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Abstract In this paper we revise the idea of our previous work ‘Lin2-Xor lemma and Log-size Linkable Threshold
Ring Signature’ and introduce another lemma, called Lin2-Choice, which extends the Lin2-Xor lemma. Using
an novel zero-knowledge membership proof argument defined in the Lin2-Choice lemma, we create a compact
general-purpose trusted-setup-free log-size linkable threshold ring signature called EFLRSL. The signature size is
2 log2 (𝑛 + 1) + 3𝑙 + 1, where 𝑛 is the ring size and 𝑙 is the threshold. By extending the membership argument of
the Lin2-Choice lemma, we create a multifunctional version of the EFLRSL signature aliased as Multratug, of size
2 log2 (𝑛 + 𝑙 + 1) + 7𝑙 + 4. In addition to signing a message, Multratug simultaneously proves balance and allows
for easy multiparty signing. We use an arbitrary vector commitment argument in the role of the pivotal building
block for both versions of our signature, considering it as a black box. Only the black-boxed pivot contributes
components that depend on the ring size 𝑛 into the signature sizes. This makes both of EFLRSL and Multratug
combinable with other proofs, with overall size reduction. All this takes place in a prime-order group without
bilinear parings under the decisional Diffie-Hellman assumption in the random oracle model. Both versions of
our signature are proved unforgeable w.r.t. insider corruption and existentially unforgeable under chosen message
attack. They remain anonymous even for non-uniformly distributed and malformed keys, which makes it possible
to use them as a log-size drop-in replacement for LSAG-based schemes.

Keywords: ring signature, membership proof, linkable, log-size, threshold, anonymity, blockchain, hidden
amounts, balance proof, zero-knowledge, unforgeability, non-frameability, witness-extended emulation, LSAG

1 INTRODUCTION
In the paper [29] we created a log-size linkable threshold ring signature based on the Lin2-Xor lemma, which we

proved there under the decisional Diffie-Hellman (DDH) assumption. Now, we have the following two questions.
Can we generalize the Lin2-Xor lemma using an arbitrary vector commitment argument that has computational
witness-extended emulation (cWEE) and is special honest verifier zero-knowledge (sHVZK)? And also can we
get a pairings-free trusted-setup-free linkable threshold ring signature out of it that is more efficient in size and
verification complexity, while remaining under DDH in a prime-order group?

We answer both of these questions in the affirmative. Lin2-Choice lemma and its accompanying efficient ring
signature we present herein seem to be useful findings. Our new ring signature keeps using the linking tag of
the form 𝑥−1Hpoint (𝑥𝐺) and, in addition to this, has a version with the linking tag form 𝑥Hpoint (𝑥𝐺) which is
time-tested since the work by Liu, Wei, and Wong [23]. Although, both of these linking tags are indistinguishable
from each other and from uniform randomness [29, 13].

By a vector commitment or, equivalently, by a commitment to a vector we mean a weighted sum of orthogonal
generators that binds the corresponding scalar weight vector. By a vector commitment argument we mean a proof
of knowledge of such a bound weight vector. Most of the arguments in this paper rely on the vector commitment
argument, hence we call it a pivotal unit.

The signature we present, called EFLRSL, is a linkable threshold ring signature which may serve as a drop-in
replacement for the LSAG signature [23]. EFLRSL is derived from the novel proof of membership protocol that
we introduce in the Lin2-Choice lemma. The idea behind this proof of membership is about counterweighting a
number of independent randomnesses using a single prover-controlled weight in an expression. The Lin2-Choice
lemma establishes the necessary cryptographic properties of the protocol.

Moving forward, in the subsequent Lin2-2Choice lemma we add an extra element to our membership proof and
create a signature called Multratug, which in addition to proving knowledge of signing keys also proves the sum of
hidden amounts. Thus, our resulting signature is Multratug, which is an extended version of EFLRSL.
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By the proof of sum of hidden amounts, proof of balance for short, we mean that prover demonstrates a blinded
commitment to some secret amount and proves that this secret amount is equal to the sum of those amounts which
correspond to the actual signing keys and are also blinded.

We will not repeat common words about signatures from the introduction of [29], they all remain valid. We will
keep our presentation brief, considering that many detailed explanations can be taken from [29] as well as from the
work of Benedikt Bünz et al. [7]. As another basic ingredient, we will now use what we think is an elegant way of
turning a protocol into zero-knowledge by adding noise in a separate orthogonal dimension, which we found in the
works of Attema and Cramer [2] and Heewon Chung et al. [9].

Overall, in this paper we assume that a reader has an understanding of the works [7, 9, 29] and possesses
an appropriate intuition, so we keep our descriptions and proofs concise, otherwise the paper would be too long.
Moreover, since the methods of proving sHVZK and cWEE properties of protocols are already widely known, e.g.,
from [7, 9, 2], and the same for unforgeability, anonymity, and other properties of signatures, known, e.g., from
[23, 15, 13, 25], we describe only the key points for our proofs, believing that they suffice to reconstruct all the
details of interest.

1.1 MOTIVATION
Besides the two questions we have already outlined at the beginning, our motive in creating this paper is that

we observe no one among the most prominent log-size ring signatures available nowadays that is as universally
applicable as the linear-size schemes originating from AOS [1] and LSAG [23]. Of course, we are considering only
the portion of the large number of existing signatures that does not require trusted setups or curve pairings, and is
under the types of Diffie-Hellman assumption.

By the universal applicability of a signature scheme we mean the possibility of using it, maybe with some
additive modifications, for solving the following list of problems:
⋄ regular anonymous 1-out-of-many signing,

⋄ signing only once (linkable ring signature),

⋄ simultaneous proof of balance (support for hidden amounts),

⋄ 𝑙-out-of-𝑛 signing (threshold case, we use the word ‘threshold’ in this sense hereinafter and assume 𝑙 ≪ 𝑛

for performance comparison; signature size is expected to be less than simply 𝑙×1-out-of-many case size),

⋄ the case when public keys are formed according to the CryptoNote [31] protocol rules (which are adopted in
many blockchains these days),

⋄ and also the most general case when public keys are not restricted by anything (e.g., they can be generated
ad hoc and be completely malformed, nevertheless LSAG remains secure and anonymous with them),

⋄ in addition, especially in the context of blockchains, it is often desirable that a signature allows for easy
implementation of multiparty signing operations (multisignature operations, described, e.g., in [16]).

Having conducted a kind of pragmatic research, we found that the recently proposed linear-size CLSAG scheme
[13], which generalizes and optimizes LSAG, solves all the listed problems except for the threshold case. We took
CLSAG for reference and compared the applicability of the currently known top-performance log-size schemes
with it, our results are shown in Table 1.

Table 1: Applicability of signature schemes

Log-sz Regular Linkable Balance Thresh.* Blockchain General MP**

CLSAG [13] ✓ ✓ ✓ ✓ ✓ ✓
Lelantus Spark [16] ✓ ✓ ✓ ✓ ✓ ✓
Triptych [25] ✓ ✓ ✓ ✓ ✓
RingCT3.0 [32] ✓ ✓ ✓ ✓ ✓ ✓
Omniring [21] ✓ ✓ ✓ ✓ ✓ ✓ ✓
DualRing-EC [33] ✓ ✓

∗ Many-out-of-many size with threshold=𝑙 is asymptotically, for big 𝑛 and 𝑙, lower than 1-out-of-many size times 𝑙.
∗∗ Multiparty signing is easy to implement.

All the examined schemes have logarithmic size, except for the referenced CLSAG, and all of them provide
the functionality of a regular ring signature. They are roughly ordered by size in the table. Some of the schemes
have versions which implement different subsets of the corresponding check-marked properties, we provide a more
elaborated comparison for them in Tables 8, 9, 10.
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DualRing-EC [33], which does not have any linkable version by-design, is the most size and verification time
efficient among the found signatures. However, its security model requires only properly generated keys, we show
a forgery for the contrary case in Appendix X. The other examined log-size signatures are linkable by-design. All
of them include balance proofs and are compatible with CryptoNote public keys, aka stealth addresses [31], of the
form 𝐵 +Hscalar (𝑟𝐴)𝐺.

Only the RingCT3.0 [32] and Omniring [21] schemes substantially save space when many signers sign simul-
taneously. Triptych [25], RingCT3.0, and Omniring have linking tags of the form 𝑈/𝑥, where 𝑈 is a predefined
generator, which deanonymizes them in the general case, as we show in Appendix Y. The fact of having private key
𝑥 in the tag’s denominator also makes it hard to implement multisignature operations. Lelantus Spark [16] has its
own subsystem that solves this problem, however, the entire scheme seems too narrowly tied to the decentralized
payments to be considered general. We shall note that we compare to the general case for our pure interest, whereas
originally most of the top-performing schemes are claimed in their papers as blockchain-oriented only.

Omniring has a version with linking tag form 𝑥Hpoint (𝑥𝐺), the same form is used in CLSAG. This tag is
invulnerable to malformed keys and is multisignature-friendly, however the original Omniring paper [21] provides
security model only for the less secure𝑈/𝑥 tag. So, we have to assume that both versions of the scheme are bound
to the CryptoNote stealth addresses regardless of the tag used. As confirmed to us by the Omniring authors, there
is no claim that the scheme will remain anonymous when used with malformed keys in the scenario described in
Appendix Y, in which LSAG and CLSAG still remain to be.

Therefore, our second motivation in creating a new general-purpose signature is to make an attempt to implement
all the properties specified in Table 1 in a single scheme of a relatively good size. As a result, in this paper we
present the EFLRSL/Multratug scheme with the properties shown in Table 2, which can be inserted close to the
bottom of the table Table 1.

Table 2: Applicability of our scheme

Log-sz Regular Linkable Balance Thresh. Blockchain General MP
EFLRSL / Multratug ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

With all this, our main objective remains to determine what can be obtained from the Lin2-Choice and
Lin2-2Choice lemmas presented herein, and how practical that would be. In the most elementary cryptographic
group and with minimal additional means, i.e., using a compact vector commitment argument without even involving
the inner product argument.

1.2 COMMITMENT TO VECTOR, VECTOR COMMITMENT, AND ITS ARGUMENT
Our pivotal protocol, which all our proofs of membership and signatures ultimately refer to by calling it only

once in the last step, is a vector commitment argument. Throughout this paper, by the vector commitment or by the
commitment to a vector, we use these terms interchangeably, we mean a published element 𝑃 such that 𝑃 = ⟨a,P⟩,
where P is a vector of orthogonal generators, and a is a vector of scalar weights, typically large. Vector commitment
argument, respectively, is an argument that proves knowledge of all the weights in a at once. This is similar to the
Sum Argument defined in [33], however our implementation is a bit different.

The term vector commitment is already used in the literature for another construction which is described, e.g.,
in [8, 22, 14], and relates to groups with bilinear pairings. On the contrary, we denote by this term the construction
in a pairings-free group that can be thought of as an extremely simplified form of the construction from [8]. In
favor of our terminology is, e.g., the construction called vector commitment in [4], which is similar to ours.

A blinded version of the vector commitment of the form 𝑃 = ⟨a,P⟩ + 𝛼𝐻, where 𝐻 is orthogonal to P, and 𝛼
is independently uniformly sampled, is commonly called as Pedersen vector commitment. It is defined in [7] as an
extension to Pedersen commitment [26]. In our terminology, Pedersen vector commitment is a subset case of the
vector commitment. Both of the vector commitment and Pedersen vector commitment are binding, however only
the latter is necessarily hiding, and the former becomes hiding only when blinded.

1.3 RELATED WORK
A vector commitment argument closely resembling our pivot, in terms of its role in the larger scheme and its

construction, is the compressed pivotal argument by Attema and Cramer in [2]. Although our signature is agnostic
to the pivot implementations, we consider some of them when calculating size. The most efficient one we consider
can be thought of as a subset case of the compressed pivot from [2] with the empty set of connected linear forms
𝐿 ≡ ∅, using definition of 𝐿 from [2]. Further in their work, Attema and Cramer obtain results for 𝐿 ≠ ∅.
Meanwhile, we investigate the other direction from the point 𝐿 ≡ ∅ by studying what happens if the base set of
orthogonal generators P varies with challanges.
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For a prime-order group without bilinear pairings, historically there are two main approaches to constructing
trusted-setup-free log-size membership proofs and signatures in it. The first of them derives from the identification
scheme and its variations by Groth and Kohlweiss [15], and the second one comes from the inner product argument
and subsequent proof for an arbitrary arithmetic circuit by Bünz et al. [7]. We do not use either one.

The recently proposed efficient signature schemes are listed in Table 1. Triptych [25] and Lelantus Spark [16]
rely on the idea of Groth and Kohlweiss [15] by building on top of it. RingCT3.0 [32] and Omniring [21] heavily
employ the inner product argument by Bünz et al. [7]. At the same time, there exist a number of other discrete-log,
prime-order, pairings-free, trusted-setup-free, log-size schemes and approaches, we do not mention them because
of their lower efficiency compared to the top-performers [32, 21, 25, 16].

The DualRing-EC signature by Tsz Hon Yuen et al. [33] has a restrictive security model, nevertheless it
advances an elegant idea of better compression. Although we do not use this idea directly, it inspired us to look for
an optimized version of the vector commitment argument, which ended up being almost the same as the compressed
pivot in [2] that has a strong security model.

An informal introduction to the theme of commitments and log-size arguments in a prime-order group, as well
as a detailed explanation of the work [7] including an overview of the corresponding optimization techniques such
as multi-exponentiation and batch verification, can be found in the article by Adam Gibson [12].

In the previous paper [29], we represent an approach based on our own identification scheme, thus providing the
early results of what can be obtained by building decoy sets of element pairs and ‘rotating’ them with challenges.
However, the signature constructed in [29] is somewhat large in size. In the current paper, we will reinvent the idea
of [29] immediately targeting many-out-of-many proofs and will obtain the much more efficient schemes. In this
paper we will still use the definitions of signature properties, such as unforgeability, anonymity, non-frameability,
collected in [29].

Recent work by Russell W. F. Lai et al. [20] introduces a method of building succinct arguments for bilinear
group arithmetic. The method relies on an enhanced commitment, which in addition to a scalar vector can contain
group elements as witnesses to a system of generalized bilinear relations which is further compressed. The method
is presented in a group with pairings and can be applied equally well in non-pairing groups, as shown in [19].
Possibility of constructing a variety of signatures using the bilinear group arithmetic also follows from [20].

The subsequent work by Thomas Attema et al. [3] takes a more efficient approach to constructing the bilinear
group arithmetic relations while retaining the same type of the enhanced commitment. An efficient transparent
setup threshold signature scheme (TSS) is built in [3], giving an idea of its applicability and size. Compared to our
current work, first of all, in the TSS terminology ‘threshold’ means that 𝑘 signatures can be dynamically merged
after creation, which is stronger than our ‘threshold’ that merely requires to know 𝑙 signing keys when creating a
signature. Second, merged TSS size is independent of 𝑘 , whereas all versions of our signature have linear by 𝑙 sizes.
Third, for large ring size 𝑛 the asymptote of TSS is at least 4⌈log2 (𝑛)⌉, while the asymptote of our signature is
2⌈log2 (𝑛)⌉. Thus, TSS is more space efficient for big thresholds. Our region of interest, however, is low thresholds
with large rings, and our signature is more efficient within it.

1.4 CONTRIBUTION
In this paper, we propose several novel efficient trusted-setup-free pairings-free DDH-based log-size schemes

listed in the following subsections, ranging from the Lin2-Choice lemma membership proof protocol to concise
general-purpose EFLRSL and blockchain-oriented balance-proof Multratug versions of our signature.

Our schemes are based on a black-boxed arbitrary vector commitment argument called pivot. We show a plain
implementation of it, which is a subset case of the inner product argument from [7] with nullified inner product.
Also, we show an efficient implementation of it, which is a subset case of the compressed pivot from [2] with the
empty set of connected linear forms.

Overall, our EFLRSL and Multratug signatures have such a design that redirects everything associated with
ring size to the pivot. They require neither the full inner product argument from [7], nor a bilinear group arithmetic
as in [20, 3], and have the different from [15] underlying proving system which we develop here.

The Lin2-Choice lemma is the main lemma of this paper. Its membership proof idea is the keystone of the
underlying proving system for our signatures. Since this idea seems to us a rather generic approach, we also point
out its other applications. Namely, in addition to our DDH-based log-size membership proofs and signatures, as an
extension, in the appendix we sketch out a Q-DLOG-based [17] constant-size membership proof using it.

1.4.1 LIN2-CHOICE LEMMA’S MEMBERSHIP PROOF

The Lin2-Choice lemma is a generalization of the Lin2-Xor lemma [29] to the case of 𝑛 pairs of elements. In a
nutshell, both of these lemmas provide protocols that prove membership, however the first one proves membership
in a set of 2 elements whereas the second does the same for 𝑛 elements. In addition, compared to the Lin2-Xor
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lemma protocol, the Lin2-Choice lemma’s one is substantially refined to separate the ring elements from the
auxiliary elements involved in the pairs.

The outcome of this protocol is that having a ring P = {𝑃𝑖}𝑛−1
𝑖=0 of 𝑛 orthogonal elements and a Pedersen

commitment 𝑍 to an arbitrary element 𝑃𝑠 ∈ P, prover convinces verifier of membership 𝑍 in P. This takes only
1 group elements and 1 scalar, to which the size of an externally employed vector commitment argument, i.e., of
the pivot, is added. Thus, the Lin2-Choice lemma provides a concise 1-out-of-many membership proof. It has an
uncomplicated design and easily extends into a many-out-of-many membership proof. Also, the external vector
commitment argument can be shared with other protocols to save space.

In the Lin2-Choice itself, we formally prove in detail that this membership proof has cWEE and, also, we
informally show that it is trivially sHVZK by referring to the same blinding design cases formally proved in [2, 9].

1.4.2 EFLRSL SIGNATURE
EFLRSL is a regular linkable threshold ring signature immediately derived from the many-out-of-many version

of the Lin2-Choice lemma’s proof of membership, with size

2⌈log2 (𝑛 + 1)⌉ + 3𝑙 + 1.

It is a simplified version of our larger Multratug signature without any balance proof or multiparty signing, and
with linking tag (aka key image) in the form 𝑥−1Hpoint (𝑥𝐺).

EFLRSL is general-purpose, i.e., it suits for environments where keys can be generated by signers ad hoc and be
arbitrarily malformed. For example, EFLRSL is appropriate for implementing whistleblowing or e-voting systems,
for which LSAG [23] used to be chosen. Compared to the streamlined versions of the recent top-performance
schemes listed in Table 1, EFLRSL appears to be by far the best sized general-purpose linkable ring signature, the
respective comparison is shown in Table 10.

Since EFLRSL is based on the proof of membership which, according to the Lin2-Choice lemma, is sHVZK
and has cWEE, the signature is unforgeable and anonymous. To prove this, we use and refer to the techniques from
[23, 25, 13, 15, 29], where the situation is the same and the appropriate proofs are provided in full detail.

1.4.3 LIN2-2CHOICE LEMMA’S MEMBERSHIP PROOF WITH ADDITIONAL ELEMENT
The Lin2-2Choice lemma is an evolved version of the Lin2-Choice lemma; its protocol comprises 𝑙 instances

of the Lin2-Choice lemma 1-out-of-many membership proof, each of them extended in such a way as to select a
linear combination of exactly two elements of the ring instead of one. All optimized together in a single extended
many-out-of-many proof.

It can be introduced by the following example. For the ring P ∪ V = {𝑃𝑖}𝑛−1
𝑖=0 ∪ {𝑉𝑘}

𝑙−1
𝑘=0 of (𝑛+ 𝑙) elements and

a set of 𝑙 Pedersen commitments Z = {𝑍𝑘}𝑙−1
𝑘=0, using the Lin2-2Choice lemma protocol, prover convinces verifier

that, for each 𝑍𝑘 ∈ Z, it holds 𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 for some 𝑝𝑘 , 𝑣𝑘 , 𝑠𝑘 known to the prover. This takes only 2𝑙 group
elements and 𝑙 scalars, plus the size of an external vector commitment argument.

We prove in detail that this extended membership proof has cWEE, and also we informally show it is sHVZK
by referring to the same uncomplicated blinding design in [2, 9].

We use this protocol to prove balances in our Multratug signature. Roughly speaking, 𝑛 signature ring addresses
and their associated amounts go to the set P, whereas 𝑙 actually spent amounts with re-randomized blinding factors
go to the set V in it. Each commitment 𝑍𝑘 ∈ Z comprises 𝐺 and a key image. With additional means we convince
verifier that ∀𝑘 : 𝑝𝑘 = −𝑣𝑘 . Thus, having played this protocol, the verifier is convinced that each actually spent
amount in V is fully compensated by some amount in P and, also, that those unknown addresses in P which
performed the compensation have the known to the prover 𝑝𝑘’s such that 𝐺 = 𝑝𝑘𝑃𝑠𝑘 . The latter convinces the
verifier that the prover knows the actual signing private keys, and that the key images are built correctly.

Moreover, by properly filling in the input set P ∪ V for the Lin2-2Choice lemma protocol, we are able to
substitute linking tag 𝑥Hpoint (𝑥𝐺) for 𝑥−1Hpoint (𝑥𝐺) in the Multratug signature.

1.4.4 HELPER ARGUMENT: RANDOM WEIGHTING FOR T-S TUPLES
Suppose we have two tuples of elements, possibly blinded. Taking their inner products with a random scalar

vector, we wonder: if these inner products are shown to be proportional to each other, does this prove that the tuples
are elementwise and with the same factor proportional to each other? This question emerged in one of our proofs.
We have looked in the existing literature and found no answer.

Therefore, we compiled an appropriate argument, defined sufficient conditions, and presented the answer in this
paper. It is that, in brief, for any T = {𝑇𝑖}𝑛−1

𝑖=0 and D = {𝐷𝑖}𝑛−1
𝑖=0 , if for random 𝝃 = {b𝑖}𝑛−1

𝑖=0 prover provides a valid
proof of knowledge of 𝑎 such that ⟨𝝃,D⟩ = 𝑎 ⟨𝝃,T⟩, and also if T contains at least two orthogonal to each other
elements, then verifier is convinced that D = 𝑎T holds.
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1.4.5 MULTRATUG SIGNATURE WITH BALANCE PROOF
Multratug is an universally applicable ring signature derived from the Lin2-2Choice lemma protocol. It

simultaneously proves knowledge of signing keys and balance. Multratug has linking tag 𝑥Hpoint (𝑥𝐺) and, also,
has all of the properties check-marked in Table 2, its size is

2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 7𝑙 + 4.

We provide a detailed formal proof of correctness of its balance. We provide only sketches of proofs for its
unforgeability and anonymity, since being based on the sHVZK and cWEE properties of the underlying proving
system these proofs entirely follow known techniques.

Multratug expands the scope of EFLRSL by adding support for hidden amounts and multisignature operations.
It can be used in blockchains, however, is not limited by that. Since the multisignature operations is typically a
must-have feature for modern blockchains, it makes sense to compare Multratug only with those signatures that
allow them (column ‘MP’ in Table 1). The full comparison results are shown in Tables 8, 9.

1.5 PREVIEW OF THE CORE PROTOCOLS
1.5.1 LIN2-CHOICE LEMMA’S MEMBERSHIP PROOF

For the orthogonal ring P = {𝑃𝑖}𝑛−1
𝑖=0 and Pedersen commitment 𝑍 , the Lin2-Choice lemma protocol proves

membership of 𝑍 in P. It looks as the following game, although we simplify it for this preview.
At the start both of the prover and verifier have 𝑍 and P. They jointly pick 𝑛 helper generators Q = {𝑄𝑖}𝑛−1

𝑖=0
such that all elements of P ∪Q are orthogonal to each other. The prover publishes an element 𝐹. Then the verifier
releases challenges c = {𝑐𝑖}𝑛−1

𝑖=0 , and the prover replies with a scalar 𝑟 . Next, the verifier releases a challenge 𝛿.
Given all this, finally the prover convinces the verifier using an arbitrary external vector commitment argument that
the element �̂� defined as

�̂� = 𝑍 + 𝛿𝑟𝐹
is a weighted sum, with weights known to the prover, of the elements from the set

{𝑃𝑖 + 𝛿𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

The involved external vector commitment argument must be sHVZK and has to have cWEE. Also, the com-
mitment 𝑍 and all elements published by prover are properly blinded, we omit showing the blinding components
in this preview.

In the Lin2-Choice lemma we prove that the above game succeeds only if either there exists nonzero scalar 𝑝
known to the prover such that 𝑝−1𝑍 ∈ P, or if it holds that 𝑍 = 0. As well as the game is sHVZK and has cWEE.

1.5.2 LIN2-2CHOICE LEMMA’S MEMBERSHIP PROOF
Compared to the Lin2-Choice lemma’s simplified game in Section 1.5.1, one for the Lin2-2Choice lemma looks

as follows. The former ring P expands to (𝑛 + 𝑙) entries by the second part V = {𝑉𝑘}𝑙−1
𝑘=0 together with the jointly

picked helper generators W = {𝑊𝑘}𝑙−1
𝑘=0.

So, now at the start both of the prover and verifier have the ring P ∪ V, the set of commitments Z = {𝑍𝑘}𝑙−1
𝑘=0,

and the set of helper generators Q ∪W such that all elements of P ∪V ∪Q ∪W are orthogonal to each other. The
prover publishes 𝑙 element pairs (𝐹𝑘 , 𝐸𝑘), 𝑘 ∈ [0 . . . 𝑙 − 1], the verifier releases random c = {𝑐𝑖}𝑛+𝑙−1

𝑖=0 , the prover
replies with 𝑙 scalars 𝑟𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1], the verifier releases random 𝛿1, 𝛿2. The prover convinces the verifier that,
for each 𝑘 ∈ [0 . . . 𝑙 − 1], the element �̂�𝑘 built as

�̂�𝑘 = 𝑍𝑘 + 𝛿1𝑟𝑘𝐹𝑘 + 𝛿2𝑐𝑛+𝑘𝐸𝑘

is a weighted sum, with weights known to the prover, of elements from the set

{𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 ∪ {𝑉𝑖−𝑛 + 𝛿2𝑐𝑖𝑊𝑖−𝑛}𝑛+𝑙−1

𝑖=𝑛 . (1)

Moreover, the proover convinces the verifier that the above holds for all �̂�𝑘’s in one step, by proving that the sum
𝑙−1∑︁
𝑘=0

_𝑘 �̂�𝑘 ,

with independently and uniformly sampled coefficients _𝑘’s, is the weighted sum of elements from the set (1).
The Lin2-2Choice lemma guarantees this game is sHVZK, has cWEE, and completes successfully only if prover

knows indices s = {𝑠𝑘}𝑙−1
𝑘=0 and scalar factors p = {𝑝𝑘}𝑙−1

𝑘=0, v = {𝑣𝑘}𝑙−1
𝑘=0 such that, for each 𝑍𝑘 ∈ Z, it holds

𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 .
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1.5.3 PIVOT: OPTIMIZED VECTOR COMMITMENT ARGUMENT
Our membership proofs invoke an arbitrary vector commitment argument directly or indirectly at the last steps

of their protocols, and we unify the entire variety of such an arbitrary vector commitment argument under the name
of a pivotal black box.

As our signatures are built on top of the corresponding membership proofs, to be able to prove their unforgeability
we require this black-boxed pivot to be complete, sHVZK, and to have cWEE. We put a preview of one of its possible
implementations here, although any other implementation that proves the same having the same properties will do.
Note, our pivot is conceptually similar to and can be understood as the compressed pivot with 𝐿 ≡ ∅ in [2].

The idea is that initially we build a complete, sHVZK, and having cWEE linear-size Schnorr-like vector
commitment argument that convinces verifier that given element 𝑌 is a weighted sum, with weights known to the
prover, of elements from the vector X = {𝑋𝑖}𝑛−1

𝑖=0 such that all 𝑋𝑖’s ∈ X are orthogonal to each other. It looks as
follows. The prover publishes an element 𝑇 as the first message, the verifier issues a challenge 𝑐, the prover replies
with a scalar vector 𝝉, the verifier checks that ⟨𝝉,X⟩ + 𝑐𝑌 = 𝑇 . This game comprises 𝑛 played in parallel Schnorr
identification protocol games [27], for each 𝑋𝑖 ∈ X. The fact that 𝑌 and 𝑇 are necessarily weighted direct sums of
X implies all 𝑛 parallel games are independent of each other, otherwise the orthogonality of X can be shown to be
broken.

Next, for 𝑛 > 4 in this game, instead of replying with 𝝉 the prover replies with a proof of knowledge of 𝝉, which
takes only 2⌈log2 (𝑛)⌉ elements if the reduction from [7] is used. This proof does not need to be sHVZK, as 𝝉 itself
already reveals nothing. Thus, we obtain a complete, sHVZK, and cWEE optimized vector commitment argument
of size 2⌈log2 (𝑛)⌉ + 1.

When 𝑌 is blinded, the blinding generator denoted as 𝐻 is orthogonal to X, we usually precompute it as a
hash to curve Hpoint of everything publicly visible at the moment. In this case, we implicitly append 𝐻 to X in
the above game. This way, the size of the pivotal argument gets increased by 1 under the logarithm and becomes
2⌈log2 (𝑛 + 1)⌉ + 1.

1.5.4 LINKABLE THRESHOLD RING SIGNATURE EFLRSL

Having a ring of public keys (addresses) P = {𝑃𝑖}𝑛−1
𝑖=0 , for the first, we orthogonalize it. Namely, we build from

it the orthogonal decoy set (P + ZU), where U = {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 and Z is random.

We construct the simplest linkable ring signature EFLRS1, which is for one actual signer, by defining the key
image as 𝐼 = 𝑥−1Hpoint (𝑥𝐺), where 𝑃𝑠 = 𝑥𝐺 for some index 𝑠 ∈ [0 . . . 𝑛 − 1], and by applying the Lin2-Choice
lemma’s membership proof to the commitment 𝑍 = 𝐺 + Z 𝐼 in the above decoy set.

For 𝑙 parallel instances of EFLRS1 over the same ring P, we have 𝑙 instances of the Lin2-Choice lemma’s
membership proof in them. Using random weights, we merge these membership proofs into one. Thus, we obtain
the linkable threshold ring signature EFLRSL, which is for 𝑙 actual signers and which makes only one call to the
Lin2-Choice lemma’s membership proof.

1.5.5 MULTRATUG SIGNATURE WITH BALANCE PROOF
Suppose that the ring P of public keys (addresses) is complemented by the set of hidden (blinded) amounts

A = {𝐴𝑖}𝑛−1
𝑖=0 such that, for each index 𝑖, the hidden amount 𝐴𝑖 ∈ A is related to the address 𝑃𝑖 ∈ P. Also, suppose,

a total hidden amount 𝐴sum is given, and the balance with it should be proved.
We might subtract 𝐴sum from each 𝐴𝑖 and prove that for actual signer this difference contains only the blinding

component, as it is done, e.g., in [25]. However, this would prevent us from creating an efficient threshold version
of the signature. Therefore, we specify the set Atmp = {𝐴tmp

𝑘
}𝑙−1
𝑘=0 of re-hidden (with re-randomized blinding factor)

amounts corresponding to the actual signing indices and, simply put, add them to the end of the ring.
Since we already have in our disposal the Lin2-2Choice lemma’s extended membership proof, we adjust it a bit

for our needs by making p = v. This is achieved by adding a new orthogonal generator 𝐾 = Hpoint (Z,P,V, . . . )
to each element in P, and subtracting 𝐾 from each element in V. Further we do not mention 𝐾 , and consider that
our extended membership proof convinces verifier, for all 𝑍𝑘 ∈ Z, that

𝑍𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 +𝑉𝑘), where 𝑠𝑘 , 𝑝𝑘 are known to prover.

So, for Multratug, the simplified game is that at the start both of the prover and verifier have P,A,Atmp, and
both of them also have the helper generators Q,W required by the Lin2-2Choice lemma protocol.

It is impossible to ensure the orthogonality of regular addresses and hidden amounts taken from a blockchain,
however the necessary orthogonality can be easily established by adding the corresponding hashes-to-group to
them, e.g., as it is done using the hashes U in Section 1.5.4, we omit showing them in this preview.

After making the appropriate orthogonalization, for a randomly sampled 𝜔, the prover and verifier have all
elements in (P−𝜔A)∪𝜔Atmp∪Q∪W orthogonal to each other. Letting, for each 𝑘 ∈ [0 . . . 𝑙−1], the commitment
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𝑍𝑘 be equal to 𝐺 and using the Lin2-2Choice lemma membership proof, the prover convinces the verifier that it
knows 𝑠𝑘 , 𝑝𝑘 such that

𝐺 = 𝑝𝑘 ((𝑃𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝜔𝐴
tmp
𝑘
) . (2)

This equality splits into 𝐺 = 𝑝𝑠𝑘𝑃𝑠𝑘 and 𝐴𝑠𝑘 = 𝐴
tmp
𝑘

. Of course, we have omitted blinding components here.
Also, we assume that all elements in P are reliably distinct and nonzero.

Thus, for all 𝑘’s, the equalities (2) prove knowledge of signing private keys at indices 𝑠𝑘’s, and also they prove
that each 𝐴tmp

𝑘
is equal to 𝐴𝑠𝑘 to the accuracy of blinding component. After that, to be convinced that the balance

is met, it only remains to check that
∑𝑙−1
𝑘=0 𝐴

tmp
𝑘

= 𝐴sum holds to the accuracy of blinding component, that’s all.
In addition, the Multratug signature substitutes the 𝑥Hpoint (𝑥𝐺) key image for the inherited from the EFLRSL

signature 𝑥−1Hpoint (𝑥𝐺) one. For this, the same techinque as for proving the equalities of hidden amounts to their
re-hidden counterparts in Atmp is used. In Section 9.1.2 we explain this in detail.

