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Abstract. The syndrome decoding problem lies at the heart of code-
based cryptographic constructions. Information Set Decoding (ISD) algo-
rithms are commonly used to assess the security of these systems. The
most efficient ISD algorithms rely heavily on nearest neighbor search
techniques. However, the runtime result of the fastest known ISD algo-
rithm by Both-May (PQCrypto ’17) was recently challenged by Carrier
et al. (Asiacrypt ’22), which introduce themselves a new technique called
RLPN decoding which yields improvements over ISD for codes with small
rates k

n
≤ 0.3.

In this work we first revisit the Both-May algorithm, by giving a clean
exposition and a corrected analysis. In this context we confirm the result
by Carrier et al. that the initial analysis is flawed and conclude with
the same runtime exponent. Our work aims at fully substantiating the
corrected runtime exponent by a detailed analysis. Furthermore, we show
that the Both-May algorithm significantly improves on memory complex-
ity over previous algorithms. Our first main contribution is therefore to
give the correct perspective on the significance of the Both-May algorithm
and to clarify any remaining doubts on the corrected baseline.
As a second main contribution we detail a possible strategy for future
improvements of the Both-May algorithm. This strategy is based on
introducing a novel technique to combine the list construction step and
the list filtering step commonly applied by ISD algorithms. Therefore we
treat the nearest neighbor routine in a non-blackbox fashion which allows
us to embed the filtering into the nearest neighbor search. In this context
we introduce the fixed-weight nearest neighbor problem, and propose a
first algorithm to solve this problem.
Even though, our current analysis does not yet yield a gain in complexity
over the Both-May algorithm, we point out different ways to further
improve the proposed technique.

Keywords: representation technique· syndrome decoding· nearest neighbor
search · code-based cryptography

1 Introduction

Cryptography based on the hardness of the decoding problem, known as code-
based cryptography, is a promising candidate for post quantum secure systems.
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The ongoing fourth round standardisation effort of NIST includes three candi-
dates, all of them being code-based constructions. Therefore it is certain that
after the end of this round at least one code-based scheme will be selected for
standardisation. This makes analysis of those schemes, their security and espe-
cially strengthening our understanding of the hardness of the underlying problem
an important task.

The binary syndrome decoding problem can be formulated as given the parity-
check matrix H of a binary linear code of length n and dimension k as well as a
syndrome s = He, recover the low Hamming weight vector e. The fastest known
algorithms for solving generic instances of this problem are usually Information
Set Decoding (ISD) algorithms, pioneered by the original work of Prange in
1962 [Pra62]. Since then there have been numerous improvements on Prange’s
algorithm [Ste88,Leo88,Dum91,BLP11,MMT11,BJMM12,MO15,BM17,BM18],
mostly by extending the initial algorithm by an enumeration step. These works
usually improve the asymptotic runtime exponent as long as the error-weight,
i.e., the Hamming weight of e, is as high as Ω(n). In this case the asymptotic
running time is of the form 2cn, where the constant c depends on the precise code
parameters and the ISD algorithm. However, most code-based constructions do
not fall into this regime by using an error-weight as small as o(n). Moreover, it has
been shown that the asymptotic advantage of all ISD improvements vanishes for a
sublinear choice of the error weight [TS16]. And yet, the best known algorithms for
attacking those code-based schemes are exactly these ISD extension of Prange’s
algorithm, still improving second order terms or polynomial factors in this regime.

Usually, the theoretical study of algorithmic improvements in the constant
or high weight regime serves as an indicator which variations lead to practical
improvements in the cryptographic setting. Just recently the ISD algorithms by
May-Meurer-Thomae (MMT) [MMT11] and the one by Becker-Joux-May-Meurer
(BJMM) [BJMM12], both initially studied and proposed in the constant weight
regime, were used to obtain new computational records in the cryptographic
setting [EMZ22]. In their work, Esser, May and Zweydinger [EMZ22] identify the
memory consumption of these algorithms as one of the major bottlenecks for prac-
tical applications. Further, the memory consumption, or more precisely the slow-
down emerging from the memory access cost that goes along with accessing large
amounts of random access memory (RAM), is essential for currently proposed
parameter sets to reach the necessary security goals [EMZ22,EB22,CCU+20].
Therefore, for the security of code-based constructions as well as for the practical
adaptation of advanced ISD techniques it is important to understand how and
if this memory usage can be reduced. Recently, first time-memory trade-offs to
achieve this goal were introduced [EZ22], but those techniques always come at
the cost of an increased time complexity.

The most recent ISD algorithms speed up the enumeration step by the use of
nearest neighbor search techniques [MO15,BM17,BM18]. The fastest of these
algorithms by Both-May [BM18] claims significant improvements on the time and
memory complexity of previous proposals. However, in a recent work, Carrier,
Debris-Alazard, Meyer-Hilfiger and Tillich [CDMT22] challenge the result of
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Both-May, by pointing out a flaw in the analysis of its time complexity. Note that
(a later revision of) [CDMT22] includes the corrected time complexity exponent
together with a correction of necessary parts of the original analysis. However,
considering the significance of the Both-May algorithm a self-contained corrected
analysis providing full details is of major importance for the field. Note that the
significance of the Both-May algorithm stems from the fact that the corrected
time exponent still slightly improves previous ISD, and the algorithm hence
remains the baseline for new improvements.

This baseline is of major importance to classify the gain of new ISD and
other decoding algorithms, as for instance the newly proposed RLPN technique
of Carrier et al. [CDMT22], which achieves runtime improvements over ISD in
some regimes. In this work we clarify any left doubts by giving a corrected and
simplified analysis of the Both-May algorithm confirming the exponent stated
in the revision of [CDMT22]. Furthermore, our analysis also reveals significant
gains in the memory complexity of the Both-May algorithm over previous works,
contradicting the perception that the algorithm after all constitutes only as a
slight improvement over previous ISD. Overall, this result is in line with the
results from Esser and Bellini [EB22] who performed a more practical study of
the algorithm also observing mostly memory rather than time improvements.

Furthermore, we extend the algorithm by Both-May detailing a possible
strategy for future improvements. Our idea combines two steps which are usually
performed sequentially in the enumeration part of the algorithm – the nearest
neighbor search and a subsequent filtering of the found solutions according to
some criterion. Therefore we treat the nearest neighbor search in non-blackbox
fashion which allows us to directly embed the filtering into the procedure.

Our Contribution. The contribution of this work is twofold. First we provide a
clean description of the most recent ISD algorithm by Both-May and a corrected
analysis. Our first main contribution is therefore to provide the correct baseline
for further improvements. In this context, we confirm the observation of Carrier
et al. [CDMT22] that the initial analysis of the algorithm is flawed and confirm
the corrected runtime exponent (delivered previously in a revision of [CDMT22]).
Concentrating solely on the minor improvement in the runtime exponent could
give the impression that the Both-May algorithm and with it the broader research
on extensive nearest neighbor search in the ISD context are of low significance.
However, in our analysis we find that the Both-May algorithm significantly lowers
the memory consumption of previous ISD algorithms. Considering the importance
of the memory-usage observed by multiple recent works, this strongly supports
the significance of the algorithm and, more broadly, its research field.

