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Abstract

This document is an informal summary on the FRI low degree test [BSBHR18a], [BSCI+20], and
DEEP algebraic linking from [BSGKS20]. Based on its most recent soundness analysis [BSCI+20], we
discuss parameter settings for practical security levels, how FRI is turned into a polynomial commitment
scheme, and the soundness of DEEP sampling in the list decoding regime. In particular, we illustrate
the DEEP method applied to proving satisfiability of algebraic intermediate representations and prove
a soundness error bound which slightly improves the one in [Sta21].
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Introduction

FRI, in full length Fast Reed-Solomon Code Interactive Oracle Proof of Proximity, is a low-degree test for
functions on an FFT domain, i.e. a smooth multiplicative subgroup D of a finite field F . Given a function

f : D −→ F

FRI proves that f corresponds to a polynomial of low degree with respect to the size of D.
The oracles provided by the FRI prover are again functions on D, or a subdomain of it, and the

verifier queries the values at points from their domain only. Due to the small size of D (compared to the
cryptographically large sampling spaces of polynomial IOPs) the key tool for distinguishing one polynomial
from another is statistical sampling. However, a statistical test can only assure proximity, which we measure
by the fractional Hamming distance

δ(f, g) = 1
|D|
·
∣∣ {x ∈ D : f(x) 6= g(x)}

∣∣.
In FRI the prover convinces the verifier that a given function f : D −→ F is θ-close (and not necessarily
equal) to a low-degree polynomial, i.e.

δ(f, p) ≤ θ,

for some polynomial p(X) of specified maximum degree. In words, f agrees with p(X) on a set A ⊆ D

of density |A||D| ≥ 1− θ. In applications the agreement set is chosen large enough to infer global properties
on the low degree polynomial. It is exactly this inference principle which makes FRI applicable to proving
algebraic relations between a set of low-degree polynomials, might it be circuit satisfiability or the evaluation
identities for building a polynomial commitment scheme.

2



We stress that fact that this summary does not present any novelties. Instead it is an outcome of
my learnings when reading the papers [BSCI+20], [BSGKS20], [BSBHR18a], [KPV19] and [Sta21]. The
document provides an overview of FRI and its soundness analysis, including some background on decoding
Reed-Solomon codes. It discusses the DEEP method and how it is related to polynomial commitment
schemes and we sketch the more general notion of list polynomial commitment schemes [KPV19]. Finally
we illustrate how soundness error bounds are proven for the DEEP method in the list decoding regime.
In the course the latter we clarify two points of [Sta21], which are the usage of degree correction factors
(these are not needed for the DEEP method), and the quadratic occurence of the decoder list size bound
in their soundness error formula, which can be replaced by a linear term.

We assume that the reader knows (public-coin) interactive oracle proofs and their security notions
[BSCS16], such as soundness, proof of knowledge, and statistical (i.e. perfect) honest verifier zero-
knowledge. Any IOP with these security properties can be compiled into a succinct non-interact-ive
argument of knowledge in the random oracle model [BSCS16]: The prover oracle messages are committed
by Merkle roots using the random oracle, and the verifier coins are the answers of the random oracle given
the prover messages as its input.

Notation

Throughout the document we assume that the size of the sampling domain D and the number of coefficients
k are both powers of two, and that the multiplicative subgroup F ∗ of the finite field F is smooth enough to
contain a subgroup of order k and |D|. The absolute Hamming distance between two function f, g ∈ FD is

∆(f, g) =
∣∣ {x ∈ D : f(x) 6= g(x)}

∣∣,
and we shall write

δ(f, g) = 1
|D|
·∆(f, g)

for its fractional variant. Given any subset V ⊆ FD, we denote by

∆(f, V ) = min
v∈V

∆(f, v)

the minimal distance of f ∈ FD to V , and likewise we define the minimal fractional Hamming distance.
We denote by

RSk[F,D] =
{
p(x)|x∈D : p(X) ∈ F [X], deg p(X) ≤ k − 1

}
the Reed-Solomon code of rate ρ = k

n over the domain of definition D ⊆ F ∗. (Here, p(x)|x∈D denotes the
domain evaluation, i.e. the functional restriction of p(x) to D.) Whenever we say that a polynomial p(X)
belongs to RSk[F,D], we mean that its domain evaluation p(x)|x∈D is a code word.

In the context of oracle proofs, we denote oracles for functions f ∈ FD by
[
f
]
, and occasionally call them

domain evaluation oracles to distinguish from the oracle notion of univariate polynomial IOPs [BFS20],
which models an ideal polynomial commitment scheme. In order to a closer alignment with the compiled
protocol in the random oracle model, we prefer to say that a party P (the prover) “sends” [f ] to another
party V (the verifier), meaning that P sets up the oracle for f and V obtains oracle access for it.

Correlated agreement

As in polynomial IOPs, building random linear combinations is the core reduction argument in FRI . While
the soundness of it is easily proven in the polynomial model, this is not the case for domain evaluations.
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Even in the most elementary case, proving that if with noticeable probability a random linear combination
of two given functions f0, f1 is θ-close to a Reed-Solomon codeword, i.e.

δ
(
f0 + λ · f1,RSk[F,D]

)
≤ θ,

then a similar proximity would hold for f0 and f1 , is non-trivial, in particular when targeting only a
small increase in the distance bound θ. The most advanced result is the correlated agreement theorem (or
proximity gap theorem) of Ben-Sasson, et al. [BSCI+20]. We state it for the case of algebraic curves, which
is typically favored in the context of proof composition.
Theorem 1. (Correlated agreement theorem, full version of [BSCI+20], Theorem 6.1 and 6.2) Let RSk =
RSk[F,D] be the Reed-Solomon code over a a finite field F with defining set D ⊆ F and rate ρ = k

|D| .
Given a proximity parameter θ ∈ (0, 1−√ρ) and words f0,f1,...,fN−1 ∈ FD for which∣∣∣{λ ∈ F : δ

(
f0 + λ · f1 + . . .+ λN−1 · fN−1,RSk

)
≤ θ

}∣∣∣
|F |

> ε,

where ε is as in (1) and (2) below. Then there exist polynomials p0(X), p1(X),...,pN−1(X) belonging to
RSk, and a set A ⊆ D of density |A|

|D| ≥ 1 − θ on which f0, . . . , fN−1 jointly coincide with p0, . . . , pN−1,
respectively. In particular,

δ
(
f0 + λ · f1 + . . .+ λN−1 · fN−1,RSk

)
≤ θ

for every λ ∈ F .
The proof of the correlated agreement theorem, including concrete values for the soundness error bound

ε, is an algebraic analysis of the Berlekamp-Welch or the Guruswami-Sudan list decoder over the rational
function field K = F (Z). It uses the Polichuk-Spielmann lemma to “glue together” the outputs of the
decoder for f0 + λ · f1 + . . .+ λN−1 · fN−1 over the “small” field F by means of the decoder result for the
word

f0 + Z · f1 + . . .+ ZN−1 · fN−1 ∈ KD

over the infinite field K: If for a noticeable fraction of λ’s the distance to the Reed-Solomon code is ≤ θ,
then the same holds over F (Z).

Depending on the decoding regime the following values for ε are obtained by [BSCI+20]:

1. Unique decoding regime. For θ ∈
(
0, 1−ρ

2

]
, Theorem 1 holds with

ε = (N − 1) · |D|
|F |

. (1)

2. List decoding regime. For θ ∈
(

1−ρ
2 , 1−√ρ

)
and setting θ = 1−√ρ ·

(
1 + 1

2m

)
, with m ≥ 3, Theorem

1 holds with

ε = (N − 1) ·

(
m+ 1

2

)7

3 · ρ
3
2
· |D|

2

|F |
. (2)

For linear varieties of the form f0 + λ1 · f1 + . . .+ λN−1 · fN−1 a similar result holds, with the (N − 1)-
term in (1) and (2) replaced by 1. See the full version of [BSCI+20], Theorem 4.1 and 5.1.