2 PRELIMINARIES
We first outline the definitions, assumptions, and methods that we borrow from the base works. Also, we

specify the notation and base environment that we use in this paper. Since we construct our signatures from many
lesser protocols, we combine the latter under the name of underlying proving system.

2.1 DEFINITIONS AND BASE WORKS
2.1.1 CONTEXT

All of our protocols, including the helpers schemes and signatures, perform for a prime-order group without
bilinear pairings in a trustless environment under the decisional Diffie–Hellman (DDH) assumption in the random
oracle model, as in [7]. All of our protocols are written as interactive, however, we always imply the existence of
their non-interactive Fiat-Shamir counterparts not mentioning them.

All the context, namely, the common reference string, trustless setup, discrete logarithm (DL) relation and DDH
assumptions, orthogonality, commitment binding and hiding, non-interactivity through Fiat-Shamir heuristic,
perfect completeness (we call it simply completeness), argument of knowledge, special honest verifier zero-
knowledge (sHVZK) and computational witness-extended emulation (cWEE) definitions and proof methods which
we use are exactly the same as in [7, 9]. Taking them as already well known, we do not quote or explain them in
detail to save space, instead referring simply to the fact that they correspond to and can be copied from [7].

2.1.2 COMMON WITH OUR PREVIOUS WORK
As a syntactic sugar we use the shorthands ‘∼’, ‘!∼’, ‘lin’, ‘ort’ defined in [29], although they can be resolved

and removed. We use additive notation for exponentiation of group elements, as, e.g., in [25, 29]. We refer to [29]
for proving some few auxiliary claims, for example, to prove that the linking tags in the forms 𝑥Hpoint (𝑥𝐺) and
𝑥−1Hpoint (𝑥𝐺) are statistically indistinguishable from each other.

In [29] we have collected the existing definitions of linkable ring signature and its security models, from various
sources. We use these definitions hereinafter with the only one difference in that, what in [29] is called generic
linkable ring signature now we simply call linkable ring signature.

2.1.3 RELATIONS AND UNIQUENESS OF WITNESS
We prove soundness of our protocols using the same method as in [7]. Namely, for each of our protocols, we

prove that it has cWEE for the corresponding polynomial-time-decidable relation denoted as R. We say that a
relation is fulfilled (or proved) by a protocol as a synonym for that the protocol has cWEE for the relation and,
consequently, witness of the relation is extractable in a polynomial time.

It should be observed that while the cWEE property implies prover’s knowledge of R’s witness, it does not
guarantee that the witness is unique. We use the term uniqueness in the same sense as in [7, 29]. For each of our
protocols in this paper, corresponding witness is always fed in prover’s private input.

In most cases, as in [7], uniqueness of witness follows from the fact that it represents an opening of some binding
commitment included in the statement in R. When this is not the case or is not obvious, we prove uniqueness of
witness by showing that knowing two different values of it causes breaking the DL relation assumption.

2.2 NOTATION
Here is a list of basic notations and shorthands that we use
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• G is a prime-order group, Fp̄ is its corresponding scalar field.

• p̄ denotes a big prime chosen to be the order of the group G and, respectively, of its scalar field Fp̄.

• lowercase italic and lowercase Greek letters denote scalars in Fp̄. Apostrophes, hats, and subscript indices
can be appended, e.g., 𝑎, 𝑏12, 𝑐

′, Z ′, 𝑥𝑘 . Also, lowercase italic and, sometimes, Greek letters denote integers
used as indices or limits, e.g., 𝑛, 𝑖, 𝑗1, 𝑠𝑘 , 𝑥𝜋 , this usage is clear from context. Superscripts, e.g., 𝜖2, denote
scalar exponentiation.

• the special case is the bold superscripts, such as 𝑑𝚫sum or 𝐴sum; it stands for regular scalar in Fp̄ or element
in G, and the superscript in bold has the purely explanatory meaning.

• bold lowercase italic and bold lowercase Greek letters denote scalar vectors, e.g., a, b, 𝜶.

• bold lowercase Gothic letters denote scalar matrices, e.g., 𝔞, 𝔟.

• uppercase italic letters denote elements inG. Apostrophes, hats, and subscript indices can be appended, e.g.,
𝐴, 𝐵12, 𝐷

′, 𝑃𝑠𝑘 . Multiplication syntax is used to denote element exponentiation by a scalar, e.g., 𝑥𝐺.

• bold uppercase italic letters denote element vectors, e.g., A, P.

• n̄ denotes a maximum number of elements in a ring.

• The zero element inG and the zero scalar in Fp̄ are denoted as 0; it is clear from context which set 0 belongs
to. A vector of 𝑛 zeros is denoted either as 0𝑛 or as {0}𝑛, both notations are equivalent.

• asterisk denotes that zero entries are excluded. That is, F∗p̄ means Fp̄ \ {0},G∗ meansG \ {0}. Substantially,
for vectors, if x ∈ F𝑛∗p̄ , P ∈ G𝑚∗, then x and P are assumed to contain no zeros in any position.

• star denotes Klein star. For instance, M ∈ {0, 1}★ means that M is a bitstring.

• Hscalar and Hpoint are the ideal hash and hash to group (to curve) functions, respectively.

• 𝐴 = lin(B), where B is a non-empty vector of nonzero elements, means that 𝐴 = ⟨x,B⟩ for some known
vector x. The syntactic sugar 𝐴 ∼ 𝐵 is equivalent to 𝐴 = lin({𝐵}).

• 𝐴 != lin(B), where B is a non-empty vector of nonzero elements, means that 𝐴 cannot be represented as a
weighted sum of elements in B, except for with negligible probability. The sugar 𝐴 !∼ 𝐵 is equivalent to
𝐴 != lin({𝐵}).

• for any non-empty set S, ort(S) means that no non-trivial relation between elements in S can be found. Thus,
ort(S) is a shorthand for the DL relation assumption [7] for S. If S is a set of Hpoint images on different
pre-images, then there always holds ort(S). As an equivalent definition, ort(S) means that, for each element
𝐸 ∈ S, weights for 𝐸’s representation as a weighted sum of elements in S \ {𝐸} cannot be found. Note, if S
contains the zero element, then ort(S) never holds.

• we say that all elements in S are orthogonal to each other, iff ort(S) holds. We emphasize this because
‘orthogonal to each other’ can be read as pairwise orthogonality, which certainly is a weaker property. Here
and elsewhere, by writing that elements in S are ortogonal to each other we always imply the stronger
property, namely, that ort(S) holds.

• nz(B) means a subset of B containing all nonzero elements found in B.

• access to vector and matrix items is performed using Python notation, as in [7]. Also, having a vector A we
imply that 𝐴𝑖 denotes 𝑖-th item of A, i.e., we imply that 𝐴𝑖 is an alias of A[𝑖 ] and therefore 𝐴𝑖 = A[𝑖 ] . Often
we write ‘let 𝐴𝑖 ← A[𝑖 ]’ to preface the use of 𝐴𝑖 .

• appending an element into a vector is denoted by comma, e.g., X̂← [X, 𝐵]means that X̂ = [𝑋0, . . . , 𝑋𝑛−1, 𝐵].

• when writing our protocols we mix several assignment styles, they all are construed as imperative assignment.
For instance, the expression ‘let 𝑥 ← 𝑦’ means the same as ‘assign 𝑥 = 𝑦’. Typically we use ‘let 𝑥 ← 𝑦’ to
indicate that 𝑥 gets the value of 𝑦 and both of them won’t change.

• as a rule, when we use the letter 𝑛 to represent an integer, we assume that 𝑛 is subject to an additional
restriction, e.g., that 𝑛 or (𝑛 + 1) is a power of 2. The exact body of this restriction is entirely determined by
a concrete vector commitment argument in which this 𝑛 is directly or indirectly used.

• log2 (. . . ) is meant as its ceiling ⌈log2 (. . . )⌉ everywhere, when used together with integers in formulas.
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2.3 COMMONLY AVAILABLE INFORMATION
All the commonly available to both of P and V information is shown in Figure 1. This information is also

assumed to be accessible in all protocols hereinafter.

Common information

• A big prime number p̄
• Definition of a finite scalar field Fp̄

• Definition of a prime-order groupG over Fp̄

• A generator 𝐺 of the groupG

Figure 1: Information available to each party

2.4 UNDERLYING PROVING SYSTEM
In this paper we construct a number of protocols and use them as building blocks for our signatures. Except for

the signatures themselves, each of our protocols is a zero-knowledge argument of knowledge. That is, according to
the respective definitions in [7], it is (perfectly) complete , sHVZK, and has cWEE.

Completeness is trivially seen from the code of the protocols, we do not dwell on it. For each argument, we
prove that it has cWEE property by constructing a witness extractor. The extractor obtains witness for argument’s
relation by reading argument’s public transcript and making a polynomial number of rewindings on it. For some
elementary protocols, instead of explicitly constructing an extractor we refer to the works where it is done in details.
For each of our extractors, we also prove that witness obtained by it meets the corresponding relation limits and is
unique, we show that otherwise the extractor breaks the DL relation assumption in a polynomial number of steps.

The sHVZK property requires building a simulator in each case. Fortunately, almost (this ‘almost’ is due to a
couple of easy exceptional cases described in Section 2.4.2) all of our arguments can be made zero-knowledge using
the concise and currently widely known method presented, e.g., in the works of Attema et al.[2], Chung et al.[9].
Namely, each scalar reply in our public transcripts is by-design masked with an independently and uniformly
sampled randomness, whereas each element 𝐸 in the transcripts is either completely dependent or having the form

𝐸 = 𝑋 + `𝐻, (3)

where 𝑋 is the value component of 𝐸 , and `𝐻 is the blinding component of 𝐸 . The blinding generator 𝐻 is built
in such a way to be orthogonal to everything else, and ` is always an independently and uniformly sampled scalar.

It is informally clear why transcripts with these elements reveal no information. Namely, the form (3) is a
Pedersen commitment [26, 7], which is perfectly hiding [7]. Formally, we refer to the work [9], where the elements
of public transcripts have the same structure and the corresponding simulators are constructed. We will assume that
for each of our arguments a simulator is constructed in the same way as in [9], and will not construct it explicitly.

2.4.1 CONNECTION TO SIGNATURES
Having a set of zero-knowledge arguments of knowledge introduced in Section 2.4, which we call an underlying

proving system, we build our signatures right on top of it. Since all of the arguments of the underlying proving
system are complete, sHVZK, and have cWEE, we can prove security of our signatures using the well known
methods.

Namely, to establish unforgeability, anonymity, and other signature properties we refer to the work in [23, 13,
29], where these properties are obtained from the sHVZK and cWEE properties of the underlying proving systems,
for the linkable signatures with key image forms 𝑥Hpoint (𝑥𝐺) or 𝑥−1Hpoint (𝑥𝐺). We keep in mind that, as we
proved in [29], key images in these two forms are indistinguishable from each other.

2.4.2 EXCEPTIONAL SHVZK CASES
We have the only two exceptional sHVZK arguments which do not follow the form (3) for their public transcript

elements. Anyway, their sHVZK can be easily established different ways. The first of them is the two-element
Schnorr-like scheme in Figure 2, which splits into two Schnorr-id protocols and, hence, can be proven sHVZK by
combining outputs of two Schnorr-id simulators.

The second one is the optimized version of our pivot vector commitment argument in Figure 28, previewed
in Section 1.5.3. It is sHVZK since its first message 𝑇 is the sum of elements, each randomized according to the
Schnorr-id scheme. At the same time, the scalar vector 𝝉 in it needs not to be hidden. That is, the argument is
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already sHVZK with open 𝝉, and the replacement of 𝝉 with its proof of knowledge does not revoke the sHVZK
property of the entire argument.

As another way of proving the above, it suffices to recall that the argument in Figure 28 is a subset case (with
cosmetic differences) of the compressed pivot in [2]. Hence, the proof of sHVZK for the argument in Figure 28
can be borrowed from [2]. Moreover, since the argument in Figure 2 is a subset case of the argument in Figure 28,
for both of our exceptional sHVZK cases we can simply refer to the proof in [2].

2.5 INFORMAL INTERPRETATION
Proving the cWEE property for protocols is a necessary and one of the difficult steps when designing a

cryptosystem under the DL assumption. However, when creating a completely new protocol, neither cWEE nor
sHVZK property definitions give an idea of what it should look like. Fortunately, we can use the following metaphor
when constructing the protocols we need. This metaphor allows us to guess what those protocols might be, for
which we are likely having a chance to prove that they have cWEE.

The metaphor is that all elements inG can be thought of as vectors of an infinite-dimensional linear space with
countable base 𝔏 over Fp̄. A set of orthogonal elements in a protocol corresponds to a set of linearly independent
vectors in 𝔏 which determine a linear subspace in it. Note, others vectors of the protocol are not assumed to be
belonging to this subspace by default. Addition and multiplication by a scalar in𝔏 are the same as inG. Calculating
the dot product between two vectors in 𝔏 is assumed hard, which corresponds to the DL assumption in G. This
metaphor allows for a geometrical interpretation of the protocols.

For example, the well-known Schnorr-id scheme can be interpreted as the following game in 𝔏. For two given
vectors 𝐺 and 𝑌 , prover P must convince verifier V that 𝑌 is collinear to 𝐺. Note that V itself cannot check
whether this is the case by taking the dot product between𝐺 and𝑌 . So, P publishes some vector 𝑇 , thenV issues a
challenge 𝑐 and P replies with the factor 𝑟 such that 𝑟𝐺 = 𝑇 − 𝑐𝑌 , thus showing that the vector (𝑇 − 𝑐𝑌 ) is collinear
to 𝐺. Since 𝑐 is random, this convincesV that both of 𝑇 and 𝑌 are collinear to 𝐺.

As another example, consider the simplest case of the reduction by Bünz et al. [7], where P proves that the
given 𝑌 belongs to the plane spanned by 𝑋0 and 𝑋1 by demonstrating some 𝐿 and 𝑅 such that 𝑌 = 𝑌 + 𝜖2𝐿 + 𝜖−2𝑅

is true for a random 𝜖 , provided that for 𝑌 it is already shown that it belongs to the plane spanned by 𝑋0 and 𝑋1. It
is easy to see that the vector (𝜖2𝐿 + 𝜖−2𝑅) is randomly sampled in the plane spanned by 𝐿 and 𝑅. Therefore, if 𝑌
does not belong to the same plane, then 𝑌 will not be in any predetermined plane. However, as defined right above,
it is shown that 𝑌 belongs to the predetermined plane which is the one spanned by 𝑋0 and 𝑋1. So 𝑌 belongs to the
plane of 𝐿 and 𝑅 and, hence, 𝑌 belongs to it too. However, 𝑌 belongs to to the plane of 𝑋0 and 𝑋1, which means
that 𝑌, 𝐿, 𝑅 also belong to the plane of 𝑋0 and 𝑋1.

Since this is an informal method, we will not mention it further in the text, except for a few informal explanations.
And, of course, we neither consider it as a formal argument nor use it in the formal proofs. Anyway, keeping this
metaphor in mind can be helpful in understanding our protocols.

3 ELEMENTARY PROTOCOLS
We begin with the simple protocols, each representing an sHVZK argument of knowledge for the corresponding

basic relation. We will use these arguments later in our lemmas and signatures. Although, generally speaking, they
can be used independently or as the parts of other systems.

Concrete implementations of the arguments zk2ElemComm (Figure 2) and zkVC𝑛 (Figure 3) are not decisive;
other implementations will do, as long as they support the same relations and are complete, sHVZK, and have
cWEE. Moreover, in the optimized implementations of our signatures we replace zkVC𝑛 by zkVCopt

𝑛 (Figure 28).
Some of the relations given below clearly can be interpreted as definitions of binding commitments, and we call

their respective elements commitments. For most of them, their binding property follows directly from binding of
Pedersen vector commitment [7]. In any case, for all of our arguments, we prove that their relations have unique
witnesses when this is not trivially seen, as we have already pointed out in Section 2.1.3.

As for the hiding property of those elements considered as commitments, we do not require it by default; the
sHVZK property of the corresponding arguments suffices for our needs.

3.1 OVERVIEW
3.1.1 TWO ELEMENT COMMITMENT

We call the first helper protocol a two-element commitment argument, and denote it as

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ).
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In this notation, the elements 𝑋, 𝐻,𝑌 are common input for prover and verifier. And the pair of scalars 𝑥, ℎ is the
prover’s private input, it is the witness known only to the prover. The protocol zk2ElemComm is an argument for
the relation

R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 }, (4)

where 𝑋 and 𝐻 are orthogonal to each other.
We require zk2ElemComm to be sHVZK and to have cWEE. Additionally, we require the witness (𝑥, ℎ) of

the relation (4) to be proved unique, which fortunately is trivial. In Figure 2 we provide an uncomplicated
implementation of this argument.

Overall, zk2ElemComm convinces verifier that prover knows weights in the representation of the element 𝑌 as a
weighted sum of the orthogonal generators 𝑋 and 𝐻. We implement it as a two-generator extension of the Schnorr
identification scheme [27]. Its size is one element in G and two scalars in Fp̄.

The input element 𝑌 can be regarded as a commitment that binds its opening (𝑥, ℎ). When ℎ is sampled
independently and uniformly, 𝑌 becomes hiding as Pedersen commitment. Notable, the zk2ElemComm protocol
itself remains sHVZK for any distribution of ℎ, including ℎ = 0.

3.1.2 BASIC VECTOR COMMITMENT
Vector commitment argument, which will be playing the pivotal role in our paper, is

zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼).

It proves knowledge of an unique witness for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 }, (5)

where all generators in the set X ∪ {𝐻} are orthogonal to each other.
This argument convinces verifier that prover knows (𝑛 + 1) weights, namely, a and 𝛼, in the decomposition of

𝑌 by the generators X ∪ {𝐻}. The genearator 𝐻 together with its corresponding weight 𝛼 is used here to make this
argument zero-knowledge, as in [9, 2].

Our implementation of zkVC𝑛 in Figure 3 is based on the inner product argument implementation from [7],
which is provided for the following relation in the original paper

R = {G,H ∈ G𝑛∗,𝑈, 𝑃 ∈ G; a, b ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ + ⟨b,H⟩ + ⟨a, b⟩𝑈 }. (6)

We modify this relation and the implementation from [7] the next way. First, since we do not actually need the
inner product argument, just only its vector commitment part, we zero out the vector b in the relation (6). Thus,
the inner product ⟨a, b⟩ becomes equal to zero everywhere. This leaves only the vector commitment argument, i.e.,
only the argument for the relation

R = {G ∈ G𝑛∗, 𝑃 ∈ G; a ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ }. (7)

Second, we make this argument zero-knowledge not the way it is done in [7], instead we use the straighter way
that is as in [9]. Namely, we respectively add the blinding summands 𝛼𝐻, 𝛽𝐻, and 𝛾𝐻 to the vector commitment
𝑃 and to all the 𝐿 and 𝑅 elements transmitted during the reduction in [7]. The secret blinding factors 𝛽, 𝛾 are
sampled independently and uniformly by P, the blinding generator 𝐻 is chosen to be orthogonal to G, hence all
the transmitted 𝐿’s and 𝑅’s appear to be indistinguishable from random noise. We rename the vector G and the
commitment 𝑃 in the relation (7) to X and 𝑌 in the relation (5), respectively. The blinding summand 𝛼𝐻 is taken
into account in the relation (5).

Third, for the case 𝑛 = 1 we use our own Schnorr-like sHVZK and cWEE protocol, which is different from
sub-protocols used in [7] and [9]. Namely, we use zk2ElemComm instead, and this does not alter the properties of
the entire zkVC𝑛 protocol.

Overall, our implementation of zkVC𝑛 is shown in Figure 3. It has the same properties as the implementation
of the inner product argument in [7] with b = 0𝑛, plus it is sHVZK and, of course, it remains to be having cWEE.
Compared to the implementations in [7, 9] our zkVC𝑛 contains no inner product proof. It proves knowledge of the
opening (a, 𝛼) of the vector commitment 𝑌 only.

Size of zkVC𝑛 is 2⌈log2 (𝑛)⌉ + 1 elements in G and 2 scalar in Fp̄. Here and elsewhere, when using this
implementation we consider 𝑛 is a power of 2. Although, as we have already mentioned, our protocols will not
be generally bound to a particular realization of zkVC𝑛 and, hence, when we use its optimized version defined in
Section 10, this requirement for 𝑛 will change.
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3.1.3 RANDOM WEIGHTING FOR 3-TUPLES
Another auxiliary argument,

zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

shown in Figure 4, connects a triplet of orthogonal elements (𝑃,𝑄, 𝑅) with a triplet of arbitrary elements (𝑍, 𝐹, 𝐸).
One of the two elements 𝑄 and 𝑅 in the triplet (𝑃,𝑄, 𝑅) can be zero, in which case the other two elements of the
triplet must remain orthogonal to each other. So, the protocol zk3ElemRW is an argument for the relation

R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 , (8)

where all nonzero elements in the set {𝑃,𝑄, 𝑅, 𝐻} are required to be orthogonal to each other, which is denoted by
ort(nz(𝑃,𝑄, 𝑅, 𝐻)). Also, at least one of 𝑄 and 𝑅 must be nonzero, which is denoted by (𝑄 + 𝑅) ∈ G∗.

The implementation of zk3ElemRW is as follows. V samples two challenges 𝛿1 and 𝛿2, and both P andV build
the sums 𝑋 and 𝑌 using these challenges. Also, P builds the total blinding factor �̂�

𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅,

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 .

As the second step, P proves toV using an arbitrary external complete, sHVZK, and having cWEE argument
that 𝑌 is a weighted sum of 𝑋 and 𝐻, with known to P weights. In course of the proof of Theorem 3 we will show
that this suffices to extract unique witness for the relation (8).

Using the shorthands defined in [29], we can also say that a proof of𝑌 = lin(𝑋, 𝐻) holds onP’s side is somehow
obtained in the second step of zk3ElemRW. We will often omit everything connected with 𝐻 as a technical blinding
detail, writting this shortly as 𝑌 ∼ 𝑋 (to the accuracy of 𝐻 component).

The cWEE property of zk3ElemRW can be proved the same way as it is done for the RandomWeighting-WEE
lemma protocol in [29]. Also, in the proof of Theorem 3 we consider the extreme case, when one of the elements
𝑄 and 𝑅 is zero.

Our requirement (𝑄 + 𝑅) ∈ G∗ may seem excessive, however without it the protocol is not sound (does not
have cWEE). For instance, suppose both of 𝑄 and 𝑅 are equal to zero, then P can let 𝑍 = 𝑃, 𝐹 = 2𝑃, 𝐸 = 0. The
protocol succeeds on this input, yet witnesses such as 𝑎, 𝛽 remain unknown. Thus, the requirement (𝑄 + 𝑅) ∈ G∗
is highly significant.

3.1.4 SIMMETRIC VECTOR COMMITMENT
We also need an argument to convince verifier that several, e.g., two or three, vector commitments share the

same known to prover weights, with the only exclusion for blinding factors which are not shared. That is, we need
the argument

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)
shown in Figure 5 for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 , (9)

where all nonzero elements from the set P ∪ Q ∪ R ∪ {𝐻} are orthogonal to each other, which is denoted by
ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}). Also, for each index 𝑖 ∈ [0 . . . 𝑛 − 1], at least one of two elements Q[𝑖 ] and R[𝑖 ]
must be nonzero, which we denote by (Q + R) ∈ G∗.

The relation (9) asserts that the three different vector commitments 𝑍, 𝐹, 𝐸 are sort of ‘symmetrical’ to each
other due to the common weights a which apply to three different bases P,Q,R, respectively. Note, that we require
all elements in P to be nonzero, while vectors Q and R are allowed to contain zero elements, provided that for
each index there is at least one nonzero element at that index in them. This condition is similar to the requirement
(𝑄 + 𝑅) ∈ G∗ imposed by the relation (8) to (𝑃,𝑄, 𝑅) in Section 3.1.3.

Using random weights similar to the way they are used in Section 3.1.3, we reduce the argument zkSVC3,𝑛 to
the vector commitment argument zkVC𝑛. Namely, for random 𝛿1 and 𝛿2, we construct

X = P + 𝛿1Q + 𝛿2R,
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 ,
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and call
zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�).

Upon successful completion of zkVC𝑛 we see that, by this, 𝑛 instances of the protocol zk3ElemRW have been
successfully performed, for all the indices 𝑖 ∈ [0 . . . 𝑛− 1]. This means that the relation (8) is fulfilled for each pair
of triplets ( (𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖), (𝑍𝑃𝑖 , 𝐹𝑄𝑖

, 𝐸𝑅𝑖
) ) and, therefore, the relation in question (9) is fulfilled. Also, uniqueness

of witness of the relation (9) follows from the uniqueness of witness of the relation (8).
In the above, 𝑍𝑃𝑖 denotes 𝑃𝑖’s component in a decomposition of 𝑍 by the base P, the same for 𝐹𝑄𝑖

, 𝐸𝑅𝑖
. We

have implicitly assumed that 𝑍, 𝐹, 𝐸 are weighted direct sums of P,Q,R, respectively, with weights known to the
prover. This is a strong assumption which cannot be made out of thin air. Fortunately, upon successful completion
of zkSVC3,𝑛 verifier is primarily convinced that 𝑍, 𝐹, 𝐸 are the mentioned weighted direct sums. Otherwise the
protocol witness extractor would be able to break the DL relation assumption.

3.2 FORMAL PRESENTATION
3.2.1 TWO ELEMENT COMMITMENT

Theorem 1:
For two nonzero elements 𝑋, 𝐻 ∈ G∗ such that they are orthogonal to each other, for an element 𝑌 ∈ G, the
protocol zk2ElemComm in Figure 2 is a complete, sHVZK argument having cWEE for the relation (4) with unique
witness.

Proof: Appendix A.
Overview: Section 3.1.1.

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ)

Relation R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 } // (4)

// 𝑋, 𝐻 in R satisfy ort(𝑋, 𝐻 ) .

P’s input : (𝑋, 𝐻,𝑌 ; 𝑥, ℎ)
V’s input : (𝑋, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝜙, 𝜓 ←$ F∗p̄ and computes 𝑇 = 𝜙𝑋 + 𝜓𝐻

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝜏 = 𝜙 − 𝑐𝑥
[ = 𝜓 − 𝑐ℎ

P → V : 𝜏, [

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇
?
= 𝜏𝑋 + [𝐻 + 𝑐𝑌

Figure 2: Zero-knowledge argument for two element commitment relation

3.2.2 BASIC VECTOR COMMITMENT

Theorem 2:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of nonzero elements X ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗
such that ort(X∪{𝐻}) holds, for an element𝑌 ∈ G, the protocol zkVC𝑛 in Figure 3 is a complete, sHVZK argument
having cWEE for the relation (5) with unique witness.

Proof: Appendix B.
Overview: Section 3.1.2.
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zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (5)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 1 then

P : 𝛽, 𝛾 ←$ F∗p̄ and computes �̂� = 𝑛/2

𝐿 =
〈
a[:�̂�] ,X[�̂�:]

〉
+ 𝛽𝐻

𝑅 =
〈
a[�̂�:] ,X[:�̂�]

〉
+ 𝛾𝐻

P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes â = 𝑒a[:�̂�] + 𝑒−1a[�̂�:]

�̂� = 𝛼 + 𝑒2𝛽 + 𝑒−2𝛾

P andV : run zkVC�̂� (X̂, 𝐻,𝑌 ; â, �̂�) // run recursively until n=1

else // n=1

P andV : let 𝑋0 ← X[0]
and run zk2ElemComm(𝑋0, 𝐻,𝑌 ; 𝑎0, 𝛼)

endif

Figure 3: Zero-knowledge argument for vector commitment relation

3.2.3 RANDOM WEIGHTING FOR 3-TUPLES

Theorem 3:
For a nonzero element 𝑃 ∈ G∗, for a pair of elements 𝑄, 𝑅 ∈ G, for a nonzero element 𝐻 ∈ G∗ such that
ort(nz(𝑃,𝑄, 𝑅, 𝐻)) holds and at least one of the two elements𝑄, 𝑅 is nonzero, the protocol zk3ElemRW in Figure 4
is a complete, sHVZK argument having cWEE for the relation (8) with unique witness.

Proof: Appendix C.
Overview: 3.1.3.
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zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

Relation R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 // (8)

// 𝑃, 𝑄, 𝑅, 𝐻 in R satisfy ort(nz(𝑃, 𝑄, 𝑅, 𝐻 ) ) and (𝑄 + 𝑅) ∈ G∗

P’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)
V’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute 𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run any complete, sHVZK, and cWEE protocol that convincesV that
the pair (𝑎, �̂�) is a known to P witness of the relation (4), that is,
that 𝑋 and 𝑌 are connected as 𝑌 = 𝑎𝑋 + �̂�𝐻

Figure 4: Zero-knowledge argument for two 3-tuples proportional to each other

3.2.4 SIMMETRIC VECTOR COMMITMENT
Theorem 4:
For 𝑛 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗, and for a pair of vectors of elements Q,R ∈ G𝑛 such that
(Q + R) ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}) holds, for three elements
𝑍, 𝐹, 𝐸 ∈ G, the protocol zkSVC3,𝑛 in Figure 5 is a complete, sHVZK argument having cWEE for the relation (9)
with unique witness.

Proof: Appendix D.
Overview: 3.1.4.

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 // (9)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)
V’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute X = P + 𝛿1Q + 𝛿2R
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�) , or run any other complete, sHVZK, and cWEE
protocol for the relation (5)

Figure 5: Zero-knowledge argument for 3 vector commitments with shared weights
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As a subset case of the zkSVC3,𝑛 protocol in Figure 5, for R = 0𝑛, we define the protocol zkSVC2,n in Figure 6,
requiring for it that all elements in Q be nonzero.

zkSVC2,𝑛 (P,Q, 𝐻, 𝑃, 𝑄; a, 𝛼, 𝛽)

zkSVC2,𝑛 (P,Q, 𝐻, 𝑍, 𝐹; a, 𝛼, 𝛽) = zkSVC3,𝑛 (P,Q, 0𝑛, 𝐻, 𝑍, 𝐹, 0; a, 𝛼, 𝛽, 0)
// where P,Q ∈ G𝑛∗ , 𝐻 ∈ G∗ , 𝑍, 𝐹 ∈ G; a ∈ F𝑛

p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

Figure 6: Zero-knowledge argument for 2 vector commitments with shared weights

4 LIN2-CHOICE LEMMA
In this section we present the Lin2-Choice lemma featuring zkLin2Choice𝑛 one-out-of-many proof of mem-

bership, which we will use later to create the ring signatures. This lemma is main in our paper.

4.1 OVERVIEW
4.1.1 A LOOK INTO OUR PREVIOUS WORK

In [29] we proved the Lin2-Xor lemma which, informally, allows one to select a pair of elements from two pairs
of elements. Formally, it provides an argument for the relation

R =
{

P,Q ∈ G2∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
, (10)

where all generators in P ∪Q are orthogonal to each other.
Intuition here is that in the first round of the Lin2-Xor lemma protocol both of the prover and verifier multiply

one element in each of the two original pairs (𝑃0, 𝑄0) and (𝑃1, 𝑄1) by a random challenge, so that each of these
two pairs becomes a compound element with its own random ’rotation’. Namely, they become

(𝑃0 + 𝑐0𝑄0) and (𝑃1 + 𝑐1𝑄1) . (11)

Here we use the notation and indexing from [29].
In the second round of the Lin2-Xor protocol, the prover and verifier play a sub-protocol convincing the verifier

that the element (𝑍 + 𝑟1𝐻1) in [29] is a weighted sum of the two compound elements (11) which carry their random
’rotations’ 𝑐0 and 𝑐1. It turns out that this weighted sum can have no more than one nonzero weight out of two,
otherwise the DL relation assumption would be broken.

In fact, since 𝑃0, 𝑄0, 𝑃1, 𝑄1, 𝑍, 𝐻1 are fixed from the beginning, and as they are orthogonal to each other, the
element (𝑍 + 𝑟1𝐻1) has at most one ‘degree of freedom’ parameterized by 𝑟1. At the same time, each of the
elements (11) has exactly one degree of freedom defined by the parameters 𝑐0 and 𝑐1, respectively. Hence, if both
of the coefficients 𝑎, 𝑏 in the weighted sum

𝑍 + 𝑟1𝐻1 = 𝑎(𝑃0 + 𝑐0𝑄0) + 𝑏(𝑃1 + 𝑐1𝑄1) (12)

are not equal to zero, then the right-hand side of the equality (12), which has two ‘degrees of freedom’ with
the random parameters 𝑐0 and 𝑐1, is balanced out by one ‘degree of freedom’ of the left-hand side with the
prover-controlled parameter 𝑟1. However, this is impossible without breaking orthogonality of 𝑃0, 𝑄0, 𝑃1, 𝑄1 and,
therefore, at least one of the two weights 𝑎, 𝑏 must be zero.

Also, in [29], by successive application of the Lin2-Xor lemma log2 (𝑛) times we proved the Lin2-Selector
lemma, which allows to select a pair of elements from 𝑛 pairs of elements. The Lin2-Selector lemma provides an
argument for the relation

R =
{

P,Q ∈ G𝑛∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
. (13)

4.1.2 LIN2-CHOICE LEMMA PROOF OF MEMBERSHIP
After some consideration, we concluded that instead of proving the relation (13) with the Lin2-Selector lemma

protocol, as we did in [29], it would be better to prove it directly, as if the Lin2-Xor lemma were applied to 𝑛 pairs
of elements at once while making an auxiliary call to some external vector commitment argument. We implement
this method in the Lin2-Choice lemma now, it is more efficient in size and also leaves more room for optimizing
the verification complexity.

