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Abstract. In the context of quantum-resistant cryptography, cryptographic group actions offer
an abstraction of isogeny-based cryptography in the Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH) setting. In this work, we revisit the security of two previously proposed natural
protocols: the Group Action Hashed ElGamal key encapsulation mechanism (GA-HEG KEM) and
the Group Action Hashed Diffie-Hellman non-interactive key-exchange (GA-HDH NIKE) protocol.
The latter protocol has already been considered to be used in practical protocols such as Post-
Quantum WireGuard (S&P ’21) and OPTLS (CCS ’20).
We prove that active security of the two protocols in the Quantum Random Oracle Model (QROM)
inherently relies on very strong variants of the Group Action Strong CDH problem, where the
adversary is given arbitrary quantum access to a DDH oracle. That is, quantum accessible Strong
CDH assumptions are not only sufficient but also necessary to prove active security of the GA-HEG
KEM and the GA-HDH NIKE protocols.
Furthermore, we propose variants of the protocols with QROM security from the classical Strong
CDH assumption, i.e., CDH with classical access to the DDH oracle. Our first variant uses key
confirmation and can therefore only be applied in the KEM setting. Our second but considerably
less efficient variant is based on the twinning technique by Cash et al. (EUROCRYPT ’08) and
in particular yields the first actively secure isogeny-based NIKE with QROM security from the
standard CDH assumption.
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1 Introduction

A non-interactive key exchange (NIKE) is a protocol that allows two parties to establish a common
secret key in a non-interactive way. The first and most famous NIKE is the Diffie-Hellman key exchange
[15] which forms the basis for a lot of other cryptographic protocols like ElGamal [18]. Most notably
however, the existence of a secure NIKE implies secure key encapsulation mechanisms (KEM) (and hence
public-key encryption) and authenticated key exchange (AKE) [20]. A NIKE can therefore be seen as
one of the most basic and important primitives in cryptography.

The emergence of quantum computing however continues to have an unprecedented impact on public
key cryptography. When scaled to a suitable size, quantum computers pose a threat to almost all classical
public-key primitives, including Diffie-Hellman and ElGamal [37]. To mitigate this threat, researchers
started building quantum resisting public-key cryptography based on certain quantum-hard problems on
codes, lattices and isogenies. Even though quantum-resistant public-key encryption from lattices seems
to offer the favorable trade-off over codes and isogenies in terms of speed, ciphertext expansion, and
security, building an efficient (even passively secure) NIKE from codes or lattices remains an unsolved
research problem.
Isogeny-based Cryptography. A promising alternative approach to post-quantum security is based
on isogenies. An isogeny is a non-constant homomorphism between elliptic curves. In an algebraic context,
isogenies can be used to build a commutative group action that behaves similarly to exponentiation in
finite fields. This was first observed by Couveignes [14] and independently by Rostovtsev and Stolbunov
[35]. The first practical instantiation was obtained by Castryck et al. [12] which in contrast to previous
work uses the group action on the set of supersingular elliptic curves. Throughout this paper, we will
use the abstract framework of cryptographic group actions introduced by Alamati et al. [2] to model
isogeny-based constructions. (See Section 2.3 for formal definitions.) At a syntactical level, cryptographic
group actions allow for a simple Group Action Diffie-Hellman (GA-DH) key exchange and Group Action
ElGamal (GA-EG) public-key encryption scheme. With this abstraction in mind, the famous Commutative
Supersingular Isogeny Diffie-Hellman (CSIDH) key exchange protocol of [12] can be seen as a specific
instantiation of GA-DH.

For cryptographic group actions, the analog of the traditional Computational Diffie-Hellman assump-
tion (over prime-order groups) is the Group Action Computational Diffie-Hellman assumption (GA-CDH)
[14,35,12,2], see also Definition 6. GA-CDH is sufficient to prove passive security of “hashed versions” of
GA-DH and GA-EG in the random oracle model. In analogy to the prime-order group setting, for ac-
tive security one requires a “strong” type of Computational Diffie-Hellman assumption [1]. Providing
the adversary additional access to a Group Action Decisional Diffie-Hellman oracle GA-DDH(·, ·), i.e. an
oracle which tells us whether a pair of elements forms a Diffie-Hellman tuple, defines the Group Action
Strong Computational Diffie-Hellman assumption (GA-StCDH). The prefix strong refers to the fact that
the first input to this oracle is fixed (as opposed to the stronger and non-falsifiable gap assumptions).
This assumption is well-known in the standard prime-order group setting and has already been used in
proving active security of several protocols [28,29,39] in the group action setting as well.1

Quantum Random Oracle Model. The random-oracle model (ROM) [7] is commonly used in modern
cryptography to argue practical security of cryptographic schemes. Adversaries with access to quantum
computers will be able to implement the hash function on those, and therefore can evaluate the hash
function on arbitrary quantum superpositions. To account for this gain in capabilities, the quantum(-
accessible) random-oracle model (QROM) has been introduced [9]. The QROM has become the accepted
model for proving post-quantum security and it is generally believed that proofs in the classical ROM
are not sufficient to claim post-quantum security.
Actively secure KEMs and NIKE Protocols. In this work we are interested in constructing
actively (i.e. IND-CCA) secure KEMs and actively secure NIKE protocols over cryptographic group
actions.

Let us first look at the simpler case of KEMs. Generally speaking, we know of two natural approaches
to build efficient IND-CCA secure KEMs. The first approach is generic and applies the Fujisaki-Okamoto
1 We stress that GA-StCDH over standard cryptographic group actions is well defined (and falsifiable), even
though it is an interactive assumption. Furthermore, for some groups actions (i.e., ones implied by crypto-
graphic pairings over prime-order groups) the Decisional Diffie-Hellman oracle is publicly computable and
hence GA-StCDH becomes non-interactive.
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(FO) transform [21,23] to an IND-CPA secure PKE scheme (such as GA-EG) to obtain an IND-CCA
secure KEM, with provable security in the QROM. The second, non-generic approach is to adapt the well-
known (prime-order group) Hashed ElGamal encryption framework of [1] to group actions by ”hashing
the raw KEM key” to obtain the Group Action Hashed ElGamal KEM (GA-HEG). Indeed, [39] proved
the security of GA-HEG (called CSIDH-ECIES in [39]) under the GA-StCDH assumption in the ROM.2
GA-HEG was implicitly and explicitly used in [28,29,39] and its active (IND-CCA) security in the QROM
was left as an open problem in [39].3

For building an actively secure NIKE, one cannot apply the FO transformation and hence has to
resort to adapting the (prime-order group) Hashed Diffie-Hellman NIKE [20] to obtain the Group Action
Hashed Diffie-Hellman NIKE protocol (GA-HDH). To the best of our knowledge, the active security of
the GA-HDH NIKE has not been formally analyzed yet, not even in the ROM. This is in particular
unsatisfactory since GA-HDH has already been considered to be used in practical protocols such as
Post-Quantum WireGuard [25] and OPTLS [36].

In conclusion, while the IND-CCA security of GA-HEG in the ROM is known to be implied by the
GA-StCDH assumption, it remains an open problem to prove its IND-CCA security in the QROM (under
any assumption). Similarly, studying the active security of the GA-HDH NIKE in the QROM also remains
an open problem.

1.1 Our Contributions

In this paper we study the active security of the Group Action Hashed Diffie-Hellman NIKE GA-HDH
and the Group Action Hashed ElGamal KEM GA-HEG in the QROM, and derive variants thereof with
improved security guarantees. We now discuss our results in detail. For an overview of our results obtained
for KEMs we refer to Figure 1.
GA-HEG KEM and GA-HDH NIKE. It is easy to see that in the (non-quantum) ROM the active security
of GA-HEG is implied by the GA-StCDH assumption. The first main contribution of this paper is to notice
that in the QROM one requires a considerably stronger assumptions to prove security of GA-HEG. To
this end we define the following two stronger variants of GA-StCDH which differ only in the access to the
decision oracle (for implications see Figure 1):
– Partial Quantum access Strong Diffie-Hellman (GA-PQ-StCDH): the first input to the GA-DDH(·, ·)

oracle is classical and the second is in quantum superposition.
– Full Quantum access Strong Diffie-Hellman (GA-FQ-StCDH): both inputs to the GA-DDH(·, ·) oracle

are in quantum superposition.
Similar to the QROM, the answer of a quantum superposition query to the two quantum-accessible
GA-DDH oracles is also in quantum superposition.

Our first main theorem states that under the GA-FQ-StCDH assumption (full quantum access to
the DDH oracle), GA-HEG is IND-CCA secure in the QROM. Furthermore, IND-CCA security in the
QROM of GA-HEG implies the GA-PQ-StCDH assumption (partial quantum access to the DDH ora-
cle), hence GA-PQ-StCDH is necessary for GA-HEG’s IND-CCA security. The situation for the GA-HDH
NIKE is similar, with the difference that “double base” strong assumptions (called GA-DPQ-StCDH and
GA-DFQ-StCDH) are required.

This leaves us in the alarming situation that active security of GA-HEG and GA-HDH inherently re-
quire a group action CDH assumption with quantum access to the DDH oracle. Due to the quantum
access, the latter assumptions cannot be considered as standard assumptions and require further crypt-
analysis before we can recommend using GA-HEG KEM and GA-HDH NIKE in practice.

We will now propose two modifications to get security without quantum access to the decision oracles.
The first and more efficient modification is using “key confirmation” and only works for KEMs. The
second and less efficient modification relies on the “twinning technique” and can be applied to NIKEs
and KEMs.
2 The QROM proof of a variant called CSIDH-PSEC in [39] is flawed (see Appendix E for details).
3 There also exist IND-CCA secure PKE schemes constructed directly from CSIDH, using additional structure
of the elliptic curves. [32] proposed the SimS scheme which is an extension of SiGamal [19] and relies on a
non-standard knowledge-of-exponent assumption to achieve IND-CCA security in the standard model. These
protocols and assumptions cannot be modeled in the abstract group action framework.
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GA-CDH
no access to GA-DDH

GA-StCDH
access to GA-DDH(·, ·)

GA-PQ-StCDH
access to GA-DDH(·, |·〉)

GA-FQ-StCDH
access to GA-DDH(|·〉 , |·〉)

GA-HEG (Figure 3)
Hashed ElGamal

GA-HEG-KC (Figure 10)
Hashed ElGamal with
Key Confirmation

GA-Twin-HEGm (Figure 12)
Twin Hashed ElGamal

Theorem 3

Remark 2

Theorem 4

Theorem 6

Theorem 1

Fig. 1. Overview of our assumptions and results for different variants of hashed ElGamal. The assumptions
(elements with rounded corners) are given in Definitions 6 and 7. Solid arrows without indication of a theorem
correspond to trivial implications. For the assumptions the only difference is a more limited access to the decision
oracle GA-DDH, where |·〉 denotes quantum access. The dashed arrow holds for quantum security, where the
adversary is allowed to issue decapsulation queries in superposition.

GA-HEG-KC KEM: Key Confirmation. Our first method is to update GA-HEG the KEM with a key
confirmation hash, i.e., every ciphertext additionally contains a hash of the “raw KEM key”. This only
increases the ciphertext size by one hash, but allows for a different IND-CCA proof technique in the
QROM. To be more precise, in the classical ROM, one can use the additional hash to extract the secret
information from a ciphertext. In the QROM, this is more involved, but we can use the extractable oracle
simulator from [16] to use similar techniques and give a security proof only relying on the more standard
GA-StCDH assumption. Specifically, we rely on the fact that decapsulation queries are classical, which
allows us to partially measure the simulated random oracle and extract its queries without noticeably
disturbing its quantum state.

Unfortunately, it is not possible to use key confirmation in a NIKE setting.

GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE: Twinning. We show how to use the twinning
technique [11] in the context of group actions to build an actively secure KEM and NIKE from the
standard GA-CDH assumption (no DDH oracle access) in the QROM. Since group actions only have
limited structure compared to prime-order groups, it seems unavoidable to pursue a bit-wise approach
for the twinning technique. Our main leverage is a trapdoor test which allows us to check if several
adversarial inputs form a Diffie-Hellman tuple with the challenge elements. The failure probability of this
trapdoor test can be reduced to the generic quantum search problem, for which the quantum hardness is
optimally bounded by the Grover algorithm. Although this approach does not achieve practical efficiency,
it is interesting from a theoretical viewpoint. We specify the twinning parameter m for 128-bit security to
instantiate the twinned versions of our GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE. At this point
we want to highlight that our GA-Twin-HDHm protocol is the only known NIKE with active security
from a standard assumption (without quantum accessible DDH oracles).

Efficiency Comparison. In Table 1 in Section 6, we give an overview of the schemes analyzed in
this work and compare them to the FO variant GA-EG-FO of Group Action ElGamal. The KEM vari-
ants GA-HEG and GA-Twin-HEGm share the same minimal ciphertext size but we cannot recommend
using them since GA-HEG’s security inherently relies on the GA-FQ-StCDH assumption (with quantum
accessible DDH oracle) and GA-Twin-HEGm is computationally very expensive. In comparison, the KEM
variants GA-HEG-KC and GA-EG-FO only add one additional hash to the ciphertext but offer security
from standard assumptions. Here GA-HEG-KC is preferable since decapsulation is about twice as efficient
as in GA-EG-FO (due to FO’s re-encryption).

As for the more important case of NIKEs, one either has to use the efficient GA-HDH variant with
security under the GA-DFQ-StCDH assumption (with quantum accessible DDH oracles) or use the in-
efficient GA-Twin-HDHm NIKE. We leave it as an important open problem to construct a practically
efficient actively secure NIKE under a standard hardness assumption.
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QROM Proof Details. One of the standard tools to prove security in the QROM is the O2H [38]
lemma, which unfortunately leads to quite loose bounds. Recently, there has been a lot of progress in
developing new variants which give tighter bounds, such as the measure-rewind-measure O2H (MRM-
O2H) [31] lemma. While these variants give usually tighter bounds, they can often only be applied in
more limited scenarios due to additional constraints. In our work we show how to apply MRM to GA-HEG
and GA-Twin-HEGm to obtain tighter bounds than the by applying the original O2H lemma. For proving
GA-HEG-KC we need to extract the preimages of the key-confirmation hash. We use the extractable
random-oracle simulator of [16], which allows use to to prove it from the GA-StCDH assumption.

For GA-Twin-HEGm and GA-Twin-HDHm, the main tool to remove the need for the GA-StCDH is the
trapdoor test. While it is easy to show its indistinguishability for regular groups in the standard model,
it is unclear whether or not a quantum adversary has a significant advantage against the trapdoor test
compared to a classical adversary. We solve the second problem by showing that the indistinguishability of
the trapdoor test can be (tightly) reduced to the Generic Distinguishing Problem (GDP). This allows us
to use well-known results on the hardness of quantum search to bound the advantage of such adversaries
and apply the trapdoor test as a substitute for the decision oracle of the GA-StCDH assumption.

1.2 Further Applications
We believe our QROM analysis carries over to the following primitives and constructions.
Authenticated Key Exchange. Kawashima et al. as well as de Kock et al. [28,29] translated the Diffie-
Hellman based AKE protocol of [13] to the CSIDH setting and proved security in the ROM assuming
the GA-StCDH assumption. However, both works left it as an open question to prove security in the
QROM. Our analysis demonstrates that this proof will only work assuming (at least partial) quantum
access to the decision oracle. In this case, our proof techniques carry over directly. Alternatively, we
can also extend the AKE protocol by an additional round to include key confirmation. Using the same
technique as in our result on hashed ElGamal with key confirmation will allow to prove security of this
extended AKE protocol in the QROM based on the GA-StCDH assumption without quantum access
to the decision oracle. However, the additional benefit here is that key confirmation enables explicit
authentication, whereas the protocol without key confirmation only achieves implicit authentication.
Signcryption and Authenticated KEMs. The DH-AKEM which was analyzed in the context of
the HPKE standard [3] can easily be translated to the group action setting. The scheme is syntactically
a signcryption KEM and will be combined with a symmetric encryption scheme. This construction, also
named the authenticated mode of HPKE, was proposed to be used in the Message Layer Security (MLS)
secure group messaging protocol [6] and the Encrypted Server Name Indication (ESNI) extension for
TLS 1.3 [33]. So far, a post-quantum secure instantiation was not proposed, but our results show how to
prove security of a group action based construction in the QROM under GA-FQ-StCDH (full quantum
access to the decision oracle). Alternatively, we can also extend the scheme by key confirmation and
prove security under GA-StCDH.
Post-Quantum Secure TLS. Currently, there is a great effort in replacing the Diffie-Hellman based
approach in the TLS handshake by a post-quantum secure alternative. In order to avoid signature
schemes which are rather inefficient, a generic KEM-based approach was considered to allow for an
easy instantiation [36], however at the cost of efficiency since it requires an additional round. Instead
of signatures, it is also possible to use a NIKE directly, as considered for the case of long-term Diffie-
Hellman keys in the OPTLS protocol by Krawczyk and Wee in [30] and in a subsequent IETF draft [34].
In this case, a security analysis of the group-action NIKE in the QROM is crucial and our work provides
the first results in this direction, namely that a security proof for group action OPTLS will need to rely
at least on the GA-PQ-StCDH assumption (partial quantum access to the decision oracles) and is implied
by the GA-FQ-StCDH assumption (full quantum access).
More Applications. In the group setting, Hashed ElGamal can be used to build multi-recipient multi-
message PKE (mmPKE) by using the same randomness for multiple messages. This reduces sender band-
width and computation substantially and can be used in Continuous Group Key Agreement (CGKA),
which underlies modern and scalable Secure Group Messaging (SGM) such as MLS [6] to significantly
improve performance [4]. Since GA-HEG has an identical structure, reusing randomness can yield a sim-
ilar construction with post-quantum security. This is a first step towards efficient, post-quantum secure
SGM.
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2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ...,n}. For m = 1, we simply write [n].
By log(x) we denote the logarithm over the reals with base 2. For a (finite) set S , s $← S denotes that
s is sampled uniformly and independently at random from S . y ← A(x1, x2, ...) denotes that on input
x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm A has access to oracle O.
An adversary is a probabilistic algorithm. We will use code-based games, where Pr[G ⇒ 1] denotes the
probability that the final output of game G is 1. The notation JBK, where B is a boolean statement, refers
to a bit that is 1 if the statement is true and 0 otherwise. For all algorithms and oracles, we implicitly
require that they check whether (adversarial) inputs are from the expected input space. If this is not the
case, the algorithm (oracle) will simply return a failure symbol ⊥.