Note that in contrast to the unique decoding regime, the sampling domain size |D| occurs quadratically
in the error bound, and therefore the field needs to be significantly larger to obtain the same magnitude of
soundness as in the unique decoding regime. This quadratic occurrence is inherently connected with the
Guruswami-Sudan-Johnson list size bound. It is conjectured by [BSGKS20] that Reed-Solomon codes over
prime fields F are more “nicely” list decodable, even up to capacity bound 1 − ρ, and that the sampling
domain size occurs only linearly in the error bound. We will discuss this conjecture in Section 5.4.
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FRI proof of proximity

Given a function f ∈ FD and its domain evaluation oracle [f(x)|x∈D], FRI is an interactive oracle proof
for f being close to a word from RSk[F,D],

δ(f,RSk[F,D]) ≤ θ,

given a proximity parameter θ of at most the Johnson list decoding bound. As most interactive oracle
proofs, the FRI protocol is comprised of a commit phase and a query phase. The commit phase consists
of one or several rounds, in which the prover sends domain evaluation oracles to the verifier, who then
responds with a random challenge. That phase of FRI performs a random reduction similar to the one of
an inner product argument [BCC+16], at least halving the instance size with each step by a linear folding
procedure. In the concluding query phase, the verifier asks for openings of the oracles at random points
from their domain of definition. These openings are then used to check consistency of each reduction step
of the commit phase.

Reduction

The commit phase of FRI starts with the instance to proven, i.e. the polynomial p0(X) = p(X) and
its domain evaluation over D0 = D. This instance is stepwised reduced by means of a random folding
procedure, yielding a sequence of polynomials

p0(X), p1(X), . . . , pr(X) ∈ F [X]

as words over the domains
D0 ⊇ D1 ⊇ . . . ⊇ Dr,

respectively, wheras their degree bounds ki, deg pi(X) < ki, decrease with the same ratio as the domains.
The quotients

ai = ki−1
ki

= |Di−1|
|Di|

are the reduction factors, and we throughout assume that ai ≥ 2. (By our assumptions on |D| and k the
ai are again powers of two.) The number of rounds r ≥ 1, their reduction factors a1, . . . , ar and therefore
the decreasing sequence of domains D0, . . . , Dr, are parameters of FRI.

Protocol 1 (FRI commit phase). Given the domain evaluation [p0(x)|x∈D0 ] for the polynomial p0(X) ∈
F [X], deg p0(X) < k0, the commit phase consists of the following r rounds.

• In each round i, 1 ≤ i ≤ r, the prover decomposes the previous polynomial pi−1(X) of deg pi−1(X) <
ki−1, according to

pi−1(X) = F0(Xai) +X · F1(Xai) + . . .+Xai−1 · Fai−1(Xai), (3)

where each
degFi(Y ) < ki−1

ai
= ki.

(For ai = 2 this is the decomposition into odd and even parts.) The verifier samples a random
challenge λi←$F , sends it to the prover, which in turn responds with the linear combination

pi(Y ) = F0(Y ) + λi · F1(Y ) + . . .+ λ
ai−1
i · Fai−1(Y )

as a word on the reduced domain Di = Dai
i−1 = {xai : x ∈ Di−1}. That is, it sends [pi(y)|y∈Di ] to

the verifier. In the last step however, i = r, the polynomial pr(X) ∈ F [X] is revealed in full length
instead.
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Let us elaborate on the decomposition (3) in terms of the reduction map

πi : Di−1 −→ Di, x 7→ xai .

Notice that for each y in Di, y = xai , the values of F0(y),. . . , Fai−1(y) are uniquely determined by the
values of

F0(y) + F1(y) ·X + ...+ Fai−1(y) ·Xai−1

on the coset π−1
i (y) = x · ker(πi), and these values are exactly the ones given by pi−1(X). Hence if τ is a

generator of ker(πi) = {1, τ, . . . , τai−1}, then

pi(πi(x)) = L0
(
pi−1

(
τ0 · x

)
, . . . , pi−1

(
τai−1 · x

))
+ λi · L1

(
pi−1

(
τ0 · x

)
, . . . , pi−1

(
τai−1 · x

))
+ . . .

+ λai−1
i · Lai−1

(
pi−1

(
τ0 · x

)
, . . . , pi−1

(
τai−1 · x

))
where (L0, ..., Lai−1) is the Lagrange interpolation map for the coset x · ker(πi). In other words,

pi(πi(x)) = FFTλi/x
(
pi−1

(
τ0 · x

)
, . . . , pi−1

(
τai−1 · x

))
, (4)

that is the Fourier transform of the vector
(
pi−1

(
τ0 · x

)
, . . . , pi−1

(
τai−1 · x

) )
, evaluated at λi

x . This equa-
tion will be used to check consistency between the provided oracles.

In some situations it is more efficient to compute the values of pi(y) over Di directly from the ones of
pi−1(x), x ∈ Di−1, using (4). In terms of field additions A, multiplications M, and FFT operations FFT(ai)
of size ai, this can be done1in

|Di| ·
(
(ai + 1 + ai

2 · log ai) M + (ai − 1 + ai · log ai) A
)
≈ |Di| · (ai + 1 + ai

2 · log ai) M,

compared to
ai · ki (M + A) + FFT(|Di|) ≈ |Di| · (ai + log2 |Di|) M

when computing the domain evaluation of the random linear combination pi(X). Hence using equation
(4) is more efficient whenever

1 + ai
2 · log2(ai) < log2 |Di|, (5)

which holds for most reduction steps when ai = 2. For ai = 22 and ai = 23 we already obtain |Di| > 25

and |Di| > 213, respectively. However, it should be noticed that these counts do not take into account that
equation (4) is better parallelizable than the FFT approach.

Sampling phase

In the query phase the verifier samples at random points from the defining domains of the oracles, and use
the returned values to check the consistency of all reduction steps.

Protocol 2 (FRI query phase). The query phase consists of s ≥ 1 many rounds.
1Using batch inversion to compute λi

x
over Di costs 2 · |Di|M, computing the fiber FFT’s costs |Di| · ai2 · log(ai) · (M + A),

and evaluating them another |Di| · (ai − 1) · (M + A).

6



• In each round the verifier samples an x0 ∈ D0 uniformly at random, computes x1, . . . , xr recursively
via xi = πi(xi−1), and checks if

pi(xi) = FFTλi/xi
(
pi−1(xi−1), pi−1(τ · xi−1), . . . , pi−1(τai−1 · xi−1)

)
,

for every i = 1, . . . , r, by querying the values of each pi−1 over the coset xi−1 · kerπi.

Notice that unlike in [BSCI+20] we choose x0 uniformly from D0, and form the xi by projecting xi−1
onto Di. In distribution, this way of sampling is equivalent to the one in the paper, which starts with
xr←$Dr, and then samples xi−1 uniformly from the coset π−1

i (xi).

Batching

As for linear polynomial commitment schemes, batching is done via random linear combinations. We will
only discuss the algebraic variant, which uses powers of a single random challenge. (Again, this is the one
favored in the context of proof composition.)

Given a batch of L low-degree polynomials q0(X), . . . , qL−1(X), the verifier samples a random challenge
λ←$F . The prover computes the linear combination

h(X) =
L−1∑
i=0

λi · qi(X), (6)

sends the oracle of it,
[h(x)|x∈D],

to the verifier. Then both prover and verifier continue with FRI for h. Each x0←$D0 = D from the query
phase of FRI is used to additionally check consistency between the oracle for h(X) and the ones in the
batch, q0(X), . . . , qL−1(X), using (6).

Soundness

The soundness analysis of FRI is based on a strengthening of the correlated agreement theorem, which
allows to additionally keep track of the success probability for the FRI query phase by a sub-probability
measure µ. We state that weighted correlated agreement theorem in Appendix A.3. For proximity pa-
rameters close to the Johnson bound, the soundness error of the batched FRI oracle proof is as follows2:

Theorem 2 (Batched FRI soundness error, full version of [BSCI+20], Theorem 8.3). Suppose that qi ∈ FD,
i = 0, . . . , L − 1, is a batch of functions given by their domain evaluation oracles. If an adversary passes
batched FRI for RSk[F,D] and proximity parameter θ = 1−√ρ ·

(
1 + 1

2m

)
, m ≥ 3, with a probability larger

than

ε =
(
L− 1

2

)
·

(
m+ 1

2

)7

3 · √ρ3 · |D0|2

|F |
+ (2m+ 1) · (|D0|+ 1) ·

∑r
i=1 ai√

ρ · |F |
+(1− θ)s,

(7)

then the functions qi ∈ FD, i = 0, . . . , L− 1, have correlated agreement with RSk[D,F ] on a set of density
of at least α >

(
1 + 1

2m

)
· √ρ.