More precisely, we confirm that the Both-May algorithm reduces the worst-
case runtime in the full distance decoding setting from 20.0953n down-to 20.0951n.
On the other hand, we observe that the memory consumption is lowered from
20.092n to 20.076n, yielding the largest memory improvement made by any ISD
algorithm so far.
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Our second main contribution lies in detailing a possible strategy for future
improvements of the algorithm by Both-May. Our strategy is a novel combination
of the nearest neighbor search and a subsequently applied filtering step. We
therefore treat the nearest neighbor search in a non-blackbox fashion to embed
the filtering, such that a single application of the adapted algorithm yields the
already filtered lists. In this context, we introduce a variation of the nearest
neighbor problem, the fixed-weight nearest neighbor problem and propose a first
algorithm solving the problem.

We note that our current analysis does not yield an improvement in the time
or memory complexity of the Both-May algorithm. However, we also outline a
straightforward way to further improve our construction. The limitation of this
technique lies in the switch to a version of the fixed-weight nearest neighbor
problem with non-uniform input distributions which would require significantly
more work in the analysis.

Furthermore, since our introduction of the fixed-weight nearest neighbor
problem it already found other applications in the ISD context as for example
in the recent SievingISD algorithm by Guo, Johansson and Nguyen [GJN23].
This initiated study might lead to future improvements on algorithms for solving
fixed-weight nearest neighbor problem and in turn lead to an improved decoding
procedure via our construction.

Additionally, new research directions for ISD improvements are especially
desirable where recent results by Kirshanova and Laarhoven [KL21] rule out
significant speedups of ISD algorithms via generic improvements of nearest
neighbor search techniques.

All used optimization code is made available at https://github.com/
Memphisd/Revisiting-NN-ISD.

Remark 1.1 (Updated Version). A previous version of this article claimed an
improvement over the Both-May algorithm by leveraging the introduced technique.
However, the analysis disregarded a non-uniform distribution of the considered
input lists. The current article is a revised version correcting the previous claims.

Outline. In Section 2 we cover necessary basics on nearest neighbor search, the
syndrome decoding problem and the general technique of ISD. Subsequently,
in Section 3 we recall the Both-May algorithm and give a corrected analysis.
Eventually, we provide in Section 4 our strategy for combining the nearest
neighbor search and the filtering step, show how to embed it into the decoding
procedure and outline future directions.

2 Preliminaries

We denote vectors by bold lower case and matrices by bold upper case letters.
All logarithms are base two. We use standard landau notation for complexity
statements. We denote by H(x) := −x log(x) − (1 − x) log(1 − x) the binary

4

https://github.com/Memphisd/Revisiting-NN-ISD
https://github.com/Memphisd/Revisiting-NN-ISD


entropy function. To approximate binomial coefficients, we make use of the well
known approximation (

n

k

)
= Θ̃

(
2nH(k/n)

)
. (1)

For a vector v we denote by vi the projection to the i-th coordinate of v. We
extend this notation to sets of coordinates, i.e., for a set I ⊆ {1, . . . , n}, where n
is the length of v we denote by vI the projection of v to the coordinates indexed
by I. For a binary vector x ∈ Fn

2 , we let wt(x) := |{i | xi = 1}| be its Hamming
weight. We refer to the set of vectors of length n and Hamming weight w as
B(n, w) := {x ∈ Fn

2 | wt(x) = w}.

Nearest neighbor search. Most recent ISD techniques rely on subroutines
to solve a specific kind of nearest neighbor search problem. Informally, given
two lists of binary vectors and a distance ε the problem asks to find all pairs
with distance ε between the two lists. In our analysis we use the algorithm by
May and Ozerov [MO15] to solve this problem, which achieves the best known
time complexity. More precisely, we use a recent adaptation of the algorithm by
Esser, Kübler and Zweydinger [EKZ21], which generalizes May-Ozerov’s result
to arbitrary list sizes and distances. The following lemma (compare to [EKZ21,
Theorem 1]) states the time complexity of the algorithm

Lemma 2.1 (May-Ozerov Nearest Neighbor [MO15, EKZ21]). Let ε ∈q
0, 1

2
y

and λ ∈ J0, 1K, n ∈ N. Given two lists L1, L2 of size |Li| = 2λn containing
uniformly at random drawn elements from Fn

2 . Then there is an algorithm that
returns all pairs (x1, x2), xi ∈ Li with wt(x1 + x2) = εn in expected time
2ϑn(1+o(1)), where

ϑ =

(1 − ε)
(

1 − H

(
δ⋆− ε

2
1−ε

))
for ε ≤ ε⋆

2λ + H(ε) − 1 for ε > ε⋆ ,

with δ⋆ := H−1(1 − λ) and ε⋆ := 2δ⋆(1 − δ⋆) using memory |Li|(1+o(1)).

We encounter a slightly different setting where the vectors contained in the
lists are of length ℓ · n for some constant ℓ ∈ J0, 1K instead of length n. It is easy
to see that by normalizing ε and λ to ℓ we can still make use of Lemma 2.1 in
this case.

Corollary 2.1. Let ε′ ∈
q
0, 1

2
y

and λ′, ℓ ∈ J0, 1K, n ∈ N. Given two lists L1, L2
of size |Li| = 2λn containing uniformly at random drawn elements from Fℓn

2 . Then
there is an algorithm that returns all pairs (x1, x2), xi ∈ Li with wt(x1+x2) = ε′n

in expected time 2ϑ·ℓn(1+o(1)), where ϑ is as in Lemma 2.1 for ε := ε′

ℓ and λ := λ′

ℓ .
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Decoding. A binary linear code C of length n and dimension k is a k-dimensional
subspace of Fn

2 . Such a code can be represented via the kernel of a parity-check
matrix H ∈ F(n−k)×n

2 , i.e. C = {c ∈ Fn
2 | Hc = 0}. The task of recovering

a codeword c ∈ C from a given faulty version c′ = c + e is known as the
decoding problem. This problem is polynomial-time equivalent to the syndrome
decoding problem, which asks to recover the error term e from the given syndrome
Hc′ = H(c + e) = He.

Definition 2.1 (Syndrome Decoding Problem). Let C ⊆ Fn
2 be a random

linear code of dimension k with constant rate k
n and parity-check matrix H. Given

a syndrome s ∈ Fn−k
2 and an integer ω < n the syndrome decoding problem asks

to find a vector e ∈ Fn
2 of Hamming weight wt(e) = ω that satisfies He = s. We

call e the solution and (H, s) an instance of the problem.

Note that ω is usually rather small and that without this restriction on the
Hamming weight the problem could easily be solved by Gaussian elimination.
The most commonly considered setting is the full distance decoding setting,
which bounds ω by the minimum distance of the code. The minimum distance
d of a code C is the minimal weight of the sum of two codewords of C, i.e.,
d := minc1,c2∈C wt(c1 + c2) = minc∈C wt(c). Random linear codes are known to
asymptotically achieve a minimum distance of d = H−1(1 − k/n)n [Gil52,Var57].
Now, the full distance decoding setting bounds ω ≤ d, which implies that for each
uniformly random choice of (H, s) there exists one solution in expectation.