2.1 Key Encapsulation Mechanisms

Syntax. Let PK, SK, C, K be sets. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps)
consists of the following three algorithms
– Gen: The key generation algorithm outputs a public key pk ∈ PK and a secret key sk ∈ SK.
– Encaps(pk): On input a public key pk, the encapsulation algorithm returns a ciphertext ct ∈ C and

a key K ∈ K, where ct is an encapsulation of K .
– Decaps(sk, ct): On input a secret key sk and a ciphertext ct, the decapsulation algorithm returns a

key K ∈ K or a special failure symbol ⊥.
We require perfect correctness, i.e. for all (pk, sk)← Gen, (ct,K )← Encaps(pk), we have Decaps(sk, ct) =
K .

Definition 1 (Security against Chosen Ciphertext Attacks (IND-CCA)). Consider the IND-CCA
security game in Figure 2. For a key encapsulation mechanism KEM we define the advantage of A winning
the game as

AdvIND-CCA
KEM (A) := |Pr[IND-CCA(A)⇒ 1]− 1/2| .

2.2 Non-Interactive Key Exchange

We recall syntax and the CKS security model of a Non-Interactive Key Exchange (NIKE) scheme, as
defined in [11,20].
Syntax. A non-interactive key exchange scheme NIKE consists of three algorithms NIKE.Setup, NIKE.Gen
and NIKE.SharedKey together with an identity space ID and a shared key space SHK, where identities
in the scheme are only used to track which public key is associated to which user.
– NIKE.Setup: The setup algorithm outputs a set of public parameters pp.
– NIKE.Gen(pp, ID): On input pp and ID ∈ ID, the key generation algorithm outputs a public key pk

and a secret key sk.
– NIKE.SharedKey(ID1, pk1, ID2, sk2): On input ID1 ∈ ID together with a public key pk1 and ID2 ∈ ID

together with a secret key sk2, the shared key algorithm outputs a shared key K . In case ID1 = ID2,
the algorithm outputs a failure symbol ⊥.

Game IND-CCA(A)
00 (pk, sk)← Gen
01 b $← {0, 1}
02 (ct∗,K0)← Encaps(pk)
03 K1

$← K
04 b′ ← ADecaps(pk, ct∗,Kb)
05 return Jb = b′K

Oracle Decaps(ct)
06 if ct = ct∗
07 return ⊥
08 return Dec(sk, ct)

Fig. 2. The IND-CCA game for a key encapsulation mechanism KEM.
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Correctness. We require that for any pair of identities ID1, ID2 ∈ ID and any corresponding key pairs
(pk1, sk1) and (pk2, sk2), it holds that

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1) .

CKS Security Model. The security of a NIKE protocol is modeled as a game between a challenger
and an adversary A. First, the challenger runs NIKE.Setup to generate the public parameter pp which it
outputs to A. The challenger also draws a random bit b and gives A access to the following oracles.
– RegisterHonest: A supplies an identity ID ∈ ID and the challenger runs NIKE.Gen(pp, ID) to

generate a key pair (pk, sk). It records (honest, ID, pk, sk) and returns the public key pk to A.
– RegisterCorrupt: A supplies an identity ID ∈ ID and a public key pk and the challenger records

(corrupt, ID, pk,⊥). If A issues a query with the same ID again later, only the most recent entry is
kept. Note here that we do not require that A knows the corresponding secret key.

– CorruptReveal: A supplies two identities ID1 and ID2 with the restriction that one identity was
registered as honest and the other one as corrupt, otherwise the oracle returns ⊥. The challenger
looks in its record to fetch the secret key of the honest party and the public key of the corrupted
party. If ID1 was honest, it computes and returns NIKE.SharedKey(ID2, pk2, ID1, sk1) and otherwise
NIKE.SharedKey(ID1, pk1, ID2, sk2).

– Test: A supplies two identities ID1 and ID2 with the restriction that both were registered as honest
and ID1 6= ID2, otherwise the oracle returns ⊥. The challenger fetches the public key of ID1 and
the secret key of ID2 from its records and computes K0 = NIKE.SharedKey(ID1, pk1, ID2, sk2). It also
chooses a random key K1

$← SHK and records it for later. It outputs Kb, depending on the bit
b chosen at the beginning. If b = 1 and A queries the same identities again, in either order, the
recorded key is output again.

The oracles can be queried adaptively and an arbitrary number of times. We require that no identity
that was registered as corrupt can be later registered as honest, and vice versa. Finally, the adversary
outputs a bit b′.

Definition 2 (Security of NIKE). Consider the CKS security game as described above. Then the ad-
vantage of adversary A against a non-interactive key exchange scheme NIKE is defined as

AdvCKS
NIKE(A) := |Pr[b = b′]− 1/2| .

2.3 (Restricted) Effective Group Actions

We recall the definition of (restricted) effective group actions from [2], which provides an abstract frame-
work to build cryptographic primitives relying on isogeny-based assumptions such as CSIDH.

Definition 3 (Group Action). Let (G, ·) be a group with identity element e ∈ G, and X a set. A map

? : G × X → X

is a group action if it satisfies the following properties:
1. Identity: e ?x = x for all x ∈ X .
2. Compatibility: (g · h) ? x = g ? (h ? x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is commutative. Moreover
we assume that the group action is regular. This means that for any x, y ∈ X there exists precisely one
g ∈ G satisfying y = g ? x.

Definition 4 (Effective Group Action). Let (G,X , ?) be a group action satisfying the following
properties:
1. G is finite and there exist efficient (PPT) algorithms for membership testing, equality testing, (ran-

dom) sampling, group operation and inversion.
2. The set X is finite and there exist efficient algorithms for membership testing and to compute a

unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to compute g ? x given g and x.
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Then we call x̃ ∈ X the origin and (G,X , ?, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often to strong. Therefore we will consider
the weaker notion of restricted effective group actions.

Definition 5 (Restricted Effective Group Action). Let (G,X , ?) be a group action and let g =
(g1, ..., gn) be a generating set for G. Assume that the following properties are satisfied:
1. The group G is finite and n = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing and to compute a

unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ? x and g−1

i ? x.
Then we call (G,X , ?, x̃) a restricted effective group action (REGA).

Alamati et al. [2] introduced the definition of a weak unpredictable group action. We will use a different
notation for that property which is syntactically closer to the prime-order group setting. Note that both
definitions are equivalent. In particular, we will use the following assumption.

Definition 6 (Group Action Computational Diffie-Hellman Problem). On input (g ? x̃, h ? x̃),
the group action computational Diffie-Hellman problem (GA-CDH) requires to compute the set element
gh ? x̃ . To an effective group action EGA, we associate the advantage function of an adversary A as

AdvGA-CDH
EGA (A) := Pr[A(g ? x̃, h ? x̃)⇒ gh ? x̃] ,

where g, h $← G.

The most promising post-quantum secure instantiation of REGAs is provided by CSIDH. We recall its
properties in Appendix A.

2.4 QROM Preliminaries

We use different well-known results from post-quantum cryptography. Specifically, our proofs use the
oneway-to-hiding [38] (O2H) lemma from [5] and its measure-rewind-measure (MRM) variant from [31]
as well as the online extractable quantum random oracle framework from [16]. We recall the MRM O2H
lemma below. Further definitions as well as some basic techniques such as random oracle simulation can
be found in Appendix B.

Lemma 1 (Measure-Rewind-Measure O2H. Lemma 3.3 in [31]). Let G,H : X → Y be random
functions, z be a random value, and S ⊆ X be a random set such that G(x) = H(x) for every x 6∈ S.
The tuple (G,H,S, z) may have arbitrary joint distribution. Furthermore, let AO be a unitary/reversible
quantum oracle algorithm which queries oracle O with query depth d. Then we can construct an algorithm
ExtG,H(z) such that the running time of Ext is about at most three times the one of AO and∣∣∣∣Pr

H,z
[AH(z)⇒ 1]− Pr

G,z
[AG(z)⇒ 1]

∣∣∣∣ ≤ 4d Pr
G,H,S,z

[S ∩ T 6= ∅ : T ← ExtG,H(z)] .

Some of our proofs rely on the hardness of the Generic Distinguishing Problem (GDP), a decisional
variant of the Generic Search Problem (GSP) [40,26,24]. Intuitively, an adversary gets oracle access to a
function from some domain D into {0, 1}, which is either the all-zero function or a function where the
probability that any given point maps to 1 is small (i.e. bounded by some λ ∈ (0, 1)), and has to decide
which is the case. While the complexity of this problem is clear in the classical case, it is somewhat more
difficult in the quantum case. We recall and adapt the well-known bounds to the GDP problem in this
section.

Lemma 2 (Generic Distinguishing Problem, decision version of Lemma 2 in [5], Lemma 2.9
from [24]). Let F : X → {0, 1} be a random function drawn from a distribution such that Pr[F(x) =
1] ≤ λ for all x and K : X → {0} be the zero-function. Let A be a q-query algorithm with query depth d
with quantum-access to its oracle. Then

AdvGDP
F,q,d(A) :=

∣∣∣Pr[GDPAF,0 ⇒ 1]− Pr[GDPAF,1 ⇒ 1]
∣∣∣ ≤ 4

√
(d + 1)qλ , (1)
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Gen
00 sk := g $← G
01 pk := g ? x̃
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 ct := r ? x̃
05 K := H(ct, r ? pk)
06 return (ct,K)

Decaps(sk, ct)
07 z := sk ? ct
08 K := H(ct, z)
09 return K

Fig. 3. Key encapsulation mechanism GA-HEG for an effective group action EGA = (G,X , ?, x̃), where H : X×X →
{0, 1}κ is a hash function.

where GDPAF,0 := AK() and GDPAF,1 := AF(). Moreover, if the outputs of F are independent we have

AdvGDP
F,q,d(A) ≤ 8(q + 1)2λ . (2)

We prove eq. (1) in Appendix B.2. The bound in eq. (2) is a reformulation from Lemma 2.9 from [24].

3 Necessary Assumptions for Group Action KEM and NIKE in the QROM

In this section we will first recall the two schemes we are looking at: Group Action Hashed ElGamal
and the Group Action Hashed Diffie-Hellman NIKE scheme. We denote the schemes by GA-HEG and
GA-HDH, respectively.

Group Action Hashed ElGamal. The scheme is given in Figure 3. Note that this is the same scheme
as the CSIDH-ECIES-KEM considered in [39]. The public parameters consist of an effective group ac-
tion EGA = (G,X , ?, x̃) and a hash function H : X 2 → {0, 1}κ. Further we set PK = X , SK = G and
K = {0, 1}κ. The key generation algorithm samples a random group element g $← G as secret key. In order
to compute the public key, g is applied to the origin element x̃ using the group action operation. The
set element pk = g ? x̃ is the public key. The encapsulation algorithm also first samples a random group
element r $← G and then calculates the ciphertext ct = r ? x̃. The key is derived by first computing r ? pk
(the shared DH value) and subsequently hashing r ? pk together with the ciphertext ct. Decapsulation
first recomputes the shared DH value g ? ct = r ? pk and then applies the hash function H. Correctness
of the scheme holds due to the commutativity of the group action.

Group Action Hashed Diffie-Hellman. A schematic overview of the hashed Diffie-Hellman NIKE
scheme GA-HDH is given in Figure 4. As in the hashed ElGamal scheme, the public parameters pp include
the description of EGA together with a hash function H : {0, 1}∗ → {0, 1}κ such that PK = X , SK = G
and SHK = {0, 1}κ. We assume that ID = {0, 1}µ, which means that each identity is represented by a
bitstring of length µ and there is a natural ordering < on the space of identities. On input an ID ∈ ID,
the key generation algorithm chooses a group element g $← G which will be the secret key skID. The
public key is computed as pkID = g ? x̃ ∈ X . The shared key of an identity ID1 with public key pkID1 = x
and an identity ID2 6= ID1 with secret key skID2 = g is defined as

K =
{

H(ID1, ID2, pkID1 , pkID2 , g ? x) if ID1 < ID2

H(ID2, ID1, pkID2 , pkID1 , g ? x) if ID2 < ID1
.

Correctness again holds because of the commutativity of the group action itself and the ordering of IDs.

One of the goals of this work is to prove these schemes secure in the QROM (cf. Section 4). However,
as it turns out, we will need stronger assumptions for the proofs than those defined in the literature. In
the next section we introduce the corresponding assumptions. Furthermore, we show that a (somewhat)
stronger assumption is indeed necessary by showing that it is implied by the security of the schemes
themselves.

3.1 Computational Group Action Diffie-Hellman with Quantum Oracle Access

Our new assumptions are all variants of the group action strong computational Diffie-Hellman prob-
lem (GA-StCDH). The GA-StCDH assumption is basically the translation of the strong CDH problem to
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Alice A Bob B
skA = a $← G skB = b $← G
pkA = a ? x̃ pkB = b ? x̃
z := a ? pkB z := b ? pkA

K := H(A,B, pkA, pkB, z)

Fig. 4. Group Action Non-Interactive Key Exchange scheme GA-HDH for an effective group action EGA =
(G,X , ?, x̃), where H : {0, 1}∗ → {0, 1}κ is a hash function.

group actions (cf. also [28,29]), where the adversary is given access to a (fixed-base) decision oracle. What
we need for our proofs is actually quantum access to the decision oracle, which is a considerably stronger
assumption that was never considered before. For the NIKE proofs, we will also need a double-sided
oracle definition, where the adversary gets access to two decision oracles, one for each of the challenge
set elements, and its quantum variants. All variants are captured by Definition 7.
Definition 7 (Variants of GA-StCDH). On input (g?x̃, h?x̃), the GA-XXX-StCDH requires to compute
the set element gh? x̃ with access to a decision oracle which is specified below. To an effective group action
EGA and an adversary A, we associate the advantage function

AdvGA-XXX-StCDH
EGA (A) := Pr[AO(g ? x̃, h ? x̃)⇒ gh ? x̃] ,

where g, h $← G and

O :=



GA-DDHg(·, ·) , XXX = {} (classical)
GA-DDHg(·, |·〉) , XXX = PQ (partially quantum)
GA-DDHg(|·〉 , |·〉) , XXX = FQ (fully quantum)
{GA-DDHg(·, ·),GA-DDHh(·, ·)} , XXX = D (double-sided classical)
{GA-DDHg(·, |·〉),GA-DDHh(·, |·〉)} , XXX = DPQ (double-sided partially quantum)
{GA-DDHg(|·〉 , |·〉),GA-DDHh(|·〉 , |·〉)} , XXX = DFQ (double-sided fully quantum)

On basis-state inputs (y, z), GA-DDHg returns 1 if g ? y = z and 0 otherwise. GA-DDHh is defined
equivalently. Note that superposition queries are implicitly then defined by linearity (i.e., O(

∑
x αxx) =∑

x αxO(x)). We emphasize that the partially quantum variants of the oracle measure their corresponding
first input implicitly.

3.2 Necessity of the GA-(D)PQ-StCDH Assumption
We now show that partial quantum access to the decision oracle is indeed a necessary assumption to
prove IND-CCA security of GA-HEG and CKS security of GA-HDH. We do that by showing the opposite
direction, namely that the assumption is implied by the security of the corresponding scheme. This is
captured by the following two theorems.
Theorem 1. Let H : X × X → {0, 1}κ be a random oracle. For any quantum adversary A against
GA-PQ-StCDH making at most q queries to its decision oracle, there exists a quantum adversary B
against IND-CCA security of GA-HEG making at most q decapsulation queries and q+1 quantum random
oracle queries with

AdvGA-PQ-StCDH
EGA (A) ≤ 2 · AdvIND-CCA

GA-HEG (B) + 8(q + 1)2 + 1
2κ ,

and the running time of B is about that of A.
Theorem 2. Let H : {0, 1}∗ → {0, 1}κ be a random oracle. For any quantum adversary A against
GA-DPQ-StCDH making at most q queries to its decision oracles, there exists a quantum adversary
B against the CKS security of GA-HDH making 2 queries to the RegisterHonest oracle, at most q
queries to the RegisterCorrupt oracle and q + 1 quantum random oracle queries with

AdvGA-DPQ-StCDH
EGA (A) ≤ 2 · AdvCKS

GA-HDH(B) + 8(q + 1)2 + 1
2κ ,

and the running time of B is about that of A.
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Games G1-G5

00 g $← G
01 h $← G
02 ĝ $← G \ {e} \\G3-G5

03 z ← AO(·,|·〉)(g ? x̃, h ? x̃)
04 return Jz = gh ? x̃K

Oracle O(x1, x2)
05 Let a := e \\G2-G5

06 if x1 = h ? x̃ : Let a := ĝ \\G3-G5

07 return JDecaps(g, a ? x1) = H(a ? x1, a ? x2)K \\G5

08 return JH(a ? x1, (a · g) ? x1) = H(a ? x1, a ? x2)K \\G4

09 return J(a ? x1, (a · g) ? x1) = (a ? x1, a ? x2)K \\G2-G3

10 return Jg ? x1 = x2K \\G1

Fig. 5. Games G1-G5 for the proof of Theorem 1.

We will prove Theorem 1 below. The proof of Theorem 2 is very similar and we refer to Appendix D.2
for more details.

Proof (of Theorem 1). The idea of the proof is to construct a reduction which implements the decision
oracle using the decapsulation oracle by testing whether Decaps(x1) = H(x1, x2) on a decision oracle
query O(x1, x2). Whenever O(x1, x2) returns 1, so will Decaps(x1) = H(x1, x2), except when x1 is the
challenge ciphertext. Therefore, whenever x1 is the challenge ciphertext, the reduction is going to do the
same test, except that it first “shifts” x1 and x2 by some other group element ĝ. After simulating all
decision oracle queries, the reduction returns whether the challenge KEM key K does not equal H(c∗, z)
where z is the group action CDH solution obtained by A. We now proceed with the formal proof.

