
On the Optimal Succinctness and Efficiency
of Functional Encryption

and Attribute-Based Encryption

Aayush Jain 1 Huijia Lin 2 罗辑 (Ji Luo) 2

1 Carnegie Mellon University, USA
aayushja@andrew.cmu.edu

2 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA
{rachel,luoji}@cs.washington.edu

1 November 2023

Abstract

We investigate the optimal (asymptotic) efficiency of functional encryption (FE)
and attribute-based encryption (ABE) by proving inherent space-time trade-offs and
constructing nearly optimal schemes. We consider the general notion of partially
hiding functional encryption (PHFE), capturing both FE and ABE, and the most
efficient computation model of random-access machines (RAM). In PHFE, a secret
key sk𝑓 is associated with a function 𝑓 , whereas a ciphertext ct𝑥 (𝑦) is tied to a public
input 𝑥 and encrypts a private input 𝑦. Decryption reveals 𝑓 (𝑥, 𝑦) and nothing else
about 𝑦.

We present the first PHFE for RAM solely based on the necessary assumption of
FE for circuits. Significantly improving upon the efficiency of prior schemes, our
construction achieves nearly optimal succinctness and computation time:

• Its secret key sk𝑓 is of constant size (optimal), independent of the function
description length | 𝑓 |, i.e., |sk𝑓 | = poly(𝜆).

• Its ciphertext ct𝑥 (𝑦) is rate-2 in the private input length |𝑦| (nearly optimal) and
independent of the public input length |𝑥| (optimal), i.e., |ct𝑥 (𝑦) | = 2|𝑦| + poly(𝜆).

• Decryption time is linear in the instance RAM running time 𝑇, plus the function
and public/private input lengths, i.e., 𝑇Dec = (𝑇 + | 𝑓 | + |𝑥| + |𝑦|) poly(𝜆).

As a corollary, we obtain the first ABE with both keys and ciphertexts being constant-
size, while enjoying the best-possible decryption time matching the lower bound by
Luo [ePrint ’22]. We also separately achieve several other PHFE and ABE schemes.

We study the barriers to further efficiency improvements. We prove the first
unconditional space-time trade-offs for (PH-)FE:

• No secure (PH-)FE can have |sk𝑓 | and 𝑇Dec both sublinear in | 𝑓 |.
• No secure PHFE can have |ct𝑥 (𝑦) | and 𝑇Dec both sublinear in |𝑥|.

Our lower bounds apply even to the weakest secret-key 1-key 1-ciphertext selective
schemes. Furthermore, we demonstrate a conditional barrier towards the optimal
decryption time 𝑇Dec = 𝑇 poly(𝜆) while keeping linear size dependency — any such
(PH-)FE scheme implies doubly efficient private information retrieval (DE-PIR) with
ideal efficiency, for which so far there is no satisfactory candidate.

This is the full version (a major revisoion) of [JLL23] (in the proceedings of Eurocrypt 2023,
published by Springer, © IACR 2023, DOI 10.1007/978-3-031-30620-4_16).

i

https://orcid.org/0000-0003-1225-5310
https://doi.org/10.1007/978-3-031-30620-4_16

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 What’s Next? . 6
1.3 Technical Overview . 7
1.4 Related Works . 13

2 Preliminaries 16
2.1 Multi-Tape Random-Access Machine . 16
2.2 Laconic Garbled RAM . 19
2.3 Partially Hiding Functional Encryption and FE for Circuits 22
2.4 Universal RAM and PHFE for RAM . 24
2.5 Indistinguishability Obfuscation . 25
2.6 Laconic Oblivious Transfer . 26
2.7 Garbled Circuits . 28
2.8 Puncturable Pseudorandom Function . 28
2.9 Secret-Key Encryption . 29
2.10 Oblivious RAM . 29
2.11 Primitives Related to Lower Bounds . 32

3 Efficiency Trade-Offs of PHFE for RAM 33
3.1 Contention Between Storage Overhead and Decryption Time 34
3.2 Barrier to Fast Decryption . 38

4 Bounded LGRAM with Fixed-Memory Security 41
4.1 Construction . 41
4.2 Security . 45

5 Transformations of LGRAM 54
5.1 Fixed-Memory to Fixed-Address . 54
5.2 Fixed-Address to Full Security . 58
5.3 Bounded to Unbounded . 61

6 PHFE for RAM 64
6.1 Bounded Private Input . 64
6.2 Full-Fledged PHFE for RAM . 73

7 Applications 76
7.1 Rate-1 PHFE for RAM . 76
7.2 ABE for RAM . 76
7.3 Constant-Overhead 𝑖O for RAM . 77

References 78

Appendix
A Generically Lifting DE-PIR Security 85

B Efficiency, Security, and poly(𝝀) Factors 88

ii

1 Introduction

Functional encryption (FE) [BSW11,O’N10] and attribute-based encryption (ABE) [SW05,
GPSW06] are powerful enhancement of public-key encryption with many fascinating
applications. In this work, we investigate their best-possible efficiency, proving inherent
space-time trade-offs for FE and presenting nearly optimal constructions of FE and ABE.

To this end, we consider partially hiding functional encryption (PHFE) [GVW15,
AJL+19,JLMS19], a general notion capturing both FE and ABE. In PHFE, a secret key sk𝑓
is associated with a function 𝑓 , whereas a ciphertext ct𝑥 (𝑦) is tied to a public input 𝑥 and
encrypts a private input 𝑦. Their decryption recovers the computation output 𝑓 (𝑥, 𝑦).
Collusion-resistant (indistinguishability-based) security ensures that given unboundedly
(polynomially) many secret keys {sk𝑓𝑞}𝑞 for multiple functions {𝑓𝑞}𝑞, ciphertexts ct𝑥 (𝑦0)
and ct𝑥 (𝑦1) tied to the same public input 𝑥 and encrypting different private inputs 𝑦0, 𝑦1
remain indistinguishable so long as none of the keys separate them by functionality, i.e.,
𝑓𝑞(𝑥, 𝑦0) = 𝑓𝑞(𝑥, 𝑦1) for all 𝑞. Put simply, the only information revealed about the private
input 𝑦 is the outputs {𝑓𝑞(𝑥, 𝑦)}𝑞.

Over the past decade, significant progress has been made in establishing the feasi-
bility of (PH-)FE, for various classes of computation, with different levels of efficiency
and security, and from different assumptions. However, we are yet to understand the
asymptotic optimality and theoretical limits of its efficiency. We ask:

What is the best-possible asymptotic efficiency of PHFE?
Are there trade-offs among different aspects of efficiency?

Can we construct optimally efficient PHFE?

We make progress towards answering the above questions.
For the lower bounds, we prove inherent trade-offs between the size of keys or

ciphertexts and the decryption time, and show barriers towards achieving the optimal
decryption time.

On the constructive front, we present the first collusion-resistant PHFE for RAM
solely based on the necessary assumption of (polynomially secure) collusion-resistant FE
for circuits, which in turn can be based on well-studied assumptions [JLS21,JLS22]. Our
scheme has nearly minimally sized keys and ciphertexts, and nearly optimal decryption
time matching our lower bounds. As a corollary, we obtain the first ABE with both
constant-size keys and constant-size ciphertexts, and the best-possible decryption time
matching the recently discovered lower bound [Luo22]. By slighting tweaking the
construction, we also obtain ABE with linear-size keys and/or ciphertexts and the optimal
decryption time subject to the known lower bound.

Dream Efficiency. Before describing our results, we first picture the dream efficiency
with respect to three important dimensions. Each dimension has been a consistent
research theme across many primitives in cryptography. These dimensions are not
disparate but closely related.

Efficient Computation Model. Using a realistic and efficient model helps accurately
characterizing efficiency. For example, the time of computation in the clear serves as
a baseline for decryption time. For this reason, functions should be represented by
random-access machines (RAM), the most efficient computation model subsuming both
circuits and Turing machines. It is also closer to real-world computers.

1 / 89

We consider a RAM 𝑈 (fixed1 at set-up time) with random access to three tapes, a
function tape containing 𝑓 , an input tape containing 𝑥 ∥ 𝑦, and a working tape. It may
produce arbitrarily long output, e.g., one bit at every step. This flexible model captures
many natural scenarios, e.g., binary search where the database could be part of 𝑓 , 𝑥, 𝑦. It
can emulate the evaluation of a circuit 𝐶 on input (𝑥, 𝑦) by putting the circuit description
on the function tape. In ciphertext-policy ABE, each ciphertext is tied to a predicate 𝑃,
which can be captured by setting 𝑥 = 𝑃. These examples tell us that any or even all of
𝑓 , 𝑥, 𝑦 could be long, and we want to optimize the efficiency dependency on their lengths.

Succinctness. Enjoying low communication and storage overhead means having short
master public key mpk, secret keys sk𝑓 , and ciphertexts ct𝑥 (𝑦). At the most basic level,
the size of each component should be polynomial in the length of the information it
is associated with — |mpk| = O(1),2 |sk𝑓 | = poly(| 𝑓 |), and |ct𝑥 (𝑦) | = poly(|𝑥|, |𝑦|), where
| 𝑓 |, |𝑥|, |𝑦| are the description lengths of 𝑓 , 𝑥, 𝑦, respectively — referred to as polynomial
efficiency.3 However, there is much to be desired beyond this basic level of efficiency. For
instance, linear efficiency means |sk𝑓 | = O(| 𝑓 |) and |ct| = O(|𝑥| + |𝑦|), and rate-1 efficiency
could mean |sk𝑓 | = | 𝑓 | + O(1) and |ct| = |𝑥| + |𝑦| + O(1).

In fact, even smaller parameters are possible. Since (PH-)FE does not aim to hide
the function 𝑓 , it is allowed to put the description of 𝑓 in the clear in the secret key,
and the non-trivial part of the secret key may be shorter than 𝑓 . In this case, the right
measure of efficiency should be the size of the non-trivial part (i.e., the overhead), which
we now view as the secret key. We can aim for secret keys of size independent of that of
the function — i.e., |sk𝑓 | = O(1) — referred to as constant-size keys. The same observation
applies to the public input 𝑥 tied to the ciphertext and we can hope for ciphertexts of size
independent of |𝑥| while having optimal, rate-1 dependency on the private input length |𝑦|
— i.e., |ct𝑥 (𝑦) | = |𝑦| + O(1). In summary:

IDEAL COMPONENT SIZESIDEAL COMPONENT SIZES. |mpk| = O(1), |sk𝑓 | = O(1), |ct𝑥 (𝑦) | = |𝑦| + O(1).

Note that the ideal component sizes are completely independent of the running time or
the output length of the computation.

Decryption Time. Decryption is also a RAM computation, Dec𝑓 ,𝑥,sk𝑓 ,ct𝑥 (𝑦) (mpk), which on
input mpk and with random access to 𝑓 , 𝑥, sk𝑓 , ct𝑥 (𝑦), computes the output 𝑈 𝑓 ,𝑥∥𝑦 (). We
want decryption to be efficient, ideally taking time linear in the instance running time 𝑇
of the RAM computation in the clear:

IDEAL DECRYPTION TIMEIDEAL DECRYPTION TIME. 𝑇Dec = O(𝑇).

1.1 Our Results

Is the dream efficiency attainable simultaneously in all of the three dimensions? Towards
understanding this, we present both new constructions and lower bounds.

1We can think of 𝑈 as a universal RAM.
2In this introduction, O(·) hides a multiplicative factor of poly(𝜆).
3It may appear that polynomial efficiency is the bare minimum. However, it is possible to consider

components whose sizes depend on an upper bound of the length of some information not tied to them.
Many early schemes are as such, e.g., the FE scheme of [GGH+13] has |mpk| = O(poly(max |𝑦|)), and the
celebrated ABE scheme by [BGG+14] has |mpk|, |ct| growing polynomially with the maximum depth of the
computation. When a scheme requires fixing an upper bound on parameter 𝑍 (e.g., input length, depth,
or size), it is said to be 𝑍-bounded.

2 / 89

New PHFE for RAM with (Nearly) Optimal Succinctness. Starting from polynomially
secure bounded FE for circuits, i.e., all of |mpk|, |sk𝑓 |, |ct(𝑦) | are just poly(| 𝑓 |, |𝑦|), which
in turn can be constructed from well-studied assumptions [JLS21,JLS22], we construct an
adaptively secure (unbounded) PHFE for RAM with nearly optimal succinctness.

Theorem 25. Assuming polynomially secure FE for circuits, there exists an adaptively secure
PHFE for RAM with

|mpk| = O(1), |sk𝑓 | = O(1), |ct𝑥 (𝑦) | = 2|𝑦| + O(1), 𝑇Dec = O(𝑇 + | 𝑓 | + |𝑥| + |𝑦|).

Our construction gives the first collusion-resistant (PH-)FE for RAM, and also the
first (PH-)FE for any model of computation (e.g., circuit or TM) with nearly optimal
succinctness. The only gap to optimality is that the ciphertext is rate-2 in |𝑦| instead
of rate-1. We can tweak our construction for the optimal succinctness, at the cost of both
adaptive security and long output:

Corollary 26. Assuming polynomially secure FE for circuits, there exists a semi-adaptively
secure PHFE for decisional (1-bit output) RAM with

|mpk| = O(1), |sk𝑓 | = O(1), |ct𝑥 (𝑦) | = |𝑦| + O(1), 𝑇Dec = O(𝑇 + | 𝑓 | + |𝑥| + |𝑦|).

Prior schemes work with either circuits [GGH+13,JLS21,JLS22] or Turing machines [AS16,
AM18,KNTY19], except for the recent concurrent and independent work of [ACFQ22],
which also constructs FE for RAM. All of them only achieve polynomial efficiency as
summarized in Table 1. We further discuss related works in Section 1.4.

As a corollary, we obtain the first ABE for RAM from falsifiable assumptions, and
the first for any model of computation with both constant-size keys and constant-
size ciphertexts. The only prior construction of ABE for RAM by [GKP+13] relies
on non-falsifiable assumptions like SNARK and differing-input obfuscation. In terms
of succinctness, existing schemes achieve either constant-size keys or constant-size
ciphertexts [ALdP11,YAHK14,Tak14,Att16,ZGT+16,AT20,LL20,LLL22]. Achieving constant-
size keys and ciphertexts simultaneously has been an important theoretical open question
(see discussion in [LLL22]). The state-of-the-art is summarized in Table 2.

Table 1. Comparison among some (PH-)FE schemes. All rows except this work are FE, and
this work is PHFE. 𝐶 is the circuit. 𝑇 is the instance running time of TM/RAM. All poly(·) and
O(·) implicitly contains 𝜆. For assumptions, “𝑖O” means indistinguishability obfuscation, FE is
always for circuits, “sls” means sublinearly succinct, “subexp” means subexponentially secure,
and “PK-DE-PIR” means public-key doubly efficient private information retrieval.

reference functionality |sk| |ct| 𝑇Dec adaptive assumption

[GGH+13] circuit poly(|𝐶 |) poly(|𝑦|) poly(|𝐶 |) 𝑖O
[KNTY19] circuit poly(|𝐶 |) poly(|𝑦|) poly(|𝐶 |) ✓ 1-key sls FE
[GWZ22] circuit poly(|𝐶 |) |𝑦| + O(1) poly(|𝐶 |) 𝑖O
[AS16] TM poly(| 𝑓 |) poly(|𝑦|) 𝑇 poly(| 𝑓 |, |𝑦|) ✓ 𝑖O
[AJS17] TM 𝑐| 𝑓 | + O(1) 𝑐|𝑦| + O(1) 𝑇 poly(| 𝑓 |, |𝑦|) ✓ subexp 𝑖O
[AM18] TM poly(| 𝑓 |) O(|𝑦|) 𝑇 poly(| 𝑓 |, |𝑦|) ✓ FE
[KNTY19] TM poly(| 𝑓 |) poly(|𝑦|) 𝑇 poly(| 𝑓 |, |𝑦|) 1-key sls FE
[ACFQ22] RAM poly(| 𝑓 |) poly(|𝑦|) 𝑇 poly(| 𝑓 |) PK-DE-PIR & FE

Theorem 25 RAM O(1) 2|𝑦| + O(1) O(𝑇 + | 𝑓 | + |𝑥| + |𝑦|) ✓ FE
Corollary 26 RAM

(1-bit output) O(1) |𝑦| + O(1) O(𝑇 + | 𝑓 | + |𝑥| + |𝑦|) FE

3 / 89

Table 2. Comparison among some KP-ABE schemes. Notations shared with Table 1. ABP means
arithmetic branching programs (also denoted by 𝐶). For assumptions, “𝑘-Lin” means 𝑘-Linear in
pairing groups, “LWE” means learning with errors, “GGM” means generic pairing group model,
“SNARK” means succinct non-interactive argument of knowledge, and “𝑑𝑖O” means differing-
input obfuscation.

reference functionality |sk| |ct| 𝑇Dec adaptive assumption

[LL20] ABP O(|𝐶 | · |𝑥|) O(1) O(|𝐶 | · |𝑥|) ✓ 𝑘-Lin
[BGG+14] circuit poly(𝑑) |𝑥| poly(𝑑) |𝐶 | poly(𝑑) LWE
[LLL22] circuit O(1) poly(𝑑) |𝐶 | poly(𝑑) ✓ GGM & LWE
[GKP+13] RAM O(1) poly(|𝑥|) O(𝑇 + | 𝑓 | + |𝑥|) SNARK & 𝑑𝑖O
Corollary 27 or 28 RAM O(1) O(1) O(𝑇 + | 𝑓 | + |𝑥|) ✓ FE
Corollary 28 RAM | 𝑓 | + O(1) O(1) O(𝑇 + |𝑥|) ✓ FE
Corollary 28 RAM O(1) |𝑥| + O(1) O(𝑇 + | 𝑓 |) ✓ FE
Corollary 28 RAM | 𝑓 | + O(1) |𝑥| + O(1) O(𝑇) ✓ FE

Corollary 27. Assuming polynomially secure FE for circuits, there exist adaptively secure
key/ciphertext-policy ABE schemes for RAM with

(KP-ABE) |mpk| = O(1), |sk𝑓 | = O(1), |ct𝑥 | = O(1), 𝑇Dec = O(𝑇 + | 𝑓 | + |𝑥|),
(CP-ABE) |mpk| = O(1), |sk𝑥 | = O(1), |ct𝑓 | = O(1), 𝑇Dec = O(𝑇 + | 𝑓 | + |𝑥|).

The decryption time of our PHFE and ABE appears suboptimal. In addition to the
necessary linear dependency on 𝑇, it also grows linearly with | 𝑓 |, |𝑥|, |𝑦|. It turns out that
ideal succinctness and ideal decryption time are at conflict. We prove that for PHFE, under
sublinear succinctness, the linear dependency of 𝑇Dec on | 𝑓 |, |𝑥| is inherent. We also show
barriers towards removing the dependency of 𝑇Dec on |𝑦| or | 𝑓 |, |𝑥| while maintaining
linear succinctness.

Our PHFE scheme matches the lower bounds and the barriers — it is Pareto-optimal
with respect to the dependency on | 𝑓 |, |𝑥|. For ABE, our lower bounds and barriers do
not apply. Nevertheless, our ABE scheme matches an existing lower bound by [Luo22],
which states that any moderately expressive ABE must satisfy |ct𝑥 | · 𝑇Dec = Ω(|𝑥|) and
|sk𝑓 | · 𝑇Dec = Ω(| 𝑓 |).4 Given that our scheme has constant-size keys and ciphertexts, its
decryption time matches the lower bound of [Luo22], hence it is thus Pareto-optimal. By
tweaking the construction, we obtain several other Pareto-optimal ABE schemes:

Corollary 28. Assuming polynomially secure FE for circuits, there exist adaptively secure
KP-/CP-ABE schemes for RAM with

(KP-ABE) |mpk| = O(1), |sk𝑓 | = | 𝑓 |𝐴 + O(1), |ct𝑥 | = |𝑥|𝐵 + O(1),
𝑇Dec = O(𝑇 + | 𝑓 |1−𝐴 + |𝑥|1−𝐵),

(CP-ABE) |mpk| = O(1), |sk𝑥 | = |𝑥|𝐵 + O(1), |ct𝑓 | = | 𝑓 |𝐴 + O(1),
𝑇Dec = O(𝑇 + | 𝑓 |1−𝐴 + |𝑥|1−𝐵).

All of the four combinations of (𝐴, 𝐵) ∈ {0, 1}2 are possible for both KP- and CP-ABE.
4The lower bounds apply as long as the ABE scheme supports broadcast encryption. Theorem 14

in [Luo22] is the first trade-off between |ct𝑥 | and 𝑇Dec. Essentially the same proof yields the second
trade-off between |sk𝑓 | and 𝑇Dec.

4 / 89

Contention Between Succinct Components and Fast Decryption. We now describe
our lower bounds in more detail. Consider the efficiency dependency on the lengths
of public information 𝑓 and 𝑥. We show that unconditionally, it is impossible to
simultaneously achieve key size sublinear in | 𝑓 | and decryption time sublinear in | 𝑓 |.
Similarly, it is impossible to have both ciphertext size and decryption time sublinear
in |𝑥|. In fact, these trade-offs apply to the weakest secret-key 1-key 1-ciphertext
selectively secure PHFE, and the first trade-off with respect to | 𝑓 | also applies to plain FE.

Theorems 5 and 6. For a secret-key 1-key 1-ciphertext selectively secure moderately expressive
PHFE with

either |sk| = O(| 𝑓 |𝐴) and 𝑇Dec = (𝑇 + | 𝑓 |𝐵 + |𝑦|) poly(|𝑥|),
or |ct| = |𝑥|𝐴 poly(|𝑦|) and 𝑇Dec = (𝑇 + | 𝑓 | + |𝑥|𝐵) poly(|𝑦|),

it must hold that 𝐴 ≥ 1 or 𝐵 ≥ 1. In the first case, the same (without 𝑥) is true for FE.

Our PHFE scheme achieves one profile of Pareto-optimality, 𝐴 = 0 and 𝐵 = 1.
A natural question is whether the other Pareto-optimal profile, 𝐴 = 1 and 𝐵 = 0 (or

even just 𝐵 < 1), is attainable. Another question is whether the decryption time must
grow with the length of the private input 𝑦.

Barriers to Ideal Decryption Time. We illustrate barriers to positive answers to the
above two questions. We show that PHFE with decryption time independent of | 𝑓 |,
|𝑥|, or |𝑦| implies doubly efficient private information retrieval (DE-PIR) with small
preprocessed database.

Theorems 10, 11, and 12. Suppose a secret-key moderately expressive PHFE with selective
security has

either |sk𝑓 | = O(| 𝑓 |𝐴) and 𝑇Dec = | 𝑓 |𝐵 poly(𝑇, |𝑥|, |𝑦|),
or |ct𝑥 | = |𝑥|𝐴 poly(|𝑦|) and 𝑇Dec = |𝑥|𝐵 poly(𝑇, | 𝑓 |, |𝑦|),
or |ct𝑥 | = |𝑦|𝐴 poly(|𝑥|) and 𝑇Dec = |𝑦|𝐵 poly(𝑇, | 𝑓 |, |𝑥|),

for constants 𝐴 and 0 ≤ 𝐵 < 1, then there exists a secret-key DE-PIR with

|𝐷| = |𝐷| + O(|𝐷|𝐴), 𝑇Resp = O(|𝐷|𝐵), 𝑇Query = O(1), 𝑇Dec = O(1).

In the first case, the PHFE only has to be 1-key secure, and if it is public-key, then so can be the
resultant DE-PIR.

DE-PIR, introduced by [BIPW17,CHR17], allows a client to privately encode a database
𝐷 into 𝐷 while keeping a public or secret key 𝑘. Later, client can outsource the
encoded database 𝐷 to a remote storage server, and obliviously query the database using 𝑘
hiding the logical access pattern. Different from ORAM, the server never updates the
encoded database nor keeps any additional state. Different from PIR, DE-PIR allows the
database to be privately encoded in exchange for double efficiency — for each query, the
complexities of both the client and the server are, ideally, independent of the database
size |𝐷|, whereas PIR necessarily has server complexity Ω(|𝐷|). The double efficiency of
DE-PIR makes it highly desirable. The initial works [BIPW17,CHR17] presented candidate
constructions based on a new conjecture that permuted local-decoding queries (for a

5 / 89

Reed–Muller code with suitable parameters) are computationally indistinguishable from
uniformly random sets of points. More recently, a simple “toy conjecture” inspired
by (though formally unrelated to) those DE-PIR schemes has been broken [BHMW21].
Very recently, in a concurrent and independent work, Lin, Mook, and Wichs [LMW23]
constructed DE-PIR with public preprocessing from the ring LWE assumption.

The most important efficiency metrics of DE-PIR are the preprocessed database
size and the complexity per query. Our theorem shows that constructing PHFE with
short decryption time entails constructing DE-PIR with preprocessed database size
inherited from ciphertext/key size. In particular, a PHFE scheme with decryption time
independent of |𝑦| and ciphertext size linear in |𝑦| implies a DE-PIR with preprocessed
database of length O(𝑁) and constant complexity per query. Such efficiency is currently
considered open. (See Sections 1.4 and B.)

Succinct Garbled RAM and Constant-Overhead 𝒊O. The main tool in our construction
of PHFE for RAM is succinct garbled RAM (GRAM). Initiated by [KLW15,BGL+15,CHJV15],
a sequence of works have constructed succinct garbled RAM [CH16,CCC+16,ACC+16,
CCHR16] based on subexponentially secure FE for circuits and succinct garbled Turing
machines [KLW15,AJS17,AL18,GS18b] based on polynomially secure FE for circuits.

In this work, we formulate a new notion of succinct GRAM geared for building highly
efficient PHFE for RAM, and construct it based on polynomially secure FE for circuits.
Our construction has two consequences: i) we obtain the first succinct GRAM (our or the
standard notion) based on polynomial hardness, as opposed to subexponential hardness
as in prior constructions, and ii) using 𝑖O for circuits, we obtain 𝑖O for RAM with
constant overhead — the size of the obfuscated program is 2|𝑀 | + poly(𝑁), where 𝑀
is the RAM to be obfuscated and 𝑁 is the input length. Previously, constant-overhead 𝑖O
was only known for circuits [BV15] and Turing machines [AJS17].

1.2 What’s Next?

Recent developments of PHFE for RAM leave several interesting questions open for
future research.

Optimal Decryption Time and Ideally Efficient DE-PIR. We are yet to construct PHFE
with optimal decryption time from ideally efficiency DE-PIR. The work of [ACFQ22]
provides a partial answer, but a more careful construction is required per definitions
in this work. Constructing ideally efficiency DE-PIR is also in itself a goal.

Rate, Security, and Functionality. Our PHFE achieves either rate-2 with adaptive
security and long output, or rate-1 with semi-adaptive security and short output. (The
rate-1 scheme of [GWZ22] is also semi-adaptively secure and for short output.) The factor
of two in our scheme arises from the classic technique of double encryption [NY90,
BS18]. Achieving rate-1 with either adaptive security or long output (or even both) seems
to require novel techniques.

Tight Relation Between Optimal Decryption Time and DE-PIR Notion. From [ACFQ22],
we know that FE for circuits plus public-key DE-PIR implies FE for RAM with 𝑦-
independent decryption time, yet both [ACFQ22] and our work are only able to show
such FE for RAM implies secret-key DE-PIR. A natural question is what the tight relation
between those notions is, or whether gap between public-/secret-key can be closed. Can

6 / 89

we construct such FE for RAM from secret-key DE-PIR? Does such FE for RAM imply
public-key DE-PIR?

Exact Pareto Frontier of PHFE and ABE Efficiency. The efficiency trade-offs character-
ized by [Luo22] and this work are depicted in Figure 1. For PHFE, studying DE-PIR and
solving the first open question could completely resolve the unknown area related to DE-
PIR. For ABE, we know neither lower bounds5 nor constructions in the unknown area,
and it remains to pin down the exact Pareto frontier of its efficiency.

PHFE — dependency on 𝑓 or 𝑥
characterized by this work.

time
exponent

size exponent

impossible
achieved

DE-PIR

ABE — dependency on 𝑓 or 𝑥.

time
exponent

size exponent

Luo22

this work

this work

Figure 1. Currently known trade-offs of PHFE and ABE efficiency.

1.3 Technical Overview

We start with an overview of our negative results.

Unconditional Lower Bounds. As introduced earlier, we show that it is impossible for
a secure PHFE to enjoy sublinear dependency on | 𝑓 | [resp. |𝑥|] simultaneously for |sk𝑓 |
[resp. |ct𝑥 (𝑦) |] and 𝑇Dec when 𝑇Dec is linear in 𝑇, |𝑥|, |𝑦| [resp. 𝑇, | 𝑓 |, |𝑦|]. We illustrate our
ideas of proving the contention between

|sk𝑓 | = O(| 𝑓 |𝐴) and 𝑇Dec = O(𝑇 + | 𝑓 |𝐵 + |𝑥| + |𝑦|) for 𝐴 < 1 and 𝐵 < 1

by exhibiting an efficient adversary breaking the security of PHFE for RAM (polynomial
factors in the security parameter are ignored).

Adversarial Function and Strategy. The adversary will selectively request one secret key
and one ciphertext. Let 𝑛 < 𝑁 be determined later.

• The function 𝑓 is described by a string 𝑅 ∈ {0, 1}𝑁 .

• There is no public input, so 𝑥 = ⊥.

• The private input 𝑦 is either (𝐼 ⊆ [𝑁], 𝑤 ∈ {0, 1}𝑛) or 𝑧 ∈ {0, 1}𝑛, where 𝐼 is a set
containing 𝑛 indices and 𝑤 is a one-time pad.

5The existing lower bound [Luo22] only uses broadcast functionality, a rather simple ABE. It is well
possible that a stronger lower bound applies to ABE for RAM.

7 / 89

The functionality is simply reading and XORing or outputting as-is, i.e.,

𝑓 (𝑥, 𝑦) =
{
𝑅[𝐼] ⊕ 𝑤, if 𝑦 = (𝐼, 𝑤);
𝑧, if 𝑦 = 𝑧;

where 𝑅[𝐼] means the 𝑛 bits of 𝑅 at the indices in 𝐼. Clearly,

| 𝑓 | = O(𝑁), |𝑥| = O(1), |𝑦| = O(𝑛), 𝑇 = O(𝑛),
|sk| = O(𝑁𝐴), 𝑇Dec = O(𝑛 + 𝑁𝐵).

More precisely, |𝑦| = O(𝑛 log 𝑛), but the log 𝑛 factor is absorbed by the poly(𝜆) factor
hidden in O(·).

The adversary chooses

key query 𝑓 with 𝑅 $← {0, 1}𝑁 ,

challenge 𝑥← ⊥, 𝑦0
$← random (𝐼, 𝑤), 𝑦1 ← 𝑧 = 𝑅[𝐼] ⊕ 𝑤.

By our choice, 𝑓 (𝑥, 𝑦0) = 𝑅[𝐼] ⊕ 𝑤 = 𝑧 = 𝑓 (𝑥, 𝑦1), so the challenge is well-formed. Upon
receiving sk and ct, the adversary simply runs the decryption algorithm on them with
random access to the function description 𝑅 in the clear. It notes down the set 𝐿 ⊆ [𝑁]
of indices in 𝑅 that are read during decryption, i.e.,

𝑅[𝐼] ⊕ 𝑤 = 𝑧← Dec𝑓=𝑅,𝑥=⊥,sk,ct(), where Dec reads 𝑅[𝐿].

The adversary determines that

ct is an encryption of

{
𝑦0 = (𝐼, 𝑤), if |𝐿 ∩ 𝐼 | is large;
𝑦1 = 𝑧, if |𝐿 ∩ 𝐼 | is small;

where the threshold for large and small is described below.

Intuition and Toy Proof. The intuition behind the adversary’s strategy is simple. Let 𝐿𝑏
be the index set 𝐿 accessed when decrypting ct encrypting 𝑦𝑏.

• When ct encrypts 𝑦0, the decryption algorithm can be used to recover 𝑅[𝐼] (as the
adversary knows 𝑤). It can only obtain information of 𝑅[𝐼] from sk and 𝑅. Since
𝑅[𝐼] contains 𝑛 bits of entropy, by setting |sk| = O(𝑁𝐴) ≪ 𝑛, decryption must read
a large portion of 𝑅[𝐼], implying that |𝐿 ∩ 𝐼 | is large, namely, Ω(𝑛).

• In contrast, when ct encrypts 𝑦1, observe that the joint distribution of (𝑅, ct, sk) is
independent of 𝐼 (𝑤 is a one-time pad and completely hides 𝐼 in 𝑦1 = 𝑅[𝐼] ⊕ 𝑤).
Therefore, the behavior of Dec is independent of 𝐼. By tuning the parameters, we
make Dec run in time O(𝑛 + 𝑁𝐵) ≪ 𝑁, so short that with 𝐼 unknown, the locations
Dec reads in 𝑅 only have a small overlap with 𝐼, i.e., |𝐿 ∩ 𝐼 | is likely to be small.

It remains to analyze how large and small |𝐿 ∩ 𝐼 | is in the above two cases. Let’s first
consider a toy proof, under the hypothesis that sk contains no information about 𝑅[𝐼]
at all. We will remove this hypothesis later. When ct encrypts 𝑦0, the decryption
algorithm must read the entire 𝑅[𝐼] from 𝑅 itself, i.e., 𝐼 ⊆ 𝐿0, so |𝐿0 ∩ 𝐼 | = |𝐼 | = 𝑛. When

8 / 89

ct encrypts 𝑦1, since the indices 𝐿1 read from 𝑅 are independent of 𝐼, the intersection
size |𝐿1 ∩ 𝐼 | follows a hypergeometric distribution and

𝔼
[
|𝐿1 ∩ 𝐼 |

]
≤ 𝑇Dec · 𝑛

𝑁
≪ 𝑛.

This means the adversary can distinguish when ct encrypts 𝑦0 or 𝑦1 with good advantage,
and contradicts the security of PHFE.

Removing the Hypothesis. The hypothesis that sk contains no information about 𝑅[𝐼] at
all may well be false. When it is removed, we can no longer argue that 𝐼 ⊆ 𝐿0, as the
decryption algorithm may obtain some information of 𝑅[𝐼] from sk. Our intuition is
|𝐿0 ∩ 𝐼 | ≥ |𝐼 | − |sk|, but proving this formally is not trivial as sk could depend arbitrarily
on 𝑅[𝐼].

We employ a compression argument. The basic idea behind a compression argument
is that no pair of encoding and decoding algorithms (𝐸, 𝐷), sharing arbitrarily long
randomness 𝑠, can transmit an 𝑛-bit random string 𝑢 (independent of 𝑠) from one end
to the other via an encoding 𝑣 of less than 𝑛 bits, i.e.,

Pr

𝑠

$← S

𝑢
$← {0, 1}𝑛

𝑣← 𝐸(𝑠, 𝑢)
: 𝐷(𝑠, 𝑣) = 𝑢

 = 1 =⇒ |𝑣| ≥ |𝑢|.

We show that if |𝐿0 ∩ 𝐼 | < |𝐼 | − |sk|, then there would exist (𝐸, 𝐷) violating the above
information-theoretic bound:

• The shared randomness 𝑠 consists of PHFE randomness and 𝐼, 𝑤, 𝑅[[𝑁] \ 𝐼].

• To encode 𝑢 ∈ {0, 1}𝑛, the procedure 𝐸 first fills 𝑅[𝐼] = 𝑢. Using 𝑠, it generates a
PHFE key sk for 𝑅 and a ciphertext ct encrypting 𝑦0 = (𝐼, 𝑤), and then runs Dec to
obtain the indices 𝐿0 read into 𝑅. The codeword is 𝑣 = (sk, 𝑅[𝐿0 ∩ 𝐼]).

• To decode, 𝐷 regenerates ct using 𝑠, runs Dec to obtain 𝑧 = 𝑅[𝐼] ⊕ 𝑤, and recovers
𝑢 = 𝑧 ⊕ 𝑤. Note that every query by Dec into 𝑅 is in either 𝑅[[𝑁] \ 𝐼] (found in 𝑠)
or 𝑅[𝐿0 ∩ 𝐼] (found in 𝑣).

