 (ē) ∈ [−B,B], where c =
⌈√

2B + 1
⌉
. For example, to enumerate

e ∈ [−40, 40] we can split it into e = e1 + e2 by taking e1 ∈ [0, 9) and e2 ∈
{9 · i − 40 | i ∈ [0, 9)} where 9 =

⌈√
40× 2 + 1

⌉
. This method can also be used

to deal with the situation when k is odd.
6 In Lemma 4, we follow [16] to choose the value of B such that the probability for
|ē| < B is close to 1. Our experimental results show that the overall attack complexity
is not sensitive on B and the current choice of B in Lemma 4 is almost optimal.
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The second difference is that when constructing lists

L
(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πMk

(
Āu1 + e1

)
= t mod q

}
,

L
(1)
2 =

{(
u2, ϕ

(
b̄− Āu2

))
: πMk

(
b̄− Āu2 + e2

)
= t mod q

}
,

we will use a different hash function ϕ : ZMq → {0, 1}M defined as

ϕ(x)i =


0 if xi ∈

[
− q2 ,−B

)
1 if xi ∈

[
0, q2 −B

)
0, 1 if xi ∈ [−B, 0) ∪

[
q
2 −B,

q
2

) .
Recall that in Section 3.1, when we compute the size L(1) of lists L(1)

1 and L(1)
2 ,

we count each element once in L(1) as each element has only a constant number
of labels in expectation. However, this does not hold for the current setting,
since now the expected number of labels for each element is 2B+1

q M , which is
not small anymore if B is large.

To figure out this difference, we introduce a new notation L(1) to represent
the overall number of labels for all elements in lists L(1)

1 and L(1)
2 , and we still

use L(1) to represent the number of elements in the lists. For a givenM , we have

L(1) = L(1) · 2
2B+1
q M .

Since L(1) will influence the runtime, we need to be careful when choosing the
dimension M for the new LWE instance to optimize the runtime of Meet-LWE.

5.3 Our attack

Now we are ready to give our attack. For given guessing dimension r, blocksize
β and weight parameter ŵ ≤ wr, the pseudo-code of our attack is shown in
Algorithm 3. Line 1-4 is the lattice-phase of our attack, which is the same as other
hybrid dual attacks. After this phase, we get a new instance

(
Ā, b̄

)
∈ ZM×rq ×ZMq

and solve it by using Algorithm 4. Then according to the output of Algorithm
4, Algorithm 3 outputs the result of the decision-LWE problem.

Note that Algorithm 4 is essentially the same as Algorithm 2, except that
in Algorithm 4, the scope of exhaustive-searching πMk (e1), πMk (e2) in line 6, 8
and the final judgment condition in line 11 are both changed to adapt to the
situation of large error in hybrid dual attack.

Analysis. We represent s1 = u1 + u2 with u1,u2 ∈ T r1 (ŵ/2). The sizes of the
two level lists are

L(1) =
S(1)

qk
=

(
r

ŵ/2

)
· 2ŵ/2 · 1

qk
,

L(2) = S(2) =

(
r/2

ŵ/4

)
· 2ŵ/4.
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Algorithm 3 Hybrid Dual Meet-LWE Attack
Require: (A,b) ∈ Zm×n

q × Zm
q , r, β, ŵ, σ

Ensure: LWE or Uniform
1: divide A into two parts (A1,A2) ∈ Zm×r

q × Zm×(n−r)
q

2: construct lattice Λ(A2) =
{

(w,v) ∈ Zm × Zn−r : w ·A2 = v mod q
}

3: perform BKZ algorithm with blocksize β on Λ(A2) to obtainM short vectors (w,v)
of length `

4: construct new instance
(
Ā, b̄

)
∈ ZM×r

q × ZM
q by computing each row/entry of Ā

and b̄ as ā = wA1 mod q and b̄ = 〈w,b〉 mod q
5: set B as Lemma 4
6: run Algorithm 4 on input

(
Ā, b̄

)
, B and ŵ

7: if Algorithm 4 outputs a secret vector then
8: return LWE
9: else
10: return Uniform

Then the time T (1) to construct list L(1)
1 (respectively L(1)

2 ) is computed as

T (1) = max
{
L(1), L(2)

}
.

