Towards perfect CRYSTALS in Helium

Hanno Becker and Fabien Klein

Arm Limited,

hanno.becker@arm.com,
fabien.klein@arm.com

Abstract. In this work, we present a tool for the automated super optimization of Armv8.1-M Helium assembly on Cortex-M55. It consists of two parts: Firstly, a generic framework SLOTHY – Super (Lazy) Optimization of Tricky Handwritten assembly – for expressing the super optimization of small pieces of assembly as a constraint satisfaction problem which can be handed to an external solver – concretely, we pick CP-SAT from Google OR-Tools. Secondly, an instantiation HeLight\textsubscript{55} of SLOTHY with the Armv8.1-M architecture and aspects of the Cortex-M55 microarchitecture.

We demonstrate the power of SLOTHY and HeLight\textsubscript{55} by using it to optimize two workloads: First, a radix-4 complex Fast Fourier Transform (FFT) in fixed-point arithmetic, fundamental in Digital Signal Processing. Second, the instances of the Number Theoretic Transform (NTT) underlying CRYSTALS-Kyber and CRYSTALS-Dilithium \cite{SAB22, LDK22}, two recently announced winners of the NIST Post-Quantum Cryptography standardization project \cite{NIST16}.

Keywords: Superoptimization · Software Pipelining · Constraint Solving · Phase ordering problem · Arm · MVE · Helium · Post-Quantum Cryptography · Fast Fourier Transform · FFT · Number Theoretic Transform · NTT

1 Introduction

The Armv8.1-M architecture \cite{Armb} introduced the M-Profile Vector Extension (MVE), or Arm® Helium™ technology, which brings the performance promise of vector extensions to embedded microcontrollers, while taking into account their tight power/area profile. The way Helium solves this conundrum is by putting emphasis on the efficient usage of execution resources: Notably, MVE instructions may run for multiple cycles, but they may overlap if they operate on different execution resources. Similarly, Helium’s vector register file is smaller than that of (say) the Neon vector extension, but it offers scalar-vector instructions which use vector and general purpose register files at the same time. To leverage those capabilities, good Helium code must be carefully scheduled to mix different classes of instructions – such as vector load/store vs. vector arithmetic – and manage the register files very efficiently.

Autovectorization with standard C/C++, or C intrinsics for Helium, provide a means to offload the complexities of instruction ordering and register allocation to the compiler, but they naturally constitute a tradeoff between convenience and performance, as the heuristics and time budgets of compilers aren’t sufficient to always find optimal solutions within the huge search spaces for scheduling and register allocation problems.

In this work, we demonstrate the use of constraint programming for the practical superoptimization of medium-sized kernels (≈50 instructions) of Helium assembly, tailored for the Arm® Cortex®-M55 CPU. Specifically, we express the simultaneous optimization of (a) register allocation, (b) instruction scheduling, and (c) software pipelining (in the case of loops) as a mixed integer/boolean constraint satisfaction problem which can be
Towards perfect CRYSTALS in Helium

passed to an external solver – here, we use CP-SAT from Google OR-Tools [PF] (version v9.3). While our initial focus is on Helium and Cortex-M55, we decouple specifics of the architecture and microarchitecture from the general constraint modelling, and expect our approach and software to be useful for other (micro)architectures as well. We call the general approach SLOTHY – Super (Lazy) Optimization of Tricky Handwritten assembly; its extension for Helium and Cortex-M55 is called HeLight55.

Contributions. Our contributions are threefold:

1. We describe and implement a (micro)architecture-agnostic superoptimizer SLOTHY for the tasks of register allocation, instruction ordering and software pipelining based on constraint solving.

2. We instantiate SLOTHY with the Armv8.1-M architecture and software optimization aspects of the Cortex-M55r1 microarchitecture, resulting in the HeLight55 superoptimizer for Helium assembly on Cortex-M55.

3. We demonstrate the practicality of HeLight55 by superoptimizing a radix-4 complex Fast Fourier Transform (FFT) in fixed-point arithmetic, as well as two instances of the Number Theoretic Transform (NTT) underlying the post-quantum cryptography key encapsulation and signature schemes CRYSTALS-Kyber and CRYSTALS-Dilithium.

Future work. There are (at least) two avenues of future work:

First, while we demonstrate the power and use of SLOTHY + HeLight55 in complex real world examples, limitations remain, such as the modelling of superscalar microarchitectures (like the Cortex-M85 CPU) and the automated and optimal introduction of stack spills in case the register file is not large enough for the kernel under consideration. Nonetheless, we hope that our work will stimulate interest and further use and extension of SLOTHY + HeLight55 to address those limitations, as well as extending it to other (micro)architectures.

Second, we encourage research in the application of SLOTHY + HeLight55 for further workloads. In the context of post-quantum cryptography, for example, we do deliberately not build complete implementations of Kyber and Dilithium. We believe that doing so, under consideration the numerous implementation techniques available (such as [AHKS22], base multiplication strategies, CT vs. GS butterflies, ...), would make for an attractive piece of research, while it exceeds the scope of this paper.