Suppose |𝐿0 ∩ 𝐼 | < |𝐼 | − |sk|, then |𝑣| = |sk| + |𝐿0 ∩ 𝐼 | would be less than |𝑢| = |𝐼 |, contra-
dicting the incompressibility of 𝑢.6

The toy analysis of ct encrypting 𝑦1 holds, for which |𝐿1 ∩ 𝐼 | ≤ 𝑛/2 with high prob-
ability by Markov’s inequality. To make ciphertexts of 𝑦0 and 𝑦1 easily distinguishable,
we can set,7 e.g., 𝑛 = 𝑁 (𝐴+1)/2, so that |sk| = O(𝑁𝐴) ≪ 𝑛 hence |𝐿0 ∩ 𝐼 | ≥ |𝐼 | − |sk| ≥ 2𝑛/3.
In summary, any PHFE scheme with both |sk| and 𝑇Dec sublinear in | 𝑓 | (and linear in
𝑇, |𝑥|, |𝑦|) must be insecure.

6We have implicitly assumed that |𝐿0 ∩ 𝐼 | has a fixed size. The formal proof handles potentially random
|𝐿0 ∩ 𝐼 | by truncation. It suffers from incorrect decoding hence the statements are probabilistic.

7In the formal proof, 𝑁 itself is a large poly(𝜆) to overwhelm the hidden poly(𝜆) factors in the
efficiency parameters, which are ignored in this overview.

9 / 89

Technical Barrier Towards Fast Decryption. We demonstrate barriers in current
techniques against constructing a PHFE scheme with fast decryption. Consider a PHFE
scheme whose decryption time is

| 𝑓 |𝐵 poly(𝑇, |𝑥|, |𝑦|) or |𝑥|𝐵 poly(𝑇, | 𝑓 |, |𝑦|) or |𝑦|𝐵 poly(𝑇, | 𝑓 |, |𝑥|)

for constant 𝐵 < 1, with linear-size components. We show that any of those schemes
implies doubly efficient private information retrieval (DE-PIR).

To illustrate our main idea, we present this transformation for the case when
decryption takes time poly(𝑇, |𝑥|, |𝑦|), independent of | 𝑓 |. In this case, we obtain public-
key DE-PIR. The ideas naturally extend to the other cases, but the resultant DE-PIR
schemes are only secret-key.

Since decryption is efficient in | 𝑓 |, it is natural to set 𝑓 as the database 𝐷 ∈ {0, 1}𝐵.
For DE-PIR security, we set 𝑦, the only component with privacy in PHFE, to be the index
𝑖 ∈ [𝑁] being queried. The client processes 𝐷 by sampling (mpk,msk) of the PHFE and
sending

𝐷 = (𝐷, sk), where sk $← KeyGen(mpk, 𝐷)

to the server. It keeps mpk locally. To look up 𝐷[𝑖], the client sends a fresh PHFE
ciphertext

ct $← Enc(mpk,
𝑥,𝑦︷︸︸︷
⊥, 𝑖)

to the server, which responds by running 𝐷[𝑖] ← Dec𝐷,⊥,sk,ct(mpk). Note that double
efficiency is already satisfied. The client prepares a query in time polynomial in the
bit-length of 𝑦, i.e., poly(log𝑁). Due to the supposed efficiency of decryption, the server
responds within time poly(𝑇, |𝑥|, |𝑦|) = poly(log𝑁).

While this idea solves the core issue, we have missed an important aspect. The
scheme does not fully hide the queried indices, only so when 𝐷[𝑖0] = 𝐷[𝑖1]. Fortunately,
full hiding of DE-PIR can be obtained via generic transformations. When processing
𝐷 ∈ {0, 1}𝑁 , we let 𝐷′ be 𝐷 concatenated with its bitwise negation, and process 𝐷′ using
the weak scheme. Each time some 𝐷[𝑖] needs to be looked up, the client randomly issues
a query (in the weak scheme) to either 𝐷′[𝑖] or 𝐷′[𝑁 + 𝑖] and notes down its choice.
When the server responds, the client obtains the correct result from the remembered
choice. The transformed DE-PIR fully hides the query indices while preserving the
efficiency of the underlying scheme.

Overview of Our PHFE for RAM. At a very high level, we use a succinct garbled RAM
(GRAM) scheme to lift an FE for circuits to a PHFE for RAM. The former can be viewed
as a 1-key, 1-ciphertext, secret-key FE for RAM, where succinctness means that the
running time of key generation and encryption is independent of the running time of the
RAM computation. A (collusion-resistant) FE for circuits then lifts one-time security to
many-time. This high-level approach first appeared in [AS16] for building FE for TM. In
this work, towards nearly optimally efficient FE for RAM, we first observe that existing
definitions and constructions of succinct GRAM [BGL+15,CHJV15,CH16,CCC+16,ACC+16,
CCHR16] are insufficient. Therefore, we formulate a new variant of succinct GRAM,
termed laconic GRAM, then construct it. Along the way, we also weaken the assumption
underlying succinct/laconic GRAM schemes from 𝑖O, which is considered an inherently
subexponential assumption, to polynomially secure FE for circuits.

10 / 89

Let’s first review the syntax and security of standard GRAM schemes. They consist
of the following algorithms. The encoding algorithm encodes a database 𝐷 into 𝐷 and
outputs a private state 𝑘. The garbling algorithms uses 𝑘 to garble a RAM 𝑀 into �̂�
and outputs a collection of input labels {𝐿𝑖,𝑏}𝑖,𝑏. The evaluation algorithm, given the
garbled RAM �̂�, one set of labels corresponding to an input 𝑤, and random access to 𝐷,
returns the output 𝑀𝐷(𝑤) of the RAM computation. Simulation-based security ensures
that 𝐷, �̂�, {𝐿𝑖,𝑤[𝑖]}𝑖 can be simulated using only the output 𝑀𝐷(𝑤). The efficiency
requirements of those algorithms are

(𝐷, 𝑘) $← Encode(𝐷), (�̂�, {𝐿𝑖,𝑏}𝑖,𝑏) $← Garble(𝑀, 𝑘), 𝑀𝐷(𝑤) ← Eval𝐷(�̂�, {𝐿𝑖,𝑤[𝑖]}𝑖),
|𝐷| = O(|𝐷|), |�̂� | = poly(|𝑀 |), 𝑇Eval = 𝑇 poly(|𝑀 |).

Unfortunately, the standard notion falls short for our purpose of building highly efficient
FE for RAM. We elaborate and explain how to address those issues.

• multi-tape instead of single-tapemulti-tape instead of single-tape. To begin, we consider RAM computation with
multiple tapes, 𝑀 𝑓 ,𝑥𝑦 (), instead of 𝑀𝐷(𝑤) with a single tape. GRAM schemes
directly constructed often have (inevitably bad) polynomial efficiency dependency
on |𝑀 |, which is inherited by the PHFE. By making 𝑀 a universal machine and
letting 𝑓 , 𝑥, 𝑦 be the tape contents, it is easier to characterize and achieve the
desired efficiency.

• public tape instead of private tapepublic tape instead of private tape. The tape contents 𝐷 or parts of them (such as
𝑓 , 𝑥) are public. The standard GRAM is defined only for private tapes, making the
encoding size at least |𝐷|. In PHFE, we provide verbatim copies of 𝑓 , 𝑥 for free and
only count the overhead in sk, ct, so we must not use standard GRAM when aiming
for |sk|, |ct| independent of | 𝑓 |, |𝑥|.

• compressing instead of encodingcompressing instead of encoding. Our notion requires a compression algorithm that
hashes public tapes down to short digests, and the garbling algorithm “binds” the
hashes to the garbled program. Lastly, the evaluation algorithm gets random access
to the tape contents in the clear, like PHFE decryption. Our GRAM only handles
public tapes and the hiding of 𝑦 is deferred to the construction of PHFE, where we
achieve rate-2 thanks to the digests being short.

• reusable digests instead of one-time encodingreusable digests instead of one-time encoding. The encoding 𝐷 in standard GRAM
can only be used once for a single garbled program generated using the secret 𝑘.8
When lifted to multi-time security, each decryption of PHFE for RAM requires
generating a fresh 𝐷 inside the FE for circuits, inheriting its bad efficiency. To
get rid of it, we require the digests be reusable, so that decryption does not have
to recompute them.

• relaxed evaluation timerelaxed evaluation time. Reusability comes at a cost. In our notion, the evaluation
time is (𝑇 + | 𝑓 | + |𝑥| + |𝑦|) poly(|𝑀 |), whereas in the standard GRAM it is indepen-
dent of the tape lengths | 𝑓 |, |𝑥|, |𝑦|. Nevertheless, our negative results imply that the
dependencies are either impossible (subject to the laconic requirement) or difficult
(due to DE-PIR) to get around.

8We remark that 𝐷 is often sequentially reusable, meaning that it can be updated by one execution,
from where the next execution resumes. However, in FE, we need 𝐷 to be parallel reusable because
multiple decryptions start from the same tape contents and can be done in no particular order.

11 / 89

• long outputs instead of single-bit outputlong outputs instead of single-bit output. The standard GRAM notions deal with
RAM with single-bit (or fixed-length) output, and longer outputs are handled by
running multiple instances, one for each bit. For simulation security, the garbling
size grows at least linearly with the output length, not to mention that the output
length could be the running time, with no a priori polynomial upper bound. We
consider garbling with arbitrarily long outputs without compromising its efficiency,
for which we consider only indistinguishability-based security.

Putting the above pieces together, we formulate our laconic GRAM as in Figure 2.

• Compress(𝜏, 𝐷𝜏) compresses the 𝜏th public tape 𝐷𝜏 into a short hash digest𝜏 of
constant length. It runs in time O(|𝐷𝜏 |).

• Garble(𝑀, {digest𝜏}𝜏) outputs a garbled program �̂� bound to the public tapes
via their hashes, and pairs of labels {𝐿𝑖,𝑏}𝑖,𝑏. It runs in time poly(|𝑀 |).

• Eval𝐷1,...,𝐷T (𝑀, {digest𝜏}𝜏, �̂�, {𝐿𝑖,𝑤[𝑖]}𝑖) returns the (arbitrarily long) output of
RAM computation 𝑀𝐷1,...,𝐷T (𝑤). It runs in time O(𝑇 +∑

𝜏 |𝐷𝜏 |) poly(|𝑀 |).

• Security guarantees that if 𝑀𝐷1,...,𝐷T (𝑤0) and 𝑀𝐷1,...,𝐷T (𝑤1) have identical
outputs and running time, the distributions of (�̂�, {digest𝜏}𝜏, {𝐿𝑖,𝑤0 [𝑖]}𝑖) and
(�̂�, {digest𝜏}𝜏, {𝐿𝑖,𝑤1 [𝑖]}𝑖) are indistinguishable. This holds when the tape
contents {𝐷𝜏}𝜏 are chosen adaptively, dependent on the hashes of previously
chosen tape contents, before the program 𝑀 and inputs 𝑤0, 𝑤1 are chosen.

Figure 2. An overview of the notion of laconic GRAM.

Our Construction of Laconic GRAM. One approach towards constructing laconic GRAM
for RAM is to first obtain a non-succinct GRAM for RAM (with garbling size proportional
to the worst-case running time) with tape compression from laconic OT techniques,
then further compress the GRAM. First introduced in [BGL+15], the second step uses
𝑖O to obfuscate a circuit that on input an index 𝑡 outputs the 𝑡th component of the non-
succinct GRAM. If each component can be locally generated using a small circuit of size
poly(|𝑀 |), then the obfuscated circuit is also of size poly(|𝑀 |) and can be used as the
succinct garbled program. To prove security, [BGL+15] identified that the non-succinct
garbling scheme must satisfy another property, articulated later by [AL18], called local
simulation. Informally, the non-succinct garbling must be proven secure via a sequence
of hybrids where the components of every hybrid garbled program can be locally
generated using a small circuit, and in neighboring hybrids, only a few components
change. Beyond succinct garbling, local simulation has also found applications in
achieving adaptive security [BHR12] of garbling schemes. A sequence of works developed
local simulation strategies for garbled circuits [HJO+16,GS18a], Turing machines [GS18b,
AL18], and RAM [GOS18]. Most notably, the work of [GS18a] took advantage of a clever
pebbling technique.

Our construction of laconic GRAM proceeds in multiple steps. First, we use the
techniques of [GS18a] to obtain a non-succinct GRAM with local simulation proof for
a weak security called fixed-memory security. Indistinguishability only holds when

12 / 89

the two RAM computations have not only identical outputs and running time, but also
identical memory access pattern and content. Next, by the same approach of [BGL+15,
GS18b,AL18], we turn it into a succinct one, still with only fixed-memory security, relying
on 𝑖O for polynomial-size domain, which is implied by polynomially secure FE for
circuits.

Many details need to be ironed out in order to implement our notion of laconic
GRAM. For example, prior works [GS18a,GS18b,AL18] deal with single-bit output and
the intermediate hybrids have the output hardwired into the garbled program. In
contrast, we aim for RAM with arbitrarily long outputs. Hardwiring the long output
would compromise the local simulation property since the hybrid garbled program can
no longer be locally generated. To avoid this, we build a hybrid GRAM running with
one input 𝑘0 in the prefix of the computation and with the other input 𝑘1 in the suffix.
This ensures that the output can always be correctly computed while maintaining local
simulation. Similar techniques appeared in [GOS18] for different reasons.

Lastly, we lift fixed-memory security to full security using punctured PRF and ORAM to
protect memory content and access pattern, respectively. One issue in hiding the access
pattern is that in our laconic GRAM, the public input tapes 𝐷1, . . . , 𝐷T are not encoded
using ORAM prior to garbling and evaluation. Yet, to ensure security, evaluation must
access them in an oblivious way, independent of the input 𝑤0 or 𝑤1. To solve this issue,
we use a modified RAM 𝑀′ that first copies 𝐷1, . . . , 𝐷T into a freshly initialized, empty
ORAM and then runs 𝑀, with accesses to 𝐷’s redirected to the ORAM. Now that the
access pattern of 𝑀′ is independent of the input, it suffices to garble it using GRAM
with weaker security. The running time of 𝑀′ scales linearly with the total length of all
tapes ∑

𝜏 |𝐷𝜏 |, leading to such linear dependency in our laconic GRAM evaluation time.
Our lower bound shows that this dependency cannot be removed. As a final point, to
prove security, we must ensure that the use of ORAM does not hurt local simulation.
Fortunately, the work of [CH16] provides a solution.

1.4 Related Works

Our new constructions significantly improve upon the efficiency of prior FE and ABE
schemes. The state-of-the-art is summarized in Tables 1 and 2. Below, we compare with
prior works in more detail.

FE for Circuits. The first construction of collusion-resistant FE for polynomial-size
circuits is by [GGH+13] and based on 𝑖O, which in turn relies on subexponential
hardness. Later works [GS16,LM16,KNT18,KNTY19] improved the assumption from 𝑖O
to 1-key FE with sublinearly compact ciphertext, |ct(𝑦) | = | 𝑓 |1−𝜀 poly(|𝑦|), where 𝜀 is
a positive constant and | 𝑓 | is the maximum circuit size of 𝑓 . The latter has been
recently constructed by [JLS21,JLS22] from the polynomial hardness of three well-
studied assumptions. However, these FE schemes for circuits only enjoy polynomial
efficiency. The only exception is the recent construction due to [GWZ22], which has
rate-1 ciphertexts, i.e., |ct(𝑦) | = |𝑦| + O(1), yet large secret keys with |sk𝑓 | = poly(| 𝑓 |).

FE for Turing Machines. Several works constructed FE for Turing machines with
arbitrary-length inputs, first from 𝑖O [AS16], then from FE for circuits [AM18], and more
recently from 1-key sublinearly compact FE [KNTY19]. The scheme of [AS16] relies on a
1-key 1-ciphertext secret-key FE for TM, which is essentially a succinct garbling scheme

13 / 89

for TM with indistinguishability-based security. They constructed it by modifying the
succinct garbling for TM of [KLW15]. Later, the works of [AL18,GS18b] improved and
simplified the garbling construction. The work of [KNTY19] improved the assumption to
1-key sublinearly succinct FE, and showed that their garbling scheme can be combined
with [AS16] to obtain FE for TM. On the other hand, the work of [AM18] presented an
alternative direct approach to FE for TM from FE for circuits without going through
succinct garbling for TM. Prior constructions of FE for TM [AS16,AM18,KNTY19] put more
focus on weakening the underlying assumptions, and only show polynomial efficiency.
Examining their schemes, we conclude that they achieve efficiency listed in Table 1.

FE for Bounded-Input RAM. A line of research obtained bounded-input 𝑖O for Turing
machines [KLW15,AJS17,GS18b] and RAM [BGL+15,CHJV15,CH16,CCC+16,ACC+16,CCHR16].
Plugging these 𝑖O schemes into [GGH+13] yields bounded-input FE for TM or RAM —
existing 𝑖O only handles bounded-input TM or RAM in the sense that the obfuscator
needs to know the maximum input length max |𝑦| to the machine being obfuscated, and
constructing 𝑖O for unbounded-input TM/RAM remains a major open question.9 Plug-
ging them into [GGH+13] yields schemes where the key generation algorithm depends on
the maximum input length max |𝑦|, despite that the machine 𝑓 could process arbitrarily
long inputs. Such FE is said to have bounded input length. In terms of efficiency, the
secret key contains an obfuscated program of size poly(| 𝑓 |,max |𝑦|) when using the 𝑖O
for RAM of [CHJV15,CH16], and poly(| 𝑓 |,max |𝑦|, 𝑆) with 𝑆 being the space complexity
of 𝑓 when using the 𝑖O for RAM of [BGL+15].

In summary, our construction gives the first full-fledged (PH-)FE scheme for RAM
with arbitrarily long inputs and outputs, significantly improves upon the efficiency of
prior FE schemes, and matches newly proven lower bounds.

ABE for Circuits and Turing Machines. Since FE implies ABE, the aforementioned FE
schemes immediately imply ABE with the same level of efficiency. We can also tweak our
construction to move the linear dependency between component size and decryption
time.

The literature on ABE focuses on constructing ABE from weaker assumptions and
achieving better efficiency, among others. The celebrated works of [GVW13,BGG+14]
showed that ABE for bounded-depth circuits can be constructed from the learning with er-
rors (LWE) assumption. Parameters of these schemes, however, depend polynomially on
the maximum depth 𝑑 of the supported circuits, namely, |mpk| = poly(𝑑), |sk𝑓 | = poly(𝑑),
|ct𝑥 | = |𝑥| poly(𝑑), and the decryption time is 𝑇Dec = | 𝑓 | poly(𝑑). A recent work [LLL22] im-
proved it to obtain constant-size keys while keeping the sizes of master public key and
ciphertext intact, but at the cost of additionally relying on the generic (pairing) group
model (GGM). ABE for low-depth computation such as NC1 or (arithmetic) branching
programs can be constructed using pairing groups, where several schemes have either
constant-size keys or constant-size ciphertexts, but never both [ALdP11,YAHK14,Tak14,
Att16,ZGT+16,AT20,LL20].

The work of [GKP+13] constructed ABE for Turing machines and RAM with constant-
size secret keys |sk𝑓 | = O(1), yet large ciphertexts |ct𝑥 | = poly(|𝑥|). Their scheme uses
SNARK and differing-input obfuscation, which cannot be based on falsifiable assump-
tions. Another work [AFS19] tries to construct ABE for RAM from LWE, at the cost of

9The only known obfuscation for unbounded-input Turing machines [JJ22] requires polynomial-size
proof of equivalence in Cook’s theory PV for security to hold.

14 / 89

making the master public key, secret keys, and ciphertexts all grow polynomially with
the maximum running time, i.e., it is an ABE for bounded-time RAM.

In summary, we give the first ABE schemes for RAM from falsifiable assumptions,
simultaneously having constant- or linear-size secret keys, constant- or linear-size cipher-
texts, and the best-possible decryption times matching the known lower bound [Luo22]
under the constraint of those key and ciphertext sizes, as shown in Table 2.

Concurrent and Independent Work on FE for RAM. Concurrently and independently
of our work, the recent work by Ananth, Chung, Fan, and Qian [ACFQ22] also considers
the question of FE for RAM. Despite an apparent overlap between the two works, there
are many differences. The two works start with different motivations. Our goal is
to understand the optimal succinctness and efficiency of PHFE, both constructively
and from a lower-bound perspective, whereas [ACFQ22] aims to construct FE for RAM
with optimal decryption time 𝑇Dec = O(𝑇). Consequently, the two works obtain mostly
complementary results.

First, we prove unconditional trade-offs between the sizes of keys/ciphertexts and
decryption time. It shows that no PHFE can have both optimal succinctness and
optimal decryption time. We then construct PHFE for RAM with (nearly) optimal
succinctness, while minimizing the decryption time to the best-possible, matching our
lower bounds. The work of [ACFQ22], on the other hand, constructs FE for RAM with
optimal decryption time. They did not attempt to simultaneously minimize the sizes of
secret keys and ciphertexts.

On the common front, both works show that any (PH-)FE scheme for RAM with
optimal decryption time implies DE-PIR. We regarded this as a barrier to optimal
efficiency due to lack of DE-PIR schemes from well-studied assumptions, whereas
in [ACFQ22], public-key DE-PIR (PK-DE-PIR) is used as a building block to implement
such PHFE. As a result, their scheme relied on ideal obfuscation and a new assumption
of permuted puzzles inherited from the then-current candidate PK-DE-PIR, whereas our
storage-optimal PHFE scheme is based on FE for circuits, which is necessary and can
in turn be based on well-studied assumptions. Our results about DE-PIR implication is
finer, in that we obtain PK-DE-PIR from 𝑓 -fast decryption. (See below for discussion
about the current status of DE-PIR.)

There are two other major differences in the schemes. Our scheme handles
arbitrarily long output, where as [ACFQ22] considers single-bit output. To handle long
output, they propose to generate a separate key to compute each output bit, meaning
that the key size grows linearly with the output length, which could be as long as the
running time in many scenarios. Moreover, our scheme achieves adaptive security,
whereas [ACFQ22] only considers selective security.

In terms of techniques, both works demonstrate that the main bottleneck towards
(PH-)FE for RAM is the insufficiency of existing notions of succinct GRAM — GRAM with
reusable tape encoding is needed. The two works develop different techniques to achieve
this. Our construction makes the garblings build fresh ORAM storage at the beginning
of every evaluation and hence ORAM is never reused, whereas [ACFQ22] uses PK-DE-PIR
to implement a “resettable” ORAM.

Doubly Efficient Private Information Retrieval. After the initial write-up of this work,
Lin, Mook, and Wichs [LMW23] presented a novel and beautiful construction of DE-
PIR scheme based on the ring LWE assumption. In their scheme, the preprocessing

15 / 89

of the database is a deterministic procedure that does not involve any secrets. Given
a database 𝐷, the preprocessed database 𝐷 has size |𝐷|1+𝜀, where 𝜀 can be any
positive constant, while the client/server complexities are poly(log |𝐷|,𝜆). A variant of
the construction achieves a different trade-off, where the preprocessed database has
size |𝐷| = |𝐷| · 2Õ(

√
log |𝐷|) and the client/server complexities are 2O(

√
log |𝐷|). While it

significantly lowers the difficulty implied by our technical barrier theorems, they still
provide interesting insight about the connection between PHFE efficiency and DE-PIR.
Furthermore, the efficiency parameters of [LMW23] is slightly off from the ideal, linear
version, yet the issue is more delicate than it appears. We defer further discussion on
efficiency parameters to Section B.

2 Preliminaries

Throughout the paper, we denote the security parameter by 𝜆, which is omitted except
in definitions. Let Σ be a set and 𝑛 a natural number, Σ≤𝑛 is the set of non-empty strings
of length at most 𝑛 over the alphabet Σ. For a string 𝑥, its 𝑖th symbol is denoted by 𝑥[𝑖].
As an example, the third bit in some sufficiently long 𝑥 ∈ ({0, 1}2)≤3 is 𝑥[2] [1]. For two
strings 𝑥, 𝑦, we write 𝑥 ∥ 𝑦 for their concatenation. We denote by 𝐶[𝑥1] the circuit 𝐶 with
𝑥1 hardwired as the first portion of input so that 𝐶[𝑥1] (𝑥2) = 𝐶(𝑥1, 𝑥2).

Symbols. Table 3 is a cheat sheet of select symbols used in this work.

2.1 Multi-Tape Random-Access Machine

We use a model ofmulti-tape random-access machines with several read-only input tapes
and one read/write working tape. In addition to the tapes, the machine also has a short
input and maintains a (small) state.10 The behavior of a RAM is described by its step
circuit

(ℓ1, . . . , ℓT , 𝑤, oldst, rdata)
CPU↦−−−−→ (done, newst, 𝜏, 𝑖,wdata, out).

The step circuit takes as input i) the input tape lengths ℓ1, · · · , ℓT and a short input 𝑤,
which stay the same throughout the computation, and ii) the previous state oldst and
the last string rdata read from the tapes, which change from step to step during the
computation. It outputs whether the machine should halt in the flag done. If the machine
does not halt, it outputs the next state newst, and the next tape 𝜏 and address 𝑖 to read
from. Additionally, if 𝜏 specifies the working tape, then the step circuit also outputs
a string wdata, which gets written at address 𝑖 of the working tape. Each step also
optionally generates out, one bit of output.

The execution of a machine 𝑀 with 𝐷1, . . . , 𝐷T on the input tapes and 𝑤 as the short
input begins by zero-initializing11 the working tape, the state, and the last-read string.
Throughout the process, the short input stays unchanged and the state is updated by the
machine. At each step, the requested location (determined by the output of the previous
step) is read, whose value is passed into the last-read string of the current step, before
that location is overwritten. For simplicity, we insist that overwriting happen if and only
10The distinction between input and state is arbitrary, and many works formulate them as a single

entity. We choose to separate them for clearer semantics.
11We do not consider persistent memory in this work.

16 / 89

Table 3. Cheat sheet of select symbols.

context symbol meaning

general

𝜆,A,𝛽′, 𝑞 security parameter, adversary, output of adversary, query index
𝛽,𝛽′ challenge bit, output of adversary

B,𝛽′, 𝑏 choice bit (parameter, name), choice bit (argument, value), choice bit
ℓ , 𝑟 length, randomness
𝐽, 𝐽′ object in constructed scheme, object 𝐽 in underlying scheme

RAM

T , 𝜏, 𝐷 tape count, tape index, tape content
𝑖, 𝑗 address (index into tape content / of cell), index into cell content

𝑀, 𝑤, 𝑡, 𝑇 RAM, short input, time step, instance running time
𝑇 instance running time bound (for security)

𝑇max time / time and space bound (for correctness, 𝑇 ≤ 𝑇 ≤ 𝑇max)

𝑀, �̂�, 𝐿 program, garbled program, label
𝑏, 𝑖 short input bit (choosing 𝐿), index into short input
𝔱, 𝔰 hybrid index (time step), hybrid index (pebbles)
𝔱★ pebble to be changed (time step, 𝔱★ < 𝔱)

B, 𝐾,𝑊 choice bit, PPRF key, short input (parameters, names)
𝛽, 𝑘, 𝑤 choice bit, PPRF key, short input (arguments, values)

LGRAM s̃t state of simulated execution of underlying machine�rdata last read string of simulated execution of underlying machine�wdata overwriting string of simulated execution of underlying machine
ℓ̃ time bound for copying input tape contents

�̃�, �̃� encrypted underlying garbling, encrypted underlying label
𝐸 logarithm of attempted running time (parameter, name)
𝑒 logarithm of attempted running time (argument, value)

𝑒, 𝔢 upper bound of attempted 𝑒, hybrid index related to 𝑒 and 𝑒

𝜑,Φ functionality, functionality family
𝑓 , 𝐹, 𝑧, 𝑍 function description, function description space, output, output space
𝑥, 𝑋, 𝑦,𝑌 public input, public input space, private input, private input space

PHFE 𝑇,𝑇 baseline of decryption efficiency, upper bound of 𝑇 (for security)
idx, idx′ index, encrypted index (proof progress)
𝑘, 𝑠, 𝑘′, 𝔮 PPRF key, PPRF input, SKE key, hybrid index (PHFE key being operated)
𝛽, 𝑤, 𝑘 choice bit, double encryption, PRF key

𝑖O 𝐶,𝐶 circuit, obfuscated circuit

LOT
𝐷, 𝐷, ℎ database, processed database, hash
𝑚, 𝑏 message, cell content / hash bit (choosing 𝑚)

r̃ct, w̃ct simulated rct, simulated wct

GC
𝐶,𝐶, 𝐿 circuit, garbled circuit, label

𝑏, 𝑖 input bit (choosing 𝐿), index into input
𝜋, �̂� point-and-permute string, permuted input

PPRF 𝑘, �̊�, �̊�𝔭 key, punctured key, key punctured over 𝔭

SKE 𝑘 key

ORAM
𝐽′ physical object for logical object 𝐽

𝑆′max physical address bound (running space)
𝑇0, 𝑡0 physical step count for one logical access, index

DE-PIR 𝐷, 𝐷,𝜎, 𝜌 database, processed database, query-specific secret, response

17 / 89

if the requested tape is the working tape (the input tapes are read-only). The whole
sequence of out’s, including their timing (at which step each output bit is produced), is
the output of the execution. This process is denoted by 𝑀𝐷1,...,𝐷T (𝑤). We now give the
formal definition.

Definition 1 (multi-tape RAM). Let T ∈ ℕ. A T -tape RAM 𝑀 is specified by its step circuit

CPU : (ℓ1, . . . , ℓT , 𝑤, oldst, rdata) ↦→ (done, newst, 𝜏, 𝑖,wdata, out),

which is subject to the constraints below.

Addresses and Tapes. An (input-tape) address is an ℓaddr-bit string indexing a cell. Each
input tape consists of at most 2ℓaddr cells and each cell is ℓcell-bit long, i.e., the content 𝐷
of each input tape is in ({0, 1}ℓcell)≤2ℓaddr . For technical convenience, we allow the working
tape to have different address and cell lengths, denoted by ℓADDR and ℓCELL, from the input
tapes. Without loss of generality (efficiency- and security-wise), we assume ℓADDR ≥ ℓaddr
and ℓCELL ≥ ℓcell. Conceptually, the working tape has exactly 2ℓADDR cells.

Inputs and Outputs of CPU. The inputs include the following.

• ℓ𝜏 ∈ [2ℓaddr] is the length (in cells) of the 𝜏th input tape.

• 𝑤 ∈ {0, 1}ℓin is the short input of length ℓin.

• oldst ∈ {0, 1}ℓst is the state of length ℓst.

• rdata ∈ {0, 1}ℓCELL is the string that was read.

Among the outputs, done is a flag indicating whether the machine should halt. If done
is set, all of newst, 𝜏, 𝑖,wdata, out should be ⊥. Otherwise, they are as follows.

• newst ∈ {0, 1}ℓst is the new state.

• 𝜏 ∈ [T] ∪ {work} is the tape to read from (and possibly write to).

– If 𝜏 ∈ [T], then 𝑖 ∈ [ℓ𝜏] is the address to read from on the 𝜏th input tape, and
wdata = ⊥.

– If 𝜏 = work, then 𝑖 ∈ [2ℓADDR] is the address to read from and write to on the
working tape, and wdata ∈ {0, 1}ℓCELL is the string to be written.

• out ∈ {⊥, 0, 1} is an optional output bit.

Executing RAM. We now formally present the steps involved in RAM execution. Let
𝐷1, . . . , 𝐷T ∈ ({0, 1}ℓcell)≤2ℓaddr be the input tape contents and 𝑤 ∈ {0, 1}ℓin the short input.
To execute 𝑀𝐷1,...,𝐷T (𝑤):

1. Let st0 ← 0ℓst , rdata0 ← 0ℓCELL , 𝐷work,0 ← (0ℓCELL)2
ℓADDR , 𝑡← 1.

2. Let (done𝑡, st𝑡, 𝜏𝑡, 𝑖𝑡,wdata𝑡, out𝑡) ← CPU(|𝐷1 |, . . . , |𝐷T |, 𝑤, st𝑡−1, rdata𝑡−1).

3. If done𝑡 is set, the execution halts.

4. If 𝜏𝑡 ∈ [T], let rdata𝑡 ← 𝐷𝜏 [𝑖𝑡] ∥0ℓCELL−ℓcell and 𝐷work,𝑡 ← 𝐷work,𝑡−1.

18 / 89

5. Otherwise, 𝜏𝑡 = work, let rdata𝑡 ← 𝐷work,𝑡−1 [𝑖𝑡] and 𝐷work,𝑡 be 𝐷work,𝑡−1 with 𝐷work,𝑡 [𝑖𝑡]
replaced by wdata𝑡.

6. Let 𝑡← 𝑡 + 1 and go back to Step 2.

We assume, without loss of generality, that all those constraints are respected during all
executions.12 For a halting execution,

• its running time 𝑇 = time(𝑀, 𝐷1, . . . , 𝐷T , 𝑤) is the value of 𝑡 when it halts;13

• its running space is space(· · ·) = max𝑡<𝑇,𝜏𝑡=work 𝑖𝑡;14

• its state sequence is stS(· · ·) = (st1, . . . , st𝑇−1);

• its address sequence is addrS(· · ·) = (𝜏1, 𝑖1, . . . , 𝜏𝑇−1, 𝑖𝑇−1);

• its write sequence is writeS(· · ·) = (wdata1, . . . ,wdata𝑇−1);

• its output sequence is outS(· · ·) = (out1, . . . , out𝑇−1).

Remark 1 (output sequence). The machine does not necessarily produce non-⊥ outputs
at the end or even consecutively. In this work, we do not care whether the output
sequence is in some particular format. When defining secure evaluation of RAM, we
simply require that all information be hidden except the output sequence, which implies
that the running time and the timing of each non-⊥ output are not supposed to be hidden
as such information is incorporated in the output sequence.

Remark 2 (running space). A better name for space(· · ·) is address bound. Jumping ahead,
the running space must be polynomially bounded in bounded laconic garbled RAM
schemes, but can be exponentially large (and is hidden) in (full-fledged) LGRAM.

2.2 Laconic Garbled RAM

Our notion of garbling RAM laconically involves two steps. First, a reusable short digest
is created for each input tape. The digest has length independent of that of the tape
content and must be computable in linear time. Second, the RAM and the short digests
are put together to produce a garbled program and the labels. This procedure runs in
time poly-logarithmic in the RAM running time. Given a garbled program and one set
of labels (selected by the bits of the short input), the evaluation procedure computes the
output sequence in time linear in the RAM running time.

We consider indistinguishability-based security for the short input. The input tape
contents can be chosen adaptively, but the short input cannot depend on the garbled
program (i.e., selectiveness). We also consider several weaker notions, where the
running space is bounded and more information about the execution is allowed to be
revealed.

Definition 2 (LGRAM). Let T be a natural number. A laconic garbling scheme for T -tape
RAM consists of three algorithms:
12For example, memory access should never be out of range. Given a step circuit, it is efficient to wrap

it inside another circuit checking all the constraints and correcting any error (e.g., by halting immediately
when a constraint is violated).
13If the execution does not halt, we say time(· · ·) = +∞.
14To be complete, space(· · ·) is defined to be 1 if the working tape is never accessed.

19 / 89

• Compress(1𝜆, 1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏) takes as input a cell length ℓcell, an address
length ℓaddr, an input tape index 𝜏 ∈ [T], and its content 𝐷𝜏 ∈ ({0, 1}ℓcell)≤2ℓaddr . It
outputs a short digest digest𝜏. The algorithm runs in time |𝐷𝜏 | poly(𝜆, ℓcell, ℓaddr)
and its output length is poly(𝜆, ℓcell, ℓaddr).

• Garble(1𝜆, 𝑇max, 𝑀, {digest𝜏}𝜏∈[T]) takes as input a time bound 𝑇max ∈ ℕ+, a T -tape
RAM 𝑀, and T input tape digests. It outputs a garbled program �̂� and ℓin pairs of
labels {𝐿𝑖,𝑏}𝑖∈[ℓin],𝑏∈{0,1}. The algorithm runs in polynomial time.