Let A be a quantum adversary as described in Theorem 1. Consider the sequence of games given in
Figure 5.
Game G1. This is the GA-PQ-StCDH game, where O = GA-DDHg. By definition,

Pr[GA1 ⇒ 1] = AdvGA-PQ-StCDH
EGA (A) .

Game G2. In this game, instead of returning whether g ? x1 = x2, the decision oracle returns whether
(x1, g ?x1) = (x1, x2). In order to prepare for the next game hop, we additionally introduce a new variable
a which denotes a group element. In G2, a is always the neutral element e of G, thus applying a on any
set element does not have any effect. Since we always have x1 = x1, the check in line 09 is the same as
in line 10. Hence we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
Game G3. In this game we sample a group element ĝ $← G \ {e} uniformly at random in line 02. For all
queries (x1, x2) to O, where x1 = h ? x̃, we now set a to ĝ. In this case, this will change the boolean test
in line 09. However, since the group action operation is a bijection, this change is only conceptual. The
reason for doing this, is that in the final reduction we are going to set h ? x̃ to be the challenge ciphertext
c∗ which we cannot query to the decapsulation oracle. Shifting by ĝ in the case that x1 = h ? x̃ will allow
us to still simulate O. We get Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
Game G4. In this game we perform the boolean test by first hashing both sides using a random oracle.
In particular, we check if H(a ? x1, (a ? g) ? x1) = H(a ? x1, a ? x2) in line 08. This introduces false positives
into the decision oracle, when for any x̂1 ∈ X we have that H(x̂1, g ? x̂1) has preimages of the form
(x̂1, x̂2) with x̂2 6= g ? x̂1. We can bound this change by reducing to the GDP problem, which we do in
Figure 6. In particular, for every (x̂1, x̂2) we have F(x̂1, x̂2) returns 1 with probability λ := 1/2κ, which is
the probability to find a second preimage for H(x̂1, g ? x̂1). If F is the zero function, the distinguisher D
simulates G3 and otherwise it simulates G4. Thus by eq. (2) of Lemma 2 where we have set λ := 1/2κ
we have ∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]

∣∣
=
∣∣∣Pr[GDPDF,0 ⇒ 1]− Pr[GDPDF,1 ⇒ 1]

∣∣∣ ≤ 8(q + 1)2/2κ .

Game G5. In this game we change the boolean test again and check whether Decaps(g, a ? x1) = H(a ?
x1, a ? x2) in line 07. By definition of decapsulation, this change is again only conceptual. We have
Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

It remains to bound G5. We claim

Pr[GA5 ⇒ 1] ≤ 2 · AdvIND-CCA
GA-HEG (B) + 1/2κ . (3)
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Distinguisher DF

00 g $← G
01 h $← G
02 ĝ $← G \ {e}
03 z ← AO(·,|·〉)(g ? x̃, h ? x̃)
04 return Jz = gh ? x̃K

Oracle O(x1, x2)
05 if g ? x1 = x2 return 1
06 if x1 = h ? x̃
07 return F(ĝ ? x1, ĝ ? x2)
08 else
09 return F(x1, x2)

Fig. 6. Distinguisher D for the Generic Distinguishing Problem to bound G4-G5.

Adversary BDecaps,H(pk, c∗,K)
00 ĝ $← G \ {e}
01 z ← AO(·,|·〉)(pk, c∗)
02 return JK 6= H(c∗, z)K

Oracle O(x1, x2)
03 if x1 = c∗
04 return JDecaps(ĝ ?x1) = H(ĝ ?x1, ĝ ?x2)K
05 return JDecaps(x1) = H(x1, x2)K

Fig. 7. Adversary B against IND-CCA security for bounding G6.

The adversary B in Figure 7 simulates G5 as follows: it runs A on its own inputs (pk, c∗), thus defining
g ? x̃ := pk and h ? x̃ := c∗. Note that it can simulate oracle O as in G5 using its own Decaps oracle
and random oracle H provided by the IND-CCA challenger. If A queries O on the challenge ciphertext
c∗, we make use of the additional element ĝ, thus B never queries Decaps on the challenge ciphertext.
Finally A outputs z. If H(c∗, z) = K∗, where K∗ is the challenge key B received at the beginning, it
returns 0 (real), otherwise it returns b′ := 1 (random). Clearly, if A computes z as gh ? x̃, B always wins
the IND-CCA game when it is in the real world. In the random world, it will win only with probability
1− 1/2κ since the challenge key might be the same as the real key with probability 1/2κ. When z is not
the correct solution and K is the real key, then B will only win if the output of H still coincides with K ,
i.e. with probability 1/2κ. However, if K is a random key, B will win again with probability 1 − 1/2κ.
Collecting the conditional probabilities yields the bound claimed in eq. (3).

It remains to analyze the running time of B and its additional oracle calls. B runs A once and for
every query to O, B makes one call to the decapsulation oracle and random oracle. After running A it
makes one additional call to the random oracle, which yields the claimed number of additional oracle
calls, which concludes our proof. ut

Remark 2. Quantum-secure signatures and public-key encryption schemes have been studied in [10],
where the adversary gets quantum access to the signing and decryption oracle, respectively. One can
show that the Quantum IND-CCA (IND-qCCA) security of GA-HEG is equivalent to the GA-FQ-StCDH
assumption, that is the assumption is necessary and sufficient. The proof that IND-qCCA implies the
GA-FQ-StCDH assumption is the same as the proof of Theorem 1. Therefore, observe that since the first
input of the decision oracle is not measured, the reduction needs a quantum-accessible decapsulation
oracle, which is provided by the IND-qCCA game. The sufficiency follows by observing that the reduction
in the proof of Theorem 3 can actually simulate quantum decapsulation queries. We leave it as an open
problem whether the GA-PQ-StCDH assumption is sufficient for IND-CCA security GA-HEG.

4 Security of Group Action Hashed ElGamal and NIKE

We now prove security of the two schemes in the quantum random oracle model. In particular, we prove
IND-CCA security of GA-HEG under the GA-FQ-StCDH assumption and CKS security of GA-HDH under
the GA-DFQ-StCDH assumption, i.e., with full quantum access to the decision oracle.

Due to our results in Section 3.2, we cannot hope to prove security of the (un-modified) schemes
based on assumptions without quantum access. However, adding key confirmation to GA-HEG allows us
to do so. We elaborate in more detail in Section 4.2. Unfortunately, key confirmation cannot be applied
in the context of non-interactive schemes such as GA-HDH.

4.1 Security of GA-HEG

The following theorem states security of GA-HEG based on the GA-FQ-StCDH assumption. For the proof
we will use the MRM O2H lemma (Lemma 1).
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Games G1-G5

00 sk := g $← G
01 pk := x := g ? x̃
02 b $← {0, 1}
03 r $← G
04 c∗ := r ? x̃
05 K0 := H(c∗, r ? pk)
06 H[(c∗, r ? pk)] $← {0, 1}κ \\G5

07 K1
$← {0, 1}κ

08 b′ ← AH,Dec(pk, c∗,Kb)
09 return Jb = b′K

Oracle Decaps(sk, c)
10 if c = c∗ return ⊥
11 return H1(c) \\G4-G5

12 return H(c, sk ? c)

Oracle H(x1, x2) \\G2-G5

13 if (x1, x2) = (x1, g ? x1)
14 return H1(x1) \\G3-G5

15 return H1(x1, x2)
16 return H2(x1, x2)

Fig. 8. Games G1-G5 for the proof of Theorem 3, where H1 and H2 are internal random oracles.

Remark 3. Alternatively, we could use the O2H variant of [8] (also for proving GA-Twin-HEGm) by using
its extractor in the proof, yielding a bound of

√
Adv. Since both versions are applicable, one can essentially

choose between a quadratic loss independent of the adversary’s query depth or a linear loss in the query
depth. To keep proofs and theorems simple, we only prove the bound using MRM.

Theorem 3. For any quantum adversary A against IND-CCA security of GA-HEG that issues at most
q queries to the quantum-accessible random oracle H of query depth d with query parallelism p := q/d,
there exists an adversary B against GA-FQ-StCDH such that

AdvIND-CCA
GA-HEG (A) ≤ 4dAdvGA-FQ-StCDH

EGA (B) ,

and the running time of B is about three times that of A plus at most O(q + p) queries to the decision
oracle and the time to simulate up to O(max{qD, q}) random oracle queries, where qD is the number of
decapsulation queries.

Proof. Let A be a quantum adversary as described in Theorem 3. Consider the games given in Figure 8.
We proceed by analyzing the different games.
Game G1. This is the IND-CCA game where we unfolded the definition of GA-HEG. By definition,∣∣Pr[GA1 ⇒ 1]− 1/2

∣∣ = AdvIND-CCA
GA-HEG (A) .

Game G2. Here we introduce the following conceptual change: the random oracle H is simulated using
two internal random oracles H1 and H2, where the first one is used on valid DH tuples, and the second on
invalid ones. For this change to be meaningful (i.e., simulatable) later on, we need a quantum-accessible
decision oracle, which is provided by the GA-FQ-StCDH assumption. Clearly, the change is only conceptual
and we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
Game G3. Next, we drop the input x2 in the case where the random oracle H1 is used, that is we return
H1(x1) instead of H1(x1, x2). Since relative to pk and x1 there exists a unique x2 s.t. (x1, x2) = (x1, g ? x1),
due to the regularity property of EGA, this change is again only conceptual and we have Pr[GA2 ⇒ 1] =
Pr[GA3 ⇒ 1].
Game G4. In this game we remove the usage of the secret key in the random oracle calls of the decapsula-
tion oracle by returning H1(c) instead of H(c, g ?c). Note that the secret key is only used to check for the
DDH condition, which can be simulated with access to GA-DDHg(|·〉 , |·〉). Due to the previous conceptual
change H1(c) = H(c, g ? c) holds by definition and therefore this change is again only conceptual, thus
Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
Game G5. In this game we reprogram the random oracle on the challenge input (c∗, r ?pk), after querying
H(c∗, r ? pk) in line 06. Now K0 is identicially distributed as K1, therefore the key is now independent of
the challenge bit b and we have Pr[GA5 ⇒ 1] = 1/2. Due to Lemma 1 (MRM-O2H) we have∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ 4d Pr[GExt
6 ⇒ 1] ,

where GExt
6 is like GA4 , except that instead of running A, it runs the extraction algorithm ExtDecaps,H,H′

from the MRM-O2H lemma to obtain a set T and the winning condition is changed to JS ∩ T 6= ∅K,
where S := {(c∗, r ? pk)} and H′ is the reprogrammed random oracle.
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Adversary B|O〉(g ? x̃, h ? x̃)
00 pk := g ? x̃, c∗ := h ? x̃
01 K0,K1

$← {0, 1}κ, b $← {0, 1}
02 T ← ExtH,H′,Dec(pk, c∗,Kb)
03 for (a, z) ∈ T \\ |T | = p
04 if a = h ? x̃ ∧O(a, z) = 1
05 return z \\= gh ? x̃
06 return ⊥

Oracle Decaps(sk, c)
07 if c = c∗ return ⊥
08 return H1(c)

Oracle H/H′(x1, x2)
09 if O(x1, x2) = 1
10 if x1 = c∗ return K0 \\H only
11 return H1(x1)
12 return H2(x1, x2)

Fig. 9. Adversary B for the game-hop G4-G5 for the proof of Theorem 3. H1 and H2 are internal random oracles.
The oracle O is the GA-DDHg oracle.

Gen
00 sk := g $← G
01 pk := x := g ? x̃
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 c := r ? x̃
05 d := G(c, r ? pk)
06 K := H(c, r ? pk)
07 return (ct := (c, d),K)

Decaps(sk, ct)
08 z := sk ? c
09 if G(c, z) 6= d
10 return ⊥
11 K := H(c, z)
12 return K

Fig. 10. Key encapsulation mechanism GA-HEG-KC for an effective group action EGA = (G,X , ?, x̃), where
G : X × X → {0, 1}n and H : X × X → {0, 1}κ are hash functions.

We bound the right-hand probability by the adversary B given in Figure 9, which runs the extraction
algorithm simulating Decaps and H as in G4 and H′ (the reprogrammed H) as in G5. Observe that B can
simulate quantum decapsulation queries, since it has quantum access to H1, which is why we can apply
the MRM-O2H lemma. Since B wins if S ∩ T 6= ∅, we have

Pr[GExt
6 ⇒ 1] ≤ AdvGA-FQ-StCDH

EGA (B) .

Combining all inequalities yields the claimed bound. We conclude our proof by analyzing the running
time of B. B runs the extraction algorithm Ext, whose running time is at most three times that of A.
For every run of A, it has to simulate at most max{qD, q} calls to H1 and q calls to H2 (through H, H′),
where it calls O on every query. Then, after obtaining T , it makes at most p queries to O, thus q + p
total queries to O. Multiplying the parts of simulating A by 3, adding up and applying O notation yields
the claimed running time and additional oracle calls, which concludes our proof. ut

4.2 Security of GA-HEG via Key Confirmation

We recall the Hashed ElGamal scheme with key confirmation in Figure 10. We denote this scheme
by GA-HEG-KC. Compared to the original scheme in Figure 3, we now have a second hash function
G : X ×X → {0, 1}n which is used to compute an additional ciphertext element d. The input to this hash
function is the same as for the final key. The decapsulation algorithm now first checks if d is valid by
recomputing it. If this check passes, the actual key is computed and returned, otherwise the algorithm
outputs a failure symbol ⊥.

Theorem 4 establishes security of GA-HEG-KC based on the GA-StCDH assumption, that is without
quantum access to the decision oracle. One reason for the looser bound is that the classical decision
oracle does not enable us to apply the more recent O2H lemmata. The other is that we have to first
apply O2H, before applying the extractable RO simulator.

Theorem 4. Let G : X × X → {0, 1}n be a random oracle. For any quantum adversary A against
IND-CCA security of GA-HEG-KC that issues at most d parallel queries each of size p (in total q := dp
queries) to the quantum-accessible random oracles H and G and qD decapsulation queries, there exists an
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adversary B against the GA-StCDH such that

AdvIND-CCA
GA-HEG-KC(A) ≤ 2d

√
AdvGA-StCDH

EGA (B) + 8(q + 1)2

2n +

√
32qD(qD + q)√

2n

+
√

4qD
2n +

√
40e2(q + 2qD + 2)3

2n ,

and the running time of B is about that of A plus the running time for using extractable random-oracle
simulator for qD extraction queries and q hash queries, which is about O(q · qD + q2) and simulating H
for q queries, additionally B makes at most qD + p queries to its decision oracle.
Note that n depends on the desired security level. Due to the fourth root term, n needs to be around
four times the security parameter in bits. We discuss this in more detail in Section 6. We will now sketch
the proof of Theorem 4. The full proof can be found in Appendix C.2.
Proof (Sketch). After some simple changes we first reprogram the random oracle H and G on the chal-
lenge inputs using O2H. Then the main idea of the proof is to simulate the random oracle G using the
extractable random-oracle simulator from Definition 11. The reduction can then simulate decapsulation
queries by extracting the inputs from the key-confirmation hash and verify the validity using the decision
oracle GA-DDH(g ? x̃, ·, ·). Note that since the decapsulation oracle is classical, the extracted values are
also classical and we only need classical access to GA-DDH(g ? x̃, ·, ·). Once we can simulate decapsulation
without the secret key using the classical decision oracle, we can reduce the game to the GA-StCDH
problem. ut

4.3 Security of GA-HDH
The following theorem establishes security of GA-HDH based on the GA-DFQ-StCDH assumption. As
opposed to the proof of GA-HEG, we have to use the semi-classical variant of the O2H lemma which
yields a worse bound. We explain the reason in Appendix D.1.
Theorem 5. For any quantum adversary A against the CKS security of GA-HDH that issues at most d
parallel queries, each of size p, to the quantum-accessible random oracle H, there exists an adversary B
against GA-DFQ-StCDH such that

AdvCKS
GA-HDH(A) ≤

√
8(d + 1)AdvGA-DFQ-StCDH

EGA (B) ,

and the running time of B is about three times that of A plus O(q + p) queries to the decision oracle
and the running time for simulating O(max{d · p, qR, qT}) queries to the random oracle and O(qO)
rerandomizations on the set elements, where qO, qR and qT are the number of register-honest, reveal and
test queries.
We will only sketch the proof here. The full proof can be found in Appendix D.3.
Proof (Sketch). As in the proof of Theorem 3, our goal is to use a variant of the O2H lemma in order to
randomize all challenge keys and bound the advantage of the O2H extractor using the GA-DFQ-StCDH
assumption. However, instead of just a decapsulation oracle, we have to simulate the CorruptReveal
oracle and the Test oracle. Although the adversary is allowed to choose identities for honest keys, we
can compute all honest keys before the adversary can make any queries, so we can vary the behavior
of the random oracle when it interacts with honest or corrupted keys. Note that this technique is not
generally possible as the key generation could depend on the provided ID in other schemes. This allows
to only hash (ID1, ID1, pk1, pk2) without the shared DH value between pk1 and pk2, when at least one
key is honest. Additionally, we can use a different internal random oracle, when both keys are honest. In
the final reduction on GA-DFQ-StCDH, we embed the challenge set elements into the public keys using
rerandomization. For each public key, we randomly choose which challenge element we use such that the
adversary will issue a test query at least for one pair of identities containing both challenge elements.
We can check whether quantum random oracle queries contain valid DH tuples using quantum access to
the decision oracles. Then we can use the O2H lemma in its semi-classical variant and bound the success
probability of its extractor with the GA-DFQ-StCDH assumption. ut
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5 Twinning for Group Actions

In this section, we adapt the twinning technique from [11] to the group actions setting. Due to the limited
structure that group actions offer, we need a novel approach to develop and analyze the underlying
trapdoor test. The trapdoor test will allow us to effectively simulate a decision oracle, apart from a small
error probability. In contrast to the original twinning approach, the analysis of the error term is more
involved and depends on an additional parameter m, which affects the “twinning factor”. To illustrate
this in an example: whereas in the traditional prime-order group setting, twinning doubles the size of
public keys, the group action twinning technique will result in a public key of length m.