17



In line with the intuition in Section 4.1.1, in the first round we can take 𝑛 pairs of elements and turn them into
𝑛 compound elements with random ‘rotations’. After that, in the second round, we can prove that (𝑍 + 𝑟1𝐻1) is a
linear combination of these 𝑛 compound elements. As a result, exactly the same way as for the linear combination
(12), we let the compound element (𝑍 + 𝑟1𝐻1) with one ‘degree of freedom’ controlled by prover with 𝑟1 balance
out 𝑛 ‘degrees of freedom’ of a weighted sum comprising 𝑛 compound elements of the form 𝑃𝑖 + 𝑐𝑖𝑄𝑖 . That is, we
let the following equality hold

𝑍 + 𝑟1𝐻1 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝑐𝑖𝑄𝑖). (14)

The equality (14) can hold only if the vector of coefficients a = {𝑎𝑖}𝑛−1
𝑖=0 is one-hot. We skip the edge case

a = 0𝑛 here and will discuss it a bit later. Thus, we obtain an argument for the relation (13) as the two-round game,
where in the first round 𝑟1 is chosen in response to 𝑛 challenges {𝑐𝑖}𝑛−1

𝑖=0 , and in the second round the pivotal vector
commitment argument is played as

zkVC𝑛 ( {𝑃𝑖 + 𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 , 𝐻, 𝑍 + 𝑟1𝐻1 ; a, 𝛼 ).

Here 𝐻1 is fixed as in [29], 𝐻 is an independent orthogonal blinding generator, 𝛼 is the blinding factor, and a is
one-hot.

Also, since the vector Q carries only a technical role in the relation (13), now we are getting rid of 𝑄𝑠 in (13)
by adding a proof that 𝑞 = 0 everywhere in the signatures. Namely, we are including a proof of 𝑞 = 0 in our current
argument. With all this in mind, the Lin2-Choice lemma (Theorem 5) provides the protocol

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

shown in Figure 8, which is sHVZK, has cWEE, and is an argument for the relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}
, (15)

where all elements in P,Q, 𝐻 are orthogonal, i.e., ort( P ∪Q ∪ {𝐻}) holds.
Thus, our Lin2-Choice lemma allows to choose exactly one element from the set of orthogonal elements P ∈ G𝑛∗.

Addressing the details, with a simultaneous proof of 𝑞 = 0, the Lin2-Choice lemma protocol zkLin2Choice𝑛 for
the relation (15) performs as follows

• The first P’s message is an element 𝐹, which plays the same role as 𝐻1 in [29]. After the first message, both
of P andV have the elements 𝑍 and 𝐹.

• All 𝑛 elements in Q are multiplied by the challenges {𝑐𝑖}𝑛−1
𝑖=0 , thus P andV obtain the vector Q̂ = {𝑐𝑖𝑄𝑖}𝑛−1

𝑖=0 .
• P replies with 𝑟 , which plays the same role as 𝑟1 in [29].
• P andV play zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝑟𝛽), where a is one-hot, 𝐻 is an orthogonal blinding generator,
𝛼 and 𝛽 are blinding factors of 𝑍 and 𝐹 respectively.

In this protocol, we can see that if a has more than one hot entry, then zkSVC2,𝑛 played in the last step will not
complete successfully for the same reason as the equality (14) will not hold for such a. To be precise, the following
equality is checked inside zkSVC2,𝑛, and it guarantees a is one-hot

𝑍 + 𝛿1𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖). (16)

In addition to this, if zkSVC2,𝑛 completes successfully, then 𝑍’s decomposition by the input generators cannot
contain elements from Q, as zkSVC2,𝑛 guarantees 𝑍 = lin(P ∪ {𝐻}).

Now it is a time to discuss the edge cases that are about completely zero weights in the linear combinations.
The case 𝑎 = 𝑏 = 0 for the equality (12) is settled in [29] by some extra checks. Extra checks would also resolve
the edge case for the equality (14), however we do not use the latter at all. Instead of (14), our current Lin2-Choice
lemma protocol zkLin2Choice𝑛 resorts to the equality (16), which has the additional random factor 𝛿1, making
any extra checks unnecessary. Actually, if a = 0𝑛 in the equality (16), then it holds

𝑍 + 𝛿1𝑟𝐹 = 0 ,

where 𝛿1 is sampled after 𝑍, 𝐹, 𝑟 are published; this proves without any extra checks that 𝑍 is equal to zero. To be
precise, in this case 𝑍 is proved having only the blinding component, recalling all the above equalities are written
to the accuracy of 𝐻 component. Thus, the edge case a = 0𝑛 in the equality (16) naturally corresponds to the case
𝑝 = 0 in the relation (15).
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4.1.3 GENERIC IDEA OF LIN2-CHOICE LEMMA
The Lin2-Choice lemma’s membership proof is shown in Figure 8, informally overviewed in Section 4.1.2, and

formally presented in Section 4.2. We can take a look at it from a different angle and informally obtain a more
generic view of this protocol. This view will clarify a bit the main idea of the Lin2-Choice lemma, and may make
it easier to further understand its formal proof. As we usually do in informal explanations, we omit blinding.

The zkSVC2,𝑛 sub-protocol played in the last step of the Lin2-Choice lemma’s membership proof, by Theorem 4,
convinces verifier that the following system of two equalities holds

𝑍 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑃𝑖

𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑐𝑖𝑄𝑖

(17a)

(17b)

As follows from the lemma’s premise, both sets P = {𝑃𝑖}𝑛−1
𝑖=0 and Q = {𝑄𝑖}𝑛−1

𝑖=0 are orthogonal. Therefore, the
equality (17a) expresses the fact that the weights a = {𝑎𝑖}𝑛−1

𝑖=0 are bound by the commitment 𝑍 , and thus they are
fixed before the challenges c = {𝑐𝑖}𝑛−1

𝑖=0 are sampled by the verifier.
With the fixed weights a and sampled independently and uniformly challenges c, the verifier is convinced that

the second set of weights a ◦ c = {𝑎𝑖𝑐𝑖}𝑛−1
𝑖=0 , which participates in the equality (17b), has the following structure.

For each weight 𝑎𝑖𝑐𝑖 , it holds with overwhelming probability that{
𝑎𝑖𝑐𝑖 = 0 iff 𝑎𝑖 = 0 ,
𝑎𝑖𝑐𝑖 is distributed independently and uniformly at random otherwise, i.e., when 𝑎𝑖 ≠ 0

(18a)
(18b)

Let us consider two trivial cases of the set a, namely, the zero case and one-hot case. If a = 0𝑛, then prover
easily makes the equality (17b) hold by replying with 𝑟 = 0 or by sending 𝐹 = 0 in the first message of the protocol.
In the case of one-hot a, the prover trivially counterweights the sole nonzero weight 𝑎𝑖𝑐𝑖 in the right-hand side of
(17b) with 𝑟 in the left-hand side. Of course, the prover must properly choose 𝐹 for the first message in this case.

The Lin2-Choice lemma (Theorem 5) states that there is no non-trivial cases for a in this protocol; the two
trivial cases above are the only possible ones.

Now let’s make a generalization. As the Lin2-Choice lemma’s protocol in Figure 8 invokes zkSVC2,𝑛 only to
convince the verifier of the system (17), we can relax this call and require that (17) be proved to the verifier in
any suitable way (meaning cWEE and sHVZK), not exclusively by calling to zkSVC2,𝑛. Also, we can weaken the
requirement on the weights a to be precisely bound with the commitment (17a), leaving only the condition that they
must be fixed before sampling the challenges c. With these two relaxations, the game of the Lin2-Choice lemma
protocol can be viewed as shown in Figure 7.

Generic idea of the Lin2-Choice lemma protocol

• On input, both of P andV have the set of helper generators Q ∈ G𝑛∗. Also, P has the set a ∈ F𝑛p̄ .

• P sends toV an element 𝐹 ∈ G as the first message. At the same time, P convincesV by any means,
e.g., using a binding commitment, that the set a is fixed and will not change.

• V samples the set of challenges c←$ F𝑛∗p̄ and sends them to P.

• P replies with 𝑟 ∈ Fp̄.
• P convincesV by any (cWEE and sHVZK) means that the equality (17b) holds

namely, that 𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑐𝑖𝑄𝑖 .

Figure 7: Generalized view of the Lin2-Choice lemma’s argument from Figure 8

Informally, we claim that if the game depicted in Figure 7 completes successfully, then a on P’s input contains
no more than one nonzero scalar. Our rationale for this is based on the multi-dimensional linear space metaphor
described in Section 2.5.

That is, the left-hand side of the equality (17b), namely, 𝑟𝐹 such that 𝐹 is fixed, represents an 1-dimensional
linear subspace (line) of a multi-dimensional linear space. As 𝑟 is prover-controlled, P is able to select any point
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on that line by picking 𝑟. At the same time, the right-hand side of (17b), namely,
∑𝑛−1
𝑖=0 𝑎𝑖𝑐𝑖𝑄𝑖 , represents, in

accordance with the found structure of the weights 𝑎𝑖𝑐𝑖 (18), an evenly distributed random point in a 𝑡-dimensional
linear subspace of the same space. According to (18), the number of dimensions 𝑡 is equal to the number of
nonzeros in a. Since for a 𝑡-dimensional space such that 𝑡 > 1, there is only a negligible probability that a random
point in it happens to be on a given line, we have 𝑡 ⩽ 1, which corresponds to the fact that the number of nonzeros
in a does not exceed 1.

Thus, the above is a brief informal statement and proof of the very idea of the Lin2-Choice lemma. The formal
statement of the lemma can be found in the next section.

4.2 FORMAL PRESENTATION
Theorem 5 (Lin2-Choice lemma):
For 𝑛 ∈ N∗, for two vectors of nonzero elements P,Q ∈ G𝑛∗, for a nonzero element𝐻 ∈ G∗ such that ort(P∪Q∪{𝐻})
holds, for an element 𝑍 ∈ G, the protocol zkLin2Choice𝑛 in Figure 8 is a complete, sHVZK argument having
cWEE for the relation (15) with unique witness.

Proof: Appendix E.
Overview: Section 4.1.2.

For the protocol zkLin2Choice𝑛 in Figure 8, we consider (𝑝, 𝛼) as a witness, with the auxiliary index 𝑠 always
recoverable from (𝑝 ≠ 0, 𝛼) in a polynomial time. For 𝑝 = 0, the index 𝑠 is undefined.

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G ;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}

// (15)

// P,Q, 𝐻 in R satisfy ort( P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)
V’s input : (P,Q, 𝐻, 𝑍)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻

P → V : 𝐹

V : c←$ F𝑛∗p̄

V → P : c

P andV : compute Q̂ = c ◦Q

P : takes scalar 𝑐𝑠 at index 𝑠 in c, that is, lets 𝑐𝑠 ← c[𝑠] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽 ,

and lets a =

{
𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in one-hot a (or, if 𝑝 = 0, then a = 0𝑛)
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 − 1], 𝑖 ≠ 𝑠

P → V : 𝑟

P andV : let �̂� ← 𝑟𝐹

and run zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, �̂�; a, 𝛼, 𝛽)

Figure 8: Zero-knowledge argument for one element choice relation

5 LINKABLE RING SIGNATURE FOR ONE ACTUAL SIGNER
An immediate practical result of the Lin2-Choice lemma is the linkable ring signature for one signer described

in this section.
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5.1 ADDITIONAL DEFINITIONS
To create the signature we extend the common information in Figure 1 with the information in Figure 9. It

supplies both of the prover and verifier with identical definitions of the scalar hash Hscalar and hash-to-group
Hpoint functions, as well as with a common set of orthogonal generators G.

Additional common information

• Maximum number of elements in a ring n̄
• Definition of an ideal hash finction Hscalar : {0, 1}★→ F∗p̄

• Definition of an ideal hash finction Hpoint : {0, 1}★→ G∗

• A vector of generators G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺 n̄−1} ∈ Gn̄∗

such that for any set H of Hpoint images on different pre-images it holds ort(H ∪ {𝐺} ∪G)

Figure 9: Additional information available to each party

The random oracle is modeled with the scalar hash Hscalar. The hash-to-group (-to-curve) function Hpoint is
supposed to generate brand new orthogonal elements. The predefined set of orthogonal genarators G is used in all
signature instances, thus reducing verification time when they are verified in a batch.

All public keys used in the signatures can be known to all participants, and there are no additional restrictions
on them. That is, as shown in Figure 10, we do not impose any rules on public keys.

Public keys

• There is an unlimited amount of public keys generated in the system.
• Each public key is considered visible to all parties, although this is not required.
• Each public key 𝑃 is assumed to have the following relation to its private key 𝑥

𝑃 = 𝑥𝐺 ,

although this is not required, i.e., there can exist public keys without any known 𝑥 in this relation.
There can exist adversarial public keys generated with purpose of breaking signatures.

Figure 10: Public keys seen to all parties

For all of our signature schemes in this paper, we show their unified Sign and Verify procedures in corre-
sponding figures. Also, for each of them, we always imply presence of one more procedure, Link. We do not
specify it explicitly since it is constructed trivially, as a comparison of key images 𝐼, just as in [23, 13, 29].

5.2 OVERVIEW
Using the argument zkLin2Choice𝑛 for the relation (15), we construct a ring signature, calling it EFLRS1

(Efficient linkable ring signature for 1 actual signer). Its interactive scheme is shown in Figure 11,

EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥).

By the ring we mean a set of 𝑛 ⩾ 1 public keys

P = {𝑃𝑖}𝑛−1
𝑖=0 . (19)

Our signature convinces verifier that signer knows a scalar 𝑥 such that the equality 𝑃𝑠 = 𝑥𝐺 holds for some
𝑠 ∈ [0 . . . 𝑛 − 1]. There is no assumption about the public keys in P, except for all they must be different and
nonzero which can be easily checked by verifier. Other than that, they can all be regarded as maliciously chosen.

By the decoy set, technically called so, we mean a set of 𝑛 pairs of the form

{ ( 𝑃𝑖 + ZHpoint (𝑃𝑖), 𝑄𝑖 ) }𝑛−1
𝑖=0 , (20)

where Z is a random weight. The set Q of size 𝑛 contains auxiliary orthogonal generators that can be prepared in
advance, provided that Hpoint always generates elements which are orthogonal to Q.
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Prover publishes key image 𝐼 defined as

𝐼 = 𝑥−1
Hpoint (𝑃𝑠), (21)

where 𝑥 is a private key for the public key 𝑃𝑠 ∈ P such that 𝑃𝑠 = 𝑥𝐺 holds. Note, the random Z used in the decoy
set above and in 𝑍 below is sampled after 𝐼 is published.

Both of the prover and verifier define the input element 𝑍 for the relation (15) as

𝑍 = 𝐺 + Z 𝐼 , (22)

and sample the blinding generator 𝐻 to be orthogonal to all the other used generators. Due to the random Z

generated after 𝐺 and 𝐼 are published, the element 𝑍 defined by (22) always contains nonzero value component,
which excludes the case 𝑝 = 0 in the relation (15).

To obtain the signature, it remains to call the protocol of the Lin2-Choice lemma as follows

zkLin2Choice𝑛 ({𝑃𝑖 + ZHpoint (𝑃𝑖)}𝑛−1
𝑖=0 ,Q, 𝐻, 𝐺 + Z 𝐼; 𝑠, 𝑥

−1, 0). (23)

It results in the signature of size 2⌈log2 (𝑛)⌉ + 6. When calculating this size, we assume that bitwise representation
of an element fromG takes as much space as bitwise representation of a scalar from Fp̄. We count all elements and
scalars transmitted from prover to verifier, including the key image 𝐼 and ignoring the ring of public keys {𝑃𝑖}𝑛−1

𝑖=0 ,
which is assumed to be known beforehand to both of the prover and verifier.

Also, recalling that any signature is supposed to sign input message M, we implicitly use the well-known method
of binding a signature to M which is described, e.g., in [15]. Namely, we assume that our signature’s random oracle
depends on the input message, and thus the entire series of random values in each of our signatures is bound to M.

5.3 FORMAL PRESENTATION

Theorem 6:
For 𝑛 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗ which is considered as a ring of public keys, the protocol
EFLRS1 in Figure 11 is a linkable ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. and non-frameability w.r.t. chosen public key attackers.

Proof: Appendix F.
Overview: Section 5.2.
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EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑥 ∈ F∗p̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : lets 𝑃𝑠 ← P[𝑠] ,
assert 𝑥 ≠ 0

lets 𝑝 ← 𝑥−1

lets 𝐼 ← 𝑝Hpoint (𝑃𝑠)

P → V : 𝐼

V : 𝜖, Z ←$ F∗p̄

V → P : 𝜖, Z

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0 ,

𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, 𝑍, 𝐼 ) holds

compute P̂ = P + ZU
𝑍 = 𝐺 + Z 𝐼 ,

and run zkLin2Choice𝑛 (P̂,G[:𝑛] , 𝐻, 𝑍; 𝑠, 𝑝, 0)

Figure 11: EFLRS1 signing and verification

5.4 SIZE AND VERIFICATION COMPLEXITY
At runtime, the protocol EFLRS1.SignAndVerify1,𝑛 in Figure 11 runs the series of nested subprotocols up

to calling zk2ElemComm, as shown in the top box in Figure 12. As a result, assuming that verifier postpones all
calculations on its side until the end of the message exchange, the verifier has only to check one expanded equality
shown in Figure 12.

SignAndVerify1,𝑛 ↩→ zkLin2Choice𝑛 ↩→ zkSVC2,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©«𝐺 + Z 𝐼 + 𝛿1𝑟𝐹 +

log2 (𝑛)−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + [𝐻 − 𝑇 + 𝜏
𝑛−1∑︁
𝑖=0

©«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + Z𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 12: Unfolded equality for EFLRS1, verifier checks it

Table 3 shows the size and verification complexity of a batch of 𝑙 EFLRS1 signatures that are created using
a shared ring of 𝑛 public keys. We consider 𝑙 signatures in order to compare their summary size and complexity
against a threshold variant presented later in this paper. To see the size and verification complexity of a single
signature, simply let 𝑙 = 1.

To verify the batch, verifier combines 𝑙 instances of the equality in Figure 12 together using random weighting.
As in [7, 9, 29], the verifier computes all the scalar weights with scalar-scalar multiplications, which are assumed
consuming negligibly time, and then performs the single multi-exponentiation to calculate at once 𝑙 randomly
weighted instances of the left-hand side of the equality in Figure 12.

Table 3: EFLRS1 signature size and verification complexity

Size Verification complexity
EFLRS1 𝑙

(
2⌈log2 (𝑛)⌉ + 6

)
mexp

(
3𝑛 + 2𝑙 log2 (𝑛) + 3𝑙 + 2

)
+ (𝑛 + 1)Hpt
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6 LINKABLE THRESHOLD RING SIGNATURE
To create a threshold version of the EFLRS1 signature, we will define an auxiliary protocol zkMVC𝑙,𝑛 that

proves the same as 𝑙 instances of zkVC𝑛 prove. Then, by running in parallel 𝑙 instances of zkLin2Choice𝑛 and
by substituting for 𝑙 nested in them calls of zkVC𝑛 one call of zkMVC𝑙,𝑛, we will get a many-out-of-many proof of
membership, from which we will create the threshold version of EFLRS1, calling it EFLRSL.

6.1 OVERVIEW
6.1.1 MULTIPLE VECTOR COMMITMENTS

To obtain the necessary many-out-of-many proof, we need one more helper zero-knowledge argument, namely,
a proof of multiple vector commitments

zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶).

For a given element vector Y ∈ G𝑙 , it proves that every𝑌𝑖 ∈ Y is a vector commitment over the vector of orthogonal
generators X ∪ {𝐻} ∈ G𝑛∗ ×G∗. It is shown in Figure 13 and, formally, is an argument for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } . (24)

The relation (24) is a union of 𝑙 instances of the relation (5). The structure of the zkMVC𝑙,𝑛 protocol is quite
simple. All 𝑙 elements in the vector Y are combined into one element 𝑌 using random weights. Then, the argument
zkVC𝑛 proves that 𝑌 is a vector commitment over the generators X ∪ {𝐻}, thus convincing verifier that, due to the
random weights, every 𝑌𝑖 ∈ Y is a vector commitment over X ∪ {𝐻}.

This way we obtain a proof for a set of vector commitments at the price (space) of a proof for one vector
commitment. A similar construction can be found in [3]. This effect, where multiplication by random weights
yields multiple proofs for the price of one, propagates to the other relations such as (25), (36). Although, of course,
this effect itself as well as its propagation must be formally proved, which we do onward.

6.1.2 MANY-OUT-OF-MANY PROOF
According to the relation (24), the protocol zkMVC𝑙,𝑛 proves the same as 𝑙 zkVC𝑛 protocols prove. Using it, in

Figure 14 we construct an efficient many-out-of-many proof of membership

zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶),

which is an argument for the relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
, (25)

where P,Q, 𝐻 satisfy ort( P ∪Q ∪ {𝐻}) .
The many-out-of-many proof of membership zkLin2mChoice𝑛,𝑙 proves the same as 𝑙 concurrent insances of

the one-out-of-many proof of membership zkLin2Choice𝑛 prove, at the price of one instance. All of these 𝑙
concurrent instances of zkLin2Choice𝑛 are considered invoking all their nested sub-protocols simultaneously. We
depict this as the following invocation stack

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ 𝑙 × zkVC𝑛 . (26)

Since all of these 𝑙 running instances of zkLin2Choice𝑛 are completely independent of each other, we let all the
protocol challenges be shared between them, provided that the random oracle which generates the challenges takes
into account all the filled in parts of the common transcript.

The final 𝑙 × zkVC𝑛 calls on the invocation stack (26) are made only for the sake of proving that each of 𝑙 vector
commitments, namely, each element of the set

{𝑍𝑘 + 𝛿1𝑟𝑘𝐹𝑘}𝑙−1
𝑘=0,

is constructed over the common set of orthogonal generators

{𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

Hence, we can replace all these 𝑙 × zkVC𝑛 calls, which altogether prove 𝑙 instances of the relation (5), with one call
to zkMVC𝑙,𝑛 which proves the relation (24). After that, the invocation stack (26) starts to look as

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 .
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6.1.3 SIGNATURE EFLRSL
The EFLRS1 signature in Figure 11 is a game in which prover builds the key image 𝐼 of type (21), publishes

it, then verifier issues the challenge Z . Then, using the one-out-of-many proof of membership zkLin2Choice𝑛,
the prover convinces the verifier that 𝑍 built by the formula (22) belongs to the decoy set built by the formula (20),
namely, to the set

( P + ZU ) , where U = {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 and, also, the auxiliary set Q is omitted.

Now, instead of one key image 𝐼, let the prover publish the following vector of 𝑙 key images of type (21) each

I = {𝐼𝑘}𝑙−1
𝑘=0 ,

which correspond to 𝑙 different indices s = {𝑠𝑘}𝑙−1
𝑘=0. We call s actual signing indices or, equivalently, actual signers

in the ring. The corresponding signing private keys x = {𝑥𝑘}𝑙−1
𝑘=0 are assumed to be known to the prover.

Taking a randomly sampled Z both of the prover and verifier construct 𝑙 values of 𝑍 by the formula (22), i.e.,
they construct the vector

Z = {𝑍𝑘}𝑙−1
𝑘=0 = {𝐺}𝑙 + Z I = {𝐺 + Z 𝐼𝑘}𝑙−1

𝑘=0 .

And, also, they build a decoy set by the formula (20). After that, as the last step, they play the zkLin2Choice𝑛
one-out-of-many proof protocol 𝑙 times, for the same decoy set and for each 𝑍𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1]. We depict this as

𝑙 × zkLin2Choice𝑛 .

As shown in Section 6.1.2, instead of playing the one-out-of-many proof protocol 𝑙 times, they can play as well
the many-out-of-many proof protocol zkLin2mChoice𝑛,𝑙 only once. By doing so, they obtain the threshold version
of the signature, which we call EFLRSL (Efficient linkable ring signature for 𝑙 actual signers). Its scheme

EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

is shown in Figure 15. Its size is 2⌈log2 (𝑛)⌉ + 3𝑙 + 3, where the key image vector {𝐼𝑘}𝑙−1
𝑘=0 is also counted. The ring

P is, as usual, assumed to be known beforehand for both of the prover and verifier.

6.2 FORMAL PRESENTATION
6.2.1 MULTIPLE VECTOR COMMITMENTS
Theorem 7:
For 𝑛, 𝑙 ∈ N∗, for a vector of nonzero elements X ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that ort(X ∪ {𝐻})
holds, for a vector of elements Y ∈ G𝑙 , the protocol zkMVC𝑙,𝑛 in Figure 13 is a complete, sHVZK argument having
cWEE for the relation (24) with unique witness.

Proof: Appendix H.
Overview: Section 6.1.1.

zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙 ; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } // (24)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) .

P’s input : (X, 𝐻,Y; 𝔞,𝜶)
V’s input : (X, 𝐻,Y)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝝃 ←$ F𝑙∗p̄

V → P : 𝝃

P : computes a⊺ = 𝝃⊺ · 𝔞
𝛼 = ⟨𝝃,𝜶⟩

P andV : compute 𝑌 = ⟨𝝃,Y⟩
and run zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Figure 13: Zero-knowledge argument for multiple vector commitments
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6.2.2 MANY-OUT-OF-MANY PROOF
Theorem 8:
For 𝑛 ∈ N∗, for two vectors of nonzero elements P,Q ∈ G𝑛∗, for a nonzero element𝐻 ∈ G∗ such that ort(P∪Q∪{𝐻})
holds, for a vector of elements Z ∈ G𝑙 , the protocol zkLin2mChoice𝑛,𝑙 in Figure 14 is a complete, sHVZK argument
having cWEE for the relation (25) with unique witness.

Proof: Appendix I.
Overview: Section 6.1.2.

zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
// (25)

// P,Q, 𝐻 in R satisfy ort( P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : allocate X̂ ∈ G𝑛, Y ∈ G𝑙 , 𝔞 ∈ F𝑙×𝑛p̄ , �̂� ∈ F𝑙p̄ ,

and run the following block, depicted as foreach, in 𝑙 parallel threads (with shared challenges),

using common X̂,Y, 𝔞, �̂�
foreach 𝑘 ∈ [0 . . . 𝑙 − 1] // execute in parallel

let (𝑍𝑘 , 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) ← (Z[𝑘 ] , s[𝑘 ] , p[𝑘 ] ,𝜶[𝑘 ] ) ,
run zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍𝑘 ; 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) without calling nested zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�) in it,

instead assign X̂ = X // X is the same in all threads

Y[𝑘 ] = 𝑌
𝔞 [𝑘 ] = a
�̂�[𝑘 ] = �̂� .

endforeach
run zkMVC𝑙,𝑛 (X̂, 𝐻,Y; 𝔞, �̂�)

Figure 14: Zero-knowledge argument for multiple element choice relation

By the same reason as for the protocol zkLin2Choice𝑛 in Figure 8, we consider (p,𝜶) as witness for the
protocol zkLin2mChoice𝑛,𝑙 in Figure 14. The auxiliary indices s are recoverable from the witness in a polynomial
time.

6.2.3 SIGNATURE EFLRSL
Theorem 9:
For 𝑛, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑛, for a vector of nonzero elements P ∈ G𝑛∗ which is considered as a ring of public
keys, the protocol EFLRSL in Figure 15 is a linkable threshold ring signature with the following properties

1. perfect correctness,
2. existential unforgeability against adaptive chosen message / public key attackers,
3. unforgeability w.r.t. insider corruption,
4. anonymity,
5. anonymity w.r.t. chosen public key attackers,
6. linkability,
7. non-frameability,
8. non-frameability w.r.t. chosen public key attackers.

Proof: Appendix J.2.
Overview: Section 6.1.3.
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EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ )

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
I[𝑘 ] = 𝑝𝑘 U[𝑠𝑘 ] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are different // here V makes sure there is no actual signer signing twice

𝜖, Z ←$ F∗p̄

V → P : 𝜖, Z

P andV : let 𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, Z, I) holds

compute P̂ = P + ZU ,
Z = {𝐺}𝑙 + ZI

run zkLin2mChoice𝑛,𝑙 (P̂,G[:𝑛] , 𝐻,Z; s, p, {0}𝑙)

Figure 15: EFLRSL signing and verification

6.3 SIZE AND COMPLEXITY
The only equality that verifier has to check in order to verify authenticity of the EFLRSL signature, is shown in

Figure 16. The signature size and verification complexity are provided in Table 4.

SignAndVerify𝑙,𝑛 ↩→ × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©«
𝑙−1∑︁
𝑘=0

b𝑘 (𝐺 + Z 𝐼𝑘 + 𝛿1𝑟𝑘𝐹𝑘) +
log2 (𝑛)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + [𝐻 − 𝑇+
+ 𝜏

𝑛−1∑︁
𝑖=0

©«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + Z𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 16: Unfolded equality for EFLRSL, verifier checks it

Table 4: EFLRSL signature size and verification complexity

Size Verification complexity
EFLRSL* 2⌈log2 (𝑛)⌉ + 3𝑙 + 3 mexp

(
3𝑛 + 2 log2 (𝑛) + 2𝑙 + 3

)
+ (𝑛 + 1)Hpt

∗ Optimized size is shown in Table 7.

By comparing Table 4 and Table 3, we may observe that the treshold variant of the signature is asymptotically
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𝑙 times more compact in size. Also, it is asymptotically slightly faster in verification.

7 LIN2-2CHOICE LEMMA
The Lin2-Choice lemma protocol in Figure 8 made it possible to us to select one element 𝑍 from the set P of

orthogonal elements. Now, we are going to extend this protocol so that we can select two elements from P at a
time, instead of one. That is, now we want 𝑍 to be a weighted sum of two elements from P. We do not require the
index of the second chosen element to be anonymous, however we want its weight to remain securely hidden.

For this purpose, we need to extend the zkLin2Choice𝑛 protocol with a part that will be responsible for the
second element. We will introduce such an extension in Figure 17, and in the Simplified Lin2-2Choice lemma
(Theorem 10) will prove its properties as an one-out-of-many proof with an additional element. Next, like with the
transition from zkLin2Choice𝑛 to zkLin2mChoice𝑛,𝑙 in Section 6.1.2, we will proceed to the many-out-of-many
proof represented by the Lin2-2Choice lemma (Theorem 12) protocol in Figure 19.

7.1 OVERVIEW
7.1.1 SIMPLIFIED LIN2-2CHOICE LEMMA

By 1-out-of-many membership proof with an additional element we mean an argument about the element in
question 𝑍 being the sum of two elements 𝑍𝑃 and 𝑍𝑉 such that prover knows the scalar pair (𝑝, 𝑣) and the following
three equalities hold 

𝑍 = 𝑍𝑃 + 𝑍𝑉
𝑍𝑃 = 𝑝𝑃𝑠 , where 𝑃𝑠 ∈ P
𝑍𝑉 = 𝑣𝑉𝑡 , where 𝑉𝑡 ∈ V

.

All elements in the set P ∪ V are assumed to be orthogonal.
The protocol zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼) in Figure 17 is such an argument. Formally,

it convinces verifier that prover knows witness (𝑠, 𝑝, 𝑣, 𝛼) for the relation{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1] ;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}
. (27)

In this relation, for 𝑉𝑡 ∈ V, we hide only its weight 𝑣, not its index 𝑡. The vectors P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗ are
the common prover and verifier input. All 2(𝑛 + 𝑚) elements in these four vectors are orthogonal to each other.
The vectors Q and W are for technical purposes only, while the vectors P and V are used to compose the element
𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 , where 𝑠, 𝑝, 𝑣 are secret, and 𝑡 is public.

Naturally, in the case 𝑚 = 0, V = W = ∅, 𝑍𝑉 = 0, the protocol zkLin22sChoice𝑛,𝑚 turns into the regular
1-out-of-many membership proof zkLin2Choice𝑛 provided by the Lin2-Choice lemma in Section 4.

Now let’s move on to the design of the protocol zkLin22sChoice𝑛,𝑚 in Figure 17. It is constructed from
zkLin2Choice𝑛 in Figure 8 as follows.

• P hands over the following pair of elements toV, instead of the single element 𝐹 in zkLin2Choice𝑛,

𝐹 and 𝐸 . (28)

• V generates a set of (𝑛 + 𝑚) challenges {𝑐𝑖}𝑛+𝑚−1
𝑖=0 .

• P and V construct a decoy set comprising two parts, of total size 𝑛 + 𝑚. The first part of the decoy set, of
size 𝑛, contains the following triplets

{(𝑃𝑖 , 𝑐𝑖𝑄𝑖 , 0)}𝑛−1
𝑖=0 , (29)

whereas the second one, which is new, of size 𝑚, contains the following triplets

{(𝑉𝑖 , 0, 𝑐𝑛+𝑖𝑊𝑖)}𝑚−1
𝑖=0 . (30)

• P replies with the scalar 𝑟 , as in zkLin2Choice𝑛, and then the following two elements are constructed

𝑟𝐹 , 𝑐𝑛+𝑡𝐸 . (31)

• As the last step, P andV play zkSVC3, (𝑛+𝑚) , instead of zkSVC2,𝑛, and thusV gets convinced that P knows
weights for the following decompositions 

𝑍 = lin(P,V)
𝐹 = lin(Q)
𝐸 = lin(W)

. (32)
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Here we omit mentioning blinding with 𝐻, which is always implied performed before transmitting elements from
prover to verifier.