• Eval𝐷1,...,𝐷T (1𝜆, 𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖}𝑖∈[ℓin]) takes as input 𝑇max, 𝑀, the
input tape digests, �̂�, and one set of labels. Given random access to the input
tapes, it is supposed to compute the output sequence. The algorithm runs in time(

min
{
𝑇max, time(𝑀, 𝐷1, . . . , 𝐷T , 𝑤)

}
+

T∑︁
𝑖=1
|𝐷𝜏 |

)
poly(𝜆, |𝑀 |, log𝑇max),

where 𝑤 is the short input corresponding to the labels.

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, ℓcell, ℓaddr ∈ ℕ+, 𝑇max ∈ ℕ+, ℓin ∈ ℕ, T -tape
RAM 𝑀, input tape contents 𝐷1, . . . , 𝐷T ∈ ({0, 1}ℓcell)≤2ℓaddr , short input 𝑤 ∈ {0, 1}ℓin such
that 𝑀𝐷1,...,𝐷T (𝑤) halts in time at most 𝑇max, it holds that

Pr

digest𝜏

$← Compress(1𝜆, 1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏) for all 𝜏 ∈ [T]

(�̂�, {𝐿𝑖,𝑏}𝑖∈[ℓin],𝑏∈{0,1})
$← Garble(1𝜆, 𝑇max, 𝑀, {digest𝜏}𝜏∈[T])

:
Eval𝐷1,...,𝐷T (1𝜆, 𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖,𝑤[𝑖]}𝑖∈[ℓin])

= outS(𝑀, 𝐷1, . . . , 𝐷T , 𝑤)

= 1.

Remark 3 (unboundedness). Our notion of LGRAM is unbounded, i.e., it is not necessary
to know a polynomial upper bound of the instance running time upon garbling. By
choosing an exponentially large 𝑇max, one garbling works for all polynomial-time
computation. In contrast is a bounded scheme for all polynomial-time computation,
where 𝑇max can be any polynomial, but it must be a polynomial, hence every garbling is
restricted to some polynomial time bound upon creation. Unboundedness is reflected in
both efficiency and security (below), where 𝑇max is written in binary.

See also Remark 2 on RAM running space.

Definition 3 (LGRAM security). An LGRAM scheme (Definition 2) is (tape-adaptively,
indistinguishability-based) secure if Exp0

LGRAM ≈ Exp
1
LGRAM, where Exp

𝛽
LGRAM(1

𝜆,A) proceeds
as follows:

• Setup. Launch A(1𝜆) and receive from it 1ℓcell and 1ℓaddr .

• Tape Choices. Repeat the following for T rounds. In each round, A chooses
𝜏 ∈ [T] and 𝐷𝜏 ∈ ({0, 1}ℓcell)≤2ℓaddr . Upon receiving such choice, run

digest𝜏
$← Compress(1𝜆, 1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏)

and send digest𝜏 to A.

20 / 89

• Challenge. A chooses an instance running time bound 1𝑇 (in unary), a time bound
𝑇max (in binary), a T -tape RAM 𝑀, and two inputs (𝑤0, 𝑤1). Run

(�̂�, {𝐿𝑖,𝑏}𝑖∈[ℓin],𝑏∈{0,1})
$← Garble(1𝜆, 𝑇max, 𝑀, {digest𝜏}𝜏∈[T])

and send (�̂�, {𝐿𝑖,𝑤𝛽 [𝑖]}𝑖∈[ℓin]) to A.

• Guess. A outputs a bit 𝛽′. The output of the experiment is 𝛽′ if all of the following
conditions hold.

– The 𝜏’s in all rounds of Tape Choices are distinct.
– Both 𝑀𝐷1,...,𝐷T (𝑤0) and 𝑀𝐷1,...,𝐷T (𝑤1) halt in time 𝑇 ≤ 𝑇 ≤ 𝑇max with identical
output sequences outS(· · ·).

Otherwise, the output is set to 0.

Weaker security notions are obtained by strengthening the second condition in Guess:

• Fixed-address security. “... with identical outS(· · ·) and addrS(· · ·).”

• Fixed-memory security. “... with identical outS(· · ·), addrS(· · ·), and writeS(· · ·).”

Remark 4 (polynomial security). Although 𝑇max can be exponentially large, we only
require security for polynomially large instance running time, which is captured by
the requirement that the adversary must produce 1𝑇 , an upper bound of the instance
running time in unary.

Bounded LGRAM. As an intermediate primitive, we consider bounded LGRAM:

Definition 4 (bounded LGRAM and security). The notion of bounded LGRAM is obtained
by modifying Definition 2 as follows:

• The evaluation procedure runs in time(
𝑇max +

T∑︁
𝑖=1
|𝐷𝜏 |

)
poly(𝜆, |𝑀 |, log𝑇max).

• Correctness is required only if 𝑀𝐷1,...,𝐷T (𝑤) halts using space at most 𝑇max in time
at most 𝑇max.

Its security notions are obtained by modifying Definition 3 as follows:

• In Challenge, the adversary chooses 1𝑇max (instead of 1𝑇 and 𝑇max).

• In Guess, the second condition is strengthened to “... halt using space at most 𝑇max
in time 𝑇 ≤ 𝑇max with identical...”

Remark 5 (efficiency and security). Although evaluation efficiency is relaxed and security
is restricted to polynomially large 𝑇max, the garbling procedure of a bounded LGRAM
scheme still runs in time poly-logarithmic in 𝑇max. This is important for its bootstrapping
to (unbounded) LGRAM.

21 / 89

2.3 Partially Hiding Functional Encryption and FE for Circuits

We define partially hiding functional encryption with respect to functionality

𝜑 : 𝐹 × 𝑋 ×𝑌 → {⊥} ∪ (ℕ+ × 𝑍),

where 𝐹, 𝑋,𝑌, 𝑍 are the sets of function description, public input, private input, and
output, respectively. Each key is associated with some 𝑓 ∈ 𝐹, and each ciphertext
encrypts some private 𝑦 ∈ 𝑌 and is tied to some public 𝑥 ∈ 𝑋 . The decryptor should
be able to recover 𝑧 if 𝜑(𝑓 , 𝑥, 𝑦) = (𝑇, 𝑧), in which case 𝑇 is the time to compute 𝑧 from
𝑓 , 𝑥, 𝑦 in the clear and serves as a baseline for decryption efficiency. For security, we
only consider 𝑓 , 𝑥, 𝑦 for which 𝑇 is polynomially bounded. On the other hand, when
𝜑(𝑓 , 𝑥, 𝑦) = ⊥, we require neither correctness nor security. This can be used to exclude
non-halting computation.

Definition 5 (PHFE). Let Φ = {Φ𝜆}𝜆∈ℕ be a sequence of functionality families with

𝜑 : 𝐹𝜑 × 𝑋𝜑 ×𝑌𝜑 → {⊥} ∪ (ℕ+ × 𝑍𝜑) for each 𝜑 ∈ Φ𝜆 .

A partially hiding functional encryption scheme for Φ consists of four algorithms, with
efficiency defined in Definition 6:

• Setup(1𝜆,𝜑) takes a functionality 𝜑 ∈ Φ𝜆 as input, and outputs a pair of master
public/secret keys (mpk,msk).

• KeyGen(1𝜆,msk, 𝑓) takes as input msk and a function description 𝑓 ∈ 𝐹𝜑. It outputs
a secret key sk𝑓 for 𝑓 .

• Enc(1𝜆,mpk, 𝑥, 𝑦) takes as input mpk, a public input 𝑥 ∈ 𝑋𝜑, and a private input
𝑦 ∈ 𝑌𝜑. It outputs a ciphertext ct𝑥 of 𝑦 tied to 𝑥.

• Dec𝑓 ,𝑥,sk𝑓 ,ct𝑥 (1𝜆,mpk) takes mpk as input and is given random access to 𝑓 , 𝑥, sk𝑓 , ct𝑥.
It is supposed to compute 𝑧 in 𝜑(𝑓 , 𝑥, 𝑦) = (𝑇, 𝑧) efficiently.

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, 𝜑 ∈ Φ𝜆, 𝑓 ∈ 𝐹𝜑, 𝑥 ∈ 𝑋𝜑, 𝑦 ∈ 𝑌𝜑 such that
𝜑(𝑓 , 𝑥, 𝑦) = (𝑇, 𝑧) ≠ ⊥, it holds that

Pr

(mpk,msk) $← Setup(1𝜆,𝜑)

sk𝑓
$← KeyGen(1𝜆,msk, 𝑓)

ct𝑥
$← Enc(1𝜆,mpk, 𝑥, 𝑦)

: Dec𝑓 ,𝑥,sk𝑓 ,ct𝑥 (1𝜆,mpk) = 𝑧

 = 1.

Definition 6 (PHFE efficiency). The basic efficiency requirements for a PHFE scheme
(Definition 5) are as follows:

• Setup, KeyGen, Enc are polynomial-time.

• Dec runs in time poly(𝜆, |𝜑 |, | 𝑓 |, |𝑥|, |𝑦|, 𝑇) if 𝜑(𝑓 , 𝑥, 𝑦) = (𝑇, 𝑧) ≠ ⊥.

The following time-efficiency properties are considered:

• It has linear-time KeyGen [resp. Enc, Dec] if KeyGen [resp. Enc, Dec] runs in time
| 𝑓 | poly(𝜆, |𝜑 |) [resp. (|𝑥| + |𝑦|) poly(𝜆, |𝜑 |), (𝑇 + | 𝑓 | + |𝑥| + |𝑦|) poly(𝜆, |𝜑 |)].

22 / 89

• It has 𝑓 -fast [resp. 𝑥-fast, 𝑦-fast] Dec if Dec runs in time (𝑇 + |𝑥| + |𝑦|) poly(𝜆, |𝜑 |)
[resp. (𝑇 + | 𝑓 | + |𝑦|) poly(𝜆, |𝜑|), (𝑇 + | 𝑓 | + |𝑥|) poly(𝜆, |𝜑 |)].

The following size-efficiency properties are considered:

• It is 𝑓 -succinct if |sk𝑓 | = poly(𝜆, |𝜑 |), independent of | 𝑓 |.

• It is 𝑥-succinct if |ct𝑥 | = poly(𝜆, |𝜑|, |𝑦|), independent of |𝑥|.

• It has rate-𝑐 ciphertext for some constant 𝑐 if |ct𝑥 | = 𝑐|𝑦| + poly(𝜆, |𝜑 |).

Security. We consider adaptive IND-CPA for polynomially bounded 𝑇.

Definition 7 (PHFE security). A PHFE scheme (Definition 5) is (adaptively IND-CPA) secure
if Exp0

PHFE ≈ Exp
1
PHFE, where Exp

𝛽
PHFE(1

𝜆,A) proceeds as follows:

• Setup. Launch A(1𝜆) and receive from it some 𝜑 ∈ Φ𝜆 and 1𝑇 . Run

(mpk,msk) $← Setup(1𝜆,𝜑)

and send mpk to A.

• Query I. Repeat the following for arbitrarily many rounds determined by A.
In each round, A submits some 𝑓𝑞 ∈ 𝐹𝜑. Upon receiving such query, run

sk𝑞
$← KeyGen(1𝜆,msk, 𝑓𝑞)

and send sk𝑞 to A.

• Challenge. A submits 𝑥 ∈ 𝑋𝜑 and 𝑦0, 𝑦1 ∈ 𝑌𝜑. Upon the challenge, run

ct $← Enc(1𝜆,mpk, 𝑥, 𝑦𝛽)

and send ct to A.

• Query II. Same as Query I.

• Guess. A outputs a bit 𝛽′. The outcome of the experiment is 𝛽′ if

|𝑦0 | = |𝑦1 |,
and 𝜑(𝑓𝑞, 𝑥, 𝑦0) = 𝜑(𝑓𝑞, 𝑥, 𝑦1) = (𝑇𝑞, 𝑧𝑞) ≠ ⊥ for all 𝑞,

and 𝑇𝑞 ≤ 𝑇 for all 𝑞.

Otherwise, the outcome is set to 0.

FE for Circuits. We will use FE for circuits as a building block:

Definition 8 (FE for circuits). A functional encryption scheme for circuits is a PHFE scheme
(Definition 5) for

Φ = {Φ𝜆}𝜆∈ℕ, Φ𝜆 = {𝜑ℓ ,𝑠}ℓ ,𝑠∈ℕ+ ,
𝜑ℓ ,𝑠 : 𝐹ℓ ,𝑠 × 𝑋 ×𝑌ℓ → {⊥} ∪ (ℕ+ × 𝑍),
𝐹ℓ ,𝑠 = { circuits of input length ℓ and size at most 𝑠 },
𝑋 = {⊥}, 𝑌ℓ = {0, 1}ℓ , 𝑍 = {0, 1}∗,

𝜑ℓ ,𝑠(𝑓 ,⊥, 𝑦) =
(
1, 𝑓 (𝑦)

)
,

where the functionality 𝜑ℓ ,𝑠 is represented by (1ℓ , 1𝑠).

23 / 89

Remark 6. The first output of 𝜑ℓ ,𝑠 is just a placeholder value and all efficiency parameters
(Definition 6) are always allowed arbitrary polynomial dependency on 𝜆, ℓ , 𝑠 by our
choice of representing 𝜑ℓ ,𝑠 by (1ℓ , 1𝑠). This is intended as we use FE for circuits as a
building block and do not wish to start with too strong a scheme.

Thanks to a long line of beautiful prior works, we can weaken the assumption of FE for
circuits all the way down to an “obfuscation-minimum FE” with only polynomial security,
summarized in the lemma below.

Lemma 1 ([KNTY19]). Assuming the existence of “weakly selectively secure, 1-key, sublinearly
succinct FE for circuits” (per definitions in [KNTY19]), i.e., a so-called “obfuscation-minimum
FE with polynomial security”, there exists an FE scheme for circuits (Definition 8) with adaptive
IND-CPA security (Definition 7).

2.4 Universal RAM and PHFE for RAM

In this section, we define PHFE for RAM after explaining some rationales behind certain
subtleties in our formulation.

To obtain PHFE for RAM, we will employ the standard transformation [QWW18] of
using FE for circuits to compute LGRAM. However, in LGRAM (Definition 2), the running
time of Garble depends on the machine size. This dependency is inherited by all the
efficiency parameters of the resultant PHFE for RAM if we associate each key with a
RAM. To get rid of this dependency, we fix some universal RAM 𝑈 of size poly(𝜆)15 upon
setting up the scheme, and associate with each key a piece of code interpreted by 𝑈.

The other issue is that LGRAM puts an upper bound on the running time and its
incorrectness in case of exceeding the time limit is propagated to the PHFE scheme. We
avoid it16 by defining 𝜑 = ⊥ if the running time exceeds some super-polynomial value
prescribed upon set-up.

The above explains the intended usage of PHFE for RAM, yet we define it for general
machines. Moreover, as a stepping stone, we will first consider PHFE for RAM with
bounded private input, where the private input is simply the short input to the machine.

Definition 9 (PHFE for RAM with bounded private input). A PHFE scheme for RAM with
bounded private input is a PHFE scheme (Definition 5) for

Φ = {Φ𝜆}𝜆∈ℕ, Φ𝜆 = {𝜑𝑀,𝑇max}𝑀 is a 2-tape RAM and 𝑇max∈ℕ+ ,

𝜑𝑀,𝑇max : 𝐹𝑀 × 𝑋𝑀 ×𝑌𝑀 → {⊥} ∪ (ℕ+ × 𝑍),

𝐹𝑀 = 𝑋𝑀 = ({0, 1}ℓcell)≤2ℓaddr , 𝑌𝑀 = {0, 1}ℓin , 𝑍 = {⊥, 0, 1}∗,

𝜑𝑀,𝑇max (𝑓 , 𝑥, 𝑦) =
{(
𝑇, outS(𝑀, 𝑓 , 𝑥, 𝑦)

)
, if time(𝑀, 𝑓 , 𝑥, 𝑦) = 𝑇 ≤ 𝑇max;

⊥, otherwise;

where 𝜑𝑀,𝑇max is represented by (𝑀,𝑇max).
15𝑈 is not the same RAM across different values of 𝜆 — its input address length should be ω(log𝜆) to

accommodate all polynomially long input.
16An alternative solution is to blatantly reveal everything when the running time is too large so that

correctness in that case can be fulfilled by executing the machine in the clear. Security is not affected
because the adversary is not allowed to choose keys and ciphertexts exhibiting super-polynomial instance
running time. However, non-halting computation still needs to be handled separately.

24 / 89

In a full-fledged PHFE for RAM, the machine has no short input, and the private input
is encoded on a tape.

Definition 10 (full-fledged PHFE for RAM). A full-fledged PHFE scheme for RAM is a PHFE
scheme (Definition 5) for

Φ = {Φ𝜆}𝜆∈ℕ, Φ𝜆 = {𝜑𝑀,𝑇max}𝑀 is a 2-tape RAM with ℓin=0, and 𝑇max∈ℕ+ ,

𝜑𝑀,𝑇max : 𝐹𝑀 × 𝑋𝑀 ×𝑌𝑀 → {⊥} ∪ (ℕ+ × 𝑍),

𝐹𝑀 = 𝑋𝑀 = 𝑌𝑀 = ({0, 1}ℓcell)≤2ℓaddr , 𝑍 = {⊥, 0, 1}∗,

𝜑𝑀,𝑇max (𝑓 , 𝑥, 𝑦) =

(
𝑇, outS(𝑀, 𝑓 , 𝑥 ∥ 𝑦, 𝜀)

)
,

if |𝑥| + |𝑦| ≤ 2ℓaddr and time(𝑀, 𝑓 , 𝑥 ∥ 𝑦, 𝜀) = 𝑇 ≤ 𝑇max;
⊥, otherwise;

where 𝜀 is the empty string and 𝜑𝑀,𝑇max is represented by (𝑀,𝑇max).

Remark 7 (unbounded scheme and polynomial security). When Definitions 5 and 7 are
instantiated into PHFE for RAM (Definitions 9 and 10), the scheme is unbounded, meaning
that 𝑇max can be exponentially large, yet security only holds for polynomially bounded
instance running time. See also Remarks 3 and 4.

2.5 Indistinguishability Obfuscation

We will use indistinguishability obfuscation for circuits with polynomial-size domains as
a building block.

Definition 11 (𝑖O). An indistinguishability obfuscator is an efficient algorithm 𝑖O(1𝜆, 𝐶)
taking a circuit 𝐶 as input. It outputs an obfuscated circuit 𝐶. The obfuscator must be
correct, i.e., for all 𝜆 ∈ ℕ, circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚, and input 𝑥 ∈ {0, 1}𝑛, it holds that

Pr
[
𝑖O(1𝜆, 𝐶) (𝑥) = 𝐶(𝑥)

]
= 1.

The obfuscator is secure for polynomial-size domains if for all polynomial-size (12𝑛 , 𝐶0, 𝐶1)
such that 𝐶0, 𝐶1 : {0, 1}𝑛 → {0, 1}𝑚 have identical truth tables and sizes, it holds that{(

1𝜆, 𝐶0, 𝐶1, 𝑖O(1𝜆, 𝐶0)
)}

𝜆∈ℕ ≈
{(

1𝜆, 𝐶0, 𝐶1, 𝑖O(1𝜆, 𝐶1)
)}

𝜆∈ℕ.

Remark 8. The above definition does not allow the obfuscator to work by simply
outputting the truth table, as the constraint of having polynomial-size domains only
applies to security, not efficiency nor correctness. See also Remarks 3, 4, and 7.

Secure 𝑖O for polynomial-size domains is implied by polynomially secure FE for circuits,
via either a tight security reduction [LT17] of FE-to-𝑖O transformation or decomposable
obfuscation [LZ17].

Lemma 2 ([LT17,LZ17]). Assuming the existence of secure FE for circuits (Definition 8), there
exists an indistinguishability obfuscator for circuits that is secure for polynomial-size domains.

25 / 89

2.6 Laconic Oblivious Transfer

We will use selectively secure laconic oblivious transfer as a building block.
Definition 12 ((updatable) LOT [CDG+17]). A laconic oblivious transfer scheme consists of
four algorithms:

• HashGen(1𝜆, 1ℓcell , 1ℓaddr) takes as input a cell length ℓcell and an address length ℓaddr.
It outputs a hash key hk in polynomial time.

• Hash(1𝜆, hk, 𝐷) takes as input hk and a database 𝐷 ∈ ({0, 1}ℓcell)≤2ℓaddr . It determinis-
tically outputs a hash ℎ and a processed database 𝐷 in time |𝐷| poly(𝜆, ℓcell, ℓaddr),
with the hash length being ℓhash = poly(𝜆, ℓcell, ℓaddr).

• SendRead(1𝜆, hk, ℎ, 𝑖, {𝑚𝑏
𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

) takes as input hk, ℎ, an address 𝑖 ∈ [2ℓaddr], and ℓcell
pairs of messages of identical length. It outputs a read ciphertext rct. The algorithm
runs in polynomial time.

• RecvRead𝐷(1𝜆, hk, ℎ, 𝑖, rct) takes as input hk, ℎ, 𝑖, rct. Given random access to 𝐷, it is
supposed to recover {𝑚𝐷[𝑖] [𝑗]

𝑗
}𝑗∈[ℓcell]. It runs in time poly(𝜆, ℓcell, ℓaddr, |rct|).

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, ℓcell, ℓaddr ∈ ℕ+, 𝐷 ∈ ({0, 1}ℓcell)≤2ℓaddr ,
𝑖 ∈ [|𝐷|], {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

of identical length, it holds that

Pr

hk $← HashGen(1𝜆, 1ℓcell , 1ℓaddr)
(ℎ, 𝐷) ← Hash(1𝜆, hk, 𝐷)

rct $← SendRead(1𝜆, hk, ℎ, 𝑖, {𝑚𝑏
𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

)

: RecvRead𝐷(1𝜆, hk, ℎ, 𝑖, rct) = {𝑚𝐷[𝑖] [𝑗]
𝑗

}𝑗∈[ℓcell]

= 1.

An updatable LOT has two additional algorithms:

• SendWrite
(
1𝜆, hk, ℎ, 𝑖,wdata, {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

)
takes as input hk, ℎ, 𝑖, an overwriting

string wdata ∈ {0, 1}ℓcell , and ℓhash pairs of messages of identical length. It outputs a
write ciphertext wct in polynomial time.

• RecvWrite𝐷(1𝜆, hk, ℎ, 𝑖,wdata,wct) takes as input hk, ℎ, 𝑖,wdata,wct. Given random
access to 𝐷, it is supposed to update 𝐷 to 𝐷′ and recover {𝑚ℎ′[𝑗]

𝑗
}𝑗∈[ℓhash], where 𝐷′

is 𝐷 with 𝐷′[𝑖] replaced by wdata and ℎ′ is the hash of 𝐷′. The algorithm runs in
time poly(𝜆, ℓcell, ℓaddr, |wct|).

Correctness requires that for all 𝜆 ∈ ℕ, ℓcell, ℓaddr ∈ ℕ+, 𝐷 ∈ ({0, 1}ℓcell)≤2ℓaddr , 𝑖 ∈ [|𝐷|],
wdata ∈ {0, 1}ℓcell , {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

of identical length,

Pr

hk $← HashGen(1𝜆, 1ℓcell , 1ℓaddr)
(ℎ, 𝐷) ← Hash(1𝜆, hk, 𝐷) (ℎ′, 𝐷′) ← Hash(1𝜆, hk, 𝐷′)

wct $← SendWrite
(
1𝜆, hk, ℎ, 𝑖,wdata, {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

)
:

RecvWrite𝐷(1𝜆, hk, ℎ, 𝑖,wdata,wct) = {𝑚ℎ′[𝑗]
𝑗
}𝑗∈[ℓhash]

and 𝐷 is updated to 𝐷′ by RecvWrite

= 1,

where 𝐷′ is 𝐷 with 𝐷′[𝑖] replaced by wdata.

26 / 89

Part of our LGRAM garbling procedure involves hashing the all-zero string (the initial
working tape) under a newly generated LOT hash key. It must be done very efficiently.

Definition 13 (LOT fast initialization). An LOT scheme (Definition 12) has fast initializa-
tion if there is an efficient algorithm Hash0s(1𝜆, hk, 𝑆) computing the hash of (0ℓcell)𝑆.
More precisely, for all 𝜆 ∈ ℕ, ℓcell, ℓaddr ∈ ℕ+, 𝑆 ∈ [2ℓaddr], it holds that

Pr

[
hk $← HashGen(1𝜆, 1ℓcell , 1ℓaddr)

(ℎ, 𝐷) ← Hash(1𝜆, hk, (0ℓcell)𝑆)
: Hash0s(1𝜆, hk, 𝑆) = ℎ

]
= 1.

The generic bootstrapping procedure [CDG+17,AL18,KNTY19] for LOT using Merkle tree
always yields a scheme with fast initialization, because the Merkle hash of an all-zero
string can be computed in time poly(𝜆, ℓcell, ℓaddr).

Security. Following [KNTY19], we consider database-selective security for LOT.

Definition 14 (LOT read security [CDG+17]). An LOT scheme (Definition 12) is read-secure
if there exists an efficient simulator SimRead such that for all polynomial-size 1ℓcell , 1ℓaddr ,
𝐷 ∈ ({0, 1}ℓcell)≤2ℓaddr , 𝑖 ∈ [|𝐷|], {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

of identical length, it holds that{(
1𝜆, 1ℓcell , 1ℓaddr , hk, 𝐷, 𝑖, {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

, rct
)}

𝜆∈ℕ ≈
{(
· · ·, r̃ct

)}
𝜆∈ℕ, where

hk $← HashGen(1𝜆, 1ℓcell , 1ℓaddr), (ℎ, 𝐷) ← Hash(1𝜆, hk, 𝐷),

rct $← SendRead(1𝜆, hk, ℎ, 𝑖, {𝑚𝑏
𝑗
}𝑏∈{0,1}
𝑗∈[ℓcell]

),

r̃ct $← SimRead(1𝜆, hk, 𝐷, 𝑖, {𝑚𝐷[𝑖] [𝑗]
𝑗

}𝑗∈[ℓcell]).

Definition 15 (LOT write security [CDG+17]). An updatable LOT scheme (Definition 12) is
write-secure if there exists an efficient simulator SimWrite such that for all polynomial-size
1ℓcell , 1ℓaddr , 𝐷 ∈ ({0, 1}ℓcell)≤2ℓaddr , 𝑖 ∈ [|𝐷|], wdata ∈ {0, 1}ℓcell , {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

of identical length,
letting 𝐷′ be 𝐷 with 𝐷′[𝑖] replaced by wdata, it holds that{(

1𝜆, 1ℓcell , 1ℓaddr , hk, 𝐷, 𝑖,wdata, {𝑚𝑏
𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

,wct
)}

𝜆∈ℕ ≈
{(
· · ·, w̃ct

)}
𝜆∈ℕ, where

hk $← HashGen(1𝜆, 1ℓcell , 1ℓaddr),
(ℎ, 𝐷) ← Hash(1𝜆, hk, 𝐷), (ℎ′, 𝐷′) ← Hash(1𝜆, hk, 𝐷′),

wct $← SendWrite
(
1𝜆, hk, ℎ, 𝑖,wdata, {𝑚𝑏

𝑗
}𝑏∈{0,1}
𝑗∈[ℓhash]

)
,

w̃ct $← SimWrite
(
1𝜆, hk, 𝐷, 𝑖,wdata, {𝑚ℎ′[𝑗]

𝑗
}𝑗∈[ℓhash]

)
.

Remark 9 (partially adaptive security). The above definitions are index- and message-
selective. Yet, without loss of generality, we may assume that security holds even when
the adversary is allowed to choose 𝑖 and 𝑚𝑏

𝑗
’s adaptively (dependent on hk). Adaptive

security with respect to 𝑖 can be obtained by a standard guessing argument as noted
in [GOS18], and that with respect to 𝑚𝑏

𝑗
’s by using the scheme as a key encapsulation

mechanism (or by encrypting bit by bit and following a standard hybrid argument).

Lemma 3 ([LZ17,CDG+17,AL18,KNTY19]). Assuming the existence of secure FE for circuits
(Definition 8), there exists a read- and write-secure updatable LOT with fast initialization.

27 / 89

2.7 Garbled Circuits

Following the formulation in [GS18a], we make the garbling procedure take the labels as
input instead of letting it generate them. However, their formulation cannot be perfectly
correct,17 which we fix by incorporating the point-and-permute [BMR90] technique.

Definition 16 (garbled circuits [Yao82]). A circuit garbling scheme with label length
ℓ𝐿 (𝜆) ≤ poly(𝜆) consists of two efficient algorithms:

• Garble(1𝜆, 𝐶,𝜋, {𝐿𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}) takes as input a circuit 𝐶 of input length 𝑛, a point-
and-permute string 𝜋 ∈ {0, 1}𝑛, and 𝑛 pairs of labels (each label of length ℓ𝐿 (𝜆)). It
outputs a garbled circuit 𝐶.

• Eval(1𝜆, 𝐶, �̂�, {𝐿𝑖}𝑖∈[𝑛]) takes as input 𝐶, the permuted input, and one set of labels.
It is supposed to compute 𝐶(𝑥).

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, 𝐶 : {0, 1}𝑛 → {0, 1}∗, 𝑥 ∈ {0, 1}𝑛,

Pr

𝜋
$← {0, 1}𝑛

𝐿𝑖,𝑏
$← {0, 1}ℓ𝐿 (𝜆) for all 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1}

𝐶
$← Garble(1𝜆, 𝐶,𝜋, {𝐿𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1})

𝑦← Eval(1𝜆, 𝐶, 𝑥 ⊕ 𝜋, {𝐿𝑖,𝑥[𝑖]}𝑖∈[𝑛])

: 𝑦 = 𝐶(𝑥)

= 1.

The scheme is secure if there exists an efficient simulator �Garble such that for all
polynomial-size (𝐶, 𝑥),{(

1𝜆, 𝐶, 𝑥,Garble(1𝜆, 𝐶, 𝜋, {𝐿𝑖,𝑏 }𝑖∈[𝑛],𝑏∈{0,1}), 𝑥 ⊕ 𝜋, {𝐿𝑖,𝑥[𝑖]}𝑖∈[𝑛]
)}

𝜆∈ℕ

≈
{(

1𝜆, 𝐶, 𝑥, �Garble(1𝜆, 1|𝐶 |, 𝐶(𝑥), 𝑥 ⊕ 𝜋, {𝐿𝑖,𝑥[𝑖]}𝑖∈[𝑛]), 𝑥 ⊕ 𝜋, {𝐿𝑖,𝑥[𝑖]}𝑖∈[𝑛]
)}

𝜆∈ℕ,

where 𝜋
$← {0, 1}𝑛 and 𝐿𝑖,𝑏 $← {0, 1}ℓ𝐿 (𝜆) for all 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1}.

2.8 Puncturable Pseudorandom Function

We need puncturable pseudorandom functions as a building block.18

Definition 17 (PPRF [BW13]). A puncturable pseudorandom function with key [resp. input,
output] length ℓkey(𝜆) [resp. ℓin(𝜆), ℓout(𝜆); all poly(𝜆)-bounded] consists of two efficient
algorithms:

• Eval(1𝜆, 𝑘, 𝑥) takes as input a (punctured or not) key 𝑘 and an input 𝑥 ∈ {0, 1}ℓin (𝜆).
It deterministically outputs a bit-string of length ℓout(𝜆).

• Puncture(1𝜆, 𝑘, 𝔭) takes as input a non-punctured key 𝑘 ∈ {0, 1}ℓkey (𝜆) and some set
𝔭 ⊆ {0, 1}ℓin (𝜆). It outputs a punctured key �̊�𝔭.

17The inevitable correctness error of [GS18a] arises from the absence of point-and-permute string and
the (albeit unlikely) possibility of two labels for one input bit being the same. See also Footnote 20.
18We also use selectively secure usual PRF, yet omit it here as it is implied by PPRF.

28 / 89

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, 𝑘 ∈ {0, 1}ℓkey (𝜆), 𝔭 ⊆ {0, 1}ℓin (𝜆), and input
𝑥 ∈ {0, 1}ℓin (𝜆) \ 𝔭, it holds that

Pr
[
Eval(1𝜆, Puncture(1𝜆, 𝑘, 𝔭), 𝑥) = Eval(1𝜆, 𝑘, 𝑥)

]
= 1.

The scheme is secure if for all polynomial-size 𝔭 ⊆ {0, 1}ℓin (𝜆), it holds that{(
1𝜆, 𝔭, �̊�𝔭, {Eval(1𝜆, 𝑘, 𝑥)}𝑥∈𝔭

)}
𝜆∈ℕ ≈

{(
1𝜆, 𝔭, �̊�𝔭, {𝑟𝑥}𝑥∈𝔭

)}
𝜆∈ℕ,

where 𝑘 $← {0, 1}ℓkey (𝜆), �̊�𝔭 $← Puncture(1𝜆, 𝑘, 𝔭), and 𝑟𝑥 $← {0, 1}ℓout (𝜆) for all 𝑥 ∈ 𝔭.

2.9 Secret-Key Encryption

We will use secret-key encryption as a building block.

Definition 18 (SKE). A secret-key encryption scheme consists of three efficient algorithms:

• Gen(1𝜆) outputs a key 𝑘.

• Enc(1𝜆, 𝑘, 𝑚) takes as input 𝑘 and a message 𝑚 of arbitrary length, and outputs a
ciphertext 𝑐.

• Dec(1𝜆, 𝑘, 𝑐) takes as input 𝑘, 𝑐. It is supposed to recover the message.

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ and 𝑚 ∈ {0, 1}∗, it holds that

Pr
[
𝑘

$← Gen(1𝜆) : Dec
(
1𝜆, Enc(1𝜆, 𝑘, 𝑚)

)
= 𝑚

]
= 1.

It has pseudorandom ciphertexts if the ciphertext length is a function of 𝜆 and the message
length (independent of key generation and encryption randomness) and for all 𝜆 ∈ ℕ and
polynomially bounded {𝑚𝑞}𝑞∈[𝑄], it holds that{(

1𝜆, 1𝑄, {𝑚𝑞, 𝑐𝑞}𝑞∈[𝑄]
)}

𝜆∈ℕ ≈
{(

1𝜆, 1𝑄, {𝑚𝑞, 𝑟𝑞}𝑞∈[𝑄]
)}

𝜆∈ℕ,

where 𝑘 $← Gen(1𝜆), and 𝑐𝑞 $← Enc(1𝜆, 𝑘, 𝑚𝑞), 𝑟𝑞 $← {0, 1} |𝑐𝑞 | for all 𝑞 ∈ [𝑄].

2.10 Oblivious RAM

We define ORAM as a mechanism to translate logical accesses into physical accesses.
It separates the logic of protecting memory access from the computation performed.
Compared to defining it as an algorithm transforming an underlying RAM to an ORAM’d
machine, we avoid having to incorporate randomness19 into the definition of RAM. We
also include error (overflow) checking in our definition so that our LGRAM and PHFE
can be made perfectly correct.20

19Our LGRAM only works with deterministic RAM and dealing with garbling of randomized computation
is cumbersome. An ORAM’d machine is probabilistic and cannot be directly fed into LGRAM with
lesser security to obtain LGRAM with stronger security, so the notion of ORAM’d RAM does not simplify
formalism and might lead to confusion (it bears the name of RAM yet cannot be used as an input to
LGRAM). We choose to avoid it.
20Overwhelming correctness is subtle to define, and it has multiple acceptable yet different definitions.

Perfect correctness is also crucial [GKVW20] to some applications such as obfuscation. Therefore, we
insist on perfect correctness in this work.

29 / 89

Definition 19 (ORAM). An oblivious RAM scheme is an efficient deterministic algorithm

MakeORAM : (1𝜆, 1ℓCELL , 1ℓADDR , 𝑇max) ↦→ (𝑆′max, 1ℓ
′
CELL , 1ℓr , 1ℓost , {oRW𝑡0}𝑡0∈[𝑇0])

taking as input a logical cell length ℓCELL, a logical address length ℓADDR, and a time bound
𝑇max ∈ ℕ+. It outputs a physical space bound 𝑆′max, a physical cell length ℓ ′CELL, an ORAM
randomness length ℓr, an ORAM state length ℓost, and a sequence of circuits {oRW𝑡0}𝑡0∈[𝑇0]
satisfying the following conditions:

• ℓ ′CELL ≤ poly(𝜆, ℓCELL, ℓADDR, log𝑇max).