Information Set Decoding (ISD). The best known strategy to solve generic
instances of the syndrome decoding problem is ISD. Given an instance (H, s′) of
the syndrome decoding problem, ISD algorithms first apply a random permutation
P to the columns of H to obtain a permuted instance (HP, s′) with solution
P−1e. Then HP is transformed into systematic-form by multiplication with an
invertible matrix Q, which yields the identity

(QHP)(P−1e) = (In−k | H1)(e1, e2) = e1 + H1e2 = Qs′ =: s,

where P−1e = (e1, e2). The permutation step aims at distributing the weight on
P−1e such that wt(e1) = ω − p and wt(e2) = p, where p hast to be optimized.

In a last step the algorithm then recovers e2 and e1 from the identity

H1e2 + s = e1.

The subroutines to accomplish this last step differ between ISD algorithms, but
commonly they rely on enumeration of the weight-p vector e2 and try to identify
those for which H1e2 + s is of small weight ω − p. If this does not lead to a
solution the weight was not distributed as desired and the algorithm starts over
with a new random permutation.
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ISD and nearest neighbor. The identity H1e2 + s = e1 defines a nearest neighbor
problem. Therefore let e2 = (e21, e22) and rewrite the identity as

H1(e21, 0) = H1(0, e22) + s + e1.

Since e1 is not known, but of small Hamming weight ω − p we have

H1(e21, 0) ≈ H1(0, e22) + s.

We can solve this identity directly by applying Lemma 2.1. Therefore, enumerate
all e2i and store the left (resp. right) side of the above identity in list Li, and let
the target distance be ε = ω − p.

However, prior to the result of Both-May, ISD algorithms solve the identity
mostly by guessing (or enumerating) the bits of e1 on some projection π of its
coordinates. This leads to an exact identity π(H1e2) = π(s + e1) where the value
of π(s + e1) is known. Now the algorithms solve the problem on the projection π
after which they check if they fulfill the identity on all coordinates.

Modern ISD algorithms split e2 in multiple addends and then solve the exact
identity in a binary tree fashion, where at the leaves candidates for the summands
are enumerated (similar to the two list example above).

3 The Algorithm by Both-May

The algorithm by Both-May differs from previous works in how it solves the
nearest neighbor identity

H1e2 + s = e1 (2)

In contrast to previous works the algorithm does not enumerate coordinates of
e1 to obtain an exact identity. Instead it solves the nearest neighbor identity
directly by using the May-Ozerov nearest neighbor search algorithm.

The algorithm still relies on a search-tree to construct e2. Therefore it splits
e2 = z1 + z2 in the sum of two addends. From Equation (2) it follows that H1z1
and H1z2 + s are wt(e1) close, since e1 is of small weight this implies

Hz1 ≈ Hz2 + s. (3)

Now the algorithm makes the bet that both sides of the equation are itself
small on some projection π of the coordinates, i.e., that wt

(
π(Hz1)

)
= ω

(1)
a

and wt
(
π(Hz2 + s)

)
= ω

(1)
a for some small ω

(1)
a . Then it splits z1 = y1 + y2

and z2 = y3 + y4 again in the sum of two addends. Assuming both sides of
Equation (3) are indeed small on the projection π, we obtain the two nearest
neighbor identities

π(Hy1) ≈ π(Hy2) and π(Hy3) ≈ π(Hy4 + s). (4)
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3.1 Depth-2 Variant

For didactic reasons let us start with the algorithm using a search tree in depth
two to construct the solution e2. Therefore, in the base lists Li, i = 1, . . . , 4 all
possible values for the yi are enumerated. Then L1, L2 and L3, L4 are combined
by solving the respective nearest neighbor identities from Equation (4). This
yields two new lists L

(1)
1 and L

(2)
1 containing candidates for z1 and z2 respectively.

In a final step the lists L
(1)
1 and L

(2)
1 are combined by solving the nearest neighbor

identity from Equation (3) to find e2. This process is illustrated in Figure 1. A
pseudocode description of the algorithm is given by Algorithm 1. In the graphic
as well as in the algorithmic description the projection π is chosen to map to the
first ℓa bits of the given vector.

0
y1H1y1

n− k k
2

k
2

p1/2

L1

0
y2H1y2

n− k k
2

k
2

p1/2

L2

N 0
y3H1y3

n− k k
2

k
2

p1/2

L3

0
y4H1y4 + s

n− k k
2

k
2

p1/2

L4

N

z1H1z1

n− k − ℓaℓa k

p1L
(1)
1

ω(1)
a

z2H1z2 + s

n− k − ℓaℓa k

p1 L
(1)
2

ω(1)
aN

n− k − ℓaℓa k

L = L
(2)
1 ω − p− ωa

ω − p− ωa

e2e1 = H1e2 + s

pωa

Fig. 1: Both-May algorithm in depth-2. Weight in gray regions differs from weight of
uniformly random vectors. Numbers inside gray areas indicate regions of fixed weight.
Curly arrows illustrate final check for contained solution, N indicates nearest neighbor
search.

Finding a representation of the solution. Let the permutation induce a
weight distribution, such that wt(e2) = p and wt(π(e1)) = ωa, where π is, as
defined in Algorithm 1, the projection to the first ℓa coordinates of e1, while
p, ωa and ℓa have to be optimized. Also let zi ∈ B(k, p1), i = 1, 2 , for some p1
that has to be optimized. Observe that this implies multiple representations of
e2, i.e. multiple different pairs (z1, z2) that sum to e2. Precisely there are

R1 =
(

p

p/2

)(
k − p

p1 − p/2

)
such representations, where z1, z2 have both weight p1. Here the first term counts
the possibilities to distribute p/2 out of the p one entries of e2 on z1, while
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the remaining p/2 ones must be set in z2. The second factor then counts how
the remaining p1 − p/2 one entries in z1 and z2 can cancel out. The goal of
the algorithm is to enumerate only an 1/R1 fraction of these representations,
as any representation leads to e2. To achieve this, a constraint on the space of
representations is enforced via the weight-guess ω

(1)
a made on the projection π of

both sides of Equation (3). The parameter ω
(1)
a has to be optimized as well.

On the base level all possible yi are enumerated in list Li, where we let
y1, y3 ∈ B(k/2, p1/2) × 0k/2 and y2, y4 ∈ 0k/2 × B(k/2, p1/2), i.e., we perform a
meet-in-the-middle split of z1 and z2. The lists L1 and L2 are then combined by
searching those pairs y1, y2 with wt(π(H1(y1 + y2))) = ω

(1)
a . The lists L3 and

L4 are combined analogously by previously adding s.
Let us analyze the probability that any representation of the solution fulfills

the weight-guess ω
(1)
a on the projection. More precisely, let the probability that for

any representation (z1, z2) of e2 we have wt(π(H1z1)) = wt(π(H1z2 + s)) = ω
(1)
a

be q. Then we have

q : = Pr
[
wt(π(H1z1)) = wt(π(H1z2 + s)) = ω(1)

a | e2 = z1 + z2, wt(π(e1)) = ωa

]
= Pr

[
wt(a1) = wt(a2) = ω(1)

a | e′
1 = a1 + a2, wt(e′

1) = ωa, e′
1 ∈ Fℓa

2

]
(5)

=

(
ωa

ωa/2
)( ℓa−ωa

ω
(1)
a −ωa/2

)
2ℓa

,

since there exist 2ℓa pairs a1, a2 that fulfill e′
1 = a1+a2, but only

(
ωa

ωa/2
)( ℓa−ωa

ω
(1)
a −ωa/2

)
of them have correct weight ω

(1)
a .1 Note that the first equality follows from the

randomness of H and the fact that e1 = H1e2+s. Concluding, as long as q·R1 ≥ 1,
we expect the two lists L

(1)
1 and L

(2)
1 to contain at least one representation of e2.