An informal explanation of the zkLin22sChoice𝑛,𝑚 protocol is that considering the triplet of elements

(𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸) (33)

we prove with zkSVC3, (𝑛+𝑚) that the first, second, and third elements of the triplet (33) are linear combinations
with the same coefficients of (𝑛 + 𝑚) elements of, respectively, the first, second, and third dimensions of the
decoy set composed of the parts (29) and (30). We observe that thereby all the steps of the zkLin2Choice𝑛 and
zkLin2Choice𝑚 protocols are actually performed for 𝑍’s ‘projections’ on P and on V, respectively. That is, the
following holds

𝑍 = 𝑍𝑃 + 𝑍𝑉 , where 𝑍𝑃 = lin(P), 𝑍𝑉 = lin(V) . (34)

Thus, we get to the conclusion that all the steps of zkLin2Choice𝑛 in Figure 8 have been performed for
◦ 𝑍𝑃 and the first part of the decoy set comprising 𝑛 triples (29). The actual index 𝑠 remains hidden because

the response 𝑟 is randomized, as in the Lin2-Choice lemma protocol zkLin2Choice𝑛.
◦ 𝑍𝑉 and the second part of the decoy set comprising 𝑚 triples (30). The actual index 𝑡 in this part is not

hidden because the implied ‘reply’ 𝑐𝑛+𝑡 clearly reveals it. Nevertheless, this does not wreck the Lin2-Choice
lemma argument, just makes it non-zero-knowledge by 𝑡.

Hence, by the Lin2-Choice lemma, verifier is convinced that the following holds for prover{
𝑍𝑃 ∼ 𝑃𝑠 , where 𝑠 is secret
𝑍𝑉 ∼ 𝑉𝑡 , where 𝑡 is public

, (35)

and therefore 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 for some 𝑝 and 𝑣 known to the prover.

7.1.2 MULTIPLE SIMMETRIC VECTOR COMMITMENTS
We need one more auxiliary zero-knowledge argument, it is shown in Figure 18,

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸) ,

which proves the same as 𝑙 simultaneously played instances of the zkSVC3,𝑛 argument (Figure 5) prove. Namely,
this is an argument for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 , (36)

where all generators P,Q,R, 𝐻 are orthogonal to each other. This relation is 𝑙 instances of the relation (9) merged
together. The other surrounding conditions for it are the same as for the relation (9).

We implement zkMSVC𝑙,3,𝑛 by merging 𝑙 instances of zkSVC3,𝑛 together using the shared random scalars 𝛿1 and
𝛿2. The following two vectors are built with these random scalars

X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E .

Then, instead of invoking zkVC𝑛 (X, 𝐻,𝑌 𝑗 ; 𝔞 [ 𝑗 ,:] , 𝛼 𝑗 + 𝛿1𝛽 𝑗 + 𝛿2𝛾 𝑗 ) for each 𝑗 ∈ [0 . . . 𝑙 − 1], we invoke zkMVC𝑙,𝑛
(Figure 13) for X,Y. Thus, we get a proof for the relation (36) at the price of one zkMVC𝑙,𝑛 call and, therefore, at
the price of one zkVC𝑛 call.

7.1.3 LIN2-2CHOICE LEMMA
Now we can construct the protocol in Figure 19,

zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶),

and prove the Lin2-2Choice lemma which states that zkLin22Choice𝑙,𝑛,𝑚 is an argument for the relation

R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
, (37)

where the generators P,Q,V,W, 𝐻 are orthogonal to each other and 𝑙 ⩽ 𝑚.
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The relation (37) is essentially the relation (27) repeated for the first 𝑙 elements of the decoy set’s second part
(30). Having such a correspondence between the relations (37) and (27), the zkLin22Choice𝑙,𝑛,𝑚 protocol is 𝑙
instances of the protocol zkLin22sChoice𝑛,𝑚 run in parallel, with the only one refinement which follows.

The refinement is that all the 𝑙 instances of the zkLin22sChoice𝑛,𝑚 protocol are played in sync and indepen-
dently of each other (except for the common challenges, as for EFLRSL in Section 6.1.3) up to the last step, where
𝑙 instances of zkSVC3,𝑛 are called. All these 𝑙 calls of zkSVC3,𝑛, in turn, are replaced with one call to zkMSVC𝑙,3,𝑛,
which gives significant reduction in the transcript size.

7.2 FORMAL PRESENTATION
7.2.1 SIMPLIFIED LIN2-2CHOICE LEMMA
Theorem 10:
For 𝑛, 𝑚 ∈ N∗, for four vectors of nonzero elements P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗, for a nonzero element 𝐻 ∈ G∗ such
that ort(P ∪Q ∪ V ∪W ∪ {𝐻}) holds, for an element 𝑍 ∈ G, the protocol zkLin22sChoice𝑛,𝑚 in Figure 17 is a
complete, sHVZK argument having cWEE for the relation (27) with unique witness.

Proof: Appendix K.
Overview: Section 7.1.1.

zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1];
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}

// (27)

// P,Q,V,W, 𝐻 in R satisfy ort( P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)
V’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽, 𝛾 ←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻
𝐸 = 𝑣𝑊𝑡 + 𝛾𝐻

P → V : 𝐹, 𝐸

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : takes scalars 𝑐𝑠 , 𝑐𝑛+𝑡 at indices 𝑠 and 𝑛 + 𝑡 in c, that is, lets 𝑐𝑠 ← c[𝑠] , 𝑐𝑛+𝑡 ← c[𝑛+𝑡 ] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽

�̂� = 𝑐𝑛+𝑡𝛾 ,

and lets a =


𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in a
𝑎𝑛+𝑡 = 𝑣 // thus, a contains at most two hot entries
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 + 𝑚 − 1], 𝑖 ≠ 𝑠 ∧ 𝑖 ≠ (𝑛 + 𝑡)

P → V : 𝑟

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let �̂� ← 𝑟𝐹

�̂� ← c[𝑛+𝑡 ]𝐸 ,

and run zkSVC3, (𝑛+𝑚) (P̂, Q̂, R̂, 𝐻, 𝑍, �̂�, �̂� ; a, 𝛼, 𝛽, �̂�)

Figure 17: Simplified Lin2-2Choice lemma protocol, zero-knowledge argument for two-element choice relation
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Similar to zkLin2Choice𝑛 in Figure 8, we consider (𝑝, 𝑣, 𝛼) as witness for zkLin22sChoice𝑛,𝑚 in Figure 17.
The auxiliary index 𝑠 is recoverable from the witness in a polynomial time.

7.2.2 MULTIPLE SIMMETRIC VECTOR COMMITMENTS

To advance from the one-out-of-many proof to the many-out-of-many one, in Figure 18 we define a helper
protocol.

Theorem 11:
For 𝑛, 𝑙 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗, and for a pair of vectors of elements Q,R ∈ G𝑛 such that
(Q +R) ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}) holds, for three vectors of
elements Z,F,E ∈ G𝑙 , the protocol zkMSVC𝑙,3,𝑛 in Figure 18 is a complete, sHVZK argument having cWEE for the
relation (36) with unique witness.

Proof: Appendix L.
Overview: Section 7.1.2.

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙 ;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 // (36)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)
V’s input : (P,Q,R, 𝐻,Z,F,E)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝜶 + 𝛿1𝜷 + 𝛿2𝜸

P andV : compute X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E

and run zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞, �̂�)

Figure 18: Zero-knowledge argument for multiple 3-vector commitments with shared weights

7.2.3 LIN2-2CHOICE LEMMA. MULTIPLE TWO-ELEMENT CHOICES

Theorem 12 (Lin2-2Choice lemma):
For 𝑛, 𝑚, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑚, for four vectors of nonzero elements P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗, for a nonzero
element 𝐻 ∈ G∗ such that ort(P ∪ Q ∪ V ∪W ∪ {𝐻}) holds, for a vector of elements Z ∈ G𝑙 , the protocol
zkLin22Choice𝑙,𝑛,𝑚 in Figure 19 is a complete, sHVZK argument having cWEE for the relation (37) with unique
witness.

Proof: Appendix M.
Overview: Section 7.1.3.

Like for the protocol zkLin2Choice𝑛 in Figure 8, we consider (p, v,𝜶) as witness for zkLin22Choice𝑙,𝑛,𝑚
in Figure 19. The auxiliary indices s are recoverable from the witness in a polynomial time.
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zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
// (37)

// P,Q,V,W, 𝐻 in R satisfy ort( P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q,V,W, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : q, 𝜷, 𝜸 ←$ F𝑙∗p̄ , allocates F,E ∈ G𝑙∗ ,
initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]

let (𝑠𝑘 , 𝑝𝑘 , 𝑣𝑘 , 𝛽𝑘 , 𝛾𝑘) ← (s[𝑘 ] , p[𝑘 ] , v[𝑘 ] , 𝜷[𝑘 ] , 𝜸[𝑘 ] ) ,
if 𝑝𝑘 = 0 then q[𝑘 ] = 0 endif ,

let 𝑞𝑘 ← q[𝑘 ] ,
F[𝑘 ] = 𝑞𝑘𝑄𝑠𝑘 + 𝛽𝑘𝐻 // F is filled in, note random 𝑞𝑘 ’s are nullified when 𝑝𝑘 = 0

E[𝑘 ] = 𝑣𝑘𝑊𝑘 + 𝛾𝑘𝐻 // E is filled in

endforeach

P → V : F,E

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : allocates �̂�, �̂� ∈ F𝑙∗p̄ , 𝔞 ∈ F
𝑙×(𝑛+𝑚)
p̄ , samples r←$ F𝑙∗p̄ ,

and initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
let 𝑐𝑠𝑘 ← c[𝑠𝑘 ]

if 𝑝𝑘 ≠ 0 then r[𝑘 ] = 𝑐𝑠𝑘 𝑝𝑘/𝑞𝑘 endif // r is filled in here

endforeach ,

continues initialization �̂� = r ◦ 𝜷
�̂� = c[𝑛:(𝑛+𝑙) ] ◦ 𝜸 ,

lets 𝔞 = {𝑎𝑘∈[0...𝑙−1],𝑖∈[0...𝑛+𝑚−1] } =

𝑎𝑘,𝑠𝑘 = 𝑝𝑘 // that is, 𝑝𝑘 is at 𝑠𝑘 ’th position in 𝑘’th row
𝑎𝑘,𝑛+𝑘 = 𝑣𝑘 // that is, 𝑣𝑘 is at (𝑛 + 𝑘 )’th position in 𝑘’th row
𝑎𝑘,𝑖 = 0 if 𝑖 ≠ 𝑠𝑘 ∧ 𝑖 ≠ (𝑛 + 𝑘) // zeros for all the rest

P → V : r

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let F̂← r ◦ F
Ê← c[𝑛:(𝑛+𝑙) ] ◦ E ,

and run zkMSVC𝑙,3, (𝑛+𝑚) (P̂, Q̂, R̂, 𝐻,Z, F̂, Ê; 𝔞,𝜶, �̂�, �̂�)

Figure 19: Lin2-2Choice lemma protocol, zero-knowledge argument for multiple two-element choices relation

8 SIGNATURE EFLRSLWB WITH BALANCE PROOF
Now we are going to append a proof of the balance to the EFLRSL signature described in Section 6.2.3. For

the honest case, we assume that each public key in the signature ring has an associated hidden amount in the form
of Pedersen commitment [26]. When an honest prover signs, it knows the signing indices and thus knows those
commitments associated with them. The sum of their openings, namely, the sum of the respective amounts, is to
be equal to the total amount that is hidden in another commitment known beforehand to both of the prover and
verifier. We will make the prover submit a zero-knowledge proof of this balance along with the signature.
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For the dishonest case, we do not require the public keys and their associated hidden amounts in the ring to be
in any specific form, all they can be adversarially generated. However, we will show that no prover can generate a
valid signature without knowing signing private keys or without having the sum of hidden amount commitments
associated with signing indices be equal to the total amount commitment, to the accuracy of blinding component.

8.1 ADDITIONAL DEFINITIONS
Let there be two additional predefined group generators 𝐵, 𝐷, and let the ring be composed of 𝑛 pairs

{(𝑃𝑖 , 𝐴𝑖)}𝑛−1
𝑖=0 , where P = {𝑃𝑖}𝑛−1

𝑖=0 ∧ A = {𝐴𝑖}𝑛−1
𝑖=0 . (38)

In the honest case we assume that the following two assertions hold, for each 𝑖 ∈ [0 . . . 𝑛 − 1], with the scalars
𝑝𝑖 , 𝑏𝑖 , 𝑑𝑖 known to at least one player in the system

𝑃𝑖 = 𝑔𝑖𝐺 , (39)
𝐴𝑖 = 𝑏𝑖𝐵 + 𝑑𝑖𝐷 . (40)

In general, as usual, we assume that the case is dishonest, i.e., the equalities (40) and (39) may not hold and,
moreover, some or all 𝑃𝑖’s and 𝐴𝑖’s in the ring can be adversarially chosen.

Nevertheless, we will use the following quite reasonable minimal assumption about the hidden amounts. Here-
inafter we will assume that, for all 𝐴𝑖’s in the ring, there already exist some validated proofs of the decomposition
(40). These proofs can be submitted, e.g., along with other signatures that introduce these 𝐴𝑖’s into system. In the
case of blockchain, this means that validators must verify them along with the signatures.

This minimal assumption simply expresses the fact that no hidden amount enters the system in a free form. All
of them are somehow examined to be at least in the form (40). This is unlike addresses whose form in the system is
not examined when they are published. With this minimal assumption, in the ring, in the worst case, 𝑃𝑖’s may have
adversarially chosen 𝑔𝑖’s or may have an unknown relation to 𝐺, whereas 𝐴𝑖’s are guaranteed to be in the form (40)
and may have only adversarially chosen 𝑏𝑖’s and 𝑑𝑖’s.

Besides, we are not going to make much use of this minimal assumption. Our plan is to construct a signature
that will convince verifier that prover knows the signing indicies s = {𝑠𝑘}𝑙−1

𝑘=0, the signing private keys x = {𝑥𝑘}𝑙−1
𝑘=0

such that ∀𝑘 : 𝑃𝑠𝑘 = 𝑥𝑘𝐺, and also that 𝐴sum =
∑𝑙−1
𝑘=0 𝐴𝑠𝑘 holds to the accuracy of 𝐷 component. 𝐴sum denotes the

total hidden amount here. When the verifier validate such a signature, our minimal assumption will have its only
use, namely, it will immediately imply the balance.

In Figure 20 we summarize the above definitions and assumptions about how the addresses and hidden amounts
are represented in the system.

Addresses and hidden amounts

• Each public key 𝑃 is accompanied by a hidden amount 𝐴 in the system. Each ring has the form (38).
• Each hidden amount 𝐴 in a ring is assumed having the decomposition (40) by the predefined generators 𝐵, 𝐷, i.e.,

𝐴 = 𝑏𝐵 + 𝑑𝐷 ,
where 𝑏 is the amount and 𝑑 is the amount’s blinding factor. That is, it is assumed that as soon as 𝐴 is included in
the ring, there already exists an available valid proof of the decomposition (40) for it in the system.

Figure 20: Addresses and hidden amounts seen to all parties

We have to update the common information available to all parties in Figures 1, 9 with an extended set of
predefined orthogonal generators, and to amend Hpoint again to respect orthogonality of the additional generators,
as shown in Figure 21.

Updated common information

• A couple of generators 𝐵, 𝐷 ∈ G∗ and the enlarged vector G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺2n̄−1} ∈ G2n̄∗

such that, for any set H of Hpoint images on different pre-images, it holds ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G).
•Hpoint : {0, 1}★→ G∗ is updated in such a way, so that the above ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G) holds.

Figure 21: Updated common information available to each party
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8.2 OVERVIEW
Efficient linkable threshold ring signature EFLRSLWB (Efficient linkable ring signature for 𝑙 actual signers

with balance proof) is shown in Figure 22. Here is an informal introduction to how it works.
Having a ring of the form (38), P publishes 𝑙 key images which correspond to the actually signing indices

s ∈ [0 . . . 𝑛 − 1]𝑙

I = {𝐼𝑘}𝑙−1
𝑘=0 = {𝑥−1

𝑘 Hpoint (𝑃𝑠𝑘 )}𝑙−1
𝑘=0. (41)

Also, it publishes an element 𝐴sum and declares that, to the accuracy of a summand which is proportional to the
hidden amount blinding generator 𝐷, the following holds

𝐴sum =
∑︁𝑙−1

𝑘=0
𝐴𝑠𝑘 . (42)

Next, P andV play the following game. They choose an orthogonal blinding generator 𝐻 as an Hpoint image
of everything they have in common, and P publishes vector Atmp of 𝑙 hidden amounts, which correspond to the
actual signing keys and are additionally blinded with 𝐻, i.e.,

Atmp = {𝐴𝑠𝑘 + `𝑘𝐻}𝑙−1
𝑘=0 , where `𝑘 ←$ F∗p̄ . (43)

Then, P publishes a set of 𝑙 what we call ‘pseudo key images’ J, which are constructed as follows

J = {𝑥−1
𝑘 Hpoint (𝐻, 𝐴tmp

𝑘
) + 𝜐𝑘𝐻}𝑙−1

𝑘=0, where 𝜐𝑘 ←$ F∗p̄ . (44)

The term ‘pseudo key image’ comes from the fact that each 𝐽𝑘 is structurally similar to 𝐼𝑘 , except for that 𝐼𝑘
takes Hpoint of 𝑃𝑠𝑘 , whereas 𝐽𝑘 takes Hpoint of (𝐻,Atmp

𝑘
) and is additionally blinded. Apparently, 𝐽𝑘 cannot be

used in the role of the real key image 𝐼𝑘 for linking actual signers, as 𝐽𝑘 is not unique due to the blinding. Note,
that all 𝐼𝑘’s are published before 𝐻 is generated, so that they remain orthogonal to 𝐻 even in the dishonest case.

In addition to this, P andV generate one more orthogonal generator, 𝐾 , as an Hpoint image of everything they
have in common after J is published.

Now, P andV define the following three vectors using random weights Z , 𝜔, 𝜒

X = P − {𝐾}𝑛 + Z {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 − 𝜔A , (45)

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒 {Hpoint (𝐻, 𝐴tmp
𝑘
)}𝑙−1
𝑘=0 , (46)

Z = {𝐺}𝑙 + ZI + 𝜒J , (47)

and make a call to the Lin2-2Choice lemma protocol for them, as follows

zkLin22Choice𝑙,𝑛,𝑙 (X,Q,V,W, 𝐻,Z; s, x−1, x−1, 𝜶𝐻 ) , (48)

where Q,W are auxiliary orthogonal generators prepared in advance. All elements in Q,W are also orthogonal
to the elements in X (45) and in V (46), since Hpoint is defined in such a way that all its images are orthogonal
to the predefined Q,W. The vector 𝜶𝐻 comprises the summary weights accumulated by the corresponding 𝐻
components within the protocol.

When the call (48) successfully completes, by Theorem 12 (Lin2-2Choice lemma) V is convinced that, for
each 𝑘 , P knows scalar pair (𝑝𝑘 , 𝑣𝑘) such that, to the accuracy of 𝐻 component, it holds

𝑍𝑘 = 𝑝𝑘𝑋𝑠𝑘 + 𝑣𝑘𝑉𝑘 . (49)

By inserting (45), (46), (47) into (49),V obtains

𝐺 + Z 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 − 𝐾 + ZHpoint (𝑃𝑠𝑘 ) − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 ( 𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒Hpoint (𝐻, 𝐴tmp

𝑘
) ) , (50)

which immediately yields 𝑝𝑘 = 𝑣𝑘 , as otherwise the Hpoint image 𝐾 gets decomposed by the components of its
pre-image. By reducing (50),V gets

𝐺 + Z 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + ZHpoint (𝑃𝑠𝑘 ) + 𝜒Hpoint (𝐻, 𝐴tmp
𝑘
) ) + 𝑝𝑘 (𝜔𝐴tmp

𝑘
− 𝜔𝐴𝑠𝑘 ) . (51)

Since Hpoint (𝐻, 𝐴tmp
𝑘
) is orthogonal to everything else in the right-hand side of (51) and since at least 𝑃𝑠𝑘 in

it is nonzero, by Theorem 3V gets convinced that, for each 𝑘 , the following hold for some known to P scalar 𝑝𝑘 ,
to the accuracy of the blinding 𝐻 component,

𝐺 = 𝑝𝑘𝑃𝑠𝑘

𝐼𝑘 = 𝑝𝑘Hpoint (𝑃𝑠𝑘 )
𝐽𝑘 = 𝑝𝑘Hpoint (𝐻, 𝐴tmp

𝑘
)

𝐴𝑠𝑘 = 𝐴
tmp
𝑘

.

(52a)
(52b)

(52c)

(52d)
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The equalities (52a), (52b) are strict, as all elements in them are included into the pre-image of 𝐻. Thus, they
convinceV that the signing is correct and the linking tag is properly calculated. At the same time, (52d) convinces
V that 𝐴tmp

𝑘
is the hidden amount corresponding to the signing key, to the accuracy of 𝐻.

Keeping in mind that the equality (52d) holds for each of 𝑙 actually signing keys in s, after the call to

zk2ElemComm(𝐷, 𝐻, 𝐴sum −
𝑙−1∑︁
𝑘=0

𝐴
tmp
𝑘

; . . . ) (53)

V is convinced that 𝐴sum is the sum of all the hidden amounts {𝐴𝑠𝑘 }𝑙−1
𝑘=0 corresponding to the signing keys, to the

accuracy of a linear by 𝐻 and 𝐷 component. Moreover, as both of 𝐴sum and A ⊇ {𝐴𝑠𝑘 }𝑙−1
𝑘=0 are in the pre-image of

𝐻, the call (53) convinces V of the stronger assertion, namely, that 𝐴sum is a sum of {𝐴𝑠𝑘 }𝑙−1
𝑘=0 to the accuracy of

𝐷 component only.

Thus, V is convinced that P knows the actually signing private keys, the linking tags are properly calculated,
and also that, to the accuracy of 𝐷 component, the equality (42) holds. This is allV gets from the signature.

8.3 FORMAL PRESENTATION

Theorem 13:
For 𝑛, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑛, for a vector of nonzero elements P ∈ G𝑛∗ together with a vector of elements A ∈ G𝑛
which are considered a ring of (public key, hidden amount) pairs, for an element 𝐴sum, for a nonzero element 𝐷
which is considered as a blinding generator for hidden amounts, the protocol in Figure 22 is a linkable threshold
ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. non-frameability w.r.t. chosen public key attackers,

9. it is a proof of that 𝐴sum is a sum of 𝐴’s of the actual signing keys, to the accuracy of the blinding component
proportional to 𝐷.

Proof: Appendix O.
Overview: Section 8.2.
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EFLRSLWB.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ , 𝑑
𝚫sum ∈ Fp̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
I[𝑘 ] = 𝑝𝑘 U[𝑠𝑘 ] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are nonzero and different // V makes sure there is no zero 𝐼 and no signer signing twice

𝜖 ←$ F∗p̄

V → P : 𝜖

P andV : let 𝐻 ← Hpoint (𝜖) // thus, 𝐻 is orthogonal to all known so far elements, i.e., ort(𝐻, 𝐺, P,A,U, I, 𝐴sum , 𝐷)

P : 𝝁, 𝝊 ←$ F𝑙∗p̄ , allocates Atmp ∈ G𝑙∗, 𝜶 ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
lets `𝑘 ← 𝝁[𝑘 ] ,

Atmp
[𝑘 ] = A[𝑠𝑘 ] + `𝑘𝐻 // Atmp is filled in, amounts get double blinded (with 𝐷 and with 𝐻)

𝜶[𝑘 ] = 𝑝𝑘 `𝑘 // 𝜶 is initialized here, it contains reduced Atmp’s second blinding factors

endforeach

P → V : Atmp

P andV : let Û← {Hpoint (𝐻,A
tmp
[𝑘 ] )}

𝑙−1
𝑘=0

P : lets J← {𝑝𝑘Û[𝑘 ] + 𝜐𝑘𝐻}𝑙−1
𝑘=0 // vector J is initialized here, it contains ‘pseudo key images’ built using Û

P → V : J

V : assert all elements in Atmp, J are nonzero and different // V makes sure Û is orthogonal and there is no zero 𝐽

𝜖, Z , 𝜔, 𝜒 ←$ F∗p̄

V → P : 𝜖, Z , 𝜔, 𝜒

P andV : let 𝐾 ← Hpoint (𝜖) // thus, ort(𝐾, 𝐻, 𝐺, P,A,U, I, 𝐴sum ,Atmp , Û, J) holds

allocate X ∈ G𝑛∗, V,Z ∈ G𝑙∗, 𝑆 ∈ G ,
assign X = P − {𝐾}𝑛 + ZU − 𝜔A , V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û ,

Z = {𝐺}𝑙 + ZI + 𝜒J

assign 𝑆 = 𝐴sum −
∑︁𝑙−1

𝑘=0
Atmp
[𝑘 ]

run zk2ElemComm(𝐷, 𝐻, 𝑆; 𝑑𝚫sum,−
∑︁𝑙−1

𝑘=0
`𝑘)

run zkLin22Choice𝑙,𝑛,𝑙 (X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; s, p, p, −𝜔𝜶 + 𝜒𝝊)

Figure 22: EFLRSLWB signing and verification
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8.4 SIZE AND COMPLEXITY
To verify the EFLRSLWB signature, V needs only to check the equalities (*) and (**) in Figure 23. By

combining the equalities (*) and (**) with random weights and then using the multi-exponetiation technique, V
performs the verifiacation in the time shown in Table 5, where signature size is also shown.

SignAndVerify𝑙,𝑛,𝑢 ↩→ zkLin22Choice𝑙,𝑛,𝑙 ↩→ zkMSVC𝑙,3, (𝑛+𝑙) ↩→ zkMVC𝑙, (𝑛+𝑙) ↩→ zkVC(𝑛+𝑙) ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©«
𝑙−1∑︁
𝑘=0

b𝑘 (𝐺 + Z 𝐼𝑘 + 𝜒𝐽𝑘 + 𝛿1𝑟𝑘𝐹𝑘 + 𝛿2𝑐 (𝑛+𝑘 )𝐸𝑘) +
log2 (𝑛+𝑙)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + [𝐻 − 𝑇 +
+ 𝜏 ©«

𝑛−1∑︁
𝑖=0

©«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + Z𝑈𝑖 − 𝜔𝐴𝑖 + 𝐾 + 𝛿1𝑐𝑖𝐺𝑖) + (*)

+
𝑛+𝑙−1∑︁
𝑖=𝑛

©«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝜔𝐴tmp
(𝑖−𝑛) + 𝜒�̂�(𝑖−𝑛) − 𝐾 + 𝛿2𝑐𝑖𝐺𝑖)

ª®¬ = 0

and
𝜏𝐷 + [̂𝐻 + 𝑐𝑆 − 𝑇 = 0 (**)

Figure 23: EFLRSLWB unfolded equality, verifier checks it

Table 5: EFLRSLWB signature size and verification complexity

Size Verification complexity
EFLRSLWB 2⌈log2 (𝑛 + 𝑙)⌉ + 6𝑙 + 6 mexp( 4𝑛 + 2 log2 (𝑛 + 𝑙) + 7𝑙 + 7 ) + (𝑛 + 𝑙 + 2)Hpt

8.5 IMMEDIATE IMPLICATION
Having verified an instance of EFLRSLWB, V proceeds from the system properties in Figure 20 as follows.

Since a proof of the decomposition (40) exists for each element in A, having checked that all of these proofs are
already verified in the system,V makes sure that A contains some hidden amounts, and not anything else. Namely,
V gets convinced that it holds

{𝐴𝑠𝑘 }𝑙−1
𝑘=0 = {𝑏𝑠𝑘𝐵 + 𝑑𝑠𝑘𝐷}𝑙−1

𝑘=0 ⊆ A , where all 𝑏𝑠𝑘 ’s and 𝑑𝑠𝑘 ’s are known to someones in the system. (54)

From the decompositions (54) and from the proved equality (42), which follows from successful signature verifi-
cation,V gets convinced that

𝐴sum = 𝑏sum𝐵 + 𝑑sum𝐷 , where 𝑏sum and 𝑑sum can be reconstructed in the system. (55)

Finally, from (55), (54), (42)V gets convinced that

𝑏sum =

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 . (56)

Thus, by verifying an instance of EFLRSLWB and by making sure that the corresponding proofs of the form
(40) have already been checked for all the hidden amounts in the signature ring, V gets convinced that P knows
signing private keys and, also, that the sum of the corresponding hidden amounts is balanced out by the given
hidden amount 𝐴sum, to the accuracy of blinding with 𝐷.

9 SIGNATURE MULTRATUG
The signature EFLRSLWB has key image Hpoint (𝑃)/𝑥 with private key 𝑥 in the denominator. In some

applications it is desirable to have key image in a linear form by private key. This form, namely, the form
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𝑥Hpoint (𝑃), is used in the LSAG [23], CLSAG [13], CryptoNote [31] schemes. Consequently, the multiparty
signing operations can be easily implemented for them.

Now we will move 𝑥 from the denominator to the numerator in the EFLRSLWB’s key image. Thus we will
obtain a version of the EFLRSLWB signature with key image 𝑥Hpoint (𝑃), called EFLRSLWBLI (Efficient linkable
ring signature with balance proof and linear key image) and aliased as Multratug.

Our idea of this 𝑥’s movement is quite simple and does not require any new steps in the protocol, just only the
few modifications to it which are outlined below. Although, to prove that this movement of 𝑥 is correct, for the first,
we will have to generalize Theorem 3 about three-element tuples to element tuples of greater length.

9.1 OVERVIEW
9.1.1 RANDOM WEIGHTING FOR T-S-TUPLES

Suppose, we have two tuples T,D of (𝑡 + 𝑠 + 1) elements each, we call them t-s-tuples, such that

T = (𝑃, 𝑄0, 𝑄1, . . . , 𝑄𝑡−1, 𝑆0, 𝑆1, . . . , 𝑆𝑠−1) , (57)
D = (𝑍, 𝐹0, 𝐹1, . . . , 𝐹𝑡−1, 0, 0, . . . ) , (58)

where 𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝑍 ∈ G, F ∈ G𝑡 , for some 𝑡 > 0, 𝑠 ⩾ 0. The structure of these tuples is as follows.
The element 𝑍 corresponds to the element 𝑃, the elements in F correspond to the elements with the same indices
in Q, and 𝑠 zeros correspond to the elements in S.

Now, we sample a random scalar vector 𝝃 of length (𝑡 + 𝑠 + 1) and build the inner products of our tuples with
this scalar vector 𝝃. Namely, we build 𝑋,𝑌 such that

𝑋 = ⟨𝝃,T⟩ = 𝑃 + b1𝑄0 + b2𝑄1 + · · · + b𝑡+1𝑆0 + b𝑡+2𝑆1 + . . . , (59)
𝑌 = ⟨𝝃,D⟩ = 𝑍 + b1𝐹0 + b2𝐹1 + . . . , (60)
where 𝝃 = [1, 𝛿0, 𝛿1, . . . , 𝛿𝑡−1, 𝜎0, 𝜎1, . . . , 𝜎𝑠−1] . (61)

Without limiting generality, we let the first element of the random vector 𝝃 be equal to 1.
In addition to the above, suppose we have a complete, sHVZK, and having cWEE argument that convinces

verifier of 𝑌 ∼ 𝑋 to the accuracy of 𝐻 component. Here 𝐻 performs the role of a blinding generator, it is chosen in
such a way as to be orthogonal to all the elements in T, except for maybe those in its part S. The question is what
we can say about T and D under these conditions.

Theorem 14 answers this question so that as long as Q contains at least one nonzero element and 𝑃 is orthogonal
to T \ {𝑃}, there necessarily exists an unique factor 𝑎 known to prover that connects all the corresponding elements
from T and D. The following relation (62), protocol zkTElemRW𝑡 ,𝑠 (𝑃,Q, S, 𝐻, 𝑍,F; 𝑎, 𝛼, 𝜷, 𝜸) in Figure 24, and
Theorem 14, formalize the game and sufficient conditions for the existence of such an unique factor.


𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝐻 ∈ G∗, 𝑍 ∈ G, F ∈ G𝑡 ;
𝑎, 𝛼 ∈ Fp̄, 𝜷 ∈ F𝑡p̄, 𝜸 ∈ F

𝑠
p̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
F = 𝑎Q + 𝜷𝐻 ∧
{0}𝑠 = 𝑎S + 𝜸𝐻

 (62)

9.1.2 MULTRATUG: MOVING X TO THE NUMERATOR
Our idea of this 𝑥’s movement is about building X,V, and Z in Figure 22 a bit differently, as follows. So, instead

of the key image vector I = { 𝑥𝑘−1𝑈𝑠𝑘 }
𝑙−1
𝑘=0 in Figure 22, P builds a vector of the linear key images Î as

Î = { 𝑥𝑘𝑈𝑠𝑘 }𝑙−1
𝑘=0 . (63)

Then, P builds a blinded copy of the corresponding subset of U as

Utmp = {𝑈𝑠𝑘 }𝑙−1
𝑘=0 + �̂�𝐻, where �̂�←$ F𝑙∗p̄ , (64)

and sends it toV together with Atmp. The vector Utmp (along with Atmp) gets into the pre-images of all the hashes
that are generated in the protocol from this moment on.

Finally, using the vectors Î,Utmp, and an additional random scalar \, both of P andV build X,V,Z as

X = P − {𝐾}𝑛 + ZU − 𝜔A , (65)

V = {𝐾}𝑙 + 𝜔Atmp − ZUtmp + \Î + 𝜒Û , (66)

Z = {𝐺}𝑙 + \Utmp + 𝜒J . (67)
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Then, P and V proceed with executing the protocol to the completion. Of course, P adjusts the total blinding
factor at the private input of zkLin22Choice𝑙,𝑛,𝑙 with respect to the new �̂� sampled in (64).