2We would like to thank Paul Gafni for pointing out a typo in formula (7) in a previous version of the document.
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Remark 3. The case of linear batching of two functions q0, q1 corresponds to the case L = 2, in which
L− 1

2 = 3
2 . The same is true for affine batching of several functions, its soundness error is obtained from

(7) by replacing L− 1
2 by 3

2 , see [BSCI+20].
The first two terms in (7),

εC =
(
L− 1

2

)
·

(
m+ 1

2

)7

3 · √ρ3 · |D0|2

|F |
+ (2m+ 1) · (|D0|+ 1) ·

∑r
i=1 ai√

ρ · |F |
,

correspond to soundness error of the commit phase, reflecting the systematic error estimated by the cor-
related agreement theorem and collected over the batching step and the reduction rounds. In words, if
the oracles in the batch do not share the claimed correlated agreement for α = 1 − θ, then except with
probability εC , the oracles produced during the commit phase cannot be “nice”. That is, the set where all
consistency checks would hold is at most of density α. The remaining term,

εQ = (1− θ)s,

is the soundness error of the query phase with s rounds. This is the probability not to detect such a set of
non-“nice” oracles using s independent samples.

Example parameters

One way to settle the parameters is as follows. For target security level 2−λ, we assure that

1. the soundness error for the commit phase is bounded by 1
2 · 2

−λ. For that we choose the maximum
Johnson proximity m ≥ 3 so that

εC ≤
1
2 · 2

−λ,

2. the soundness error of the query phase is bounded by 1
2 · 2

−λ. Using m from the first step, we
determine the number s of query rounds via

εQ = √ρs ·
(

1 + 1
2m

)s
≤ 1

2 · 2
−λ.

The following examples3consider a situation is similar to the one in plonky2 [Pol]. We take extensions
F of a base field of size |Fb| = 264, and sampling domain sizes |D0| = 212 · ρ−1, where we vary the blow-up
factors ρ−1 to the maximum possible for the given security level. The number of polynomials is taken as
L = 300, and we assume that these are grouped into

{100, 100, 100}

polynomials, each group committed by a single tree using Merkle caps. The height for the Merkle caps is
chosen to minimize the proof size. For each blow-up factor we compute the proof size (assuming a hash
size of 256 bits), and as a very coarse measure for the prover complexity the number hashes4it needs to
compute.

3In a previous version of the document the example parameters where based on linear batching of FRI. The current ones
consider algebraic batching.

4Each call of the hash processes another r = 256 bits.
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67 bits of security

Such a configuration might be still interesting in practice, as its security can be increased by grinding (see
[Sta21]): Another 13 bits proof of work bound to the proof generation, and one obtains overall 80 bits of
security.

• With a degree 2 extension of Fb, hence a field size of 128 bits, the best security level one can obtain
for ρ = 2−5 is about 69 bits. The commit phase error is

εC ≈ 2−68.21,

with Johnson proximity m = 3. To have about the same soundness error in the query phase, we
demand s = 29 samples, yielding

εQ ≈ 2−68.33.

With a reduction strategy {a1, a2} = {24, 23} we obtain proof sizes of about 104 kB.

− log2(ρ) m s T in hashes |π| in bytes
3 6 50 17.4 k 170.2 k
4 4 38 34.8 k 132.9 k
5 3 30 69.6 k 107 k

• With a degree 3 extension of Fb, hence a field size of 192 bits, one can choose higher blow-up factors.
For ρ = 2−6 we obtain 67 bits security by

εC ≈ 2−68.00,

where the Johnson proximity is m = 1, 487. To have about the same soundness error in the query
phase, we need only s = 23 samples, yielding

εQ ≈ 2−68.99.

With the same reduction strategy as before, we reduce the proof size down to 89 kB. However, this
comes at the cost of about tripling the prover cost.

− log2(ρ) m s T in hashes |π| in bytes
6 1, 427 23 209 k 88.9 k
8 713 18 836 k 72.4 k
10 356 14 3, 342 k 58.4 k

112 bits security

As in the previous setting, we discuss this level of security as it can be improved by grinding, typically up
to 128 bits. All configurations use degree 3 extensions of Fb.

− log2(ρ) m s T in hashes |π| in bytes
6 16 39 209 k 149 k
8 7 29 836 k 115 k
10 3 24 3, 342 k 99 k

For higher blow-up factors, one needs to increase grinding. For example, for − log2(ρ) = 11 the best level
of security that can be obtained with degree 3 extensions is 109 bits, leaving 19 bits for grinding. The
proof size decreases down to 88.2 kB, at the prover cost of 6, 684, 672 hashes.
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128 bits security

These configurations do not use grinding, and hence have quite large proof sizes. Again, we use degree 3
extensions of Fb.

− log2(ρ) m s T in hashes |π| in bytes
3 9 91 26 k 322 k
4 6 69 52 k 250 k
5 4 56 104 k 208 k

Conjectured security

In their line of work on FRI [BSBHR18a, BSGKS20, BSCI+20] the authors make several conjectures on
the soundness of FRI for proximity parameters above the Johnson bound. In the most recent one, they
state the following.

Conjecture 1 (Full version of [BSCI+20], Conjecture 8.4). There exist constants c1, c2 such that for all
θ = 1− ρ− η, η > 0, the soundness error in the correlated agreement theorem on f0, . . . , fN−1 is bounded
by

ε ≤ 1
(η · ρ)c1

· (N · n)c2

|F |
.

Remark 4. For purely linear batching, a similar conjecture is stated.
We point out that the above conjecture (as well as its corresponding one in [BSBHR18a]) is stated

isolated from any general conjectured properties on Reed-Solomon codes, such as list decodability up to
capacity bound (as done for DEEP method, see Section 5.4). Instead it is rather justified by “[to the best of
our knowledge...] nothing seems to contradict” . The authors consider the choice of c1 = c2 = 2 reasonable,
and for fields of characteristic q > n they estimate that c1 = c2 = 1.

The c1 = c2 = 1 assumption is of particular interest for practitioners, as it yields proofs of halve the
size as in the c1 = c2 = 2 case. For example, it is used by the ethSTARK [Sta21] (besides its provably
secure parameter setting), as well as by plonky2 [Pol].

Adding zero-knowledge

Zero-knowledge for FRI has to be provided on application level. In our use cases, the witnesses of an
argument correspond to the values of some polynomial q(X) on a given domain H (the proving domain
for Plonk, say). To protect it from being leaked by the queries of the s query rounds (as well as by the
final reduction polynomial), one uses a an H-disjoint coset a ·D of the FRI domain, and randomizes q(X)
outside the domain H. That is, the batching and the entire FRI reduction takes place on

a ·D0 ⊇ a ·D1 ⊇ . . . ⊇ a ·Dr,

instead of D0 ⊇ D1 ⊇ . . . ⊆ Dr, where (a · D0) ∩ H = ∅. This leads to running batched FRI for qi(X),
i = 0, . . . , L− 1, over the non-shifted domain D0 on the shifted polynomials

qi(a ·X),

i = 0, . . . , L− 1, instead.
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The number of linear functionals of a polynomial qi(X) revealed in the course of a single FRI query are:
One in the batching step, ai many for the coset evaluations in each of the reduction steps i = 1, .., r − 1,
and

1 + deg pr(X) = ρ · |Dr| = ρ · |D0|
a1 · a2 · . . . · ar−1

linear functionals corresponding to the coefficients of the final reduction polynomial. With s queries this
leads to overall

b = s · (1 +
r−1∑
i=1

ai + ρ · |D0|
a1 · a2 · . . . · ar−1

) (8)

linear functionals. To reduce this number, one can add a blinding polynomial

h(x) ∈ RSk[F,D]

to the batch (coming with the cost of an extra commitment). Then the number of linear functionals
revealed on a witness polynomial is reduced to b = s.

In both cases, the randomization can be done without moving beyond |H| − 1 in degree whenever a
subset B ⊆ H with |B| = b remains “unused”, i.e. unconstrained: Instead of taking

p(X) = p(X) + r(X) · vH(X),

where vH(X) is the vanishing polynomial of H and r(X) a random polynomial of deg r(X) = b − 1, one
takes p(X) as the polynomial interpolated from the witness values on H \ B and randomly chosen values
on B.