Using this technique we get two new schemes GA-Twin-HEGm and GA-Twin-HDHm, the twinned
versions of GA-HEG and GA-HDH, which will be presented and analyzed in Sections 5.2 and 5.3. It allows
us to remove the strong variants of GA-CDH including quantum access to decision oracles in the security
proofs. Consequently we obtain a proof based on the standard GA-CDH assumption, albeit in exchange
for larger keys and overall increased computation cost. Nevertheless, using our new twinning technique
is thus far the only known method that allows for a security proof of a NIKE scheme from standard
assumptions in the QROM. In Section 6 we discuss different parameter choices for m.

5.1 A Trapdoor Test

In order to replace the GA-(FQ-)StCDH assumption, an algorithm must be able to simulate the decision
oracle GA-DDHg without knowing g explicitly. The following trapdoor test will be our basic tool to
achieve this task.

Lemma 3 (Trapdoor Test). Let EGA = (G,X , ?, x̃), `,m ∈ N such that 1 < ` < m/2. Suppose
x0, x1, ..., x`−1, s`, ..., sm, h`, ..., hm are mutually independent random variables, where x0, x1, ..., x`−1 take
values in X , and for all i ∈ [`,m] si are uniformly distributed over [0, `−1] with the additional condition
that each value in [0, `− 1] is taken at least once. Further, for all i ∈ [`,m] hi are uniformly distributed
over G. Define random variables x`, ..., xm, where xi = hi ? xsi for i ∈ [`,m]. Further, let gi ∈ G such that
xi = gi ? x̃ for every i ∈ [m]. In addition, suppose that z̄0, z̄1, ..., z̄m are random variables taking values in
X .

We define

F0(z̄0, . . . , z̄m) :=
{

1 if z̄i = hi ? z̄si ∀i ∈ [`,m]
0 else

(4)

and

F1(z̄0, . . . , z̄m) :=
{

1 if z̄i = gi ? z̄0 ∀i ∈ [m]
0 else

(5)

and the advantage of an adversary A in distinguishing F0 from F1 with oracle access to one of the two
functions and making at most q queries of depth d as

AdvTDT
EGA,q,d,`,m(A) :=

∣∣Pr[AF0 ⇒ 1]− Pr[AF1 ⇒ 1]
∣∣

We call eq. (4) the Trapdoor Test. The following properties hold:
1. x`, ..., xm are uniformly distributed over X ;
2. xi and xj are independent for all i ∈ [0, `− 1], j ∈ [`,m];
3. if F1(z) = 1, then also F0(z) = 1 for any input vector ~z;
4. for any classical (quantum) adversary A with oracle access to Fb for b ∈ {0, 1}, the probability that
A outputs 1 after at most q queries to Fb with query depth d is upper-bounded by the advantage
of a classical (quantum) adversary B against the GDP problem for a function T : Y → {0, 1} with
Pr[T (x) = 1: x $← Y] ≤ 1

|Y| and |Y| = `!`m−2`+1 (see Remark 4). Specifically,

AdvTDT
EGA,q,d,`,m(A) ≤ AdvGDP

T,q,d(B) ≤


2q
|Y| (classical)

4
√

(d+1)q
|Y| (quantum) .
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Adversary BT
00 x0 := x̃
01 for i ∈ [m]
02 hi $← G
03 xi := hi ? x̃
04 b ← AF(x0, . . . , xm)
05 return b

Oracle F(z̄0, . . . , z̄m)
06 if z̄i = hi ? z̄0 for i ∈ [m]
07 return 1
08 t := Convert(z̄0, . . . , z̄m)
09 return T(t)

Function Convert(z0, . . . , zm)
10 for i ∈ [`,m]
11 for j ∈ [0, `− 1]
12 if zi = (hi · hj) ? z0
13 si := j
14 return map(s`, . . . , sm)

Fig. 11. Adversary B|T〉 against the GDP problem for the function T . The function “map” is the selected bijection
from the set of possible si into Y.

Proof. Properties 1. to 3. hold by inspection. For property 4., we build an adversary B on the GDP
problem from a successful distinguisher A of the trapdoor test. The proofs are identical for the classical
and quantum case as the oracles that B has to implement can all be defined as classical functions which
make classical queries to other oracles, so by making all oracles quantum, the proof does not change.

First note that if A only queries tuples z0, . . . , zm to its function Fb for which xi , z0, zi form a DH
tuple, then both oracles always behave identically, so we assume that it will not make such queries. Since
the si take all values in [0, ` − 1], for non-DH queries, the oracles differ only if A guesses all si used to
generate the xi correctly. In that case it could choose the first ` elements at random and set the last
m − ` + 1 elements to gi ? xsi , where the gi are the discrete logarithms of the i-th randomly chosen
element. If the si do not cover all values in [0, `− 1], this argument does not hold (see Remark 5).

We will construct an adversary B on the GDP problem for a function T , which will simulate the
function F1 if T is the all-zero function and F0, i.e. the trapdoor test, if not. Specifically, let T : Y → {0, 1}
such that there is a bijective mapping from Y into the set of all possible combinations of si .

We describe B in Figure 11. First, B sets x0 to the origin element x̃ and chooses m random elements
x1, . . . xm and runs A on them as input. When A makes a query to F , B first checks if A provided a valid
DH tuple and if so, returns 1. Otherwise, it computes which si were (implicitly) chosen to generate the
query and maps them to the unique element they correspond to in Y. Then it queries this element to its
own function T and returns the result.

If T is the all-zero function, then F only returns 1 if the first check succeeds, i.e., F is equal to F1
from eq. (5). Otherwise, there is exactly one entry in T for which it returns 1. Therefore, by returning
the result of the query to T , B implicitly chooses its si as the ones corresponding to said entry in T and
therefore simulates F0 from eq. (4). So by outputting the same result as A, B wins if and only if A wins
and the claim follows. The quantum bound then follows directly from Lemma 2. ut

Remark 4 (Sampling si). Let `,m ∈ N as in Lemma 3 and k = m − `+ 1. Define

Y∗ = {(s`, . . . , sm) ∈ [0, `− 1]k | ∀i ∈ [0, `− 1] ∃j : sj = i}.

In principal this is the set of possible values for the (s`, . . . , sm) from the lemma. The cardinality of Y∗
may be described by the Stirling partition number multiplied by `!, more precisely

|Y∗| = `! ·
{
k
`

}
=

d∑
i=0

(−1)i
(
`

i

)
(`− i)k .

One possibility to sample randomly from the entire set Y∗ is rejection sampling from [0, `−1]k . Since this
is not very practical, we suggest the following sampling method which samples from the strictly smaller
subset Y of size `!`k−`.

In order to ensure that the si take each value in [0, ` − 1], we first sample exactly these ` elements
and then sample the remaining k − ` elements uniformly at random from [0, `− 1].

Remark 5 (Necessity of the condition on si). The assumption that each value in [0, `−1] is taken at least
once by the si is a necessary assumption. Otherwise, an adversary can simply guess a value α ∈ [0, `− 1]
that is not taken by the si and subsequently choose z̄α randomly while computing all other z̄i honestly.
This would lead to

1 = F0(z̄0, ..., z̄α, ..., z̄m) 6= F1(z̄0, ..., z̄α, ..., z̄m) = 0
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Gen
00 sk := (h1, ..., hm) $← Gm
01 pk := (y1, ..., ym) := (h1 ? x̃, ...hm ? x̃)
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 ct := r ? x̃
05 K := H(ct, r ? y1, ..., r ? ym)
06 return (ct,K)

Decaps(sk, ct)
07 K := H(ct, h1 ? ct, ..., hm ? ct)
08 return K

Fig. 12. Twin Hashed ElGamal KEM GA-Twin-HEGm with twinning parameter m. H : Xm+1 → {0, 1}κ is a hash
function.

because z̄α is never used on the right side of z̄i = hi ? z̄si during the trapdoor test in (4). Therefore, the
adversary is able to distinguish both functions without guessing all si which prevents the aforementioned
reduction.

In order to use the trapdoor test in security proofs, we need to choose m and ` such that the advantage
defined above becomes a small statistical factor. In Section 6, we compute these values for a security
level of 128 bits.

5.2 Twin Hashed ElGamal

Applying the twinning technique to Hashed ElGamal yields the Twin Hashed ElGamal encryption scheme
GA-Twin-HEGm for an integer m ∈ N, which is formally described in Figure 12. While twinning signifi-
cantly increases the public key size and computation for both encapsulation and decapsulation, it allows
us to prove its IND-CCA security without the use of strong variants of the GA-CDH problem. Furthermore,
the ciphertext still consists of only one element.

Theorem 6. Let `,m ∈ N such that 1 < ` < m/2. For any quantum adversary A against IND-CCA
security of GA-Twin-HEGm that issues at most q queries to the quantum-accessible random oracle H with
query depth d, there exists a quantum adversary B against GA-CDH such that

AdvIND-CCA
GA-Twin-HEGm (A) ≤ 4dAdvGA-CDH

EGA (B) + 4
√

(d + 1)q
`!`m−2`+1 ,

and the running time of B is about three times that of A plus the time to simulate O(max{q, qD}) queries
to H, where qD is the number of decapsulation queries.

We will only sketch the proof here and refer to Appendix C.3 for the full proof. In fact, it is similar to
the one of Theorem 3, only that we use the trapdoor test whenever the other proof uses the decision
oracle.

Proof (Sketch). Let A be a quantum adversary in the IND-CCA game. Our goal is to construct an
adversary B against GA-CDH. The main question is how B simulates decapsulation queries. Therefore,
let H1 and H2 be internal random oracles, the first is used for valid DH tuples and the second for invalid
ones. Since for every ciphertext element x1 there exists a unique vector of m set elements s.t. these form a
DH tuple with the public key set elements, the output of H1 only depends on x1. We can check if a query
consists of valid DH tuples using the trapdoor test. After this change, B can simulate decapsulation
queries by just returning H1(x1). Next, we can apply the MRM-O2H lemma to reprogram H on the
challenge ciphertext c∗ and the corresponding DH tuples (sk[i] ? c∗)i∈[m]. For this the adversary B needs
to be able to simulate H and H′ (the reprogrammed H), which it can do using the trapdoor test. Note
that since we applied the variant which considers parallel random oracle queries, the measured inputs
are a set of size p. Due to the trapdoor test B can find the correct solution. In the final game, since
the key K∗ is now independent of the bit b, the adversary wins the game with probability 1/2 and the
claimed bound follows. ut

5.3 Twin NIKE

We construct a NIKE scheme GA-Twin-HDHm from an effective group action EGA = (G,X , ?, x̃), which
defines the public parameters pp together with an integer m ∈ N and a hash function H : {0, 1}∗ →
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{0, 1}κ, thus defining SHK = {0, 1}κ. As in Section 3, we assume that the identities can be represented
by bitstrings of fixed length µ. On input an ID, the key generation algorithm chooses m group elements
(g1, ..., gm) $← Gm which form the secret key skID. The public key is computed as pkID = (g1?x̃, ..., gm?x̃) ∈
Xm. The shared key of an identity ID1 with public key pkID1 = (x1, ..., xm) and an identity ID2 with secret
key skID2 = (g1, ..., gm) is defined as

K =
{

H(ID1, ID2, pkID1 , pkID2 , g1 ? x1, ..., g1 ? xm, ..., gm ? x1, ..., gm ? xm) if ID1 < ID2

H(ID2, ID1, pkID2 , pkID1 , g1 ? x1, ..., gm ? x1, ..., g1 ? xm, ..., gm ? xm) if ID2 < ID1

See Figure 13 for a schematic overview of our construction.
Again, twinning significantly increases the public key size and computation of GA-Twin-HDHm com-

pared to GA-HDH, but allows us to use the same techniques as in Theorem 6 to prove security without
relying on strong assumptions. This is formalized in Theorem 7.

Alice A Bob B
skA = (a1, ..., am) $← Gm skB = (b1, ..., bm) $← Gm

pkA = (xA
1 , ..., xA

m) = (a1 ? x̃, ..., am ? x̃) pkB = (xB
1 , ..., xB

m) = (b1 ? x̃, ..., bm ? x̃)

for i ∈ [m], j ∈ [m] for i ∈ [m], j ∈ [m]
zi,j := ai ? xB

j zi,j := bj ? xA
i

K := H(A,B, pkA, pkB, z1,1, ..., z1,m , ..., zm,1, ..., zm,m)

Fig. 13. Our NIKE Protocol GA-Twin-HDHm .

Theorem 7. Let `,m ∈ N such that 1 < ` < m/2. For any quantum adversary A against the CKS
security of GA-Twin-HDHm that issues at most q queries to the quantum-accessible random oracle H of
query depth d, there exists a quantum adversary B against GA-CDH such that

AdvCKS
GA-Twin-HDHm (A) ≤

√
8dAdvGA-CDH

EGA (B) + 4
√

(d + 1)q
`!`m−2`+1 ,

and the running time of B is about three times that of A plus the time needed to simulate O(max{q, qR, qT})
queries to the random oracle, to perform O(qO) rerandomizations on set elements and to run the trapdoor
test O(q) times, where qO, qR and qT are the number of register-honest, reveal and test queries.

The proof is similar to the proof of Theorem 5 with the main difference that we use the trapdoor test
whenever the other proof used the decision oracles. We defer the complete proof to Appendix D.4.

Proof (Sketch). As in the KEM proof, our goal is to use a variant of the O2H lemma in order to randomize
all challenge keys and bound the advantage of the O2H extractor using the GA-CDH assumption. However,
instead of just a decapsulation oracle, we have to simulate the CorruptReveal and Test oracles.
Although the adversary is allowed to choose identities for honest keys, we can compute the public keys
before it makes any queries, so we can vary the behavior of the random oracle when it interacts with
honest or corrupted keys. Note that this technique is not generally possible as the key generation could
depend on the provided ID in other schemes. This allows us to make similar conceptual changes as in
the KEM proof, where we only hash (ID1, ID1, pk1, pk2) without the zi,j , when at least one key is honest.
Additionally, we can use a different internal random oracle, when both keys are honest. By using the
trapdoor test, we can remove the need for the secret keys completely. Finally, we can use the O2H
lemma in its semi-classical variant and bound the success probability of its extractor with the GA-CDH
assumption. For a discussion on why we cannot use the MRM variant, see Appendix D.1. ut
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Scheme |pk| |ct| Gen Encaps Decaps Assumption Bound

GA-HEG (Fig. 3) |X | |X | 1 2 1 GA-FQ-StCDH d Adv

GA-HEG-KC (Fig. 10) |X | |X |+ 4λ 1 2 1 GA-StCDH d
√

Adv

GA-Twin-HEGm (Fig. 12) m · |X | |X | m m + 1 m GA-CDH d Adv

GA-EG-FO [12,16] |X | |X |+ 2λ 1 2 2 GA-CDH q
√

Adv

GA-EG-FO [12,31] |X | |X |+ 3λ 1 2 2 GA-DDH d2Adv

GA-HDH (Fig. 4) |X | - 1 1 (SharedKey) GA-DFQ-StCDH
√

d Adv

GA-Twin-HDHm (Fig. 13) m - m m2 (SharedKey) GA-CDH
√

d Adv

Table 1. Overview of our different protocols and comparison to FO variants. By |X | we denote the length of
a set element in bits. The columns “Gen”, “Encaps” and “Decaps” state the number of group action evaluations
that are needed in order to perform the corresponding algorithm. For NIKE schemes this refers to the SharedKey
algorithm. Bounds are stated without statistical terms and q, d denote the number of random oracle queries and
the query-depth. The security parameter is denoted by λ. For λ = 128 bit security, we need m = 85. For FO-EG
we assume the implicit rejection variants.

6 Parameter Choices and Comparison

In order to compare the different schemes we need to elaborate on the parameter n, which is the bit
length of the output of hash function G in the hashed ElGamal scheme with key confirmation, and the
twinning parameter m. Both depend on the desired security level which is usually stated in bits. Taking
the corresponding terms in the bounds of Theorems 4 and 6 into account, we determine the success ratio
of an adversary A. The success ratio of A is computed as its advantage εA divided by its running time
tA [22]. For λ-bit security, we then require εA/tA ≤ 2−λ.

Key Confirmation. The output of the hash function G determines the length of the second ciphertext
element. In order to determine the length, we analyze the statistical terms in Theorem 4. Note the one
with the fourth root is the most dominating one. Thus, for λ-bit security, we need to set n ≈ 4λ, where
we assume qD ≤ q / tA and ignore additive constants.

Twinning. The efficiency of the Twin ElGamal encryption scheme GA-Twin-HEGm and the Twin NIKE
scheme GA-Twin-HDHm depends on the twinning parameter m which directly translates to the length
of the public key. The security level is determined by the value of `!`m−2`+1, where ` ∈ [1,m/2] may be
chosen arbitrarily. Note that ` only appears in the proofs of Theorem 6 and Theorem 7, hence it has no
direct effect on the corresponding protocols.

Again, we only analyze the statistical term in the bound. For λ-bit security, we need

4
tA
·
√

(d + 1)q
`!`m−2`+1 ≤ 2−λ.

Similar as before, we may assume that d ≤ q / tA, hence for an optimal success ratio an adversary
would choose d = q. This means that we need to choose m large enough so that `!`m−2`+1 ≥ 22λ+4 for
some ` ∈ [1,m/2]. As an example, for λ = 128, optimality is achieved by m = 85 (with ` = 17).

Instantiation of the Group Action. Every set element x ∈ X is represented by a bitstring. In CSIDH
the length of this bitstring is log(p), where the size of X is in O(√p). Choosing the correct parameter
size for CSIDH is an actively discussed topic in the community. Castryck et al. [12] propose a 1792-bit
prime p to achieve λ = 128 bit quantum security.