Since X,V,Z are now defined by (65), (66), (67) instead of (45), (46), (47), by Theorem 12 (Lin2-2Choice
lemma)V obtains 𝑙 following equalies instead of 𝑙 equalities (51), for each 𝑘 ∈ [0 . . . 𝑙 − 1], to the accuracy of 𝐻
component

𝐺 + \𝑈tmp
𝑘
+ 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + \𝐼𝑘 + 𝜒�̂�𝑘) + 𝑝𝑘 (𝜔𝐴

tmp
𝑘
− 𝜔𝐴𝑠𝑘 + Z𝑈𝑠𝑘 − Z𝑈

tmp
𝑘
) , where 𝑝𝑘 = 𝑥−1

𝑘 . (68)

By Theorem 14, from (68) V gets convinced that the following system of equalities holds, for each 𝑘 , to the
accuracy of 𝐻 component, this is explained in detail in Appendix S



𝐺 = 𝑝𝑘𝑃𝑠𝑘

𝑈𝑠𝑘 = 𝑈
tmp
𝑘

𝑈𝑠𝑘 = 𝑝𝑘 𝐼𝑘

𝐽𝑘 = 𝑝𝑘�̂�𝑘

𝐴𝑠𝑘 = 𝐴
tmp
𝑘

.

(69a)

(69b)

(69c)

(69d)

(69e)

From (69a) and (69c), which are strict (have zero 𝐻 component, as 𝐻 is a hash image of all their elements),V
gets convinced that the signing is correct and that the linear linking tags are valid, respectively. The balance proof
and all the other points of the Theorem 13 proof remain the same as for EFLRSLWB with the former linking tag.
Thus, the transition to the linear linking tag is performed, with all the EFLRSLWB properties moved unaffected to
EFLRSLWBI in Figure 25, aliased as Multratug.

9.2 FORMAL PRESENTATION
9.2.1 RANDOM WEIGHTING FOR T-S-TUPLES
Theorem 14 (Random weighting for t-s-tuples):
For 𝑡 ∈ N∗, 𝑠 ∈ N, for two nonzero elements 𝑃, 𝐻 ∈ G∗, for two element vectors Q ∈ G𝑡 , S ∈ G𝑠 such that
nz(Q) ≠ ∅ ∧ 𝑃 != lin(nz(Q) ∪ nz(S) ∪ {𝐻}) ∧ 𝐻 != lin(nz(Q) ∪ {𝑃}) holds, the protocol zkTElemRW𝑡 ,𝑠 in
Figure 24 is a complete, sHVZK argument having cWEE for the relation (62) with unique witness.

Proof: is in Appendix P.
Overview: Section 9.1.1.

zkTElemRW𝑡 ,𝑠 (𝑃,Q, S, 𝐻, 𝑍,F; 𝑎, 𝛼, 𝜷, 𝜸)

Relation R =


𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝐻 ∈ G∗, 𝑍 ∈ G, F ∈ G𝑡 ;
𝑎, 𝛼 ∈ Fp̄, 𝜷 ∈ F𝑡p̄, 𝜸 ∈ F

𝑠
p̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
F = 𝑎Q + 𝜷𝐻 ∧
{0}𝑠 = 𝑎S + 𝜸𝐻

 // (62)

// Precondition: 𝑃,Q, 𝐻 in R satisfy nz(Q) ≠ ∅ ∧ 𝑃 != lin(nz(Q) ∪ S ∪ {𝐻 }) ∧ 𝐻 != lin(nz(Q) ∪ {𝑃})

V : 𝜹←$ F𝑡∗p̄ ,𝝈 ←$ F𝑠∗p̄

V → P : 𝜹,𝝈

P : computes �̂� = 𝛼 + ⟨𝜹, 𝜷⟩ + ⟨𝝈, 𝜸⟩

P andV : compute 𝑋 = 𝑃 + ⟨𝜹,Q⟩ + ⟨𝝈, S⟩
𝑌 = 𝑍 + ⟨𝜹,F⟩

and run any complete, sHVZK, and cWEE protocol that convincesV
that P knows witness (𝑎, �̂�) for the relation (4), i.e.,
that 𝑋 and 𝑌 are connected as 𝑌 = 𝑎𝑋 + �̂�𝐻

Figure 24: Random weighting for two t-s-tuples

Note, the premise of Theorem 14 introduces a couple of preconditions in the form 𝐴 != lin(B) which easily
implements as 𝐴 = Hpoint (B). This form of precondition is weaker than ort({𝐴} ∪ B) which is a shorthand of the
DL relation assumption [7] for {𝐴} ∪ B. Thus, a theorem having the precondition 𝐴 != lin(B) is stronger than a
theorem with the precondition ort({𝐴} ∪ B).
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Since we do not have a separate assumption for premises in the form 𝐴 != lin(B), only for those in the form
ort(C), here is a rule for how the first form translates to the second. If ort(B) holds, then 𝐴 != lin(B) is equivalent
to ort({𝐴} ∪ B) and thus the translation is done. Otherwise, if ort(B) does not hold, then there exists a set B̂ ⊂ B
together with some coefficients known to prover such that ort(B̂) ∧ ∀𝐵 ∈ B : 𝐵 = lin(B̂). Thus, 𝐴 != lin(B)
translates to ort({𝐴} ∪ B̂) in this case. Having defined such a translation, we have shown that Theorem 14 remains
under the DL relation assumption.

9.2.2 SIGNATURE MULTRATUG

Theorem 15:
The scheme in Figure 25 obtained from the scheme in Figure 22 by appending the element vector Utmp and
substituting the new key image vector Î for the vector I in it, as shown in Figure 25, is a linkable threshold ring
signature retaining the properties 1. . . 9) of the scheme in Figure 22 listed in Theorem 13.

Proof: is in Appendix T.
Overview: Section 9.1.2.

Thus, we have created the Multratug signature scheme and proved that it has all the properties shown in Table 2.

9.3 SIZE AND COMPLEXITY

The size of Multratug increases by 𝑙 compared to EFLRSLWB because of the appended vector Utmp. Also, for
the same reason, its verification complexity increases by 𝑙 under the multi-exponent. The substitution of Î for I
affects neither the size nor complexity. The totals are shown in Table 6.

Table 6: Multratug signature size and verification complexity

Size Verification complexity
Multratug* 2⌈log2 (𝑛 + 𝑙)⌉ + 7𝑙 + 6 mexp( 4𝑛 + 2 log2 (𝑛 + 𝑙) + 8𝑙 + 7 ) + (𝑛 + 𝑙 + 2)Hpt

∗ Optimized size is shown in Table 7.
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EFLRSLWBLI.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ , 𝑑
𝚫sum ∈ Fp̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates Î ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
Î[𝑘 ] = 𝑥𝑘 U[𝑠𝑘 ] // vector Î is filled in here

endforeach

P → V : Î

V : assert all elements in Î are nonzero and different // V makes sure there is no zero 𝐼 and no signer signing twice

𝜖 ←$ F∗p̄

V → P : 𝜖

P andV : let 𝐻 ← Hpoint (𝜖) // thus, 𝐻 is orthogonal to all known so far elements, i.e., ort(𝐻, 𝐺, P,A,U, Î, 𝐴sum , 𝐷)

P : 𝝁, �̂�, 𝝊 ←$ F𝑙∗p̄ , allocates Atmp,Utmp ∈ G𝑙∗, 𝜶, �̂� ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
lets (`𝑘 , ˆ̀𝑘) ← (𝝁[𝑘 ] , �̂�[𝑘 ] ) ,

Atmp
[𝑘 ] = A[𝑠𝑘 ] + `𝑘𝐻 // Atmp is filled in, amounts get double blinded (with 𝐷 and with 𝐻)

𝜶[𝑘 ] = 𝑝𝑘 `𝑘 // 𝜶 is initialized here, it contains reduced Atmp’s second blinding factors

Utmp
[𝑘 ] = U[𝑠𝑘 ] + ˆ̀𝑘𝐻 // Utmp is filled in,𝑈’s get blinded with 𝐻

�̂�[𝑘 ] = 𝑝𝑘 ˆ̀𝑘 // �̂� is initialized here, it contains reduced Utmp’s blinding factors

endforeach

P → V : Atmp, Utmp

P andV : let Û← {Hpoint (𝐻, Utmp, Atmp
[𝑘 ] ) }

𝑙−1
𝑘=0

P : lets J← {𝑝𝑘Û[𝑘 ] + 𝜐𝑘𝐻}𝑙−1
𝑘=0 // vector J is initialized here, it contains ‘pseudo key images’ built using Û

P → V : J

V : assert all elements in Atmp, J are nonzero and different // V makes sure Û is orthogonal and there is no zero 𝐽

𝜖, Z , 𝜔, 𝜒, \ ←$ F∗p̄

V → P : 𝜖, Z , 𝜔, 𝜒, \

P andV : let 𝐾 ← Hpoint (𝜖) // thus, ort(𝐾, 𝐻, 𝐺, P,A,U, I, 𝐴sum ,Atmp , Û, J) holds

allocate X ∈ G𝑛∗, V,Z ∈ G𝑙∗, 𝑆 ∈ G ,
assign X = P − {𝐾}𝑛 + ZU − 𝜔A , V = {𝐾}𝑙 + 𝜔Atmp − ZUtmp + \Î + 𝜒Û ,

Z = {𝐺}𝑙 + \Utmp + 𝜒J

assign 𝑆 = 𝐴sum −
∑︁𝑙−1

𝑘=0
Atmp
[𝑘 ]

run zk2ElemComm(𝐷, 𝐻, 𝑆; 𝑑𝚫sum,−
∑︁𝑙−1

𝑘=0
`𝑘)

run zkLin22Choice𝑙,𝑛,𝑙 (X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; s, p, p, −𝜔𝜶 + Z �̂� + \ �̂� + 𝜒𝝊)

Figure 25: Multratug with 𝐼 = 𝑥Hpoint (𝑃) signing and verification
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10 BETTER ARGUMENT FOR VECTOR COMMITMENT
The implementation of our pivotal vector commitment argument zkVC𝑛 in Figure 3 is not decisive. We will

now present a shorter implementation of it, called zkVCopt
𝑛 , with the same properties of completeness, sHVZK, and

cWEE. This our implementation utilizes the same ideas as the compressed pivot implementation in [2].

10.1 OVERVIEW
The idea is that, for any 𝑛 ⩾ 1, it is always possible to construct an sHVZK and having cWEE custom Schnorr-

like protocol of size 𝑛+1, that proves a commitment𝑌 is a weighted sum of 𝑛 orthogonal generators X with weights
known to the prover.

In this protocol, prover sends an element 𝑇 as the first message. Then, verifier challenges with random scalar 𝑐,
and the prover replies with 𝑛 scalars 𝝉 by which the orthogonal generators X are then multiplied. The final check
is the same as for the Schnorr id protocol, the only difference is that now the inner product ⟨𝝉,X⟩ is taken instead
of the basic generator multiplied by the scalar replied in the Schnorr id scheme.

However, it is excessive to transmit all 𝑛 scalars in 𝝉; a proof of their knowledge suffices. Moreover, this proof
does not have to be sHVZK, a complete argument having cWEE is enough.

10.2 FORMAL PRESENTATION

zkNElemComm𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (70)

// 𝑋 in R satisfies ort(𝑋) .

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝝓←$ F𝑛∗p̄ and computes 𝑇 = ⟨𝝓,X⟩

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x

P → V : 𝝉

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇 − 𝑐𝑌 ?
= ⟨𝝉,X⟩

Figure 26: Zero-knowledge argument for n element commitment relation

For the first, we define the protocol zkNElemComm𝑛 in Figure 26. It has the Schnorr-like design. This protocol
is an argument for the relation

R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } . (70)

The relation (70) is actually the relation (7) with the items renamed and, at the same time, is the relation (5)
with the blinding generator 𝐻 moved to the vector X.

The zkNElemComm𝑛 protocol properties are specified in the next theorem. Note that, for 𝑛 = 2, zkNElemComm2
is equivalent to zk2ElemComm in Figure 2.

Theorem 16:
For 𝑛 ∈ N∗, for a vector of nonzero elements X ∈ G𝑛∗ such that ort(X) holds, for an element 𝑌 ∈ G, the protocol
zkNElemComm𝑛 in Figure 26 is a complete, sHVZK argument having cWEE for the relation (70) with unique witness.

Proof: is in Appendix U.
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For the second, in Figure 27 we define a log-size vector commitment argument argVC𝑛 for the same relation (70).
We use the blinding generator 𝐻 neither in zkNElemComm𝑛 nor in argVC𝑛. Also, note that zkNElemComm𝑛 is
sHVZK, whereas argVC𝑛 is not. The properties of argVC𝑛 are specified in the following theorem.

Theorem 17:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of nonzero elements X ∈ G𝑛∗ such that ort(X) holds, for an
element 𝑌 ∈ G, the protocol argVC𝑛 in Figure 27 is a complete argument having cWEE for the relation (70) with
unique witness.

Proof: is in Appendix V.

argVC𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (70)

// X in R satisfies ort(X) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 4 then

P : lets �̂�← 𝑛/2 and computes 𝐿 =
〈
x[:�̂�] ,X[�̂�:]

〉
𝑅 =

〈
x[�̂�:] ,X[:�̂�]

〉
P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes x̂ = 𝑒x[:�̂�] + 𝑒−1x[�̂�:]

P andV : run argVC�̂� (X̂, 𝑌 ; x̂) // run recursively until n=4

else // n ⩽ 4

P → V : x

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑌
?
= ⟨x,X⟩

endif

Figure 27: Efficient argument for vector commitment

Third, we combine zkNElemComm𝑛 with argVC𝑛 into the single proof, as follows.
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zkVC
opt
𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (5)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , and also (𝑛 + 1) is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : let X̂← [X, 𝐻]

P : 𝝓←$ F
(𝑛+1)∗
p̄ , lets x̂← [x, 𝛼], and computes 𝑇 =

〈
𝝓, X̂

〉
P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x̂

P andV : run argVC𝑛+1 (X̂, 𝑇 − 𝑐𝑌 ; 𝝉)

Figure 28: Efficient zero-knowledge argument for vector commitment

Theorem 18:
For a nonzero element 𝐻 ∈ G∗, for 𝑛 ∈ N∗ such that (𝑛 + 1) is a power of 2, for a vector of nonzero elements
X ∈ G𝑛∗ such that ort(X ∪ {𝐻}) holds, for an element 𝑌 ∈ G, the protocol zkVCopt

𝑛 in Figure 28 is a complete,
sHVZK argument having cWEE for the relation (5) with unique witness.

Proof: is in Appendix W.

10.3 SIZES AND COMPLEXITIES

As a result, we obtain the argument zkVCopt
𝑛 of size 2⌈log2 (𝑛 + 1)⌉ + 1.We replace zkVC𝑛 with zkVCopt

𝑛 in
Multratug and EFLRSL. After this replacement, new sizes of the signatures are shown in Table 7. Their verification
complexities do not change much, so we do not recalculate them. For comparison, the former sizes and times are
shown in Table 4 and Table 6. Also, from now on we require (𝑛+ 𝑙 + 1) and (𝑛+ 1) to be powers of 2, respectively.

Table 7: Optimized characteristics of the Multratug and EFLRSL schemes

Size Verification complexity
Multratug 2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 7𝑙 + 4 mexp( 4𝑛 + 8𝑙 + . . . ) + (𝑛 + 𝑙 + 2)Hpt
EFLRSL 2⌈log2 (𝑛 + 1)⌉ + 3𝑙 + 1 mexp ( 3𝑛 + 2𝑙 + . . . ) + (𝑛 + 1)Hpt

. . . Insignificant summands are omitted.

11 APPLICATIONS
11.1 REGULAR RING SIGNATURE

EFLRSL, which was obtained in the first chapters of this paper, can be regarded as a streamlined version of
Multratug. It is a regular linkable threshold ring signature which, in terms of Table 2, has Log-sz, Regular, Linkable,
Thresh., General properties check-marked. Consequently, EFLRSL can be used in a wide range of cryptographic
systems and scenarios, including electronic voting or whistleblowing described, e.g., in [23].

If an application requires a signature to be unlinkable, then an unlinkable version of EFLRSL can be easily
constructed. For instance, it can be done by blinding the EFLRSL key images. To blind the key images it suffices
to exclude them from the arguments of Hpoint call that creates the blinding generator 𝐻, and to add randomly
sampled 𝐻 components to them.
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11.2 SIGNATURE IN BLOCKCHAIN
Suppose that Multratug is used to sign transactions in an UTXO blockchain like, e.g., [24, 31]. Suppose the

blockchain public keys, hidden amounts, hash functions, and predefined generators follow the rules in Figures 1, 9,
20, 21. There is nothing unusual for a blockchain in these requirements. Futhermore, the blockchain does not have
to follow the CryptoNote rules for stealth addresses [31], although it can.

For every transaction, its sender P performs as follows.
◦ Picks 𝑛 pairs of the form (𝑃, 𝐴) from the ledger, they become transaction inputs, and makes the ring (38) of

them.
◦ Generates and places into the transaction 𝑚 pairs of the form (𝑃, 𝐴), which become the transaction outputs.

For convenience, it considers all 𝑚 hidden amounts 𝐴 of these outputs as the vector Aout. Note, knowing
the actual signing keys in the ring and their corresponding hidden amounts, P distributes the value parts
of elements in Aout in such a way as to be in balance with the signing amounts in the ring. P samples the
blinding parts of the elements in Aout independently and uniformly.
◦ Lets 𝐴sum =

∑𝑚−1
𝑘=0 𝐴out

𝑘
.

◦ Knowing the actual signing private keys whose corresponding public key indices are in the vector s, P signs
the transaction with the Multratug signature.
◦ P proves ranges of all elements in Aout, for example, using the aggregate range proof from [9] which is

combinable with Multratug, as shown in Section 12.3.
◦ Proves that each 𝐴out

𝑘
∈ Aout has the decomposition (40) with known to P coefficients. Notably, if the

ranges of elements in Aout are already proved by the protocols from [7, 9], then, for all 𝐴out
𝑘
∈ Aout, their

decompositions (40) are proved by this.
Thus, the transaction contains the proofs of the form (40) for all of the output hidden amounts in Aout. Also, the
transaction contains an instance of the Multratug signature which provides the proof that

∑𝑚−1
𝑘=0 𝐴out

𝑘
is equal to the

sum
∑𝑙−1
𝑘=0 𝐴𝑠𝑘 of all hidden amounts related to the signing indices s, to the accuracy of 𝐷.

Taking into account that all 𝐴𝑠𝑘 ’s are a subset of all hidden amounts A in the ring, and for the latter it is assumed
that they have already been verified to have the form (40), it follows that the sum of amounts corresponding to the
actual signing keys is equal to the sum of the output amounts, i.e.,

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 =

𝑚−1∑︁
𝑘=0

𝑏out
𝑘 .

At the same time, the same instance of Multratug proves that P knows private keys for the actual signing public
keys at indices in s. Also, this instance of Multratug delivers key images I’s, thus blocking reuse of those public
keys that actually signed the transaction.

12 EXTENSION AND IMPROVEMENTS
12.1 USING RING OF SIZE N·L

It is possible to slightly reduce the size of the Multratug signature by not using the Lin2-2Choice lemma and
instead by growing the ring 𝑙 times as to comprise 𝑙 replicas of itself, each for its hidden amount 𝐴tmp

𝑘
. In this case,

after the appropriate optimizations, the signature size would be

2 log2 (𝑛𝑙) + 5𝑙 + O(1).

However, we still prefer the version with the Lin2-2Choice lemma, since not using it implies that the ring grows
to 𝑛𝑙 size. This would require to add more generators to keep all the ring elements linearly independent of each
other and, hence, will correspondingly increase 𝑙 times the verification complexity.

12.2 BATCH VERIFICATION
Multratug signature batch verification can be performed by checking only one equality, by combining the

equalities (*) and (**) in Figure 23 of all signatures in a batch using random weighting. Of course, the equality (*)
slightly changes when zkVCopt

𝑛 is used in place of zkVC𝑛, this is a minor detail and we do not show the change here.
In any case, for batches, the asymptotic verification complexity by ring size 𝑛 decreases from 4𝑛 to 3𝑛 under the

multi-exponent. This happens due to the fact that all the Multratug signature batch instances use the same vector
of predefined generators G. The same can be stated about EFLRSL, referring to Figure 16 and finding there a
reduction from 3𝑛 to 2𝑛 under the multi-exponent.
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12.3 COMBINING WITH OTHER PROOFS
Multratug relies upon the pivotal vector commitment argument and is independent of implementation of the

pivot. Consequently, Multratug can be combined with any other proof which uses the vector commitment argument.
For instance, it can be combined with the inner product argument implemented according to [7] or [9].

In this way, Multratug can be combined with the single or aggregate range proofs from [9], and they will share
the component responsible for the sum

log2 (𝑛+𝑙+𝑛rangeproof )−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒−2

𝑗 𝑅 𝑗 ),

where 𝑛rangeproof is equal to bitsize of the range times number of proofs aggregated.

12.4 DOWNGRADING TO U/X KEY IMAGE
In the case of using our signature in a blockchain confined to the stealth address format of CryptoNote [31], it

is possible to replace the key image form 𝑥−1Hpoint (𝑥𝐺) with the form 𝑥−1𝑈, where𝑈 is a predefined orthogonal
generator. This can be performed for the EFLRSLWB version of the signature defined in Section 8.

Of course, such a replacement would require expanding the vector G of predefined orthogonal generators so as
to use them instead of Hpoint (𝑃𝑖)’s in the ring. The size of the signature will not change after that. However, the
batch verification time will be significantly reduced.

12.5 MULTIPLE HIDDEN AMOUNTS PER ACCOUNT
In the context of blockchain, particularly in the scenario described in Section 11.2, as well as in other cases, we

can consider a setup where several hidden amounts are associated with a public key, instead of one. To be precise,
we can assume that for each 𝑖-th address (39) in the ring, 𝑖 ∈ [0 . . . 𝑛 − 1], instead of the hidden amount 𝐴𝑖 defined
by the formula (40) there are 𝑢 hidden amounts {𝐴𝑖 𝑗 }𝑢−1

𝑗=0 defined by the following formula

𝐴𝑖 𝑗 = 𝑏𝑖 𝑗𝐵 𝑗 + 𝑑𝑖 𝑗𝐷 . (71)

According to this new formula (71) which replaces (40), now, for each signing index 𝑠𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1],
prover P is required to know 𝑢 amounts {𝑏𝑠𝑘 , 𝑗 }𝑢−1

𝑗=0 along with 𝑢 blinding factors {𝑑𝑠𝑘 , 𝑗 }𝑢−1
𝑗=0 . Also, according to

(71), now there are 𝑢 orthogonal generators {𝐵 𝑗 }𝑢−1
𝑗=0 instead of the single generator 𝐵 in the system, hence the

common information in Figure 21 is assumed extended with them. Each 𝑗-th hidden amount is encoded with the
corresponding generator 𝐵 𝑗 . The blinding generator 𝐷 remains intact and is used for all of the amounts.

Finally, for this setup, each of the output hidden amounts 𝐴 ∈ Aout is replaced with 𝑢 new hidden amounts of
the form (71), with 𝑖 ∈ [0 . . . 𝑚 − 1], 𝑗 ∈ [0 . . . 𝑢 − 1] for them. It is assumed that some external range proofs are
provided for all of the output hidden amounts as well.

With this setup, the signature Multratug needs no modification to convince V that 𝑢 balances are kept. For
this, all 𝑢 hidden amounts of each address are convolved back into the single element 𝐴𝑖 , just as follows,

𝐴𝑖 =

𝑢−1∑︁
𝑗=0

𝑏𝑖 𝑗𝐵 𝑗 +
𝑢−1∑︁
𝑗=0

𝑑𝑖 𝑗𝐷 ,

and the same is for the output hidden amounts. After that, the signature Multratug is signed and published for them.
It is easy to see that, since for each 𝑗 the amount 𝑏𝑖 𝑗 is encoded with the corresponding orthogonal generator 𝐵 𝑗 ,
the amounts for different 𝑗’s do not intermix. Thus, all 𝑢 balances get proved at the price of one, as in Table 7.

12.6 APPLICATION TO KZG COMMITMENTS
The Kate-Zaverucha-Goldberg (KZG) commitment scheme [17] allows to commit to polynomials of some

predefined and typically large degree and then to construct succinct arguments of knowledge of values of these
polynomials at points. KZG commitments are used in modern proof systems, e.g., in PLONK [11] by A. Gabizon,
Z. J. Williamson, and O. Ciobotaru. For a quick dive into this topic, we refer to the explanatory overview [5] by
D. Boneh.

Now let us recall that the generic idea of the Lin2-Choice lemma outlined in Section 4.1.3 is that, for a given set
of 𝑛 fixed linearly independent elements, we, informally, construct a linear expression with 𝑛 degrees of freedom
from them. Given one more fixed element, which we consider as a commitment, we construct another linear
expression with one degree of freedom from it. In addition, we have a private mask a of 𝑛 scalars, which is also
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considered fixed. We randomize the first linear expression in all its 𝑛 dimensions and, also, overlap it with the
mask a. Finally, we show that the part of the randomized first expression that is ‘seen’ through the mask a is equal
to the second expression, for which we control its single degree of freedom. This convinces the verifier that our
private mask a is one-hot, and hence the given commitment corresponds to exactly one member of the given set of
𝑛 elements.

In Appendix Z, we show how this key idea can be applied to KZG commitments. In fact, instead of dealing with
elements and commitments in a prime-order group under DDH, we might try to use linearly independent objects
and committments of a different nature under slightly different assumptions. For instance, the given above set of
linearly independent elements and commitment might be replaced by a set of linearly independent polynomials and
a KZG commitment.

As another example, the set can be an image of a polynomial on some subdomain 𝛀 such that the polynomial
is nonzero on 𝛀. The commitment can be a KZG commitment to another polynomial. In this case, using the same
considerations we can argue that the opening of the commitment is one-hot on 𝛀.

13 COMPARISON
We compare our optimized Multratug and EFLRSL (Table 7) with the best performing signatures listed in

Table 1, namely, with Lelantus Spark [16], Omniring [21], RingCT3.0 [32], Triptych [25], and DualRing-EC [33],
taking linear-size CLSAG [13] for the base.

We distinguish two gradations of scheme anonymity inherently bound to the two key image (linking tag) forms
used. In general, if a scheme has a key image or another public element in the form 𝑥−1𝑈, then it has lower
anonymity unless a compensatory restriction is imposed on the keys. Key images in the forms 𝑥−1Hpoint (𝑃) and
𝑥Hpoint (𝑃) are stronger and entail no key restrictions, however, it is still required that the scheme has no other
public elements in the form 𝑥−1𝑈. More on this in Appendix Y.

13.1 FOR MULTRATUG
The signatures with balance proofs are compared in Table 8. Notation is as follows. Hsc is the time of taking

a scalar hash, it is omitted when its multiplier is logarithmic or less. Hpt is the time of taking a hash to curve,
mexp(𝑁) is the time of multi-exponentiation of 𝑁 summands.

The schemes with ‘Any keys=Yes’ operate with arbitrary keys; those with ‘Any keys=No’ require special key
format, e.g., as in [31]. Our signature receives ‘Any keys=Yes’, as according to Theorem 15 and, hence, by
Theorem 13 it has the EU_CMA/CPA, anonymity w.r.t. CPA, non-frameability w.r.t. CPA properties.

Lelantus Spark [16] has key image 𝑥−1𝑈, nevertheless, according to the original paper it has a subsystem that
facilitates multiparty signing, so we set ‘MP=Yes’ for it. The other schemes receive ‘MP=Yes’ only if their key
images are linear by 𝑥. Also, for Lelantus Spark, we only count the size of its parallel 1-out-of-many proof from
the section ‘7 Efficiency’ in [16], so its actual size may have a few extra bytes.

For this comparison, we exclude key images together with input/output accounts which occupy the same space
for all schemes. Also, we do not include the output range proofs assuming they are separated into distinct units,
although according to Section 12.3 our scheme effectively integrates with them, as does Omniring [21].

Batch verification time, which is explained for our scheme in Section 12.2, is generally 25%. . . 50% less for all
log-size schemes due to common generators merging, we do not show it. Verification complexities of the schemes
with the key images 𝑥−1Hpoint (𝑃) or 𝑥Hpoint (𝑃) have an additional summand of roughly 𝑛Hpt, which reflects the
fact that Hpoint must be called at least once for every public key in the ring.

Multratug is represented by its version with optimized vector commitment argument, with characteristics taken
from Table 7; we have subtracted 𝑙 from its size, since the key images are not counted. The CLSAG, Triptych,
and Lelantus Spark schemes have no threshold versions, hence, to compare them with those having threshold ones,
their sizes in Table 8 are to be multiplied by 𝑙. RingCT3.0 size is taken from the corresponding paper [32]. The
same is for Omniring, its size is taken from the section ‘6.3 Performance Comparison’ of [21]. Note, according
to its paper, Omniring has O log2 (𝑛𝑙 + . . . ) size, whereas in the section ‘D Comparison with Omniring’ in [32] it
reads as O log2 (𝑛 + . . . ), we hold to the first one.

For the ring size 𝑛 = 25 . . . 210 and number of inputs limited to, say, 𝑙 ⩽ 5, which is in accordance to [32,
21, 25], inserted into the corresponding formulas in Table 8, our Multratug looks performing on par with the
best-performing signature schemes.

As for applicability in blockchains, we should probably only consider signatures that allow for easy signing by
multiple parties, since this seems to be a must-have attribute for a modern blockchain. Therefore, only Lelantus
Spark, Omniring version with 𝑥Hpoint (𝑃), and our signature are to be compared. Table 9 shows their sizes
(excluding key images and range proofs) in bytes computed in the mentioned above region of interest. We assume
an element in G and a scalar in Fp̄ take 32 bytes each.

47



Table 8: Comparison of LRS schemes that simultaneously prove the balance

Size Verification complexity Key image Any keys MP
CLSAG* 𝑛 + 2 (𝑛 + 2)Hsc + 2𝑛mexp(3) + 𝑛Hpt 𝑥Hpoint (𝑃) Yes Yes
Triptych* 3⌈log2 (𝑛)⌉ + 8 mexp( 2𝑛 + . . . ) 𝑥−1𝑈 No No
Lelantus Spark* 3⌈log2 (𝑛)⌉ + 5 mexp( 2𝑛 + . . . ) 𝑥−1𝑈 No Yes
RingCT3.0 2⌈log2 (𝑛 𝑙)⌉ + 𝑙 + 17 mexp( 2 𝑛 𝑙 + . . . ) +mexp(𝑙 + 1) + . . . 𝑥−1𝑈 No No
Omniring 2⌈log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3)⌉ + 9 mexp( 2 𝑛 𝑙 + . . . ) 𝑥−1𝑈 No No
Omniring 2⌈log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3)⌉ + 9 *** 𝑥Hpoint (𝑃) No Yes
Multratug** 2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 6𝑙 + 4 mexp( 4𝑛 + 8𝑙 + . . . ) + (𝑛 + 𝑙 + 2)Hpt 𝑥Hpoint (𝑃) Yes Yes

∗ Authors did not specify any optimized threshold version, assuming it takes up 𝑙 times the size.
∗∗ Scheme version with linear linking tag, Section 9, and optimized vector commitment argument, Section 10.3 .
∗∗∗ Authors did not specify formula, we assume the quantity is average in its class, about the same as for the version with 𝑥−1𝑈.
. . . Insignificant summands are omitted.

Table 9: Comparison of LRS schemes with balance that are suitable for blockchain

𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5
𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210

Lelantus Spark 640 1120 1120 2080 1600 3040 2080 4000 2560 4960
Omniring 704 1024 736 1056 768 1088 768 1088 800 1120
Multratug 672 992 864 1184 1056 1376 1248 1568 1440 1760

Notably, Multratug is the only log-size signature with balance proof of all the listed, which is applicable in
blockchains as well as in other environments where keys do not stick to the [31] rules, and where the keys are also
allowed to be generated ad-hoc and be malformed as, e.g., in [23, 24, 13].

13.2 FOR EFLRSL
In Table 10 we compare the simplest versions of the signature schemes, which are the ring signatures with

one actual signer. So, we take our EFLRSL signature for 𝑙 = 1 with the optimized vector commitment argument
(Table 7). We also include in the comparison the DualRing-EC [33] signature which, according to the survey
in [33], is the most space-efficient known so far. For this comparison, we don’t distinguish between the regular
ring signatures and the linkable ones. When both versions are available, we take the regular one. The sizes of
DualRing-EC and streamlined versions of RingCT3.0, Omniring are taken from ‘Table 1: O(log n)-size DL-based
ring signature schemes for n public keys . . . ’ in [33].

According to Table 10, for large rings such that ⌈log2 (𝑛+1)⌉ = ⌈log2 (𝑛)⌉ almost everytime, both the DualRing-
EC and EFLRSL signatures have the best size among the others. However, EFLRSL has a stronger security model,
which is explained in Appendix X. Thus, it turns out that the EFLRSL signature for 𝑙 = 1 is the shortest one known
to date among the signatures for environments in which malformed keys are allowed.

Table 10: Comparison of DL-based ring signatures

Size Verification complexity
CLSAG 𝑛 + 1 𝑛Hsc + 𝑛mexp(2)
RingCT3.0 2⌈log2 (𝑛)⌉ + 14 mexp( 2𝑛 + . . . ) + . . .

Omniring 2⌈log2 (𝑛 + 2)⌉ + 9 mexp( 2 𝑛 𝑙 + . . . )
EFLRSL* 2⌈log2 (𝑛 + 1)⌉ + 4 mexp( 3𝑛 + . . . ) + (𝑛 + 1)Hpt
DualRing-EC** 2⌈log2 (𝑛)⌉ + 4 mexp( 𝑛 + . . . )

∗ Only linkable version of the ring signature is available.
∗∗ See comments in Appendix X.
. . . Insignificant summands are omitted.

14 CONCLUSION
In this paper we presented two novel efficient membership proofs in a prime-order group without bilinear

pairings, under the DDH assumption. In the lemmas called Lin2-Choice and Lin2-2Choice we proved these
membership proofs are complete, special honest verifier zero-knowledge, and have computational witness-extended
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emulation. Using our membership proofs we created a trusted-setup-free, pairings-free, DDH-based log-size
linkable threshold ring signature with balance proof called Multratug. To illustrate, for a ring of 210 addresses with
associated hidden amounts, and for 5 actual signing keys in it, Multratug occupies less than 2KBytes of space, as
shown in Table 9.