• 𝑆′max ≤ 𝑇max poly(𝜆, ℓCELL, ℓADDR, log𝑇max).

• 𝑇0 ≤ poly(𝜆, ℓCELL, ℓADDR, log𝑇max) is the number of physical steps to perform one
logical access.

• The circuits have the following input/output syntax.

oRW1 : (𝑖,wdata, 𝑟1) ↦→ (ost1, 𝑖′1,wdata′1) or ⊥,
oRW𝑡0 : (ost𝑡0−1, rdata′𝑡0−1, 𝑟𝑡0) ↦→ (ost𝑡0 , 𝑖′𝑡0 ,wdata

′
𝑡0) or ⊥ for all 1 < 𝑡0 < 𝑇0,

oRW𝑇0 : (ost𝑇0−1, rdata′𝑇0−1, 𝑟𝑇0) ↦→ (𝑖′𝑇0
,wdata′𝑇0

, rdata) or ⊥.

Here,

– 𝑖 ∈ [2ℓADDR] is the logical address to read from and write to,

– rdata ∈ {0, 1}ℓCELL is the logical string that was read,
– wdata ∈ {0, 1}ℓCELL is the logical string to write,
– 𝑟1, . . . , 𝑟𝑇0 ∈ {0, 1}ℓr are the ORAM randomness,

– ost1, . . . , ost𝑇0−1 ∈ {0, 1}ℓost are the ORAM states,

– 𝑖′1, . . . , 𝑖
′
𝑇0
∈ [𝑆′max] are the physical addresses to read from and write to,

– wdata′1, . . . ,wdata
′
𝑇0
∈ {0, 1}ℓ ′CELL are the physical string to write.

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, ℓCELL, ℓADDR, 𝑇max ∈ ℕ+, and all sequence
{(𝑖𝑡,wdata𝑡)}𝑡∈[𝑇] of logical accesses with 𝑇 ∈ [𝑇max], let

(𝑆′max, 1ℓ
′
CELL , 1ℓr , 1ℓost , {oRW𝑡0}𝑡0∈[𝑇0]) ← MakeORAM(1𝜆, 1ℓCELL , 1ℓADDR , 𝑇max),

𝑟𝑡,𝑡0
$← {0, 1}ℓr for 𝑡 ∈ [𝑇], 𝑡0 ∈ [𝑇0],

and consider the following process:

• Let 𝐷0 ← (0ℓCELL)2
ℓADDR and 𝐷′0,𝑇0

← (0ℓ ′CELL)𝑆′max .

• For 𝑡 = 1, . . . , 𝑇, do the following.

– Logical Access. Let

rdata𝑡 ← 𝐷𝑡−1 [𝑖𝑡], 𝐷𝑡 ← 𝐷𝑡−1 with 𝐷𝑡 [𝑖𝑡] replaced by wdata𝑡.

30 / 89

– Physical Accesses. Perform 𝑇0 physical steps by

(ost𝑡,1, 𝑖′𝑡,1,wdata′𝑡,1) ← oRW1(𝑖𝑡,wdata𝑡, 𝑟𝑡,1),
(ost𝑡,𝑡0 , 𝑖′𝑡,𝑡0 ,wdata

′
𝑡,𝑡0) ← oRW𝑡0 (ost𝑡,𝑡0−1, rdata′𝑡,𝑡0−1, 𝑟𝑡,𝑡0) for all 1 < 𝑡0 < 𝑇0,

(𝑖′𝑡,𝑇0
,wdata′𝑡,𝑇0

, �rdata𝑡) ← oRW𝑇0 (ost𝑡,𝑇0−1, rdata′𝑡,𝑇0−1, 𝑟𝑡,𝑇0),

where 𝐷′
𝑡,0 ← 𝐷′

𝑡−1,𝑇0
and for all 𝑡0 ∈ [𝑇0],

rdata′𝑡,𝑡0 ← 𝐷′𝑡,𝑡0−1 [𝑖′𝑡,𝑡0] (rdata′𝑡,𝑇0
is never used),

𝐷′𝑡,𝑡0 ← 𝐷′𝑡,𝑡0−1 with 𝐷
′
𝑡,𝑡0 [𝑖

′
𝑡,𝑡0] replaced by wdata

′
𝑡,𝑡0 .

It is required that (over the random choices of 𝑟’s)

Pr[any of oRW𝑡,𝑡0 outputs ⊥] ≤ 2−𝜆 and

Pr[(some of oRW𝑡,𝑡0 outputs ⊥) ∨ (rdata𝑡 = �rdata𝑡 for all 𝑡 ∈ [𝑇])] = 1.

Remark 10 (error checking). In the definition above, error is indicated by ⊥ from oRW𝑡,𝑡0 ’s.
The correctness requirement is two-fold. First, it is negligibly likely that any error is
reported. Second, if no error is reported, then all the logical accesses are perfectly
fulfilled. Quantifying over all 𝑇 ≤ 𝑇max allows us to further deduce that all the logical
accesses are perfectly fulfilled until the first time an error is reported, ensuring that
errors are always caught before they can corrupt computation.

Security. Following [CH16], we need an ORAM with localized randomness.

Definition 20 (ORAM localized randomness). An ORAM scheme (Definition 19) has
localized randomness if there exist efficient deterministic algorithms PartRnd and SimORAM
such that for all 𝜆 ∈ ℕ, ℓCELL, ℓADDR, 𝑇max ∈ ℕ, and all sequence {(𝑖𝑡,wdata𝑡)}𝑡∈[𝑇] of logical
accesses with 𝑇 ∈ [𝑇max],

PartRnd(1𝜆, 1ℓCELL , 1ℓADDR , 𝑇max, {(𝑖𝑡,wdata𝑡)}𝑡∈[𝑇]) → {𝑅𝑡}𝑡∈[𝑇]

satisfies

𝑅𝑡 ⊆ [𝑇] × [𝑇0] for all 𝑡 ∈ [𝑇], max
𝑡∈[𝑇]

|𝑅𝑡 | ≤ poly(𝜆, ℓCELL, ℓADDR, log𝑇max),

Pr

[
SimORAM(1𝜆, 1ℓCELL , 1ℓADDR , 𝑇max, 𝑡, 𝑡0, {𝑟𝑖}𝑖∈𝑅𝑡) ≠ 𝑖′𝑡,𝑡0

for some 𝑡 ∈ [𝑇], 𝑡0 ∈ [𝑇0]

]
≤ 2−𝜆,

where the probability is over 𝑟’s and the notations follow those in Definition 19.

The ORAM scheme in [CP13] has localized randomness, as observed in [CH16].

Lemma 4 ([CP13,CH16]). There exists an ORAM with localized randomness.

It should be noted that in our formulation, the ORAM need not encrypt the physical
database, whose content is protected using a separate mechanism.

31 / 89

2.11 Primitives Related to Lower Bounds

Secret-Key PHFE. We consider secret-key PHFE with weak security in our lower bounds.

Definition 21 (secret-key PHFE and security). The definition of a secret-key PHFE scheme
is obtained by modifying Definition 5 as follows:

• Setup only outputs msk, without an mpk.

• Enc takes msk as input instead of mpk.

The definition of 1-key very selective security for public- or secret-key PHFE is obtained by
modifying Definition 7 as follows:

• The adversary chooses 𝑓1, {𝑥𝑞, 𝑦0,𝑞, 𝑦1,𝑞}𝑞∈[𝑄] together with 𝜑, 1𝑇 during Setup, after
which it receives mpk, sk1, {ct𝑞}𝑞∈[𝑄] (but no mpk for secret-key PHFE), where

ct𝑞
$←

{
Enc(1𝜆,mpk, 𝑥𝑞, 𝑦𝛽,𝑞), for public-key PHFE in Exp𝛽PHFE;
Enc(1𝜆,msk, 𝑥𝑞, 𝑦𝛽,𝑞), for secret-key PHFE in Exp𝛽PHFE.

• There is no Query I, Challenge, Query II phases after Setup.

• The constraint of Guess is

|𝑦0,𝑞 | = |𝑦1,𝑞 |,
and 𝜑(𝑓1, 𝑥𝑞, 𝑦0,𝑞) = 𝜑(𝑓1, 𝑥𝑞, 𝑦1,𝑞) = (𝑇𝑞, 𝑧𝑞) ≠ ⊥ for all 𝑞,

and 𝑇𝑞 ≤ 𝑇 for all 𝑞.

The definition of 1-ciphertext very selective security for public- or secret-key PHFE is
obtained by modifying Definition 7 as follows:

• The adversary chooses {𝑓𝑞}𝑞∈[𝑄] , 𝑥, 𝑦0, 𝑦1 together with 𝜑, 1𝑇 during Setup, after
which it receives mpk, {sk𝑞}𝑞∈[𝑄] , ct (but no mpk for secret-key PHFE).

• There is no Query I, Challenge, Query II phases after Setup.

The definition of 1-key 1-ciphertext very selective security for public- or secret-key PHFE is
obtained by modifying Definition 7 as follows:

• The adversary chooses 𝑓1, 𝑥, 𝑦0, 𝑦1 together with 𝜑, 1𝑇 during Setup, after which it
receives sk1, ct (without mpk).

• There is no Query I, Challenge, Query II phases after Setup.

Given a secure full-fledged PHFE for RAM, it is straight-forward to obtain a secure full-
fledged secret-key PHFE for RAM by putting mpk into msk, sk, which does not degrade
any efficiency parameter.

32 / 89

DE-PIR. We consider public- or secret-key doubly efficient private information retrieval.

Definition 22 (DE-PIR [BIPW17,CHR17] and security). A public-key doubly efficient private
information retrieval (PK-DE-PIR) protocol consists of four algorithms:

• Process(1𝜆, 𝐷) takes the database 𝐷 ∈ {0, 1}∗ as input. It outputs a public key pk and
a processed database 𝐷.

• Query(1𝜆, pk, 𝑖) takes as input pk and an index 𝑖 ∈ [|𝐷|]. It outputs an encrypted
query ct and a query-specific secret 𝜎.

• Resp𝐷(1𝜆, ct) takes ct as input. Given random access to 𝐷, it outputs a response 𝜌.

• Dec(1𝜆,𝜎, 𝜌) takes 𝜎, 𝜌 as input. It is supposed to recover 𝐷[𝑖].

The algorithm Process runs in polynomial time and |pk| ≤ poly(𝜆, log |𝐷|). The other
algorithms run in time |𝐷|1−𝜀 poly(𝜆, log |𝐷|) for some constant 0 < 𝜀 ≤ 1. The protocol
must be correct, i.e., for all 𝜆 ∈ ℕ, 𝐷 ∈ {0, 1}∗, 𝑖 ∈ [|𝐷|], it holds that

Pr

(pk, 𝐷) $← Process(1𝜆, 𝐷)

(ct,𝜎) $← Query(1𝜆, pk, 𝑖)

𝜌
$← Resp𝐷(1𝜆, ct)

: Dec(1𝜆,𝜎, 𝜌) = 𝐷[𝑖]

 = 1.

The protocol is secure if for all polynomial-size 𝐷, {𝑖𝛽,𝑞}𝛽∈{0,1},𝑞∈[𝑄] with 𝐷[𝑖0𝑞] = 𝐷[𝑖1𝑞] for
all 𝑞 ∈ [𝑄], it holds that{(

1𝜆, 𝐷, pk, 𝐷, {𝑖0,𝑞, 𝑖1,𝑞, ct0,𝑞}𝑞∈[𝑄]
)}

𝜆∈ℕ ≈
{(

1𝜆, 𝐷, pk, 𝐷, {𝑖0,𝑞, 𝑖1,𝑞, ct1,𝑞}𝑞∈[𝑄]
)}

𝜆∈ℕ.

The definitions of a secret-key DE-PIR (SK-DE-PIR) protocol and its security are obtained
with the following modifications:

• Process outputs a secret key sk instead of pk.

• Query takes sk as input instead of pk.

• For security, sk does not appear in the distributions (there is also no pk).

The security notion we consider is weaker than those defined in [BIPW17,CHR17,LMW23]
in that it is indistinguishability-based, very selective, and does not hide the output nor
the database (for secret-key schemes). Nevertheless, standard techniques can be used to
lift our security notion to the strongest (simulation-based, adaptive, output-hiding, and
for secret-key schemes, database-hiding) at no cost of asymptotic efficiency, i.e., they
are existentially equivalent. (For completeness, we present the proofs in Section A.) In
our proof of technical barriers, the direct construction only achieves the weak security
notion, minimizing the security and functionality required from the underlying PHFE
thus making the barrier stronger, with the additional benefit of simplifying the proof.

3 Efficiency Trade-Offs of PHFE for RAM

Before presenting the trade-offs, we remark that one cannot expect Dec for a full-fledged
PHFE for RAM to run in time 𝑇1−𝜀 poly(𝜆, |𝜑|, | 𝑓 |, |𝑥|, |𝑦|, log𝑇) for any constant 0 < 𝜀 ≤ 1,
due to the time-hierarchy theorems for RAM [CR73,Iva82] (i.e., certain computations
cannot be sped up).

33 / 89

3.1 Contention Between Storage Overhead and Decryption Time

In this section, we show that when 𝐴, 𝐵 < 1, it is impossible to achieve

|sk| = O(| 𝑓 |𝐴) and 𝑇Dec = O(𝑇 + | 𝑓 |𝐵 + |𝑥| + |𝑦|)

simultaneously for a secure PHFE for RAM, where polynomial factors in the security
parameter are ignored. This leaves us with two candidate optima:

• 𝐴 = 0 and 𝐵 = 1 for succinct keys; or

• 𝐴 = 1 and 𝐵 = 0 for 𝑓 -fast decryption.

Similarly, if 𝐴, 𝐵 < 1, it is impossible to achieve

|ct| = O(|𝑥|𝐴) poly(|𝑦|) and 𝑇Dec = O(𝑇 + | 𝑓 | + |𝑥|𝐵 + |𝑦|)

simultaneously, which implies a contention between succinct ciphertexts and 𝑥-fast
decryption.

Formally, our theorems are slightly stronger than the discussion above.

Theorem 5 (contention of | 𝑓 |-dependency between |sk| and 𝑇Dec; ¶). For a secret-key 1-key
1-ciphertext very selectively secure full-fledged PHFE for RAM (Definitions 10 and 21),21 if

|sk| ≤ | 𝑓 |𝐴(𝜆 + |𝜑 |)𝐶 and 𝑇Dec ≤ (𝑇 + | 𝑓 |𝐵 + |𝑦|) (𝜆 + |𝜑 | + |𝑥|)𝐶

for infinitely many 𝜆, where 𝐴, 𝐵,𝐶 are constants, then 𝐴 ≥ 1 or 𝐵 ≥ 1.

Theorem 6 (contention of |𝑥|-dependency between |ct| and 𝑇Dec). For a secret-key 1-key
1-ciphertext very selectively secure full-fledged PHFE for RAM (Definitions 10 and 21), if

|ct| ≤ |𝑥|𝐴(𝜆 + |𝜑 | + |𝑦|)𝐶 and 𝑇Dec ≤ (𝑇 + | 𝑓 | + |𝑥|𝐵) (𝜆 + |𝜑 | + |𝑦|)𝐶

for infinitely many 𝜆, where 𝐴, 𝐵,𝐶 are constants, then 𝐴 ≥ 1 or 𝐵 ≥ 1.

Theorem 6 reduces to Theorem 5 by first switching the roles of sk, ct using the double
encryption method [NY90,BS18].22 Therefore, we only prove Theorem 5.

Proof (Theorem 5). Let (Setup, KeyGen, Enc,Dec) be a secure full-fledged secret-key PHFE
for RAM. Suppose for contradiction that 𝐴, 𝐵 < 1 − 5𝜀 for some 0 < 𝜀 < 1

5 . By enlarging 𝐶
as needed, we could assume |𝜑 | ≤ 𝜆𝐶 − 𝜆 − 1 for all sufficiently large 𝜆, where

𝜑 = (𝑀𝜆, 2𝜆), 𝑓 = 𝑅 ∈ {0, 1}≤2𝜆 , 𝑥 = ⊥,

𝑦 =

{
(𝐼, 𝑤) = (𝑖1, 𝑤[1], . . . , 𝑖𝑛, 𝑤[𝑛]) ∈ ([2𝜆] × {0, 1})≤2𝜆 ;

𝑧 = (⊥, 𝑧[1], . . . , ⊥, 𝑧[𝑛]) ∈ ({⊥} × {0, 1})≤2𝜆 ;

21The proof only requires the PHFE scheme to be mildly expressive.
22The implementation is similar to Construction 6. A new secret key for 𝑓 is an underlying ciphertext

tied to 𝑥′ = 𝑓 encrypting 𝑦′ = (𝛽′, 𝑘𝛽′), where 𝛽′ is a choice bit and 𝑘𝛽′ is a PRF (SKE) key, both stored
in the new msk. A new ciphertext tied to 𝑥 of 𝑦 is 𝑤 together with an underlying secret key tied to
𝑓 ′ = 𝑥 ∥𝑤, where 𝑤 contains 𝑤𝛽′ (an encryption of 𝑦 under 𝑘𝛽′) and 𝑤1−𝛽′ (used in the security proof).
This transformation ensures that the efficiency in Theorem 6 is translated to that in Theorem 5.

34 / 89

𝑀 𝑓 ,𝑥∥𝑦 () =
{
(𝑅[𝑖1] ⊕ 𝑤[1], . . . , 𝑅[𝑖𝑛] ⊕ 𝑤[𝑛]), if 𝑦 = (𝐼, 𝑤);
(𝑧[1] , . . . , 𝑧[𝑛]), if 𝑦 = 𝑧.

Under appropriate encoding and step circuit design, 𝑦 has exactly 𝑛 cells and 𝑀 halts in
exactly (2𝑛 + 1) steps.

We focus on the values of 𝜆 (hereafter, “𝜆 with efficiency”) such that

|sk| ≤ | 𝑓 |𝐴(𝜆 + |𝜑 |)𝐶 and 𝑇Dec ≤ (𝑇 + | 𝑓 |𝐵 + |𝑦|) (𝜆 + |𝜑 | + |𝑥|)𝐶

By setting

|𝑅| = 𝑁 =
⌈
𝜆(𝐶

2+1)/𝜀⌉, 𝑛 = ⌊𝑁1−3𝜀⌋,

we would have 𝑛 < 𝑁 < 2𝜆 for sufficiently large 𝜆. Consider the following adversary A
(Definitions 21):

• Upon launching, it computes 𝜑, 𝑁, 𝑛 defined above, sets up the PHFE scheme for 𝜑,
and submits 12𝑛+1 as the time bound.

• It samples 𝑅 $← {0, 1}𝑁 and requests a key sk for 𝑓 = 𝑅.

• It samples 𝑤 $← {0, 1}𝑛 and a list 𝐼 of 𝑛 distinct random elements from [𝑁], sets

𝑧 = (⊥, 𝑅[𝑖1] ⊕ 𝑤[1], . . . ,⊥, 𝑅[𝑖𝑛] ⊕ 𝑤[𝑛]).

It challenges with

𝑥 = ⊥, 𝑦0 = (𝐼, 𝑤), 𝑦1 = 𝑧,

and obtains a ciphertext ct encrypting either 𝑦0 or 𝑦1.

• It runs Dec𝑓 ,𝑥,sk,ct() and notes down the list 𝐿 of indices into 𝑅 = 𝑓 where it is read
during decryption. A outputs 1 if and only if

|𝐿 ∩ 𝐼 | > 𝑁1−4𝜀,

where 𝐿 and 𝐼 are regarded as sets (unordered and deduplicated) for the
intersection operation.

Clearly, A would be efficient and its challenge would satisfy the constraints of PHFE
security for sufficiently large 𝜆. We make the following claims.

Claim 7 (¶). For sufficiently large 𝜆 with efficiency,

Pr
[
|𝐿 ∩ 𝐼 | > 𝑁1−4𝜀 in Exp0

PHFE
]
≥ 3

4
.

Claim 8 (¶). For sufficiently large 𝜆 with efficiency,

Pr
[
|𝐿 ∩ 𝐼 | > 𝑁1−4𝜀 in Exp1

PHFE
]
≤ 1

4
.

The two claims together would contradict the security of PHFE, as the advantage of A
would be at least 1

2 for infinitely many 𝜆. Therefore, 𝐴 ≥ 1 or 𝐵 ≥ 1. □

35 / 89

To prove Claim 7, we need the following lemma about incompressibility of information:

Lemma 9 ([DTT10]). Suppose 𝐸 : 𝑆 ×𝑈 → 𝑉 and 𝐷 : 𝑆 × 𝑉 → 𝑈 are functions and S is a
distribution over 𝑆, then

|𝑉 | ≥ |𝑈 | · Pr
𝑠

$←S
𝑢

$←𝑈

[𝐷(𝑠, 𝐸(𝑠, 𝑢)) = 𝑢].

Proof (Claim 7). We use the PHFE scheme to compress a string 𝑢 of length 𝑛. To encode,
we embed 𝑢 into a string 𝑅 of length 𝑁 at random locations (i.e., 𝐼) and generate a
PHFE key for 𝑅. The encoding is the key plus some bits in 𝑅 used during decryption. To
decode, run the decryption algorithm. Lemma 9 will generate the following inequality
equivalent to the desired one:

Pr
[
|𝐿 ∩ 𝐼 | ≤ ⌊𝑁1−4𝜀⌋ in Exp0

PHFE
]
≤ 1

4
.

Formally, let

S =

(

msk, 𝐼, 𝑤, 𝑅′,
𝑟KeyGen, 𝑟Enc, 𝑟Dec

)
:

msk $← Setup(𝜑)
(𝐼, 𝑤) as how A samples it

𝑅′[𝑖] $← {0, 1} for 𝑖 ∈ [𝑁] \ 𝐼

𝑟KeyGen, 𝑟Enc, 𝑟Dec
$← algorithm randomness

,

𝑈 = {0, 1}𝑛, 𝑉 = {0, 1}⌊𝑁1−4𝜀⌋ × {0, 1}⌊𝑁1−4𝜀⌋ .

The encoding procedure 𝐸(𝑠, 𝑢) works as follows.

• Parse 𝐼 = (𝑖1, . . . , 𝑖𝑛) and set

𝑅[𝑖] =
{
𝑅′[𝑖], if 𝑖 ∈ [𝑁] \ 𝐼;
𝑢[𝑗], if 𝑖 = 𝑖𝑗 .

• Run

sk← KeyGen(msk, 𝑅; 𝑟KeyGen),
ct← Enc(msk,⊥, (𝐼, 𝑤); 𝑟Enc),

𝑢 ⊕ 𝑤← Dec𝑅,⊥,sk,ct(𝑟Dec),

and note down the list 𝐿 = (ℓ1, . . .) of indices into 𝑅 read by Dec.

• Output 𝑣 = (𝑣1, 𝑣2) with 𝑣1, 𝑣2 ∈ {0, 1}⌊𝑁
1−4𝜀⌋ and

𝑣1 = 0⌊𝑁
1−4𝜀⌋−|sk|−11∥sk,

𝑣2 [𝑖] =
{
𝑅[ℓ𝑗], if |{ℓ1, . . . , ℓ𝑗−1} ∩ 𝐼 | = 𝑖 − 1 and |{ℓ1, . . . , ℓ𝑗−1, ℓ𝑗} ∩ 𝐼 | = 𝑖;
0, if no such 𝑗 exists.

36 / 89

Here, 𝑣1 is a fixed-length encoding of sk and is indeed well-defined since

|sk| ≤ | 𝑓 |𝐴(𝜆 + |𝜑 |)𝐶 ≤ 𝑁1−5𝜀 (𝜆 + (𝜆𝐶 − 𝜆 − 1)
)𝐶 ≤ 𝑁1−5𝜀𝜆𝐶

2
< ⌊𝑁1−4𝜀⌋ − 1

for sufficiently large 𝜆 with efficiency. The string 𝑣2 records, sequentially, the bits in 𝑅
at each distinct index read by Dec that are part of 𝑢 and not known from 𝑅′, for at most
⌊𝑁1−4𝜀⌋ bits.

The decoding procedure 𝐷(𝑠, 𝑣) works as follows.

• Run ct← Enc(msk,⊥, (𝐼, 𝑤); 𝑟Enc).

• Parse 𝑣 = (𝑣1, 𝑣2) and recover sk from 𝑣1 as specified in 𝐸.

• Initialize 𝑗, an index into 𝑣2, by 𝑗 ← 0, and initialize 𝑅 by

𝑅[𝑖] =
{
𝑅′[𝑖], if 𝑖 ∈ [𝑁] \ 𝐼;
⊥, if 𝑖 ∈ 𝐼.

Run 𝑧← Dec𝑅,⊥,sk,ct(𝑟Dec) with 𝑅 filled on the fly. When Dec reads 𝑅[𝑖]:

– if 𝑅[𝑖] = ⊥ and 𝑗 < ⌊𝑁1−4𝜀⌋, then let 𝑗 ← 𝑗 + 1 and set 𝑅[𝑖] ← 𝑣2 [𝑗];
– if 𝑅[𝑖] = ⊥ and 𝑗 = ⌊𝑁1−4𝜀⌋, then abort by outputting 0𝑛;
– otherwise, 𝑅[𝑖] ≠ ⊥, then just proceed without aborting;

and return 𝑅[𝑖] to Dec if not aborting.

• Output 𝑧 ⊕ 𝑤.

𝐷 will fill 𝑣2 into the correct indices of 𝑅 since the PHFE algorithms are derandomized
with the same randomness as in 𝐸.

The sampling of 𝑠, 𝑢 and the setting of 𝑅 in 𝐸(𝑠, 𝑢) simulate A in Exp0
PHFE. If 𝑠 and 𝑢

are such that |𝐿 ∩ 𝐼 | ≤ ⌊𝑁1−4𝜀⌋ in 𝐸(𝑠, 𝑢), then 𝐷will successfully recover 𝑢. By Lemma 9,

Pr
[
|𝐿 ∩ 𝐼 | ≤ ⌊𝑁1−4𝜀⌋ in Exp0

PHFE
]
= Pr

𝑠
$←S

𝑢
$←𝑈

[
|𝐿 ∩ 𝐼 | ≤ ⌊𝑁1−4𝜀⌋ in 𝐸(𝑠, 𝑢)

]
≤ Pr

𝑠
$←S

𝑢
$←𝑈

[𝐷(𝑠, 𝐸(𝑠, 𝑢)) = 𝑢]

≤ |𝑉 ||𝑈 | =
22⌊𝑁1−4𝜀⌋

2𝑛
= 22⌊𝑁1−4𝜀⌋−⌊𝑁1−3𝜀⌋ ≤ 1

4

for sufficiently large 𝜆 with efficiency. □

Proof (Claim 8). For sufficiently large 𝜆 with efficiency,

|𝐿| ≤ 𝑇Dec ≤ (𝑇 + | 𝑓 |𝐵 + |𝑦|) (𝜆 + |𝜑 | + |𝑥|)𝐶

≤
(
(2𝑛 + 1) + 𝑁1−5𝜀 + 𝑛

) (
𝜆 + (𝜆𝐶 − 𝜆 − 1) + 1

)𝐶
≤

(
3𝑁1−3𝜀 + 𝑁1−5𝜀 + 1

)
𝜆𝐶

2 ≤ 𝑁1−2𝜀 .

37 / 89

In Exp1
PHFE, the input to Dec is independent of 𝐼, which only symbolically appears in ct as

𝑦1 = 𝑧 = (⊥, 𝑅[𝑖1] ⊕ 𝑤[1], . . . ,⊥, 𝑅[𝑖𝑛] ⊕ 𝑤[𝑛])

and is fully hidden by the one-time pad 𝑤. Therefore, the list of indices into 𝑅 read
by Dec (i.e., 𝐿) is independent of 𝐼. Conditioned on 𝐿, the intersection size |𝐿 ∩ 𝐼 | follows
a hypergeometric distribution. By the law of total expectation,

𝔼
[
|𝐿 ∩ 𝐼 |

]
= 𝔼

[
𝔼

[
|𝐿 ∩ 𝐼 |

�� 𝐿]]
= 𝔼

[
|𝐼 | · |𝐿|
𝑁

]
≤ 𝑁

1−3𝜀 · 𝑁1−2𝜀

𝑁
= 𝑁1−5𝜀

for sufficiently large 𝜆 with efficiency, which implies, by Markov’s inequality,

Pr[|𝐿 ∩ 𝐼 | > 𝑁1−4𝜀 in Exp1
PHFE] ≤

𝔼
[
|𝐿 ∩ 𝐼 |

]
𝑁1−4𝜀 ≤ 𝑁

1−5𝜀

𝑁1−4𝜀 = 𝑁−𝜀 ≤ 1
4
. □

3.2 Barrier to Fast Decryption

In this section, we show that PHFE schemes with 𝑓 -/𝑥-/𝑦-fast Dec imply doubly efficient
private information retrieval (DE-PIR) protocols of various flavors. In particular, such
schemes with linear-size keys or ciphertexts imply optimal DE-PIR with

|𝐷| ≤ |𝐷| poly(𝜆, log |𝐷|), 𝑇Query, 𝑇Resp, 𝑇Dec ≤ poly(𝜆, log |𝐷|),

which remains unknown from any assumptions. The latest development in DE-PIR, due
to [LMW23], achieves

|𝐷| ≤ |𝐷|1+𝜀 poly(𝜆, log |𝐷|), 𝑇Query, 𝑇Resp, 𝑇Dec ≤ poly(𝜆, log |𝐷|)

for any constant 𝜀 > 0.
The main idea underlying our proof of technical barrier is as follows. Suppose

decryption is fast with respect to a certain input, then the component (key or ciphertext)
associated with that input is used to encode the database, which, together with the
database in the clear, stored on the server as the processed database. The other
component is used to encode a query index. To respond to a query, the server simply
performs PHFE decryption. Our idea is straight-forward to implement when Dec is 𝑓 -fast
and it requires the double encryption method [NY90,BS18] when Dec is 𝑥-fast or 𝑦-fast.

The formal statements do not require full fastness.

Theorem 10 (DE-PIR from 𝑓 -fast PHFE; ¶). If there exists a 1-key selectively secure full-fledged
PHFE for RAM with

|sk𝑓 | = | 𝑓 |𝐴 poly(𝜆, |𝜑 |), 𝑇Dec = | 𝑓 |𝐵 poly(𝜆, |𝜑 |, 𝑇, |𝑥|, |𝑦|),

for constants 𝐴 and 0 ≤ 𝐵 < 1,23 then there exists a DE-PIR with

|𝐷| = |𝐷| + |𝐷|𝐴 poly(𝜆, log |𝐷|), 𝑇Resp = |𝐷|𝐵 poly(𝜆, log |𝐷|),
𝑇Query = poly(𝜆, log |𝐷|), 𝑇Dec = O(1).

If the PHFE is public-key [resp. secret-key], then so is the DE-PIR.
23The proof requires lesser expressiveness from the PHFE scheme than that of Theorem 5, so the lower

bound 𝐴 ≥ 1 might not apply. Note that for DE-PIR, |𝐷| = Ω(|𝐷|) is necessary.

38 / 89

Theorem 11 (SK-DE-PIR from 𝑥-fast PHFE; ¶). If there exists a secret-key 1-ciphertext
selectively secure full-fledged PHFE for RAM with

|ct𝑥 | = |𝑥|𝐴 poly(𝜆, |𝜑 |, |𝑦|), 𝑇Dec = |𝑥|𝐵 poly(𝜆, |𝜑|, 𝑇, | 𝑓 |, |𝑦|),

for constants 𝐴 and 0 ≤ 𝐵 < 1,24 then there exists an SK-DE-PIR with

|𝐷| = |𝐷| + |𝐷|𝐴 poly(𝜆, log |𝐷|), 𝑇Resp = |𝐷|𝐵 poly(𝜆, log |𝐷|),
𝑇Query = poly(𝜆, log |𝐷|), 𝑇Dec = O(1).

Theorem 12 (SK-DE-PIR from 𝑦-fast PHFE). If there exists a secret-key 1-ciphertext selectively
secure full-fledged PHFE for RAM with

|ct𝑥 | = |𝑦|𝐴 poly(𝜆, |𝜑 |, |𝑥|), 𝑇Dec = |𝑦|𝐵 poly(𝜆, |𝜑 |, 𝑇, | 𝑓 |, |𝑥|),

for constants 𝐴 and 0 ≤ 𝐵 < 1,25 then there exists an SK-DE-PIR with

|𝐷| = |𝐷|𝐴 poly(𝜆, log |𝐷|), 𝑇Resp = |𝐷|𝐵 poly(𝜆, log |𝐷|),
𝑇Query = poly(𝜆, log |𝐷|), 𝑇Dec = O(1).

Note that in all of the theorems above, if 𝐴 = 1 and 𝐵 = 0, then the resultant DE-PIR
will be optimal. We will only prove Theorems 10 and 11. The proof of Theorem 12 is
analogous to that of Theorem 11.

Proof (Theorem 10). Let PHFE = (PHFE.Setup, PHFE.KeyGen, PHFE.Enc, PHFE.Dec) be the
PHFE in the premise. We only prove the case of public-key PHFE, and the secret-key
case is similar. The PK-DE-PIR protocol works as follows:

• Process(𝐷) constructs a 2-tape RAM 𝑀𝐷1,𝐷2 () = 𝐷1 [𝑖], where 𝑖 ∈ [|𝐷1 |] is interpreted
from 𝐷2, such that |𝑀 | ≤ poly(log |𝐷|). It sets 𝑇max = 2, 𝑓 = 𝐷, and runs

(phmpk, phmsk) $← PHFE.Setup(𝜑𝑀,𝑇max), phsk $← PHFE.KeyGen(phmsk, 𝑓).

The algorithm outputs pk = phmpk and 𝐷 = (𝐷, phsk).

• Query(pk, 𝑖) sets 𝑥 = ⊥, 𝑦 = 𝑖, runs

phct $← PHFE.Enc(phmpk, 𝑥, 𝑦),

and outputs ct = phct and 𝜎 = ⊥.

• Resp𝐷(ct) runs and outputs 𝜌 $← PHFE.Dec𝐷,⊥,phsk,phct(phmpk).

• Dec(𝜎, 𝜌) outputs 𝜌.

It is readily verified that the protocol is correct and enjoys the promised efficiency.
Security follows from 1-key very selective security of PHFE in a straight-forward way. □

24Similarly to Footnote 23, we do not claim 𝐴 ≥ 1.
25It is necessary that 𝐴 ≥ 1.

39 / 89

Note that in the above proof, the functionality of PHFE is extremely simple (namely,
read-then-output). Theorem 10 provided strong indication of technical breakthrough
required to construct PHFE with optimal decryption time, given that no candidate of
optimal DE-PIR was known prior to the initial write-up of this work (and is still not
known to a satisfactory degree).

Proof (Theorem 11). Let PHFE = (PHFE.Setup, PHFE.KeyGen, PHFE.Enc, PHFE.Dec) be the
secret-key PHFE in the premise. Let SKE = (SKE.Gen, SKE.Enc, SKE.Dec) be a secret-key
encryption scheme with pseudorandom ciphertexts. Our SK-DE-PIR protocol works as
follows:

• Process(𝐷) constructs a 2-tape RAM

𝑀𝐷1,𝐷2 () = 𝐷′[SKE.Dec(𝑘𝛽, 𝑐𝛽)] for 𝐷1 = 𝑐0 ∥ 𝑐1, 𝐷2 = 𝐷′ ∥𝛽 ∥𝑘𝛽,

where 𝑐0, 𝑐1 are two possible SKE ciphertexts, 𝛽 is a bit, and 𝑘𝛽 is an SKE key.
Such an 𝑀 can be constructed with |𝑀 | ≤ poly(𝜆, log |𝐷|). The algorithm picks an
appropriate 𝑇max ≤ poly(𝜆, log |𝐷|), and sets/samples/runs

𝑥← 𝐷, 𝛽
$← {0, 1}, 𝑘𝛽

$← SKE.Gen(), 𝑦← 𝛽 ∥𝑘𝛽,

phmsk $← PHFE.Setup(𝜑𝑀,𝑇max), phct $← PHFE.Enc(msk, 𝑥, 𝑦).

