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Abstract

We introduce a new idealized model of hash functions, which we refer
to as the pseudorandom oracle (PrO) model. Intuitively, it allows us to model
cryptosystems that use the code of an ideal hash function in a non-black-box
way. Formally, we model hash functions via a combination of a pseudorandom
function (PRF) family and an ideal oracle. A user can initialize the hash function
by choosing a PRF key 𝑘 and mapping it to a public handle ℎ using the oracle.
Given the handle ℎ and some input 𝑥, the oracle can also be called to evaluate
the PRF at 𝑥 with the corresponding key 𝑘. A user who chooses the PRF key 𝑘

therefore has a complete description of the hash function and can use its code
in non-black-box constructions, while an adversary, who just gets the handle ℎ,
only has black-box access to the hash function via the oracle.

As our main result, we show how to construct ideal obfuscation in the PrO
model, starting from functional encryption (FE), which in turn can be based
on well-studied polynomial hardness assumptions. In contrast, we know that
ideal obfuscation cannot be instantiated in the basic random oracle model
under any assumptions. We believe our result provides heuristic justification
for the following: (1) most natural security goals implied by ideal obfuscation
can be achieved in the real world; (2) obfuscation can be constructed from FE
at polynomial security loss.

We also discuss how to interpret our result in the PrO model as a
construction of ideal obfuscation using simple hardware tokens or as a way to
bootstrap ideal obfuscation for PRFs to that for all functions.

This is the full version (a major revision) of [JLLW23] (in the proceedings of Crypto 2023,
published by Springer, © IACR 2023, DOI 10.1007/978-3-031-38551-3_8).
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1 Introduction

Hash Functions and Random Oracles. Hash functions are one of the most
important cryptographic primitives and are ubiquitous in both theoretical and
practical cryptosystem designs. The basic security property of a hash function is
collision resistance, which is already sufficient for many applications. However,
there is a widespread belief that good hash functions can satisfy a much wider
range of security properties beyond collision resistance. This belief is captured
in the random oracle model (ROM) [BR93], where we model a hash function as a
truly random public function and give the honest users as well as the adversary
oracle access to this function. The random oracle is an ideal functionality relative
to which we can construct cryptosystems and formally prove their security. We
then take a heuristic leap of faith that such cryptosystems remain secure even when
we replace the random oracle by a real, well-designed hash function (like SHA-3).
While the second step is heuristic and has no formal justification, it captures the
intuition that an adversary cannot do anything meaningful with a well-designed hash
function other than treating it as a random oracle. The random oracle heuristic
is immensely popular and successful. Almost all cryptosystems used in practice,
from TLS to Bitcoin, rely on it to justify their security. On the theory side, there
are contrived examples where the random oracle heuristic fails — specially designed
cryptosystems that are provably secure in the random oracle model, but are insecure
when instantiated with any real hash function [Bar01,GK03]. Nevertheless, outside of
such specially crafted counterexamples, the random oracle heuristic gives extremely
strong evidence of security in real life, and there is no known example of it ever
leading to a security flaw in a natural real-world cryptosystem.

Indistinguishability or Ideal Obfuscation. A scenario analogous to the one
above also plays out in the upper reaches of cryptography when it comes to
obfuscation [BGI+01]. We have a standard-model definition of obfuscation security
called indistinguishability obfuscation (𝑖O) [BGI+01], and as of recently, we even have
instantiations under well-studied assumptions [JLS21,JLS22]. While 𝑖O suffices for
some applications, it does not suffice for many others, or results in exceedingly
complex and cumbersome constructions. Similarly to hash functions, we believe
obfuscators are capable of satisfying a much wider range of security properties
beyond 𝑖O. Similarly to the random oracle model for hash functions, we can define
an ideal obfuscation model, where we model obfuscation as an ideal functionality that
only gives the adversary black-box access to the obfuscated programs.1 Analogously
to the ROM, we can design cryptosystems and prove their security in the ideal
obfuscation model, which is extraordinarily powerful and allows for very simple
constructions. We can then make a heuristic leap of faith that such cryptosystems
remain secure when we replace the ideal obfuscator by 𝑖O. Also analogously to
the random oracle model, one can come up with contrived counterexamples (e.g.,
[BGI+01]) where this heuristic fails, but the intuition is that it should be secure in
almost all natural use cases that come up in real life.