Finding a representation u1+u2 from L
(1)
1 and L(1)

2 can be realized via Odlyzko’s
hash function on the M − k coordinates in time

T (0) = max

{
L(1), 2−(M−k)

(
L(1)

)2
}

(4)

where L(1) = L(1) · 2
2B+1
q M . Then the time of list construction is

Ts = max
{
T (1), T (0)

}
. (5)

And the time of enumerating πMk (e1) and πMk (e2) is

Te = (2B + 1)k/2. (6)

Combining Eq.(5), Eq.(6) and Lemma 4, we get the following theorem.

Theorem 1. The runtime of our hybrid dual Meet-LWE attack in Algorithm 3
is

TDUAL-MEET = Treduction + Tmeet,

where Treduction = TBKZ(β), Tmeet = Ts · Te and Ts, Te are defined as Eq.(5),
Eq.(6) respectively. The success probability of the attack is

pDUAL-MEET = pMitM-2 · pM ,

where pMitM-2 =
∑ŵ/2
h=0 ps(2h) · pπ(h), and pM = (1− 2 · exp(−4π))M .
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Algorithm 4 Generalized Meet-LWE on LWE with Ternary-2 Secret and large
error
Require:

(
Ā, b̄

)
∈ ZM×r

q × ZM
q , B, ŵ

Ensure: s1 ∈ T r
2 (ŵ) satisfying Ās1 − b̄ mod q ∈ {0, · · · ,±B}M or ⊥

1: for each h ∈ [0, ŵ/2] do
2: compute the number R(h) of representations of s1 = u1 + u2 where u1,u2 ∈

T r
1 (ŵ/2)

3: compute k(h) = blogq(R)c
4: choose a k ∈ [minh(k(h),maxh(k(h))] (we will choose the optimal value of k to

optimize the complexity in Section 6)
5: sample a random t ∈ Zk

q

6: for all πM
k (e1) ∈ {0, · · · ,±B}k/2 × 0k/2 do

7: construct L(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πM

k

(
Āu1 + e1

)
= t mod q

}
via a standard

MitM
8: for all πM

k (e2) ∈ 0k/2 × {0, · · · ,±B}k/2 do
9: construct L(1)

2 =
{(

u2, ϕ
(
b̄− Āu2

))
: πM

k

(
b̄− Āu2 + e2

)
= t mod q

}
analo-

gously
10: for all matched of (u1, ·) and (u2, ·) in the second component of L(1)

1 and L(1)
2 do

11: if s1 = u1 + u2 ∈ T r
2 (ŵ) and Ās1 − b̄ mod q ∈ {0, · · · ,±B}M then

12: return s1
13: return ⊥

Remark 1. There is one parameter M left to be determined, which is chosen to
balance the two components of T (0) in Eq.(4). Accordingly, we set

M =
kq

2B + 1 + q
· logL(1)

to ensure that L(1) ≈ 2−(M−k)
(
L(1)

)2

.

6 Complexity Estimation and Comparison

In this section, we present a detailed comparison of our attack with the other
two hybrid dual attacks in [10] and [16] 7 (we refer to them as Hybrid1 and Hy-
brid2 respectively) by estimating the bit-security of various parameter settings
of sparse ternary LWE.

Our estimators take LWE parameters as input and find optimal parameters
for the attack to get the optimal (lowest) bit-security. The estimation of bit-
security is computed as log Tattack− log pattack [4]. The concrete formulas for our
attack are given in Theorem 1.