Structure. In Section 2, we briefly discuss some preliminaries on Armv8.1-M+Helium, Google OR-Tools, software pipelining and super optimization. In Section 3, we describe how we express simultaneous optimization of register allocation, instruction scheduling and software pipelining as a mixed Boolean/integer constraint satisfaction problem. Section 4 then discusses how we extend SLOTHY to HeLight55 by pairing it with (micro)architectural information on Armv8.1-M+Helium and Cortex-M55, and touch on the interfaces it provides to the user. Finally, in Section 5 and Section 6 we work through the examples of the Fast Fourier Transform and Number Theoretic Transform. We conclude with Section 7 containing some reflections and outlook.

Software. SLOTHY and HeLight55 are freely available under MIT license on https://gitlab.com/arm-research/security/pqmx/.

Related work. There is a rich literature on superoptimization in general and the potential to use Integer Linear Programming (ILP) for it in particular [Mas87, SSA13, KL99, WGB94, GW96, KW98, Rau94, Lam88a, Lam88b]. Yet, to the best of our knowledge, our approach to using constraint solving for simultaneously addressing instruction scheduling, register
allocation, and software pipelining, is new. For software pipelining, prior art seems to focus on achieving high loop initiation rates for small loops on superscalar microarchitectures, while our initial goal is to optimize complex loops on the (largely) single-issue Cortex-M55 microarchitecture by interleaving at most 3 iterations at a time.

2 Preliminaries

2.1 Phase ordering problem

During compilation, two important code generation phases are instruction scheduling and register allocation. Instruction scheduling assigns a linear order to the instructions in a computational flow graph. Register allocation assigns architectural register names to logical instruction arguments. Instruction scheduling and register allocation influence each other, as the choice of scheduling restricts the set of valid register allocations, and vice versa: An instruction must not overwrite a register (an aspect of register allocation) if that instruction is placed in between a producer and consumer of said register (an aspect of scheduling). The relation and ordering between instruction scheduling and register allocation is an extensively studied problem called the phase ordering problem.

2.2 Software pipelining

Software pipelining [Lam88a, RG81] is a software optimization technique whereby multiple iterations of a loop are interleaved to create instruction level parallelism and thereby facilitate execution on the underlying microarchitecture. While originally devised for Very Long Instruction Word (VLIW) processors, it is a well-known optimization technique also for classical microarchitectures: When the execution of one loop iteration cannot progress due to latency constraints or lack of availability of functional units, instructions from the next iteration(s) may be pulled forward to fill the gaps. This is conceptually similar to how out-of-order microarchitectures reorder instructions during execution, but explicit software pipelining may still be beneficial even for such microarchitectures.

Software pipelining puts pressure on the register file since iterations may only be interleaved once there is no collision in their use of registers. In an out-of-order microarchitecture, this is what register renaming would do, benefitting from a physical register file that’s typically considerably larger than the logical/architectural register file. Software pipelining, however, has to perform manual register renaming within the architectural register file, which can be challenging. A popular approach is iterative modulo scheduling [Rau94].

2.3 Superoptimization

The term superoptimization was introduced in [Mas87] as finding “the shortest program that computes the same function as the source program by doing an exhaustive search over all possible programs”. Here, we use the term more broadly for approaches to software optimization that find optimal solutions rather than approximations. Superoptimization can be studied from multiple angles, such as its position within the overall software development and compilation flow, the scope of superoptimization, and techniques for its (efficient) implementation – we briefly comment on them and explain where our approach resides.

First, in terms of positioning, the original [Mas87] studies superoptimization at the level of assembly. In contrast, the more recent [SCC17] discusses superoptimization at the level of the LLVM intermediate representation (IR), making it more broadly applicable. Our superoptimizer operates at the level of assembly.

Second, in terms of techniques, numerous approaches have been explored, such as brute force enumeration [Mas87], stochastic search [SSA13], and integer linear programming.
Towards perfect CRYSTALS in Helium (ILP) [KL99, WGB94, GW96]. Our approach falls into the last category, applying mixed Boolean/integer constraint programming to express and solve the problem of finding optimal code.

Third, we comment on the scope of superoptimization. Following [Emb15, Section 11], one can broadly distinguish two separate optimization phases: First, the search for optimal (e.g., short) sequences of assembly expressing a given, typically loop-free, piece of functionality—this requires awareness of instruction semantics. Second, once instructions have been fixed, the search for an optimal scheduling and register allocation strategy—in contrast to the first approach, this only requires knowledge of the architectural signature of instructions, as well as microarchitectural information like the available functional units, latencies and throughputs. Here, we focus on the second approach: Finding optimal solutions for (simultaneous) instruction scheduling and register allocation. Further, we also include software pipelining into the scope of our superoptimizer.

2.4 Google OR-Tools

Google OR-Tools [PF] is a software for combinatorial optimization, tailored at solving problems such as vehicle routing, flows, integer and linear programming, and constraint programming. We find that Google OR-Tools’s CP-SAT is very well suited to our assembly superoptimization problem, in two ways: First, it’s fast. Second, CP-SAT’s API allows for the specification of a mix of Boolean, integer, and interval variables, and moreover offers convenient constraints such as non-overlapping for intervals, or mutual difference for a set of integer variables. However, we expect our modelling approach to apply to other constraint solvers as well, and encourage further research and comparison.