Note that our construction of L
(1)
i (via a meet-in-the-middle split) only

allows to obtain balanced zi, i.e., elements with weight p1/2 on both halves of
their coordinates. However, balanced elements form a polynomial fraction of all
elements, since using Equation (1) we obtain(

k/2
p1/2

)2(
k
p1

) = Θ̃(1).

Therefore we still can construct R1 representations up to a polynomial factor.

Complexity of the algorithm. The probability for the permutation distribut-
ing the weight as desired is

P =
(

n
ω

)(
ℓa

ωa

)(
k
p

)(
n′

ω′

) ,

1 This term corresponds to the number of representations of one weight-ωa vector of
length ℓa as sum of two weight-ω(1)

a vectors.
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Algorithm 1: Both-May Depth-2
Input : H ∈ F(n−k)×n

2 , s′ ∈ Fn−k
2 , ω ∈ N

Output : e ∈ Fn
2 , He = s′ with wt(e) = ω

1 Choose optimal p, p1, ℓa, ωa, ω
(1)
a and define

π : Fn−k
2 → Fℓa

2 , π(x1, . . . , xn−k) = {x1, . . . , xℓa}

π̄ : Fn−k
2 → Fn−k−ℓa

2 , π̄(x1, . . . , xn−k) = {xℓa+1, . . . , xn−k}

2 Enumerate
Lj = {yj | yj ∈ B(k/2, p1/2)× 0k/2}, j = 1, 3

Lj = {yj | yj ∈ B(k/2, p1/2)× 0k/2}, j = 2, 4

3 repeat
4 choose random permutation matrix P
5 H′ ← QHP =

(
In−k H1

)
, s← Qs′

6 Compute via nearest neighbor

L
(1)
1 = {z1 | z1 = y1 + y2, yi ∈ Li, wt(π(H1z1)) = ω(1)

a }

L
(1)
2 = {z2 | z2 = y3 + y4, yi ∈ Li, wt(π(H1z2 + s)) = ω(1)

a }

L = {e2 | e2 = z1 + z2, zi ∈ L
(1)
i , wt

(
π̄(H1e2 + s)

)
= ω − ωa − p}

7 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s) = ω − p then
8 return P(H1e2 + s, e2)

where n′ := n − k − ℓa and ω′ := ω − p − ωa. Hence, after P −1 iterations we
expect to have chosen one permutation that distributes the weight as desired.

Next we investigate the time per iteration of the loop of Algorithm 1, which
is dominated by the nearest neighbor search. Therefore, let us first calculate the
(expected) list sizes. The base lists Li are of size

L0 =
(

k/2
p1/2

)
,

while we expect the level-1 lists to be of size

L1 := E[L(1)
i ] = (L1)2 ·

( ℓa

ω
(1)
a

)
2ℓa

= Õ

( k
p1

)( ℓa

ω
(1)
a

)
2ℓa

 ,

since by the randomness of H the probability that H1x for any x ̸= 0 has weight

ω
(1)
a on a projection to ℓa coordinates is

( ℓa

ω
(1)
a

)
2ℓa

.
For the construction of the lists L

(1)
i and L we use the May-Ozerov nearest

neighbor search algorithm. The complexity of this algorithm to find all ε close
pairs on lists of size L containing length-ℓ vectors is given by Corollary 2.1 and
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we denote it as NL,ℓ,ε. Therefore the overall time complexity of the algorithm is

T = P −1 · max(NL1,ℓa,ω
(1)
a

, NL2,n′,ω′),

while the memory complexity is max(L1, L2). Note that the final list does not
affect the memory complexity, as its elements can be checked on-the-fly for being
a solution. Furthermore the construction of this list is at least as expensive as its
size, which is why it does not appear in the time complexity.

Complexity exponent. In our optimizations we approximate the binomial coeffi-
cients in the analysis using Equation (1). Then for each optimization parameter
oi we let oi = ôi ·n, where ôi ∈ J0, 1K. Furthermore, we similarly let k = k̂n, where
k̂ = k

n is the rate of the code. We then minimize the running time over the choices
of the ôi under the correctness constraint qR1 ≥ 1. Finally we maximize over all
possible choices for the rate k̂ with corresponding weight ω = ω̂n = H−1(1 − k̂)n
(full distance setting). This results in a complexity of the form 2cn with constant
c.

To actually find the values of the ôi, k̂ and eventually c we use a numerical
optimization tool provided by the python library scipy. The way we access this
library is inspired by a code of Bonnetain et al. [BBSS20].2 In general it is possible
that such optimizers do not output a global minimum but instead run into some
local minimum. However, to increase the confidence in the found optimum we
ran the optimization thousands of times with random starting points, until no
further improvement could be made.

This process leads to a running time of T = 2cn = 20.0982n with memory
complexity M = 20.716n at worst-case rate k̂ = 0.422 and, hence, ω = H−1(1 −
0.422)n ≈ 0.1373n.

We stress that these results essentially match those given in the original
work of Both-May [BM18]. The reason is that in contrast to higher search tree
depth variants the depth-2 variant does not make use of a filtering step, which
introduced the flaw in the analysis of [BM18] as we describe in the following
section.

3.2 Depth-4 Variant

Both and May obtain their best result for a tree in depth four. Here the splitting of
e2 is continued recursively, i.e. yi = x2i−1+x2i, i = 1, 2, 3, 4 and xj = w2j−1+w2j ,
j = 1, . . . , 8. The algorithm then recursively makes a bet on the smallness of Hyi

(respectively Hy4 + s) and Hxj (respectively Hx8 + s) on some projections to
obtain nearest neighbor identities for each level. Also it enforces a specific weight
on the vectors yi and zi itself. Eventually, all possible wj are enumerated in the
base lists Lj , j = 1, . . . , 16.
2 This code is accessible at https://github.com/xbonnetain/

optimization-subset-sum.
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Similar to before the wi form a meet-in-the-middle split of the xj , i.e.,
w2i−1 ∈ B(k/2, p1/2) × 0k/2 and w2i ∈ 0k/2 × B(k/2, p1/2), where p1 is subject
to optimization.

Additionally, a filtering step is introduced after the construction of the level-2
and level-3 lists. This filtering step discards all vectors which do not sum to
predefined weights or which do not sum to predefined weights on projections that
already have fixed weights, i.e., those already used for nearest neighbor search
on previous levels (compare to Figure 2).