It outputs sk = (phmsk,𝛽, 𝑘𝛽) and 𝐷 = (𝐷, phct).

• Query(sk, 𝑖) samples/runs

𝑐𝛽
$← SKE.Enc(𝑘𝛽, 𝑖), 𝑐1−𝛽

$← {0, 1} |𝑐𝛽 |, 𝑓 ← 𝑐0 ∥ 𝑐1, phsk $← PHFE.KeyGen(msk, 𝑓),

and outputs ct = (𝑐0, 𝑐1, phsk) and 𝜎 = ⊥.

• Resp𝐷(ct) runs and outputs 𝜌 $← PHFE.Dec𝑐0∥𝑐1,𝐷,phsk,phct().

• Dec(𝜎, 𝜌) outputs 𝜌.

Again, correctness and efficiency are readily verified. For security, let 𝑘1−𝛽
$← SKE.Gen()

and consider the following hybrids:

• H𝑏0. This is one of the distributions in Definition 22, i.e.,

𝐷, phct $← PHFE.Enc(msk, 𝐷,𝛽 ∥𝑘𝛽), {𝑖0,𝑞}𝑞∈[𝑄] , {𝑖1,𝑞}𝑞∈[𝑄] ,

(in ct𝑞) phsk𝑞
$← PHFE.KeyGen(msk, 𝑐𝑞,0 ∥ 𝑐𝑞,1), 𝑐0 ∥ 𝑐1,

𝑐𝑞,𝛽
$← SKE.Enc(𝑘𝛽, 𝑖 𝑏 ,𝑞), 𝑐𝑞,1−𝛽

$← {0, 1} |𝑐𝑞,𝛽 | .

• H𝑏1 . In this hybrid, we make 𝑐𝑞,1−𝛽 an encryption of 𝑖1−𝑏,𝑞 under 𝑘1−𝛽, i.e.,

𝐷, phct $← PHFE.Enc(msk, 𝐷,𝛽 ∥𝑘𝛽), {𝑖0,𝑞}𝑞∈[𝑄] , {𝑖1,𝑞}𝑞∈[𝑄] ,

(in ct𝑞) phsk𝑞
$← PHFE.KeyGen(msk, 𝑐𝑞,0 ∥ 𝑐𝑞,1), 𝑐0 ∥ 𝑐1,

𝑐𝑞,𝛽
$← SKE.Enc(𝑘𝛽, 𝑖𝑏,𝑞), 𝑐𝑞,1−𝛽

$← SKE.Enc(𝑘1−𝛽, 𝑖1−𝑏,𝑞) .

H𝑏0 ≈ H
𝑏
1 for each 𝑏 ∈ {0, 1} by the ciphertext pseudorandomness of SKE.

40 / 89

• H𝑏2. In this hybrid, we rename (𝛽 ⊕ 𝑏) to 𝛾, making it

𝐷, phct $← PHFE.Enc(msk, 𝐷, 𝛾 ⊕ 𝑏 ∥𝑘 𝛾⊕𝑏), {𝑖0,𝑞}𝑞∈[𝑄] , {𝑖1,𝑞}𝑞∈[𝑄] ,

(in ct𝑞) phsk𝑞
$← PHFE.KeyGen(msk, 𝑐𝑞,0 ∥ 𝑐𝑞,1), 𝑐0 ∥ 𝑐1,

𝑐𝑞, 𝛾
$← SKE.Enc(𝑘 𝛾 , 𝑖 0 ,𝑞), 𝑐𝑞, 1−𝛾

$← SKE.Enc(𝑘 1−𝛾 , 𝑖 1 ,𝑞),

where 𝛾
$← {0, 1}. This change is conceptual, so H𝑏1 ≡ H

𝑏
2 for each 𝑏 ∈ {0, 1}.

H0
2 ≈ H

1
2 follows from the 1-ciphertext very selective security of PHFE. Therefore, the SK-

DE-PIR protocol is secure. □

4 Bounded LGRAMwith Fixed-Memory Security

In this section, we present our LGRAM with fixed-memory security. The construction is
based on the works of [GS18a,GOS18,AL18,KNTY19].

Roughly speaking, [GS18a] constructs a circuit garbling scheme from adaptively
secure LOT with local proof of security and lifts it to an adaptively secure scheme using
somewhere equivocal encryption, which is further developed to obtain a garbled RAM
scheme with fixed-memory security (or unprotected memory access) [GOS18]. The work
of [AL18] modularizes the construction and shows how to obtain a succinct garbling
scheme using obfuscation for circuits with polynomial-size domains, which is in turn
implied by FE for circuits. The work of [KNTY19] shows that selectively secure LOT
suffices and that such an LOT is implied by FE for circuits.

All of the works consider garbling schemes with no public input, and the security
notions for their final products are simulation-based. Consequently, the length of the
garbling necessarily [AIKW13] grows linearly with the input and output lengths. In
contrast, our notion of garbling has a short private input and we are interested in
indistinguishability and succinctness.

4.1 Construction

Ingredients of Construction 1. Let

• 𝑖O be a circuit obfuscator,

• LOT an updatable LOT with fast initialization,

LOT = (LOT.HashGen, LOT.Hash, LOT.SendRead, LOT.RecvRead,
LOT.SendWrite, LOT.RecvWrite, LOT.Hash0s),

• GC = (GC.Garble,GC.Eval) a circuit garbling scheme, and

• PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.

Construction 1 (bounded LGRAM with fixed-memory security). Our bounded LGRAM
works as follows:

41 / 89

• Compress(1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏) takes as input the cell length, the address length, the
tape index, and the tape content. It runs

hk𝜏
$← LOT.HashGen(1ℓcell , 1ℓaddr), (ℎ𝜏, 𝐷𝜏) ← LOT.Hash(hk𝜏, 𝐷𝜏),

and outputs digest𝜏 = (hk𝜏, ℎ𝜏, |𝐷𝜏 |).

• Garble(𝑇max, 𝑀, {digest𝜏}𝜏∈[T]) takes as input an upper bound of the running time,
the machine, and the input tape digests. It runs

hkwork
$← LOT.HashGen(1ℓCELL , 1ℓADDR), ℎwork,0 ← LOT.Hash0s(hkwork, 𝑇max),

samples PPRF key 𝑘, prepares GenAugCPU using 𝑀 (Figure 3), and runs�GenAugCPU $← 𝑖O(GenAugCPU[𝑘, {hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork]).

GenAugCPU is padded to size poly(𝜆, |𝑀 |, log𝑇max) for the security proof to work.
The algorithm computes using 𝑘 and splits 𝜋, 𝐿 for �AugCPU1 as defined in Figure 4,

𝜋1 : 𝜋𝑤1 ,𝜋
st
1 ,𝜋

rdata
1 ,𝜋ℎ1 ,

{𝐿1,𝑖,𝑏}𝑖,𝑏 : {𝐿𝑤1,𝑖,𝑏}𝑖∈[ℓin],𝑏, {𝐿
st
1,𝑖,𝑏}𝑖∈[ℓst],𝑏, {𝐿

rdata
1,𝑖,𝑏 }𝑖∈[ℓCELL],𝑏, {𝐿

ℎ
1,𝑖,𝑏}𝑖∈[ℓHASH],𝑏,

sets st0 = 0ℓst , rdata0 = 0ℓCELL , and outputs

�̂� =

(
hkwork, �GenAugCPU, st0 ⊕ 𝜋st1 , rdata0 ⊕ 𝜋rdata1 , ℎwork,0 ⊕ 𝜋ℎ1 ,

{𝐿st1,𝑖,st0 [𝑖]}𝑖∈[ℓst] , {𝐿
rdata
1,𝑖,rdata0 [𝑖]}𝑖∈[ℓCELL] , {𝐿

ℎ
1,𝑖,ℎwork,0 [𝑖]}𝑖∈[ℓHASH] ,

)
,

{𝐿𝑖,𝑏 = (𝑏 ⊕ 𝜋𝑤1 [𝑖]) ∥𝐿
𝑤
1,𝑖,𝑏}𝑖∈[ℓin],𝑏∈{0,1} .

GenAugCPU[{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝑘] (𝑡)

Hardwired. hk𝜏, hkwork, LOT hash keys for the tapes;
ℎ𝜏, |𝐷𝜏 |, LOT hashes and lengths of the input tapes;
𝑘, PPRF key.

Input. 𝑡 ∈ [𝑇max], current time (step number).

Output. �AugCPU𝑡, the garbled “augmented step circuit” at time 𝑡,
computed as follows.

1. Obtain randomness from PPRF:
(𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡 , 𝑟GC𝑡) ← PPRF.Eval(𝑘, 𝑡)
(𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏) ← PPRF.Eval(𝑘, 𝑡 + 1) with 𝑟LOT𝑡+1 , 𝑟

GC
𝑡+1 removed

2. Garble AugCPU (Figure 4):

AugCPU𝑡 ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡

]
output �AugCPU𝑡 ← GC.Garble(AugCPU𝑡,𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏; 𝑟GC𝑡)

Figure 3. The circuit GenAugCPU in Construction 1.

42 / 89

AugCPU𝑡 : AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡

]
(𝑤, st𝑡−1, rdata𝑡−1, ℎwork,𝑡−1)

Hardwired. hk𝜏, hkwork, ℎ𝜏, |𝐷𝜏 |, see Figure 3;
𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏, to be selected for evaluating �AugCPU𝑡+1;
𝑟LOT𝑡 , LOT randomness to select 𝜋, 𝐿 for �AugCPU𝑡+1.

Input. 𝑤, st𝑡−1, rdata𝑡−1, short input, old state, last-read cell content;
ℎwork,𝑡−1, LOT hash of the old working tape.

Output. done𝑡, 𝜏𝑡, 𝑖𝑡,wdata𝑡, out𝑡, produced by 𝑀𝐷1,...,𝐷T (𝑤) at time 𝑡;
selected (or LOT ciphertexts to select) 𝜋, 𝐿 for �AugCPU𝑡+1;
computed as follows.

1. Execute one step of 𝑀:
(done𝑡, st𝑡, 𝜏𝑡, 𝑖𝑡,wdata𝑡, out𝑡) ← CPU(|𝐷1 |, . . . , |𝐷T |, 𝑤, st𝑡−1, rdata𝑡−1)
output done𝑡, 𝜏𝑡, 𝑖𝑡,wdata𝑡, out𝑡

2. Split 𝑟LOT𝑡 , and 𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏 by the input components of AugCPU:©«
𝑟LOT𝑡,rct, 𝑟

LOT
𝑡,wct, 𝜋𝑤

𝑡+1,𝜋
st
𝑡+1,𝜋

rdata
𝑡+1 ,𝜋ℎ

𝑡+1,

{𝐿𝑤
𝑡+1,𝑖,𝑏}𝑖∈[ℓin],𝑏, {𝐿

st
𝑡+1,𝑖,𝑏}𝑖∈[ℓst],𝑏,

{𝐿rdata
𝑡+1,𝑖,𝑏}𝑖∈[ℓCELL],𝑏, {𝐿

ℎ
𝑡+1,𝑖,𝑏}𝑖∈[ℓHASH],𝑏

ª®®¬← (𝑟LOT𝑡 ,𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏)

3. Select 𝜋, 𝐿 for 𝑤, st𝑡 if ¬done𝑡:
output 𝑤 ⊕ 𝜋𝑤𝑡+1, {𝐿

𝑤
𝑡+1,𝑖,𝑤[𝑖]}𝑖∈[ℓin] , st𝑡 ⊕ 𝜋st𝑡+1, {𝐿

st
𝑡+1,𝑖,st𝑡 [𝑖]}𝑖∈[ℓst]

4a. If 𝜏𝑡 ∈ [T], select 𝜋, 𝐿 for 𝐷𝜏𝑡 [𝑖𝑡] ∥0ℓCELL−ℓcell and ℎwork,𝑡 = ℎwork,𝑡−1:

output rct𝑡 ← LOT.SendRead

(
hk𝜏𝑡 , ℎ𝜏𝑡 , 𝑖𝑡,
{(𝑏 ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿

rdata
𝑡+1,𝑖,𝑏}𝑖∈[ℓcell],𝑏

; 𝑟LOT𝑡,rct

)
and {(0 ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿

rdata
𝑡+1,𝑖,0}𝑖∈[ℓCELL]\[ℓcell]

and ℎwork,𝑡 ⊕ 𝜋ℎ𝑡+1, {𝐿
ℎ
𝑡+1,𝑖,ℎwork,𝑡 [𝑖]}𝑖∈[ℓHASH]

4b. If 𝜏𝑡 = work, select 𝜋, 𝐿 for 𝐷work,𝑡−1 [𝑖𝑡] and updated ℎwork,𝑡:

output rct𝑡 ← LOT.SendRead

(
hkwork, ℎwork,𝑡−1, 𝑖𝑡,

{(𝑏 ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿
rdata
𝑡+1,𝑖,𝑏}𝑖∈[ℓCELL],𝑏

; 𝑟LOT𝑡,rct

)
and wct𝑡 ← LOT.SendWrite

(
hkwork, ℎwork,𝑡−1, 𝑖𝑡,wdata𝑡,
{(𝑏 ⊕ 𝜋ℎ𝑡+1 [𝑖]) ∥𝐿

ℎ
𝑡+1,𝑖,𝑏}𝑖∈[ℓHASH],𝑏

; 𝑟LOT𝑡,wct

)

Figure 4. The circuit AugCPU in Construction 1.

43 / 89

• Eval𝐷1,...,𝐷T (𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖}𝑖∈[ℓin]) takes as input the upper bound of
the running time, the machine, the input tape digests, the garbled machine, and a
set of labels. It parses �̂� as specified in Garble, and does the following:

1. Initialize by

(ℎ𝜏, 𝐷𝜏) ← LOT.Hash(hk𝜏, 𝐷𝜏) for 𝜏 ∈ [T],
(ℎwork,0, 𝐷work,0) ← LOT.Hash(hkwork, (0ℓCELL)𝑇max),

st0 ← 0ℓst , rdata0 ← 0ℓCELL , 𝑡← 1.

2. Writing

𝑋𝑡 = 𝑤∥st𝑡−1 ∥ rdata𝑡−1 ∥ℎwork,𝑡−1,

𝑌𝑡 = parts of (𝑋𝑡+1 ⊕ 𝜋𝑡+1) and 𝐿𝑡+1 and rct𝑡,wct𝑡,

run26 �AugCPU𝑡 ← �GenAugCPU(𝑡),
(done𝑡, 𝜏𝑡, 𝑖𝑡,wdata𝑡, out𝑡, 𝑌𝑡) ← GC.Eval(�AugCPU𝑡, 𝑋𝑡 ⊕ 𝜋𝑡, {𝐿𝑡,𝑖,𝑋𝑡 [𝑖]}𝑖),

and halt if done𝑡 is set. Otherwise, output out𝑡 and continue.

3. If 𝜏𝑡 ∈ [T], pick rct𝑡 from 𝑌𝑡 and run

{(rdata𝑡 [𝑖] ⊕ 𝜋rdata𝑡+1,𝑖) ∥𝐿
rdata
𝑡+1,𝑖,rdata𝑡 [𝑖]}𝑖∈[ℓcell] ← LOT.RecvRead𝐷𝜏𝑡 (hk𝜏𝑡 , ℎ𝜏𝑡 , 𝑖𝑡, rct𝑡).

Combine it with parts of (𝑋𝑡+1 ⊕ 𝜋𝑡+1) and 𝐿𝑡+1 already in 𝑌𝑡 to obtain
(𝑋𝑡+1 ⊕ 𝜋𝑡+1) and {𝐿𝑡+1,𝑖,𝑋𝑡+1 [𝑖]}𝑖.

4. Otherwise, 𝜏𝑡 = work, then pick rct𝑡,wct𝑡 from 𝑌𝑡, run

{(rdata𝑡 [𝑖] ⊕ 𝜋rdata𝑡+1,𝑖) ∥𝐿
rdata
𝑡+1,𝑖,rdata𝑡 [𝑖]}𝑖∈[ℓCELL] ← LOT.RecvRead𝐷work,𝑡−1 (hkwork, ℎwork,𝑡−1, 𝑖𝑡, rct𝑡),

{(ℎwork,𝑡 ⊕ 𝜋ℎ
𝑡+1,𝑖) ∥𝐿

ℎ
𝑡+1,𝑖,ℎwork,𝑡 [𝑖]}𝑖∈[ℓHASH] ← LOT.RecvWrite𝐷work,𝑡−1

(
hkwork, ℎwork,𝑡−1,

𝑖𝑡,wdata𝑡,
wct𝑡

)
,

updating 𝐷work,𝑡−1 into 𝐷work,𝑡. Again, combine it with parts of (𝑋𝑡+1 ⊕ 𝜋𝑡+1) and
𝐿𝑡+1 already in 𝑌𝑡 to obtain (𝑋𝑡+1 ⊕ 𝜋𝑡+1) and {𝐿𝑡+1,𝑖,𝑋𝑡+1 [𝑖]}𝑖.

5. Let 𝑡← 𝑡 + 1 and go back to Step 2.

Correctness and Efficiency. They follow from those of all the ingredients and the
invariant that AugCPU𝑡 is evaluated on 𝑤, st𝑡−1, rdata𝑡−1, ℎwork,𝑡−1 coinciding with those
from the execution of 𝑀. We remark that the evaluation time is not instance-
specific, because processing the empty working tape for LOT already takes time
𝑇max poly(𝜆, |𝑀 |).
26𝑋𝑡 itself is not needed for evaluation and is not supposed to be efficiently computable. The values

of (𝑋𝑡 ⊕ 𝜋𝑡) and {𝐿𝑡,𝑖,𝑋𝑡 [𝑖] }𝑖 for 𝑡 = 1 are read from �̂�, and those for 𝑡 > 1 are computed by evaluating�AugCPU𝑡−1 as explained later.

44 / 89

4.2 Security

Theorem 13 (¶). Suppose in Construction 1, 𝑖O is secure for polynomial-size domains
(Definition 11), LOT is read- and write-secure (Definitions 14 and 15), and GC, PPRF are secure
(Definition 16 and 17), then the constructed scheme is fixed-memory secure (Definition 4).

The proof follows the pebbling strategy in [GS18a]. Recall that in Exp𝛽LGRAM, the LGRAM
labels are selected for 𝑤𝛽, and each AugCPU𝑡 performs a step of 𝑀𝐷1,...,𝐷T (𝑤𝛽), for which
we write 𝑀 ··· (𝑤𝛽) hereafter in this proof. Along the hybrids from Exp0

LGRAM to Exp1
LGRAM,

we gradually switch the trailing steps from those for 𝑀 ··· (𝑤0) to those for 𝑀 ··· (𝑤1).

Specification of Hybrids. Each hybrid H𝔱,𝔰 is indexed by a natural number
0 ≤ 𝔱 ≤ 𝑇max + 1 and a set 𝔰 ⊆ [𝑇max]. The indices 𝔱, 𝔰 specify how AugCPU𝑡 is garbled
and what it does:

• when 𝑡 < 𝔱, it runs the 𝑡th step of 𝑀 ··· (𝑤0);

– if 𝑡 ∉ 𝔰, the step is garbled normally;
– if 𝑡 ∈ 𝔰, the step is simulated with true randomness for labels and LOT
encryption that selects the labels for AugCPU𝑡+1;

• when 𝑡 = 𝔱, it is simulated and outputs the labels so that AugCPU𝔱+1 runs the (𝔱 + 1)st
step of 𝑀 ··· (𝑤1), i.e., it switches the execution from 𝑀 ··· (𝑤0) to 𝑀 ··· (𝑤1);

• when 𝑡 > 𝔱, it is garbled normally but runs the 𝑡th step of 𝑀 ··· (𝑤1), due to the
behavior of AugCPU𝔱.

There are two special cases:
• when 𝔱 = 0, we give the LGRAM labels for 𝑤1 (think of them as the output of the
zeroth step circuit) to the adversary so that AugCPU1 runs the first step of 𝑀 ··· (𝑤1)
when the LGRAM is evaluated normally;

• when 𝑡 > 𝑇 for 𝑡 ∈ {𝔱} ∪ 𝔰, neither execution has a 𝑡th step, and we simulate this
step as if it were the last step of the execution, whose output would not select any
label for the (𝑡 + 1)st step.27

In the parlance of [GS18a], consider a line graph where vertex 𝑡 represents step 𝑡,
• a gray pebble is placed on 𝑡 ∈ 𝔰 if 𝑡 < 𝔱 (the step is being simulated), and

• a black pebble is placed on 𝑡 ≥ 𝔱 (the step is done for good).
However, the first black pebble (on 𝔱) is special for us as step 𝔱 facilitates the transition
from 𝑀 ··· (𝑤0) to 𝑀 ··· (𝑤1). We will use an optimized pebbling sequence [GS18a] to connect
the hybrids.

Formally, let

stS(𝑀, 𝐷1, . . . , 𝐷T , 𝑤0) = (st0,1, . . . , st0,𝑇−1),
stS(𝑀, 𝐷1, . . . , 𝐷T , 𝑤1) = (st1,1, . . . , st1,𝑇−1),

27This pretention trick unifies the usage of garbled circuit security. Since an out-of-range 𝑡th step is
pretended to repeat the last existent step, simulating it removes all the labels for the (𝑡 + 1)st step, and
consequently (and inductively), we can pretend that the set of labels for the (𝑡 + 1)st step corresponding to
the input to the last existent step were revealed, so that the (𝑡 + 1)st step can also be pretended to repeat
the last step. Without pretending, we will need another security notion of garbled circuits, namely that
it can be simulated without any output if no input labels are given. This notion holds for many known
constructions, but is not implied by the usual version.

45 / 89

addrS(. . . , 𝑤0) = addrS(. . . , 𝑤1) = (𝜏1, 𝑖1, . . . , 𝜏𝑇−1, 𝑖𝑇−1),
writeS(. . . , 𝑤0) = writeS(. . . , 𝑤1) = (wdata1, . . . ,wdata𝑇−1),

outS(. . . , 𝑤0) = outS(. . . , 𝑤1) = (out1, . . . , out𝑇−1).

We also write 𝐷work,𝑡 for the working tape content, rdata𝑡 for the read cell content, and
ℎ𝜏, ℎwork,𝑡 for the LOT hashes — due to the constraint of fixed-memory security, the values
of them in the two executions coincide. Define

𝑋𝑏,𝑡 = 𝑤𝑏 ∥st𝑏,𝑡−1 ∥ rdata𝑡−1 ∥ℎwork,𝑡−1 ∀𝑏 ∈ {0, 1}.

In H𝔱,𝔰, we change �GenAugCPU in �̂� to

𝑖O
(
GenAugCPU′

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝔱, 𝔰, �̊�{𝔱}∪𝔰, {𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰

])
,

where

• GenAugCPU′ is shown in Figure 5,

• �̊�{𝔱}∪𝔰 is a PPRF key punctured at {𝔱} ∪ 𝔰,

GenAugCPU′
[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝔱, 𝔰, �̊�{𝔱}∪𝔰, {𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰

]
(𝑡)

Hardwired. hk𝜏, hkwork, ℎ𝜏, |𝐷𝜏 |, see Figure 3;
𝔱, 𝔰, switching time, hardwired step numbers;
�̊�{𝔱}∪𝔰, punctured PPRF key;

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, hardwired randomness and garbled steps.
Input. 𝑡 ∈ [𝑇max], current time (step number).

Output. �AugCPU𝑡, computed as follows.

1. Check for hardwired steps, if 𝑡 ∈ {𝔱} ∪ 𝔰:
output hardwired �AugCPU𝑡 and terminate

2. Otherwise, obtain randomness, either hardwired or from PPRF:
(𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡 , 𝑟GC𝑡) ← PPRF.Eval(�̊�{𝔱}∪𝔰, 𝑡)

(𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏) ←

hardwired, if 𝑡 + 1 ∈ {𝔱} ∪ 𝔰;
PPRF.Eval(�̊�{𝔱}∪𝔰, 𝑡 + 1) with 𝑟LOT

𝑡+1 , 𝑟
GC
𝑡+1 removed,

if 𝑡 + 1 ∉ {𝔱} ∪ 𝔰;

3. Garble AugCPU (Figure 4) as done in GenAugCPU (Figure 3):

AugCPU𝑡 ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝑡+1, {𝐿𝑡+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡

]
output �AugCPU𝑡 ← GC.Garble(AugCPU𝑡,𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏; 𝑟GC𝑡)

Figure 5. The circuit GenAugCPU′ in the proof of Theorem 13.

46 / 89

• 𝜋𝑡’s and 𝐿𝑡,𝑖,𝑏’s are random strings, and

• �AugCPU𝑡’s are the simulated garbled step circuits.
We still use 𝜋𝑡, 𝐿𝑡,𝑖,𝑏 for part of the PPRF output when 𝑡 ∉ {𝔱} ∪ 𝔰.�AugCPU𝑡’s are generated by

GC.�Garble(1|AugCPU|, 𝑍𝑏,𝑡, 𝑋0,𝑡 ⊕ 𝜋𝑡, {𝐿𝑡,𝑖,𝑋0,𝑡 [𝑖]}𝑖) with 𝑏 =
{

0, if 𝑡 < 𝔱 and 𝑡 ∈ 𝔰;
1, if 𝑡 = 𝔱;

where GC.�Garble is a simulator for GC, and 𝑍𝑏,𝑡 for 𝑏 ∈ {0, 1} consists of (done𝑡, 𝜏𝑡, 𝑖𝑡,
wdata𝑡, out𝑡), parts of (𝑋𝑏,𝑡+1 ⊕ 𝜋𝑡+1) and 𝐿𝑡+1, and r̃ct𝑡, w̃ct𝑡 (cf. Figure 4):

• If ¬done𝑡, then 𝑍𝑏,𝑡 contains (dependent on 𝑏)

𝑤𝑏 ⊕ 𝜋𝑤𝑡+1, {𝐿
𝑤
𝑡+1,𝑖,𝑤𝑏 [𝑖]}𝑖∈[ℓin] , st𝑏,𝑡 ⊕ 𝜋𝑤𝑡+1, {𝐿

st
𝑡+1,𝑖,st𝑏,𝑡 [𝑖]}𝑖∈[ℓst] .

• If 𝜏𝑡 ∈ [T], then 𝑍𝑏,𝑡 contains (independent of 𝑏)

r̃ct𝑡
$← LOT.SimRead

(
hk𝜏𝑡 , 𝐷𝜏𝑡 , 𝑖𝑡,

{(rdata𝑡 [𝑖] ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿
rdata
𝑡+1,𝑖,rdata𝑡 [𝑖]}𝑖∈[ℓcell]

)
,

{(0 ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿
rdata
𝑡+1,𝑖,0}𝑖∈[ℓCELL]\[ℓcell] ,

ℎwork,𝑡 ⊕ 𝜋ℎ𝑡+1, {𝐿
ℎ
𝑡+1,𝑖,ℎwork,𝑡 [𝑖]}𝑖∈[ℓHASH] .

• If 𝜏𝑡 = work, then 𝑍𝑏,𝑡 contains (independent of 𝑏)

r̃ct𝑡
$← LOT.SimRead

(
hkwork, 𝐷work,𝑡−1, 𝑖𝑡,

{(rdata𝑡 [𝑖] ⊕ 𝜋rdata𝑡+1 [𝑖]) ∥𝐿
rdata
𝑡+1,𝑖,rdata𝑡 [𝑖]}𝑖∈[ℓCELL]

)
,

w̃ct𝑡
$← LOT.SimWrite

(
hkwork, 𝐷work,𝑡−1, 𝑖𝑡,wdata𝑡,

{(ℎwork,𝑡 [𝑖] ⊕ 𝜋ℎ𝑡+1 [𝑖]) ∥𝐿
ℎ
𝑡+1,𝑖,ℎwork,𝑡 [𝑖]}𝑖∈[ℓHASH]

)
.

Connecting the Hybrids. We start with the experiments in Definition 4:

Claim 14 (¶). Exp0
LGRAM ≈ H𝑇max+1,∅ and Exp1

LGRAM ≈ H0,∅.

It remains to connect H𝑇max+1,∅ and H0,∅, for which we employ the pebbling strategy
of [GOS18]. We state our claims in parallel with the pebbling rules:

Claim 15 (Rule A; ¶). A gray pebble can be placed on or removed from 𝑡★ if 𝑡★ = 1 or a gray
pebble is placed on (𝑡★ − 1). Formally, H𝔱,𝔰 ≈ H𝔱,{𝑡★}∪𝔰 for 𝑡★ ∉ 𝔰 and 𝑡★ < 𝔱 if 𝑡★ = 1 or 𝑡★ − 1 ∈ 𝔰.

Claim 16 (Rule B; ¶). A gray pebble on 𝑡★ can be replaced by a black pebble if black pebbles are
placed on all vertices greater than 𝑡★. Formally, H𝔱,𝔰 ≈ H𝔱−1,𝔰\{𝔱−1} if 𝔱 − 1 ∈ 𝔰 (here, 𝑡★ = 𝔱 − 1).
Moreover, H1,∅ ≈ H0,∅.

Claim 16 is different from rule B in [GOS18] (no need for a gray pebble on (𝑡★ − 1) for us)
because the step corresponding to the first black pebble is always simulated.

It is helpful to consider a virtual vertex 0 (corresponding to �̂� and the LGRAM labels),
where a gray pebble is initially placed, and put 0 into 𝔰. With the virtual vertex, the

47 / 89

separate case 𝑡★ = 1 in rule 𝐴 is just a special case of 𝑡★ − 1 = 0 ∈ 𝔰, and the separate
case H1,∅ ≈ H0,∅ in rule B becomes a special case of the general rule (which would
read H1,{0} ≈ H0,∅ instead). However, for consistency with existing literature, we will go
without the virtual vertex in the text below.

The hybrid sequence can be built using an optimized pebbling strategy:

Lemma 17 ([Ben89,GS18a]). There exists an efficient algorithm that on input 1𝑇max computes
a pebbling sequence for a line graph of size 𝑇max with O(log𝑇max) gray pebbles at any time
during the poly(𝑇max) moves using rule A or B, starting with no pebbles and ending with
black pebbles on all vertices. As a corollary, the efficient algorithm can compute

𝔱0 = 𝑇max + 1, 𝔰0 = ∅, 𝑐1, 𝔱1, 𝔰1, 𝑐2, 𝔱2, 𝔰2, . . . ,

𝑐poly(𝑇max)−1, 𝔱poly(𝑇max)−1 = 1, 𝔰poly(𝑇max)−1 = ∅, 𝑐poly(𝑇max) , 𝔱poly(𝑇max) = 0, 𝔰poly(𝑇max) = ∅,

such that max𝑗 |𝔰𝑗 | = O(log𝑇max) and H𝔱𝑗−1,𝔰𝑗−1 ≈ H𝔱𝑗 ,𝔰𝑗 by Claim 𝑐𝑗 ∈ {15, 16}.

A typical sequence of hybrid transitions is depicted in Figure 6.

Proof (Theorem 13). By Claims 14, 15, and 16, and Lemma 17, Exp0
LGRAM ≈ Exp

1
LGRAM. □

We remark that for full rigor, 𝑇max is a random variable, not a fixed number for each 𝜆. It
cannot be derandomized even in the non-uniform setting, becauseA, given hk’s returned
for the input tapes, can choose 𝑇max adaptively, whose randomness originates from that
of the LGRAM scheme. This phenomenon is not uncommon and can be solved by either
guessing 𝑇max (or targeting a specific 𝑇max in the non-uniform setting), or considering a
polynomial upper bound of 𝑇max and supplying appropriate definitions for hybrids with
out-of-range indices.

H9,
∅

𝑤0
st0,7

★

𝑤0
st0,8

𝑤1
st1,9

· · ·
≈Rule A, repeat
H9,
{4,6,7} ★ · · ·
≈Rule A, repeat
H9,
{8} ★ · · ·

≈Rule B
H8,
∅

𝑤0
st0,7

★

𝑤1
st1,8

𝑤1
st1,9

· · ·

Legend: box shading for pebble, star for switching execution,
curved arrows for labels selected for next garbled step.

Figure 6. Typical hybrid transitions in the proof of Theorem 13.

Proof (Claim 14). Both follow from the security of 𝑖O for polynomial-size domains. □

Proof (Claim 15). Let 𝔱, 𝔰, 𝑡★ be such that 𝑡★ ∉ 𝔰 and 𝑡★ < 𝔱 and either 𝑡★ = 1 or 𝑡★ − 1 ∈ 𝔰. The
hybrids below are mostly identical to H𝔱,𝔰 except the contents hardwired into GenAugCPU′
are modified. We specify them:

48 / 89

• G0. This is just H𝔱,𝔰, where the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰.
• G1. In this hybrid, the PPRF key 𝑘 is punctured at {𝑡★, 𝔱} ∪ 𝔰 instead of {𝔱} ∪ 𝔰, and
the (𝑡★)th garbled step (but not its randomness) is hardwired into GenAugCPU′, i.e.,
the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, {𝑡★} ∪ 𝔰 , �̊�{𝔱,𝑡★}∪𝔰 ,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, �AugCPU𝑡★,
where the newly hardwired information is computed using (Figure 5 Step 3)

(𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡★
, 𝑟GC
𝑡★
) ← PPRF.Eval(𝑘, 𝑡★),

AugCPU𝑡★ ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝑡★+1, {𝐿𝑡★+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡★

]
,

�AugCPU𝑡★ ← GC.Garble(AugCPU𝑡★,𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏; 𝑟GC
𝑡★
).

This is different from �AugCPU𝑡’s for 𝑡 ∈ {𝔱} ∪ 𝔰, which are simulated. The absence
of 𝜋𝑡★ and {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏 in GenAugCPU′ is fine, because they are only used in Step 2
(Figure 5) for 𝑡 = 𝑡★ − 1 and 𝑡 = 𝑡★. In G1, that branch is not taken for those two
values of 𝑡 as both of them are handled by Step 1. Therefore, the two versions of
GenAugCPU′ in G0 and G1 have identical truth tables (and are padded appropriately
to the same size), and G0 ≈ G1 follows from the security of 𝑖O for polynomial-size
domains.

• G2. In this hybrid, PPRF.Eval(𝑘, 𝑡★) is replaced by a uniformly random string, i.e.,
the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, {𝑡★} ∪ 𝔰, �̊�{𝔱,𝑡★}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, �AugCPU𝑡★,
where

(𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡★
, 𝑟GC
𝑡★
) ← uniformly random ,

AugCPU𝑡★ ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝑡★+1, {𝐿𝑡★+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡★

]
,

�AugCPU𝑡★ ← GC.Garble(AugCPU𝑡★,𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏; 𝑟GC
𝑡★
).

G1 ≈ G2 follows from the security of PPRF.

• G3. In this hybrid, �AugCPU𝑡★ is simulated instead of being normally generated, i.e.,
the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, {𝑡★} ∪ 𝔰, �̊�{𝔱,𝑡★}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, �AugCPU𝑡★,
49 / 89

where

(𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝑡★
, 𝑟GC
𝑡★
) ← uniformly random,�AugCPU𝑡★ $← GC.�Garble(1|AugCPU|, 𝑍0,𝑡★, 𝑋0,𝑡★ ⊕ 𝜋𝑡★, {𝐿𝑡★,𝑖,𝑋0,𝑡★ [𝑖]}𝑖) ,

𝑍0,𝑡★ : 𝜋𝑡★+1, {𝐿𝑡★+1,𝑖,𝑏}𝑖,𝑏

in the clear,
in rct𝑡★ ← LOT.SendRead(· · ·; 𝑟LOT

𝑡★,rct),
in wct𝑡★ ← LOT.SendWrite(· · ·; 𝑟LOT

𝑡★,wct).