2.5 M-Profile Vector Extension/ Helium

The M-Profile Vector Extension (MVE) is a Single Instruction Multiple Data (SIMD) extension that was introduced as part of the Armv8.1-M architecture [Armb]. Its primary goal is to enable higher performance for signal processing and machine learning applications. So far, MVE has been implemented in the Cortex-M55 CPU as well as the recently announced Cortex-M85 CPU.

MVE is also referred to as Arm® Helium™ technology, in alignment with the Arm® Neon™ Technology architecture extension for A-profile processors [Arma, Section C.3.5], or Neon for short. However, despite the similarity in name, Helium is a new ground-up architecture designed specifically for the tight area/power constraints of the embedded market. We refer to [BBMK+21, Armc, Armd, Arme] for introductions to Armv8.1-M+Helium and to the reference manual [Armb] for the details.

What is most important about Helium for the sake of this work is how it carefully introduces software constraints to lower hardware complexity and thereby retain suitability

for embedded microcontrollers: Most notably, instruction overlapping and the compact vector register file of \(8 \times 128\)-bit vector registers.

First, instruction overlapping allows to achieve up to \(2 \times\) performance with the same execution resources compared to non-overlapping, single-issued execution. However, it requires instructions to be scheduled in such a way that they run on different functional units and are therefore amenable to overlapping. Figure 1 provides an illustration, assuming an implementation of Helium where each vector instruction takes two cycles (“dual beat implementation”) and where there are separate functional units for vector load/store (LSU), addition/logical operations (INT), and multiply operations (MUL) – the Cortex-M55 is an example for this. We can see how the first instructions overlap, leading to high resource utilization, but how the consecutive pair of VADD instructions stalls the pipeline. Typically, there is significant flexibility in instruction scheduling, so that good interleaving of different instruction types is possible. For example, Listing 1 shows two versions of the same piece of (meaningless) Helium assembly, one poorly scheduled, making little use of instruction overlapping, and another with a good mix of instructions, facilitating overlapping.

Second, the compact vector register file of reduces the cost of CPUs implementing Helium, but requires developers or compilers to manage register usage very carefully, and balance it with the general purpose register file through the use of scalar-vector instructions.

The primary goal of this work is to demonstrate how to automate the process of solving the software constraints posed by Helium through constraint solving.

3 SLOTHY: Super optimization via constraint solving

In this section, we describe how we express assembly optimization via constraint solving. We distinguish constraints for functional correctness (Section 3.2, Section 3.3), software pipelining (Section 3.4), and microarchitectural performance (Section 3.5, Section 3.6). Section 3.8 and Section 3.9 describe how we approach the modelling and minimization of stalls and other objectives. Finally, Section 3.7 discusses modelling memory and stack, and Section 3.10 comments on the soundness of our approach.

3.1 Scope of optimization

SLOTHY optimizes three properties: Instruction scheduling, register allocation and software pipelining. That is, given a piece of code, SLOTHY considers reordering of instructions
Towards perfect CRYSTALS in Helium

and change of the use of registers in search for some functionally equivalent but optimally performing variant of the code. Importantly, instruction scheduling and register allocation are considered simultaneously, avoiding the phase ordering problem (Section 2.1). In case of a loop, SLOTHY also simultaneously searches for suitable interleavings of iterations. Another way of saying this is that SLOTHY retains the (isomorphism class of the) source’s computational flow graph. Figure 2 shows the computational flow graph underlying both the naïve and optimized code in Listing 1.

Figure 2: The shared computational flow graph for the naïve and optimized versions of Listing 1. The numbers indicate the program order used by both examples.

Multiple aspects of optimization are currently out of scope for SLOTHY. Firstly, SLOTHY does not change instructions except for register renaming. In fact, SLOTHY has no knowledge of the semantics of instructions beyond their signatures, that is, the number and types of inputs, outputs, and input/outputs. It thus remains the responsibility of the user to find suitable ways to express the target computation in terms of the underlying instruction set architecture (ISA). Secondly, SLOTHY has no notion of memory, and is therefore not able to introduce stack spills in situations where the register files are not large enough to hold all temporaries used by a computation. It is the responsibility of the user to introduce stack spills in this case and re-run SLOTHY. See Section 3.7.

3.2 Correctness/Architecture constraints: Instruction scheduling

Every instruction \(I\) of the input source is assigned an integer variable \(I.pos\) defining where the instruction is placed in the output code. To get a unique program order in the output, we require \(\{I.pos\}\) to be mutually distinct. Further, to maintain functional correctness, consumers must come after producers: If instruction \(J\) consumes output \(O\) produced by instruction \(I\) – that is, we have an edge \(I \rightarrow O \rightarrow J\) in the computational flow graph – then \(I.pos < J.pos\).

3.3 Correctness/Architecture constraints: Register Allocation

For every instruction \(I\), every output \(O\) produced by \(I\), and every possible register \(R\) that \(I\) can use for \(O\), we assign a Boolean variable \(alloc(I,O,R)\) indicating whether the instruction \(I\) uses register \(R\) for the output \(O\). In analogy with the operation of out-of-order microarchitectures, we call this process register renaming. Simultaneous input/output arguments are not subject to register renaming. Note that the input source’s choice of registers is irrelevant here – it is only used initially to construct the computational flow graph from the source.