FRI as a polynomial commitment scheme

FRI can be turned into a polynomial commitment scheme by means of the evaluation quotients

h(x) = f(x)− v
x− z

of a committed word f ∈ FD. This approach, called the DEEP method in [BSGKS20] corresponds to the
algebraic linking of the evaluation identity

f(X) = v + h(x) · (X − z)

with a low-degree problem on the sampling domain D, assuming that z /∈ D. (For z ∈ D the oracle can
directly answer with the queried value. We will omit this case throughout our discussion.)

For proximity parameters θ up to the unique decoding radius one obtains a polynomial commitment
scheme in the classical sense (when compiling the oracle proof into an argument using a secure partially
disclosable vector commitment). In the list decoding regime the situation is a bit more subtle due to the
non-uniqueness of θ-close code words. In this case the DEEP method can be viewed as an oracle proof
for a more general type of polynomial commitment scheme, called list polynomial commitment scheme in
[KPV19]. However, as their notion does not cover the power of correlated agreement, we shall only sketch
list polynomial commitment schemes.

In the unique decoding regime

For a proximity bound up to the unique decoding radius, i.e. θ < 1−ρ
2 , the situation is quite simple.

However, there are several ways to algebraically link the evaluation identity with a low-degree test.

11



A first construction

We first discuss a naive scheme, in which the maximum degree corresponds to the degree proven by FRI.

• Setup: The maximum degree d = k − 1 is chosen as the maximum degree of polynomials belonging
to RSk[F,D].

• Commit: Given a polynomial p(X) of degree deg p(X) ≤ d, the prover commits its domain evaluation
over D, i.e.

Com(p(X)) = [p(x)|x∈D].

• Evaluation proof: Given an opening claim (z, v) with z /∈ D, the prover engages with the verifier in
a batched FRI argument on

f1(x) = p(x)− v
x− z

,

f2(x) = x · f1(x) = x · p(x)− v
x− z

.

with proximity bound θ = 1−ρ
2 . This proof batches the functions into a random linear combination

f1(x) + λ · f2(x) = (1 + λ · x) · p(x)−v
x−z , and then runs FRI on it. The linear term λ · x is called degree

correction factor.

We point out that the two functions f1, f2 are not needed to be provided by another oracle, as their
evaluations on D can be computed from the values of p(x).

Let us discuss that the evaluation proofs in fact provide a view on a unique polynomial of degree ≤ d,
determined by the values committed in [p(x)|x∈D]. First of all, if the prover passes with a probability
p greater than the soundness error of batched FRI on f1, f2 as above, then there exist two polynomials
p1(X), p2(X) of degree ≤ d, and a correlated agreement set A of density 1− θ ≥ 1+ρ

2 such that

f1(x) = p1(x)
∣∣
x∈A,

x · f1(x) = p2(x)
∣∣
x∈A,

and hence also x · p1(x) = p2(x)
∣∣
x∈A. As the density of A is strictly greater than ρ, the polynomial

X · p1(X) − p2(X) has at least k + 1 = d + 2 zeroes and hence must be trivial, i.e. X · p1(X) = p2(X).
This implies that deg p1(X) ≤ d− 1, and hence p(x) coincides on A with the degree d polynomial

P (X) = v + (X − z) · p1(X),

which evaluates to v at z. Notice that δ(p(x), P (X)) < 1−ρ
2 , hence a single evaluation proof implies distance

to a degree ≤ d polynomial of at most the unique decoding radius. As a consequence, any other evaluation
proof (on the same or any other query) is consistent with that unique degree ≤ d polynomial, showing that
we indeed have a polynomial commitment scheme.

The refined scheme

By similar reasoning (based on a degree k = d + 1 polynomial vanishing on a set of density > ρ) we can
remove the degree correction factor in the above naive scheme, running FRI for a proximity parameter
θ < 1−ρ

2 , only on the evaluation quotient of the claim: For any two evaluation claims (z1, v1) and (z2, v2) we

12



conclude the existence of polynomials p1(X), p2(X) of degree ≤ k−1 and sets A1, A2 of density 1−θ > 1+ρ
2

such that
v1 + (X − z1) · p1(X),
v2 + (X − z2) · p2(X),

agree with p(x) on A1 and A2, respectively. Since the density of A1∩A2 is at least 1−2 · θ > ρ, it contains
at least k + 1 points, and by degree we may conclude the formal identity

v1 + (X − z1) · p1(X) = v2 + (X − z2) · p2(X).

This leads to the following optimized scheme:

• Setup: The maximum degree is d+ = k, where k is the absolute rate of RSk[F,D].

• Commit: Given a polynomial p(X) of degree deg p(X) ≤ d+, the prover commits its domain evalua-
tion over D, i.e.

Com(p(X)) = [p(x)|x∈D].

• Evaluation proof: Given an opening claim (z, v) with z /∈ D, the prover engages with the verifier in
a batched FRI argument on

p(x)− v
x− z

with proximity bound θ < 1−ρ
2 .

Multi-point queries

Instead of batching several point evaluation quotients, queries for the values of a polynomial p(X) over a
small set Ω = {z1, ..., zm} ⊂ F \D can be also proven via the multi-evaluation identity

m∑
i=1

(p(X)− vi) · L(zi, X) = 0 mod vΩ(X), (9)

where vΩ(X) =
∏m
j=1(X − zj) is the vanishing polynomial of Ω and L(zi, X) =

∏
j 6=i

X−zj
zi−zj is the Lagrange

polynomial at zi. Similar to the single query case, one argues using the quotient

h(x) = Quotient(p, {(zi, vi) : i = 1, . . . ,m}) = p(x)− V (x)
vΩ(x) , (10)

where
V (X) =

m∑
i=1

vi · L(zi, X)

is the unique degree ≤ m− 1 polynomial that interpolates the claim.
Alternatively, as in the batch evaluation protocol of Boneh, et al. [BDFG21], one can replace the

Lagrange kernel with the non-normalized variant D(zi, X) =
∏
j 6=i(X − zj)

m∑
i=1

(p(X)− vi) ·D(zi, X) = 0 mod vΩ(X), (11)

and work with the quotient

h′(x) =
m∑
i=1

p(x)− vi
x− zi

13



instead.
In both cases one has to limit the number m of simultaneous queries to some maximum value mmax,

satisfying
k +mmax < (1− θ) · n.

For this it is sufficient to choose k + mmax ≤ (1 − θ0) · n = k+n
2 , and hence mmax ≤ n−k

2 . Even with the
lowest blow-up factor we have n ≥ 2 · k, it is thus enough to demand

mmax ≤
k

2 . (12)

In our applications the bound on mmax is trivially met, as only few values are queried in the run of the
proof. Furthermore, given a polynomial we use multi-point queries of fixed given size m ≤ mmax. As a
consequence the maximum degree in the setup can be enlarged to dmax = k +m− 1.

List commitments

In the list decoding regime the situation is a bit more subtle. Running FRI for RSk[F,D] with a proximity
parameter 1−ρ

2 < θ < 1−√ρ on an evaluation quotient

h(x) = p(x)− v
x− z

only proves agreement of p with an evaluation-claim-consistent polynomial of degree d+ = k on a set of
density greater than α = 1−θ. This might be not large enough for proving the polynomials of different runs
of FRI being equal. In fact, they might differ from claim to claim, unless one runs a joint FRI argument
on them. Assuming α >

√
ρ+, where ρ+ = k+1

|D| , the Guruswami-Sudan list decoding bound shows that
there might be

L ≤ 1
2 · η · ρ+

such code words. This leads to the idea of list polynomial commitment schemes as in [KPV19] with the
following information-theoretic model: The prover sets up an oracle which contains a list of l, 1 ≤ l ≤ L,
low-degree polynomials, and the oracle is allowed to choose which one to evaluate on a given query. Such
extended notion is practical as security proofs in the oracle model are similar to polynomial oracle proofs.
However, the notion of list polynomial oracles as given in [KPV19] is not strong enough to capture correlated
agreement, and as a consequence soundness error bounds are too coarse. For this reason we do not dive
into formal details of that model, and instead directly work with DEEP algebraic linking.

DEEP-ALI

In this section we discuss the DEEP algebraic linking (DEEP-ALI) [BSGKS20] and demonstrate its appli-
cation to proving satisfiability of algebraic intermediate representations (AIR). Other representations such
as randomized AIR or Plonk [GWC19] can be treated similarly.