This is different from 𝑍𝑏,𝑡’s for 𝑡 ∈ {𝔱} ∪ 𝔰, which might contain simulated r̃ct𝑡’s and
w̃ct𝑡’s. In G2, the augmented step circuit AugCPU𝑡★ is garbled with truly random
𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏, 𝑟GC𝑡★ . If 𝑡

★ = 1, then 𝜋1, {𝐿1,𝑖,𝑏}𝑖,𝑏 only additional appear in �̂� and the
LGRAM labels given to the adversary as (𝑋0,1 ⊕ 𝜋1) and {𝐿1,𝑖,𝑋0,1 [𝑖]}𝑖. If 𝑡★ − 1 ∈ 𝔰,
then they are only additionally used to simulate

�AugCPU𝑡★−1
$← GC.�Garble(. . . , 𝑍0,𝑡★−1, . . .),

where 𝑍0,𝑡★−1 contains only (𝑋0,𝑡★ ⊕ 𝜋𝑡★) and {𝐿𝑡★,𝑖,𝑋0,𝑡★ [𝑖]}𝑖, potentially in the clear,
in r̃ct𝑡★−1, in w̃ct𝑡★−1, and by imagination.28 Also, AugCPU𝑡 (𝑋0,𝑡★) = 𝑍0,𝑡★. It follows
from the security of GC that G2 ≈ G3.

• G4. In this hybrid, 𝑍0,𝑡★ contains r̃ct𝑡★, w̃ct𝑡★ simulated using LOT.SimRead and
LOT.SimWrite as needed, instead of normally generated ones, i.e., the hardwired
information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, {𝑡★} ∪ 𝔰, �̊�{𝔱,𝑡★}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, �AugCPU𝑡★,
where

(𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏 , 𝑟LOT𝑡★
) ← uniformly random,�AugCPU𝑡★ $← GC.�Garble(1|AugCPU|, 𝑍0,𝑡★, 𝑋0,𝑡★ ⊕ 𝜋𝑡★, {𝐿𝑡★,𝑖,𝑋0,𝑡★ [𝑖]}𝑖),

𝑍0,𝑡★ : 𝑋0,𝑡★+1 ⊕ 𝜋𝑡★+1, {𝐿𝑡★+1,𝑖,𝑋0,𝑡★+1 [𝑖]}𝑖

in the clear,

in r̃ct𝑡★
$← LOT.SimRead(· · ·) ,

in w̃ct𝑡★
$← LOT.SimWrite(· · ·) .

The LOT ciphertexts rct𝑡★,wct𝑡★ are encrypted using truly random 𝑟LOT
𝑡★

in G3. Each
database is known before its LOT hash key is provided to the adversary: for an
input tape, hk𝜏 is provided after 𝐷𝜏 is chosen; for the working tape, 𝐷work,𝑡★−1 and
𝑖𝑡★,wdata𝑡★ are known once the adversary commits to the challenge 𝑀, 𝑤0, 𝑤1, after
which hkwork is provided. Therefore, it follows from the read/write security of LOT
that G3 ≈ G4.

28When 𝑡★ > 𝑇, none of 𝜋𝑡★ , {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏 appears in 𝑍0,𝑡★−1. We pretend 𝑋0,𝑡★ = 𝑋0,𝑇 and that (𝑋0,𝑡★ ⊕ 𝜋𝑡★)
and {𝑡★, 𝑖, 𝑋0,𝑡★ [𝑖]}𝑖 are revealed, imagining that the (𝑡★)th step repeated the last existent step.

50 / 89

• G5. In this hybrid, we hardwire 𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏 into GenAugCPU′, i.e., the hardwired
information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, {𝑡★} ∪ 𝔰, �̊�{𝔱,𝑡★}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰, 𝜋𝑡★, {𝐿𝑡★,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡★ .
G4 ≈ G5 follows from the security of 𝑖O for polynomial-size domains.

By inspection, G5 is just H𝔱,{𝑡★}∪𝔰. Therefore, H𝔱,𝔰 ≡ G0 ≈ G5 ≡ H𝔱,{𝑡★}∪𝔰. □

Proof (Claim 16). Let 𝔱, 𝔰 be such that 𝔱 = 1 or 𝔱 − 1 ∈ 𝔰. The hybrids are mostly identical
to H𝔱,𝔰 except for the contents hardwired into GenAugCPU′:

• G0. This is just H𝔱,𝔰, where the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈{𝔱}∪𝔰.
• G1. In this hybrid, we no longer directly hardwire 𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏 into GenAugCPU′ for
𝑡 = 𝔱, i.e., the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡} 𝑡∈𝔰 , 𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏, �AugCPU𝔱,
where

(𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏) $← uniformly random;
�̂�, LGRAM labels

�AugCPU𝔱−1

𝑍0,𝔱−1

← 𝑋0,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋0,1 [𝑖]}𝑖, . . . , if 𝔱 = 1;

$← GC.�Garble (
1|AugCPU|, 𝑍0,𝔱−1,

𝑋0,𝔱−1 ⊕ 𝜋𝔱−1, {𝐿𝔱−1,𝑖,𝑋0,𝔱−1 [𝑖]}𝑖

)
,

: 𝑋0,𝔱 ⊕ 𝜋𝔱, {𝐿𝔱,𝑖,𝑋0,𝔱 [𝑖]}𝑖 in the clear, r̃ct𝔱−1, w̃ct𝔱−1, if 𝔱 − 1 ∈ 𝔰;

�AugCPU𝔱 $← GC.�Garble (
1|AugCPU|, 𝑍1,𝔱,

𝑋0,𝔱 ⊕ 𝜋𝔱, {𝐿𝔱,𝑖,𝑋0,𝔱 [𝑖]}𝑖

)
,

𝑍1,𝔱 : 𝑋1,𝔱+1 ⊕ 𝜋𝔱+1, {𝐿𝔱+1,𝑖,𝑋1,𝔱+1 [𝑖]}𝑖 in the clear, r̃ct𝔱, w̃ct𝔱, if 𝔱 ≤ 𝑇max.

Note that GenAugCPU′ still indirectly contains 𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏 via �̂� and LGRAM labels,
or 𝑍0,𝔱−1. Removal of their direct hardwiring does not alter the truth table of
GenAugCPU′ as they are only used in Step 2 (Figure 5) for 𝑡 = 𝔱 and 𝑡 = 𝔱 − 1, a branch
never taken for those values of 𝑡 because they are handled by Step 1. By the security
of 𝑖O for polynomial-size domains, G0 ≈ G1.

• G2. In this hybrid, we change the input of AugCPU𝔱 from 𝑋0,𝔱 to 𝑋1,𝔱 by modifying the
permuted input and the labels selected for �AugCPU𝔱, i.e., the hardwired information
is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈𝔰, �AugCPU𝔱,
51 / 89

where

(𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏) $← uniformly random;

�̂�, LGRAM labels

�AugCPU𝔱−1

𝑍0,𝔱−1

← 𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖 , . . . , if 𝔱 = 1;

$← GC.�Garble (
1|AugCPU|, 𝑍0,𝔱−1,

𝑋0,𝔱−1 ⊕ 𝜋𝔱−1, {𝐿𝔱−1,𝑖,𝑋0,𝔱−1 [𝑖]}𝑖

)
,

: 𝑋1,𝔱 ⊕ 𝜋1, {𝐿𝔱,𝑖,𝑋1,𝔱 [𝑖]}𝑖 in the clear, r̃ct𝔱−1, w̃ct𝔱−1, if 𝔱 − 1 ∈ 𝔰;

�AugCPU𝔱 $← GC.�Garble ©«
1|AugCPU|, 𝑍1,𝔱,

𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖
ª®¬ ,

𝑍1,𝔱 : 𝑋1,𝔱+1 ⊕ 𝜋𝔱+1, {𝐿𝔱+1,𝑖,𝑋1,𝔱+1 [𝑖]}𝑖 in the clear, r̃ct𝔱, w̃ct𝔱, if 𝔱 ≤ 𝑇max.

This change does not alter the distribution, i.e., G1 ≡ G2, because 𝜋𝔱 is a one-time
pad that hides 𝑋0,𝔱 or 𝑋1,𝔱 and either set of {𝐿𝔱,𝑖,𝑏}𝑖,𝑏 chosen by 𝑋0,𝔱 and 𝑋1,𝔱 is simply
random.

• G3. In this hybrid, we undo the simulation of r̃ct𝔱 and w̃ct𝔱, i.e., the hardwired
information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈𝔰, �AugCPU𝔱,
where

(𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏 , 𝑟LOT𝔱
) $← uniformly random;

�̂�, LGRAM labels

�AugCPU𝔱−1

𝑍0,𝔱−1

← 𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖, . . . , if 𝔱 = 1;

$← GC.�Garble (
1|AugCPU|, 𝑍0,𝔱−1,

𝑋0,𝔱−1 ⊕ 𝜋𝔱−1, {𝐿𝔱−1,𝑖,𝑋0,𝔱−1 [𝑖]}𝑖

)
,

: 𝑋1,𝔱 ⊕ 𝜋1, {𝐿𝔱,𝑖,𝑋1,𝔱 [𝑖]}𝑖 in the clear, r̃ct𝔱−1, w̃ct𝔱−1, if 𝔱 − 1 ∈ 𝔰;

�AugCPU𝔱 $← GC.�Garble (
1|AugCPU|, 𝑍1,𝔱,

𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖

)
,

𝑍1,𝔱 : 𝜋𝔱+1, {𝐿𝔱+1,𝑖,𝑏}𝑖,𝑏 in the clear, rct𝔱,wct𝔱 , if 𝔱 ≤ 𝑇max.

G2 ≈ G3 by the read/write security of LOT.

• G4. In this hybrid, we undo the simulation of �AugCPU𝔱, i.e., the hardwired
information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈𝔰, �AugCPU𝔱,
52 / 89

where

(𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝔱
, 𝑟GC

𝔱
) $← uniformly random;

�̂�, LGRAM labels

�AugCPU𝔱−1

𝑍0,𝔱−1

← 𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖, . . . , if 𝔱 = 1;

$← GC.�Garble (
1|AugCPU|, 𝑍0,𝔱−1,

𝑋0,𝔱−1 ⊕ 𝜋𝔱−1, {𝐿𝔱−1,𝑖,𝑋0,𝔱−1 [𝑖]}𝑖

)
,

: 𝑋1,𝔱 ⊕ 𝜋1, {𝐿𝔱,𝑖,𝑋1,𝔱 [𝑖]}𝑖 in the clear, r̃ct𝔱−1, w̃ct𝔱−1, if 𝔱 − 1 ∈ 𝔰;

AugCPU𝔱 ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝔱+1, {𝐿𝔱+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝔱

]
,

�AugCPU𝔱 ← GC.Garble(AugCPU𝔱,𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏; 𝑟GC
𝔱
) , if 𝔱 ≤ 𝑇max.

Since AugCPU𝔱(𝑋1,𝔱) = 𝑍1,𝔱, it follows from the security of GC that G3 ≈ G4.

• G5. In this hybrid, we change the randomness for step 𝔱 to the PPRF evaluation,
i.e., the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱, 𝔰, �̊�{𝔱}∪𝔰,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡}𝑡∈𝔰, �AugCPU𝔱,
where

(𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝔱
, 𝑟GC

𝔱
) $← PPRF.Eval(𝑘, 𝔱) ;

�̂�, LGRAM labels

�AugCPU𝔱−1

𝑍0,𝔱−1

← 𝑋1,1 ⊕ 𝜋1, {𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖, . . . , if 𝔱 = 1;

$← GC.�Garble (
1|AugCPU|, 𝑍0,𝔱−1,

𝑋0,𝔱−1 ⊕ 𝜋𝔱−1, {𝐿𝔱−1,𝑖,𝑋0,𝔱−1 [𝑖]}𝑖

)
,

: 𝑋1,𝔱 ⊕ 𝜋1, {𝐿𝔱,𝑖,𝑋1,𝔱 [𝑖]}𝑖 in the clear, r̃ct𝔱−1, w̃ct𝔱−1, if 𝔱 − 1 ∈ 𝔰;

AugCPU𝔱 ← AugCPU

[
{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork,
𝜋𝔱+1, {𝐿𝔱+1,𝑖,𝑏}𝑖,𝑏, 𝑟LOT𝔱

]
,

�AugCPU𝔱 ← GC.Garble(AugCPU𝔱,𝜋𝔱, {𝐿𝔱,𝑖,𝑏}𝑖,𝑏; 𝑟GC
𝔱
), if 𝔱 ≤ 𝑇max.

G4 ≈ G5 by the security of PPRF.

• G6. In this hybrid, we no longer puncture the PPRF key at 𝔱 and no longer hardwire
the randomness nor the garbled step for 𝔱, i.e., the hardwired information is

{hk𝜏, ℎ𝜏, |𝐷𝜏 |}𝜏∈[T] , hkwork, 𝔱 − 1, 𝔰 \ {𝔱 − 1}, �̊�{𝔱−1}∪(𝔰\{𝔱−1}) ,

{𝜋𝑡, {𝐿𝑡,𝑖,𝑏}𝑖,𝑏, �AugCPU𝑡} 𝑡∈{𝔱−1}∪(𝔰\{𝔱−1}) ,

and �̂� and the LGRAM labels given to the adversary contain (𝑋1,1 ⊕ 𝜋1) and
{𝐿1,𝑖,𝑋1,1 [𝑖]}𝑖 if 𝔱 = 1. By the security of 𝑖O for polynomial-size domains, G5 ≈ G6.

By inspection, G6 is just H𝔱−1,𝔰\{𝔱−1}. Therefore, H𝔱,𝔰 ≡ G0 ≈ G6 ≡ H𝔱−1,𝔰\{𝔱−1}. □

53 / 89

5 Transformations of LGRAM

In this section, we describe the transformations of LGRAM to upgrade its security and
functionality. We adapt known transformations [CH16] to our syntax of bounded LGRAM
to go from fixed-memory security, to fixed-address section (Section 5.1), and to full
security (Section 5.2). We employ the powers-of-two transformation [AL18] to construct
an unbounded LGRAM from a bounded one (Section 5.3).

5.1 Fixed-Memory to Fixed-Address

Given an LGRAM with fixed-memory security, we construct one with fixed-address
security. Recall that in such a scheme, we want to hide the write sequence, consisting
of the contents written to the working tape. The addresses where each read and write
occurs are not protected, though. We employ a transformation due to [CH16] upgrading
fixed-memory security to fixed-address security, by encrypting the data before they are
written to the working tape. In more details, given a RAM 𝑀, we construct another
machine 𝑀′, which runs two copies of 𝑀 in parallel and encrypts the two logical working
tapes of 𝑀 using two puncturable PRF keys. Normally, only one copy is used and the
other mimics its memory access pattern. The idle copy is used in the security proof.

Ingredients of Construction 2. Let

• LGRAM′ = (Compress′,Garble′, Eval′) be an LGRAM with fixed-memory security, and

• PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.

Construction 2 (LGRAM with fixed-address security). Our scheme works as follows:

• Compress(1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏) is the same as Compress′.

• Garble(𝑇max, 𝑀, {digest𝜏}𝜏∈[T]) prepares 𝑀′ from 𝑀 as shown in Figure 7, samples
𝛽′

$← {0, 1} and two random PPRF keys 𝑘0, 𝑘1, runs

(�̂�′, {𝐿′𝑖,𝑏}𝑖,𝑏)
$← Garble′(𝑇max, 𝑀′, {digest𝜏}𝜏∈[T]),

and splits {𝐿′
𝑖,𝑏
}𝑖,𝑏, according to the part of input to 𝑀′ they select, into{

𝐿B
𝑏

}
𝑏
,
{
𝐿
𝑊0
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝑊1
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝐾0
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝐾1
𝑖,𝑏

}
𝑖,𝑏
,

{
𝐿𝑇
′

𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿wdata

′

𝑖,𝑏

}
𝑖,𝑏
.

The algorithm sets and outputs

�̂� = (�̂�′, {labels for B = 𝛽′, 𝐾0 = 𝑘0, 𝐾1 = 𝑘1, 𝑇
′ = 0,wdata′ = ⊥}),

𝐿𝑖,𝑏 = 𝐿
𝑊0
𝑖,𝑏
∥𝐿𝑊1

𝑖,𝑏
for 𝑖 ∈ [ℓin], 𝑏 ∈ {0, 1}.

• Eval𝐷1,...,𝐷T (𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖}𝑖) combines the labels for �̂�′ in �̂�

with {𝐿𝑖}𝑖 to recover {𝐿′𝑖}𝑖, and runs and outputs

(Eval′)𝐷1,...,𝐷T (𝑇max, 𝑀′, {digest𝜏}𝜏∈[T] , �̂�′, {𝐿′𝑖}𝑖).

54 / 89

Machine 𝑀′ Transformed from 𝑀

Lengths. ℓ ′in = poly(𝜆, |𝑀 |, log𝑇max), ℓ ′st = poly(𝜆, |𝑀 |, log𝑇max),
ℓ ′addr = ℓaddr, ℓ ′cell = ℓcell,
ℓ ′ADDR = ℓADDR, ℓ ′CELL = 2ℓCELL + O(log𝑇max).

Input (𝑤′). B, bit indicating the active copy;
𝑊0,𝑊1, short inputs to the two copies of 𝑀;
𝐾0, 𝐾1, PPRF keys for the two copies of 𝑀;
𝑇′, progress of security proof;
wdata′, hardwired content of one cell of 𝑀′.

State (st′). 𝑡 − 1, current time step minus one (initially 0);
s̃t0,𝑡−1, s̃t1,𝑡−1, optional old states of the two copies of 𝑀;
𝜏𝑡−1, 𝑖𝑡−1, location of the last-read cell.

Steps. Each step of 𝑀′ executes one step in each copy of 𝑀.

1. Translate rdata′ for 𝑀′ into rdata for 𝑀′:
if 𝑡 = 1 or 𝜏𝑡−1 ∈ [T]:

parse rdata′𝑡−1 into �rdata0,𝑡−1 ∥0ℓ
′
CELL−ℓCELL = �rdata1,𝑡−1 ∥0ℓ

′
CELL−ℓCELL

if 𝑡 ≠ 1 and 𝜏𝑡−1 = work:
compute �rdata0,𝑡−1, �rdata1,𝑡−1

from rdata′𝑡−1 = 𝑡
′ ∥

(�rdata0,𝑡−1 ⊕ PPRF.Eval(𝑘0, 𝑡
′)
)
∥
(�rdata1,𝑡−1 ⊕ PPRF.Eval(𝑘1, 𝑡

′)
)
,

if 𝑡′ ≠ 0;
as 0ℓCELL , 0ℓCELL , otherwise;

2. Execute one step in the active copy:
(done𝑡, s̃tB,𝑡, 𝜏𝑡, 𝑖𝑡,�wdataB,𝑡, out𝑡) ← CPU(ℓ1, . . . , ℓT , 𝑤B, s̃tB,𝑡−1, �rdataB,𝑡−1)

3. Optionally execute one step in the inactive copy:

(s̃t1−B,𝑡,�wdata1−B,𝑡) ←

(0ℓst , 0ℓCELL), if 𝑡 > 𝑇′;

from CPU
(
ℓ1, . . . , ℓT , 𝑤1−B,

s̃t1−B,𝑡−1, �rdata1−B,𝑡−1

)
, if 𝑡 ≤ 𝑇′.

4. Translate wdata for 𝑀 into wdata′ for 𝑀′:

wdata′𝑡 ←

⊥, if 𝜏𝑡 ∈ [T];
wdata′, if 𝜏𝑡 = work and 𝑡 = 𝑇′ and wdata′ ≠ ⊥;
𝑡 ∥

(�wdata0,𝑡 ⊕ PPRF.Eval(𝑘0, 𝑡)
)
∥
(�wdata1,𝑡 ⊕ PPRF.Eval(𝑘1, 𝑡)

)
,

otherwise;

5. Output and finish:
output (done𝑡, newst′, 𝜏𝑡, 𝑖𝑡,wdata′𝑡, out𝑡)

where newst′ contains incremented 𝑡 and s̃t0,𝑡, s̃t1,𝑡, 𝜏𝑡, 𝑖𝑡

Figure 7. The machine 𝑀′ in Construction 2.

55 / 89

Correctness and Efficiency. By construction, during evaluation, the labels selected for
𝑀′ correspond to

B = 𝛽′, 𝑊0 = 𝑤, 𝑊1 = 𝑤, 𝐾0 = 𝑘0, 𝐾1 = 𝑘1, 𝑇′ = 0, wdata′ = ⊥.

The execution of 𝑀′ has the following important invariants:

• s̃t𝛽′,𝑡 = st𝑡, where st𝑡 is from 𝑀 ··· (𝑤).

• 𝐷′work,𝑡 [𝑖] for all 𝑡, 𝑖 is either all-zero if never touched (never read nor written to) or

𝑡′ ∥
(
𝐷0,work,𝑡 [𝑖] ⊕ PPRF.Eval(𝑘0, 𝑡

′)
)
∥
(
𝐷1,work,𝑡 [𝑖] ⊕ PPRF.Eval(𝑘1, 𝑡

′)
)
,

where 𝑡′ ≠ 0 is the last time when cell 𝑖 on the working tape of 𝑀 was touched,
𝐷𝛽′,work,𝑡 is 𝐷work,𝑡 of 𝑀 ··· (𝑤), and 𝐷1−𝛽′,work,𝑡 is all-zero. In all cases, �rdata𝛽′,𝑡 = rdata𝑡,
where rdata𝑡 is from 𝑀 ··· (𝑤).

Correctness follows from that of LGRAM′ and those invariants, together with the other
logics in 𝑀′. For efficiency, clearly |𝑀′ | = poly(𝜆, |𝑀 |, log𝑇max), and 𝑀′ has the same
running time as 𝑀 when supplied with the input specified above.

Theorem 18 (¶). Suppose in Construction 2, LGRAM′ is fixed-memory secure (Definition 3
or 4) and PPRF is secure (Definition 17), then the constructed scheme is fixed-address secure
(Definition 3 or 4) and inherits the (un-)boundedness of LGRAM′.

Proof (Theorem 18). Exp𝛽LGRAM of the constructed scheme corresponds to Exp𝛽LGRAM
of LGRAM′ with machine 𝑀′ and input

B = 𝛽′
$← {0, 1}, 𝑊0 = 𝑤𝛽, 𝐾0 = 𝑘0, 𝑊1 = 𝑤𝛽, 𝐾1 = 𝑘1, 𝑇′ = 0, wdata′ = ⊥,

where 𝑘0, 𝑘1 are random PPRF keys. We will consider hybrids that effectively changes
the input to 𝑀′ by altering �̂� and {𝐿𝑖}𝑖 given to the adversary, so we describe them by
specifying the changed input.

• H𝛽
0 . This is just Exp

𝛽
LGRAM, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤𝛽, 𝐾1−𝛽′ = 𝑘1−𝛽′, 𝑇′ = 0, wdata′ = ⊥.

• H𝛽
1 . In this hybrid, we change 𝑊1−B to 𝑤1−𝛽, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽 , 𝐾1−𝛽′ = 𝑘1−𝛽′, 𝑇′ = 0, wdata′ = ⊥.

The only place 𝑀′ uses 𝑊1−B is the branch 𝑡 > 𝑇′ in Step 3 of 𝑀′ (Figure 7). But
𝑇′ = 0 and that branch is never taken. Therefore, for each 𝛽 ∈ {0, 1}, the executions
of 𝑀′ in H𝛽

0 and H
𝛽
1 satisfy the condition of fixed-memory security of LGRAM

′, and
H𝛽

0 ≈ H
𝛽
1 .

• H𝛽
2,𝔱 for 𝔱 = 0, . . . , 𝑇, where 𝑇 is the (common) running time of 𝑀 ··· (𝑤0) and 𝑀 ··· (𝑤1).

In this hybrid, we increase 𝑇′ to 𝔱, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = 𝑘1−𝛽′, 𝑇′ = 𝔱 , wdata′ = ⊥.

Clearly, H𝛽
1 ≡ H

𝛽
2,0 for each 𝛽 ∈ {0, 1}.

56 / 89

Claim 19 (¶). H𝛽
2,𝔱−1 ≡ H

𝛽
2,𝔱 for all 𝔱 ∈ [𝑇] and 𝛽 ∈ {0, 1}.

• H𝛽
3 . In this hybrid, we set 𝑇

′ to 𝑇, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = 𝑘1−𝛽′, 𝑇′ = 𝑇 , wdata′ = ⊥.

By definition, H𝛽
2,𝑇 ≡ H

𝛽
3 for each 𝛽 ∈ {0, 1}.

• H𝛽
4 . In this hybrid, we rename (𝛽

′ ⊕ 𝛽) to 𝛾. It can be described as

B = 𝛾 ⊕ 𝛽 , 𝑊 𝛾 = 𝑤 0 , 𝐾 𝛾 = 𝑘 0 , 𝑊 1−𝛾 = 𝑤 1 , 𝐾 1−𝛾 = 𝑘 1 , 𝑇′ = 𝑇, wdata′ = ⊥.

Since the change is syntactical, H𝛽
3 ≡ H

𝛽
4 for each 𝛽 ∈ {0, 1}.

In H0
4 and H1

4, the machine 𝑀′ fully executes both 𝑀 ··· (𝑤0) on the copy 𝛾 and
𝑀 ··· (𝑤1) on the copy (1 − 𝛾). Their only difference is from which execution 𝑀′ takes
(done𝑡, 𝜏𝑡, 𝑖𝑡, out𝑡). The two executions of 𝑀 satisfy the constraint of fixed-address
security, so their (done𝑡, 𝜏𝑡, 𝑖𝑡, out𝑡) sequences are identical. Therefore, H0

4 ≈ H
1
4 by the

fixed-memory security of LGRAM′.
We conclude that Exp0

LGRAM ≡ H
0
0 ≈ H

1
0 ≡ Exp1

LGRAM for the constructed scheme.
It is clear that the time of Eval is instance-specific if so is that of Eval′. Note that the

number of hybrids is polynomial in (a polynomial upper bound of) the instance running
time 𝑇, not 𝑇max. Therefore, the proof shows that LGRAM inherits the (un-)boundedness
of the security of LGRAM′. □

Proof (Claim 19). We further alter the input to 𝑀′ to show H𝛽
2,𝔱−1 ≈ H

𝛽
2,𝔱.

• G0. This is just H𝛽
2,𝔱−1, described by

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = 𝑘1−𝛽′, 𝑇′ = 𝔱 − 1,
wdata′ = ⊥.

• G1. In this hybrid, we puncture 𝑘1−𝛽′ at 𝔱, hardwire wdata′𝔱, and increment 𝑇
′ to

activate the hardwiring at the right time step. The hybrid is described by

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = �̊�1−𝛽′,{𝔱} , 𝑇′ = 𝔱 ,

wdata′ =

⊥, if 𝜏𝔱 ∈ [T];
𝔱∥

(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘0, 𝔱)

)
∥PPRF.Eval(𝑘1, 𝔱), if 𝜏𝔱 = work and 𝛽′ = 0;

𝔱∥PPRF.Eval(𝑘0, 𝔱) ∥
(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘1, 𝔱)

)
, if 𝜏𝔱 = work and 𝛽′ = 1;

where wdata𝛽,𝔱 is from 𝑀 ··· (𝑤𝛽) and �wdata𝛽′,𝔱 = wdata𝛽,𝔱 in the execution of 𝑀′.
G0 ≈ G1 by the fixed-memory security of LGRAM′.

• G2. In this hybrid, we make the portion of wdata′ for the copy (1 − 𝛽′) random, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = �̊�1−𝛽′,{𝔱}, 𝑇′ = 𝔱,

wdata′ =

⊥, if 𝜏𝔱 ∈ [T];
𝔱∥

(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘0, 𝔱)

)
∥ random , if 𝜏𝔱 = work and 𝛽′ = 0;

𝔱∥ random ∥
(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘1, 𝔱)

)
, if 𝜏𝔱 = work and 𝛽′ = 1.

57 / 89

Note that the altered portion is PPRF.Eval(𝑘1−𝛽′, 𝔱) in G1. By the security of PPRF, it
follows that G1 ≈ G2.

• G3. In this hybrid, we encode wdata1−𝛽,𝔱 in the portion of wdata′ for the
copy (1 − 𝛽′). It is described by

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = �̊�1−𝛽′,{𝔱}, 𝑇′ = 𝔱,

wdata′ =

⊥, if 𝜏𝔱 ∈ [T];
𝔱∥

(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘0, 𝔱)

)
∥

(
wdata1−𝛽,𝔱 ⊕ PPRF.Eval(𝑘1, 𝔱)

)
,

if 𝜏𝔱 = work and 𝛽′ = 0;
𝔱∥

(
wdata1−𝛽,𝔱 ⊕ PPRF.Eval(𝑘0, 𝔱)

)
∥
(
wdata𝛽,𝔱 ⊕ PPRF.Eval(𝑘1, 𝔱)

)
,

if 𝜏𝔱 = work and 𝛽′ = 1.

G2 ≈ G3 by the security of PPRF.

• G4. In this hybrid, we undo puncturing and hardwiring, i.e.,

B = 𝛽′, 𝑊𝛽′ = 𝑤𝛽, 𝐾𝛽′ = 𝑘𝛽′, 𝑊1−𝛽′ = 𝑤1−𝛽, 𝐾1−𝛽′ = 𝑘1−𝛽′ , 𝑇′ = 𝔱,

wdata′ = ⊥ .

G3 ≈ G4 by the fixed-memory security of LGRAM′, analogously to G0 ≈ G1.

By inspection, G4 is just H𝛽
2,𝔱. Therefore, H

𝛽
2,𝔱−1 ≡ G0 ≈ G4 ≡ H𝛽

2,𝔱. □

5.2 Fixed-Address to Full Security

Given an LGRAM with fixed-address security, we construct one with full security with a
transformation due to [CH16] using ORAM.

There are two technical differences of our LGRAM from existing notions of garbled
RAM that are relevant to this transformation. First, the input tapes are compressed,
and their digests cannot be an ORAM’d version of their contents, because that would
make the digests as long as the tape contents and our digests must be reusable while
the usual ORAM is not. Second, the garbling procedure is only allowed to run in time
poly(𝜆, |𝑀 |, log𝑇max), which is not sufficient to initialize an ORAM for the working tape.

The first issue is resolved by copying the input tapes to the working tape before
the actual computation is performed, and reading from the copy on the working
tape whenever the actual computation wants to read from an input tape. During the
copying stage, the access pattern to the tapes is simply sequential reading and writing,
independent of the computation. The second issue is resolved by delaying ORAM
initialization to evaluation time. Recall that our notion of ORAM (Definition 19) starts
the physical execution with an empty physical tape, implicitly requiring on-demand
initialization. This is matched by our notion of LGRAM (Definition 2), where the initial
working tape is all-zero.

Similar to the transformation from fixed-memory security to fixed-address security
(Section 5.1), we run two copies of the underlying machine in parallel to facilitate the
security proof.

58 / 89

Ingredients of Construction 3. Let

• LGRAM′ = (Compress′,Garble′, Eval′) be an LGRAM with fixed-address security,

• MakeORAM an ORAM with localized randomness with (PartRnd, SimORAM), and

• PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.

Construction 3. Our scheme works as follows:

• Compress(1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏) runs

digest′𝜏
$← Compress′(1ℓcell , 1ℓaddr , 𝜏, 𝐷𝜏)

and outputs digest𝜏 = (|𝐷𝜏 |, digest′𝜏).

• Garble(𝑇max, 𝑀, {digest𝜏}𝜏∈[T]) runs

(𝑆′max, 1ℓ
′
CELL , 1ℓr , 1ℓost , {oRW𝑡0}𝑡0∈[𝑇0]) ← MakeORAM

(
1ℓCELL , 1ℓADDR ,

∑︁
𝜏∈[T]

|𝐷𝜏 | + 𝑇max

)
,

prepares 𝑀′ as shown in Figure 8. It sets

𝑇′max = max

{
2𝑆′max, ℓin + (2𝑇0 + 4)

(
𝑇max +

∑︁
𝜏∈[T]

|𝐷𝜏 |
)}
,

runs

(�̂�′, {𝐿′𝑖,𝑏}𝑖,𝑏)
$← Garble′(𝑇′max, 𝑀′, {digest′𝜏}𝜏∈[T]),

splits the labels according to the part of input to 𝑀′ they select into{
𝐿B
𝑏

}
𝑏
,
{
𝐿
𝑊0
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝑊1
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝐾0
𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿
𝐾1
𝑖,𝑏

}
𝑖,𝑏
,

{
𝐿𝑇
′

𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿𝑅

′

𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿𝐾

′

𝑖,𝑏

}
𝑖,𝑏
,
{
𝐿addrS

′

𝑖,𝑏

}
𝑖,𝑏
,

samples 𝛽′ $← {0, 1} and three random PPRF keys 𝑘0, 𝑘1, 𝑘
′, and sets and outputs

�̂� = (�̂�′, {labels for B = 𝛽′, 𝐾0 = 𝑘0, 𝐾1 = 𝑘1, 𝑇
′ = 0, 𝑅′ = ⊥, 𝐾 ′ = 𝑘′, addrS′ = ⊥}),

𝐿𝑖,𝑏 = 𝐿
𝑊0
𝑖,𝑏
∥𝐿𝑊1

𝑖,𝑏
for 𝑖 ∈ [ℓin], 𝑏 ∈ {0, 1}.

• Eval𝐷1,...,𝐷T (𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖}𝑖) combines the labels for �̂�′ in �̂�

with {𝐿𝑖}𝑖 to recover {𝐿′𝑖}𝑖, and runs

(Eval′)𝐷1,...,𝐷T (𝑇max, 𝑀′, {digest′𝜏}𝜏∈[T] , �̂�′, {𝐿′𝑖}𝑖).

If the evaluation does not report any ORAM error, the algorithm removes the
empty, placeholder output (all steps in the periods of copying the input tapes,
and (2𝑇0 + 3) steps in the periods of executing 𝑀) from Eval′, and use the stripped
version as the output. Otherwise, the algorithm will obtain 𝑤 after the error is
reported, and it evaluates 𝑀𝐷1,...,𝐷T (𝑤) in the clear and outputs it.

59 / 89

Machine 𝑀′ Transformed from 𝑀

Lengths. ℓ ′in = poly(𝜆, |𝑀 |, log𝑇max), ℓ ′st = poly(𝜆, |𝑀 |, log𝑇max),
ℓ ′addr = ℓaddr, ℓ ′cell = ℓcell,
ℓ ′ADDR = ⌈log2(2𝑆′max)⌉, ℓ ′CELL determined by MakeORAM.

Input (𝑤′). B,𝑊0,𝑊1, 𝐾0, 𝐾1, 𝑇
′,

see Figure 7;
𝑅′, hardwired ORAM randomness if 𝐾B is punctured;
𝐾 ′, PPRF key for ORAM simulation;
addrS′, 𝑇0 hardwired addresses of 𝑀′.

State (st′). 𝑒, flag indicating whether an error is detected;
𝑡 − 1, current time period minus one (initially 0);
𝑡0 − 1, current time step minus one (initially 0)

modulo the period (2𝑇0 + 4);
s̃t0,𝑡−1, �rdata0,𝑡−1, ost0,𝑡−1,𝑡0−1, s̃t1,𝑡−1, �rdata1,𝑡−1, ost1,𝑡−1,𝑡0−1,

for the two copies of 𝑀 and their ORAM;
done′𝑡, out′𝑡, output of 𝑀 from the copy B of 𝑀.

Steps. Each step of the two copies of 𝑀 is usually
simulated by (2𝑇0 + 4) steps of 𝑀′.

1. Decide what to do in this period:
if ℓ̃<𝜏 =

∑︁
𝜋<𝜏

|𝐷𝜋 | < 𝑡 ≤
∑︁
𝜋≤𝜏
|𝐷𝜋 | for some 𝜏 ∈ [T]:

copy 𝐷𝜏 [𝑡 − ℓ̃<𝜏] to ORAM for both copies of 𝑀
else: execute or simulate one step of 𝑀

2a. Copy one cell from input tape to ORAM:
1 step to read the cell
(𝑇0 + 𝑇0) steps to ORAM-write for the copy 0 and 1
1 step to report potential error, 2 step unused

2b. Execute or simulate one step of 𝑀:
2(1 + 𝑇0) step for one step of 𝑀 then ORAM-R/W for the copy 0 and/or 1

the copy (1 − B) is
{
simulated using 𝐾 ′, if 𝑡 − ℓ̃<T +1 > 𝑇

′;
hardwired in addrS′, if 𝑡 − ℓ̃<T +1 = 𝑇

′;
1 step to report potential error, 1 step to output done′𝑡, out′𝑡

3. Error handling and other details:
ORAM randomness for non-simulated steps is from 𝐾0, 𝐾1, 𝑅

′

addresses of ORAM for the copy 0 [resp. 1] are
mapped to those of 𝑀′ by 𝑖 ↦→ 2𝑖 − 1 [resp. 𝑖 ↦→ 2𝑖; i.e., interleaved]

if an error is detected by ORAM
idle and report it at the end of this period
use ℓin extra steps to output 𝑊B and halt

Figure 8. The machine 𝑀′ in Construction 3.