Comparison. Table 1 provides an overview of the schemes analyzed in this paper and a comparison to
the ElGamal KEMs that can be obtained by the FO transform. The base scheme is the most efficient
one, with one ciphertext element and two group action evaluations for Encaps. It also achieves the best
QROM bound without any square root terms, but it relies on the strongest non-standard assumption.
Hashed ElGamal with key confirmation has a slightly larger ciphertext and comes with a worse bound,
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however, it relies only on the GA-StCDH assumption. Since twinning cannot be done efficiently in the
group action setting, the twinned version of hashed ElGamal is the least efficient in terms of public key
size and group action computation. Nevertheless, the ciphertext still consists of only one set element
and we get security based on the standard GA-CDH assumption. At this point we want to stress again
that this seems the only way to construct an actively-secure NIKE based on a standard assumption.
Otherwise, one has to rely on the assumption with a quantum-accessible decision oracle.
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A CSIDH: An Isogeny-based REGA

An important instantiation of REGAs is provided by isogeny-based group actions, in particular by CSIDH.
Let p be a large prime of the form p = 4 · `1 · · · `n − 1, where the `i are small distinct odd primes.

Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve E0 is supersingular and its Fp-rational
endomorphism ring is O = Z[π], where π is the Frobenius endomorphism. Let È `p(O) be the set of
elliptic curves defined over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set
È `p(O), i.e. there is a map

? : cl(O)× È `p(O)→ È `p(O)
([a],E) 7→ [a] ? E ,

satisfying the properties from Definition 3 [12, Theorem 7]. Moreover the analysis in [12] readily shows
that (cl(O), È `p(O), ?,E0 ) is indeed a REGA.

Remark 6. As pointed in the original paper [12], an inherent property of the CSIDH group is that given
E = [a] ? E0 ∈ È `p(O), one can efficiently compute the quadratic twist E t = [a]−1 ? E0. This property
is not described in the cryptographic group action framework from [2]. However this should not affect
the security of our protocols, since we only rely on variants of the standard group action computational
Diffie-Hellman problem and (so far) no attacks using twists are known on this assumption.

B Quantum Preliminaries

We recall some quantum computation preliminaries as stated in [17].
Qubit. A qubit |x〉 = α |0〉+β |1〉 is a 2-dimensional unit vector with coefficients in C, i.e. x = (α, β) ∈ C2

fulfilling the normalization constraint |α|2 + |β|2 = 1. When neither α = 1 nor β = 1, we say that |x〉 is
in superposition.

n-qubit state. An n-bit quantum register |x〉 =
∑2n−1

i=1 αi |i〉 is a unit vector of C2n = (C2)⊗n, that is
αi ∈ C and

∑2n−1
i=0 |αi |2 = 1. We call the set {|0〉 , |1〉 , . . . , |2n − 1〉} the computational basis. When |x〉

can not be written as the tensor product of single qubits, we say that |x〉 is entangled.
Measurement. Unless otherwise stated, measurements are done in the computational basis. After
measuring a quantum register |x〉 =

∑2n−1
i=0 ai |i〉 in the computational basis, the state collapses and

|x〉 = ± |i〉 with probability |αi |2.
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Quantum Algorithms. A quantum algorithm A is a series of unitary operations Ui , where unitary
operations are defined as to map unit vectors to unit vectors, preserving the normalization constraint of
quantum registers. A quantum oracle algorithm AO is defined similarly, except it can query the oracle
O after (or before) executing a unitary Ui . Since quantum computation needs to be reversible, we model
an oracle O : X → Y by a unitary UO that maps |x〉 |y〉 7→ |x〉 |y ⊕O(x)〉.
Quantum Random Oracle Model. Following [9], we model quantum adversaries to have quantum
access to random oracles since quantum adversaries can evaluate hash functions in superposition.
Simulating Quantum Random Oracles. We can simulate quantum random oracles either by 2q-
wise independent functions [41] or using Zhandry’s Compressed Oracle technique [42]. The former is
only perfectly indistinguishable for up to q RO queries, while being conceptually simpler to understand.
The later has the advantage of not requiring an upper bound on q, with the disadvantage of being
more inaccessible for readers unfamiliar with the technique. For simplicity, the reader can imagine to
instantiate the reductions using the former, while for the theorems we use the later technique.
Quantum-Access of Oracles For an oracle O, we are going to write |O〉 to denote that an algorithm
has quantum-access on all inputs andO if it has not (which means that its inputs are implicitly measured).
For an oracle which allows partial quantum-access, we write |·〉 to denote the inputs which are quantum
(i.e., not measured), for example O(·, |·〉) means that the first input is classical (i.e., implicitly measured
on query) and the second is quantum. Alternatively to |O〉 we might also write O(|·〉 , |·〉), if O takes two
inputs. Since all our proofs are in the QROM, it is clear that the adversary has quantum-access to its
random oracles. Thus, we just write H instead of |H〉 for a random oracle H.
Query Depth and Query Parallelism. Following [5] we are going to consider the query depth d of an
adversary making in total q random oracle queries. This is important in practice since for highly-parallel
adversaries we have d � q. We obtain the bounds for sequential adversaries by setting d := q.

B.1 Oneway-to-Hiding Lemmas

Below, we recall the oneway-to-hiding lemma, which is used to reprogram random oracle values. Infor-
mally, Theorem 8 states that if a random oracle is reprogrammed on a set S ⊂ R of inputs, the probability
of an adversary A behaving differently can be related to the success probability of an extractor algorithm
B which extracts at least one element of S by measuring the query register of one of A’s randomly chosen
oracle queries.

Theorem 8 (Original O2H, Theorem 3 from the eprint version of [5]). Let S ⊂ R be random.
Let G,H be random functions satisfying ∀r /∈ S : G(r) = H(r). Let z be a random classical value.
(S,G,H, z may have arbitrary joint distribution.) Let A be a quantum oracle algorithm with query depth
d, expecting input z. Let Ext be the algorithm which on input z samples a uniform i from {1, . . . , d}, runs
A right before its ith query to G, measures all query input registers and outputs the set T of measurement
outcomes. Then ∣∣Pr[AG(z)⇒ 1]− Pr[AH(z)⇒ 1]

∣∣ ≤ 2d
√

Pr[S ∩ T 6= ∅ : T ← ExtH(z)].

Remark 7. As explained in [5] the O2H theorems also hold if the adversary A has access to additional
oracles, since those can be encoded using z. For improved readability we are still going to write down
the additional oracles as a superscript, that is AH,O = AH(O) and ExtH,O = ExtH(O) and reserve z for
the non-oracle inputs.

Definition 8 (Unitary Quantum Oracle Algorithm). Let q ∈ N. An algorithm AO is called a
unitary quantum oracle algorithm with query depth d and query parallelism p, if there are unitaries
U1, . . . ,Uq+1 such that A’s execution can be described as

A = Ud+1 ◦O⊗p ◦Ud ◦ . . . ◦O⊗p ◦U1,

where A’s output is defined as the measurement of its quantum state in the standard basis after applying
Ud+1. For multiple oracles it is defined analogously.
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Remark 8. At this point we want to highlight that we state the MRM O2H lemma (Lemma 1) slightly
different than in [31], Lemma 3.3, by limiting it to unitary/reversible algorithms. The reason is that
the property is used in the proof in order to rewind the adversary. Note that non-reversible quantum
algorithms can be efficiently turned into reversible quantum algorithms, using the deferred measurement
principle. One subtlety though is that if the quantum algorithm has access to classical oracles, which
implicitly measure their input, then the new reversible adversary has to get quantum-access to the oracle,
since the measurement is deferred to the end of the algorithm. Hence, the reduction needs to be able to
simulate this, once classical oracle, on quantum superpositions. This was observed by [27]. In the proofs
where we apply the MRM O2H lemma, we explain how to simulate quantum decapsulation queries,
which is why we can apply the MRM O2H lemma. In the CKS security model there are more oracles
available and it hence appears more difficult to show how to simulate them all quantumly, we dicuss this
difficulty in Appendix D.1. For a more thorough discussion of this issue, see [27].

Definition 9 (Semi-Classical and Punctured Oracles). Let f : X → {0, 1} be a function and
S ⊂ X a subset s.t. f (x) = 1 if and only if x ∈ S. The semi-classical oracle OSC

f (or equivalently OSC
S )

is defined as the composition of the unitary Uf and a measurement of the output register in the standard
basis.

Let AOSC
f (z) be a quantum algorithm which gets arbitrary input z and access to OSC

f . We call the event
that A queries OSC

f on an input that yields 1 Find.
Let H be another quantum oracle with domain X and some codomain Y . We define the punctured

oracle H \ S as a quantum oracle that first runs OSC
S and then H on the result.

Note that as long as Find does not occur, H and H \ S behave identically.

We now recall the semi-classical variant of the oneway-to-hiding lemma from [5].

Theorem 9 (Semi-Classical O2H ([5], Theorem 1)). Let S ⊂ R be random. Let G,H be random
functions satisfying ∀r /∈ S : G(r) = H(r). Let z be a random classical value. (S,G,H, z may have
arbitrary joint distribution.) Let A be a quantum oracle algorithm with query depth d, expecting input z
and

Pleft := Pr
[
b = 1

∣∣ b ← AG(z)
]
Pright := Pr

[
b = 1

∣∣ b ← AH(z)
]
Pfind := Pr

[
Find

∣∣∣ AG\S
]

Then
|Pleft − Pright| ≤ 2

√
(d + 1)PFind (6)

and
|
√
Pleft −

√
Pright| ≤ 2

√
(d + 1)PFind . (7)

We also recall a bound on the probability of Find occurring in this setting.

Theorem 10 (Search in Semi-Classical Oracles ([5], Theorem 2 and Corollary 1)). Let S ⊂ R
be random. Let G be a semi-classical oracle with domain R. Let z be a random classical value. (S,G,H, z
may have arbitrary joint distribution.) Let A be a quantum oracle algorithm with query depth d, expecting
input z. Let Ext be the algorithm which on input z samples a uniform i from {1, . . . , d}, runs AOSC

∅ right
before its ith query to G, measures all query input registers and outputs the set T of measurement
outcomes. Then

Pr[Find | AOSC
S (z)] ≤ 4d Pr[S ∩ T 6= ∅ | T ← ExtH(z)] .

Moreover, if S and z are independent and A is a q-query algorithm we have

Pr[Find | AOSC
S (z)] ≤ 4q · Pmax , (8)

where Pmax := maxx∈X Pr[x ∈ S].
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B.2 Proof of Lemma 2

Proof (Lemma 2). The proof is a simple consequence of the semi-classical O2H lemma, by just repro-
gramming the elements where F and the zero function K differ. In the search variant of the proof, the
authors of [5] could apply eq. (7), since the right-hand side of it vanishes, which yields a quadratically
better bound. In the decision variant the right-hand side does not vanish, so we use eq. (6) instead. Let
A be a q-query algorithm of depth d.
Game G1. We define GA1 to be GDPAF,1. By definition,

Pr[GA1 ⇒ 1] = Pr[GDPAF,1 ⇒ 1] .

Game G2. We reprogramm F on all elements which map to 1 to now map to 0, that is we define GA2 to
be GDPAF,0 and let S := {x ∈ X | F(x) = 1} . By eq. (6) of Theorem 9, we have∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 2
√

(d + 1) Pr
[
Find

∣∣ AF\S
]
. (9)

We bound the right-hand probability using eq. (8), we have

Pr
[
Find

∣∣∣ AF\S
]
≤ 4q · Pmax , (10)

where
Pmax := max

x∈X
Pr[x ∈ S] ≤ λ , (11)

by definition of F. Bounding eq. (10) by eq. (11) and eq. (9) by eq. (10) and moving 4 outside of the
square-root yields ∣∣∣Pr[GDPAF,0 ⇒ 1]− Pr[GDPAF,1 ⇒ 1]

∣∣∣ ≤ 4
√

(d + 1)qλ ,

which concludes our proof. ut

C Omitted Proofs for Hashed ElGamal Variants

In this section we provide the proofs for the hashed ElGamal variants GA-HEG-KC and GA-Twin-HEGm.
Therefore, we first recall the definition of an extractable quantum random oracle simulator which we will
need for the proof of GA-HEG-KC.

C.1 Extractable Quantum Random Oracle Simulation

We recall a technical tool for the proof of Theorem 4 which was presented in [16]. Informally, the
extractable random oracle simulator from [16], which uses Zhandrys Compressed Oracle technique [42],
allows to extract the preimages x of a random oracle output y if one has access to a “commitment” t on y4
similarly to the classical random oracle. Examples for such “commitments” are the hash image y itself or
an encryption t of same value using y as its randomness (as long as the encryption scheme is sufficiently
spread). Note that this technique is weaker than the full preimage awareness of classical random oracles,
which can always output the preimage of any hash query on the fly, because a commitment is needed to
extract the preimage. For a more in depth explanation we refer to [16,42].

Definition 10. Let n ∈ N, X , T two sets, f : X × {0, 1}n → T a function and R ⊂ X × {0, 1}n a
relation. We define

Γ (f ) := max
x∈X
t∈T

|{y | f (x, y) = t}|,

Γ ′(f ) := max
x,x′∈X

y′∈{0,1}n

|{y | f (x, y) = f (x ′, y′)}|

4 Strictly speaking, t does not need to be a commitment, only sufficiently determine y, but we follow the intuitive
terminology of [16].
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and
ΓR := max

x∈X
|{y | (x, y) ∈ R}| .

Definition 11 (Extractable Quantum Random Oracle Simulator). Let n ∈ N, X , T two sets,
f : X × {0, 1}n → T a function and R′ ⊂ X × T and R ⊂ X × {0, 1}n relations with (x, y) ∈ R ⇔
(x, f (x, y)) ∈ R′.

We define the stateful quantum simulator S that has the (quantum-accessible) interfaces S.RO : X →
{0, 1}n and S.E : T → X ∪ ⊥ and the following properties:
1. If no query to S.E is made, S.RO is indistinguishable from a (quantum) random oracle.
2. Any two independent queries to S.RO (resp. S.E) commute.
3. Any two subsequent queries to S.E and S.RO 8

√
Γ (f )
2n−1 -almost-commute.

4. Any query to S.RO (resp. S.E) is idempotent, i.e. returns the same result if no other query was
made in between.

5. If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries, then

Pr
[
x̂ 6= ⊥ ∧ f (x̂, ĥ) 6= t

]
≤ 2Γ (f )

2n .

6. If h = S.RO(x) and x̂ = S.E(f (x, h)) are two subsequent classical queries, then

Pr[x̂ = ⊥] ≤ 1
2n−1 .

7. Let A be an adversary making at most q queries to the S.RO oracle and no queries to the S.E oracle,
which outputs t ∈ T . Then

Pr
t←AS.RO
x̂←S.E(t)

[(x̂, t) ∈ R′] ≤ 128 · q2ΓR
2n .

8. Let A be an adversary making at most q queries to S.RO and no queries to S.E, that outputs `-tuples
(x1, t1), . . . , (x`, t`) ∈ (X × T ). Then

Pr
(t1,x1),...,(t`,x`)←AS.RO

h1←S.RO(x1),...,h`←S.RO(x`)
x̂1←S.E(t1),...,x̂`←S.E(t`)

[∃i : x̂i 6= xi ∧ f (xi , hi) = ti ] ≤ 40e2 · (q + `+ 2)3Γ
′(f )
2n .

9. The running time for S is bounded as O(qRO · qE ·Time(f ) + q2
RO), where qE is the numbers of queries

to S.E and qRO the number of queries to S.RO.

The existence of a simulator S as defined in Definition 11 was shown in [16].
Let us give some intuition on the properties of S. Properties 1 and 2 ensure, that S behaves like a

regular quantum random oracle, unless S.E is called and queries are dependent on one another. Property
3 tells us that extraction is only causes detectable change in the state of S with low probability (as long
as f is sparse). Properties 5 and 6 state that extraction always works, if the preimage was queried before
and that it may fail otherwise. Property 7 provides a bound on this failure probability, i.e. if one tries to
extract a preimage to a value not queried yet, S.E will output ⊥ with high probability. Lastly, Property
8 tells us that S.E cannot be used to find collisions, i.e. with high probability, it will give the same
preimage that was used before.

C.2 Proof of Theorem 4

Proof. Let A be a quantum adversary as described in Theorem 4. Consider the games given in Figure 14.
We proceed by analyzing the sequence of games.
Game G1. This is the IND-CCA game where we unfolded the definition of GA-HEG-KC. By definition,∣∣Pr[GA1 ⇒ 1]− 1

2
∣∣ = AdvIND-CCA

GA-HEG-KC(A) .

Game G2. In this game we return ⊥ when the decapsulation oracle is queried on (c, d∗) for arbitrary c.
This change is only noticeable to an adversary who finds a collision of the form G(c, g ?c) = d∗ in G (with
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Games G1-G14

00 sk := g $← G
01 pk := x := g ? x̃
02 b $← {0, 1}
03 r $← G
04 c∗ := r ? x̃
05 d∗ := G(c∗, r ? pk)
06 d∗ $← {0, 1}n \\G4-G14

07 K0 := H(c∗, r ? pk)
08 K0

$← {0, 1}κ \\G4-G14

09 K1
$← {0, 1}κ

10 b′ ← AH,G,Decaps(pk, (c∗, d∗),Kb) \\G1-G4

11 return Jb = b′K \\G1-G4

12 T ← ExtAH,G,Decaps(pk, (c∗, d∗),Kb) \\G5

13 T ← ExtH,S.RO,Decaps(pk, (c∗, d∗),Kb) \\G6-G14

14 return J(c∗, r ? pk) ∈ T K \\G5-G14

15 for i ∈ [qD] \\G7

16 (ai , zi)← S.E(di) \\G7

Oracle Decaps(sk, (c, d)) \\G1-G6

17 if (c, d) = (c∗, d∗) \\G1

18 if (d = d∗) \\G2

19 if (c = c∗ ∨ d = d∗) \\G3-G6

20 return ⊥
21 if G(c, sk ? c) 6= d \\G1-G5

22 if S.RO(c, sk ? c) 6= d \\G6

23 return ⊥
24 return H(c, g ? c)

Oracle Decaps(sk, (c, d)) \\G7-G12

25 if (c = c∗ ∨ d = d∗) return ⊥
26 d ′ ← S.RO(c, sk ? c)
27 (a, z)← S.E(d) \\G8-G12

28 if (a, z) = ⊥ return ⊥ \\G9-G12

29 if (a 6= c) ∨ (z 6= sk ? c) return ⊥ \\G10

30 if (a 6= c) ∨ (O(a, z) = 0) return ⊥ \\G11-G12

31 if d ′ 6= d return ⊥
32 return H(a, z) \\G12

33 return H(c, g ? c)

Oracle Decaps(sk, (c, d)) \\G13-G14

34 if (c = c∗ ∨ d = d∗) return ⊥
35 d ′ ← S.RO(c, sk ? c) \\G13

36 (a, z)← S.E(d)
37 if (a, z) = ⊥ ∨ a 6= c return ⊥
38 if O(a, z) = 0 return ⊥
39 return H(a, z)

Fig. 14. Games G1-G14 for the proof of Theorem 4. Ext is the extractor algorithm in the O2H lemma, which
runs A and measures the input of one of the parallel random oracle queries uniformly at random.

c 6= c∗), since then G2 return ⊥ on elements where G1 would return H(c, g ? c). By a straight-forward
reduction to GDP we have ∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ 8(q + 1)2/2n .