Algebraic linking and the DEEP method

Algebraic linking transforms satisfiability of algebraic identities over algebraic subsets of F into proximity
problems of low-degree extensions to Reed-Solomon codes over “outside” domains (i.e. disjoint to the
algebraic subset) . A family of functions g1, . . . , gN on Ω = {x1, ..., xn} satisfies an algebraic identity

P (x, g1(x), . . . , gN (x)) = 0
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on Ω (P is a polynomial), if and only if their low-degree extensions p1(X), . . ., pN (X) satisfy that
P (X, p1(X), . . . , pN (X)) is divisible by the vanishing polynomial vΩ(X) =

∏n
i=1(X − xi) of Ω , i.e. the

quotient
h(X) = P (X, p1(X), ..., pN (X))

vΩ(X)
is a low-degree polynomial. This divisibility criterion is translated to the proximity of given code words

f1, ..., fN , h ∈ FD,

(the honest prover chooses the domain evaluations of p1(X), . . . , pN (X) and h(X) over D) to low-degree
polynomials, i.e. a Reed-Solomon code words5. For this the proximity parameter needs to be chosen so
that the agreement sets are large enough to infer from local satisfiability of algebraic identities to their
satisfiability over the entire field F . This means that the sampling domain D is such that the notion of low-
degree is determined by the degree of P (X, p1(X), ..., pN (X)). DEEP-ALI instead allows for decoupling
the sampling domain size from the degree of P .

DEEP-ALI is very much in alignment with a polynomial IOP for proving that

P (X, p1(X), ..., pN (X)) = h(X) · vΩ(X). (13)

Instead of showing proximity of the quotient

h(x) = P (x, f1(x), ..., fN (x))
vΩ(x)

to a low-degree polynomial, one samples a random point z←$F outside the domain D, and let the prover
provide evaluations claims vi, i = 1, . . . , w for pi, and v for h, which are used to check the identity (13) at
X = z. The validity of the values are supported by proving proximity of the point evaluation quotients

fi(x)− vi
x− z

, i = 1, . . . , w,

as well as
h(x)− v
x− z

to corresponding low-degree polynomials. Furthermore, by decomposing h(X) into into polynomials of
degree |Ω| − 1, e.g.

h(X) = h0(X) +X |Ω| · h1(X) + . . .+X(d−1)·|Ω| · hd−1(X), (14)

one can even use a sampling domain the size of which is not determined by the degree of h(X). (We use
a different decomposition as in [BSGKS20, Sta21], which does not imply any further constraints on the
sampling space for z.)

In the unique decoding regime, the DEEP-ALI approach is equivalent to a (univariate) polynomial
IOP using FRI as a polynomial commitment scheme as described in Chapter 4. For larger proximity
parameters, one can generalize the polynomial oracle model to list polynomial commitment schemes as
done in [KPV19], but their approach does not yield soundness bounds which are as tight as given by
the correlated agreement theorem. In order not to introduce yet another oracle model which reflects this
specific correlated agreement property of batched FRI, we directly show how to apply the DEEP method
to proving satisfiability of an algebraic intermediate representation.

5In the case of a single batched FRI proof for the fi together with h, one needs to use degree correction factors as in Section
4.1.1.
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DEEP-ALI of an AIR

An algebraic intermediate representation (AIR), see [BSBHR18b, BSGKS20, Sta21], is defined over an
FFT domain H ⊂ F with generator g. Each x in H carries a “row” of w witnesses (or, “columns”)

(g1(x), .., gw(x)),

on which a certain number of algebraic constraints are imposed. For simplicity we restrict ourselves to
constraints between neigboring rows only, i.e. polynomials

P1, . . . , PC ∈ F [X1, ..., Xw, Y1, ..., Yw],

each Pi being imposed on a specified coset ai ·Hi ⊆ H, where Hi is a subgroup of H. Hence satisfiability
of the AIR is defined by

Pi(x, g1(x), . . . , gw(x), g1(g · x), . . . , gw(g · x)) = 0 ∀x ∈ ai ·Hi, (15)

for every i = 1, . . . , C. In terms of polynomials p1(X), . . . , pw(X) ∈ F [X] extending the witness functions
g1, . . . , gw, satisfiability of an AIR constraint Pi on ai ·Hi can be expressed by demanding the quotient

Pi
(
p1(X), . . . , pw(X), p1(g ·X), . . . , p1(g ·X)

)
vai·Hi(X)

where vai·Hi(X) = z|Hi| − a|Hi|i is the vanishing polynomial of the coset ai ·Hi, being again a polynomial.
This is the approach [BSBHR18b, BSGKS20, Sta21]. However, instead of working with these quotients
we prefer using polynomial identities similar to Plonk [GWC19]: Satisfiability of an AIR constraint Pi
imposed on ai ·Hi is equvialent to

si(X) · Pi
(
p1(X), . . . , pw(X), p1(g ·X), . . . , p1(g ·X)

)
= 0 mod vH(X), (16)

where
si(X) = vH(X)

vai·Hi(X) ∈ F [X] (17)

is the selector polynomial6for the constraint Pi. The overall degree of the AIR is defined as

d = max
i

deg(Pi), (18)

where deg(Pi) is the total degree of Pi.
The sampling domain D for FRI is chosen so that |D| = β · |H|, with a blow-up factor β = 1/ρ being

a power of two, and RSk[D,F ] is the Reed-Solomon code of length n = |D| and rate ρ = k
n , with

k = |H|. (19)

However, the agreement parameter used for FRI is taken slightly larger than α =
(
1 + 1

2m

)
· √ρ, m ≥ 3,

namely
α+ =

(
1 + 1

2m

)
·
√
ρ+, m ≥ 3, (20)

where
ρ+ = |H|+ 2

|D|
. (21)

6Notice that, although deg si(X) ≤ |H|− 1, the polynomial si(X) can be succinctly evaluated outside H using the rational
representation from (17). Therefore no evaluation has to be provided by the prover.
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The reason for this slightly larger choice is due to the evaluation quotients of the protocol, which are subject
to the FRI proof. Their denominators are at most quadratic and hence the degree of the non-quotients is
bounded by |H| − 1 + 2. The low-degree extensions pi(X) ∈ F [X] of the witness functions gi on H are
provided as code words over D, and to use again the same code for a polynomial h(X) of larger degree,
we split it into segment polynomials as in (14).

The DEEP-ALI protocol (for simplicity without zero-knowledge) for our AIR is as follows:

Protocol 3 (IOP for AIR using DEEP-ALI). Let p1(X), . . . , pw(X) ∈ F [X] be polynomials of degree
deg pi(X) ≤ |H| − 1 satisfying the AIR constraints (15), i = 1, . . . , C.

1. The prover sends the domain evaluation oracles [p1], . . . , [pw] for p1(X), . . . , pw(X) to the verifier,
who responds with a randomness λ←$F .

2. The prover computes hλ(X) ∈ F [X] of degree ≤ d · (|H| − 1) satisfying the identity

C∑
i=1

λi−1 · si(X) · Pi(p1(X), . . . , pw(X), p1(gX), . . . , pw(gX)) = hλ(X) · vH(X),

splits it into its segment polynomials hλ,j(X), j = 0, . . . , d− 1, each of degree ≤ |H| − 1, as in (14),
and sends their domain evaluation oracles [hλ,0], . . . , [hλ,d−1] to the verifier. The overall identity to
be proven is therefore

C∑
i=1

λi−1 · si(X) · Pi(p1(X), . . . , pw(X), p1(gX), . . . , pw(gX))

= vH(X) ·
d−1∑
j=0

Xj·|H| · hλ,j(X).
(22)

The verifier answers with a DEEP query, i.e. a random z←$F \ (D ∪H).

3. Upon receiving the DEEP query z, the prover sends the evaluation claims (z, vi,1), (g · z, vi,2), i =
1, ..., w, for the witness polynomials pi(X), and (z, vj), j = 0, ..., d − 1, for the segment polynomials
hλ,j(X), to the verifier.