Multiple constraints need to be satisfied: First, for the uniqueness of register renaming, we require that for fixed \(I, O\), exactly one Boolean variable in the family \(\{alloc(I, O, R)\}\)
is set. Second, for functional correctness, we need to express that in between a register being produced and consumed, no other instruction uses the register for register renaming. We model this as a disjointness constraint as follows: First, for any instruction I and any output O, we add a interval $[I \rightarrow O]$ starting at I.pos, and bound its endpoint below by J.pos for any $I \rightarrow J$, as well as by I.pos + 1 (in case O has no consumers). For any choice of output register R, we then add a copy $[I \rightarrow O]_R$ of $[I \rightarrow O]$ as a conditional interval constrained by alloc(I,O,R). Functional correctness then requires that for any R, the set of conditional intervals $\{[I \rightarrow O]_{I:O}\}$ is non-overlapping. For simultaneous input/output variables – for which we cannot rename – $[I \rightarrow O]_{R}$ is instead conditioned on alloc(K,U,R), where K,U is the transitively computed source of O, with U being an output (not merely an input/output). For example, if I is an MLA in a MUL; MLA; ...; MLA chain and O is the accumulator, we’d always go back to the initial MUL which made the choice for which register to use for the accumulator.

We note that our modelling of register usage is an instance of the flexible job shop problem, with jobs being instructions and “machines” being registers.

Restricted instructions. Sometimes there are restrictions on the registers that an instruction can use. Often, such restrictions apply to individual register arguments (such as requiring an even or odd register), but there are also more complex examples: For example, the output of the VCMUL complex multiplication instruction in Armv8.1-M must not coincide with any of the two inputs. Another example is the de-interleaving load VLD4x in Helium, whose four (!) vector arguments are constrained to the set $\{Q(i),Q(i+1),Q(i+2),Q(i+3)\}$ for $i = 0,1,2,3,4$. For restrictions on output arguments, restrictions applying to arguments individually are straightforwardly added to the register renaming model by accordingly restricting the Boolean variables alloc(I,O,R). To model a simultaneous restriction for multiple register outputs, such as for VLD4x/VST4x, we introduce Booleans for the various choices, constrain that precisely one is set, and then add implications to the respective alloc(I,O,R) variables.

Jointly destructive instruction patterns. Armv8.1-M+Helium has common instruction patterns where each instruction individually overwrites only part of the destination register, but where the sequence as a whole overwrites the entire destination register. Examples are blocks of VLD4x, or pairs of VQDMLSDH+VQDMLADHX with the same arguments. In this case, the destination register is by default modelled as an input/output argument, which leads to unnecessary dependencies which in turn reduce reordering flexibility. To address this, SLOTHY allows architecture specifications to modify instructions within the context of an entire computational flow graph. For HelLight55, we leverage this to detect and mark the destination register in aforementioned patterns as a pure output for the first instruction of the sequence, thereby allowing to reorder it past previous instructions which write to the same register.

3.4 Loop interleaving aka Software pipelining

The most powerful feature of SLOTHY is the ability to perform software pipelining, that is, to interleave multiple iterations of a loop: Some early instructions in an iteration, such as initial loads, are moved into the previous iteration, while some late instructions, such as final stores, are deferred to the next iteration. To avoid having to unroll the entire loop, periodicity of code has to be maintained. We model software pipelining as follows: To begin, for each instruction I, we add three boolean variables I.pre/I.late and I.core, indicating whether I will be an early/late instruction for the previous/next iteration, or whether it stays in its original iteration. Precisely one of $\{I$.pre,I.core,I.late\} must
Towards perfect CRYSTALS in Helium

be set. For periodicity, we first double the loop body C, say as C_1 and C_2; for an instruction I, we denote I_1 and I_2 its copies in C_1 and C_2, respectively. Note that this duplication is internal only and does, by default, not enforce an unrolling of the loop in the final code. We then relate I_1 and I_2 as follows: First, the choices of $I.pre, I.core, I.late$ and of register allocations must be the same for C_1 and C_2: $I_1.(pre, core, late) \equiv I_2.(pre, core, late)$ and $\text{alloc}(i_1, O, R) \equiv \text{alloc}(i_2, O, R)$ for all $I \in C$. Second, “core” instructions are placed exactly n instructions apart, where n is the length of C: $I.core \Rightarrow I_2.pos = I_1.pos + n$. Third, and perhaps somewhat non-canonically, we force early instructions in C_1 to be “seen” as early instructions for the next iteration C_3, and late instructions in C_2 to be “seen” as late instructions for the previous iteration C_0, by requiring $I.pre \lor I.late \Rightarrow I_2.pos = I_1.pos - n$ (note the sign!) and by “cutting” the constraints derived from $I_1 \Rightarrow J_1$ if $I.pre \land J.core$, and from $I_2 \Rightarrow J_2$ if $I.core \land J.late$. Finally, we require that $(I \Rightarrow J) \land I.pre \Rightarrow \neg J.late$ – otherwise, cross-iteration dependencies could be entirely and incorrectly cut by never setting $I.core$ (a previous version of SLOTHY got this wrong and had astonishing optimization abilities). See Figure 3 for an illustration. Note in particular how the constraints that we “cut” are retained through symmetry.