Game G3. In this game we return ⊥ on inputs (c∗, d). This will not be noticeable to the adversary, since
the the hash check will not evaluate to true (since d 6= d∗) and so ⊥ is returned in G2 and in G3. Thus,
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
Game G4. Here we reprogram G and H on the challenge input using O2H (viewing them as a joint oracle
G × H). Note that due to the previous game-hops, we made sure that the random oracles will not be
queried on challenge inputs in the decapsulation oracle. This is because Decaps returns ⊥ if either the
first input is c∗ or the second input is d∗. Since Decaps does not query G or H on the reprogrammed
challenge input, we do not need to consider indirect queries to G and H through Decaps for the O2H
lemma. Thus, we have ∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]

∣∣ ≤ 2d
√

Pr[GExt
5 ⇒ 1]

and since b is now information-theoretically hidden in the view of the adversary

Pr[GA4 ⇒ 1] = 1
2 ,

where G5 works as G3 except that the input of the i-th parallel random oracle query, where i $← [d], is
measured and 1 is returned if the challenge input was recovered, that is if if one of the p input registers
contains (c∗, r ? pk).
Game G6. In this game we simulate random oracle G using the extractable random-oracle simulator
from Definition 11. We set the commitment function f to be the output of G, that is we set f (x, y) 7→ y.
Since we do not yet make use of the extraction interface, we have by property 1 from Definition 11 that
the extractable random-oracle simulator is perfectly indistinguishable from the quantum random oracle
G. Therefore, this is only a conceptual change and we have Pr[GExt

5 ⇒ 1] = Pr[GExt
6 ⇒ 1].
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Game G7. In G7 we extract the ciphertexts which were queried on the decapsulation oracle at the
end of the game, using the extraction interface S.E . Since we only do this at the end of the game, it
does not change the outcome of the game. Thus, this is again a conceptual game change and we have
Pr[GExt

6 ⇒ 1] = Pr[GExt
7 ⇒ 1].

Game G8. We now extract the commitments at runtime in the decapsulation algorithm after querying
S .RO. Since we have qD ciphertexts which need to be extracted, and each one needs to be commuted at
most q + qD times we have to apply the almost-commutativity property (Property 3 of Definition 11) at
most qD(q + qD) times. Observing that Γ (f ) = 1 for f (x, y) 7→ y we have

∣∣Pr[GExt
7 ⇒ 1]− Pr[GExt

8 ⇒ 1]
∣∣ ≤ qD(qD + q)8

√
1

2n−1 .

Game G9. We introduce the test whether the extracted (a, z) = ⊥ and return ⊥ if it evaluates to true.
We can bound this using property 6 of Definition 11 together with a union bound over the number of
decapsulation queries. Informally, property 6 says in our setting if d = d ′, then (a, z) 6= ⊥ except with
probability 2−(n−1) (for a single call). Thus, by the contrapositive this means that if (a, z) = ⊥ then we
have d 6= d ′. By a union bound over the qD decapsulation queries, we get∣∣Pr[GExt

8 ⇒ 1]− Pr[GExt
9 ⇒ 1]

∣∣ ≤ qD
2n−1 .

Game G10. We introduce an additional test after the one introduced by G9, in which we return ⊥ if
(a, z) 6= ⊥ and (a, z) 6= (c, sk ? c). Intuitively, if d = d ′ we have (a, z) = (c, sk ? c) unless the adversary
has found a collision in the key-confirmation hash. If d 6= d ′, we do not change the behavior in G10
because Decaps already returns ⊥ as introduced in G9. We apply property 8 of Definition 11 to bound
the collision probability. We set q in property 8 to q+qD (the second q is the total number of RO queries)
and ` = qD. The qD term is necessary to account for indirect queries to G through Decaps. With the
observation that Γ ′(f ) = 1 for our commitment function f , we obtain by applying property 8∣∣Pr[GExt

9 ⇒ 1]− Pr[GExt
10 ⇒ 1]

∣∣ ≤ 40e2(q + 2qD + 2)3/2n .

Game G11. We make a simple conceptual change, by substituting the previous check z 6= sk ? c with
O(a, z) = 0, where we set O to be the function GA-DDHg. In the final reduction we simulate it using the
(classical) GA-DDHg oracle. We have Pr[GExt

10 ⇒ 1] = Pr[GExt
11 ⇒ 1].

Game G12. In this game we make another conceptual change. We return H(a, z) instead of H(c, g?c) which
is possible, since the previous condition ensures that if the line is reached, that a = c and O(a, z) = 1
and thus z = sk ? c. Therefore, Pr[GExt

11 ⇒ 1] = Pr[GExt
12 ⇒ 1].

Game G13. We now remove the returning of ⊥ when d 6= d ′. If (a, z) 6= ⊥, we have by property 5 of
Definition 11 that S.RO(S.E(d)) = d except with probability 2−(n−1). The previous check ensures that
a = c and z = sk?c. Thus, if the line is reached we have d ′ = d due to property 5 since S.RO(c, sk?c) = d.
We can thus drop the check, as it will most likely evaluate to false. Thus, we have by a union bound over
the qD decapsulation queries ∣∣Pr[GExt

12 ⇒ 1]− Pr[GExt
13 ⇒ 1]

∣∣ ≤ qD
2n−1 .

Game G14. In G14 we move the queries S.RO(c, sk?c) to the end of the game, which is possible since we
do not use their values. Observe that the secret key is not used in game G14 anymore, except for testing
whether O(a, z) = 0, which the reduction will be able to simulate using the classical decision oracle. By
the almost-commutativity, we have

∣∣Pr[GExt
13 ⇒ 1]− Pr[GExt

14 ⇒ 1]
∣∣ ≤ qD(qD + q)8

√
1

2n−1 .

It remains to bound Pr[GExt
14 ⇒ 1]. Let p := q/d be the query parallelism. Since we can now simulate

decapsulation queries using the decision oracle without using the secret key we can easily show that there
exists an adversary B with

Pr[GExt
14 ⇒ 1] ≤ AdvGA-StCDH

EGA (B) ,
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where we use the fact that it is possible to “detect” the right solution in the set of measured queries due
to the decision oracle. Detecting the right solution takes (at most) p queries to GA-DDH(g ? x̃, ·, ·). We
describe how B works. It takes as input the challenge (g ? x̃, h ? x̃), then samples d∗ and Kb as in G14,
sets c∗ to be h ? x̃ and pk to be g ? x̃. It runs the extractor algorithm Ext as in G14, it simulates G using
the extractable random oracle simulator and simulates Decaps queries as in G14 using the classical
GA-DDHg oracle. Finally, when it obtains T , it searches for z s.t. GA-DDHg(c∗, z) = 1, and returns z.
Clearly, when (c∗, r ? pk) ∈ T , B wins.

Adding up the terms yields the claimed bound. The claimed running time follows from running A once
and Property 9 of the extractable random oracle simulator, which describes its running time depending
on the number of hash and extraction queries, which concludes our proof. ut

C.3 Proof of Theorem 6

Proof. We prove the theorem using the games in Figure 15.

Games G1-G5
00 (pk, sk)← Gen \\G1-G2

01 for i ∈ [`− 1] \\G3-G5

02 hi $← G
03 xi := hi ? x̃
04 ti := hi
05 for i ∈ [`,m]
06 \\Enforce {s`, . . . , s2`−1} = [0, `− 1]
07 si $← [0, `− 1]
08 hi $← G
09 xi := hi ? xsi \\x0 := x̃
10 ti := hi · hsi \\h0 := e
11 pk := (x1, . . . , xm)
12 sk := (t1, . . . , tm)
13 b $← {0, 1}
14 (ct∗,K0)← Encaps(pk) \\G1

15 r $← G \\G2-G5

16 ct∗ := r ? x̃
17 K0 := H1(ct∗)
18 K1

$← {0, 1}κ
19 b′ ← ADecaps,H(pk, c∗,Kb) \\G1-G4

20 b′ ← ADecaps,H′(pk, c∗,Kb) \\G5

21 return Jb = b′K

Oracle H(M )/H′(M )
22 Let M = (ct, z1, . . . , zm)
23 if zi = ski ? ct for all i ∈ [m] \\G2-G3

24 return H1(ct)

25 if TDT(ct, z1, . . . , zm) = 1 \\G4-G5

26 return H1(ct) \\H
27 return H′1(ct) \\H′

28 return H2(M )

Oracle Decaps(ct 6= ct∗)
29 for i ∈ [m] \\G1

30 zi := ski ? ct
31 return H(ct, z1, . . . , zm)
32 return H1(ct) \\G2-G5

Fig. 15. Games G1-G5 for the proof of Theorem 6, H1,H′1 and H2 are internal random oracles.

Game G1. This is the standard IND-CCA game for KEMs for GA-Twin-HEGm. The random oracle H is
instantiated by an internal random oracle H2. Thus,∣∣Pr[GA1 ⇒ 1]− 1

2
∣∣ = AdvIND-CCA

GA-Twin-HEGm (A) .

Game G2. In G2, we split the random oracle H into two internal random oracles H1 and H2. H1 is used
in the Decaps oracle to compute the keys. We also make the conceptual change of only hashing the
ciphertext ct without the zi . This change is indeed only conceptual, since every possible set element is
a valid encapsulation and all zi are uniquely determined by ct and sk. So splitting it into a separate
internal random oracle and only hashing ct does not change the distribution of the keys.

H now has to check whether a query corresponds to such a decapsulation query and in this case it
answers with H1 only on the first component of its query (which corresponds to ct in this case). In all
other cases, it still hashes all its input with H2. This makes H consistent with the decapsulation oracle,
so overall, we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
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Game G3. Next, we change how the challenge key is generated. Instead of choosing all set elements at
random, we sample ` − 1 “basis” set elements and set the remaining public key elements as rerandom-
izations of one of these bases, depending on a randomly chosen si $← [0, ` − 1]. For si = 0 we use the
origin element x̃. Like in Lemma 3, we choose the si s.t. each base element is “used” once in the first
` rerandomized elements. This does not change the distribution of the public key (see Lemma 3), so
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
Game G4. Finally, we replace the check whether a hash query corresponds to a decapsulation with the
trapdoor test from Lemma 3. From the lemma, we get

|Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| ≤ AdvTDT
EGA,q,d,`,m(D1) ≤ AdvGDP

T,q,d(D2) ,

for any quantum distinguishers D1,D2, where T defined as in Lemma 3 and q and d are the number of
queries and the query depth of A to the random oracle H respectively.
Game G5. Next, we replace the internal random oracle H1 used in decapsulation and H with an internal
random oracle H′1, which is identical to H1 at all points except for ct∗. We call the new random oracle
H′. We still use H1 to compute the challenge key K0, but A now only has access to H′, so from the
perspective of the adversary A both keys are now random. Therefore, we have

Pr[GA5 ⇒ 1] = 1
2 .

It remains to bound the difference between G4 and G5. By the MRM O2H lemma, there exists an
extractor algorithm Ext with

|Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]| ≤ 4d Pr[GExt
6 ⇒ 1] ,

where GExt
6 is the same as G4, except that instead of running ADecaps,H(pk, c∗,Kb) to obtain b′ and

returning Jb = b′K, it runs ExtDecaps,H,H′(pk, c∗,Kb) to obtain T and returns JS ∩ T 6= ∅K, where S are
the inputs of H which are reprogrammed, i.e., S = {(ct∗, r ? pk1, ..., r ? pkm)}.

We bound the right-hand probability by the adversary B given in Figure 16. B embeds its challenge x
in the first element of the public key and uses its challenge y as the challenge encapsulation. It simulates
internal random oracles H1, H′1 and H2 using standard techniques and runs the extraction algorithm Ext
of the MRM O2H lemma to obtain a set T . Note that the Decaps and H, H′ can be simulated as in
G5 and quantum decapsulation queries can also be simulated since B has quantum access to H1. Finally,
once T is obtained, B searches for (ct∗, z1, ..., zm) ∈ T and runs TDT(ct∗, z1, ..., zm). If the trapdoor test
passes, it returns z1 as the solution. Since B wins, when Ext wins, we have

Pr [GExt
6 ⇒ 1] ≤ AdvGA-CDH

EGA (B) .

Collecting the probabilities and applying Lemma 2 yields the claim. ut

D Omitted Proofs for Group Action NIKE Schemes

In order to make our NIKE proofs better understandable we capture the CKS security game described
in Section 2.2 by the pseudocode given in Figure 17.

In Appendix D.2, we prove the necessity of the GA-DPQ-StCDH assumption. In Appendices D.3
and D.4, we then give the proofs for the security of GA-HDH based on the GA-DFQ-StCDH assumption
and that of GA-Twin-HDHm based on the GA-CDH assumption. In Appendix D.1 we explain why it seems
difficult to apply the MRM-O2H lemma to prove security in the CKS model.

D.1 Difficulty of Applying MRM to NIKE

As explained in Remark 8, in order to apply the MRM-O2H lemma, we have to show how to simulate the
oracles in the CKS model quantumly in order to turn the adversary into a reversible one. Notice how the
proof uses the precomputed set of public and secret-keys in the RegisterHonest oracle, which does
not make sense for quantum queries since the same keys would be registered to different identities in the
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Adversary B(x, y)
00 x1 := x
01 for i ∈ [2, `− 1]
02 hi $← G
03 xi := hi ? x̃
04 for i ∈ [`,m]
05 \\Enforce {s`, . . . , s2`−1} = [0, `− 1]
06 si $← [0, `− 1]
07 hi $← G
08 xi := hi ? xsi \\x0 := x̃
09 pk := (x1, . . . , xm)
10 ct∗ := y
11 K0 := H1(ct∗)
12 K1

$← {0, 1}κ

13 T ← ExtDecaps,H,H′(pk, ct∗,Kb)
14 for (ct, z1, ..., zm) ∈ T \\ |T | = p
15 if ct = ct∗ ∧ TDT(ct∗, z1, ..., zm) = 1
16 return z1
17 return ⊥

Fig. 16. Adversary B against GA-CDH, where H,H1,H′1 and H2 are internal random oracles. The only constraint
on the random oracles is that H1(z) = H′1(z) for all z 6= y.

simulation. It is not clear how to generalize this technique without changing the CKS model to a slightly
weaker one where the adversary first commits to the identities. Additionally, we would have to assume
the existence of quantum-accesible RAM for the key registration set L and the test set K . Additionally,
the id space would need to be sufficiently small for the reduction to have a somewhat reasonable memory
usage. This additional freedom the adversary has in choosing the identities is not existent in the IND-CCA
security game for KEMs, which is why it is not an issue there. We leave it as an open problem whether
one can apply MRM-O2H also in the NIKE setting in the CKS model. For a more in-depth discussion
regarding why a reversible adversary is necessary in order to apply MRM-O2H, see [27].

D.2 Proof of Theorem 2

Proof. Consider the sequence of games given in Figure 18.

Game 1. This is the GA-DPQ-StCDH game. By definition,

Pr[GA1 ⇒ 1] = AdvGA-DPQ-StCDH
EGA (A) .

Game 2. In this game, instead of returning whether g ? x1 = x2 in line 07, oracle Og returns whether
(x1, g ?x1) = (x1, x2) in line 06. We do the same for oracle Oh (see line 08). Since we always have x1 = x1,
this change is only conceptual and thus Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

Game 3. In this game we want to change the output of Og and Oh again. But first, we will prepare
some conceptual changes which we will need in the final reduction to CKS security. Therefore, we add
identities to the game and we introduce the notation IDint(σ) := σ for an identity string σ ∈ {0, 1}µ,
where int converts σ to an integer. This way, we can assign identities in ascending order using a counter
cnt, starting with the challenge set elements g ? x̃ and h ? x̃ in line 02. After that we increment cnt for each
query to Og or Oh and assign new identities to all x1 in these queries. Now we can change the output of
Og from deciding whether (x1, g ?x1) = (x1, x2) in line 06 to deciding whether H(IDg, ID, g ? x̃, x1, g ?x1) =
H(IDg, ID, g?x̃, x1, x2) (cf. lines 12, 14) using a hash function H. We do the same forOh using h instead of g.
This introduces false positives into the outputs, when for any x1 ∈ X we have that H(IDg, ID, g?x̃, x1, g?x1)
has preimages of the form (IDg, ID, g ? x̃, x1, x2) with x2 6= g ? x1.