4. Eventually, prover and verifier run batched FRI for proximity of the evaluation quotients

pi(x)− Vi(x)
(x− z) · (x− gz) ,

where Vi(x) is determined from the evaluation claims as described in Section 4.1.3, i = 1, . . . , w, and

hλ,j(x)− vj
x− z

,

j = 0, .., d− 1, to RSk[F,D], where the chosen agreement parameter is α+ as defined above. If FRI
passes, and if the evaluation claims satisfy the overall identity (22) at X = z, the verifier accepts.
(Otherwise, it rejects.)

Remark 5. Notice that the polynomial si(X) can only be succinctly evaluated outside H. For this reason
that H is excluded from the sampling space of z.
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Remark 6. As discussed above, our definition of AIR is equivalent to the one from [BSBHR18b, BSGKS20,
Sta21] (besides that we restricted to constraints between neighboring rows in order to keep the presentation
simple). In particular the quotient polynomial hλ(X) in our protocol is the same as

C∑
i=1

λi−1 · si(X)
vH(X) · Pi(p1(X), . . . , pw(X), p1(gX), . . . , pw(gX)) =

C∑
i=1

λi−1 · Pi(p1(X), . . . , pw(X), p1(gX), . . . , pw(gX))
vai·Hi(X) ,

which is the batched rational function used in their line of work.
Remark 7. Let us point us the difference of Protocol 3 to the IOP given in [Sta21]. Instead of using a
purely linear batching strategy, we use the powers of a single randomness λ, which is the favoured choice in
the context of proof composition. Secondly, as in [BSGKS20] we use multi-point quotients for the witness
polynomials which are queried at z and gz. This reduces the number of polynomials on which FRI is
applied, at the cost of only a slight increase in the choice of k+. Thirdly, the way we decompose hλ(X)
into segment polynomials (14) does not further reduce the sampling space for z, as is needed when using
a FRI-like decomposition.

We finally state the soundness error of Protocol 3 in the oracle model.

Theorem 8 (DEEP-ALI soundness). The above oracle proof for AIR satisfiability has soundness error

ε ≤ L+ ·
(
C

|F |
+ d · (k+ − 1) + (k − 1)

|F | − |D ∪H|

)
+ εFRI , (23)

with k+ = k + 2, L+ = m+ 1
2√

ρ+
, ρ+ = k+

n , and εFRI being the soundness error for batched FRI for α+-
agreement with RSk[F,D], Theorem 2.

Remark 9. We point out some differences to the error bound in [Sta21], Theorem 4. In our bound the
list size bound L+ only occurs linearly instead of quadratically. This due to our more careful analysis of
the consequences of the correlated agreement enforced on polynomials produced in different rounds of the
protocol. Secondly, as mentioned above, the alternative decomposition of hλ(X) into segment polynomials
does not reduce the sampling space for z by a factor d larger domain. Less importantly, since we use do
algebraic batching using the powers of λ, the first term incorporates the number of constraints C. A purley
linear batching strategy, as used in [Sta21] leads to 1

|F | instead.

Remark 10. In the soundness error formula in [BSGKS20], Theorem 15 , the list bound L+ occurs quadrat-
ically. This is due to the application of two separate FRI arguments, one for the batched quotients of the
witness polynomials, and another one for the overall quotient polynomial. (However, the splitting technique
for h is outlined in Section 5.5. therein.) For the same reason, the notion of list polynomial commitment
schemes from [KPV19] would lead to the w-th power of L+, w being the number of witness columns. This
might be acceptable for proving soundness of standard Plonk in the list polynomial oracle model, but not
for a larger number of witness columns.

Proof of Theorem 8. Let us denote ε1 = L+ · C|F | , ε2 = L+ · d·(k
+−1)+(k−1)
|F |−|D∪H| , and ε3 = εFRI . Suppose that

P ∗ is an adversary which succeeds the verifier with a probability exceeding ε = ε1 + ε2 + ε3 . Then there
exists a first message of P ∗, i.e. words f1, . . . , fw on D, on which P ∗ succeeds with probability > ε , and
hence

Pr
[
λ : Pr (P ∗ succeeds |λ) > ε2 + ε3

]
> ε1.
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(Otherwise Pr[P ∗ succeeds ] ≤ 1 · ε1 + (ε2 + ε3) · (1− ε1) < ε1 + ε2 + ε3.) Likewise, for every such “good”
λ (by the definition of ε1, there are at least L+ · C many) there exists a second message of P ∗, i.e. words
hλ,0, . . . , hλ,d−1 on D such that

Pr
[
z ∈ F \D : Pr(P ∗ succeeds |z) > ε3

]
> ε2.

For each such “good” z ∈ F \(D∪H) (by the definition of ε2, there are more than L+·
(
d · (k+ − 1) + (k − 1)

)
many) the evaluation claims pass the verifier checks, and moreover the soundness of FRI enforces the
evaluation quotients(

f1(x)− V1(x)
(x− z) · (x− g · z) , . . . ,

fw(x)− Vw(x)
(x− z) · (x− g · z) ,

hλ,0(x)− v0
x− z

, . . . ,
hd−1(x)− vd−1

x− z

)
to have correlated agreement with some qi(X) ∈ F [X], i = 1, ..., w+ d, of degree deg qi(X) ≤ |H| − 1 on a
set A of density at least α+ >

√
ρ+. Cancelling out the denominators, we see that

(f1, . . . , fw, hλ,0, . . . , hλ,d−1)

have correlated agreement on a set of density≥ α+ with some element from F [X]w+d where each component
polynomial is of degree ≤ |H| − 1 + 2 = k+ − 1, and satisfies the evaluation claim.

In what follows we shall call an element (P0(X), . . . , Pl−1(X)) from F [X]l, with component polynomials
of degree ≤ k+− 1, having correlated agreement with a vector of functions (φ0(x), . . . , φl−1(x)) on a set of
density ≥ α+, an α+-configuration for that vector of functions. Another way to express this, is that

P (X) =
l−1∑
i=0

Pi(X) · Zi,

belonging to the Reed-Solomon code RSk+ [K,D] over the rational function field K = F (Z) is (1−α+)-close
to the K-valued function φ(x) =

∑l−1
i=0 φi(X) · Zi. Note that since α+ >

√
ρ+, the Guruswami-Sudan list

size bound (over general fields, see Appendix A.2) is applicable to RSk+ [K,D]. In particular, there are at
most

L+ =
m+ 1

2√
ρ+

α+-configurations for (φ0(x), . . . , φl−1(x)).
Let us keep a combination of “good” first and second messages (f1, . . . , fw), (hλ,0, . . . , hλ,d−1) fixed.

We have seen above that the existence of a single “good” z implies the existence of an α+-configuration
for (f1, . . . , fw, hλ,0, . . ., hλ,d−1). By the Guruswami-Sudan list size bound for RSk+(K,D) (see Ap-
pendix A.2) there are at most L+ such α+-configurations. However, since there are more than L+ ·(
d · (k+ − 1) + (k − 1)

)
many “good” z, and each establishes an α+-configuration which smoreover eval-

uates to the claimed values, we conclude from the pigeon-hole principle that there is at least one α+-
configuration,

(p1, . . . , pw, qλ,0, . . . , qλ,d−1) ∈ F [X]w+d,

for which the overall identity (22) (taking the qλ,j as hλ,j therein) holds at more than d · (k+− 1) + (k− 1)
many z. By the degree of the identity, this configuration is a solution of it, hence (p1, . . . , pw) ∈ F [X]w is
an α+-configuration for (f1, . . . , fw) which satisfies

C∑
i=1

λi−1 · si(X) · Pi(p1(X), . . . , pw(X), p1(gX), . . . , pw(gX)) = 0 mod vH(X). (24)
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Now let us keep a “good” first message (f1, . . . , fw) fixed. We have seen that for each “good” λ there
exists an α+-configuration for (f1, . . . , fw) which is a solution of (24). Again, by the Guruswami-Sudan list
size bound for RSk+ [K,D], there can be at most L+ many w-configurations. Since there are at least L+ ·C
many “good” λ, we conclude again from the pigeon-hole principle that there is at least one α+-configuration,
which we again denote by (p1, . . . , pw), for which there are at least C many “good” λ for which (24) holds.
By linear algebra (the Vandermonde matrix is invertible) we conclude that this configuration satisfies

si(X) · Pi(X, p1(X), . . . , pw(X), p1(gX), . . . , pw(gX)) = 0 mod vH(X)

for every i = 1, . . . , C. The values of (p1, . . . , pw) over H satisfy the constraints the AIR. This completes
the proof.