![Figure 3: Illustration of how SLOTHY models software pipelining.](image)

We do not model instructions realizing the looping itself, such as counter decrement, compare + jump: First, where present, we don’t expect those to have a meaningful impact on the optimization. Second, on Armv8.1-M+Helium in particular, inner iterations in low overhead loops do indeed execute as if the loop has been unrolled, including the potential for instruction overlapping. By modelling the last and first instructions of two successive iterations as adjacent, HeLight55 correctly takes into account the overlapping for those instructions.

3.5 Performance/µArch constraints: Latencies

To model performance of code on in-order microarchitectures, such as Cortex-M55 currently targetted by HeLight55, we constrain the scheduling of instructions according to their latencies: If $I \Rightarrow J$, we demand $J.pos \geq I.pos + \text{latency}(I \Rightarrow J)$, superseding the
previously introduced functional correctness constraint \(J.\text{pos} \geq I.\text{pos} \). We note that while \(\text{latency}(\vec{I} \rightarrow J) \) often depends on \(I \) only, dedicated forwarding paths provide examples where \(\text{latency}(\vec{I} \rightarrow J) \) may be smaller than the “generic” latency of \(I \): In Cortex-M55, for example, while vector multiplication instructions typically have a latency of 2 cycles, sequences \(\text{VMULx}; \text{VSTRx} \) run stall-free.

The above approach to modelling latencies hinges on the program ordering \(I.\text{pos} \) being the same as the execution time unit of \(I \). For microarchitectures which support multi-issuing for the code under consideration, further thought is required how to relate \(I.\text{pos} \) to a notion of execution time which can then be used to express latency constraints.

3.6 Performance/\(\mu \)Arch constraints: Instruction overlapping

Finally, we model instruction overlapping by assigning to each instruction \(I \) a functional unit \(\text{Unit}(I) \) (depending on the target microarchitecture) and a usage time \(\text{block}(I) \). We then demand that for any fixed functional unit \(U \), the set of (conditional) intervals \(\{[I.\text{pos}, I.\text{pos} + \text{block}(I)] \mid \text{Unit}(I) = U\} \) is non-overlapping. This, again, is an instance of the flexible job shop problem.

3.7 Memory, register pressure and stack spills

\textsc{Slothy} does not have a notion of memory: Store instructions are instructions without output, while load instructions are instructions without input. As a consequence, \textsc{Slothy} is not sound for the optimization of code relying on memory as a temporary storage, as it does not correctly track data dependencies through memory. A prime example for this are stack spills. To still accommodate the optimization of code which relies on stack spills, the following trick can be used: Stack locations are modelled as a separate “register type” which are written to / read from via virtual instructions that have the same properties as loads/stores (e.g. in terms of latencies and functional units used). With this simple trick, which fits into the existing framework of \textsc{Slothy}, data dependencies can be tracked across stack spills, without having to model linear memory.

3.8 Modelling stalls

We consider two approaches for modelling and minimizing stalls. First, “externally”: We pad the input code with a number of \texttt{nop} instructions and then search for a perfect variant of the padded code. If such does not exist, we increase the \texttt{nop}-count and try again. Via binary search, we quickly find the minimum number of \texttt{nop}s required. Alternatively, we model stalls internally as a flexible integer variable which defines the amount of “slack” allowed in the reordering of instructions: That is, rather than requiring that the reordering be a permutation of \(\{0,1,\ldots,\text{codesize}\} \), we define it as map \(\{0,1,\ldots,\text{codesize}\} \mapsto \{0,1,\ldots,\text{codesize} + \text{pad}\} \). We then ask the solver to minimize \text{pad}.

Our experiments suggest that modelling stalls “externally” is faster. Moreover, it allows us to set other optimization objectives, as we discuss next.

3.9 Other objectives

Beyond the minimization of stalls, the following are useful objectives: If software pipelining is enabled, it is natural to maximize \(\sum_i I.\text{core} \) — that is, to minimize the amount of interleaving between successive iterations. Second, register usage can be minimized. This is particularly interesting if the code in question does not fit into the register file, and “virtual registers” are used to approximate the amount of stack spilling needed.
Towards perfect CRYSTALS in Helium

Listing 2: Example for the usage of command line tool helight-cli to optimize the snippet from Listing 1 (left hand side), with and without software pipelining.

3.10 Soundness

There are two forms of soundness for SLOTHY: Functional soundness and performance soundness. Functional soundness means that SLOTHY emits code that is functionally equivalent to the original code. Luckily, this is easy to check: Since we do not change instructions but only their order and use of registers, functional soundness amounts to the produced code permutation yielding an isomorphism of computational flow graphs — which is easily checked.

Performance soundness is more subtle: We do not expect SLOTHY to be used with fully exact microarchitectural models. Instead, one models some key software optimization aspects of the target (micro)architecture in SLOTHY, such as instruction latencies or throughput, optimizes code according to those. However, unmodelled microarchitectural aspects may still lead to stalls in code which the (micro)architectural model underlying SLOTHY considers “stall-free”. It is thus important to validate the performance of code produced via SLOTHY.