0
w1H1w1

n− k k
2

k
2

p1/2

L1

0
w2H1w2

n− k k
2

k
2

p1/2

L2

x1H1x1

n− k − ℓaℓa k

p1L
(1)
1

ω(1)
a

N

ℓbℓa k

L
(2)
1

ω(2)
b

N · · ·

· · ·

y1H1y1

p2ω(2)
bω(2)

a

ℓcℓbℓa k

L
(3)
1 ω(3)

c

N · · ·

z1H1z1

p3ω(3)
bω(3)

a ω(3)
c

ℓ′ℓcℓbℓa k

L = L
(4)
1 ω′

N · · ·

e2H1e2 + s

p

ℓ′ := n− k − ℓa − ℓb − ℓc

ω′ := ω − p− ωa − ωb − ωc

ω′ωa ωb ωc

Fig. 2: Leftmost path of depth-4 algorithm from leaves (base lists) to root (final list).
Gray areas indicate regions where weight differs from weight of uniformly random vectors.
Numbers inside gray areas indicate regions of fixed weight. Curly arrows illustrate
filtering process, N indicates nearest neighbor search.

The pseudocode of the algorithm is given by Algorithm 2 and an illustration
in Figure 2. For simplification we choose the projections on each level to be the
next ℓa, ℓb and ℓc coordinates respectively. More precisely, we define

πa : Fn−k
2 → Fℓa

2 , πa(x1, . . . , xn−k) = {x1, . . . , xℓa
}

πb : Fn−k
2 → Fℓb

2 , πb(x1, . . . , xn−k) = (xℓa+1, . . . , xℓa+ℓb
)

πc : Fn−k
2 → Fℓc

2 , πc(x1, . . . , xn−k) = {xℓa+ℓb+1, . . . , xℓa+ℓb+ℓc}

(6)
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Analogously to the depth-2 case, we let

π̄ : Fn−k
2 → Fn−k−ℓ′

2 , ℓ′ := ℓa + ℓb + ℓc with π̄(x) = (xℓ′+1, . . . , xn−k) (7)

be the projection to the remaining coordinates.

Remark 3.1 (Block notation). We use letters to refer to different projections (or
blocks) of coordinates while we use numbers to indicate different levels of the
tree. For instance, ω

(3)
b is the predefined weight of block b on level 3.

Algorithm 2: Both-May Depth-4
Input : H ∈ F(n−k)×n

2 , s′ ∈ Fn−k
2 , ω ∈ N

Output : e ∈ Fn
2 , He = s′ with wt(e) = ω

1 Choose optimal p, p1, p2, p3, ℓa, ℓb, ℓc, ωa, ωb, ωc, ω
(1)
a , ω

(2)
a , ω

(3)
a , ω

(2)
b , ω

(3)
b , ω

(3)
c

2 Let πa, πb, πc, π̄ be defined as in Equations (6) and (7)
3 Enumerate

Lj = {wj | wj ∈ B(k/2, p1/2)× 0k/2}, j = 1, 3, . . . , 15

Lj = {wj | wj ∈ B(k/2, p1/2)× 0k/2}, j = 2, 4, . . . , 16

4 repeat
5 choose random permutation matrix P

6 H′ ← QHP =
(
In−k H1

)
, s← Qs′ and define sj,i :=

{
s , i = j

0n−k , else
7 Compute level-1 lists via nearest neighbor for i = 1, . . . , 8

L
(1)
i = { xi | xi = w2i−1 + w2i, wj ∈ Lj , wt(πa(H1xi + s8,i)) = ω(1)

a }

8 Compute via nearest neighbor then filter level-2 lists for i = 1, . . . , 4
L

(2)
i = { yi | yi = x2i−1 + x2i, xj ∈ L

(1)
j , wt(πb(H1yi + s4,i)) = ω

(2)
b }

L
(2)
i ← {y ∈ L

(2)
i | wt

(
πa(H1y + s4,i)

)
= ω(2)

a ∧ wt(y) = p2}

9 Compute via nearest neighbor then filter level-3 lists for i = 1, 2
L

(3)
i = { zi | zi = y2i−1 + y2i, yj ∈ L

(2)
j , wt(πc(H1zi + s2,i)) = ω(3)

c }

L
(3)
i ← {z ∈ L

(3)
i | wt

(
πa(vi)

)
= ω(3)

a ∧ wt
(
πb(vi)

)
= ω

(3)
b ∧ wt(z) = p3}

, with vi := H1z + s2,i

10 Compute final (level-4) list via nearest neighbor, ω′ := ω − ωa − ωb − ωc − p

L = { e2 | e2 = z2i−1 + z2i, zj ∈ L
(3)
j , wt(π̄(H1e2 + s′)) = ω′}

11 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s′) = ω − p then
12 return P(H1e2 + s′, e2)
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Finding a representation of the solution. Let us assume the permutation
P distributes the weight on P−1e = (e1, e2) such that

wt(e2) = p and wt
(
πδ(e1)

)
= ωδ for δ ∈ {a, b, c},

which implies wt
(
π̄(e1)

)
= ω − ωa − ωb − ωc − p.

The algorithm constructs on each level i = 1, 2, 3 vectors of weight pi that
should sum to weight-pi+1 vectors, where p4 := p. Note that each such weight-pi+1
vector has Ri representations as sum of weight-pi vectors, where

Ri =
(

pi+1

pi+1/2

)(
k − pi+1

pi − pi+1/2

)
.

Therefore, we intend again to enumerate an 1/Ri-fraction of all possible rep-
resentations to ensure that there is one representation on expectation of each
weight-pi+1 vector contained on level i. Let us analyze the constraint imposed
on each level introduced by restricting to a specific weight on the projections
πa, πb and πc. We have already seen in Section 3.1 that the probability that any
representation of a level-2 element survives the level-1 constraint is

q1 =

( ω(2)
a

ω
(2)
a /2

)( ℓa−ω(2)
a

ω
(1)
a −ω

(2)
a /2

)
2ℓa

,

compare to Equation (5). By the same reasoning if we now on level-2 impose
weight restrictions on both projections πa and πb, we obtain

q2 :=
∏

δ∈{a,b}

Pr
[
wt(πδ(Hy1)) = wt(πδ(Hy2)) = ω

(2)
δ | wt(πδ(H(y1 + y2))) = ω

(3)
δ

]
=

∏
δ∈{a,b}

Pr
ai∈Fℓδ

2

[
wt(πδ(a1)) = wt(πδ(a2)) = ω

(2)
δ | wt(πδ(a1 + a2)) = ω

(3)
δ

]

=

( ω(3)
a

ω
(3)
a /2

)( ℓa−ω(3)
a

ω
(2)
a −ω

(3)
a /2

)
2ℓa

·

( ω
(3)
b

ω
(3)
b

/2

)( ℓb−ω
(3)
b

ω
(2)
b

−ω
(3)
b

/2

)
2ℓb

.

Eventually for the last level we obtain analogously

q3 :=
∏

δ∈{a,b,c}

Pr
[
wt(πδ(Hz1)) = wt(πδ(Hz2)) = ω

(3)
δ | wt(πδ(H(z1 + z2))) = ωδ

]

=
∏

δ∈{a,b,c}

(
ωδ

ωδ/2
)( ℓδ−ωδ

ω
(3)
δ

−ωδ/2

)
2ℓδ

.

Now as long as we have qi · Ri ≥ 1 we ensure that in expectation on each level
i at least one representation of each possible level-(i + 1) element, i.e., of each
x ∈ Fk

2 with wt(x) = pi+1 is present. This implies in turn that on level 3 there
is a representation of the searched weight-p vector e2. Since we conditioned on
wt(π̄(e1)) = ω − p − ωa − ωb − ωc this representation is found by the level-4 list
construction.