1Ideal obfuscation is similar to virtual black-box (VBB) obfuscation [BGI+01], except that we
consider it to be an idealized model rather than a security definition. In contrast, VBB was originally
intended as a security definition, with some artificial choices (restricting adversaries to only 1-bit
output) to rule out obvious counterexamples. Nevertheless, the main result of [BGI+01] shows that
even with these restrictions, VBB security is unachievable in its full generality in the plain model.
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Our Work: Ideal Obfuscation from Ideal Hash Functions. Summarizing the above
discussion, we have the analogy that collision-resistant hash functions are to random
oracles as 𝑖O is to ideal obfuscation. Modeling hash functions as random oracles is
well-established, yet there was little study on the idealization of obfuscators. We
wonder:

Can we justify the ideal obfuscation model, e.g.,
by constructing ideal obfuscation from ideal hash functions?

As a starting point, we might try constructing ideal obfuscation in the random oracle
model under appropriate additional standard-model assumptions. Such a result
would formalize that the ideal obfuscation heuristic is just a special case of the ROM
heuristic. Unfortunately, the work of [CKP15] rules out the above attempt by showing
that it is impossible to construct ideal obfuscation in the ROM.

Nevertheless, in this work, we re-examine the question of constructing ideal
obfuscation from ideal hash functions, and show that it is indeed possible! To
get around the previous negative result, we need to tweak our modeling of ideal
hash functions. Instead of the random oracle model, we introduce a new and
more flexible idealized model of hash functions that we call the pseudorandom oracle
(PrO) model. We argue that the PrO model captures the same intuition as the usual
ROM, but provides more technical flexibility. As our main result, we show how to
construct ideal obfuscation in the PrO model. Our construction assumes (single-
key, sublinearly succinct) functional encryption (FE), a strong yet standard-model
primitive. We believe that this result formalizes the following intuition:

Heuristically assuming that we have ideal obfuscation
is not worse or “crazier” than

heuristically assuming that we have ideal hash functions.

As such, confidence in the latter supports confidence in the former. Furthermore,
our construction of ideal obfuscation from FE in the PrO model only incurs a
polynomial security loss. Combined with the fact that FE can be based on well-
studied polynomial assumptions [JLS21,JLS22], we obtain a heuristic obfuscator based
on polynomial hardness. In contrast, constructions of 𝑖O from FE in the standard
model incur an exponential security loss.

1.1 Basics of the Pseudorandom Oracle (PrO) Model

Just like the ROM, the PrO model is defined in terms of a formally specified ideal
functionality that all parties (honest users as well as the adversary) have access
to. The ideal functionality for PrO is specified relative to some (standard-model)
pseudorandom function (PRF) family 𝐻𝑘 and has two interfaces. The first interface
initializes a hash function when provided with a PRF key 𝑘 as input — the ideal
functionality maps the PRF key 𝑘 to a random handle ℎ and outputs it. The second
interface evaluates the hash function when provided with a handle ℎ and an input 𝑥
— the ideal functionality finds the PRF key 𝑘 corresponding to ℎ and outputs 𝐻𝑘 (𝑥).