4 HeLight55: Assembly optimization for Cortex-M55

4.1 HeLight55 = SLOTHY + (micro)architecture

HeLight55 combines our optimization framework SLOTHY with architectural information about Armv8.1-M+Helium and microarchitectural aspects of Cortex-M55r1 relevant for software optimization: Specifically, we model instruction latencies, throughputs, the availability of separate functional units for load/store, integer/logical and multiply/floating point operations, as well as other exceptional conditions such as ST-LD hazards which we further discuss below.

4.2 Interface

SLOTHY and HeLight55 are implemented in Python, building on the existing Python interface to Google OR-Tools. They can be used from within Python or through a small
helight = Helight()
helight.load_source_from_file("examples/ntt_dilithium.s")

Tell HeLight about the types of symbolic register names for which
there is no unambiguous architectural typing.
For example, in 'vmul a, b, c', c could be either a GPR or a vector.
typing_hints_l12 = { r : RegisterType.GPR for r in
["root0", "root1", "root2", "root0_twisted", "root1_twisted", "root2_twisted"] }

Optimize a specific loop in the source. This replaces the respective loop
by its optimized version, padded with optimized preamble and postamble.
helight.optimize_loop("layer12_loop", typing_hints=typing_hints_l12)

helight.print_code()

helight.write_source_to_file("examples/opt/ntt_dilithium.s")

Listing 3: Example for the usage of HeLight55 in Python.

HeLight55 via the command line. For quick experimental optimization of small assembly
snippets, helight-cli can be used. Listing 2 shows an example usage of helight-cli
for the optimization of the naïve snippet from the left hand side of Listing 1, with and
without software pipelining. Without software pipelining, we can see that a stall is
unavoidable due to the initial VLDR bottleneck. With software pipelining, those loads
can be pulled into the previous iteration, enabling a stall-free variant (for Cortex-M55). The
tool minimizes the interleaving, so there is no stall-free implementation with less than 5
early instructions. We also note how the address offsets have been adjusted as early VLDRs
are reordered before VSTR with post-increment.

HeLight55 via Python. HeLight55 can also be used from Python. For example, Listing 3
shows a script to optimize the layer12 loop from Listing 7 (further discussed below).
For more information, we refer to the source code.

5 Example: Fast Fourier Transform

5.1 Introduction

The Fourier Transform is a transformation for the decomposition of signals into frequency
components. It has numerous incarnations – such as Fourier series or the Number Theoretic
Transform (NTT) discussed in Section 6 – and a vast range of applications. Simply put, the
importance of the Fourier Transform cannot be overstated. Here, we are interested in the
Fourier Transform over the complex numbers, which can be viewed as \(\mathbb{C}^n \rightarrow \mathbb{C}^n, (x_i) \mapsto \left(\sum_j x_i \zeta_n^j \right) \) where \(\zeta_n = \exp(2\pi i/n) \) is the standard primitive \(n \)-th root of unity (algebraically,
this is the same as the splitting \((ev_{\zeta_n^i}) : \mathbb{C}[X]/(X^n - 1) \rightarrow \prod_i \mathbb{C}[X]/(X - \zeta_n^i)) \).

The Fast Fourier Transform (FFT) is a method for the fast computation of the Fourier
Transform. While the above description of the Fourier Transform suggests quadratic
complexity, the FFT splits the computation into a logarithmic number of layers of linear
complexity each, giving an overall complexity of \(O(n \log n) \). Each FFT layer operates on
strided blocks of \(r \) data units via so-called butterflies, and \(r \) is called the radix of the FFT.
Common choices are radix-2 and radix-4. Efficient implementations of the FFT are an
essential component of any Digital Signal Processing (DSP) library, and they come in
multiple flavours depending on how complex numbers are represented, commonly floating
point or fixed point arithmetic.

In this section, we look at the optimization of a single radix-4 layer of a fixed-point
FFT in Armv8.1-M+Helium: In Section 5.2, we show an implementation in C intrinsics
for Helium and look at the resulting assembly when compiled with Arm Compiler 6.18. In Section 5.3, we then use HeLight55 to optimize an assembly version of the same code, and compare the results.

5.2 Radix-4 fixed-point FFT in intrinsics and handwritten assembly

Listing 4 (left) shows one layer of a radix-4 fixed-point FFT written in C Helium intrinsics taken from the CMSIS DSP repository. The right hand side shows the same code naïvely translated into pseudo-assembly, using symbolic register names; we will use the latter as input to HeLight55 below.

Listing 5 (left) shows the disassembly of the result of compiling Listing 4 (left) using Arm Compiler 6.18. A // - annotation indicates a structural hazard, while // ? indicates the risk of a ST-LD-hazard resulting from a VSTR; xxx; VLDR sequence – whether such a sequence actually leads to a stall depends on data alignment. Overall, we achieve good instruction overlapping, but (unsurprisingly) there is potential for improvement left.

Next, Listing 5 (right) shows handwritten assembly from the github.com/ARM-Software/EndpointAI repository. We observe only one certain structural hazard on Cortex-M55, and three alignment dependent ST-LD hazards.

5.3 HeLight55-optimized assembly implementation

In Listing 6 we show the result of optimizing the pseudocode from Listing 4 (right) through HeLight55. The comments indicate where instructions were originally placed, and if they are early instructions for the next iteration. We see that in each iteration, seven instructions are being pulled into the previous iteration, enabling a stall-free optimized loop body – which we confirm by running the code on real hardware. Further, HeLight55 has extracted and separately optimized the loop preamble and postamble. Little reordering was necessary.
for postamble, which is expected since the original postamble is a subset of the perfectly optimized loop body.