In addition to its quite moderate size and built-in balance proof, the Multratug signature makes it easy to
implement multi-party signing operations with it. Thus, it can be used for signing confidential transactions in
a modern blockchain. Multratug can operate securely with any addresses, not only with those which follow the
CryptoNote stealth address paradigm. This trait along with the above properties makes the signature applicable in
wide range of cryptographic systems. Therefore, Multratug may serve as a log-size drop-in replacement for the
well-known linear-size LSAG scheme and its extensions.

We made a comparison which showed that among the existing pairings-free trusted-setup-free log-size signatures
under DDH, for large rings and medium thresholds, only a version of the Omniring scheme comprises almost the
same set of useful features (Table 1, Table 2) at the minimal size (Table 8). However, the Multratug’s security
model is proved to be stronger against malformed keys.

For the case when a cryptographic system requires neither a balance proof nor any other additional properties
from a signature, just the minimal possible size and a security model strong enough to accept ad hoc generated
and malformed keys, we provide a streamlined version of our signature called EFLRSL. It is the most compact
signature with the strong security model to date (Table 10), as far as we can find.

Lin2-Choice is the main lemma of this paper, it provides a concise method for proving membership in a linearly
independent set. Having proved this lemma in the DDH setting, we have shown as an extension that this lemma’s
key idea can likely be valid under other assumptions as well.

Our membership proofs and signatures are built upon an arbitrary vector commitment argument (Section 1.2)
viewed as a black box. They effectively combine with other arguments such as range proofs to further reduce the
overall size. The design of our membership proofs and signatures is modular. We compose them from elementary
protocols, and for each one we prove that it is special honest verifier zero-knowledge and has computational witness-
extended emulation. We represent in full detail the crucial parts of our proofs, for the other parts we provide the
sketches and refer to the works where necessary details can be found. Due to the modular design, it suffices to
check all the elementary protocols individually in order to understand and verify our resulting schemes. It should
be noted that some of these protocols, such as the main lemma’s argument and random weighting for t-s-tuples
argument, are far from trivial and may have an independent application.

Although signatures and other cryptographic solutions using additional or more complex assumptions such as
bilinear pairings may give better performance, we think that the efficient signatures constructed for the simplest
prime-order group herein may be interesting in two aspects. First, they show in purely theoretical terms how much
can be achieved on the simplest foundation. Second, just as the Bulletproofs protocol originally formulated for
a prime-order group was later instantiated in a post-quantum setting using lattice hardness assumptions, we have
some hope that something similar can be done for our protocols in the future.
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A PROOF OF 2-ELEMENT COMMITMENT
Proof: [Theorem 1] Completeness of the protocol can easily be seen from its code. Also, from the protocol code
it is seen that, in the case if 𝑇 is a direct weighted sum of {𝑋, 𝐻}, then the protocol splits into two independent
Schnorr identification schemes [27] with the same challenge. Thus, if this is the case, then the sHVZK and cWEE
properties of the protocol in Figure 2 are proved the same way as for the Schnorr id scheme.

Suppose this is not the case, i.e., suppose prover sends 𝑇 without knowing its relation to {𝑋, 𝐻} or, using
shorthands, having 𝑇 != lin(𝑋, 𝐻). Then, for the prover, if it has 𝑌 = lin(𝑋, 𝐻), then upon successful completion
of the protocol it has 𝑇 = lin(𝑋, 𝐻), which contradicts to the supposition. Otherwise, if 𝑌 != lin(𝑋, 𝐻) holds, then
by rewinding the protocol and excluding 𝑇 it obtains 𝑌 = lin(𝑋, 𝐻), which is a contradiction again.

Thus, we have shown that the sHVZK and cWEE properies of the protocol must hold. Formally, in full detail,
these properties can be proved the same way as for the other Schnorr-like protocols in [2, 6, 9, 29].

Also, uniqueness of the witness (𝑥, ℎ) follows from the fact that 𝑌 is a Pedersen commitment, which is binding
according to the definition in [7].

B PROOF OF VECTOR COMMITMENT
Proof: [Theorem 2] The protocol zkVC𝑛 in Figure 3 is a modified subset version of the Bulletproofs logarithmic
inner product argument from [7]. There are the following three modifications to the inner product argument

• The inner product argument in [7] has no sHVZK property, we append this property to it the same way as
it is done in [9], namely, by adding a blinding component to all transmitted elements. We omit providing
a proof of sHVZK for our zkVC𝑛 protocol here; it is identical to the sHVZK proof for the improved inner
product argument in [9].

• With the above modification, our zkVC𝑛 in Figure 3 is a subset case, namely, for b = 0𝑛, of the inner product
argument from [7] for the relation (6). Thus, our protocol is an argument for the relation (5).

• For the case 𝑛 = 1, in zkVC𝑛 we use the custom zero-knowledge zk2ElemComm protocol, which is complete,
sHVZK, and has cWEE by Theorem 1.

Each of the above three modifications clearly does not override the completeness and cWEE properties of the
Bulletproofs logarithmic inner product argument. Also, the first modification adds the sHVZK property. Thus,
zkVC𝑛 in Figure 3 is a complete, sHVZK argument having cWEE for the relation (5).

Uniqueness of the witness (a, 𝛼) follows from the fact that 𝑌 is a Pedersen vector commitment, which is
binding.
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C PROOF OF 3-TUPLE RANDOM WEIGHTING
Proof: [Theorem 3] The completeness and sHVZK properties of the zk3ElemRW protocol in Figure 4 follow from
the fact that zk3ElemRW adds nothing to transcript of a protocol called in the last step, which in its turn is complete
and sHVZK by the premise.

cWEE property of the zk3ElemRW protocol is also easy to establish, we do not provide a detailed proof here to
save space, only the following sketch. In any case, zk3ElemRW is a subset case of our bigger argument shown in
Figure 24, for which a detailed proof of cWEE can be found in the proof of Theorem 14.

The blinding generator 𝐻 is orthogonal to all other generators by the premise, components proportional to 𝐻
of all participating elements can be considered separately and be omitted in the main consideration.

In any case, first, for the related to 𝐻 part of witness of the sub-protocol called in the last step, it suffices to
calculate the factor �̂� as

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 .

Second, witness extraction can be accomplished the same way as in the proof of the RandomWeighting-WEE
lemma in [29].

Third, to ascertain that the witness 𝑎 has only one possible value in this protocol, we can write 𝑍, 𝐹, 𝐸 as
𝑍 = 𝑧𝑃𝑃 + 𝑧𝑄𝑄 + 𝑧𝑅𝑅
𝐹 = 𝑓𝑃𝑃 + 𝑓𝑄𝑄 + 𝑓𝑅𝑅
𝐸 = 𝑒𝑃𝑃 + 𝑒𝑄𝑄 + 𝑒𝑅𝑅

, (72)

since it is clear that, when 𝐻 is already excluded from the consideration, the elements 𝑍, 𝐹, 𝐸 cannot have
components outside the linear span of 𝑃,𝑄, 𝑅 without breaking the DL assumption. Inserting the decomposition
(72) into the equality 𝑌 = 𝑎𝑋 , we obtain

rank
( [

1 𝛿1 or 0, if 𝑄 = 0 𝛿2 or 0, if 𝑅 = 0
𝑧𝑃 + 𝛿1 𝑓𝑃 + 𝛿2𝑒𝑃 𝑧𝑄 + 𝛿1 𝑓𝑄 + 𝛿2𝑒𝑄 𝑧𝑅 + 𝛿1 𝑓𝑅 + 𝛿2𝑒𝑅

] )
< 2 , (73)

which immediately yields the sought relation, namely, that for some unique witness 𝑎, to the accuracy of H
components, it holds 

𝑍 = 𝑎𝑃

𝐹 = 𝑎𝑄

𝐸 = 𝑎𝑅

.

Also, from the condition (73) it can be understood why we require for 𝑃 ≠ 0 ∧ (𝑄 ≠ 0 ∨ 𝑅 ≠ 0).

D PROOF OF SIMMETRIC VECTOR COMMITMENT
Proof: [Theorem 4] The protocol zkSVC3,𝑛 in Figure 5 adds nothing to transcript of a complete, sHVZK, and
cWEE protocol called in its last step (it can be, say, zkVC𝑛), thus inheriting the sHVZK property from the latter.
Completeness of the protocol zkSVC3,𝑛 is trivial. cWEE property of the protocol is easy to establish, the sketch
follows.

First of all, we exclude 𝐻 from all considerations for the same reason as in Appendix C. Then, because of
orthogonality of all nonzero elements in P ∪Q ∪R, each of the elements 𝑍, 𝐹, and 𝐸 decomposes into a weighted
direct sum of P,Q,R, respectively. Therefore, to prove the cWEE property of zkSVC3,𝑛 it suffices to prove cWEE
for zkSVC3,1.

In its turn, zkSVC3,1 is equivalent to the protocol zk3ElemRW in Figure 4, hence zkSVC3,1 has cWEE by
Theorem 3. Thus we obtain cWEE for zkSVC3,𝑛.

Uniqueness of the witness (a, 𝛼, 𝛽, 𝛾) follows from the fact that each of 𝑍, 𝐹, 𝐸 is a Pedersen vector commitment,
which is binding.

E PROOF OF LIN2-CHOICE LEMMA
Proof: [Theorem 5] Completeness and sHVZK of the zkLin2Choice𝑛 protocol are seen trivially from Figure 8.
We exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the cWEE property of the zkLin2Choice𝑛 protocol by constructing a PPT witness extractor for it.
In the last step of zkLin2Choice𝑛 there is a call to

zkSVC2,𝑛 (P, c ◦Q, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝛽),
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and hence by Theorem 4 the following relation holds{
𝑍 = ⟨a, P⟩
𝑟𝐹 = ⟨a, c ◦Q⟩

, (74)

where a ∈ F𝑛p̄ is obtained using zkSVC2,𝑛 protocol witness extractor.
Thus, if a contains only one nonzero scalar, say, under index 𝑗 , then the sought witness 𝑝 is extracted together

with the index 𝑠, namely, 𝑝 = 𝑎 𝑗 , 𝑠 = 𝑗 . If a = {0}𝑛 is the case, then the witness 𝑝 is extracted as zero, the index 𝑠
has no meaning.

Let’s show that a cannot contain more than one nonzero scalar, otherwise the zkLin2Choice𝑛 protocol witness
extractor would be able to break the DL assumption. Suppose that a contains at least two nonzeros, 𝑎 𝑗 and 𝑎𝑘 ,
under the indices 𝑗 and 𝑘 such that 𝑗 ≠ 𝑘 . By writing 𝑍 and 𝑟𝐹 as weighted direct sums of P and Q, respectively,
we see that, according to the equalities (74), by unwinding the zkSVC2,𝑛 call the extractor can obtain a such that
the following two equalities hold for the known 𝑍, 𝐹, c, 𝑟, a

𝑍 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑃𝑖 , (75)

𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑐𝑖𝑄𝑖 , (76)

where 𝑟 ≠ 0, otherwise the equality (76) would immediately produce a contradiction to ort(Q).
Let the extractor unwinds to the point where the challenges c were generated and resumes, thus obtaining new

c′, 𝑟 ′, a′. Due to the equality (76), it holds 𝑟 ′ ≠ 0. Recalling ort(P), due to the equality (75), it holds a′ = a. By
excluding 𝐹 from the equality (76) the extractor obtains

0 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (
𝑐𝑖

𝑟
−
𝑐′
𝑖

𝑟 ′
)𝑄𝑖 . (77)

Since ort(Q) holds, all weights of 𝑄𝑖’s in the equality (77) must be zero, otherwise the extractor breaks the
DL assumption. According to our supposition, 𝑎 𝑗 ≠ 0 and 𝑎𝑘 ≠ 0, hence we write out two equations for the zero
weights of 𝑄 𝑗 and 𝑄𝑘 {

0 =
𝑐 𝑗

𝑟
− 𝑐′

𝑗

𝑟 ′

0 =
𝑐𝑘
𝑟
− 𝑐′

𝑘

𝑟 ′

, (78)

where we have already performed division by nonzero 𝑎 𝑗 and 𝑎𝑘 . As 𝑟 ≠ 0 and 𝑟 ′ ≠ 0, the system (78) reduces to

𝑐𝑘

𝑐′
𝑘

=
𝑐 𝑗

𝑐′
𝑗

, (79)

which holds only with negligible probability. Therefore, if there is more than one nonzero element in a, then the
extractor with overwhelming probability obtains one or more nonzero weights of 𝑄𝑖’s in the equality (77). Thus,
under our supposition, the extractor breaks the DL assumption by expressing𝑄 𝑗 through the elements of Q \ {𝑄 𝑗 },
therefore our supposition is incorrect.

By this we have proved that the PPT extractor with overwhelming probability finds witness for the relation (15)
and, thus, the protocol zkLin2Choice𝑛 has cWEE.

As for uniqueness of witness (𝑝, 𝛼), it trivially follows from subtracting two different decompositions of 𝑍
from each other and breaking the DL relation assumption, in the case if witness is not unique.

F SIGNATURE EFLRS1
Proof: [Theorem 6] As follows from Figure 11, EFLRS1 is a linkable ring signature by definition (we assume the
EFLRS1.Link method is defined the usual way by matching key images, e.g., as in [23]).

All the listed properties 1. . . 8) of the EFLRS1 signature are proved by well-known methods, such as in [23,
13, 15, 29], which rely on the key image of the form of 𝑥±1Hpoint (𝑃) and on completeness, sHVZK, and cWEE
of the underlying proving system. We do not describe these proofs here due to their volume; instead, we refer the
interested reader to the referenced papers.
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Anyway, as an example, here is a proof sketch of the property 2). Definition of the existential unforgeability
against adaptive chosen message / public key attackers is provided in [23], it is also can be taken from [29]. In this
sketch, for the sake of simplicity we combine the approaches introduced in [23, 15]. We will build a PPT master
algorithmM that breaks the DL assumption by calling a PPT adversary A that forges EFLRS1.

LetL be a list of public keys of which each key is generated according to the description in [23] or, equivalently,
according to the definition in [29]. NeitherM nor A knows any of private keys for L. First of all,M substitutes
a new implementation for Hpoint, which for an input element 𝐿 samples a random 𝑟 and returns 𝑟𝐿. This new
Hpoint implementation memorizes the sampled 𝑟’s and, thus, remains deterministic and indistinguishable from the
original Hpoint outsideM.

Second,M simulates the signing oracle SO the following way. For an input ring L ⊂ L, it uniformly picks
an index 𝜋 and simulates signing with 𝐿 𝜋 . Without knowing private key 𝑥𝜋 such that 𝐿 𝜋 = 𝑥𝜋𝐺, it constructs
key image as 𝐼 = 𝑟𝐺 using 𝑟 memorized by Hpoint for 𝐿 𝜋 . Thus, the zkLin2Choice𝑛 call (23) at the end of the
simulated EFLRS1 takes the form

zkLin2Choice𝑛 ({𝐿𝑖 + ZHpoint (𝐿𝑖)}𝑛−1
𝑖=0 ,G[:𝑛] , 𝐻, 𝐺 + Z𝑟𝐺; 𝜋, . . . , 0) .

Since zkLin2Choice𝑛 is sHVZK by Theorem 5,M builds a simulated transcript of it with back patching Hscalar.
Namely, without knowing 𝑥𝜋 , M uniformly samples the random oracle replies to be used as known-in-advance
challenges in the signature simulation and feeds them toSO. The latter builds corresponding random oracle queries
using the fed replies and patches Hscalar so that it returns these replies in response to the built queries. As a result,
the simulated signature gets indistinguishable from a real one.

Then, M feeds L, SO, Hpoint, and Hscalar to A, letting the latter produce forgeries whose rings are not
spotted in calls to SO. Finally, starting with an arbitrary successfully forged transcript,M unwinds and forks it the
necessary amount of times, thus building a transcript tree with successful forgeries as leaves. Since zkLin2Choice𝑛
has cWEE by Theorem 5, from this transcript treeM restores witness 𝑥𝜋 that breaks the DL assumption for one of
the public keys in L.

That’s the sketch. It misses the non-trivial part a full proof should posess that is about the implication fromA’s
non-negligible probability of generating successful forgeries toM’s non-negligible ability of building the forged
transcript tree or a dynamic equivalent of it. Formal methods of proving this implication can be found, e.g., in [23,
15]. Besides, here is the following brief intuition for this in Appendix G.

G MASTER CAPABLE OF BUILDING FORGED TREE
Suppose, A produces forgeries with a non-negligible probability and, nevertheless, M has only a negligible

probability of successfully building the forged tree. ThenM is always able to start a new tree with a new forgery
generated by A, however it never succeeds in obtaining the necessary amount of successful leaves from A. This
means that since M rewinds, forks, and resumes A, at some point of this process M always gets stuck in the
situation that it has a successfully built subtree with forged leaves for the first fork with some challenges generated
at that point, yet for one of its subsequent forks with other challenges from the same point M cannot complete
building a forged subtree anymore.

This situation would not be possible if these forks were identical and completely independent, only reading
different random tapes. Indeed, if they were, they would be indistinguishable from each other and, therefore, would
have equal probabilities of success. However they are not, as being identical they still share the same instances
of SO and simulated Hpoint, Hscalar. Now we will demonstrate how to convert SO, Hpoint, Hscalar to such a
form that the forks become identical to each other. Thus we will informally prove thatM does not fall into the
above situation, and hence our assumption is not true, which means that M has a non-negligible probability of
constructing the complete forged tree.

Apparently, the simulated Hpoint is not a problem, as it is indistinguishable from the stateless deterministic
function, and hence it can be kept as is. The only problem is Hscalar, which is back patched for some queries
occured in SO. To make Hscalar look stateless deterministic, let it crash when an attempt is made to back patch
it for a query it has already been called with before. This makes Hscalar indistinguishable from a deterministic
stateless function, unless it crashes. With this modification, the first executed fork of A always has a greater or
equal chance of success than the subsequent forks, as the latter may crash when trying to patch queries made by
the first one; if they do not crash, then all of them succeed in building their forged subtrees.

So, to avoid these crashes, let’s make the following change to SO. Let SO check each time before applying
back patch to Hscalar for a query to see if it will crash. If so, let SO uniformly resample the challenges and build
the query again. The queries are linearly challenge-dependent, so the uniform challenge resampling changes the
query as if the latter were resampled uniformly. Therefore, it would take no more than a polynomial number of
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resamplings to avoid the crashes at all. Thus, we have shown thatM is capable of constructing a complete forged
tree as soon as A produces forgeries with non-negligible probability.

H PROOF OF MULTIPLE VECTOR COMMITMENTS
Proof: [Theorem 7] As can be seen from Figure 13, the protocol zkMVC𝑙,𝑛 adds nothing to the transcript of the
protocol zkVC𝑛, thus inheriting the sHVZK property. Completeness of the protocol zkMVC𝑙,𝑛 is clear. Let’s prove
the cWEE property of the protocol.

This time, to show an example, we will not exclude the generator 𝐻 from our consideration. We append 𝐻 to
X, obtaining the expanded vector X̄ ∈ G𝑛+1

X̄ =

[
X
𝐻

]
.

At the same time, we attach the vector of blinding factors 𝜶 ∈ F𝑙p̄ to the witness matrix 𝔞 ∈ F𝑙×𝑛p̄ , and thus define
the expanded witness matrix �̄� ∈ F𝑙×(𝑛+1)p̄ as

�̄� = [𝔞 𝜶] .

Also, we combine a ∈ F𝑛p̄ with 𝛼 ∈ Fp̄, and thus define ā ∈ F𝑛+1p̄

ā =

[
a
𝛼

]
.

Extractor obtains ā by unwinding the zkVC𝑛 call. As a result, for each 𝑖-th column 𝔞 [:,𝑖 ] of the matrix 𝔞, the
following equality holds

ā[𝑖 ] = 𝝃⊺ · �̄� [:,𝑖 ] . (80)

The extractor repeats the unwinding 𝑙 times with re-sampled challenges 𝝃. This way the equality (80) repeated 𝑙
times turns into a matrix equation with random matrix of size 𝑙 × 𝑙, from which the extractor recovers each 𝑖’th
column �̄� [:,𝑖 ] , 𝑖 ∈ [0 . . . 𝑛] of the matrix �̄�. Thus, the extractor recovers the sought witness �̄�.

As for uniqueness of the witness (𝔞,𝜶), it trivially follows from subtracting two different decompositions of Y
from each other and, thus, breaking the DL relation assumption.

I PROOF OF THE PROPERTIES OF MANY-OUT-OF-MANY PROOF
Proof: [Theorem 8] Completeness and sHVZK of the zkLin2mChoice𝑛,𝑙 protocol in Figure 14 are clear from its
design. Let’s prove the cWEE property of the protocol. We will consider 𝐻 this time.

First, extractor uses the zkMVC𝑙,𝑛 protocol extractor, which exists by Theorem 7, and restores witness (𝔞, �̂�)
from the zkMVC𝑙,𝑛 call in the last step of zkLin2mChoice𝑛,𝑙 . After that, for every 𝑘 ∈ [0 . . . 𝑙 − 1], it assigns

(a, �̂�) ← (𝔞 [𝑘 ] , �̂�[𝑘 ]) ,

and proceeds with the extraction using the zkLin2Choice𝑛 protocol extractor, which exists by Theorem 5, as
though the values of a, �̂� were obtained from zkVC𝑛 in the last step of zkLin2Choice𝑛. This way the extractor
obtains witness (𝑝, 𝛼), and maps it to 𝑘-th positions in p and 𝜶, respectively.

We have shown how the extractor restores witness (p,𝜶) for the relation (25) and, hence, the zkLin2mChoice𝑛,𝑙
protocol has cWEE.

Uniqueness of the witness (p,𝜶) immediately follows from uniqueness of the witness (𝑝, 𝛼) for the protocol
zkLin2Choice𝑛 in Figure 8, which is by Theorem 5.

J SIGNATURE EFLRSL
J.1 EFLRSL FOR L=1

As can be seen from Figure 15, for 𝑙 = 1, the EFLRSL protocol is equivalent to the EFLRS1 protocol in
Figure 11, with the variables and calls renamed. The overwhelmingly nonzero multiplier b0, which is applied
simultaneously to the commitment and witness in the nested zkVC𝑛 call, doesn’t distort the equivalence. Thus, by
Theorem 6, for 𝑙 = 1, all the properties listed in Theorem 9 hold.
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J.2 EFLRSL FOR L ⩾ 1
Proof: [Theorem 9] A proof for the case 𝑙 = 1 is provided in Appendix J.1.

The EFLRSL protocol is a linkable threshold ring signature by-design, this can be seen from Figure 15. We
assume the EFLRSL.Link method is defined the usual way, i.e., by matching key images.

All of the listed in Theorem 9 properties of the EFLRSL signature can be proved by assuming that any of them
does not hold and reducing to the case of 𝑙 = 1, that is, by inferring a contradiction to what has already been proved
in Appendix J.1. The key image form 𝑥±1Hpoint (𝑃) along with the completeness, sHVZK, and cWEE properties
of the underlying proving system make the reduction to the 𝑙 = 1 case possible.

As an alternative method, it is also possible to prove the listed properties with the notion of non-slanderability
using the techniques provided in [30, 13, 18], which we do not describe here due to their volume.

K PROOF OF SIMPLIFIED LIN2-2CHOICE LEMMA
Proof: [Theorem 10] Completeness and sHVZK properties of the zkLin22sChoice𝑛,𝑚 protocol in Figure 17 are
clear. We exclude 𝐻 from the consideration for the same reason as in Appendix C.

Let’s prove the protocol cWEE property. In the last step of zkLin22sChoice𝑛,𝑚 there is a call to

zkSVC3,𝑛

( [
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻, 𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸 ; a, 𝛼, 𝛽, �̂�

)
,

and hence, by Theorem 4, the following relation holds
𝑍 =

〈
a[:𝑛] , P

〉
+

〈
a[𝑛:] , V

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 , (81)

with the witness a ∈ F𝑛+𝑚p̄ restored by witness extractor of the zkSVC3,𝑛 protocol.
Due to ort(P,V,Q,W), having 𝑍 = 𝑍𝑃 + 𝑍𝑉 according to the formula (34), the system (81) splits into two

subsystems {
𝑍𝑃 =

〈
a[:𝑛] , P

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉 , (82)

{
𝑍𝑉 =

〈
a[𝑛:] , V

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 . (83)

Each of the systems (82), (83) is similar to the system (74) and, therefore, by applying to each of them the same
reasoning as in the proof of the cWEE property of the Lin2-Choice lemma in Appendix E, we obtain the following
two equalities, respectively

𝑍𝑃 = 𝑝𝑃𝑠 , (84)
𝑍𝑉 = 𝑣𝑉𝑛+𝑠 , (85)

where 𝑝 and 𝑣 are scalars known to prover, and 𝑠, 𝑠 are indices also known to it. (If 𝑝 = 0 or 𝑣 = 0, then respectively
𝑠 or 𝑠 is undefined.)

One more detail, when obtaining the equality (84) from the subsystem (82), we take 𝑟 as a response to the
challenges c[:𝑛] , whereas obtaining the equality (85) from the subsystem (83), we take 𝑐𝑛+𝑡 as the response to the
challenges c[𝑛:] .

If 𝑣 ≠ 0 and 𝑠 ≠ 𝑡, then the extractor breaks the DL assumption by establishing a linear relationship between at
least two different elements from the orthogonal set R, hence we let 𝑠 = 𝑡 for 𝑣 ≠ 0 and write the equality (85) as

𝑍𝑉 = 𝑣𝑉𝑛+𝑡 . (86)

Now, recalling that 𝑍 decomposes into the sum 𝑍 = 𝑍𝑃 + 𝑍𝑉 by the formula (34) which is discussed in
Section 7.1.1, the extractor comes to the conclusion that the restored by the formulas (84), (86) values of (𝑝, 𝑣, 𝑠)
are the sought witnesses for the relation (27). Thus, we have proved the cWEE property of zkLin22sChoice𝑛,𝑚.

As for uniqueness of witness (𝑝, 𝑣, 𝛼), it trivially follows from subtracting two different decompositions of 𝑍
from each other and, thus, breaking the DL relation assumption.
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L PROOF OF MULTIPLE SIMMETRIC VECTOR COMMITMENTS
Proof: [Theorem 11] As can be seen from Figure 18, the zkMSVC𝑙,3,𝑛 protocol adds nothing to the transcript of the
zkMVC𝑙,𝑛 protocol, thus inheriting the sHVZK property. Completeness of the zkMSVC𝑙,3,𝑛 protocol is clear from
Figure 18. We exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the cWEE property of the protocol. Having unwound the zkMVC𝑙,𝑛 call, extractor obtains a matrix
𝔞 ∈ F𝑙×𝑛p̄ such that according to the relation (24)

Y = 𝔞 · X . (87)

Thus, for each element 𝑌 𝑗 = Y[ 𝑗 ] , 𝑗 ∈ [0 . . . 𝑙 − 1], and for the corresponding row 𝔞 [ 𝑗 ,:] of the matrix 𝔞, it holds

𝑌 𝑗 = 𝔞 [ 𝑗 ,:] · X . (88)

At the same time, due to the equalities (88), the zkMVC𝑙,𝑛 protocol can be viewed as 𝑙 independent, except for
the common challenges (𝛿1, 𝛿2), instances of the zkSVC3,𝑛 protocol. Therefore, by Theorem 4, the restored by the
extractor matrix 𝔞 is the sought witness.

Uniqueness of the witness is due to the same reasons as in Appendix H.

M PROOF OF LIN2-2CHOICE LEMMA
Proof: [Theorem 12] Completeness and sHVZK of the protocol zkLin22Choice𝑙,𝑛,𝑚 in Figure 19 are clear.
Particularly, note that the vectors F and E do not reveal any information since their elements are blinded with 𝐻.
We further exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the protocol cWEE property. In the last step of zkLin22Choice𝑙,𝑛,𝑚 there is a call to

zkMSVC𝑙,3, (𝑛+𝑚)

( [
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻,Z, r ◦ F, c[𝑛:(𝑛+𝑙) ] ◦ E; 𝔞,𝜶, �̂�, �̂�

)
,

and hence, by Theorem 11, the following system of equalities holds

Z = 𝔞 ·
[
P
V

]
r ◦ F = 𝔞 ·

[
c[:𝑛] ◦Q

0𝑚

]
c[𝑛:(𝑛+𝑙) ] ◦ E = 𝔞 ·

[
0𝑛

c[𝑛:] ◦W

] , (89)

where the matrix 𝔞 ∈ F𝑙×(𝑛+𝑚)p̄ is the witness restored by the zkMSVC𝑙,3, (𝑛+𝑚) protocol extractor.
Furthermore, the system (89) is 𝑙 systems of the form (81), with proper renaming, for each row 𝔞 [𝑡 ,:] , 𝑡 ∈

[0 . . . 𝑙 − 1] of the matrix 𝔞. Namely, the system (89) is the following 𝑙 systems
𝑍𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , P

〉
+

〈
𝔞 [𝑡 ,𝑛:] , V

〉
𝑟𝑡𝐹𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸𝑡 =

〈
𝔞 [𝑡 ,𝑛:] , c[𝑛:] ◦W

〉 , (90)

for each 𝑡 ∈ [0 . . . 𝑙 − 1].
The zkLin22Choice𝑙,𝑛,𝑚 protocol in Figure 19 comprises, up to the point of calling zkMSVC𝑙,3, (𝑛+𝑚) and with

the appropriate renaming, 𝑙 parallel instances of the protocol zkLin22sChoice𝑛,𝑚 from Figure 17. Hence, given
𝑙 parallel systems (90) for 𝑡 ∈ [0 . . . 𝑙 − 1], the extractor performs the same calculations as in Appendix K 𝑙 times,
for each 𝑡. This way it obtains 𝑙 witnesses (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡 ), 𝑡 ∈ [0 . . . 𝑙 − 1] for 𝑙 instances of the relation (27). That is,
for each extracted tuple (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡 ), it holds

𝑍𝑡 = 𝑝𝑡𝑃𝑠𝑡 + 𝑣𝑡𝑉𝑡 , (91)

that means witnesses for the relation (37) are found and, hence, cWEE property of the zkLin22Choice𝑙,𝑛,𝑚
protocol is proven.

Uniqueness of the witness is due to the same reasons as in Appendix K.
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N PROOF OF CLAIM ABOUT LIN2-2CHOICE PROTOCOL CALL
Proof: [Claim 1] By Theorem 12, the call

zkLin22Choice𝑙,𝑛,𝑙 ((X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; . . . )

in the last step of the EFLRSLWB scheme in Figure 22 proves the relation (37). That is, it has an extractor that
restores unique witness for the relation.

Let’s demonsrate that this call also proves that v = p in the relation (37), where X,V,Z are defined according
to the EFLRSLWB scheme. Copying their definitions from Figure 22 here

X = P − {𝐾}𝑛 + ZU − 𝜔A ,

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û ,

Z = {𝐺}𝑙 + ZI + 𝜒J .

Suppose the opposite, i.e., that for some 𝑘 ∈ [0 . . . 𝑙 − 1] it holds that 𝑣𝑘 ≠ 𝑝𝑘 . Then the zkLin22Choice𝑙,𝑛,𝑚
protocol witness extractor extracts v, p and, according to the relation (37), for some index 𝑠𝑘 , holds

𝐺 + Z 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 − 𝐾 + Z𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) . (92)

Note that we omit showing the 𝐻 component for the same reason as in Appendix C. However, it is always implied
present, and the factor of 𝐻 is implied extracted by the extractor for this and for the following equalities. Method
of this extraction is straightforward.

Moving the 𝐾 component to the left-hand side of the (92) equality the extractor gets

(𝑝𝑘 − 𝑣𝑘)𝐾 = −𝐺 − Z 𝐼𝑘 − 𝜒𝐽𝑘 + 𝑝𝑘 (𝑃𝑠𝑘 + Z𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) , (93)

that is, it expresses 𝐾 as a linear combination (93) of 𝐺, 𝐼𝑘 , 𝐽𝑘 , 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴𝑠𝑘 , 𝐴
tmp
𝑘
, �̂�𝑘 , 𝐻. However, according to

the EFLRSLWB scheme, all these elements are a part of the pre-image of 𝐾 and, hence, 𝐾 is orthogonal to all of
them. Thus, under the supposition v ≠ p the extractor breaks the DL assumption, which is impossible. Therefore,
the supposition is incorrect and the following holds

v = p . (94)

Using the equality (94), the equality (92) rewrites as

𝐺 + Z 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + Z𝑈𝑠𝑘 + 𝜒�̂�𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) . (95)

Note that in the equality (95) the following holds for 𝑝𝑘’s

𝑝𝑘 ≠ 0 for each 𝑘 ∈ [0 . . . 𝑙 − 1] . (96)

In fact, 𝑝𝑘 = 0 for some 𝑘 requires that the left-hand side of the equality (95) be equal to zero, however the left-hand
side contains nonzero element 𝐺 alongside with the randomly weighted elements 𝐼𝑘 , 𝐽𝑘 , and, hence, there is only
negligible probability for it to be equal to zero. The implicit presence of 𝐻 component in the equality (95) does
not change the case; if the assertion (96) does not hold then the extractor breaks the DL assumption.

All elements in the right-hand part of the relation (95), namely, 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴
tmp
𝑘
, 𝐴𝑠𝑘 , 𝐻, are in the pre-image of

�̂�𝑘 . Thus, �̂�𝑘 is orthogonal to all of them and, hence, due to the random weighting by 𝜒, to the accuracy of 𝐻, the
following equality holds

𝐺 + Z 𝐼𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + Z𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) . (97)

In other words, the equality (97) follows from the equality (95) by Theorem 3, where the triplets are taken as

( 𝑃𝑠𝑘 + Z𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ), �̂�𝑘 , 0 ) and (𝐺 + Z 𝐼𝑘 , 𝐽𝑘 , 0 ) .