60 / 89

Correctness and Efficiency. Correctness and efficiency follow from those of the
underlying ingredients as well as the error reporting mechanism of ORAM used by 𝑀′.
We remark that the evaluation time has linear dependency on the input tape lengths
for two reasons (other than the inherent lower bound): i) the bounded scheme has such
dependency; and ii) the machine 𝑀′ reads all the input tapes in their entirety at the
beginning.

Theorem 20 (¶). Suppose in Construction 3, LGRAM′ is fixed-address secure (Definition 3 or
4), MakeORAM has localized randomness with PartRnd, SimORAM (Definition 20), and PPRF
is secure (Definition 17), then the constructed scheme is (fully) secure (Definition 3 or 4) and
inherits the (un-)boundedness of LGRAM′.

Proof (Theorem 20). The proof is analogous to that of Theorem 18. We only demonstrate
the key differences:

• When the randomness (e.g., after puncturing a PPRF key) is altered, 𝑀′ could halt
early due to error arising from the unfortunate randomness. We must argue that
such case only happens with negligible probability. ORAM guarantees 2−𝜆 error
(overflow) probability over the entire execution if the randomness is truly random,
and by PRF security, the error probability is negligible when the randomness is
pseudorandom (or a mix of pseudorandomness and true randomness, as needed
in certain hybrids).

• The proof corresponding to Claim 19 is slightly more involved. Let 𝑅𝔱 be the set
produced by PartRnd, which is the index set of the randomness precisely affecting
the access pattern for logical step 𝔱. The core idea is to puncture 𝑘1−B at 𝑅𝔱 and
argue it can be simulated using SimORAM due to the localized randomness property.
However, PPRF.Eval(𝑘1−B, 𝑖) for 𝑖 ∈ 𝑅𝔱 is written into the working tape of 𝑀′ at
various time steps and locations, which are difficult to track. This is where the
fixed-address property helps. It can be used to “decouple” or “couple” what is
written during previous steps and where is read for logical step 𝔱. Following [CH15;
Section 6.3], the transition sequence is as follows:

1. (Fixed-address security.) Puncture 𝑘1−B at 𝑅𝔱, puncture 𝑘′ at 𝔱, hardwire
{PPRF.Eval(𝑘1−B, 𝑖)}𝑖∈𝑅𝔱

into 𝑅′, and hardwire SimORAM
(
. . . , PPRF.Eval(𝑘′, 𝔱)

)
into addrS′.

2. (PPRF security.) Change PPRF.Eval(𝑘′, 𝔱) in addrS′ into true randomness.
3. (Fixed-address security.) Change {PPRF.Eval(𝑘1−B, 𝑖)}𝑖∈𝑅𝔱

in 𝑅′ into the same
true randomness used by addrS′. This step “couples” the previously written
content and the later physical addresses.

4. (PPRF security.) Change the common true randomness in both 𝑅 and addrS′
into {PPRF.Eval(𝑘1−B, 𝑖)}𝑖∈𝑅𝔱

.
5. (Fixed-address security.) Undo puncturing and hardwiring. □

5.3 Bounded to Unbounded

So far we only obtain bounded LGRAM from Constructions 1, 2, and 3. Recall that
bounded schemes has the following three deficiencies: i) its evaluation time scales
with the time bound 𝑇max instead of the instance running time 𝑇; ii) it only works if

61 / 89

the maximum address accessed by the machine is within 𝑇max;29 and iii) its security
only holds if 𝑇max is polynomially bounded. To get rid of these restrictions, we apply
the transformation due to [AL18]. The idea is to generate a series of LGRAM garblings
with 𝑇′max,𝑒 = 2𝑒 for 𝑒 ∈ [log𝑇max], each encrypted under a different key. The 𝑒th garbling
simulates the execution, but if the time exceeds 2𝑒, it outputs the secret key that decrypts
the next garbling, and the evaluation can be retried. This avoids the exponential security
loss because we can apply the LGRAM security to the garblings with 𝑇′max < 2𝑇 and
argue that any larger garblings are hidden by encryption, removing the need to apply
the LGRAM security on those large garblings.

Ingredients of Construction 4. Let

• LGRAM′ = (Compress′,Garble′, Eval′) be a bounded LGRAM, and

• SKE = (SKE.Gen, SKE.Enc, SKE.Dec) a secret-key encryption scheme.

Machine 𝑀′ Transformed from 𝑀 and 𝑇max

Lengths. ℓ ′in = ℓin + poly(𝜆), ℓ ′st = ℓst + O(log𝑇max) + poly(𝜆, |𝑀 |),
ℓ ′addr = ℓaddr, ℓ ′cell = ℓcell,
ℓ ′ADDR = poly(𝜆, |𝑀 |, log𝑇max), ℓ ′CELL = poly(𝜆, |𝑀 |, log𝑇max).

Input (𝑤′). 𝑊, short input to 𝑀;
𝐸, attempted time limit of 𝑀;
𝐾 , secret key of SKE.

State (st′). 𝑡 − 1, current time period minus one (initially 0);
𝑡0 − 1, current time step minus one (initially 0)

modulo the period;
st, state of 𝑀.

Steps. Each step of 𝑀 is simulated by one period of 𝑀′.

1. When 𝑡 ≤ 2𝐸:
1 step for one step of 𝑀
poly(𝜆, |𝑀 |, log𝑇max) steps for the memory operation of 𝑀

(using a deterministic balanced binary tree of capacity 2𝐸

to implement a virtual sparse memory for 𝑀)
halt if 𝑀 halts

2. When 2𝐸 < 𝑡 < 2𝐸 + poly(𝜆):
report running time exceeded
output 𝐾

Figure 9. The machine 𝑀′ in Construction 4.

29The issue is only syntactical for the scheme from Construction 3, i.e., it does allow arbitrary address
on the working tape because our notion of ORAM implicitly requires handling it.

62 / 89

Construction 4. Our scheme works as follows:

• Compress(1ℓaddr , 1ℓcell , 𝜏, 𝐷𝜏) is the same as Compress′.

• Garble(𝑇max, 𝑀, {digest𝜏}𝜏∈[T]) prepares 𝑀′ from 𝑀 and 𝑇max as shown in Figure 9.
For 𝑒 ∈ [⌈log2𝑇max⌉], it samples SKE key 𝑘𝑒 and runs

(�̂�′𝑒, {𝐿′𝑒,𝑖,𝑏}𝑖,𝑏)
$← Garble′(𝑇′max,𝑒, 𝑀′, {digest𝜏}𝜏∈[T]) for 𝑒 ∈ [⌈log2𝑇max⌉],

where 𝑇′max,𝑒 = 2𝑒 + poly(𝜆, |𝑀 |, log𝑇max). The algorithm encrypts �̂�′𝑒 and 𝐿′𝑒,𝑖,𝑏 by

�̃�′𝑒
$← SKE.Enc(𝑘𝑒, �̂�𝑒), �̃�′𝑒,𝑖,𝑏

$← SKE.Enc(𝑘𝑒, 𝐿′𝑒,𝑖,𝑏),

and splits the encrypted labels into
{
�̃�𝑊
𝑒,𝑖,𝑏

}
𝑒,𝑖,𝑏
,
{
�̃�𝐸
𝑒,𝑖,𝑏

}
𝑒,𝑖,𝑏
,
{
�̃�𝐾
𝑒,𝑖,𝑏

}
𝑒,𝑖,𝑏

by the portion
of input to 𝑀′ they correspond to. Defining 𝑘⌈log2 𝑇max⌉+1 = ⊥, it sets and outputs

�̂� =

(
𝑘1,

{
�̃�′𝑒, �̃�

𝐸
𝑒,𝑖,𝑏’s and �̃�

𝐾
𝑒,𝑖,𝑏’s for 𝐸 = 𝑒, 𝐾 = 𝑘𝑒+1

}
𝑒∈[⌈log2 𝑇max⌉]

)
,

𝐿𝑖,𝑏 = �̃�
𝑊
1,𝑖,𝑏 ∥ · · · ∥ �̃�

𝑊
⌈log2 𝑇max⌉,𝑖,𝑏

.

• Eval𝐷1,...,𝐷T (𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , �̂�, {𝐿𝑖}𝑖) parses �̂� and 𝐿𝑖’s as defined by Garble.
For 𝑒 = 1, . . . , ⌈log2𝑇max⌉, it retrieves 𝑘𝑒, either from �̂� if 𝑒 = 1, or from the previous
call to Eval′ if 𝑒 > 1, and runs

(Eval′)𝐷1,...,𝐷T
(
𝑇max, 𝑀, {digest𝜏}𝜏∈[T] , SKE.Dec(𝑘𝑒, �̃�′𝑒), {SKE.Dec(𝑘𝑒, �̃�𝑒,𝑖)}𝑖

)
→

{
outS, if running time is not exceeded;
(prefix of outS, 𝑘𝑒+1), if running time is exceeded.

The algorithm removes the empty, placeholder output from outS, use the stripped
version as the output, and halt, if the running time is not exceeded. Otherwise, it
attempts the next 𝑒.

Correctness and Efficiency. Those are clear by inspection.

Theorem 21 (¶). Suppose in Construction 4, LGRAM′ is a (fixed-memory, fixed-address, fully)
secure bounded LGRAM (Definition 4) and SKE is secure (Definition 18), then the constructed
scheme is an unbounded LGRAM with the same level of security as LGRAM′ (Definition 3).

Proof (Theorem 21). Since 𝑀′ uses a deterministic balanced binary tree to implement
the virtual sparse memory for 𝑀, it preserves the constraints of fixed-memory, fixed-
address, or full security. Let 𝑇 be the instance running time and 𝑒 = ⌈log2𝑇⌉. We
consider the following hybrids:

• H𝛽
−1. This is just Exp

𝛽
LGRAM for the constructed scheme, where

�̂� : 𝑘1,
{
�̃�′𝑒, �̃�

𝐸
𝑒,𝑖,𝑏’s and �̃�

𝐾
𝑒,𝑖,𝑏’s for 𝐸 = 𝑒, 𝐾 = 𝑘𝑒+1

}
𝑒∈[⌈log2 𝑇max⌉]

,

𝐿𝑖 :
{
�̃�𝑊
𝑒,𝑖,𝑏

’s for 𝑊 = 𝑤𝛽

}
𝑒∈[⌈log2 𝑇max⌉]

.

63 / 89

• H𝛽
𝔢 for 𝔢 = 0, . . . , ⌈log2𝑇max⌉. In this hybrid, we remove 𝑘𝑒+1 as well as all the unused
garblings up to time bound 2𝔢 as follows.

�̂� : 𝑘1,

�̃�′𝑒, �̃�

𝐸
𝑒,𝑖,𝑏

’s and �̃�𝐾
𝑒,𝑖,𝑏

’s for 𝐸 = 𝑒, 𝐾 = 𝑘𝑒+1, if 𝑒 < 𝑒;
�̃�′
𝑒
, �̃�𝐸

𝑒,𝑖,𝑏
’s and �̃�𝐾

𝑒,𝑖,𝑏
’s for 𝐸 = 𝑒, 𝐾 = ⊥ , if 𝑒 = 𝑒;

random , if 𝑒 > 𝑒 and 𝑒 ≤ 𝔢;
�̃�′𝑒, �̃�

𝐸
𝑒,𝑖,𝑏

’s and �̃�𝐾
𝑒,𝑖,𝑏

’s for 𝐸 = 𝑒, 𝐾 = 𝑘𝑒+1, if 𝑒 > 𝑒 and 𝑒 > 𝔢;

𝐿𝑖 :

�̃�𝑊
𝑒,𝑖,𝑏

’s for 𝑊 = 𝑤𝛽, if 𝑒 ≤ 𝑒;
random , if 𝑒 > 𝑒 and 𝑒 ≤ 𝔢;
�̃�𝑊
𝑒,𝑖,𝑏

’s for 𝑊 = 𝑤𝛽, if 𝑒 > 𝑒 and 𝑒 > 𝔢.

To see indistinguishability:

• H𝛽
−1 ≈ H

𝛽
0 . Compared to H

𝛽
−1, in H

𝛽
0 , the garbling �̂�

′
𝑒
has 𝐾 in its input changed from

𝑘𝑒+1 to ⊥. Since 2𝑒 ≥ 𝑇, the execution of 𝑀 in that garbling does not output 𝐾 and
this change satisfies the constraint of LGRAM security. Moreover, 𝑇′max,𝑒 = 2𝑒 ≤ 2𝑇
is polynomially bounded. Therefore, H𝛽

−1 ≈ H
𝛽
0 by the bounded security of LGRAM

′.

• H𝛽
𝔢−1 ≈ H

𝛽
𝔢 . The two hybrids are different only when 𝔢 > 𝑒, in which case the

ciphertexts under 𝑘𝔢 changes into random strings and 𝑘𝔢 is not used in the two
hybrids. Therefore, H𝛽

𝔢−1 ≈ H
𝛽
𝔢 by the ciphertext pseudorandomness of SKE.

• H0
⌈log2 𝑇max⌉

≈ H1
⌈log2 𝑇max⌉

. The difference is that the 𝑒 non-erased garblings have 𝑊
in their inputs changed between 𝑤0 and 𝑤1. By how 𝑀′ works, this change
satisfies the constraint of LGRAM security. Moreover, all of them have 𝑇′max,𝑒 ≤ 2𝑇
polynomially bounded. Therefore, H0

⌈log2 𝑇max⌉
≈ H1

⌈log2 𝑇max⌉
follows from a standard

hybrid argument by the bounded security of LGRAM′.

We conclude that Exp0
LGRAM ≡ H

0
−1 ≈ H

1
−1 ≡ Exp1

LGRAM. □

6 PHFE for RAM

6.1 Bounded Private Input

In this section, we build a PHFE for RAM with bounded private input that is 𝑓 - and 𝑥-
succinct and has linear-time KeyGen and Enc and whose Dec runs in time O(𝑇 + | 𝑓 | + |𝑥|),
ignoring polynomial factors in the security parameter. (See Definitions 5, 7, and 9.)

Recall that in PHFE for RAM with bounded private input, the functionality [resp. key,
ciphertext] is associated with some RAM 𝑀 and (up to exponential) time bound 𝑇max
[resp. 𝑓 of arbitrary length, 𝑥 of arbitrary length and 𝑦 of some fixed polynomial length]
and decryption yields 𝑀 𝑓 ,𝑥 (𝑦) if the execution halts in time at most 𝑇max.

Ingredients of Construction 5. Let

• ckt = (ckt.Setup, ckt.KeyGen, ckt.Enc, ckt.Dec) be an FE scheme for circuits,

• LGRAM = (LGRAM.Compress, LGRAM.Garble, LGRAM.Eval) a 2-tape LGRAM scheme,

64 / 89

• PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF, and

• SKE = (SKE.Gen, SKE.Enc, SKE.Dec) a secret-key encryption scheme.

GenLGRAM

[
digest𝑓 , 𝑠PPRF,
idx′sk, lgram

′
sk

] (
digest𝑥, 𝑦, 𝑘PPRF,mode,

𝑦′, idxct, idxH, 𝑘′idx, 𝑘
′
lgram, lgramct

)
Hardwired. digest𝑓 , LGRAM digest of 𝑓 (tape 1);

𝑠PPRF, PPRF input for LGRAM randomness;
idx′sk, encrypted ordinal (𝑞th query) of this key;
lgram′sk, encrypted hardwired LGRAM garbling.

Input. digest𝑥, 𝑦, LGRAM digest of 𝑥 (tape 2), short input;
𝑘PPRF, PPRF key for LGRAM randomness;
mode, mode of ciphertext and security proof;
𝑦′, alternative short input;
idxct, ordinal of the challenge ciphertext

(number of pre-challenge keys);
idxH, progress of security proof

(number of keys using 𝑦′);
𝑘′idx, 𝑘

′
lgram, SKE keys to decrypt idx′sk, lgram

′
sk;

lgramct, hardwired LGRAM garbling.
Output. lgram, LGRAM garbling, computed as follows.

1. If mode = normal (garbling is for 𝑦):

(�̂�, {𝐿𝑖,𝑏}𝑖,𝑏) ← LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓 , digest𝑥;
PPRF.Eval(𝑘PPRF, 𝑠PPRF)

)
output lgram = (�̂�, {𝐿𝑖,𝑦[𝑖]}𝑖)

2. Otherwise, this key is decrypting the challenge ciphertext:
idxsk ← SKE.Dec(𝑘′idx, idx

′
sk)

3a. If mode = hybrid or idxsk ≠ idxH (garbling is for 𝑦 or 𝑦′):

(�̂�, {𝐿𝑖,𝑏}𝑖,𝑏) ← LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓 , digest𝑥;
PPRF.Eval(𝑘PPRF, 𝑠PPRF)

)
output lgram =

{
(�̂�, {𝐿𝑖,𝑦[𝑖]}𝑖), if idxH < idxsk;
(�̂�, {𝐿𝑖, 𝑦′ [𝑖]}𝑖), if idxH ≥ idxsk.

3b. If mode = hardwire and idxsk = idxH (garbling is hardwired):

output lgram =

{
lgramct, if idxct ≥ idxsk;
SKE.Dec(𝑘′lgram, lgram

′
sk), if idxct < idxsk.

Figure 10. The circuit GenLGRAM in Construction 5.

65 / 89

Construction 5 (PHFE for RAM with bounded private input). It works as follows:

• Setup(𝑀,𝑇max) runs

(ckt.mpk, ckt.msk) $← ckt.Setup(1···, 1···),

and outputs (mpk,msk) =
(
(𝑇max, 𝑀, ckt.mpk), ckt.msk

)
, where the input/circuit

sizes given to ckt.Setup are appropriately chosen (see below).

• KeyGen(msk, 𝑓) samples random strings 𝑠PPRF, idx′sk, lgram
′
sk, runs

digest𝑓
$← LGRAM.Compress(1ℓcell , 1ℓaddr , 1, 𝑓),

ckt.sk $← ckt.KeyGen(ckt.msk,GenLGRAM[digest𝑓 , 𝑠PPRF, idx′sk, lgram
′
sk]),

and outputs sk = (digest𝑓 , 𝑠PPRF, idx′sk, lgram
′
sk, ckt.sk), where GenLGRAM is defined in

Figure 10.

• Enc(mpk, 𝑥, 𝑦) samples random string 𝑘PPRF, runs

digest𝑥
$← LGRAM.Compress(1ℓcell , 1ℓaddr , 2, 𝑥),

ckt.ct $← ckt.Enc
(
ckt.mpk,⊥, (digest𝑥, 𝑦, 𝑘PPRF, normal,

𝑦′,idxct,idxH,𝑘′idx,𝑘
′
lgram,lgramct︷ ︸︸ ︷

⊥,⊥,⊥,⊥,⊥,⊥)
)
,

and outputs ct = (digest𝑥, ckt.ct).

• Dec𝑓 ,𝑥,sk,ct(mpk) parses mpk, sk, ct as defined earlier, runs

(�̂�, {𝐿𝑖}𝑖) $← ckt.DecGenLGRAM[digest𝑓 ,𝑠PPRF,idx
′
sk,lgram

′
sk],⊥,ckt.sk,ckt.ct(ckt.mpk),

and outputs LGRAM.Eval𝑓 ,𝑥 (𝑇max, 𝑀, digest𝑓 , digest𝑥, �̂�, {𝐿𝑖}𝑖).

Correctness and Efficiency. To ensure correctness, it suffices to set the input/circuit
sizes of the underlying FE for circuits to be poly(𝜆, 𝑀, log𝑇max) — the normal branch
of GenLGRAM is just LGRAM.Eval, which runs in time poly(𝜆, 𝑀, log𝑇max). This (order of)
value is also sufficient for the security proof to go through. By the efficiency guarantees
of its ingredients, Construction 5 is 𝑓 - and 𝑥-succinct, has linear-time KeyGen and Enc,
and its Dec runs in time (𝑇 + | 𝑓 | + |𝑥|) poly(𝜆, 𝑀,𝑇max).

Theorem 22 (¶). Suppose in Construction 5, ckt, LGRAM, PPRF are secure (Definitions 7, 3,
and 17) and SKE has pseudorandom ciphertexts (Definition 18), then the constructed scheme is
secure (Definition 7).

We prove security by hybridizing over the keys. We denote by

digest𝑓𝑞 , 𝑠PPRF,𝑞, idx
′
sk,𝑞, lgram

′
sk,𝑞

the content hardwired into GenLGRAM for the 𝑞th secret key sk𝑞. In the hybrids,

𝑦′, idxct, idxH, lgramct, 𝑘
′
idx, 𝑘

′
lgram

in the challenge ciphertext ct are used, and its decryption behavior is controlled bymode
and those values. The strategies of handling pre- and post-challenge keys are different.
At a high level, they work as follows:

66 / 89

• idx′sk,𝑞 is an encryption of 𝑞 so that each key “knows” its ordinal number.

• idxct is the ordinal number of the challenge ciphertext.

• idxH indicates the progress of the proof and increases from 0 to 𝑄:

– initially, 𝑞 > idxH, decrypting ct by sk𝑞 yields an LGRAM garbling for 𝑦0;
– when transitioning, 𝑞 = idxH, the behavior depends on mode and the relative
timing of ct and sk𝑞,
* when mode = hardwire, decryption takes the hardwired LGRAM garbling
from either lgram′sk,𝑞 (in sk𝑞) or lgramct (in ct), whichever is generated later
the security game (decided by comparing idxct and 𝑞);

* when mode = hybrid, the behavior is the same as when 𝑞 < idxH;
– eventually, 𝑞 < idxH, decrypting ct by sk𝑞 yields an LGRAM garbling for 𝑦1.

Proof (Theorem 22). Let 𝑄1, 𝑄2 be the number of secret key queries in Query I and
Query II, respectively. Writing 𝑘idx for a random key of SKE and 𝑘 for a random (non-
punctured) key of PPRF, we list our hybrids.

• H0. This is just Exp0
PHFE, described as

sk𝑞 : 𝑠PPRF,𝑞
$← random, idx′sk,𝑞

$← random, lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← normal,
𝑦′← ⊥, idxct ← ⊥, idxH ← ⊥,

𝑘′idx ← ⊥, 𝑘′lgram ← ⊥, lgramct ← ⊥.

• H1. In this hybrid, we sample 𝑠PPRF,𝑞’s without replacement, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct , idx′sk,𝑞

$← random, lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← normal,
𝑦′← ⊥, idxct ← ⊥, idxH ← ⊥,

𝑘′idx ← ⊥, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H0 and H1 are statistically indistinguishable.

• H2. In this hybrid, we change idx′sk,𝑞 into an encryption of 𝑞 (padded to some fixed
poly(𝜆) bits), i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞) , lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← normal,
𝑦′← ⊥, idxct ← ⊥, idxH ← ⊥,

𝑘′idx ← ⊥, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H1 ≈ H2 follows from the ciphertext pseudorandomness of SKE, as the key 𝑘idx is
not used anywhere else.

• H3. In this hybrid, we prepare for hybridizing over the keys. H3 is described as

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

67 / 89

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid ,

𝑦′← 𝑦1 , idxct ← 𝑄1 , idxH ← 0 ,

𝑘′idx ← 𝑘idx , 𝑘′lgram ← ⊥, lgramct ← ⊥.

It is readily verified that the decryption outcome (as perceived by ckt) does not
change. Therefore, H2 ≈ H3 follows from the security of ckt.

• H4,𝔮 for 𝑞 = 0, . . . , 𝑄1 + 𝑄2. In this hybrid, idxH is incremented to 𝑞, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝑞 ,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H4,0 is just H3. The proofs of indistinguishability between H4,𝔮−1 and H4,𝔮 depend on
whether 𝔮 ≤ 𝑄1 or 𝔮 > 𝑄1.

Claim 23 (¶). H4,𝔮−1 ≈ H4,𝔮 for 𝔮 = 1, . . . , 𝑄1.

Claim 24 (¶). H4,𝔮−1 ≈ H4,𝔮 for 𝔮 = 𝑄1 + 1, . . . , 𝑄1 + 𝑄2.

• H5. In this hybrid, we finish the hybrid argument over the keys. H5 is described as

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,

𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝑄1 + 𝑄2 ,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H5 is just H4,𝑄1+𝑄2 .

• H6. In this hybrid, the challenge ciphertext becomes a normal one for 𝑦1, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦1 , 𝑘PPRF ← 𝑘, mode← normal ,

𝑦′← ⊥ , idxct ← ⊥ , idxH ← ⊥ ,
𝑘′idx ← ⊥ , 𝑘′lgram ← ⊥, lgramct ← ⊥.

H5 ≈ H6 follows from the security of ckt, analogously to H2 ≈ H3.

• H7. In this hybrid, we revert idx′sk,𝑞 to random, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← random , lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦1, 𝑘PPRF ← 𝑘, mode← normal,
𝑦′← ⊥, idxct ← ⊥, idxH ← ⊥,

𝑘′idx ← ⊥, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H6 ≈ H7 by the ciphertext pseudorandomness of SKE, analogously to H1 ≈ H2.

• H8. In this hybrid, 𝑠PPRF,𝑞’s are sampled as specified by KeyGen, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← random , idx′sk,𝑞

$← random, lgram′sk,𝑞
$← random;

68 / 89

ct : 𝑦← 𝑦1, 𝑘PPRF ← 𝑘, mode← normal,
𝑦′← ⊥, idxct ← ⊥, idxH ← ⊥,

𝑘′idx ← ⊥, 𝑘′lgram ← ⊥, lgramct ← ⊥.

H8 is statistically indistinguishable from H7.

By inspection, H8 is just Exp1
PHFE, and therefore, Exp

0
PHFE ≡ H0 ≈ H8 ≡ Exp1

PHFE. □

Proof (Claim 23). To show indistinguishability between H4,𝔮−1 and H4,𝔮 when 𝔮 ≤ 𝑄1 ,
we temporarily hardwire the LGRAM garbling yielded by decryption ct using sk𝔮 into
lgramct , which is generated when both 𝑓𝔮 and 𝑥, 𝑦0, 𝑦1 are known.
Let �̊�{𝔮} be 𝑘 punctured at the singleton set {𝔮}. We specify the hybrids.

• G0. This is just H4,𝔮−1, described as

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮 − 1,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥.

• G1. In this hybrid, we puncture 𝑘PPRF, hardwire the decryption result of ct by sk𝔮
into ct at lgramct, indicating hardwiring using mode, and increment idxH, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮} , mode← hardwire ,

𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮 ,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥,

lgramct ← (�̂�, {𝐿𝑖,𝑦0 [𝑖]}𝑖) from LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝑠PPRF,𝔮)

)
.

G0 ≈ G1 follows from the security of ckt.

• G2. In this hybrid, we change the LGRAM randomness from PPRF.Eval(𝑘, 𝔮) to true
randomness, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥,

lgramct ← (�̂�, {𝐿𝑖,𝑦0 [𝑖]}𝑖) from LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

random

)
.

G1 ≈ G2 follows from the security of PPRF.

• G3. In this hybrid, we change the hardwired LGRAM garbling into one for 𝑦1, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

69 / 89

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥,

lgramct ← (�̂�, {𝐿𝑖, 𝑦1 [𝑖]}𝑖) from LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

random

)
.

G2 ≈ G3 follows from the security of LGRAM.

• G4. In this hybrid, the hardwired LGRAM garbling is reverted to be generated with
pseudorandomness PPRF.Eval(𝑘, 𝔮), i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥,

lgramct ← (�̂�, {𝐿𝑖,𝑦1 [𝑖]}𝑖) from LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝑠PPRF,𝔮)

)
.

G3 ≈ G4 follows from the security of PPRF.

• G5. In this hybrid, 𝑘PPRF is no longer punctured and hardwiring is undone, i.e.,

sk𝑞 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘 , mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥ .

G4 ≈ G5 follows from the security of ckt.

By inspection, G5 is exactly H4,𝔮. Therefore, H4,𝔮−1 ≡ G0 ≈ G5 ≡ H4,𝔮. □

Proof (Claim 24). To show indistinguishability between H4,𝔮−1 and H4,𝔮 when 𝔮 > 𝑄1 ,
we temporarily hardwire the LGRAM garbling yielded by decryption ct using sk𝔮 into
lgram′sk,𝔮 , generated when both 𝑥, 𝑦0, 𝑦1 and 𝑓𝔮 are known. Let �̊�{𝔮} be 𝑘 punctured at {𝔮}
and 𝑘lgram a random secret key of SKE. We specify the hybrids.

• G0. This is just H4,𝔮−1, described as

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮 − 1,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮), lgram′sk,𝔮
$← random.

• G1. In this hybrid, we encrypt the LGRAM garbling into lgram′sk,𝔮, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

70 / 89

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮 − 1,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖,𝑦0 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝑠PPRF,𝔮)

)ª®®®¬ .
G0 ≈ G1 by the ciphertext pseudorandomness of SKE.

• G2. In this hybrid, we puncture 𝑘 at {𝔮}, activate the hardwiring using 𝑘′lgram,mode,
and increment idxH, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮} , mode← hardwire ,

𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮 ,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← 𝑘lgram , lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖,𝑦0 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝑠PPRF,𝔮)

)ª®®®¬ .
G1 ≈ G2 follows from the security of ckt.

• G3. In this hybrid, we generate the hardwired garbling with true randomness
instead of PPRF.Eval(𝑘, 𝔮), i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← 𝑘lgram, lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖,𝑦0 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

random

)ª®®®¬ .
G2 ≈ G3 follows from the security of PPRF.

• G4. In this hybrid, the hardwired garbling becomes one for 𝑦1, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

71 / 89

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← 𝑘lgram, lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖, 𝑦1 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

random

)ª®®®¬ .
G3 ≈ G4 follows from the security of LGRAM.

• G5. In this hybrid, the randomness for generating the hardwired LGRAM garbling
is reverted to be pseudorandom, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← �̊�{𝔮}, mode← hardwire,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← 𝑘lgram, lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖,𝑦1 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝔮)

)ª®®®¬ .
G4 ≈ G5 follows from the security of PPRF.

• G6. In this hybrid, the hardwiring is deactivated by reverting most of the changes
made in the transition from G1 to G2, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘 , mode← hybrid ,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥ , lgramct ← ⊥;

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮),

lgram′sk,𝔮
$← SKE.Enc

©«𝑘lgram,
(�̂�, {𝐿𝑖,𝑦1 [𝑖]}𝑖) from

LGRAM.Garble

(
𝑇max, 𝑀, digest𝑓𝔮 , digest𝑥;

PPRF.Eval(𝑘, 𝔮)

)ª®®®¬ .
G5 ≈ G6 follows from the security of ckt.

• G7. In this hybrid, we revert lgram′sk,𝔮 to random, i.e.,

sk𝑞≠𝔮 : 𝑠PPRF,𝑞
$← distinct, idx′sk,𝑞

$← SKE.Enc(𝑘idx, 𝑞), lgram′sk,𝑞
$← random;

ct : 𝑦← 𝑦0, 𝑘PPRF ← 𝑘, mode← hybrid,
𝑦′← 𝑦1, idxct ← 𝑄1, idxH ← 𝔮,

𝑘′idx ← 𝑘idx, 𝑘′lgram ← ⊥, lgramct ← ⊥;

72 / 89

sk𝔮>𝑄1 : 𝑠PPRF,𝔮
$← distinct, idx′sk,𝔮

$← SKE.Enc(𝑘idx, 𝔮), lgram′sk,𝔮
$← ⊥ .

G6 ≈ G7 by the ciphertext pseudorandomness of SKE.
By inspection, G7 is exactly H4,𝔮. Therefore, H4,𝔮−1 ≡ G0 ≈ G7 ≡ H4,𝔮. □

6.2 Full-Fledged PHFE for RAM

In this section, we build a full-fledged PHFE for RAM that is 𝑓 -succinct and has
rate-2 ciphertext and linear-time KeyGen and Enc and whose Dec runs in time
O(𝑇 + | 𝑓 | + |𝑥| + |𝑦|), ignoring polynomial factors in the security parameter. (See
Definitions 5, 7, and 10.)

Recall that in full-fledged PHFE for RAM, the functionality [resp. key, ciphertext] is
associated with some RAM 𝑀 and (up to exponential) time bound 𝑇max [resp. 𝑓 , (𝑥, 𝑦),
each of arbitrary length] and decryption yields 𝑀 𝑓 ,𝑥∥𝑦 () if the execution halts in time at
most 𝑇max.

Ingredients of Construction 6. Let
• PHFE′ = (Setup′, KeyGen′, Enc′,Dec′) be a PHFE scheme for RAM with bounded
private input that is 𝑓 ′- and 𝑥′-succinct and has linear-time KeyGen′ and Enc′ and
whose Dec′ runs in time (𝑇′ + | 𝑓 ′ | + |𝑥′ |) poly(𝜆, 𝑀′, log𝑇′max), and

• PRF a pseudorandom function.

Construction 6 (full-fledged PHFE for RAM). Our scheme works as follows:
• Setup(𝑀,𝑇max) runs and outputs

(mpk,msk) = (mpk′,msk′) $← Setup′(𝑀′, 𝑇max),
where 𝑀′ is shown in Figure 11.

• KeyGen(msk, 𝑓) pads 𝑓 by setting
𝑓 ′← (𝑓 [1] ∥0ℓcell) ∥ · · · ∥ (

one cell on an input tape of 𝑀′︷ ︸︸ ︷
𝑓 [| 𝑓 |] ∥0ℓcell),

and runs and outputs

sk = sk′ $← KeyGen′(msk′, 𝑓 ′).

• Enc(mpk, 𝑥, 𝑦) samples 𝛽′
$← {0, 1}, a PRF key 𝑘𝛽′, and a string 𝑤1−𝛽′ of the same

length as 𝑦. It pads 𝑥 and appends to it an interleaved version of 𝑤0, 𝑤1, where 𝑤𝛽′

encrypts 𝑦, by setting

𝑤𝛽′ [𝑖] ← 𝑦[𝑖] ⊕ PRF(𝑘𝛽′, 𝑖) for 𝑖 ∈ [|𝑦|],
𝑤← (𝑤0 [1] ∥𝑤1 [1]︸ ︷︷ ︸
one cell on an input tape of 𝑀′

) ∥ · · · ∥ (𝑤0 [|𝑦|] ∥𝑤1 [|𝑦|]),

𝑥′← (
︷ ︸︸ ︷
𝑥[0] ∥0ℓcell) ∥ · · · ∥ (𝑥[|𝑥|] ∥0ℓcell) ∥𝑤, 𝑦′← (|𝑥|,𝛽′, 𝑘𝛽′).

The algorithm runs ct′ $← Enc′(mpk′, 𝑥′, 𝑦′) and outputs ct = (ct′, 𝑤).

• Dec𝑓 ,𝑥,sk,ct(mpk) prepares oracles for 𝑓 ′, 𝑥′ from 𝑓 , 𝑥, ct as specified in KeyGen, Enc.
It runs and outputs

(Dec′) 𝑓 ′,𝑥′,sk′,ct′ (mpk′).

73 / 89

2-Tape RAM 𝑀′

Lengths. ℓ ′st = ℓst + poly(𝜆, |𝑀 |, log𝑇max),
the state of 𝑀, the location of the last-read cell;

ℓ ′in = poly(𝜆, |𝑀 |, log𝑇max) + 1 + poly(𝜆, |𝑀 |, log𝑇max),
to encode |𝑥|, choice bit 𝛽′, and PRF key 𝑘𝛽′;

ℓ ′addr = ℓaddr + 1, ℓ ′cell = 2ℓcell,
twice as many cells with each cell twice as large

on an input tape (to encode 𝑥, 𝑦0, 𝑦1 in 𝑥′);
ℓ ′ADDR = ℓADDR, ℓ ′CELL = ℓCELL,

exactly the working tape of 𝑀.
Input. 𝑤′ = (|𝑥|,𝛽′, 𝑘𝛽′), length of 𝑥, choice bit, PRF key for 𝑦 or 𝑦𝛽′;

𝐷′1 = 𝑓
′, ℓ ′1 = ℓ1, padded version of 𝑓 ;

𝐷′2 = 𝑥′, ℓ ′2 = |𝑥| + |𝑦|,
padded version of 𝑥 followed by

interleaved encryption of 𝑦 or 𝑦0, 𝑦1.
Steps. Each step of 𝑀′ replicates one step of 𝑀

by translating its memory access as follows.