Note that to avoid duplicates in the lists we will also optimize parameters
according to the constraint qi · Ri ≤ 1, which implies qi · Ri = 1.
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Complexity of the algorithm. The probability for the permutation distribut-
ing the weight as desired is

P =
(

n
ω

)(
ℓa

ωa

)(
ℓb

ωb

)(
ℓc

ωc

)(
ℓ′

ω′

)(
k
p

) ,

where ℓ′ := n − k − ℓa − ℓb − ℓc and ω′ := ω − p − ωa − ωb − ωc. Therefore after
P −1 iterations we expect one to distribute the weight as desired.

Now let us analyze the cost to construct the tree. First, we argue about the
expected list size on each level after filtering, which is exactly where the analysis
of [BM18] goes wrong. The base lists are analogously to the depth-2 variant of
size

L0 =
(

k/2
p1/2

)
.

Now, we have already shown that for suitable parameters, satisfying qiRi = 1, on
level i = 1, 2, 3 there exists exactly one representation of each possible level-(i+1)
element, i.e., of each x ∈ Fk

2 with wt(x) = pi+1. Therefore the expected list size
on level-i after filtering is

Li =
(

k

pi

)
· ρi,

where ρi is the probability that a vector x ∈ Fk
2 fulfills the level-i restriction.

Since level i imposes a weight restriction on a total of i blocks, we have

ρ1 =

( ℓa

ω
(1)
a

)
2ℓa

, ρ2 =

( ℓa

ω
(2)
a

)( ℓb

ω
(2)
b

)
2ℓa+ℓb

and ρ3 =

( ℓa

ω
(3)
a

)( ℓb

ω
(3)
b

)( ℓc

ω
(3)
c

)
2ℓa+ℓb+ℓc

.

In Appendix A we outline the difference to the original analysis of [BM18].
The time complexity per iteration of the loop is again given by the time

it takes to construct all lists. The level-i lists, i = 1, 2, 3 are constructed via a
nearest neighbor search on lists of size Li−1 including vectors of length ℓδ with
target weight ω

(i)
δ , δ ∈ {a, b, c}. The final list is then constructed via nearest

neighbor search on the remaining ℓ′ coordinates for target weight ω′. Therefore
the cost for each level i is Ti, where

T1 = NL0,ℓa,ω
(1)
a

, T2 = NL1,ℓb,ω
(2)
b

, T3 = NL2,ℓc,ω
(3)
c

and T4 = NL3,ℓ′,ω′ ,

Eventually the total time complexity of Algorithm 2 is given as the number of
iterations times the cost for one iteration, giving

T = P −1 max
i

(Ti).

Numerical Optimization of Algorithm 2. We follow the same optimization
methodology as for the depth-2 case, under correctness constraints qiRi = 1, to
obtain the asymptotic running time and memory exponents. We find a worst
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case rate for the algorithm of k̂ = 0.42 with ω̂ = H−1(1 − k̂) ≈ 0.1384, leading
to a time and memory complexity of

T = 20.0951n and M = 20.076n,

for optimal parameters3

p̂ = 0.05180, p̂3 = 0.04719, p̂2 = 0.03371, p̂1 = 0.01783,

ℓ̂a = 0.05280, ℓ̂b = 0.10178, ℓ̂c = 0.12367,

ω̂a = 0.00651, ω̂(3)
a = 0.00593, ω̂(2)

a = 0.00428, ω̂(1)
a = 0.05,

ω̂b = 0.01220, ω̂
(3)
b = 0.01091, ω̂

(2)
b = 0.09414,

ω̂c = 0.01504, ω̂(3)
c = 0.01354.

While this running time is far greater than the initially claimed 20.0885n [BM18],
it still slightly improves on the previously best running time of 20.0953n reported
in [BM17]. Further, the memory complexity is drastically improved by a factor
of 20.0161n from previously 20.0915n to 20.0754n.

In Figure 3 we compare the time and memory exponents of the latest three ISD
improvements, which are in chronological order(old to new): May-Ozerov [MO15],
BJMM-MO [BM17], Both-May [BM18] (Section 3.2).
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Fig. 3: Comparison between the time (left) and memory (right) exponent of the Both-
May, May-Ozerov and BJMM-MO algorithm in the full distance setting.

3 Due to rounding to a precision of 10−5 there might be a certain deviation in satisfy-
ing the correctness constraints. For the exact numbers we refer to our optimization
scripts, available at https://github.com/Memphisd/Revisiting-NN-ISD.
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4 A Strategy for Future Improvements

Note that the Both-May algorithm works on each level in two steps. First it
combines two lists of the previous level to obtain vectors which fulfill a weight
restriction on a subset of the coordinates. Then in a second step it filters the
vectors for the weight restriction on the remaining coordinates. We improve this
by embedding the filter process into the nearest neighbor search algorithm, to
directly obtain vectors that satisfy the weight restriction on all coordinates.

In the following we first show how to adapt the May-Ozerov algorithm to also
perform the filtering step. After that we describe how to integrate this adaptation
into the Both-May algorithm and how its complexity changes.

Our adaptation of the May-Ozerov algorithm requires to solve a specific
variant of a nearest neighbor problem as a subroutine. Therefore in Section 4.3
we develop an algorithm to solve this variant and upper bound its complexity to
finally obtain a complexity estimate for the whole decoding procedure.

4.1 Combining Nearest Neighbor Search and Filtering

Let us first briefly recall how the May-Ozerov nearest neighbor search algorithm
finds all ε-close pairs between two same-sized input lists L1, L2 containing uni-
formly random vectors from Fm

2 and how its complexity is composed. For an
in-depth explanation and analysis the reader is referred to [MO15,Car20,EKZ21].
First, the algorithm computes an exponential number of list pairs L′

1, L′
2 from

the initial lists. For optimal parameter choices it is guaranteed that L′
1, L′

2 each
have only polynomial size, while simultaneously any distance-ε pair between L1
and L2 is still contained in at least one of the constructed pairs L′

1, L′
2. In a final

step the algorithm then finds the ε-close pairs by computing L′
1 × L′

2 for every
list pair L′

1, L′
2 naively.

The list pairs are computed in a tree-like fashion, where the input pair
L1, L2 forms the root of the tree (compare to Figure 4). This tree is constructed
iteratively, level by level. In every step of the algorithm each leaf of the tree is
branched 1/qε times. A child-node is computed by traversing both lists of the
parent node — individually, no pairs between lists are considered — and applying
a locality-sensitive filter to each element. This filter discards elements that do
not match the filter criterion and, hence, reduces the lists’ sizes. Furthermore, it
has the property, that an arbitrary element passes the filter with probability qf,
while for an ε-close pair (x, y) between the lists, x and y pass the filter at the
same time with probability qε > q2

f . Therefore close pairs are more likely to pass
the filter than non-close pairs. The branching factor of q−1

ε ensures that if there
is an element of distance ε contained in the current node, it progresses to the
next level through at least one of the filters. This procedure is repeated r times
to construct a tree of depth r containing q−r

ε leaves.4 It is important to note that
the algorithm up to the leaf-level only operates on each list individually, i.e., no
4 In [EKZ21] r was chosen as m

log2 m
to ease the analysis. However, in [MO15] it was

shown that a large enough constant is already sufficient.
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. . . . . . . . .
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Fig. 4: Illustration of the May-Ozerov nearest neighbor search algorithm. Arrows indicate
the application of a locality sensitive filter. Each node branches q−1

ε times. Bold stripes
in lists indicate pair of distance ε progressing through all r applied filters.

pairs between the lists are examined. Therefore, lists L′
1, L′

2 contained in any leaf
are subsets of the initial lists L1, L2.