We can bound this change by reducing to the Generic Distinguishing Problem, which we do in
Figure 19. For every input (IDg, ID, g ? x̃, x1, x2) we have F(IDg, ID, g ? x̃, x1, x2) returns 1 with probability
λ := 1/2κ, which is the probability to find a second preimage for H(IDg, ID, g ? x̃, x1, g ? x1). The same
holds for Oh. If F is the zero function, the distinguisher D simulates G2 and otherwise G3. Thus by
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Game ExpCKS(A)
00 L[ID] := ⊥
01 K [ID, ID] := ⊥
02 pp← NIKE.Setup
03 b $← {0, 1}
04 b′ ← AO(pp)
05 return Jb = b′K

Oracle RegisterHonest(ID)
06 if L[ID] = (corrupt, ∗,⊥)
07 return ⊥
08 (pk, sk)← NIKE.Gen(pp, ID)
09 L[ID] := (honest, pk, sk)
10 return (ID, pk)

Oracle RegisterCorrupt(ID, pk)
11 if L[ID] = ⊥
12 L[ID] := (corrupt, pk,⊥)
13 return 1
14 else if L[ID] = (corrupt, ∗,⊥)
15 L[ID] := (corrupt, pk,⊥)
16 return 1
17 return 0

Oracle CorruptReveal(ID1, ID2)
18 if L[ID1] = ⊥ ∨ L[ID2] = ⊥
19 return ⊥
20 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
21 if l1 = l2
22 return ⊥
23 Let ski 6= ⊥
24 return NIKE.SharedKey(ID3−i , pk3−i , IDi , ski)

Oracle Test(ID1, ID2)
25 if L[ID1] = ⊥ ∨ L[ID2] = ⊥ ∨ ID1 = ID2
26 return ⊥
27 if K [ID1, ID2] 6= ⊥
28 return K [ID1, ID2]
29 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
30 if l1 6= honest ∨ l2 6= honest
31 return ⊥
32 K0 := NIKE.SharedKey(ID1, pk1, ID2, sk2)
33 K1

$← SHK
34 K [ID1, ID2] := Kb, K [ID2, ID1] := Kb
35 return Kb

Fig. 17. CKS security game ExpCKS for NIKE. Adversary A has access to oracles O = {RegisterHonest,
RegisterCorrupt,CorruptReveal,Test}.

Games G1-G4

00 g $← G
01 h $← G
02 IDg := ID0; IDh := ID1 \\G3-G4

03 cnt := 2 \\G3-G4

04 z ← AOg(·,|·〉),Oh(·,|·〉)(g ? x̃, h ? x̃)
05 return Jz = gh ? x̃K

Oracle Og(x1, x2) \\G1-G2

06 return J(x1, g ? x1) = (x1, x2)K \\G2

07 return Jg ? x1 = x2K

Oracle Oh(x1, x2) \\G1-G2

08 return J(x1, h ? x1) = (x1, x2)K \\G2

09 return Jh ? x1 = x2K

Oracle Og(x1, x2) \\G3-G4

10 ID := IDcnt
11 cnt := cnt + 1
12 K := H(IDg, ID, g ? x̃, x1, g ? x1) \\G3

13 K := NIKE.SharedKey(ID, x1, IDg, g) \\G4

14 return JK = H(IDg, ID, g ? x̃, x1, x2)K

Oracle Oh(x1, x2) \\G3-G4

15 ID := IDcnt
16 cnt := cnt + 1
17 K := H(IDh , ID, h ? x̃, x1, h ? x1) \\G3

18 K := NIKE.SharedKey(ID, x1, IDh , h) \\G4

19 return JK = H(IDh , ID, h ? x̃, x1, x2)K

Fig. 18. Games G1-G4. For games G3-G4, we use the implicit notation IDint(σ) := σ for an identity string
σ ∈ {0, 1}µ, where int converts σ to an integer.

eq. (2) of Lemma 2 where we have set λ := 1/2κ we have∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ =

∣∣∣Pr[GDPDF,0 ⇒ 1]− Pr[GDPDF,1 ⇒ 1]
∣∣∣

≤ 8(q + 1)2/2κ .

Game 4. In this game we substitute the boolean test in Og and Oh again. We now check whether
NIKE.SharedKey(ID, x1, IDg, g) = H(IDg, ID, g ? x̃, x1, x2) in line 13 in Og and the same for h in Oh. By
definition of the shared key algorithm of GA-HDH this change is again only conceptual. Note that by
assigning identities in an ascending order, we always have IDg < IDh < ID for each ID chosen in Og or
Oh which fixes the order of inputs to H. Hence, Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
It remains to bound G4. We claim

Pr[GA4 ⇒ 1] ≤ 2 · AdvCKS
GA-HDH(B) + 1

2κ . (12)

We construct an adversary B in Figure 20. B has access to oraclesRegisterHonest,RegisterCorrupt,
CorruptReveal, Test provided by the CKS game as well as random oracle H. It simulates G4 as fol-
lows.
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Distinguisher DF

00 g $← G
01 h $← G
02 IDg := ID0; IDh := ID1
03 cnt := 2
04 z ← AOg(·,|·〉),Oh(·,|·〉)(g ? x̃, h ? x̃)
05 return Jz = gh ? x̃K

Oracle Og(x1, x2)
06 if g ? x1 = x2 return 1
07 ID := IDcnt
08 cnt := cnt + 1
09 return F(IDg, ID, g ? x̃, x1, x2)

Oracle Oh(x1, x2)
10 if h ? x1 = x2 return 1
11 ID := IDcnt
12 cnt := cnt + 1
13 return F(IDh , ID, h ? x̃, x1, x2)

Fig. 19. Distinguisher D for the Generic Distinguishing Problem to bound G2-G3.

Adversary BOCKS

00 IDg := ID0; IDh := ID1
01 cnt := 2
02 pk0 ← RegisterHonest(IDg)
03 pk1 ← RegisterHonest(IDh)
04 K ← Test(IDg, IDh)
05 z ← AOg(·,|·〉),Oh(·,|·〉)(pk0, pk1)
06 return JK 6= H(ID0, ID1, pk0, pk1, z)K

Oracle Og(x1, x2)
07 ID := IDcnt
08 cnt := cnt + 1
09 RegisterCorrupt(ID, x1)
10 return JCorruptReveal(ID0, ID) = H(ID0, ID, pk0, x1, x2)K

Oracle Oh(x1, x2)
11 ID := IDcnt
12 cnt := cnt + 1
13 RegisterCorrupt(ID, x1)
14 return JCorruptReveal(ID1, ID) = H(ID1, ID, pk1, x1, x2)K

Fig. 20. Adversary B for bounding G4, where OCKS = {RegisterHonest,RegisterCorrupt,
CorruptReveal,Test,H} and IDint(σ) := σ for an identity string σ ∈ {0, 1}µ.

It first creates two honest users with IDs ID0 and ID1 using the RegisterHonest oracle. It receives
the corresponding public keys pk0 and pk1 and directly issues a test query on these two users. Thus,
it will receive either their shared key or a random key. We denote this challenge key by K . Now B
runs adversary A against GA-DPQ-StCDH on input (pk0, pk1). Hence, oracle Og is defined with respect
to pk0 and Oh to pk1. On each query (x1, x2) to one of these oracles, B chooses a new identity ID by
incrementing the counter and registers a dishonest party with public key x1. Recall that this input is
classical. Then it reveals the key between this freshly generated user and ID0 or ID1 (depending on the
oracle) and compares the result with H(ID0, ID, pk0, x1, x2) or H(ID1, ID, pk1, x1, x2) respectively, which
will be the oracle’s output.

Finally, A will output a solution z and B checks whether H(ID0, ID1, pk0, pk1, z) equals the challenge
key. If this is the case, it returns b′ = 0 (real), otherwise it returns b′ = 1 (random). Clearly, if z is a
solution to the computational group action problem of pk0 and pk1, then B always wins the CKS game
in the real world. In the random world, it will win only with probability 1 − 1/2κ since the challenge
key might be the same as the real key with probability 1/2κ. When z is not the correct solution and K
is the real key, then B will only win if the output of H still coincides with K , i.e. with probability 1/2κ.
However, if K is a random key, B will win again with probability 1 − 1/2κ. Collecting the conditional
probabilities yields the bound claimed in eq. (12), which also concludes our proof. ut

D.3 Proof of Theorem 5

Proof. LetA be a quantum adversary as in Theorem 5. Consider the sequence of games given in Figure 21.
We proceed by analyzing the different games.
Game G1. This the original CKS game with the definition of the NIKE unrolled, except that we do not
explicitly do the canonical reordering of the IDs and public keys in order to focus on the important parts
of the proof. By definition, ∣∣Pr[GA1 ⇒ 1]− 1/2

∣∣ = AdvCKS
GA-HDH(A) .

Game G2. In this game we make a conceptual change by precomputing the set of honest keys and
storing them in a set H. Since this does not change the distribution of the generated keys, this does
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Games G1-G5
00 L[ID] := ⊥
01 K [ID, ID] := ⊥
02 pp← NIKE.Setup
03 ctr := 0 \\G2-G5

04 H := ⊥
05 for i ∈ [qO]
06 H[i] := (pk, sk) := (g ? x̃, g $← G)
07 b $← {0, 1}
08 b′ ← AO,H(pp)
09 return Jb = b′K

Oracle Test(ID1, ID2)
10 if L[ID1] = ⊥ ∨ L[ID2] = ⊥ ∨ ID1 = ID2
11 return ⊥
12 if K [ID1, ID2] 6= ⊥
13 return K [ID1, ID2]
14 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
15 if l1 6= honest ∨ l2 6= honest
16 return ⊥
17 K0 := H(ID1, ID2, pk1, pk2, sk2 ? pk1)
18 K0 := H3(ID1, ID2, pk1, pk2) \\G4-G5

19 K1
$← {0, 1}κ

20 K [ID1, ID2] := Kb, K [ID2, ID1] := Kb
21 return Kb

Oracle RegisterHonest(ID)
22 if L[ID] = (corrupt, ∗,⊥) return ⊥
23 (pk, sk) := H[ctr] \\G2-G5

24 ctr := ctr + 1
25 (pk, sk) := (g ? x̃, g $← G) \\G1

26 L[ID] := (honest, pk, sk)
27 return (ID, pk)

Oracle CorruptReveal(ID1, ID2)
28 if (L[ID1] = ⊥ ∨ L[ID2] = ⊥) return ⊥
29 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
30 if l1 = l2 return ⊥
31 Let ski 6= ⊥
32 Let pki ∈ H \\G4-G5

33 if (pk3−i , ∗) 6∈ H
34 return H1(ID1, ID2, pk1, pk2)
35 if (pk3−i , ∗) ∈ H
36 return H3(ID1, ID2, pk1, pk2)
37 return H(ID1, ID2, pk1, pk2, ski ? pk3−i)

Oracle H(ID1, ID2, pk1, pk2, z) \\G3-G5

38 for i ∈ [1, 2]
39 if (pki , ∗) ∈ H ∧ (pk3−i , ∗) 6∈ H
40 Let ski s.t. (pki , ski) ∈ H
41 if ski ? pk3−i = z
42 return H1(ID1, ID2, pk1, pk2)
43 if (pk1, ∗), (pk2, ∗) ∈ H
44 Let sk1 s.t. (pk1, sk1) ∈ H
45 if sk1 ? pk2 = z
46 return H′3(ID1, ID2, pk1, pk2) \\G5

47 return H3(ID1, ID2, pk1, pk2) \\G3-G4

48 return H2(ID1, ID2, pk1, pk2, z)

Fig. 21. Games G1-G5 for the proof of Theorem 5. The adversaryA has access to oraclesO = {RegisterHonest,
RegisterCorrupt,CorruptReveal,Test} and H. RegisterCorrupt is defined as in the original game in
Figure 17. For improved readability we assume wlog ID1 < ID2. Hi for i ∈ [1, 3] and H′3 are internal random
oracles and we define H := H2 for G1-G2.

not change the distribution of RegisterHonest. Therefore, this change is only conceptual and we have
Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

Game G3 In this game, we make the following conceptual changes in H. If one of the public keys pki ,
where i ∈ {1, 2}, is from the honest set H, and the other key pk3−i is not, we check whether z is a valid
DH tuple, i.e., z = ski ? pk3−i , where ski is the corresponding secret key to pki stored in H. If this test
evaluates to true we return H1(ID1, ID2, pk1, pk2) for an internal independent random oracle H1. If both
keys are from H and z = sk1 ? pk2, we return H3(ID1, ID2, pk1, pk2), for another internal, independent
random oracle H3. In all other cases we return H2(ID1, ID2, pk1, pk2, z) for another independent internal
random oracle H2.

Looking ahead to the final reduction, these changes will allow us later to simulate theCorruptReveal
queries without the secret key because for all checks we can use the GA-DDH oracle. Additionally, it will
allow us to properly see which values of the random oracle H we need to reprogram, namely the ones
which can be forwarded to H3. Since all these changes are only conceptual (see also the proof of Theorem 3
for a more detailed explanation, Section 4.1) we have Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

Game G4. Next, in the Test oracle we now derive K0 using H3, which is only conceptual, by our new
definition of H. Additionally, we return H1(ID1, ID2, pk1, pk2) for CorruptReveal queries if only one
of the keys lies in H and H3(ID1, ID2, pk1, pk2) if both keys are in H. Since CorruptReveal previously
always computed z correctly, its queries to H were forwarded to either H1 or H3 in G3 as well. So by
replacing the call to H with the same call to H1 or H3 that H would make is only a conceptual change
and we have Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
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Game G5. In this game we reprogram the random oracle H on all potential test queries by reprogramming
H on the set S := {(∗, ∗, pk1, pk2, sk1 ? pk2) | for i, j ∈ [qO] : (pk1, sk1) = H[i], (pk2, ∗) = H[j] and i 6= j}
with uniformly random values from {0, 1}κ. Note that this reprogramming does not affect inputs which
get forwarded to H1 by H, since the reprogramming happens on values where both keys are in the honest
set, which are forwarded to H3. Therefore, we derive the reprogrammed values using another internal
random oracle called H′3. Let H′ be the reprogrammed random oracle, as described above. Since the
queries to H3 in CorruptReveal have different IDs then the ones from the Test queries, we have have
that K0 is now identically distributed to K1 from the view of A. Therefore, b is independent of A’s view
and we have

Pr[GA5 ⇒ 1] = 1
2 .

It remains to bound G4-G5. By the semi-classical O2H lemma, the difference between the games is
bounded by the classical event Find when running A with the punctured oracle H\S. The event Find is
set to 1 if the semi-classical oracle measures that an input x lies in S. The main difficulty when applying
the lemma is to show how to simulate the membership testing x ∈ S. We solve this issue using the
quantum-accessible double-sided decision oracle, in conjunction with the precomputed set of key pairs
H. Let GA6 be as GA4 except that A gets access to H \ S, we have∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒]

∣∣ ≤ 2
√

(d + 1) Pr[Find : GA6 ] .

We bound the right-hand probability by the adversary B given in Figure 22. B obtains the challenge
(x0, x1) and the two corresponding decision oracles O0, O1. It embeds its challenges into each challenge
public key pk by choosing a random bit c ∈ {0, 1} and group element h ∈ G and rerandomizing its
challenge xc with h, i.e. pk := h ? xc, where h and c are chosen separately and randomly for each public
key. It simulates internal random oracles H1, H2, H3 and H′3 using standard techniques and runs AO,H\S

until the event Find = 1, then measures the corresponding input registers of H \ S to obtain a set T . It
simulates all the oracles as in G4, which B can do, since for all checks where secret keys are involved it
can query the corresponding decision oracle. The punctured random oracle H\S is simulated as described
in Figure 22, where the only difference to G4 is that B takes account for the rerandomization factor h.
Finally, once T is obtained, it searches for (∗, ∗, pk1, pk2, z) ∈ T , where pk1 was derived by xc using h1 and
pk2 was derived by x1−c using h2 and Oc(pk2, h−1

2 ? z) = 1. If this check passes, it returns (h−1
2 · h−1

1 ) ? z
as the solution. First note that the bits c are information-theoretically hidden from the adversary. Thus,
a test query will involve two public keys with different bits c with probability 1/2. Assuming that this
is the case, B wins when Find = 1. This yields

Pr[Find : GA6 ] ≤ 2AdvGA-DFQ-StCDH
EGA (B) .

Adding up the analyzed bounds yields the claimed bound. We conclude our proof by analyzing the
running time of B. The first part of B is the rerandomization of the keys, which is proportional to qO
assuming constant running time for a single rerandomization. Then there is the overhead for simulating
the internal random oracles for running A. For a single run of A, H1 is called at most max{q, qR} times,
H2 is called at most q times, H3 and H′3 are called at most max{q, qT} times. Extracting the solution
then is roughly proportional to p calls to the decision oracle. Every call H calls the decision oracles at
most 2 times and and every call to the semi-classical oracle calls the decision oracle at most 2 times (a
second call is made when there is another pk1 but derived from the other set element), thus we have
about at most p+ 4q calls to the decision oracles. Adding up and applying O notation yields the claimed
running time, which concludes our proof.

ut

D.4 Proof of Theorem 7

Proof. We prove the theorem using the games G1-G7 defined in Figure 23.
Game G1. This is the standard CKS security game, so

AdvCKS
GA-Twin-HDHm (A) = |Pr[GA1 ⇒ 1]− 1/2| .
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Adversary BO0(|·〉,|·〉),O1(|·〉,|·〉)(x0, x1)
00 L[ID] := ⊥
01 K [ID, ID] := ⊥
02 pp← NIKE.Setup
03 ctr := 0
04 H := ⊥
05 for i ∈ [qO]
06 ci $← {0, 1}
07 hi $← G
08 H[i] := (pk, hi , ci) := (ri ? xci , hi , ci)
09 b $← {0, 1}
10 T ← Run AO,H\S(pp) until Find

and measure query register inputs
11 return FindSolution(T ,H)

Oracle OSC
S (|ψin , 0〉)

12 b := 0
13 Parse ψin as (ID1, ID2, pk1, pk2, z)
14 b ← Measure [

∃i, j ∈ [qO] ∧ i 6= j, (∗, h, c) ∈ H :
J(pk1, h, c) = H[i] ∧ (pk2, ∗) = H[j]K
∧ JOc(pk2, h−1 ? z) = 1K]

15 return (|ψ′in〉 , b)

Oracle H \ S(|ψin , ψout〉)
16 |ψ′in , b〉 ← OSC

S (|ψin , 0〉)
17 if b = 1
18 Find := 1
19 return UH(|ψ′in , ψout〉)

Oracle H(ID1, ID2, pk1, pk2, z)
20 for i ∈ [1, 2]
21 if (pki , r , c) ∈ H ∧ (pk3−i , ∗, ∗) 6∈ H

∧ Oc(pk3−i , h−1 ? z) = 1
22 return H1(ID1, ID2, pk1, pk2)
23 if (pk1, h, c), (pk2, ∗, ∗) ∈ H ∧Oc(pk2, h−1 ? z) = 1
24 return H3(ID1, ID2, pk1, pk2)
25 return H2(ID1, ID2, pk1, pk2, z)

Function FindSolution(T ,H)
26 H0 := {(a, b, 0) ∈ H}
27 H1 := {(a, b, 1) ∈ H}
28 for (ID1, ID2, pk1, pk2, z) ∈ T
29 if ∃h1, h2 : (pk1, h1, c) ∈ H ∧ (pk2, h2, 1− c) ∈ H
30 if Oc(pk2, h−1

2 ? z)
31 return (h−1

1 · h−1
2 ) ? z

32 return ⊥

Fig. 22. Adversary B for the proof of Theorem 5. All oracles (except for the random oracles) are simulated as in
G5, where H1,H2,H3 and H′3 are internal random oracles. The oracle O0/1(|·〉 , |·〉) denotes GA-DDH(g/h, |·〉 , |·〉).
We denote by UH the unitary which implements the evaluation of H.