Suppose that (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) ≠ 0. By unwinding and resuming the zkLin22Choice𝑙,𝑛,𝑙 call with different 𝜔′ the

extractor obtains different 𝑝′
𝑘

and, by subtracting two instances of the equality (97) from each other, obtains

0 = 𝑝𝑘 ( 𝑃𝑠𝑘 + Z𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) − 𝑝′𝑘 ( 𝑃𝑠𝑘 + Z𝑈𝑠𝑘 + 𝜔

′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) ) ,

which rewrites as
(𝑝′𝑘 − 𝑝𝑘) (𝑃𝑠𝑘 + Z𝑈𝑠𝑘 ) = (𝑝𝑘𝜔 − 𝑝

′
𝑘𝜔
′) (𝐴tmp

𝑘
− 𝐴𝑠𝑘 ) . (98)
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Due to the orthogonality of 𝑃𝑠𝑘 and𝑈𝑠𝑘 in the EFLRSLWB scheme, it holds

(𝑃𝑠𝑘 + Z𝑈𝑠𝑘 ) ≠ 0.

If 𝑝′
𝑘
= 𝑝𝑘 , then the left-hand side of the equality (98) is zero and, hence, 𝜔′ = 𝜔 that holds only with negligible

probability. So, with overwhelming probability 𝑝′
𝑘
≠ 𝑝𝑘 and the extractor divides the equality (98) by (𝑝′

𝑘
− 𝑝𝑘),

calculating scalar factor 𝑎 as follows

𝑃𝑠𝑘 + Z𝑈𝑠𝑘 = 𝑎 (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) , where 𝑎 =

𝑝𝑘𝜔 − 𝑝′𝑘𝜔
′

𝑝′
𝑘
− 𝑝𝑘

. (99)

Unwinding and resuming thezkLin22Choice𝑙,𝑛,𝑙 call with different Z ′ a couple of times, the extractor calculates
factor 𝑎′ such that

𝑃𝑠𝑘 + Z ′𝑈𝑠𝑘 = 𝑎′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) . (100)

By subtracting the equality (99) from the equality (100) and dividing by (Z ′−Z), which is nonzero with overwhelming
probability, the extractor obtains

𝑈𝑠𝑘 =
𝑎′ − 𝑎
Z ′ − Z (𝐴

tmp
𝑘
− 𝐴𝑠𝑘 ) . (101)

Also, it obtains from the equalities (99) and (101)

𝑃𝑠𝑘 =

(
𝑎 − Z 𝑎

′ − 𝑎
Z ′ − Z

)
(𝐴tmp

𝑘
− 𝐴𝑠𝑘 ) . (102)

After that, as𝑈𝑠𝑘 ≠ 0 and, hence, (𝑎′ − 𝑎) ≠ 0 in the equality (101), the extractor expresses (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) through

𝑃𝑠𝑘 in (101) and inserts (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) into the equality (102), thus obtaining

𝑃𝑠𝑘 =

(
𝑎 − Z 𝑎

′ − 𝑎
Z ′ − Z

)
Z ′ − Z
𝑎′ − 𝑎 𝑈𝑠𝑘 . (103)

Recalling 𝑃𝑠𝑘 and𝑈𝑠𝑘 are orthogonal to each other, the extractor breaks the DL assumption with the equality (103);
thus the supposition is wrong and the following holds

𝐴
tmp
𝑘

= 𝐴𝑠𝑘 . (104)

In accordance with the equality (104), the equality (97) which is obtained by the extractor after unwinding the
zkLin22Choice𝑙,𝑛,𝑙 call, rewrites as

𝐺 + Z 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + Z𝑈𝑠𝑘 ) , (105)

where 𝑝𝑘 is known to the extractor. Thus, the zkLin22Choice𝑙,𝑛,𝑙 call is an argument having cWEE property
for the relation (106). The witness 𝑝𝑘 is unique, as the opposite breaks the DL assumption between 𝑃𝑠𝑘 and
𝑈𝑠𝑘 = Hpoint (𝑃𝑠𝑘 ) in the equality (105).

At the same time, according to the obtained by the extractor equality (104), the same zkLin22Choice𝑙,𝑛,𝑙 call
is an argument having cWEE for the relation (107) for the same 𝑠𝑘 , which implies the same s for the both relations.
Completeness and sHVZK of the zkLin22Choice𝑙,𝑛,𝑙 call follow from Theorem 12.

Uniqueness of 𝜶 and 𝜷 is trivially seen, as the opposite breaks the DL relation assumption. Claim 1 is proven.

O SIGNATURE EFLRSLWB FOR L ⩾ 1
Proof: [Theorem 13] We first make the following claim.

Claim 1:
The call to zkLin22Choice𝑙,𝑛,𝑙 in the last step of the EFLRSLWB scheme in Figure 22 is a complete, sHVZK
argument having cWEE for the relation (25) with appropriate input renaming, i.e., for the relation

R =

{
(P + ZU), G[:𝑛] ∈ G𝑛∗, 𝐻 ∈ G∗, ({𝐺}𝑙 + ZI) ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐺 + Z 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + Z𝑈𝑠𝑘 ) + 𝛼𝑘𝐻

}
(106)

with unique witness (p,𝜶), and is also a complete, sHVZK argument having cWEE for the relation

R′ =
{

A ∈ G𝑛, Atmp ∈ G𝑙 , 𝐻 ∈ G∗ ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , 𝜷 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐴

tmp
𝑘

= 𝐴𝑠𝑘 + 𝛽𝑘𝐻

}
(107)

with unique witness 𝜷, such that the private input s is common for both relations (106) and (107).
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Proof: is in Appendix N.
Note that the vectors Atmp and J in Figure 22 are indistinguishable from white noise, because all their elements

contain independent blinding components with randomized factors from, respectively, 𝝁 and 𝝊.
The Claim 1 asserts that in the last step of the EFLRSLWB scheme there is a call to the complete, sHVZK, and

having cWEE proving system zkLin22Choice𝑙,𝑛,𝑙 that produces a proof of the relation (106), which is actually the
relation (25) with proper renaming. Also, as we can see in Figure 22, all previous steps of the EFLRSLWB scheme
do all the play of the EFLRSL scheme from Figure 15 up to the proof of the relation (25). As for the vectors Atmp

and J which are all indistinguishable from white noise, they can be discarded as uninfluential when considering the
relation (106). Thus, we see that the EFLRSLWB scheme is the EFLRSL scheme with the substituted underlying
proving system, which is also complete, sHVZK, and having cWEE.

Therefore, the EFLRSLWB scheme is a linkable threshold ring signature with the properties 1. . . 8), which
hold due to exactly the same reasons as the properties 1. . . 8) of the EFRLSL scheme in Theorem 9.

The property 9) comes as a result of calling zk2ElemComm in the last step of the EFLRSLWB scheme. By
Theorem 1, it holds

𝐴sum =

𝑙−1∑︁
𝑘=0

Atmp
[𝑘 ] + 𝑓𝐻𝐻 + 𝑓𝐷𝐷 , (108)

where 𝑓𝐻 , 𝑓𝐷 are scalars known to prover. At the same time, by Claim 1 according to the relation (107), the equality
(108) unfolds as

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 +
(
𝑓𝐻 +

𝑙−1∑︁
𝑘=0

𝛽𝑘

)
𝐻 + 𝑓𝐷𝐷 . (109)

Recalling that according to the EFLRSLWB scheme the generator 𝐻 is an Hpoint image of the 𝐴sum,A, 𝐷 elements,
the equality (109) reduces to

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 + 𝑓𝐷𝐷 ,

which is exactly what the property 9) is. Theorem 13 is proven.

P PROOF OF RANDOM WEIGHTING FOR T-S-TUPLES
Proof: [Theorem 14] Completeness and sHVZK properties of the zkTElemRW𝑡 ,𝑠 protocol are trivially seen from
Figure 24. Turning to the cWEE property, we start with the following claim.

Claim 2:
Under the conditions of Theorem 14, if a PPT witness extractor for the protocol zkTElemRW𝑡 ,𝑠 in Figure 24 extracts
two different values of the factor 𝑎 in the relation 𝑌 = 𝑎𝑋 + �̂�𝐻 for two different random challenge sets (𝜹,𝝈) in
the last step of the protocol, then a PPT algorithm that breaks the DL relation assumption can be constructed.

Proof: is in Appendix Q.
Having the Claim 2 proved, let’s construct a witness extractor for zkTElemRW𝑡 ,𝑠 . The extractor restores the

factors (𝑎, �̂�) in the equality
𝑌 = 𝑎𝑋 + �̂�𝐻 in Figure 24. (110)

According to Figure 24, the equality (110) itself represents the relation (4) with the renamed entries. To accomplish
the extraction, the extractor uses the cWEE property of the protocol that proves the relation (4) in the last step of
zkTElemRW𝑡 ,𝑠 . Namely, it uses another witness extractor which extracts witness for (4).

By inserting into the equality (110) 𝑋,𝑌 defined a step above in Figure 24 and moving 𝑎𝑋 to the left-hand side,
the extractor obtains

(𝑍 − 𝑎𝑃) + ⟨𝜹,F − 𝑎Q⟩ − ⟨𝝈, 𝑎S⟩ = �̂�𝐻 . (111)

By unwinding and running the zkTElemRW𝑡 ,𝑠 protocol (𝑡 + 𝑠) more times with different 𝜹,𝝈, the extractor gets, in
sum, (𝑡 + 𝑠 + 1) equalities of type (111), which have common 𝑍, 𝑃,F,Q, S, 𝐻, 𝑎 and different 𝜹,𝝈, �̂�. The factor
𝑎 is common to all of them, as the opposite breaks the DL relation assumption by Claim 2. The extractor writes
down all these (𝑡 + 𝑠 + 1) equalities in a matrix form, as follows,

𝔞 · B = �̂�𝐻, (112)
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where

𝔞 =



1 𝛿0,0 . . . 𝛿 (𝑡−1) ,0 𝜎0,0 . . . 𝜎(𝑠−1) ,0
1 𝛿0,1 . . . 𝛿 (𝑡−1) ,1 𝜎0,1 . . . 𝜎(𝑠−1) ,1
1 𝛿0,2 . . . 𝛿 (𝑡−1) ,2 𝜎0,2 . . . 𝜎(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿0, (𝑡+𝑠) . . . 𝛿 (𝑡−1) , (𝑡+𝑠) 𝜎0, (𝑡+𝑠) . . . 𝜎(𝑠−1) , (𝑡+𝑠)


, B =



𝑍 − 𝑎𝑃
𝐹0 − 𝑎𝑄0

...

𝐹𝑡−1 − 𝑎𝑄𝑡−1
−𝑎𝑆0
...

−𝑎𝑆𝑠−1


, �̂� =



�̂�0
�̂�1
�̂�2
...

�̂�𝑡+𝑠


. (113)

Then, it solves the matrix equation (112) for B. Taking into account that 𝔞 is composed of uniformly random
scalars together with the first column of 1’s and, hence, with overwhelming probability det(𝔞) ≠ 0, it expresses
each element of B as 𝐻 multiplied by a corresponding scalar from the vector 𝔞−1 · �̂�

B = 𝔞−1 · �̂�𝐻 . (114)

Now, let us show that the witness 𝑎 in the relation (62), which is fed at P’s private input, is equal to the factor 𝑎
restored for the equality (110), which is just found by the extractor and used in the definition of B in (113). Suppose
the opposite, then here is an algorithm that breaks the DL relation assumption, it looks as follows.

It honestly runs zkTElemRW𝑡 ,𝑠 knowing the input 𝑎, 𝛼, 𝜷, 𝜸, which is the witness for the relation (62). Then, it
extracts a different 𝑎 for the equality (110). Then, the breaker algorithm takes the equality for the first element of
B in (114) and the equality for 𝑍 in (62). Eliminating 𝑍 from the both, keeping in mind the multipliers of 𝑃 are
different in them, the breaker expresses 𝑃 through 𝐻 and, thus, breaks the premise 𝑃 != lin(nz(Q) ∪ nz(S) ∪ {𝐻}).

Thus, we have proved the witness 𝑎 found by the extractor is the sought witness part 𝑎 for the relation (62).
Finally, it is easy to see how the extractor can restore the blinding factor 𝛼, 𝜷, 𝜸 component of the witness in (62).
That is, it puts the (𝑡 + 𝑠 + 1) blinding factors 𝛼, 𝜷, 𝜸 together into a vector and calculates them from (114), (113),
(62) as 

𝛼

𝛽0
...

𝛽𝑡−1
𝛾0
...

𝛾𝑠−1


= 𝔞−1 · �̂� .

We have built an extractor that finds the witness (𝑎, 𝛼, 𝜷, 𝜸) for the relation (62). Uniqueness of 𝑎 is already
proved by Claim 2. Uniqueness of 𝛼, 𝜷, 𝜸 is trivial, as the opposite breaks the DL assumption. Thus, Theorem 14
is proved.

Q PROOF OF CLAIM ABOUT THE SAME FACTOR
Proof: [Claim 2] This proof is going to be a bit nontrivial, so, for the first, let’s understand how the witness 𝑎 in
the equality (110) extracted in the last step of the protocol zkTElemRW𝑡 ,𝑠 in Figure 24 depends on the challanges.
We keep in mind 𝑎 is a witness for the relation (4) which is represented by the equality (110).

For convenience, we rewrite the equality (110) in the matrix form, as follows, using the formulas (57), (58),
(59), (60), (61), assuming 𝝃 is a row vector, and T, D are column vectors

𝝃 · D = 𝑎𝝃 · T + �̂�𝐻 . Note, this equality represents the relation (4). (115)

Let the extractor perform (𝑡 + 𝑠 + 1) rewindings and, thus, let it have (𝑡 + 𝑠 + 1) instances of the relation (115)
for (𝑡 + 𝑠 + 1) instances of the challange vector 𝝃. The extractor puts these (𝑡 + 𝑠 + 1) instances of 𝝃 into the matrix

𝔞 =



𝝃0
𝝃1
𝝃2
...

𝝃 (𝑡+𝑠)


=



1 𝛿0,0 . . . 𝛿 (𝑡−1) ,0 𝜎0,0 . . . 𝜎(𝑠−1) ,0
1 𝛿0,1 . . . 𝛿 (𝑡−1) ,1 𝜎0,1 . . . 𝜎(𝑠−1) ,1
1 𝛿0,2 . . . 𝛿 (𝑡−1) ,2 𝜎0,2 . . . 𝜎(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿0, (𝑡+𝑠) . . . 𝛿 (𝑡−1) , (𝑡+𝑠) 𝜎0, (𝑡+𝑠) . . . 𝜎(𝑠−1) , (𝑡+𝑠)


. (116)
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Since 𝔞 is a random matrix, with overwhelming probability it holds that det(𝔞) ≠ 0 and, thus, 𝔞 is a basis in the
(𝑡 + 𝑠 + 1)-dimensional scalar vector challenge space. Also, let the extractor map the corresponding (𝑡 + 𝑠 + 1)
witness pairs (𝑎, �̂�) extracted in the last step of the protocol into the following two vectors

a =



𝑎0
𝑎1
𝑎2
...

𝑎𝑡+𝑠


, �̂� =



�̂�0
�̂�1
�̂�2
...

�̂�𝑡+𝑠


, (117)

and rewrite (𝑡 + 𝑠 + 1) instances of the equality (115) for these vectors in the matrix form, as follows,

𝔞 · D = diag(a) · 𝔞 · T + �̂�𝐻 , where diag(a) =

𝑎0 0

. . .

0 𝑎𝑡+𝑠

 . (118)

Let the extractor rewind one more time and obtain (𝑎′, �̂�′) for a new challenge vector 𝝃′. The matrix 𝔞 is a basis
in the challenge space, so 𝝃′ decomposes by it. Denote the corresponding row vector of weights as b such that

𝝃′ = b · 𝔞 . (119)

Next, multiplying the decomposition (119) by D and unfolding both sides of it using the formulas (115) and (118),
respectively, the extractor obtains the following equality

(𝑎′𝝃′ − b · diag(a) · 𝔞) · T = (b · �̂� − �̂�′) 𝐻 . (120)

Recalling that by the definition (57) T is a column vector of {𝑃} ∪ Q ∪ S, the equality (120) takes on the
meaning of a decomposition of 0 into a weighted sum of {𝑃} ∪ Q ∪ S ∪ {𝐻} with known to the extractor
weights. In the case if the weight of 𝑃 in (120) is nonzero, the extractor obtains weights for the decomposition
𝑃 = lin(nz(Q) ∪ nz(S) ∪ {𝐻}), which contradicts to the premise of the Theorem 14.

Namely, if the weight of 𝑃 in (120) is nonzero, then the extractor has a known decomposition of 𝑃 by
Q ∪ S ∪ {𝐻} and thus breaks the DL relation assumption. Therefore, the weight of 𝑃 in (120) must be zero. The
extractor calculates it from (120) using (116), (61), (117) as

0 = 𝑎′ − ⟨b, a⟩ .

This way, the extractor obtains the following transformation rule for the witness 𝑎 depending on the challenge
vector 𝝃′

𝑎′ = ⟨b, a⟩ , where b = 𝝃′ · 𝔞−1. (121)

Note, the vector b in the rule (121), as well as in the formulas (119), (120), meets the condition
〈
b, {1}𝑡+𝑠+1

〉
= 1,

which guarantees that 1 is always at the first position in 𝝃′.
To sum up, the rule (121) states the following. If the extractor already has a challenge space base defined by

matrix 𝔞, and if it also has the corresponding witnesses collected in vector a, then, for any new random vector
𝝃′, value of the newly extracted witness 𝑎′ is equal to the value defined by the formula (121). Otherwise, if the
extractor gets a value for 𝑎′ other than (121), then it breaks the DL relation assumption.

Now, let the extractor perform (𝑡 + 𝑠 + 1) more rewindings and, thus, let it obtain another challenge space base

𝔠 =



𝝃′0
𝝃′1
𝝃′2
...

𝝃′(𝑡+𝑠)


=



1 𝛿′0,0 . . . 𝛿′(𝑡−1) ,0 𝜎′0,0 . . . 𝜎′(𝑠−1) ,0
1 𝛿′0,1 . . . 𝛿′(𝑡−1) ,1 𝜎′0,1 . . . 𝜎′(𝑠−1) ,1
1 𝛿′0,2 . . . 𝛿′(𝑡−1) ,2 𝜎′0,2 . . . 𝜎′(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿′0, (𝑡+𝑠) . . . 𝛿′(𝑡−1) , (𝑡+𝑠) 𝜎′0, (𝑡+𝑠) . . . 𝜎′(𝑠−1) , (𝑡+𝑠)


. (122)

Note, the equality (115) holds as well for the new (𝑡 + 𝑠 + 1) instances of the challange vector 𝝃′ written as rows of
the matrix 𝔠. By this, the transition matrix between the bases 𝔞 and 𝔠 is

𝔟 =



b0
b1
b2
...

b(𝑡+𝑠)


= 𝔠 · 𝔞−1 , where each row b𝑖 is a weight vector of 𝝃′𝑖 ’s decomposition by 𝝃𝑖’s. (123)
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Note that for 𝔟 there always holds {1}𝑡+𝑠+1 = 𝔟 · {1}𝑡+𝑠+1, as the first columns in 𝔞 and 𝔠 are equal to {1}𝑡+𝑠+1.
Apparently, as 𝔠 is a random matrix, with overwhelming probability it holds that det(𝔠) ≠ 0 and, hence,

det(𝔟) ≠ 0. And, by the definition (123), 𝔠 = 𝔟 · 𝔞 holds. The witness transformation rule (121) written in the
matrix form for the base vectors in 𝔠 becomes

a′ = 𝔟 · a , where 𝔟 = 𝔠 · 𝔞−1. (124)

Looking closer at 𝔟 and a we make the following three simple claims about their items distributions. Hereinafter,
for any two scalar sets x and y, we say x is considered in isolation of y if neither direct nor indirect dependencies
or correlates of y, except for maybe x itself, are involved in the consideration of x.

Claim 3:
For any two random bases 𝔞 and 𝔠 defined by the formulas (116) and (122), respectively, with all their items picked
independently and uniformly at random, except for the items in the first columns which are 1’s, the transition matrix
𝔟 defined by (123) and considered in isolation of 𝔠 has the following two properties for its items

a) all items in 𝔟 are distributed uniformly

b) for each row b𝑖 ∈ 𝔟, there are (𝑡 + 𝑠) independent items and one dependent item in it. The dependency is
determined by the equality 〈

b𝑖 , {1}𝑡+𝑠+1
〉
= 1 . (125)

Proof: is in Appendix R.1.

Claim 4:
If the extractor knows two randomly sampled challenge vectors ¤𝝃, ¥𝝃 along with the corresponding witnesses ¤𝑎, ¥𝑎
such that ¤𝝃 ≠ ¥𝝃, ¤𝑎 ≠ ¥𝑎, and the equality (115) holds for them, then, for any new random base 𝔞 constructed by the
formula (116), the corresponding witness vector a built by (117) and considered in isolation of 𝔞 has all witnesses
in it distributed independently and uniformly.

Proof: is in Appendix R.2.

Claim 5:
For any arithmetic expression which contains only a built by (117) and 𝔟 built by (123), all the scalars in a and 𝔟

can be viewed as distributed independently and uniformly, except for the scalars in the first column of 𝔟 which are
completely dependent and are determined by the equality (125).

Proof: is in Appendix R.3.
Now, by reverting to the equality (120) and rewriting it for each 𝝃𝑖 ∈ 𝔠, the extractor obtains the following

matrix equation
( diag(a′) · 𝔠 − 𝔟 · diag(a) · 𝔞 ) · T = ( 𝔟 · �̂� − �̂�′ ) 𝐻 . (126)

Using the definitions of 𝔟 (123) and a′ (124), the extractor rewrites (126) as

( diag(𝔟 · a) · 𝔟 − 𝔟 · diag(a) ) · 𝔞 · T = ( 𝔟 · �̂� − �̂�′ ) 𝐻 . (127)

All the entries on both sides of the matrix equation (127) are known to the extractor, so it may wish to express
the vector column T (57) through 𝐻 by solving (127) as a linear system. However, all the weights of 𝑃 ∈ T are
equal to zero in the linear system (127) due to the same reason as for the transformation rule (121). In fact, the
matrix within the brackets on the left-hand side of (127), let’s call it 𝔰,

𝔰 = diag(𝔟 · a) · 𝔟 − 𝔟 · diag(a) , (128)

has the non-empty kernel. Namely, there exsists at least one nonzero vector, {1}𝑡+𝑠+1, such that

𝔰 · {1}𝑡+𝑠+1 = {0}𝑡+𝑠+1 .

Thus, det(𝔰) = 0 and, hence, det(𝔰 · 𝔞) = 0, which means the matrix equation (127) cannot be resolved for T by
taking (𝔰 · 𝔞)−1. Anyway, the matrix 𝔰 (128) contains 𝔟 and a only, which makes Claim 5 applicable to it; so the
extractor is going to use 𝔰 in a different way, as follows.

Since finding 𝑃 from (127) is not possible due to det(𝔰 · 𝔞) = 0 (the underlying reason is that this would mean
𝑃 ∼ 𝐻, which would break the DL relation assumption), the extractor constructs the following truncated version of
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(127). It removes 𝑃 from T which is at the first position there, thus leaving the truncated vector column

T̃ =



𝑄0
...

𝑄𝑡−1
𝑆0
...

𝑆𝑠−1


. (129)

Also, it removes the first column of the matrix (𝔰 · 𝔞) which is of zeros (it contains the weights of 𝑃, all of which
are zeros), denoting the resulting (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix as 𝔪. The extractor calculates the column vector of
(𝑡 + 𝑠 + 1) scalars on the right-hand side of (127) as

h =


ℎ0
ℎ1
...

ℎ𝑡+𝑠


= ( 𝔟 · �̂� − �̂�′ ) . (130)

Finally, the truncated version of (127) takes the form of

𝔪 · T̃ = h𝐻 . (131)

We make the following claim about 𝔪.

Claim 6:
The (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix 𝔪, which is constructed by removal of the first column from the matrix (𝔰 · 𝔞) where
𝔞 is defined by (116) and 𝔰 is defined by (128), with overwhelming probability has rank (𝑡 + 𝑠).

Proof: is in Appendix R.4.
Once 𝔪 has rank (𝑡 + 𝑠), according to Claim 6, it has at least one submatrix of rank (𝑡 + 𝑠). As there are only

(𝑡 + 𝑠 + 1) submatrices of size (𝑡 + 𝑠) × (𝑡 + 𝑠) in 𝔪, the extractor finds the one with rank (𝑡 + 𝑠) among them, denote
it as 𝔯, by simply iterating and checking that the determinant is nonzero.

Let the found (𝑡 + 𝑠) × (𝑡 + 𝑠) submatrix 𝔯 of rank (𝑡 + 𝑠) be 𝔪 with 𝑟’th row removed, with 𝑟 ∈ [0 . . . 𝑡 + 𝑠]
found by the extractor. The extractor removes 𝑟’th item from h (130) as well, denoting the reduced vector as h́.
Thus, it obtains the equation

𝔯 · T̃ = h́𝐻 , (132)

where det(𝔯) ≠ 0.
The extractor solves (132) for T̃

T̃ = 𝔯−1 · h́𝐻 (133)

and, hence, it has every 𝑄 𝑗 ∈ T̃, 𝑗 ∈ [0 . . . 𝑡 − 1], expressed as 𝐻 multiplied by a known scalar, which breaks the
DL relation assumption. Namely, according to Theorem 14 premise, there is at least one nonzero 𝑄 𝑗 for some
𝑗 ∈ [0 . . . 𝑡 − 1], and also it holds that 𝐻 != lin(nz(Q) ∪ {𝑃}), however, according to (133), the extractor has found
a scalar such that 𝑄 𝑗 ∼ 𝐻.

Thus, under the premise of Claim 2, we have built an algorithm that breaks the DL relation assumption. The
Claim 2 is proved.

R SAME FACTOR SUBCLAIM PROOFS
R.1 SCALAR DISTRIBUTIONS IN THE TRANSITION MATRIX B
Proof: [Claim 3] The property a) is trivial. The property b) follows from the fact that det(𝔞−1) ≠ 0, both of 𝔞 and
𝔞−1 are completely independent of 𝔠, and, hence, (𝑡 + 𝑠) independent randomnesses in 𝝃′

𝑖
∈ 𝔠 map one-to-one to

(𝑡 + 𝑠 + 1) randomnesses in b𝑖 by the formula b𝑖 = 𝝃′
𝑖
· 𝔞−1, with the additional constraint

〈
b𝑖 , {1}𝑡+𝑠+1

〉
= 1 which

follows from the equality to 1 of all items in the first columns of 𝔞 and 𝔠.
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R.2 SCALAR DISTRIBUTIONS IN THE WITNESS VECTOR A
Proof: [Claim 4] Before sampling the base 𝔞, let the extractor construct the random base 𝔢 that includes ¤𝝃, ¥𝝃 and
has all the other its base vectors sampled independently and uniformly, as in (116). Also, let the extractor perform
(𝑡 + 𝑠 + 1) rewindings and obtain the witnesses 𝑎 in (115) for the base 𝔢, collecting them into the vector e. As
¤𝝃, ¥𝝃 ∈ 𝔢, the vector e ∋ ¤𝑎, ¥𝑎 contains at least two different scalars. Note, since ¤𝝃, ¥𝝃 ∈ 𝔢 are not collinear and the
other base vectors in 𝔢 are random, it holds that det(𝔢) ≠ 0.

For the newly sampled random base 𝔞, let the extractor obtain the witness vector a by making (𝑡 + 𝑠 + 1) more
rewindings. According to the transformation rule (124), the vectors e and a are connected as

a = 𝔡 · e , where 𝔡 = 𝔞 · 𝔢−1. (134)

For an isolated of 𝔞 consideration of 𝔡, according to the Claim 3, each row d𝑖 ∈ 𝔡 has all its items distributed
uniformly at random, with (𝑡 + 𝑠) of them independent and one of them, say, 𝑑𝑖0, completely determined by the
equality

〈
d𝑖 , {1}𝑡+𝑠+1

〉
= 1. At the same time, for this consideration, as the vector e is defined before 𝔞 is sampled,

and hence e is independent of 𝔞, the vector e is independent of 𝔡. Thus, in this consideration, each item 𝑎𝑖 ∈ a
calculated by the formula (134) as

𝑎𝑖 = ⟨d𝑖 , e⟩ (135)

is the inner product of the uniformly distributed vector d𝑖 , which has (𝑡 + 𝑠) independent items 𝑑𝑖 𝑗 ∈ d𝑖 \ {𝑑𝑖0} and
one dependent item 𝑑𝑖0 calculated as

𝑑𝑖0 = 1 −
𝑡+𝑠∑︁
𝑗=1

𝑑𝑖 𝑗 , (136)

with the independent and not necessarily uniformly distributed vector e which has at least two different items.
Inserting (136) into (135), 𝑎𝑖 gets the form

𝑎𝑖 = 𝑒0 +
𝑡+𝑠∑︁
𝑗=1
(𝑒 𝑗 − 𝑒0)𝑑𝑖 𝑗 , (137)

which makes 𝑎𝑖 look uniformly random in an isolated of 𝔞 consideration of it, namely, in isolation of 𝔞 and, hence,
without 𝔞’s dependency 𝔡, and with at least two different 𝑒𝑘’s ∈ e.

For each index 𝑖 ∈ [0 . . . 𝑡 + 𝑠], the scalar 𝑎𝑖 ∈ a is independent of the other scalars in a since, according to
(137), they are built using different and completely independent sources of randomness d𝑖 .

R.3 INDEPENDENCE OF SCALARS IN AN EXPRESSION CONTAINING ONLY B AND A
Proof: [Claim 5] According to the Claim 3, since neither the matrix 𝔠 nor its dependencies participate in the
expression in question, all scalars in the matrix 𝔟 can be considered as independent and uniformly random, except
for the ones in the first column which can be found from the equality (125).

As for the vector a, its items are independent of the items in 𝔟 by the above, according to the Claim 3. In
addition to this, by the Claim 4, the items in a are distributed uniformly at random and independently of each other.

R.4 RANK OF M
Proof: [Claim 6] Rank of the (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix 𝔪 is equal to rank of the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) matrix
(𝔰 · 𝔞), as the former is obtained from the latter by removing a column which contains only zeros (the first column).

Rank of the square matrix (𝔰 · 𝔞) is equal to rank of the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) square matrix 𝔰 (128), as the
former is built as a product of the latter with an invertible matrix, namely, with the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) square
matrix 𝔞 (116) which has det(𝔞) ≠ 0 as a random one. Thus,

rank(𝔪) = rank(𝔰) . (138)

Let us consider a submatrix of 𝔰 which is obtained by removing both the first column and row from 𝔰. We
denote it as �̃� below. According to (128), each item 𝑠𝑖 𝑗 ∈ �̃�, where 𝑖, 𝑗 ∈ [1 . . . 𝑡 + 𝑠], has the form

𝑠𝑖 𝑗 = ⟨b𝑖 , a⟩ 𝑏𝑖 𝑗 − 𝑎 𝑗𝑏𝑖 𝑗 . (139)

Recalling (125), the equality (139) rewrites as

𝑠𝑖 𝑗 =

(
𝑎0

(
1 −

𝑡+𝑠∑︁
𝑘=1

𝑏𝑖𝑘

)
+
𝑡+𝑠∑︁
𝑘=1

𝑎𝑘𝑏𝑖𝑘 − 𝑎 𝑗

)
𝑏𝑖 𝑗 =

(
𝑎0 +

𝑡+𝑠∑︁
𝑘=1
(𝑎𝑘 − 𝑎0)𝑏𝑖𝑘 − 𝑎 𝑗

)
𝑏𝑖 𝑗 . (140)
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The matrix 𝔰 comprises 𝔟 and a only, so Claim 5 applies to it. The same is true for �̃� ⊂ 𝔰. Moreover, according
to (140), each item 𝑠𝑖 𝑗 ∈ �̃� is represented by a multivariate polynomial of total degree 3 of the set of variables
(b𝑖 \ {𝑏𝑖0}) ∪ a, each of which can be regarded, according to Claim 5, as distributed independently and uniformly.

Let us consider det(�̃�) constructed by Leibniz’s formula as a sum of signed products of 𝑠𝑖 𝑗 ’s. This way, by (140),
det(�̃�) is a multivariate polynomial of the independent and uniformly distributed random variables (b𝑖 \ {𝑏𝑖0}) ∪ a.
We rewrite (140) as follows, separating the 𝑎 𝑗𝑏2

𝑖 𝑗
summand in it,

𝑠𝑖 𝑗 =
©«𝑎0 +

∑︁
𝑘=1...(𝑡+𝑠) , 𝑘≠ 𝑗

(𝑎𝑘 − 𝑎0)𝑏𝑖𝑘 − 𝑎 𝑗ª®¬ 𝑏𝑖 𝑗 − 𝑎0𝑏
2
𝑖 𝑗 + 𝑎 𝑗𝑏2

𝑖 𝑗 . (141)

Consider the
∏𝑡+𝑠
𝑖=1 𝑠𝑖𝑖 signed product component of det(�̃�). According to (141), it contributes the

∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

summand to det(�̃�). As follows from (141), there is no other signed product in det(�̃�) which contributes any other
summand containing

∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

. Thus, the multivariate polynomial representing det(�̃�) contains the uncompensated∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

and, therefore, det(�̃�) has total degree not less than 3(𝑡 + 𝑠).
By the Schwartz–Zippel lemma [10, 34, 28], having total degree greater than zero, det(�̃�) has only negligible

probability to be zero and, thus, with overwhelming probability it holds that

rank(𝔰) = (𝑡 + 𝑠) , (142)

which implies, by (138), that with overwhelming probability

rank(𝔪) = (𝑡 + 𝑠) .