The time complexity is then given (compare to [EKZ21, Theorem 2]5) as

TMO = q−r
ε · max

(
|L1| · qr−1

f , (|L1| · qr
f )2
)1+o(1)

. (8)

Here, the first term in the maximum describes the size of lists after applying
the filter r − 1 times and corresponds to the cost of constructing a single leaf
of the tree. In [EKZ21] it is shown that the construction of the leaves from its
parents dominates the construction of the whole tree. The second term describes
the cost for naively finding all ε-close pairs by computing the product of lists
contained in the leaves. The initial factor in front of the maximum accounts for
the number of leaves.

Furthermore, for the locality sensitive filter criterion chosen in [EKZ21] the
probabilities qε and qf are parameterized via an optimization parameter δ < m
and are given as

qε =
(

ε/r

ε/2r

)(
(m − ε)/r

(δ − ε/2) /r

)(
1
2

)m/r

and qf =
(

m/r

δ/r

)(
1
2

)m/r

. (9)

5 In comparison to [EKZ21] we assume 2λm · qr−1
f ≥ 1 to remove one term from the

maximum.
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Note that for the optimal choice of δ the maximum from Equation (8) is dominated
by the first term, as the second one becomes polynomial. Further, optimal
parameter choices lead to the result stated in Lemma 2.1.

Algorithm 3: May-Ozerov
Input : lists L1, L2 ∈ (Fm

2 )∗, integer ε
Output : all pairs x, y ∈ L1 × L2 with wt(x + y) = ε

1 Choose optimal δ, r and let qε be as in Equation (9), L← ∅
2 Construct q−r

ε list pairs L′
1, L′

2, each by applying a locality-sensitive filter r
times to L1, L2

3 foreach pair L′
1, L′

2 do
4 L← L ∪ {(x, y) ∈ L′

1, L′
2 | wt(x + y) = ε}

5 return L

Adapting the May-Ozerov Algorithm. In Algorithm 2 the May-Ozerov
algorithm operates only on a projection π to m out of n coordinates, e.g., on
projection π := π̄ to construct the final level-4 list. However, for the remaining
n − m coordinates there are also weight restrictions, which are imposed via the
filtering step. We now exchange the naive search for ε-close pairs on projection π
at the leaf-level (line 4 of Algorithm 3) by an algorithm that finds those vectors
that match the weight restriction on the remaining ℓ := n − m coordinates. We
then only keep those pairs attaining distance ε on the projection π. A formal
description of the adapted algorithm is given by Algorithm 4.

If we denote the time complexity to find all ω2 close pairs between two lists
of size L containing vectors from B(ℓ, ω1) as FL,ℓ,ω2,ω1 , the time complexity of
Algorithm 4 is given as

TMO+ = N ℓ,ω1,ω2
|L1|,m,ε := q−r

ε · max
(

|L1| · qr−1
f , FL,ℓ,ω1,ω2

)1+o(1)
, (10)

where L = |L1| · qr
f . As long as F∗ is smaller than L2 we expect a re-balancing of

both terms in the maximum to yield an improved time complexity, i.e. TMO+ <
TMO.

Note that F∗ describes the complexity to solve a variant of the nearest
neighbor problem, where the input vectors have fixed weight. Let us define this
problem more formally.

Definition 4.1 (Fixed Weight Nearest Neighbor Problem). Let ℓ, ω1, ω2
be integers with ω1, ω2 ≤ ℓ. Given two lists L1, L2 of same size containing
uniformly at random drawn elements from B(ℓ, ω1) the fixed weight nearest
neighbor problem asks to find all pairs (x1, x2), xi ∈ Li with wt(x1 + x2) = ω2

But before we discuss how to solve this problem let us first describe how to
incorporate May-Ozerov+ into the decoding procedure.
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Algorithm 4: May-Ozerov+

Input : lists L1, L2 ∈ (Fm
2 × B(ℓ, ω1))∗, integer ε, ω1, ω2

Output : all pairs x, y ∈ L1 × L2 with x + y ∈ B(m, ε)× B(ℓ, ω2)
1 Choose optimal δ, r and let qε be as in Equation (9), L← ∅
2 Construct q−r

ε list pairs L′
1, L′

2, each by applying a locality-sensitive filter r
times to L1, L2

3 foreach pair L′
1, L′

2 do
4 Compute then filter:

L← L ∪ {(x, y) ∈ L′
1, L′

2 | x + y ∈ Fm
2 × B(ℓ, ω2)}

L← {(x, y) ∈ L | x + y ∈ B(m, ε)× B(ℓ, ω2)}

5 return L

4.2 Both-May+ – Embedding MayOzerov+ into the Decoding
Algorithm

In the following we integrate our adapted May-Ozerov algorithm May-Ozerov+

into the decoding algorithm (Algorithm 2) and describe how it affects the time
complexity of the decoding procedure.

To be able to exchange the conventional May-Ozerov nearest neighbor search
used for list construction in Algorithm 2 by our adaptation, we require that input
vectors have a certain amount of coordinates with fixed weight. Therefore note
that on every level i the vectors in the lists are ensured to have fixed weight pi,
where p4 := p (compare to Figure 2).

Therefore, we can exchange the computation of level-2, level-3 and level-4 lists
in lines 8, 9 and 10 of Algorithm 2 by directly computing the following (partly)
filtered lists (from the lists of the previous level)

L
(2)+
i = {yi ∈ L

(2)
i | wt(yi) = p2}

L
(3)+
i = {zi ∈ L

(3)
i | wt(zi) = p3} (11)

L+ = {e2 ∈ L | wt(e2) = p }.

Note that these lists only correspond to partly filtered lists, as from level i ≥ 1
on-wards the product lj,i := Hvj + sj,24−i for any vj ∈ L

(i)
j has fixed weight on

projection πa. For i ≥ 2, li,j we additionally need fixed weight on projection πb

and, finally, for i ≥ 3 we find that li,j has fixed weight on all projections πδ for
δ ∈ {a, b, c}. However, the constructed lists only ensure the desired weight on the
vj not the lj,i. Therefore, to reduce the list size further, we still perform the usual
filtering step. Further, since on level one there is by construction no filtering, we
stay with the conventional May-Ozerov algorithm for level-1 list creation.

We call the resulting algorithm that computes the lists from Equation (11)
directly Both-May+ in the following.

Complexity. The analysis of the time complexity follows along the lines of the
analysis in Section 3.2 with the only difference that the time complexities for
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creating the level-2,-3 and -4 lists, given by T2, T3 and T4, have to be adapted. The
time complexity for this list construction is given as TMO+ in Equation (10). This
complexity is determined by the parameters of the nearest neighbor problem (the
subscripts of N ) and the parameters of the fixed weight nearest neighbor problem
(the superscripts of N ). The parameters of the standard nearest neighbor problem
remain the same as in the previous analysis in Section 3.2, while the parameters of
the fixed-weight variant are given by (ℓ, ω1, ω2). For the construction of the level-2,
-3 and final lists the respective choices of (ℓ, ω1, ω2) are (k, p1, p2), (k, p2, p3) and
(k, p3, p) respectively.