1. If 𝑀 reads 𝐷1 [𝑖] = 𝑓 [𝑖]:
read 𝐷′1 [𝑖] = 𝑓 ′[𝑖] = 𝑓 [𝑖] ∥0ℓcell in this step
provide 𝑓 [𝑖] in the next step (similar below)

2a. If 𝑀 reads 𝐷2 [𝑖] = 𝑥[𝑖] for 𝑖 ∈ [|𝑥|]:
read 𝐷′2 [𝑖] = 𝑥′[𝑖] = 𝑥[𝑖] ∥0ℓcell

provide 𝑥[𝑖]

2b. If 𝑀 reads 𝐷2 [|𝑥| + 𝑖] = 𝑦[𝑖] for 𝑖 ∈ [|𝑦|]:
read 𝐷′2 [|𝑥| + 𝑖] = 𝑤[𝑖] = 𝑤0 [𝑖] ∥𝑤1 [𝑖]
provide 𝑤𝛽′ [𝑖] ⊕ PRF(𝑘𝛽′, 𝑖)

3. If 𝑀 reads 𝐷work [𝑖]:
read and provide 𝐷′work [𝑖]

Figure 11. The machine 𝑀′ in Construction 6.

74 / 89

Correctness and Efficiency. Correctness is immediate by inspection. The construction
scheme incurs an additional storage twice as long as 𝑦 in ct, no additional machine time,
and constant-factor additional decryption time. Since |𝑀′ | = poly(𝜆, |𝑀 |, log𝑇max), with
parameters for PHFE′ denoted with primes,

|sk| = |sk′ | = poly(𝜆, |𝑀′ |, log𝑇max)
= poly(𝜆, |𝑀 |, log𝑇max),

|ct| = 2|𝑦| + |ct′ | = 2|𝑦| + poly(𝜆, |𝑀′ |, log𝑇max)
= 2|𝑦| + poly(𝜆, |𝑀 |, log𝑇max),

𝑇KeyGen = 𝑇′KeyGen = | 𝑓 ′ | poly(𝜆, |𝑀′ |, log𝑇max)
= | 𝑓 | poly(𝜆, |𝑀 |, log𝑇max),

𝑇Enc = 𝑇′Enc = |𝑥′ | poly(𝜆, |𝑀′ |, log𝑇max)
= (|𝑥| + |𝑦|) poly(𝜆, |𝑀 |, log𝑇max),

𝑇Dec = 𝑇′Dec = (𝑇′ + | 𝑓 ′ | + |𝑥′ |) poly(𝜆, |𝑀′ |, log𝑇max)
= (𝑇 + | 𝑓 | + |𝑥| + |𝑦|) poly(𝜆, |𝑀 |, log𝑇max).

Theorem 25 (¶). Suppose in Construction 6, PHFE′, PRF are secure (Definitions 7 and 17), then
the constructed scheme is secure (Definition 7).

Proof (Theorem 25). Let 𝛽′ $← {0, 1} be a random bit and 𝑘𝛽′, 𝑘1−𝛽′ two random PRF keys.
We describe how the challenge ciphertext is generated in each hybrid.

• H𝛽
0 . This is just Exp

𝛽
PHFE, where

𝑤𝛽′ [𝑖] ← 𝑦𝛽 [𝑖] ⊕ PRF(𝑘𝛽′, 𝑖), 𝑤1−𝛽′ [𝑖] $← random,
𝑥′← (𝑥[1] ∥0ℓcell) ∥ · · · ∥ (𝑥[|𝑥|] ∥0ℓcell) ∥ (𝑤0 [1] ∥𝑤1 [𝑖]) ∥ · · · ∥ (𝑤0 [|𝑦|] ∥𝑤1 [|𝑦|]),

ct′ $← Enc′
(
mpk, 𝑥′, (|𝑥|,𝛽′, 𝑘𝛽′)

)
.

• H𝛽
1 . In this hybrid, we make 𝑤1−𝛽′ an encryption of 𝑦1−𝛽 under 𝑘1−𝛽′, i.e.,

𝑤𝛽′ [𝑖] ← 𝑦𝛽 [𝑖] ⊕ PRF(𝑘𝛽′, 𝑖), 𝑤1−𝛽′ [𝑖] ← 𝑦1−𝛽 [𝑖] ⊕ PRF(𝑘1−𝛽′, 𝑖) ,

𝑥′← (𝑥[1] ∥0ℓcell) ∥ · · · ∥ (𝑥[|𝑥|] ∥0ℓcell) ∥ (𝑤0 [1] ∥𝑤1 [𝑖]) ∥ · · · ∥ (𝑤0 [|𝑦|] ∥𝑤1 [|𝑦|]),

ct′ $← Enc′
(
mpk, 𝑥′, (|𝑥|,𝛽′, 𝑘𝛽′)

)
.

H𝛽
0 ≈ H

𝛽
1 for each 𝛽 ∈ {0, 1} by the security of PRF.

• H𝛽
2 . In this hybrid, we rename (𝛽

′ ⊕ 𝛽) to 𝛾, making it

𝑤 𝛾 [𝑖] ← 𝑦 0 [𝑖] ⊕ PRF(𝑘 𝛾 , 𝑖), 𝑤 1−𝛾 [𝑖] ← 𝑦 1 [𝑖] ⊕ PRF(𝑘 1−𝛾 , 𝑖),
𝑥′← (𝑥[1] ∥0ℓcell) ∥ · · · ∥ (𝑥[|𝑥|] ∥0ℓcell) ∥ (𝑤0 [1] ∥𝑤1 [𝑖]) ∥ · · · ∥ (𝑤0 [|𝑦|] ∥𝑤1 [|𝑦|]),

ct′ $← Enc′
(
mpk, 𝑥′, (|𝑥|, 𝛾 ⊕ 𝛽 , 𝑘 𝛾⊕𝛽)

)
,

where 𝛾
$← {0, 1}. This change is conceptual, hence H𝛽

1 ≡ H
𝛽
2 for each 𝛽 ∈ {0, 1}.

H0
2 ≈ H

1
2 follows from the security of PHFE′. Therefore, Exp0

PHFE ≡ H
0
0 ≈ H

1
0 ≡ Exp1

PHFE. □

75 / 89

7 Applications

7.1 Rate-1 PHFE for RAM

We can obtain rate-1 ciphertexts if we abandon both long output and adaptive security.
The root of the rate being two in Construction 6 is that the security proof needs to put
both candidate private inputs 𝑦0, 𝑦1 in the challenge ciphertext during the proof. The
same proof strategy is also used in Construction 5 (see 𝑦, 𝑦′ in Enc). When we only aim
for semi-adaptive security,30 we can instead hardwire the garblings into the secret keys
during the security proof. The garblings themselves are short and can be simulated using
the short output.31

Corollary 26. Assuming the existence of secure FE for circuits (Definition 8), there exists semi-
adaptively secure full-fledged PHFE for RAM whose only non-⊥ output is always produced at
the last step with constant-size keys, rate-1 ciphertexts, and linear-time KeyGen, Enc,Dec.

7.2 ABE for RAM

By using PHFE for RAM with bounded private input as an attribute-based KEM for RAM
and upgrading AB-KEM to ABE using the standard technique, we obtain ABE for RAM
with constant-size keys and rate-1 ciphertexts.

Corollary 27. Assuming FE for circuits, there exists ABE for RAM with

|mpk| = |sk| = poly(𝜆, |𝑀 |, log𝑇max), |ct| = |𝑦| + poly(𝜆, |𝑀 |, log𝑇max),
𝑇KeyGen = | 𝑓 | poly(𝜆), 𝑇Enc = (|𝑥| + |𝑦|) poly(𝜆),
𝑇Dec = (𝑇 + | 𝑓 | + |𝑥| + |𝑦|) poly(𝜆),

where 𝑦 is the message.

The above result matches the lower bound in [Luo22]. By slightly tweaking our
construction, we obtain additional trade-offs matching the lower bound:

Corollary 28 (¶). Assuming FE for circuits, for all 𝐴, 𝐵 ∈ {0, 1}, there exists ABE for RAM
with

𝑇KeyGen = | 𝑓 | poly(𝜆), |sk| = | 𝑓 |𝐴 + poly(𝜆, |𝑀 |, log𝑇max),
𝑇Enc = (|𝑥| + |𝑦|) poly(𝜆), |ct| = |𝑥|𝐵 + |𝑦| + poly(𝜆, |𝑀 |, log𝑇max),
|mpk| = poly(𝜆, |𝑀 |, log𝑇max), 𝑇Dec = (𝑇 + | 𝑓 |1−𝐴 + |𝑥|1−𝐵 + |𝑦|) poly(𝜆),

where 𝑦 is the message.

Proof Sketch (Corollary 28). It suffices to consider AB-KEM. Applying Construction 4
on top of Construction 1 yields an unbounded LGRAM with fixed-memory security.
Plugging such an LGRAM into Construction 5, we obtain an AB-KEM for RAM with the
following 𝑀:
30Semi-adaptive security means that there is no Query I in Definition 7, and is only a slight

strengthening [GKW16] of selective security.
31To be more precise, the machine will allow an alternative form of short input (𝑇, 𝑧) for simulation,

on which it idles for (𝑇 − 2) steps, outputs 𝑧, and halts.

76 / 89

• Tapes. The two tapes contain 𝑓 , 𝑥.

• Short Input. The short input is the encapsulated key 𝑘.

• Steps. The machine evaluates 𝑓 (𝑥) then outputs 𝑘 if and only if 𝑓 (𝑥) = 1.

The resultant scheme achieves the trade-off with 𝐴, 𝐵 = 0. (This is not the same scheme
as the one obtained in Corollary 27.)

In the proof of Lemma 3, the LOT scheme sets the processed database 𝐷 to be the
Merkle hash tree of 𝐷, whose bit-length can be made to be that of 𝐷.32 By inspecting
the constructions, it follows that the linear time-dependencies on | 𝑓 |, |𝑥| of LGRAM
evaluation and AB-KEM decapsulation come exactly from recomputing their respective
Merkle trees. Therefore, by choosing to store the Merkle tree of 𝑓 , 𝑥 (or not) in sk, ct, we
achieve the four promised trade-offs. □

7.3 Constant-Overhead 𝒊O for RAM

We obtain constant-overhead 𝑖O for RAM using the transformation in [KLW15,BGL+15,
CHJV15,AJS17] with a circuit obfuscator 𝑖Ockt and our LGRAM (Compress,Garble, Eval).

Corollary 29 (¶). Assuming subexponentially secure FE for circuits, there exists a subexpo-
nentially secure 𝑖O for RAM, where the obfuscated program is of size 2| 𝑓 | + poly(𝜆, 𝑁).

Proof Sketch (Corollary 29). To obfuscate a RAM program 𝑈 𝑓 ,𝑥 (), we sample 𝛽′ $← {0, 1}, a
PRF key 𝑘𝛽′, PPRF keys 𝑘Compress and 𝑘Garble, and a random string 𝑓1−𝛽′ of the same length
as 𝑓 , set

𝑓𝛽′ ← 𝑓 ⊕
(
PRF(𝑘𝛽′, 1) ∥ · · · ∥PRF(𝑘𝛽′, | 𝑓 |)

)
,

𝑤← (𝑓0 [1] ∥ 𝑓1 [1]) ∥ · · · ∥ (𝑓0 [| 𝑓 |] ∥ 𝑓1 [| 𝑓 |]),

run

digest1
$← Compress(1ℓcell , 1ℓaddr , 1, 𝑤),�GenLGRAM $← 𝑖Ockt(GenLGRAM[digest1, 𝑘,𝛽′, 𝑘𝛽′]),

and output (�GenLGRAM, 𝑤) as the obfuscation of 𝑓 , where GenLGRAM is the following
circuit:

• Hardwired. As described above.

• Input. 𝑥, up to length 𝑁.

• Output. 𝑈 and labels for B = 𝛽′ and 𝐾 = 𝑘𝛽′ from

digest2 ← Compress
(
1ℓcell , 1ℓaddr , 2, 𝑥;PPRF.Eval(𝑘Compress, 𝑥)

)
,

(𝑈, {𝐿𝑖,𝑏}𝑖,𝑏) ← Garble
(
𝑇max,𝑈

′, digest1, digest2;PPRF.Eval(𝑘Garble, 𝑥)
)
,

where (𝑈′)𝑤,𝑥 (B, 𝐾) works as follows.
32The standard Merkle tree is twice as long as the database as the leaves constitute the database itself.

In our syntax of PHFE (Definition 5), the databases are given in the clear for free, so we can exclude
them from the Merkle trees stored in sk, ct.

77 / 89

– It parses 𝑤 defined above, with 𝛽′ = B and 𝑘𝛽′ = 𝐾 .
– It simulates the program 𝑓 over the input 𝑥, with each cell of 𝑓 computed from
𝑤,B, 𝐾 on demand.

Assuming subexponential security of the primitives underlying our LGRAM construction
yields a subexponentially secure LGRAM. Furthermore, assuming 𝑖Ockt is subexponen-
tially secure, then we can employ the standard positional proof to show that the above
scheme is an 𝑖O for RAM, at security loss 2Θ(𝑁). Therefore, by bumping the security
parameter up to poly(𝜆, 𝑁), our 𝑖O for RAM is (subexponentially) secure. □

Acknowledgement. Aayush Jain was supported by departmental funds from CMU
Computer Science Department and a gift from CyLab. Huijia Lin and Ji Luo were
supported by NSF grants CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI Research
Award, a Cisco Research Award, and a Simons Collaboration on the Theory of
Algorithmic Fairness. The views expressed are those of the authors and do not reflect
the official policy or position of the funding agencies. The authors thank the anonymous
reviewers of Eurocrypt 2023 for their valuable comments.

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai
Lin. Delegating RAM computations with adaptive soundness and privacy. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 3–30. Springer, Heidelberg, October / November 2016.

[ACFQ22] Prabhanjan Ananth, Kai-Min Chung, Xiong Fan, and Luowen Qian.
Collusion-resistant functional encryption for RAMs. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages
160–194. Springer, Heidelberg, December 2022.

[AFS19] Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based
encryption for RAMs from LWE: Sub-linear decryption, and more. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 112–141. Springer, Heidelberg, December 2019.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding
functions with constant online rate or how to compress garbled circuits keys.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 166–184. Springer, Heidelberg, August 2013.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai.
Indistinguishability obfuscation without multilinear maps: New paradigms
via low degree weak pseudorandomness and security amplification. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 284–332. Springer, Heidelberg, August 2019.

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability
obfuscation for Turing machines: Constant overhead and amortization. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 252–279. Springer, Heidelberg, August 2017.

78 / 89

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from
functional encryption through a local simulation paradigm. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 455–472. Springer, Heidelberg, November 2018.

[ALdP11] Nuttapong Attrapadung, Benoît Libert, and Elie de Panafieu. Expressive
key-policy attribute-based encryption with constant-size ciphertexts. In
Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, March
2011.

[AM18] Shweta Agrawal and Monosij Maitra. FE and iO for Turing machines from
minimal assumptions. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 473–512. Springer, Heidelberg,
November 2018.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for
Turing machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part I, volume 9562 of LNCS, pages 125–153. Springer, Heidelberg, January
2016.

[AT20] Nuttapong Attrapadung and Junichi Tomida. Unbounded dynamic predicate
compositions in ABE from standard assumptions. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,
pages 405–436. Springer, Heidelberg, December 2020.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order
groups via computational pair encodings. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–
623. Springer, Heidelberg, December 2016.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM
Journal on Computing, 18(4):766–776, 1989.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy.
Fully key-homomorphic encryption, arithmetic circuit ABE and compact gar-
bled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May
2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.
Succinct randomized encodings and their applications. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM Press,
June 2015.

[BHMW21] Elette Boyle, Justin Holmgren, Fermi Ma, and Mor Weiss. On the security
of doubly efficient PIR. Cryptology ePrint Archive, Report 2021/1113, 2021.
https://eprint.iacr.org/2021/1113.

79 / 89

https://eprint.iacr.org/2021/1113

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a
database both locally and privately? In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 662–693. Springer, Heidelberg,
November 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513.
ACM Press, May 1990.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. Journal of Cryptology, 31(1):202–225, January 2018.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597
of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 171–190. IEEE Computer Society Press, October 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December
2013.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai,
Wei-Kai Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from
indistinguishability obfuscation. In Madhu Sudan, editor, ITCS 2016, pages
179–190. ACM, January 2016.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive
succinct garbled RAM or: How to delegate your database. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
61–90. Springer, Heidelberg, October / November 2016.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

[CH15] Ran Canetti and Justin Holmgren. Succinct garbled RAM. Cryptology ePrint
Archive, Report 2015/388, 2015. https://eprint.iacr.org/2015/388.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu
Sudan, editor, ITCS 2016, pages 169–178. ACM, January 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Succinct garbling and indistinguishability obfuscation for RAM programs.

80 / 89

https://eprint.iacr.org/2015/388

In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages
429–437. ACM Press, June 2015.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient
private information retrieval. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 694–726. Springer, Heidelberg,
November 2017.

[CP13] Kai-Min Chung and Rafael Pass. A simple ORAM. Cryptology ePrint Archive,
Report 2013/243, 2013. https://eprint.iacr.org/2013/243.

[CR73] Stephen A. Cook and Robert A. Reckhow. Time bounded random access
machines. Journal of Computer and System Sciences, 7(4):354–375, 1973.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs
for attacks against one-way functions and PRGs. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run Turing machines on encrypted data. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 536–553. Springer, Heidelberg, August 2013.

[GKVW20] Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters.
On perfect correctness in (lockable) obfuscation. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages
229–259. Springer, Heidelberg, November 2020.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security
and bundling functionalities made generic and easy. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
361–388. Springer, Heidelberg, October / November 2016.

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled
RAM from laconic oblivious transfer. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 515–
544. Springer, Heidelberg, August 2018.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as
Cryptology ePrint Archive Report 2006/309.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In Martin Hirt and Adam D. Smith,

81 / 89

https://eprint.iacr.org/2013/243

editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 419–442. Springer,
Heidelberg, October / November 2016.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with
near optimal online complexity. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 535–565.
Springer, Heidelberg, April / May 2018.

[GS18b] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO
for Turing machines. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 425–454. Springer, Heidelberg,
November 2018.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from LWE. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523.
Springer, Heidelberg, August 2015.

[GWZ22] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Incompressible cryptography.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 700–730. Springer, Heidelberg, May / June
2022.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.

[Iva82] A. G. Ivanov. Theorems on the time hierarchy for random access machines.
Journal of Soviet Mathematics, 20(4):2299–2304, 1982.

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via
mathematical proofs of equivalence. In 63rd FOCS, pages 1023–1034. IEEE
Computer Society Press, October / November 2022.

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and
efficiency of functional encryption and attribute-based encryption. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of
LNCS, pages 479–510. Springer, Heidelberg, April 2023.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials over ℝ to build 𝑖O. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Samir Khuller and Virginia Vassilevska
Williams, editors, 53rd ACM STOC, pages 60–73. ACM Press, June 2021.

82 / 89

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from LPN over 𝔽𝑝, DLIN, and PRGs in 𝑁𝐶0. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
670–699. Springer, Heidelberg, May / June 2022.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguisha-
bility obfuscation for Turing machines with unbounded memory. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM
Press, June 2015.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic
constructions of succinct functional encryption. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 187–
217. Springer, Heidelberg, March 2018.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa.
Adaptively secure and succinct functional encryption: Improving security
and efficiency, simultaneously. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–
551. Springer, Heidelberg, August 2019.

[LL20] Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from 𝑘-
Lin. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 437–466. Springer, Heidelberg, December 2020.

[LLL22] Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size secret
keys and adaptive security. In Eike Kiltz and Vinod Vaikuntanathan, editors,
TCC 2022, Part I, volume 13747 of LNCS, pages 680–710. Springer, Heidelberg,
November 2022.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in
functional encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 443–468. Springer, Heidelberg,
October / November 2016.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private
information retrieval and fully homomorphic RAM computation from ring
LWE. In Barna Saha and Rocco A. Servedio, editors, 55th ACM STOC, pages
595–608. ACM Press, June 2023.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from
trilinear maps and block-wise local PRGs. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660.
Springer, Heidelberg, August 2017.

[Luo22] Ji Luo. Ad hoc broadcast, trace, and revoke. Cryptology ePrint Archive, Report
2022/925, 2022. https://eprint.iacr.org/2022/925.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework
for building applications of obfuscation from polynomial hardness. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 138–169. Springer, Heidelberg, November 2017.

83 / 89

https://eprint.iacr.org/2022/925

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press,
May 1990.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. https://eprint.iacr.org/2010/556.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE
Computer Society Press, October 2018.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

[Tak14] Katsuyuki Takashima. Expressive attribute-based encryption with constant-
size ciphertexts from the decisional linear assumption. In Michel Abdalla
and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 298–317.
Springer, Heidelberg, September 2014.

[YAHK14] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru
Kunihiro. A framework and compact constructions for non-monotonic
attribute-based encryption. In Hugo Krawczyk, editor, PKC 2014, volume 8383
of LNCS, pages 275–292. Springer, Heidelberg, March 2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[ZGT+16] Kai Zhang, Junqing Gong, Shaohua Tang, Jie Chen, Xiangxue Li, Haifeng
Qian, and Zhenfu Cao. Practical and efficient attribute-based encryption with
constant-size ciphertexts in outsourced verifiable computation. In Xiaofeng
Chen, XiaoFeng Wang, and Xinyi Huang, editors, ASIACCS 16, pages 269–279.
ACM Press, May / June 2016.

84 / 89

https://eprint.iacr.org/2010/556

A Generically Lifting DE-PIR Security

We present the standard definitions of DE-PIR security and show that schemes per
Definition 22 imply those satisfying the strongest security.

Definition 23 (DE-PIR indistinguishability). Let (Process,Query, Resp,Dec) be a (public-
or secret-key) DE-PIR scheme (Definition 22). Consider Exp𝛽DE-PIR(1

𝜆,A):

• Setup. Launch A(1𝜆) and receive from it 𝐷0, 𝐷1 ∈ {0, 1}∗ such that |𝐷0 | = |𝐷1 | = 𝑁.
Run

(𝑘, 𝐷) $← Process(1𝜆, 𝐷𝛽),

where 𝑘 is either pk or sk, and send pk (in case of PK-DE-PIR) and 𝐷 to A.

• Challenge. Repeat the following for arbitrarily many rounds determined by A. In
each round, A submits 𝑖𝑞,0, 𝑖𝑞,1 ∈ [𝑁]. Upon such a challenge, run

(ct𝑞,𝜎𝑞) $← Query(1𝜆, 𝑘, 𝑖𝑞,𝛽)

and send ct𝑞 to A.

• Guess. The adversary outputs a bit 𝛽′, which is the output of the experiment if
i) 𝐷0 [𝑖𝑞,0] = 𝐷1 [𝑖𝑞,1] for all 𝑞, and ii) 𝐷0 = 𝐷1. Otherwise, the output is set to 0.

The scheme satisfies adaptive indistinguishability if Exp0
DE-PIR ≈ Exp

1
DE-PIR. The following

modifications can be applied independently to obtain different levels of security:

• For very selective security, all the challenges must be chosen together with 𝐷0, 𝐷1
before the adversary gets (pk and) 𝐷.

• For output-hiding, the first condition in Guess is not required.

• For database-hiding (SK-DE-PIR only), the second condition in Guess is not required.

We remark that very selective indistinguishability per Definition 23 is the same as the
security notion in Definition 22.

Definition 24 (simulation security of DE-PIR). Let (Process,Query, Resp,Dec) be a PK-DE-
PIR scheme (Definition 22). A simulator is a stateless algorithm S, whose syntax varies by
the level of security being defined. Consider ExprealPK-DE-PIR(1𝜆,A) and Exp

sim
PK-DE-PIR(1𝜆,A):

• Setup. Launch A(1𝜆) and receive 𝐷 ∈ {0, 1}∗ from it. Run

(pk, 𝐷) $← Process(1𝜆, 𝐷)

and send (pk, 𝐷) to A.

• Challenge. The adversary A submits an index 𝑖 ∈ [|𝐷|]. Upon the challenge, run{
(ct,𝜎) $← Query(1𝜆, pk, 𝑖), in ExprealPK-DE-PIR;

ct $← S (1𝜆, 𝐷, pk, 𝐷, 𝐷[𝑖]), in ExpsimPK-DE-PIR;

and send ct to A.

85 / 89

• Guess. The adversary outputs a bit 𝛽′, which is the output of the experiment.

The scheme satisfies adaptive simulation security if ExprealPK-DE-PIR ≈ Exp
sim
PK-DE-PIR for some

efficient S.
Now let the scheme be an SK-DE-PIR (Definition 22) and let S be stateful. Consider

ExprealSK-DE-PIR(1𝜆,A) and Exp
sim
SK-DE-PIR(1𝜆,A):

• Setup. Launch A(1𝜆) and receive 𝐷 ∈ {0, 1}∗ from it. Run{
(sk, 𝐷) $← Process(1𝜆, 𝐷), in ExprealSK-DE-PIR;

𝐷
$← S (1𝜆, 𝐷), in ExpsimSK-DE-PIR;

and send 𝐷 to A.

• Challenge. Repeat the following for arbitrarily many rounds determined by A. In
each round, A submits an index 𝑖𝑞 ∈ [|𝐷|]. Upon such a challenge, run{

(ct𝑞,𝜎𝑞) $← Query(1𝜆, sk, 𝑖𝑞), in ExprealSK-DE-PIR;

ct𝑞
$← S (1𝜆, 𝐷[𝑖𝑞]), in ExpsimSK-DE-PIR;

and send ct𝑞 to A.

• Guess. The adversary outputs a bit 𝛽′, which is the output of the experiment.

The scheme satisfies adaptive simulation security if ExprealSK-DE-PIR ≈ Exp
sim
SK-DE-PIR for some

efficient S.33
For PK- and SK-DE-PIR, the following modifications can be applied independently to

obtain different levels of security:

• For very selective security, all the challenges must be chosen together with 𝐷 before
the adversary gets (pk and) 𝐷.

• For output-hiding, in Challenge, S does not get 𝐷[𝑖] or 𝐷[𝑖𝑞] as input.

• For database-hiding (SK-DE-PIR only), in Setup, S gets 1|𝐷| instead of 𝐷 as input.

The following four proofs or transformations can be applied in arbitrary order for both
PK- and SK-DE-PIR with minor tweaks. We exemplify them in the order of writing
for SK-DE-PIR, i.e., we start with an SK-DE-PIR per Definition 22, and lift it to obtain
first adaptive security, next output-hiding, then simulation security, and lastly database-
hiding.

From Selective to Adaptive. A very selectively secure scheme is also adaptively secure.
The reduction prepares itself for all possible queries.

Proof. Let A′ be an adaptive adversary and 𝑄 = poly(𝜆) an upper bound of the number
of its queries. Consider the following very selective adversary A:

33The simulator must run in total polynomial time for any polynomial-time adversary (it is not allowed
to violate the time limit by bumping up the state size through the iterations).

86 / 89

1. Launch A′ and receive 𝐷 ∈ {0, 1}∗ from it. Chooses the same 𝐷 together with 𝑄 |𝐷|2
challenges

𝑖𝑞,𝑖0,𝑖1,1 = 𝑖0, 𝑖𝑞,𝑖0,𝑖1,1 =

{
𝑖0, if 𝐷[𝑖0] ≠ 𝐷[𝑖1];
𝑖1, if 𝐷[𝑖0] = 𝐷[𝑖1];

∀𝑞 ∈ [𝑄], 𝑖0, 𝑖1 ∈ [|𝐷|].

2. Receive 𝐷 and {ct𝑞,𝑖0,𝑖1}𝑞∈[𝑄],𝑖0,𝑖1∈[|𝐷|]. Send 𝐷 to A′ and respond to its adaptive
challenges. For its 𝑞th challenge (𝑖𝑞,0, 𝑖𝑞,1), send ct𝑞,𝑖𝑞,0,𝑖𝑞,1 to A′.

3. Output whatever A′ outputs.

It is readily verified thatA is efficient, always makes admissible challenges, and perfectly
emulates A′ in Exp0

DE-PIR [resp. Exp
1
DE-PIR] when it is given the left [resp. right] distribution

in Definition 22. □

Obtaining Output-Hiding. This property can be obtained by concatenating the database
with its bitwise negation and randomly making the original or the negated query.

Proof Sketch. Let (Process′,Query′, Resp′,Dec′) be an SK-DE-PIR with adaptive indistin-
guishability. We construct the following SK-DE-PIR:

• Process(𝐷) sets 𝑁 = |𝐷|, runs

𝐷′ = 𝐷[1] ∥ · · · ∥𝐷[|𝐷|] ∥ (1 − 𝐷[1]) ∥ · · · ∥ (1 − 𝐷[|𝐷|]), (sk′, 𝐷′) $← Process′(𝐷′),

and outputs sk = (sk′, 𝑁) and 𝐷 = 𝐷′.

• Query(sk, 𝑖) samples 𝛽′ $← {0, 1}, runs

(ct′,𝜎′) $← Query(sk,𝛽′𝑁 + 𝑖),

and outputs ct = ct′ and 𝜎 = (𝛽′,𝜎′).

• Resp𝐷(ct) runs and outputs (Resp′)𝐷′ (ct′).

• Dec(𝜎, 𝜌) runs and outputs
(
𝛽′ ⊕ Dec′(𝜎′, 𝜌)

)
.

The proof of adaptive indistinguishability with output-hiding is standard. □

From Indistinguishability to Simulation. A scheme with indistinguishability security is
automatically simulation-secure. The simulator works by issuing dummy queries.

Proof Sketch. Let (Process,Query, Resp,Dec) be an SK-DE-PIR with adaptive indistinguisha-
bility and output-hiding. Consider the following simulator S:

• In Setup, S (𝐷) runs

(sk, 𝐷) $← Process(𝐷),

keeps sk in its state, and outputs 𝐷 as the simulated processed database.

• In Challenge, S simulates a query by running

(ct,𝜎) $← Query(sk, 1)

and outputting ct.

It is readily verified that S is efficient and makes ExprealSK-DE-PIR ≈ Exp
sim
SK-DE-PIR. □

87 / 89

Obtaining Database-Hiding. This property can be obtained by encrypting the database.

Proof Sketch. Let (Process′,Query′, Resp′,Dec′) be an SK-DE-PIR with adaptive simulation
security and output-hiding. We construct the following SK-DE-PIR using a pseudorandom
function PRF (suppose its output length is 1 and ℕ is appropriately encoded into its
domain):

• Process(𝐷) samples a PRF key 𝑘PRF, runs

𝐷′←
(
𝐷[1] ⊕ PRF(𝑘PRF, 1)

)
∥ · · · ∥

(
𝐷[|𝐷|] ⊕ PRF(𝑘PRF, |𝐷|)

)
, (sk′, 𝐷′) $← Process′(𝐷′),

and outputs sk = (𝑘PRF, sk′) and 𝐷 = 𝐷′.

• Query(sk, 𝑖) runs

(ct′,𝜎′) $← Query′(sk′, 𝑖), 𝛽′← PRF(𝑘PRF, 𝑖),

and outputs ct = ct′ and 𝜎 = (𝛽′,𝜎′).

• Resp𝐷(ct) runs and outputs (Resp′)𝐷′ (ct′).

• Dec(𝜎, 𝜌) runs and outputs
(
𝛽′ ⊕ Dec(𝜎′, 𝜌)

)
.

Let S′ be the old simulator, the new simulator S works as follows:

• In Setup, S (1𝑁) samples 𝐷 $← {0, 1}𝑁 and delegates its work to S′(𝐷).

• In Challenge, S delegates its work to S′.

The proof of adaptive simulation security with output- and database-hiding is standard.
□

B Efficiency, Security, and poly(𝝀) Factors

We explain the complication about the efficiency parameters. The theme of this work
is to obtain highly efficient schemes from any polynomially efficient scheme. It is
expected that the concrete efficiency of the resultant scheme depends on that of the
underlying scheme we start with, which could inherit a polynomial factor out of our
control. Therefore, it is not useful to differentiate between poly(𝜆) factors, except when
it can be made concrete and independent of the building blocks (e.g., the rate being 2
in this work).

For a computationally secure primitive, suppose some input is of length 𝑁, then
we can always assume 𝑁 ≤ 2𝜆. In practice, this assumption has been implicit for hash
functions — SHA-256 only accepts input of up to (264 − 1) bits, not fitting the usual
theoretical formulation {0, 1}∗ → {0, 1}𝜆. Of course, such limit does not jeopardize the
usefulness of the primitive. This can be formalized by “truncating” the scheme. A
primitive often has a correct yet insecure (trivial) implementation. Suppose a scheme
accepts input of up to 2𝜆 bits, then it can be made to work with arbitrarily long input
by using the trivial implementation when the input exceeds 2𝜆 bits. It does not affect
computational security (asymptotic or concrete), because the security definition does
not consider the case when the input is 2𝜆-bit long.

88 / 89

For this reason, any poly(log𝑁) factor can be “absorbed” into poly(𝜆) factors
(and ignored). The trick to notice is that when only considering polynomial security,
truncation can happen at any super-polynomial length, potentially much smaller
than 2𝜆. For example, to hide 2

√
log𝑁 of [LMW23] inside poly(𝜆), it suffices to truncate34

the scheme at 𝑁 = 2log2 𝜆. In summary, efficiency parameters are only meaningful at
specific levels of security.

However, truncation below exponential means that the scheme is never exponentially
secure, a property desired (and even arguably required) in practice. For example, the
aforementioned truncated scheme is not secure whenever 𝑁 ≥ 2log2 𝜆. In contrast, the
constructions in this work are exponentially secure if we start with exponentially secure
ingredients. We should always aim for constructions that have polynomial security
from polynomial hardness and exponential security from exponential hardness. Using
truncation for apparent efficiency at the cost of security is “gaming” and “messing with
the security parameter”. It should be avoided whenever possible.

Combining the two perspectives of the discussion, the schemes of [LMW23] does, but
not satisfactorily, achieve the ideal efficiency for DE-PIR, and we regard the question of
optimal DE-PIR open. (We shall clarify that [LMW23] never claims the better apparent
efficiency via truncation. This discussion is our own.)

34For DE-PIR, this means whenever |𝐷| ≥ 2log2 𝜆, the scheme works by not preprocessing 𝐷 at all and
sending the query index in the clear to the server.

89 / 89

	Introduction
	Our Results
	What’s Next?
	Technical Overview
	Related Works

	Preliminaries
	Multi-Tape Random-Access Machine
	Laconic Garbled RAM
	Partially Hiding Functional Encryption and FE for Circuits
	Universal RAM and PHFE for RAM
	Indistinguishability Obfuscation
	Laconic Oblivious Transfer
	Garbled Circuits
	Puncturable Pseudorandom Function
	Secret-Key Encryption
	Oblivious RAM
	Primitives Related to Lower Bounds

	Efficiency Trade-Offs of PHFE for RAM
	Contention Between Storage Overhead and Decryption Time
	Barrier to Fast Decryption

	Bounded LGRAM with Fixed-Memory Security
	Construction
	Security

	Transformations of LGRAM
	Fixed-Memory to Fixed-Address
	Fixed-Address to Full Security
	Bounded to Unbounded

	PHFE for RAM
	Bounded Private Input
	Full-Fledged PHFE for RAM

	Applications
	Rate-1 PHFE for RAM
	ABE for RAM
	Constant-Overhead iO for RAM

	References
	Generically Lifting DE-PIR Security
	Efficiency, Security, and poly(λ) Factors