The claim is proved.

S RANDOMLY WEIGHTED SUMS IMPLY THE SYSTEM IN MULTRATUG
When moving from the equality (51) to the system (52) in EFLRSLWB, we implicitly used Theorem 3. More

details about this are proveded in the proof of Theorem 13, particularly in Appendix N, where the equality (51)
corresponds to the equality (95).

However, in Multratug, verifier has the equality (68) instead of (51). The transition from (68) to the system (69)
in Multratug may not seem apparent. Newertheless, with Theorem 14, which is a generalization of Theorem 3 to
(𝑡 + 𝑠 + 1)-element tuples, the transition from (68) to (69) becomes easy, details are in the proof of the following
claim.

Claim 7:
If the Multratug protocol in Figure 25 completes successfully, then verifier is convinced that the equality (68)
implies the system (69) in it.

Proof: Let

𝑃 = �̂�𝑘 ,

Q = {𝑃𝑠𝑘 , 𝐼𝑘},
S = {𝐴tmp

𝑘
− 𝐴𝑠𝑘 , 𝑈𝑠𝑘 −𝑈

tmp
𝑘
},

𝐻 = 𝐻,

𝑍 = 𝐽𝑘 ,

F = {𝐺, 𝑈tmp
𝑘
}.

The right-hand sides of these equalities contain the elements from the Multratug scheme in Figure 25, whereas
the left-hand sides contain ones from the protocol of Theorem 14 in Figure 24. By the formulas (57) and (58),
respectively, the t-s-tuples become

T = ( �̂�𝑘 , 𝑃𝑠𝑘 , 𝐼𝑘 , 𝐴
tmp
𝑘
− 𝐴𝑠𝑘 , 𝑈𝑠𝑘 −𝑈

tmp
𝑘
) , (143)

D = ( 𝐽𝑘 , 𝐺, 𝑈
tmp
𝑘
, 0, 0 ) . (144)

Also, in accordance to Figure 25, the random scalar vector 𝝃 in the formula (61) becomes

𝝃 = [1, 𝜒−1, 𝜒−1\, 𝜒−1𝜔, 𝜒−1Z] . (145)
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By Theorem 12, due to the zkLin22Choice𝑙,𝑛,𝑙 call in Figure 25, verifier is convinced that prover knows 𝑝𝑘 , 𝑣𝑘
such that the following equality holds to the accuracy of 𝐻 component, for each 𝑘 ∈ [0 . . . 𝑙 − 1]

𝐺 + \𝑈tmp
𝑘
+ 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 − 𝐾 + Z𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝐾 + 𝜔𝐴

tmp
𝑘
− Z𝑈tmp

𝑘
+ \𝐼𝑘 + 𝜒�̂�𝑘) , (146)

which becomes the equality (68) after elimianing the hash to group 𝐾 . The elimination is performed the same way
as for (92) in Appendix N. Namely, since 𝐾 is orthogonal to everything else, it collapses guaranteeing 𝑝𝑘 = 𝑣𝑘 .

As a result, for 𝑋,𝑌 calculated by the formulas (59), (60) using (143), (144), (145), the equality (68) rewrites as

𝜒𝑌 = 𝜒𝑝𝑘𝑋 . (147)

Everything to the accuracy of 𝐻. Since 𝜒 is a nonzero scalar known to both of the prover and verifier prior to
applying the Theorem 12 protocol, both sides of (147) can be divided by it, and (147) rewrites as

𝑌 = 𝑝𝑘𝑋 , (148)

which means verifier is convinced that prover knows some 𝑎, namely, 𝑎 = 𝑝𝑘 , and �̂� such that 𝑌 = 𝑎𝑋 + 𝛼𝐻 holds.
Moreover, by the above this connection between𝑌 and 𝑋 is established by a complete, sHVZK, and cWEE protocol
of Theorem 12 (Lin2-2Choice lemma), which proves the relation (37).

Also, according to Figure 25 the following holds. The element �̂�𝑘 in the tuple T (143) is nonzero and is orthog-
onal to all the other nonzero elements of T and to the blinding generator 𝐻, i.e., �̂�𝑘 != lin( nz(𝑃𝑠𝑘 , 𝐼𝑘), nz(𝐴tmp

𝑘
−

𝐴𝑠𝑘 ,𝑈𝑠𝑘 −𝑈
tmp
𝑘
), 𝐻 ). The nonzero element 𝐻 is ortogonal to all nonzero elements of the set {𝑃𝑠𝑘 , 𝐼𝑘 , �̂�𝑘}, i.e.,

𝐻 != lin( nz(𝑃𝑠𝑘 , 𝐼𝑘), �̂�𝑘 ). The element 𝑃𝑠𝑘 is guaranteed nonzero.
Thus, all steps of the zkTElemRW2,2 protocol in Figure 24 have been performed and the premise of Theorem 14

is met. Therefore, by Theorem 14 the verifier is convinced that the relation (62) holds, and, hence, the tuples (143),
(144) are elementwise proportional to each other, to the acccuracy of 𝐻, which is equivalent to the system (69).

T SIGNATURE MULTRATUG
Proof: [Theorem 15] According to Figure 25, as the new vectors Utmp, Î are defined by the formulas (64), (63), all
proofs of Theorem 13 for the EFLRSLWB scheme in Figure 22 transfer to the Multratug scheme in Figure 25.

In fact, Utmp is indistinguishable from the independent uniform randomness due to the blinding components
�̂�𝐻 in it (64), hence Utmp does not change anything. The same is for Î (63), which is indistinguishable from
the independent uniform randomness and from the former I (41). This is proved in [29], and also can be proved
using the method of [13]. Also, the new vectors Î and Utmp get into Û’s pre-image, however this does not change
anything, only depricates any linear dependency of Û’s with Î’s and Utmp’s. The same is for the blinding generator
𝐻, which gets the new vectors into its pre-image.

Note, Theorem 14, which we use for Multratug instead of Theorem 3 for EFLRSLWB, does not require in the
premise Î’s and Utmp’s to be proved linearly independent of each other, only Û’s and 𝐻 are required to be proved
linearly independent of Î’s and Utmp’s.

With the former I, EFLRSLWB has (51) and gets (52) from it. With the new Utmp, Î, Multratug has (68)
instead of (51), and gets (69) from it by Claim 7 in Appendix S, instead of (52). As (52) is a subset of (69), with Î
substituted for I, all the subsequent EFRLSLWB proofs use Î instead of I and thus translate to Multratug proofs.

This way, Multratug appears to be proved a linkable threshold ring signature, provided that EFLRSLWB is
proved to be such. And, all the properties listed in Theorem 13 for the linkable threshold ring signature EFLRSLWB
in Figure 22 transfer to the linkable threshold ring signature Multratug in Figure 25.

U VECTOR SCHNORR ARGUMENT
Proof: [Theorem 16] Design of the protocol in Figure 26 is clearly Schnorr-like. Hence, its completeness, sHVZK,
and cWEE can be proved in the standard way, so we do not include a detailed proof here, clarifications are the same
as for zk2ElemComm in Appendix A.

In addition to this, all the explanatory details can be found in [2], where the sHVZK and cWEE properties are
proved for quite a similar protocol.

V NON-ZK LOG-SIZE VECTOR COMMITMENT ARGUMENT
Proof: [Theorem 17] For 𝑛 > 4, the protocol in Figure 27 comprises the reductions used in the inner product
argument [7] with b = {0}𝑛 and, hence, it is complete and has cWEE for these reductions. For 𝑛 ⩽ 4, P simply
opens the witness toV and the latter checks the relation. Thus, for 𝑛 ⩾ 1, the protocol is complete and has cWEE.

Also, in [2] the sHVZK and cWEE properties are proved for a similar protocol.
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W OPTIMIZED ZK LOG-SIZE VECTOR COMMITMENT ARGUMENT
Proof: [Theorem 18] Completeness is by-design. The argVC𝑛+1 call in the last step of zkVCopt

𝑛 has cWEE by
Theorem 17. Having extracted the witness 𝝉 from it, the protocol turns out to be zkNElemComm𝑛+1, which has cWEE
by Theorem 16. Thus, zkVCopt

𝑛 has cWEE. Even with the opened 𝝉 the protocol remains sHVZK by Theorem 16,
so partially hiding it inside argVC𝑛+1 doesn’t make zkVCopt

𝑛 less zero-knowledge. Thus, zkVCopt
𝑛 is sHVZK.

Also, in [2] such a composition is proved to be having sHVZK and cWEE properties.

X NOTES ABOUT DUALRING-EC
The DualRing-EC signature, according to its security model in [33], requires all keys in the ring to be honestly

generated, i.e., it does not work with malformed ones. In contrast, our security model defined by Theorem 9 allows
malformed keys to appear in the rings. We have tried to assess, whether an environment in which EFLRSL remains
secure can be used for DualRing-EC, and discovered the following attack to DualRing-EC, of course, with reference
to our security model.

Let a dishonest P want to sign with DualRing-EC using a ring of four malformed public keys, none of which it
knows secret key for. Knowing no secret keys for 𝑄, 𝑅, 𝐾 and knowing secret key for 𝑃, it creates the four-element
ring as {𝑄, 𝑅, 𝑃 +𝐾, 𝑃 −𝐾}. Then P performs as though it signs honestly with 𝑃’s secret key using three-element
ring {𝑄, 𝑅, 𝑃}. However, it still hashes the four-element ring to create the challenge. Instead of creating the
Sum Argument [33] for three challenges 𝑐0, 𝑐1, 𝑐2, which correspond to 𝑄, 𝑅, 𝑃, it splits 𝑐2 into two halves and
includes the Sum Argument for four challenges 𝑐0, 𝑐1, 𝑐2/2, 𝑐2/2 into the forgery. After that, honestV accepts this
signature.

Y LOW ANONYMITY OF U/X
Let us show some anonymity implications of having an element of the form 𝑥−1𝑈 in a public transcript such

that 𝑈 is a fixed generator and 𝑥 is a private key. The element may not be necessarily a linking tag, such element
may appear, for instance, in a part of the scheme proving the balance.

Consider a rather possible case of non-uniform distribution of 𝑥’s. Let the distribution have a probability peak
for pairs of private keys (𝑥1, 𝑥2) such that 𝑥2 = 2𝑥1. Consequently, there will be non-negligible probability to
randomly pick two signatures which were signed with keys from the same pair. These two signatures will be linked
together by simply checking whether the element 𝑥−1

2 𝑈 multiplyed by 2 is equal to its counterpart.
The obvious objection to this case is that the system may by-design forbid such the non-uniform distributions

or other tightly coupled keys. This is, for example, the case in [31], where private keys behind the public keys in
the rings have the form 𝑥 = 𝑏 + 𝑟 with hidden 𝑏 and with independently and uniformly distributed 𝑟 which may
even be known to adversary. Thus, the element in question takes the form

(𝑏 + 𝑟)−1𝑈 , where 𝑟 is known to the adversary, and always is independently and uniformly distributed.

According to [21, 32, 25], this form makes it impossible to break anonymity, even if the adversary is diligently
observing 𝑟 .

Takeaway from this is that if a scheme conatains an element of the form 𝑥−1𝑈, then it is not anonymous w.r.t.
chosen public key attackers. Also, in this case it seems not possible to follow the usual methods for proving
existential unforgeability against adaptive chosen message / public key attackers, even if the scheme possesses this
property.

Z APPLICATION TO KZG COMMITMENTS AND PLONK
Let us sketch out a couple of schemes implementing the key idea of the Lin2-Choice lemma described in

Section 4.1.3. These schemes are shown in Figure 32 and Figure 33, and are about the application to KZG
commitments which we started to discuss in Section 12.6.

To keep things brief, we sketch out these schemes without soundness proofs, although it seems to be not difficult
to prove it. Also, we present these schemes only as arguments of knowledge, without zero-knowledge, considering
the latter can be added in the number of ways which exist for KZG commitments, e.g., as in [11].

We do not investigate practical value of these two schemes, providing the sketches mainly to illustrate applica-
bility of the key idea of our main lemma to the other type of commitments. Although, apparently, these schemes
can immediately lead to, e.g., a kind of constant-size ring signature and a full membership proof in blockchains.
They seem implementable either standalone or as custom gates for PLONK architecture [11].
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Adhering to the notation from [5], for a polynomial 𝒇 we denote a KZG commitment to it as 𝒇 , assuming the
following things hold and are known to both P andV beforehand

• G1,G2,G𝑡 are three prime-order groups of the same cardinality with the corresponding scalar field Fp̄.
Q-DLOG assumption [11] holds for them. 𝐺 ∈ G1 and 𝑆 ∈ G2 are the group generators.

• There is an efficiently computable non-trivial pairing function 𝑒 : G1 ×G2 ↦→ G𝑡 .
• Predefined maximal degree is 𝑑. A ring of univariate polynomials over Fp̄ of degree less than 𝑑 is F<𝑑 [𝑋].

We denote by 𝑋 the sole variable of the polynomials.
• The secret scalar that was chosen during the trusted setup phase and then forgotten is 𝜏. The global parameters

in relation to this are

H = (𝐻0 = 𝐺, 𝐻1 = 𝜏𝐺, . . . , 𝐻𝑑 = 𝜏𝑑−1𝐺) ∈ G𝑑1 , K = (𝐾0 = 𝑆, 𝐾1 = 𝜏𝑆) ∈ G2
2 .

• A primitive 𝑘-th root of unity is 𝜔 ∈ Fp̄ such that 𝜔𝑘 = 1. It is assumed that 1 ≪ 𝑘 ≪ 𝑑. The corresponding
subgroup of points is 𝛀 = {1, 𝜔, . . . , 𝜔𝑘−1} ∈ F𝑘∗p̄ . We let the number 𝑛 of elements in decoy sets in our
sketches to be not greater than 𝑘 .

• Lagrange basis in F<𝑘 [𝑋] ⊂ F<𝑑 [𝑋] is defined over 𝛀 as

𝑳 = {𝝀𝑖}𝑘−1
𝑖=0 =


∏

0⩽ 𝑗<𝑘 ,
𝑗≠𝑖

(𝑋 − 𝜔 𝑗 )
(𝜔𝑖 − 𝜔 𝑗 )


𝑘−1

𝑖=0

.

• Thus, the Lagrange form L of the global parameters H built using 𝑳 and 𝜏 is

L = {𝝀𝑖 (𝜏)𝐺}𝑘−1
𝑖=0 =


©«

∏
0⩽ 𝑗<𝑘 ,
𝑗≠𝑖

(𝜏 − 𝜔 𝑗 )
(𝜔𝑖 − 𝜔 𝑗 )

ª®®®¬𝐺

𝑘−1

𝑖=0

.

Z.1 HELPER GADGETS
We will need three helper gadgets built using the standard proof primitives that already exist for KZG commit-

ments. The first of them is shown in Figure 29, it is an argument for the following relation

R = { 𝒇 ∈ G1, 𝑢, 𝑣 ∈ Fp̄ ; 𝒇 ∈ F<𝑑 [𝑋] | 𝒇 (𝑢) = 𝑣 } . (149)

It proves that the value of the opening 𝒇 of the commitment 𝒇 at the point 𝑢 is 𝑣. The technique of this proof is
informally introduced in [5].

kzgPoFV( 𝒇 , 𝑢, 𝑣 ; 𝒇 )

Relation R = { 𝒇 ∈ G1, 𝑢, 𝑣 ∈ Fp̄ ; 𝒇 ∈ F<𝑑 [𝑋] | 𝒇 (𝑢) = 𝑣 } // (149)

P’s input : ( 𝒇 , 𝑢, 𝑣 ; 𝒇 )

V’s input : ( 𝒇 , 𝑢, 𝑣 )

P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : constructs 𝒒 ∈ F<𝑑 [𝑋] such that (𝑋 − 𝑢)𝒒(𝑋) = 𝒇 (𝑋) − 𝑣
computes 𝒒

P → V : 𝒒

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑒( 𝒒 , 𝐾1 − 𝑢𝐾0 )
?
= 𝑒( 𝒇 − 𝑣𝐻0, 𝐾0 )

Figure 29: KZG proof of polynomial value at point
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Our second helper gadget is shown in Figure 30, it is an extended version of the ZeroTest gadget from [5]
which proves that a committed polynomial 𝒇 is zero on 𝛀. Our second gadget proves the same for the polynomial
( 𝒇 − 𝒂 · 𝒎), for whichV knows the commitments 𝒇 and 𝒂 , and also knows the polynomial 𝒎 in explicit form.
This gadget is an argument for the relation

R =

{
𝒇 , 𝒂 ∈ G1, 𝒎 ∈ F<𝑑 [𝑋] ;
𝒇 ∈ F<𝑑 [𝑋], 𝒂 ∈ F<𝑑 [𝑋]

����� ∀𝛼 ∈ 𝛀 : 𝒇 (𝛼) − 𝒂(𝛼)𝒎(𝛼) = 0

}
. (150)

Note that in some cases the actual degrees of the polynomials 𝒂 and 𝒎 must be somewhat less than indicated
by the limit 𝑑. Otherwise P will not be able to build 𝒒 . Notwithstanding this, as follows from the implementation
in Figure 30 the protocol remains sound in any case, this is enough for sketching our idea.

kzgZeroTestEx𝛀 ( 𝒇 , 𝒂 , 𝒎 ; 𝒇 , 𝒂 )

Relation R =

{
𝒇 , 𝒂 ∈ G1, 𝒎 ∈ F<𝑑 [𝑋] ;
𝒇 ∈ F<𝑑 [𝑋], 𝒂 ∈ F<𝑑 [𝑋]

����� ∀𝛼 ∈ 𝛀 : 𝒇 (𝛼) − 𝒂(𝛼)𝒎(𝛼) = 0

}
// (150)

P’s input : ( 𝒇 , 𝒂 , 𝒎 ; 𝒇 , 𝒂 )

V’s input : ( 𝒇 , 𝒂 , 𝒎 )

P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : constructs 𝒒 ∈ F<𝑑 [𝑋] such that (𝑋𝑘 − 1)𝒒(𝑋) = 𝒇 (𝑋) − 𝒂(𝑋)𝒎(𝑋)
computes 𝒒 // —- using H or L

P → V : 𝒒

V : 𝑥 ←$ F∗p̄

V → P : 𝑥

P : computes 𝑞𝑥 = 𝒒(𝑥), 𝑓𝑥 = 𝒇 (𝑥), 𝑎𝑥 = 𝒂(𝑥)

P → V : 𝑞𝑥 , 𝑓𝑥 , 𝑎𝑥

P andV : run kzgPoFV( 𝒒 , 𝑥, 𝑞𝑥 ; 𝒒 ), // —- or play a batched

kzgPoFV( 𝒇 , 𝑥, 𝑓𝑥 ; 𝒇 ) // —- version of these

kzgPoFV( 𝒂 , 𝑥, 𝑎𝑥 ; 𝒂 ) // —- three proofs

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

(𝑥𝑘 − 1)𝑞𝑥
?
= 𝑓𝑥 − 𝑎𝑥𝒎(𝑥)

Figure 30: KZG zero test on a set of roots of unity

Our third helper gadget is an extension of the SumCheck gadget from [5]. It is shown in Figure 31 and is an
argument for the relation

R = { 𝒇 ∈ G1, 𝒎 ∈ F<𝑑 [𝑋], 𝑣 ∈ Fp̄ ; 𝒇 ∈ F<𝑑 [𝑋] |
∑︁
𝛼∈𝛀

𝒇 (𝛼)𝒎(𝛼) = 𝑣 } . (151)

The difference between our gadget and SumCheck from [5] is that, instead of proving that the sum of a
polynomial 𝒇 on 𝛀 is zero, we prove that the sum of the polynomial 𝒇 · 𝒎, where 𝒎 is explicitly known, is equal
to the given value 𝑣. We use the same method as SumCheck to prove this. Our note about the actual degrees of the
polynomials and soundness applies here, too.
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kzgSumCheckEx𝛀 ( 𝒇 ,𝒎, 𝑣 ; 𝒇 )

Relation R = { 𝒇 ∈ G1, 𝒎 ∈ F<𝑑 [𝑋], 𝑣 ∈ Fp̄ ; 𝒇 ∈ F<𝑑 [𝑋] |
∑︁
𝛼∈𝛀

𝒇 (𝛼)𝒎(𝛼) = 𝑣 } // (151)

P’s input : ( 𝒇 ,𝒎, 𝑣 ; 𝒇 )

V’s input : ( 𝒇 ,𝒎, 𝑣 )

P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

// ———— the target equality in R rewrites as
∑︁
𝛼∈𝛀

𝒈 (𝛼) = 0 , where ∀𝛼 ∈ Ω : 𝒈 (𝛼) = 𝒇 (𝛼)𝒎 (𝛼) − 𝑣/𝑘 ————————

// ————
∑︁
𝛼∈𝛀

𝒈 (𝛼) = 0 is proved the standard way using 𝒉 ∈ F<𝑑 [𝑋] such that ∀𝛼 ∈ Ω : 𝒉 (𝜔𝛼) = 𝒉 (𝛼) + 𝒈 (𝜔𝛼) ——

// ———— thus, it suffices to prove that 𝒉 (𝜔𝑘−1 ) = 0 and ∀𝛼 ∈ Ω : 𝒉 (𝛼) − 𝒉 (𝜔𝛼) + 𝒇 (𝜔𝛼)𝒎 (𝜔𝛼) − 𝑣/𝑘 = 0 ————

P : defines 𝒈 ∈ F<𝑑 [𝑋] as 𝒈(𝑋) = 𝒇 (𝑋)𝒎(𝑋) − 𝑣/𝑘

constructs 𝒉 ∈ F<𝑑 [𝑋] such that 𝒉(𝜔𝑘−1) = 0 and ∀𝛼 ∈ Ω : 𝒉(𝜔𝛼) = 𝒉(𝛼) + 𝒈(𝜔𝛼)
constructs 𝒒 ∈ F<𝑑 [𝑋] such that (𝑋𝑘 − 1)𝒒(𝑋) = 𝒉(𝑋) − 𝒉(𝜔𝑋) + 𝒈(𝜔𝑋)

computes 𝒉 , 𝒒 // —- using H or L

P → V : 𝒉 , 𝒒

V : 𝑥 ←$ F∗p̄

V → P : 𝑥

P : computes 𝑞𝑥 = 𝒒(𝑥), ℎ𝑥 = 𝒉(𝑥), ℎ𝜔𝑘−1 = 𝒉(𝜔𝑘−1),
ℎ𝜔𝑥 = 𝒉(𝜔𝑥), 𝑓𝜔𝑥 = 𝒇 (𝜔𝑥)

P → V : 𝑞𝑥 , ℎ𝑥 , ℎ𝜔𝑥 , 𝑓𝜔𝑥 , ℎ𝜔𝑘−1

P andV : run kzgPoFV( 𝒒 , 𝑥, 𝑞𝑥 ; 𝒒 ), kzgPoFV( 𝒉 , 𝑥, ℎ𝑥 ; 𝒉 ), // — or play a batched

kzgPoFV( 𝒉 , 𝜔𝑥, ℎ𝜔𝑥 ; 𝒉 ), kzgPoFV( 𝒇 , 𝜔𝑥, 𝑓𝜔𝑥 ; 𝒇 ), // — version of these

kzgPoFV( 𝒉 , 𝜔𝑘−1, ℎ𝜔𝑘−1 ; 𝒉 ) // — five proofs

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

ℎ𝜔𝑘−1
?
= 0 ∧ (𝑥𝑘 − 1)𝑞𝑥

?
= ℎ𝑥 − ℎ𝜔𝑥 + 𝑓𝜔𝑥𝒎(𝜔𝑥) − 𝑣/𝑘

Figure 31: KZG proof of polynomial sum

Z.2 PROOF OF MEMBERSHIP IN A SET OF KZG COMMITMENTS
The sketch protocol kzgPoMforComm𝑛⩽𝑘 in Figure 32 is a proof of membership, an argument for the relation

R = { 𝑷 ∈ F𝑛∗<𝑑 [𝑋], 𝒛 ∈ G1; 𝒛 ∈ F<𝑑 [𝑋], 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝 ∈ Fp̄ | 𝒛 = 𝑝 𝒑𝑠 } , (152)

where all elements in 𝑷 are linearly independent of each other.
The relation (152) reads as follows. For the set of explicitly known polynomials 𝑷 = { 𝒑𝑖}𝑛−1

𝑖=0 , which is
considered as a decoy set, and for a given KZG commitment 𝒛 , prover knows an index 𝑠 and a factor 𝑝 such that
the opening 𝒛 of 𝒛 turns out to be 𝒛 = 𝑝 𝒑𝑠 .

We consider only decoy sets of size 𝑛 which is not greater than the cardinality 𝑘 of the set 𝛀. By the linear
independence of polynomials in 𝑷 we mean that no entry 𝒑𝑖 ∈ 𝑷 is representable as a weighted sum of the
polynomials from 𝑷 \ { 𝒑𝑖}. We denote this property, as usual, as ort(𝑷).

Our membership proof in Figure 32 works as follows. For the first, P builds the masking polynomial 𝒂 which
is one-hot on ∈ 𝛀 with the only nonzero value at 𝜔𝑠 ∈ 𝛀. Without loss of generality, we omit consideration of the
case 𝑝 = 0.

Second, P sends the commitment 𝒂 to V. We assume that 𝒂 does not reveal any information about the
parameters ℎ, 𝑝, 𝑠, although we omit showing this in the protocol. We assume 𝒂 is made zero knowledge with
one of the standard for KZG commitments ways.
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Third, both of P andV multiply each polynomial in 𝒑𝑖 ∈ 𝑷 by its own random challenge 𝑐𝑖 and take the scalar
product of the mask {𝒂(𝜔𝑖)}𝑛−1

𝑖=0 and the set {𝑐𝑖 𝒑𝑖}𝑛−1
𝑖=0

𝑛−1∑︁
𝑖=0

𝒂(𝜔𝑖)𝑐𝑖 𝒑𝑖 . (153)

Finally, P demonstrates that the scalar product (153) is equal to the polynomial in question 𝒛 multiplied by
some scalar 𝑟, thus convincingV that {𝒂(𝜔𝑖)}𝑛−1

𝑖=0 is one-hot, which implies 𝒛 is equal to one of 𝒑𝑖’s up to a scalar
multiplier.

kzgPoMforComm𝑛⩽𝑘 (𝑷, 𝒛 ; 𝒛, 𝑠, 𝑝)

Relation R = { 𝑷 ∈ F𝑛∗
<𝑑
[𝑋], 𝒛 ∈ G1; 𝒛 ∈ F<𝑑 [𝑋], 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝 ∈ Fp̄ | 𝒛 = 𝑝 𝒑𝑠 } // (152)

// 𝑷 in R satisfy ort(𝑷) .

P’s input : (𝑷, 𝒛 ; 𝒛, 𝑠, 𝑝)
V’s input : (𝑷, 𝒛 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : ℎ←$ F∗p̄
// ——– constructs 𝒂 ∈ F<𝑘 [𝑋] which is one-hot on 𝛀 ———————

lets 𝒂 =

{
𝒂(𝜔𝑠) = ℎ𝑝 // that is, 𝒂 has the only hot value ℎ𝑝 at 𝜔𝑠 ∈ 𝛀
𝒂(𝜔𝑖) = 0 for all 𝑖 ∈ [0 . . . 𝑘 − 1], 𝑖 ≠ 𝑠

lets 𝒂 = ℎ𝑝 L[𝑠] // —- where L[𝑠] ∈ L is the Lagrange form element that is nonzero at 𝜔𝑠

P → V : 𝒂

V : c←$ F𝑛∗p̄

V → P : c

P : lets 𝑟 = ℎ𝑐𝑠

P → V : 𝑟

// ———— below P convinces V that the equality 𝑟𝒛 =

𝑛−1∑︁
𝑖=0

𝒂 (𝜔𝑖 )𝑐𝑖𝒑𝑖 holds —————-

V : b ←$ Fp̄

V → P : b

P : computes 𝑣 = 𝒛(b)

P → V : 𝑣

P andV : run kzgPoFV( 𝒛 , b, 𝑣 ; 𝒛 )
let 𝑦 = 𝑟𝑣

// ——– construct 𝒎 ∈ F<𝑘 [𝑋] by 𝑘 points using the Lagrange basis 𝑳 such that ——————

// ——– ∀𝑖 ∈ [0 . . . 𝑛 − 1] : 𝒎 (𝜔𝑖 ) = 𝑐𝑖𝒑𝑖 ( b ) ∧ ∀𝑖 ∈ [𝑛 . . . 𝑘 − 1] : 𝒎 (𝜔𝑖 ) = 0 ——–

let {𝑚𝑖}𝑘−1
𝑖=0 = {𝑐𝑖 𝒑𝑖 (b)}𝑛−1

𝑖=0 ∪ {0}
𝑘−1
𝑖=𝑛

let 𝒎 =

𝑘−1∑︁
𝑖=0

𝑚𝑖𝝀𝑖

// ——— thus, it remains for P to convince V that 𝑦 =

𝑘−1∑︁
𝑖=0

𝒂 (𝜔𝑖 )𝒎 (𝜔𝑖 ) holds ———–

run kzgSumCheckEx𝛀 ( 𝒂 ,𝒎, 𝑦 ; 𝒂 )

Figure 32: Membership proof for a set of KZG commitments

The reason whyV is convinced of this is, informally, the same as in our main lemma. Namely, suppose there
are at least two nonzero scalars in {𝒂(𝜔𝑖)}𝑛−1

𝑖=0 . The commitment 𝒂 makesV sure that these scalars do not change
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to suit the challenges 𝑐𝑖’s. Therefore, the scalar product (153) turns out to be dependent on at least two independent
random challenges. However, P manages to balance out these two randomnesses in (153) with the single scalar 𝑟 ,
thus convincingV that the supposition is incorrect and, hence, {𝒂(𝜔𝑖)}𝑛−1

𝑖=0 cannot contain more than one nonzero
scalar.

Z.3 PROOF THAT A COMMITTED POLYNOMIAL IS ONE-HOT OR ZERO
The second sketch protocol kzgCommIsOneHot𝑛⩽𝑘 , which is shown in Figure 33, is an argument for the relation

R = { 𝒇 ∈ G1; 𝒇 ∈ F<𝑑 [𝑋], 𝑠 ∈ [0 . . . 𝑛 − 1] | ∀𝑖 ∈ [0 . . . 𝑘 − 1], 𝑖 ≠ 𝑠 : 𝒇 (𝜔𝑖) = 0 } . (154)

This protocol proves that a polynomial 𝒇 represented by the commitment 𝒇 has at most one nonzero value on
the set 𝛀. Moreover, this nonzero value is located among the first 𝑛 points of 𝛀.

The design of the protocol is similar to the previous one, so we briefly describe it in the following few words.
P sends toV a KZG commitment to the one-hot masking polynomial 𝒂 that is nonzero at the same point as 𝒇 on
𝛀. Next, P shows that the product 𝒂 · 𝒆 of this masking polynomial with a random polynomial 𝒆 is equal, up to a
scalar multiplier, to the polynomial in question 𝒇 on 𝛀. This convincesV that both of 𝒂 and 𝒇 are one-hot.

kzgCommIsOneHot𝑛⩽𝑘 ( 𝒇 ; 𝒇 , 𝑠 )

Relation R = { 𝒇 ∈ G1; 𝒇 ∈ F<𝑑 [𝑋], 𝑠 ∈ [0 . . . 𝑛 − 1] | ∀𝑖 ∈ [0 . . . 𝑘 − 1], 𝑖 ≠ 𝑠 : 𝒇 (𝜔𝑖) = 0 } // (154)

P’s input : ( 𝒇 ; 𝒇 , 𝑠 )

V’s input : ( 𝒇 )

P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : computes 𝑝 = 𝒇 (𝜔𝑠) // —- P assigns to 𝑝 the only nonzero value of 𝒇 on the set 𝛀

ℎ←$ F∗p̄
// ——– constructs 𝒂 ∈ F<𝑘 [𝑋] which is one-hot on 𝛀 ———————

lets 𝒂 =

{
𝒂(𝜔𝑠) = ℎ𝑝 // that is, 𝒂 has the only hot value ℎ𝑝 at 𝜔𝑠 ∈ 𝛀
𝒂(𝜔𝑖) = 0 for all 𝑖 ∈ [0 . . . 𝑘 − 1], 𝑖 ≠ 𝑠

lets 𝒂 = ℎ𝑝 L[𝑠] // —- where L[𝑠] ∈ L is the Lagrange form element that is nonzero at 𝜔𝑠

P → V : 𝒂

V : c←$ F𝑛∗p̄

V → P : c

P andV : // —- construct 𝒆 ∈ F<𝑘 [𝑋] such that ∀𝑖 ∈ [0 . . . 𝑛 − 1] : 𝒆 (𝜔𝑖 ) = 𝑐𝑖 ∧ ∀𝑖 ∈ [𝑛 . . . 𝑘 − 1] : 𝒆 (𝜔𝑖 ) = 0

let 𝒆 =

𝑛−1∑︁
𝑖=0

𝑐𝑖𝝀𝑖

P : lets 𝑟 = ℎ𝑐𝑠

P → V : 𝑟
// ———— now P convinces V that ∀𝛼 ∈ 𝛀 : 𝑟 𝒇 (𝛼) = 𝒂 (𝛼)𝒆 (𝛼) holds ——-

P andV : run kzgZeroTestEx𝛀 ( 𝑟 𝒇 , 𝒂 , 𝒆 ; 𝒇 , 𝒂 )

Figure 33: Proof that KZG commitment is one-hot
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