6 Example: Number Theoretic Transform

6.1 Introduction

The Number Theoretic Transform (NTT) is a variant of the Fourier Transform that’s defined over the integers rather than the complex numbers: While the latter splits $\mathbb{C}[X]/(X^n - 1)$ as $\prod_i \mathbb{C}[X]/(X - \zeta_i^n)$ for the complex n-th root of unity $\zeta_n = \exp(2\pi i/n)$, the NTT splits a modular polynomial ring $\mathbb{F}_q[X]/(X^n - 1)$ as $\prod_i \mathbb{F}_q[X]/(X - \omega^n)$, for $\omega \in \mathbb{F}_q$ a modular primitive n-th root of unity, that is, $\omega^n = 1$ modulo q, but $\omega^i \neq 1$ modulo q for all $i < n$.

Structurally, the NTT is the same as the Fourier Transform, and in particular can be implemented in $O(n \log n)$ time through a variant of the Fast Fourier Transform. However, the underlying coefficient arithmetic relies on modular integer arithmetic rather than floating point or fixed point arithmetic.

Fast implementations of the Number Theoretic Transform are essential for high performance implementations of post-quantum cryptography, which use the NTT for polynomial multiplication (using the analogue of the convolution theorem in digital signal processing). The recently designated winners Kyber and Dilithium [SAB+22], [LDK+22] of the NIST Post-Quantum Cryptography standardization project [NIS16] both rely on the NTT.

6.2 Previous implementations

Previous work [BHK+21] explored how to map modular arithmetic in the NTT to the Arm architecture, including Armv8.1-M+Helium. [BBMK+21, BHK+22] leverage those primitives for complete implementations of the NTT in Helium. Coming up with those

Listing 5: Left: Result of compiling Listing 4 (left) using Arm Compiler 6.18. Right: Handwritten assembly implementation of radix-4 fixed-point FFT from github.com/ARM-Software/EndpointAI.
implementations, however, appears challenging due to the amount of butterfly interlining necessary to achieve good instruction overlapping. In loc.cit., this is achieved through complete unrolling of the NTT and tracking of register usage through a Python script. While the resulting code is of very high performance, it is difficult both to read and to adapt to other contexts.

In the following, we demonstrate how HeLight55 can be used to derive a high performance implementation of the NTT for Helium from a readable – but poorly performing – handwritten assembly implementation, in a few seconds on a laptop. Beyond being considerably less effort and easier to reproduce, the resulting code is also much smaller than that in the previous works.

We target the NTTs used for the post-quantum cryptography schemes Kyber and Dilithium, as those do not yet have publicly available optimized Helium implementations. Kyber uses a 7-layer incomplete NTT with \(n = 256 \) and \(q = 3329 \). Dilithium uses an 8-layer complete NTT with \(n = 256 \) and \(q = 2^{25} - 2^{13} + 1 \).

6.3 Naïve implementation

Initial layers of Dilithium. Listing 7 shows a naïve implementation of the first two layers of the forward NTT for Dilithium, using assembly macros to keep the implementation readable. As it stands, however, the implementation would perform very poorly: The four back-to-back instances of load/store instructions `vldrw/vstrw`, as well as the three back-to-back multiplication instructions in the definition of `mulmod`, mean that only little use is made of instruction overlapping – see the unfolded version of the code displayed on Listing 7 (right).

Last layers of Kyber. The most challenging part in the NTT are layers which require intra-vector shuffling, like the last two layers in the Kyber NTT displayed in Listing 8 (right): We notice that `VLD4x` and `VST4x` are used for (de)interleaving at load/store time, and that additional vector registers are needed for the roots. This puts significant pressure on the vector register file: Not only are less vectors available for the actual data, but the arguments of `VLD4x` and `VST4x` are constrained to \{\(Q_i, Q(i+1), Q(i+2), Q(i+3)\}\} for \(i = 0, 1, 2, 3, 4\). Listing 8 also shows an alternative where the `VLD4x` in layers 6,7 are
replaced by plain VLDRs, and where we instead use VST4x in layers 4,5, thereby spreading the complexity of VLD4x/VST4x over two separate loops.

6.4 Auto-optimized implementation

Initial layers of Dilithium. Listing 9 shows the result of optimizing the first two layers of the Dilithium NTT (Listing 7) through Helight55. As before, the comments indicate where instructions were originally placed, and if they are early instructions for the next iteration – this time, five instructions are being pulled into the previous iteration. The body of the loop is stall-free, while the preamble and postamble have stalls as indicated, which should be attempted to be filled through further interleaving with the surrounding code.

Last layers of Kyber. We next look at the optimization of the last four layers of the Kyber NTT (Listing 8). As explained before, it appears very difficult to schedule the last two layers due to the constraints on VLD4, VST4. And indeed, when we run Helight55 on it, it runs out of time without finding a solution.