We note that in Equation (23), the term in the brackets is exactly the soundness error bound of the
protocol in the (univariate) polynomial IOP model [BFS20]. As soundness in this model is essentially based
on the Schwartz-Zippel lemma, we believe that the blow-up by the factor L+ holds in general for every
(public coin) polynomial IOP when replacing polynomial oracles by domain-evaluation oracles. (At least
for the polynomial IOPs we know, such as [GWC19, MBKM19, CHM+20] or [HGdB21], this is the case.)
Such a general transformation of (univariate) polynomial IOPs into ordinary (i.e. domain-evaluation) IOPs
would be of interest, as the polynomial IOP model is widely used by practicioners. The protocol design
as well as its security analysis is much easier to understand in the polynomial oracle model, and their
soundness error bounds could be easily taken over. We plan to elaborate on this in a separate document.

Extractability

We only provide a brief sketch how to build the extractor in the oracle model, given a prover P ∗ which
succeeds with a probability of that exceeds the soundness error bound from Theorem 8:

1. Sample a “good” first message [f1], . . . , [fw] on which the prover succeeds with a probability greater
than the soundness error bound from Theorem 8.

2. In this step we build a straight-line extractor from the “good” first message [f1], . . . , [fw] pbtained in
Step (1): Read f1, . . . , fw from the oracles. By the proof of Theorem 8, (f1, . . . , fw) agrees with an
AIR solution (p1(X), . . . , pw(X)) ∈ F [X]w on a set A of density ≥ α+. To obtain this solution, one
repeatedly applies the Guruswami-Sudan list decoder7and “intersects” their outputs as described in
[Sta21], Section 5.5. One of the resulting configurations must be the one that satisfies the AIR.

The first step takes expected time O (1/ε), and the Gurswami-Sudan decoder consumes at most O
(
|D|15)

field operations, see Remark 14. To obtain strict polynomial running time, at the cost of having a success
probability < 1, one may stop the sampling after an appropriate multiple of 1/ε.

Boosting soundness

In this section we outline standard techniques to lower the DEEP-ALI soundness error for AIRs over small
fields F . (See [Sta21], or [Pol].)

7Alternatively one could run the Guruswami-Sudan list decoder over K = F (Z). However, its run-time analysis in the
number of operations over F is probably more difficult.
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Using extension fields

One simply draws queries (for example the DEEP queries and the FRI challenges) from a suitable large
extension field Fe of F . The soundness error bound lowers accordingly, replacing |F | with |Fe|. (Notice
that the disadvantage of applying this approach to the entire protocol is that all FRI quotients have to be
computed over Fe.)

Increasing the number of protocol challenges

Instead of drawing protocol challenges from an extension field, one may repeatedly sample a challenge and
run the remaining protocol for them in parallel. For instance, the first verifier challenge λ can be sampled
N1 times, λ1, . . . , λN1 ←$F , and prove the overall polynomial identity (22) for all of these cases. This
yields a lowered soundness error bound of the first round,

ε1 =
(
L+ · C

|F |

)Nλ
,

and increases only the number of hλ,j polynomials (by the factor Nλ) that are subject to the DEEP queries
in the second round. Likewise, one may also take several DEEP queries z1, . . . , zNz from F \D, and apply
FRI to the batch of all resulting quotients, lowering the soundness error bound of the second round to

ε2 =
(
L+ · d · (k

+ − 1) + (k − 1)
|F \ (D ∪H)|

)Nz
.

However, this comes at the cost of increasing the entire batch for FRI by the factor Nz (which might be
acceptable in some applications, though). On the contrary, resampling of FRI challenges would increase
the proof size too much. Hence for FRI extension field sampling is preferable.

Beyond the Johnson bound?

The conjectured soundness error for FRI alone (Conjecture 1) is not good enough to argue the security
of DEEP-ALI beyond the Guruswami-Sudan list decoding bound. For that reason we also cite a general
conjecture on the list decodability of Reed-Solomon codes, which is used by Ben-Sasson et al. to conjecture
the soundness error of DEEP-FRI up to capacity bound.

Conjecture 2. ([BSGKS20], Conjecture 21) Let RSk[F,D] be the Reed-Solomon code over a prime field
F = Fq with defining domain D and rate ρ = k

|D| . Then there exists a constant Cρ such that for every
θ = 1− ρ− η, with η > 0, RSk[F,D] is list-decodable from a fraction of θ errors with list size

L ≤
( |D|
η

)Cρ
.

Remark 11. No concrete assumptions on the constant Cρ are made in [BSGKS20].
For quite large fields F (compared to the block length |D| = n) there are linear codes which are list

decodable up to capacity bound 1 − ρ, such as the folded Reed-Solomon codes (see [Gur07], e.g.). In the
case of a bounded alphabet, Guruswami [Gur07] demonstrates binary linear codes which are list decodable
to the Zyablow bound 1−ρ

H (here, H is the entropy of the code) and uses such codes to construct examples
that approach capacity bound, having list size L = O

(
1
η

)
.

However, practitioners seem to avoid this conjecture. The ethSTARK documentation [Sta21] takes a
toy protocol as a representative for the entire DEEP-ALI of AIR, whereas the plonky2 writeup [Pol] only
sketches soundness in the polynomial oracle model, with no reference to list bounds.
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Appendix

In this section we recap well-known facts on decodability of Reed-Solomon codes8, and describe the weighted
variant of Theorem 1, which is used by the soundness analysis of FRI.

Unless contrary stated, we assume that K is a general field (finite, or infinite), and as for finite fields
we shall call

RSk[K,D] =
{
p(x)|x∈D : p(X) ∈ K[X], deg p(X) ≤ k − 1

}
the Reed-Solomon code with rate ρ = k

|D| and blocklength n = |D|. We say that a family of codes {V (n)}
of increasing blocklength n is list decodable up to distance θ ∈ (0, 1), if the maximum possible number of
θ-close codewords,

L = sup
f∈KD

∣∣B(f, θ) ∩ V (n)
∣∣,

is polynomial in the blocklength n. (Here, B(f, θ) = {w ∈ RSk[K,D] : δ(f, w) < θ} is the open -ball
around f , and δ is the fractional Hamming distance.) As in the main part of the document, we throughout
assume that both n and k are even.

Berlekamp-Welch decoder

Assume that f ∈ KD is at most θ0–close to V , with θ0 = 1−ρ
2 being the unique decoding radius, and let

p(X) be the unique polynomial of degree ≤ k − 1 such that δ(f, p) ≤ θ0. Then the number of points of
disagreement is at most e = n−k

2 . The Berlekamp-Welch decoder [WB86] is based on the observation that
if Ω = {x1, . . . , xe} is the set of errors, and E(x) =

∏
x∈Ω(X −x) is its vanishing polynomial, then we have

E(x) · f(x) = E(x) · p(x)

for all x ∈ D.

Protocol 4 (Welch-Berlekamp decoding). Let K be a general field, and V = RSk[K,D] be the Reed-
Solomon code of length n = |D| and rate ρ = k

n . Assume any word f ∈ KD.

1. Find the coefficients of polynomials E(X), G(X) over K with degE(X) ≤ e, degG(X) ≤ k − 1 + e,
where e = n−k

2 , such that
E(x) · w(x) = G(x) for all x ∈ D.

This linear system has at least one non-trivial solution which can be found in at most O
(
n3) field

operations.
This is a homogeneous linear system of |D| = n equations in k + 2 · e + 1 = n + 1 unknown: The e + 1 coefficients of E(X) and the k + e coefficients of

G(X).

Notice that for any such non-trivial solution (E(X), G(X)) both E(X) and G(X) must be non-trivial.
If one of the two would be identically zero, the size of D the same is true for the other.

2. For any such non-trivial solution (E(X), G(X)) obtained in step 1, check if G(X) is divisible by
E(X). If yes, then output p(X) = G(X)

E(X) . (If not, then abort.)

For a word f ∈ KD with fractional Hamming distance of at most θ0, Step (2) of Protocol 4 always
succeeds: Let p(X) be the (unique) θ0-close code word. This polynomial agrees with f on a set of size
a ≥ n+k

2 . Consider the bivariate polynomial

Q(X,Y ) := Y · E(X)−G(X).
8The survey by Guruswami [Gur07] is a recommended source.
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Then Q(X, p(X)) is a univariate polynomial of degree

degQ(X, p(X)) ≤ k − 1 + e = n+ k

2 − 1,

which by the assumption on p(X) has at least a zeroes. Consequently Q(X, p(X)) is trivial and p(X) ·
E(X) = G(X) holds as a formal identity. Since E(X) is non-trivial, we conclude divisibility.