Overall this leads to complexities of the list construction steps of

T2 = N k,p1,p2

L1,ℓb,ω
(2)
b

, T3 = N k,p2,p3

L2,ℓc,ω
(3)
c

and T4 = N k,p3,p
L3,ℓ′,ω′ .

To finally derive a numerical estimate for the time complexity we need a
complexity formula for F∗ in TMO+ (Equation (10)), which is the time for solving
the fixed weight nearest neighbor problem.

4.3 Solving the Fixed Weight Nearest Neighbor Problem

Note that the May-Ozerov nearest neighbor search is still applicable to the
fixed weight nearest neighbor problem, even though, its time complexity changes.
However, in [EKZ21] the corresponding analysis is performed concluding that the
algorithm is not well suited for fixed weight input lists. Therefore we develop in
the following an Indyk-Motwani [IM98] inspired algorithm for solving this fixed
weight variant, which achieves a better performance. This algorithm then allows
us to derive a formula for F∗ in Equation (10).

Similar to the Indyk-Motwani locality-senstive hashing, our algorithm relies
on the fact that for x, y ∈ L1, L2 with wt(x + y) = ω2 a projection to arbitrary
coordinates of x + y is more likely to be zero for small ω2.

The algorithm samples in each iteration a random subset I ⊂ {1, . . . , ℓ} of size
|I| = α and hopes that the projection of z = x+y to the coordinates indexed by I
is zero, i.e., that zI = 0 or equivalently xI = yI . Then all elements x′, y′ ∈ L1, L2
with x′

I = y′
I are constructed and for each it is checked if wt(x′ + y′) = ω2. The

pseudocode of the algorithm is given by Algorithm 5.

Analysis of Algorithm 5. The probability that for a searched pair x, y, with
wt(x + y) = ω2 a random projection to α coordinates of x + y is zero is

qω2 = Pr
I

[xI = yI | I ⊆ {1, . . . , ℓ}, |I| = α, wt(x + y) = ω2] =
(

ℓ−ω2
α

)(
ℓ
α

) . (12)

Hence, after N := q−1
ω2

iterations we expect that for one of the chosen subsets
this is the case and we recover x, y.

The time complexity is the number of iterations times the cost for finding the
matching elements with xI = yI . The construction of list L can be done via a
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Algorithm 5: Indyk-Motwani
Input : integer ω1, ω2 ≤ ℓ, lists L1, L2 ∈ B(ℓ, ω1)∗

Output : all (x, y) ∈ L1 × L2 with wt(x + y) = ω2

1 set α as in Equation (14), N := (ℓ
α)

(ℓ−ω2
α )

2 for i = 1 to N do
3 choose random I ⊆ {1, . . . , ℓ} with |I| = α
4 for (x, y) ∈ {(x, y) ∈ L1 × L2 | xI = yI} do
5 if wt(x + y) = ω2 then
6 L← L ∪ (x, y)

7 return L

sort-and-match procedure in time linear in |L1|, |L2| and |L|. The expected size
of L is

E
[
|L|
]

= |L1 × L2| · Pr
I

[xI = yI | I ⊆ {1, . . . , ℓ}, |I| = α, wt(x) = wt(y) = ω1]︸ ︷︷ ︸
=:qω1

.

In following we derive an upper bound for qω1 , which gives an upper bound on
the expected size of L. The probability that two weight-ω1 vectors sum to a
weight-x vector is (

ℓ
x

)(
x

x/2
)(

ℓ−x
ω1−x/2

)
(

ℓ
ω1

)2 .

Estimating the binomial coefficients via Equation (1) and setting x to its ex-
pectation x′ := 2(1 − ω1

ℓ )ω1, yields a probability of Θ̃(1). This implies that two
weight-ω1 vectors add to a weight-x′ vector with inverse polynomial probability.
Therefore, let us assume that all vectors in |L1 × L2| sum to weight x′, which
leads at most to a polynomial deviation. Then we can determine qω1 as

qω1 =
(

ℓ−x′

α

)(
ℓ
α

) = (ℓ − x′)(ℓ − x′ − 1) · · · (ℓ − x′ − α + 1)
ℓ(ℓ − 1) · · · (ℓ − α + 1) ≤

(
1 − x′

ℓ

)α

Eventually, this leads to a time complexity of

T = Õ (N · max(|Li|, |L|))

= Õ

((
ℓ
α

)
· max

(
|Li|, |Li|2 · (1 − x′/ℓ)α

)(
ℓ−ω

α

) )
,

(13)

where x′ := 2(1 − ω1
ℓ )ω1. Further analysis shows that a choice of

α = ℓ · min
(

max
(

0, 1 − ω̂2

2ω̂1(1 − ω̂1)

)
, − log |L1|

log(2ω̂2
1 − 2ω̂1 + 1)

)
, (14)
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minimizes the running time, where ω̂1 := ω1/ℓ and ω̂2 := ω2/ℓ.
Note that for α = 0 the algorithm simply computes the Cartesian product of

both lists to find all ω2-close pairs. This happens if the target weight ω2 is larger
or equal to its expected value x′.

4.4 Further Improving the Approach

The current version of the algorithm does not yet yield a gain in the time or
memory complexity of the decoding procedure.

However, there are several ways to improve the current algorithm that have
the potential to lead to an improved decoding routine.

First of all, the current algorithm does also not yet eliminate the need for
the the filtering step completely, as detailed in Section 4.2. That is because
the constructed lists from Equation (11) only guarantee the correct weight
on the vectors v ∈ Fk

2 themselves, and not on the corresponding projections
πδ(Hv), δ ∈ {a, b, c}. Therefore, the algorithm could clearly be improved by
constructing the fully filtered lists directly via the adapted nearest neighbor
routine. However, this introduces a variant of the fixed-weight nearest neighbor
problem with multiple stripes of different given input and output weights. The
analysis of Algorithm 5 clearly complicates for such a problem variant, and it is
not clear that a straightforward application would be an optimal strategy.

Another direction for improvements are improved algorithms for the fixed-
weight nearest neighbor problem. The algorithm we detail here for solving the
problem is an adaptation of an early LSH algorithm by Indyk and Motwani.
Improvements from the general nearest neighbor case might translate to the
fixed-weight setting. Also there might exist entirely different strategies for the
fixed-weight setting, such as the approach recently detailed in [GJN23].
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A Details on flaw in original Both-May analysis

In [BM18] Both and May decide to calculate the expected list size on level i
based on the probability that a pair of level-(i − 1) elements advances to level
i. Let us denote this probability by ϕi. Then the expected list size on level i is
equal to Li = (Li−1)2 · ϕi. However, instead Both and May take Li =

(
k
pi

)
· ϕi.

Note that the square of level-(i − 1) lists is usually larger than the number of
possible elements with weight pi, as only an exponential small fraction sums to
weight-pi vectors (making the filtering step effective). In turn, the expected list
size is underestimated in the original work.
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