The runtime of each hybrid attack Tattack consists of two parts: Treduction and
Tguess, where Treduction is the time of lattice reduction, and Tguess corresponds
to the guess-phase for searching the correct sub-secret in dimension r (which is
7 Notice that [10] and [16] are the representatives of existing two different categories
of hybrid dual attacks and [10] improves the attack in [2] with additional tricks.
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Table 1: log n = 12, log q = 50, w = 128, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS

attack 302 215 221 202
Cost reduction 302 166 183 172
(bit) guess - 166 181 170=147+23

prob. - 49 38 30
r - 1839 2247 2245

Parameter β 925 460 520 483
k - - - 1

Table 2: log n = 10, log q = 20, w = 192, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS

attack 188 175 285 220
Cost reduction 188 169 267 204
(bit) guess - 169 267 203=156+47

prob. - 5 19 16
r - 161 357 432

Parameter b 539 475 810 595
k - - - 5

denoted as Tmeet in our attack as we use MitM technique to accelerate guessing).
Under the optimal parameters we usually have Treduction ≈ Tguess. The main
parameter to balance Treduction and Tguess is the dimension r. Since we focus
on sparse ternary LWE problems, in the guess-phase we usually only cover part
of the search-space, which incurs a loss in pattack but reduces Tguess. The final
estimation is a trade-off between the three components: Treduction, Tguess, and
pattack. Note that in this paper we assume that TBKZ(d, β) = 8d · 20.292β+16.4,
where d is the dimension of the lattice and β is the blocksize of BKZ, and use
the amortizing model [2] for BKZ performed in dual attack.

We perform the attacks on LWE with FHE-type parameters. Before present-
ing the complete picture of the comparison, we first analyze 3 typical cases in
detail to get a close look into the inner parts of the attacks.

6.1 Case 1

We begin with a case for which our attack works the best. We set log n =
12, log q = 50, w = 128, σ = 3.2. The results for the standalone dual at-
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Table 3: log n = 13, log q = 200, w = 128, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS

attack 140 124 120 206
Cost reduction 140 112 112 198
(bit) guess - 110 112 199=120+79

prob. - 12 9 7
r - 1650 2050 1637

Parameter b 365 270 269 563
k - - - 1

tack, Hybrid1, Hybrid2, and our attack are shown in Table 1. In addition
to log Treduction, log Tguess, and − log pattack, we also give the guessing dimen-
sion r and blocksize β for each attack. For our attack, we additionally give the
enumeration dimension k for the error and we split Tguess into Ts and Te.

All three hybrid attacks achieve lower complexity than the standalone dual
attack due to the sparse ternary secret. Our attack achieves the lowest complexity
due to its high efficiency in the guessing. Compared with Hybrid1, our attack
guesses in a larger dimension (2245 vs 1839) in a slightly longer time (170 vs
166) but achieves a much higher success probability (30 vs 49). Compared with
Hybrid2, our attack guesses in a similar dimension with a shorter time (170 vs
181) and achieves a higher success probability (30 vs 38).

Notice that the time of guessing Tguess for our attack is close to Hybrid1
and shorter than Hybrid2 even if the time Te = 223 for enumerating e1, e2

is included. Recall that reference [27] deals with schemes with ternary secrets
and the time for enumeration is Te = 3k/2. For us, the new LWE instance after
the lattice-phase has a large error range B, which could make Te = (2B +
1)k/2 very large. At first glance, it may look strange that here our Te is still
so small. However, notice that in our case q is large enough for the number
of representations R such that we just need to fix a random target t in one
dimension, i.e., k = 1, thus Te = (2B + 1)0.5 is not too large.

6.2 Case 2

Next, we look at a different case with a larger weight ratio w
n , where Hybrid1

works the best. We choose log n = 10, log q = 20, w = 192, σ = 3.2. The results
are shown in Table 2. Different from the first case, now Hybrid1 achieves the
lowest complexity. The main reason for the bad performance of our attack is the
larger Te = 247 due to the larger weight ratio w

n ≈ 0.177. Recall that for case
1 we have w

n ≈ 0.031. The large weight ratio results in a larger number R of
representations, which increases the dimension k for the random target t and
then increases Te.
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It may look weird that our attack and Hybrid2, which use the MitM tech-
nique, are even worse than the standalone dual attack. This is due to the fun-
damental difference between the two different categories of hybrid dual attacks
discussed in Section 4. For dual attack and Hybrid1, they need to find short vec-
tors in the lattice-phase such that in the guess-phase the distribution of the new
error with range B can be differentiated from the uniform distribution. While
for our attack and Hybrid2, we have to guarantee a smaller B

q such that we can
recognize the correct solution by checking each entry of b̄− Ās1 mod q. There-
fore, we have to find shorter vectors in the lattice-phase, which makes Treduction
large, especially when w

n is large.