List decoding

The Sudan decoder

The Sudan list decoder [Sud97] generalizes the Berlekamp-Welch procedure by searching for general bi-
variate polynomials Q(X,Y ) ∈ K[X,Y ] which satisfy

Q(x, f(x)) = 0 for all x ∈ D.

In order that Y − p(X) is a factor of Q(X,Y ) for every polynomial p(X) of degree ≤ d = k − 1 which has
the claimed agreement set size with f , one looks for such bivariate Q so that the degree of Q(X, p(X)) for
any such polynomial is smaller than the targeted agreement set size.

Definition 12. The (1, d)–weighted degree (in short, (1, d)–degree) of a monomial Xi ·Y j is i+ d · j. More
generally, the (1, d)–weighted degree of a bivariate polynomial Q(X,Y ) is the maximum of the weighted
degrees of its monomials.

A polynomial Q(X,Y ) of (1, d)–weighted degree W is of the form

Q(X,Y ) =
∑

i+d·j≤W,i,j≥0
ci,j ·Xi · Y j ,

and its number of coefficients is
bW/dc∑
j=0

W − d · j + 1 = (W + 1) ·
(⌊

W

d

⌋
+ 1

)
− d ·

⌊
W
d

⌋
·
(⌊

W
d

⌋
+ 1

)
2

≥
(⌊

W

d

⌋
+ 1

)
·
(
W + 1− W

2

)
≥ (W + 1) · (W + 2)

2 · d
As a consequence, if this lower bound exceeds the number of linear equations n = |D|, the linear system
has a non-trivial solution. In particular this holds for any

W ≥
⌊√

2 · d · n
⌋
.

Protocol 5 (Sudan list decoder). Assume that K is a general field, and RSk[K,D] is the Reed-Solomon
code of lenght n = |D| and rate ρ = k

n . Let f ∈ KD, and choose an agreement parameter a ∈ [0, n],
a >
√

2 · d · n, where d = k − 1.

1. Solve the linear system on the coefficients of Q(X,Y ) with (1, d)–degree W =
⌊√

2 · d · n
⌋
, given by

the interpolation constraints
Q(x, f(x)) = 0, x ∈ D.

This system has a non-trivial solution which is found in at most O(n3) field operations.
Note that by construction, for any

(
1− a

n

)
–close code word p(X) the irreducible polynomial Y − p(X) divides Q(X, Y ). This already proves that the list

size L ≤
⌊
W
d

⌋
≤
√

2·d·n
d

=
√

2·n
d

.
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2. Find all factors of Q(X,Y ) which are of the form

Y − p(X),

with p(X) being a polynomial over K of degree at most k − 1. There are at most
√

2·n
d such factors.

Filter out those which agree with f on at least a points.

The efficiency of Step (2) depends on the field K. If K is a finite field, then there are polynomial time
algorithms (both probabilistic or deterministic) for finding such factors of the form Y − p(X). (They both
rely on univariate factorization, see [Gur07], e.g.) If K is infinite, then this might not be true in general.

The Guruswami-Sudan decoder

To extend the interpolation technique to the Johnson limit 1−√ρ, one takes into account that several close
codewords might coincide at some points. One therefore looks for polynomials Q(X,Y ) the (1, d)–degree
of which is m times as large as the targeted agreement set would suggest, and which have a zero of order
m at every interpolating point (x, f(x)), x ∈ D. The parameter m ≥ 1 is called multiplicity parameter.

Definition 13. A polynomial Q(X,Y ) ∈ K[X,Y ] is said to have a zero of order m at the point (x, y), if
the polynomial Q(X − x, Y − y) has no monomial of absolute degree m.

Such polynomials Q(X,Y ) of (1, d)-weighted degree W have still the property, that if p(X) is a poly-
nomial of deg p(X) ≤ d, then

degQ(X, p(X)) ≤ W

m
.

Again, counting the number of coefficients and comparing with the number of interpolation constraints
yields that whenever

(W + 1) · (W + 2)
d ·m · (m+ 1) > n,

and hence in particular for W ≥
⌊√

m · (m+ 1) · d · n
⌋

there always exists such a (non-trivial) polynomial
Q(X,Y ). (For details, see [Gur07], e.g.)

Protocol 6 (Guruswami-Sudan list decoder [GS99]). Assume that K is a general field, and RSk[K,D] the
Reed-Solomon code of length n = |D| and rate ρ = k

n . Let f ∈ KD, and choose an agreement parameter

a ∈ [0, n], a >
√(

1 + 1
m

)
· d · n, where m is a positive integer (the multiplicity parameter).

1. Solve the linear system on the coefficients of Q(X,Y ) with (1, d)–degree W =
[√
m · (m+ 1) · d · n

]
:

For each x ∈ D,
Q(X,Y ) has a zero of order m at (x, f(x)).

Such a solution always exists and can be found in polynomially many field operations.
By construction, again for any

(
1− a

n

)
–close code word p(X) the irreducible polynomial Y − p(X) divides Q(X,Y ). This already proves that the list size

L ≤
√
m·(m+1)·d·n

d
<

√
m·(m+1)

ρ
.

2. Find all factors of Q(X,Y ) which are of the form

Y − p(X),

with p(X) being a polynomial over K of degree at most d = k − 1. There are at most
√

m·(m+1)
ρ

many. Filter out those which agree with f on at least a points.
As before, this step might be efficient or not, depending on the field K.
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Remark 14. Choosing the discriminant method to find factors of the form Y −p(X), the Guruswami-Sudan
list decoder taking at most

O

(
max

{
d3 · n6 · a6

(a2 − d · n)6 ,
a6

k3

})
field operations over K, see [GS99]. This is at most of order O

(
|D|15).

Note that choosing

α = a

n
≥
√(

1 + 1
m

)
· ρ

implies a large enough agreement parameter for the Protocol 6. In particular the choice α =
(
1 + 1

2m

)
·√ρ

used throughout the main part of the document is strong enough, since(
1 + 1

2 ·m

)2
= 1 + 1

m
+ 1

4 ·m2 ≥ 1 + 1
m
.

Let us summarize the consequences of Protocol 6.
Theorem 15 (Guruswami-Sudan). Let K be a general (possibly infinite) field, and

RSk[K,D] =
{
p(x)|x∈D : p(X) ∈ K[X],deg(p) < |D|

}
the Reed-Solomon code of block length n = |D| and rate ρ = k

n . Choos a proximity parameter θ =
1−

(
1 + 1

2·m

)
· √ρ for some integer m ≥ 1. Then RSk[K,D] is list decodable for θ with list bound

L ≤
√
m · (m+ 1)

ρ
≤
m+ 1

2√
ρ

. (25)

If K is finite, then the Guruswami-Sudan decoder runs in polynomial time.

Weighted correlated agreement

We say that a function f ∈ FD has µ-agreement of at least α with another function g ∈ FD,
agreeµ(f, g) > α,

if there is a set A ⊆ D of measure µ(A) > α on which both functions agree. Likewise we say that
agreeµ(f,RSk) > α,

if there exists a p ∈ RSk[F,D] for which agreeµ(f, p) > α.

Theorem 16. (Full version of [BSCI+20], Theorem 7.1) Let θ ∈
(

1−ρ
2 , 1−√ρ

)
, where θ = 1 − √ρ ·(

1 + 1
2m

)
, for some integer m ≥ 3, and assume that µ is a sub-probability measure on D with common

denominator M , i.e. for all x in D

µ({x}) = ax
M
,

for an integer value ax . Suppose that for f0, f1, . . . , fN−1 ∈ FD,∣∣{λ : agreeµ(f0 + λ · f1 + . . .+ λN−1 · fN−1,RSk) > α
}∣∣

|F |

> max
(
ε, (N − 1) · M · |D|+ 1

|F |
· 2m+ 1
√
ρ

)
,

with ε as in (2). Then there exist polynomials p0(X), p1(X), . . . , pN−1(X) from RSk[F,D], and a set A
of density µ(A) > α on which fi coincides with pi for all i = 0, . . . , N − 1.
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