Game G2. In this game we make a conceptual change by precomputing the set of honest keys. We use
a set H to store these key pairs. Since this does not change the distribution of the generated keys, this
does not change the distribution of RegisterHonest. Therefore, this change is only conceptual and we
have

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

Game G3. In this game, we make the following conceptual changes in H. If one of the public keys
pki , where i ∈ {1, 2}, is from the honest set H, and the other key pk3−i is not, we check whether
all zj,k are correct. Wlog we assume the honest key is pk1. Then we check zj,k by computing z ′j,k =
sk1[k] ? pk2[j] and comparing all values. If this test evaluates to true we return H1(ID1, ID2, pk1, pk2)
for an internal independent random oracle H1. If both keys are from H and all zj,k = sk1[k] ? pk2[j],
we return H3(ID1, ID2, pk1, pk2), for another internal, independent random oracle H3. In all other cases
we return H2(ID1, ID2, pk1, pk2, z) for another independent internal random oracle H2. Note that the
CorruptReveal oracle still queries H, so it cannot be used to detect this change.

Looking ahead to the final reduction, these changes will allow us later to simulate theCorruptReveal
queries without the secret key because for all checks we will use the trapdoor test, which we will intro-
duce in the next game. Additionally, it will allow us to properly see which values of the random oracle H
we need to reprogram, namely the ones which can be forwarded to H3. Since all these changes are only
conceptual, we have Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
Game G4. In this game we return H3(ID1, ID2, pk1, pk2) for Test queries and H1(ID1, ID2, pk1, pk2) for
CorruptReveal queries if one key is not in the honest set and H3(ID1, ID2, pk1, pk2) if both keys are
from the honest set. The latter can occur if the adversary reregisters an honest key as a malicious key
with a different ID. For both oracles, the same queries are still answered with the same internal random
oracle. Therefore, this is only a conceptual change and we have Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
Game G5. In this game, we change how the honest keys are generated in preparation for the trapdoor
test. Specifically, we choose 2 “base” set elements y0 and y1 and flip a coin for every key whether we
use y0 or y1. The first public key element of each party is a rerandomization of the respective base set
element. The next public key elements until the (` − 1)-th element will be computed as in the original
protocol using the origin element x̃. The remaining m − ` elements are computed using one of the first
`− 1 previously chosen public key elements. Therefore, we draw an index sk randomly from [0, `− 1] and
take the sk-th public key element for rerandomization. For sk = 0, we simply use x̃. We now additionally

38



Games G1-G7
00 L[ID] := ⊥
01 K [ID, ID] := ⊥
02 pp← NIKE.Setup
03 ctr := 0
04 H := ⊥
05 for i ∈ [qO] \\G2-G4

06 (pk, sk)← NIKE.Gen(pp)
07 H[i] := (pk, sk,⊥)

08 r0, r1
$← G \\G5-G7

09 yi := ri ? x̃ for i ∈ {0, 1}
10 for i ∈ [qO]
11 c $← {0, 1}
12 for k ∈ [m]
13 hk $← G
14 x1 := h1 ? yc
15 t1 := h1 · rc
16 for k ∈ [2, `− 1]
17 xk := hk ? x̃
18 tk := hk
19 for k ∈ [`,m]
20 \\Enforce {s`, . . . , s2`−1} = [0, `− 1]
21 sk $← [0, `− 1]
22 xk := hk ? xsk \\x0 := x̃
23 tk := hk · hsk \\h0 := e
24 (pk, sk) := ((xk)k∈[m], (tk)k∈[m])
25 (h, s) := ((hk)k∈[m], (sk)k∈[m])
26 H[i] := (pk, sk, (h, s))
27 b $← {0, 1}
28 b′ ← AO,H(pp) \\G1-G6

29 b′ ← AO,H′(pp) \\G7

30 return Jb = b′K

Oracle Test(ID1, ID2)
31 if L[ID1] = ⊥ ∨ L[ID2] = ⊥ ∨ ID1 = ID2
32 return ⊥
33 if K [ID1, ID2] 6= ⊥
34 return K [ID1, ID2]
35 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
36 if l1 6= honest ∨ l2 6= honest
37 return ⊥
38 K0 := NIKE.SharedKey(ID1, pk1, ID2, sk2) \\G1-G3

39 K0 := H3(ID1, ID2, pk1, pk2) \\G4-G7

40 K1
$← {0, 1}κ

41 K [ID1, ID2] := Kb
42 return K [ID1, ID2]

Oracle RegisterHonest(ID)
43 if L[ID] = (corrupt, ∗,⊥) return ⊥
44 (pk, sk, ∗) := H[ctr] \\G2-G7

45 ctr := ctr + 1
46 (pk, sk)← NIKE.Gen(pp, ID) \\G1

47 L[ID] := (honest, pk, sk)
48 return (ID, pk)

Oracle CorruptReveal(ID1, ID2)
49 if (L[ID1] = ⊥ ∨ L[ID2] = ⊥) return ⊥
50 (l1, pk1, sk1) := L[ID1], (l2, pk2, sk2) := L[ID2]
51 if l1 = l2 return ⊥
52 Let pki ∈ H \\G4-G7

53 if (pk3−i , ∗) 6∈ H
54 return H1(ID1, ID2, pk1, pk2)
55 if (pk3−i , ∗) ∈ H
56 return H3(ID1, ID2, pk1, pk2)
57 Let ski 6= ⊥
58 for (j, k) ∈ [m]2
59 zj,k := ski [k] ? pk3−i [j]
60 return H(ID1, ID2, pk1, pk2, (zj,k)j,k∈[m])

Oracle H(M ) \\G3-G7

61 Let M = (ID1, ID2, pk1, pk2, z1,1, . . . , zm,m)
62 if (pki , ∗, ∗) ∈ H ∧ (pk3−i , ∗, ∗) /∈ H \\ i ∈ {1, 2}, wlog i = 1

63 Let sk1 s.t. (pk1, sk1, ∗) ∈ H \\G3-G5

64 for (j, k) ∈ [m]2
65 z ′j,k := sk1[k] ? pk2[j]
66 if (z ′1,1, . . . , z ′m,m) = (z1,1, . . . , zm,m)
67 return H1(ID1, ID2, pk1, pk2)

68 if TDT(pk1, pk2, z1,1, . . . , zm,m) = 1 \\G6-G7

69 return H1(ID1, ID2, pk1, pk2)

70 if (pk1, ∗, ∗) ∈ H ∧ (pk2, ∗, ∗) ∈ H
71 Let sk1 s.t. (pk1, sk1, ∗) ∈ H \\G3-G5

72 for (j, k) ∈ [m]2
73 z ′j,k := sk1[k] ? pk2[j]
74 if (z ′1,1, . . . , z ′m,m) = (z1,1, . . . , zm,m)
75 return H3(ID1, ID2, pk1, pk2)

76 if TDT(pk1, pk2, z1,1, . . . , zm,m) = 1 \\G6-G7

77 return H3(ID1, ID2, pk1, pk2) \\G6

78 return H′3(ID1, ID2, pk1, pk2) \\G7

79 return H2(M )

Trapdoor Test TDT(pk1, pk2, z1,1, . . . , zm,m)
80 Let sk1, (h, s) s.t. (pk1, sk1, (h, s)) ∈ H
81 for j ∈ [m]
82 for k ∈ [`,m]
83 if zj,k 6= h[k] ? zs[k] \\z0 := pk2[j]
84 return 0
85 return 1

Fig. 23. Games G1-G7 for the proof of Theorem 7. O denotes the set of all CKS oracles, i.e. O =
{RegisterHonest,RegisterCorrupt,CorruptReveal,Test}, where RegisterCorrupt is defined as in
the original game in Figure 4. H1,H2,H3 and H′3 are internal random oracles. For improved readability we assume
wlog ID1 < ID2. For G1 and G2, H is identical to H2.

store all hk and sk in H so that we can use them in the trapdoor test. This is again a purely syntactical
change as shown in Lemma 3. Therefore Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
Game G6. Next, we switch the check in H whether to use H1 or H2 to the trapdoor test from Lemma 3.
Note that although we use the trapdoor test m times per hash query, the adversary only gets any
information if all trapdoor tests succeed, so the number of trapdoor tests performed per hash query is
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irrelevant for the adversaries advantage. Therefore, by eq. (1) of Lemma 2,we can bound the difference
between the two games as

|Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]| ≤ AdvTDT
EGA,q,d,`,m(D)

≤ 4
√

(d + 1)q
`!`m−2`+1 ,

for any quantum distinguisher D. The last inequality uses the bound from Lemma 3. Note that in G6,
the secret key is not needed anywhere.
Game G7. In this game we reprogram the random oracle H on all potential test queries by reprogramming
H on the set S := {(∗, ∗, pk1, pk2, (sk1[k] ? pk2[j])j,k∈[m]2) | for i, j ∈ [qO] : (pk1, sk1) = H[i], (pk2, ∗) =
H[j] and i 6= j} with uniformly random values from {0, 1}κ. Note that this reprogramming does not
affect inputs which get forwarded to H1 by H, since the reprogramming happens on values where both
keys are in the honest set, which are forwarded to H3. Therefore, we derive the reprogrammed values
using another internal random oracle called H′3. Note that Test and CorruptReveal still use H3. So
intuitively, the only way to distinguish the two games is to make a query to H which results in a query
to the internal random oracle H′3, which contradicts the outputs of Test or CorruptReveal. However
such a query includes valid zi,j , which we enforce with the trapdoor test, and we can extract a GA-CDH
solution from them.

Let H′ be the reprogrammed random oracle, as described above. SinceK0 is now identically distributed
to K1 from the view of A, we have that b is independent of A’s view, thus

Pr[GA7 ⇒ 1] = 1
2 .

It remains to bound G6-G7. By the semi-classical O2H lemma, the difference between the games is
bounded by the classical event Find when running A with the punctured oracle H\S. The event Find is
set to 1 if the semi-classical oracle measures that an input x lies in S. The main difficulty when applying
the lemma is to show how to simulate the membership testing x ∈ S. We solve this issue using the
trapdoor test in conjuction with the precomputed set H. Let GA8 be as GA6 except that A gets access to
H \ S, we have ∣∣Pr[GA6 ⇒ 1]− Pr[GA7 ⇒]

∣∣ ≤ 2
√

(d + 1) Pr[Find : GA8 ] .

We bound the right-hand probability by the adversary B given in Figure 24. B obtains the challenge
(y0, y1) and embeds these elements into the honest public keys as in G6. It cannot compute the secret
keys, but due to the changes in the previous games, it also does not need it. It additionally stores the bit
c for each key, instead of the secret key. It simulates internal random oracles H1, H2, H3 and H′3 using
standard techniques and runs AO,H\S until the event Find = 1, then measures the corresponding input
registers of H \ S to obtain a set T . It simulates all the oracles as in G6, which B can do, since it can use
the trapdoor test. Finally, once T is obtained, it searches for (∗, ∗, pk1, pk2, z1,1, . . . , zm,m) ∈ T , where
the first element of pk1 was derived using random element h[1] and base yc and the first element of pk2
was derived using random element h′[1] and base y1−c, and checks with the trapdoor test if the zj,k are
correct. If this check passes, it returns (h[1]−1 · h′[1]−1) ? z1,1 as the solution. First note that the bits c
are information-theoretically hidden from the adversary. Thus, a test query will involve two public keys
with different bits c with probability 1/2. Assuming that this is the case, B wins when Find = 1. This
yields

Pr[Find : GA8 ] ≤ 2AdvGA-CDH
EGA (B) .

Adding up the analyzed bounds yields the claimed bound. The claimed running time of B follows from
the running time of A and the analysis of the additional overhead is analogous to the proof of Theorem 5,
which concludes our proof. ut

E A Note on PSEC-KEM

Theorem 1 of [39] claims a QROM proof for CSIDH-PSEC-KEM from the GA-DDH assumption. However,
there are multiple issues with the proof which boil down to the following three points:
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Adversary B(y0, y1)
00 L[ID] := ⊥
01 K [ID, ID] := ⊥
02 ctr := 0
03 H := ⊥
04 for i ∈ [qO]
05 c $← {0, 1}
06 for k ∈ [m]
07 hk $← G
08 x1 := h1 ? yc
09 for k ∈ [2, `− 1]
10 xk := hk ? x̃
11 for k ∈ [`,m]
12 \\Enforce {s`, . . . , s2`−1} = [0, `− 1]
13 sk $← [0, `− 1]
14 xk := hk ? xsk \\x0 := x̃
15 pk := (xk)k∈[m]
16 (h, s) := ((hk)k∈[m], (sk)k∈[m])
17 H[i] := (pk, c, (h, s))
18 b $← {0, 1}
19 T ← Run AO,H\S(pp) until Find

and measure query register inputs
20 return FindSolution(T ,H)

Oracle OSC
S (|ψin , 0〉)

21 b := 0
22 Parse ψin as (ID1, ID2, pk1, pk2, z1,1, . . . , zm,m)
23 b ← Measure [

∃i, j ∈ [qO] ∧ i 6= j,∃(∗, ∗, (h, s)) ∈ H :
J(pk1, ∗, (h, s)) = H[i] ∧ (pk2, ∗, ∗) = H[j]K
∧ JTDT(pk1, pk2, z1,1, . . . , zm,m) = 1K]

24 return (|ψ′in〉 , b)

Oracle H \ S(|ψin , ψout〉)
25 |ψ′in , b〉 ← OSC

S (|ψin , 0〉)
26 if b = 1
27 Find := 1
28 return UH(|ψ′in , ψout〉)

Oracle H(M )
29 Let M := (ID1, ID2, pk1, pk2, z1,1, . . . , zm,m)
30 if (pki , ∗, ∗) ∈ H ∧ (pk3−i , ∗, ∗) /∈ H \\ i ∈ {1, 2}, wlog i = 1
31 if TDT(ID1, ID2, pk1, pk2, z1,1, . . . , zm,m) = 1
32 return H1(ID1, ID2, pk1, pk2)
33 if (pk1, ∗, ∗) ∈ H ∧ (pk2, ∗, ∗) ∈ H
34 if TDT(ID1, ID2, pk1, pk2, z1,1, . . . , zm,m) = 1
35 return H3(ID1, ID2, pk1, pk2)
36 return H2(M )

Function FindSolution(T ,H)
37 H0 := {(a, 0, b) ∈ H}
38 H1 := {(a, 1, b) ∈ H}
39 for (ID1, ID2, pk1, pk2, z1,1, . . . , zm,m) ∈ T
40 if ∃(h, s), (h′, s′) :

(pk1, c, (h, s)) ∈ Hc ∧ (pk2, 1− c, (h′, s′)) ∈ H1−c
41 if TDT(pk1, pk2, z1,1, . . . , zm,m) = 1
42 return (h[1]−1 · h′[1]−1) ? z1,1
43 return ⊥

Fig. 24. Adversary B against GA-CDH. O denotes the set of all CKS oracles, i.e. O = {RegisterHonest,
RegisterCorrupt,CorruptReveal,Test}, which are defined as in G6 of Figure 23. TDT is also defined as
in Figure 23.

1. The collision bounds used in their game hops are not compatible with known, optimal lower bounds
for quantum computing. Specifically, second preimage collisions always loose a quadratic term, while
full collision resistance loose a cubic term. While it is unclear which of the two is applicable to their
proof, they claim a linear loss due to one of the two possibilities in their games, which contradicts
known results in the quantum setting.

2. It analyzes classical events on the random oracle queries for example in hybrids 1 and 2. Such an
approach will not work since a single uniform superposition query would trigger all events (informally
speaking). Without these steps, it is unclear how to simulate decapsulation queries. For example,
the equivalent of not querying an information-theoretically hidden value in the QROM with high
probability amplitude would be done by using either the O2H lemma, or reducing to the Generic
Search/Distinguishing Problem. Neither of these is considered in their proof.

3. It uses the semi-constant distribution technique from [41] which is usually used to prove security
of signature schemes and identity-based encryption. The tool is used in the context of Hash-and-
Sign signatures to be able to simulate signature queries and extract the solution to some underlying
problem from the signature forgery. This is similarly the case for IBEs, since they inherently have
an underlying signature scheme which can be derived from the IBE. To prove PKE/KEMs/AKEs
secure, one usually uses the O2H lemma to reprogram the random oracle, but the paper claims that
it is not possible to extract a GA-CDH solution from the random oracle queries due to the no-cloning
principle and therefore uses the GA-DDH assumption. This is contradicted by the fact that one
can prove GA-HEG to be IND-CPA secure using the O2H lemma similarly to our proofs, which also
extracts a CDH value from a random oracle.

Remark 9. Additionaly, we remark that CSIDH-PSEC-KEM is essentially (up to one simplification)
derived by applying the FO with explicit rejection to Hashed ElGamal. The FO Transform with Explicit
Rejection has only been proven in recent work in the QROM in [16,41], using advanced techniques with
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careful analysis. We also use those for the proof of GA-HEG-KC. We believe that using those also for
CSIDH-PSEC-KEM should yield a security proof from the GA-CDH assumption.
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