6.3 Case 3

We consider the last case with a very large q = 2200, with which Hybrid2 works
best. We set log n = 13, log q = 200, w = 128, and σ = 3.2. The results are shown
in Table 3. We can see that Hybrid1 and Hybrid2 have similar complexity that
are smaller than dual attack, while our attack has a much larger complexity than
all of them since we have a very large Te = 279. Since k = 1, the main reason
for the large Te = (2B + 1)k/2 is that when q is large, the range B of the error
after the lattice reduction also becomes large. On the other hand, Hybrid1
and Hybrid2 are mainly influenced by the relative value of B

q instead of the
absolute value of B. Notice that in this case with large q and small wn , Hybrid2
outperforms Hybrid1 while in the first two cases Hybrid2 cannot compete with
Hybrid1.

6.4 Overview

To summarize, our attack outperforms Hybrid1 and Hybrid2 when the weight
ratio w

n is small and q is not too large. When the ratio w
n is large, our attack

and Hybrid2 are both worse than Hybrid1, sometimes even worse than dual
attack. When q is very large, our attack suffers from the large Te, and Hybrid2
achieves the best performance if the ratio w

n is small enough.
To give an overview of the different advantages of the three hybrid dual

attacks, we consider a series of sparse ternary LWE problems with FHE-type
parameters. For each log n = 10, 11, 12, 13, we choose appropriate q such the
corresponding scheme with ternary secret has bit-security around 128 to 256.
For each considered case of n and q, we consider three different values of w =
64, 128, 192 and fix σ = 8/

√
2π ≈ 3.2.

The comparison results are shown in Fig.1. For each case we give the estima-
tion result of the best attack together with a color indicating the best attack for
this case. The figure can be roughly partitioned into three regions, corresponding
to the three cases considered above. Our attack is the best for most cases when
log n = 12. For log n = 10, 11, as the weight ratio w

n becomes larger, Hybrid1
is the best for most cases and our attack is the best for cases with small weight
(e.g., all cases for w = 64 and log n = 11). When log n = 13, the corresponding
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values of q become large. In this case, Hybrid2 becomes the best attack for
most cases while our attack is the best for cases with smaller q.

Based on Fig.1, some FHE implementations (e.g., HElib [22] and HEAAN
[15]) with parameters that fall within the advantage area of our attack should re-
estimate their parameters. Our results do not make any impact on the schemes
in Round 3 of Post-Quantum Cryptography Standardization held by NIST since
for the LWE-based schemes, they do not adopt sparse ternary secret terms (ex-
cept for NTRULPrime, however for these schemes, Hybrid1 works better), and
for NTRU-based schemes, dual attacks cannot be applied to estimate the bit-
security of them [3].

Remark 2. We do not include dual attack as Hybrid1 always works no worse
than dual attack [10]. In addition, we also compare these three attacks with
the primal attack and the comparison shows that the hybrid dual attacks work
better than the primal attack in most cases. Due to the space limitation, we do
not give the specific comparison results here.

7 Conclusion

In this work, we introduce and analyze a new hybrid dual attack named hybrid
dual Meet-LWE attack, which combines dual attack and a generalization of Meet-
LWE attack [27]. We compare our attack with previous hybrid dual attacks on
LWE with FHE-type parameters. The result shows that our attack outperforms
those attacks in a large range of parameters. According to our results, some FHE
implementations should update their parameters.

For future works, we note that the main drawback of our attack is the addi-
tional time of guessing k coordinates of the errors, which increases with q. Re-
cently, [26] introduced a locality sensitive hashing (LSH) technique that avoids
the guessing of the errors in Meet-LWE. It is interesting to study whether this
technique can improve the performance of our attack.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (No. 61972391) and the Open Project Program of State
Key Laboratory of Cryptology (MMKFKT201810).
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