ON A CONJECTURE FROM A FAILED CRYPTANALYSIS

SHENGTONG ZHANG

1. Introduction

Let \(P(x, y) \) be a bivariate polynomial with coefficients in \(\mathbb{C} \). Form the \(n \times n \) matrices \(L_n \) whose elements are defined by \(P(i, j) \). Define the matrices \(M_n = I_n - L_n \).

We show that \(\mu_n = \det(M_n) \) is a polynomial in \(n \), thus answering a conjecture [2] of Naccache and Yifrach-Stav.

2. The Proof

Our proof is based on the folklore identity of Sylvester.

Theorem 2.1. Let \(A \) be an \(n \times m \) matrix, and \(B \) be an \(m \times n \) matrix. Then
\[
\det(I_n - AB) = \det(I_m - BA).
\]

In our case, there exists a constant \(D \) such that
\[
P(x, y) = \sum_{i=0}^{D} \sum_{j=0}^{D} a_{ij} x^i y^j
\]
where \(a_{ij} \in \mathbb{C} \) are coefficients. If we let \(A(n) \) be the \((D + 1) \times n\) matrix given by
\[
A(n)_{ij} = j^i
\]
for \(0 \leq i \leq D \) and \(1 \leq j \leq n \), and let \(C \) be the \((D + 1) \times (D + 1)\) matrix given by \(C_{ij} = a_{ij} \), then we can compute that
\[
L_n = A(n)^T CA(n).
\]

Thus by Sylvester’s identity, we have
\[
\mu_n = \det(I_n - L_n) = \det(I - CA(n)A(n)^T).
\]
The matrix \(A(n)A(n)^T \) is a \((D + 1) \times (D + 1)\) matrix with entries
\[
(A(n)A(n)^T)_{ij} = \sum_{k=1}^{n} k^{i+j}
\]
which is a polynomial in \(n \) by Faulhaber’s formula [1]. Thus, the dimensions of \(CA(n)A(n)^T \) is independent of \(n \), and each entry of \(CA(n)A(n)^T \) is a polynomial in \(n \). As the determinant of a constant size matrix is a polynomial in the entries, we conclude that \(\mu_n \) is a polynomial in \(n \).

\[\text{Date: September 2022.}\]
References

Stanford University, Stanford, CA, USA

Email address: stzh1555@stanford.edu