However, for the alternative variant in Listing 8 – the one where we traded VLD4x in layer 6,7 for VST4x in layer 4,5 – there is indeed a stall-free version on Cortex-M55: First, running Helight55 unmodified does not find a solution. However, Helight55 by default uses an overapproximation of the ST-LD-hazard, forbidding instances of VSTx; VLDx because they may lead to memory bank conflicts depending on data alignment. Ignoring ST-LD hazards via helight.config.constraints.st_ld_hazards leads to the solution in Listing 10: This solution does have two instances of the ST-LD patterns, but the displayed ordering of VST4x does not actually trigger any bank conflicts. We note that even though Helight55 minimizes interleaving, we need nine early instructions.

Finally, Listing 11 shows an implementation of the last two layers of the Kyber NTT
Listing 8: Naïve implementation of last four layers of a Kyber NTT. The use of VLD4x/VST4x puts pressure on the vector register file.

using C intrinsics for Helium (left), as well as the resulting assembly after compilation with Arm Compiler 6.18. We observe again how the compiler manages to interleave the different kinds of instructions well, but that without software pipelining for this loop, the final block of VST4x constitutes a large bottleneck. We also annotate by //l two instances of a stall because of the 2-cycle latency of multiply instructions.

We consider the last example illustrative for the intended use of SLOTHY and HeLight55: Sometimes, a stall-free optimization is simply not possible – our tools cannot change that. However, they do change the speed at which different approaches can be evaluated. Attempting the optimization of the different approaches by hand would be too time consuming, while the use of compiler-based scheduling would leave questions around the optimality of the generated code.

7 Conclusion

In this work, we have demonstrated the practicality of the use of constraint programming for the superoptimization of instruction scheduling, register allocation and software pipelining. Based on the CP-SAT solver from Google OR-Tools, we developed both a (micro)architecture agnostic core SLOTHY and an instantiation HeLight55 for Armv8.1-M+Helium and Cortex-M55r1. We showcased the power of our approach by optimizing, in a matter of seconds on a laptop, two complex workloads from Digital Signal Processing and Post-Quantum Cryptography. We believe that SLOTHY +HeLight55 can be generalized and applied to other (micro)architectures and workloads, and encourage research.

For Armv8.1-M+Helium and Cortex-M55 we confirm once again that very efficient implementations exist for critical and complex workloads, despite the numerous software constraints to be solved. Somewhat surprisingly, we even identify highly non-trivial opportunities for software pipelining (periodic loop interleaving) despite the comparatively low number of vector registers, further increasing performance while maintaining a compact code-size.

We also consider the use of intrinsics as a more convenient and generally preferred alternative to handwritten assembly, and find very good results in terms of the compiler’s leverage of instruction interleaving (using Arm Compiler 6.18). Yet, we consider our
superoptimization approach as a viable alternative for code that’s either of very high complexity, or code for which it’s essential to unlock the last % of performance. It is also a useful vehicle to understand the implications of different (micro)architectural properties on theoretical performance limits.

References

Towards perfect CRYSTALS in Helium

Listing 10: Optimal (for Cortex-M55) scheduling for the periodic parts of the last four layers of the NTT for CRYSTALS-Kyber. Note the significant amount of interleaving necessary to accommodate the VST4x.

static void ct_butterfly(int16x8_t* d0, int16x8_t* d1, int16x8_t r, int16x8_t r_tw)
{
 int16x8_t tmp;
 const int16_t mod = -3329;
 tmp = *d1 * r;
 *d1 = vqrdmulhq(*d1, r_tw);
 tmp += *d1 * mod;
 *d1 = *d0 - tmp;
 *d0 = *d0 + tmp;
}

void ntt_kyber_layer67_loop_intr(int16_t* in, int16_t* r_ptr)
{
 int16x8x4_t data;
 int16x8_t r0, r0_tw, r1, r1_tw; r2, r2_tw;
 for(int i = 0; i < 8; i++) {
 data.val[0] = vld1q(in);
 data.val[1] = vld1q(&in[16 / 2]);
 data.val[2] = vld1q(&in[32 / 2]);
 data.val[3] = vld1q(&in[48 / 2]);
 r0 = vld1q(r_ptr);
 r0_tw = vld1q(r_ptr + 8);
 ct_butterfly(&data.val[0], &data.val[2], r0, r0_tw);
 ct_butterfly(&data.val[1], &data.val[3], r0, r0_tw);
 r1 = vld1q(r_ptr + (8* 2));
 r1_tw = vld1q(r_ptr + (8* 3));
 ct_butterfly(&data.val[0], &data.val[1], r1, r1_tw);
 ct_butterfly(&data.val[2], &data.val[3], r1, r1_tw);
 r2 = vld1q(r_ptr + (8* 4));
 r2_tw = vld1q(r_ptr + (8* 5));
 ct_butterfly(&data.val[0], &data.val[2], r2, r2_tw);
 ct_butterfly(&data.val[1], &data.val[3], r2, r2_tw);
 vst4q(in, data);
 in += (8* 4); r_ptr += (96 / 2);
 }
}

Listing 11: Left: Intrinsics implementation of last two layers of Kyber NTT. Right: Result of compilation with Arm Compiler 6.18.

[KW98] Daniel Kästner and Reinhard Wilhelm. Operations research methods in compiler backends. Mathematical Communications (mc@mathos.hr); Vol.3 No.2, 01 1998. 2

Laurent Perron and Vincent Furnon. Or-tools.