A PrO can be used as a basic RO. Consider an honest user who chooses a random
PRF key 𝑘, uses the PrO to get the corresponding handle ℎ, and then discards 𝑘 and
publishes ℎ. In that case, the adversary essentially just gets oracle access to the hash
function 𝐻𝑘 by querying the oracle with the handle ℎ. By the pseudorandomness
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of 𝐻𝑘, this is indistinguishable from a truly random oracle.
The PrO model also provides additional flexibility in allowing the honest user

who chose 𝑘 to use the code of the hash function 𝐻𝑘 in a non-black-box way (e.g.,
inside fully homomorphic encryption, functional encryption, or garbled circuits).
In other words, the PrO allows different users of the cryptosystem to use different
descriptions of the same hash function. The first description is given via the key 𝑘,
which specifies the full code of the hash function 𝐻𝑘 and allows for evaluating it
in a non-black-box way without making any oracle calls. The second description is
given via the handle ℎ, which only provides black-box access to the hash function 𝐻𝑘

via oracle queries. The first description is useful for functionality, but provides no
security guarantee — since we only assume PRF security for 𝐻𝑘, if the adversary ever
sees the PRF key 𝑘, all security is lost. The second description is useful for security,
but provides no functionality advantage over the basic ROM. The power of the PrO
comes from the fact that it simultaneously gives us both descriptions for the same
hash function and allows us to model different levels of access to the same hash
function for different users.

However, the PrO model is very conservative about what kind of security
guarantees it provides, and proving security in the PrO is generally very subtle and
requires extreme care. In particular, if the adversary ever receives any information
about 𝑘 via the non-black-box use of 𝐻𝑘, then all security guarantees are lost! Our
analysis can only make use of PrO security in hybrid games where all information
about the key 𝑘 is removed from the view of the adversary. This implies that although
our overall cryptosystem may rely on non-black-box use of the hash function, for the
PrO model to be helpful in security proofs, such use must be indistinguishable from
black-box use in the eyes of the adversary.

Using the PrO. Looking ahead, it is illustrative to examine the role of the PrO in our
construction of ideal obfuscation. For obfuscation, we have two users with different
roles — the obfuscator who creates the obfuscated program, and the evaluator who
gets the obfuscated program and evaluates it on various inputs. The obfuscator will
choose several PRF keys 𝑘𝑖 and the obfuscated program will encrypt the keys 𝑘𝑖 into
some functional encryption (FE) ciphertext. The evaluator will get the FE ciphertext
as well as the corresponding handles ℎ𝑖, which will be sufficient for evaluating the
obfuscated program on any input. In the security analysis, the adversary plays the
role of the evaluator. Although it does not get keys 𝑘𝑖 directly, it gets an FE ciphertext
containing them. To argue security, we will need a careful sequence of hybrids in
each of which we replace the PrO outputs for some handle ℎ𝑖 by random values after
removing the corresponding PRF key 𝑘𝑖 from the FE ciphertext.

1.2 Interpreting Our Result of Ideal Obfuscation

Ideal obfuscation cannot be realized by any standard-model obfuscation scheme,
similar to the fact that a random oracle cannot be realized by any standard-model
hash function. However, also similar to random oracles, ideal obfuscation provides a
formal model in which we can design and analyze cryptosystems. We can instantiate
them using a real-world obfuscator based on the intuition that a good obfuscator is
sufficient to achieve the security required by the cryptosystem from ideal obfuscation
in most reasonable scenarios. This heuristic is powerful.
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1. It allows us to reach security goals outside the current scope of standard-model
proofs. The literature already contains an impressive list of such examples:
virtual gray-box obfuscation [BC10], extractable witness encryption, ABE for
RAM [GKP+13], input-hiding obfuscation for evasive functions [BBC+14], public-
coin differing-input obfuscation, obfuscation for input-unbounded Turing
machines [IPS15], doubly efficient PIR [BIPW17], FHE for RAM [HHWW19],
OT over binary erasure channels [AIK+21], wiretap-channel coding [IKLS22],
refuting the dream XOR lemma [BIK+22], etc. This list is sure to grow.2

2. It enables (conceptually) simple constructions. Consider for instance the task
of building FE. Using ideal obfuscation, we can simply set the secret key
for a function 𝑓 to be an obfuscated program that decrypts ciphertexts of
a (CCA-secure) public-key encryption and then computes the function 𝑓 on
the decryption result. In contrast, 𝑖O applications typically involve more
sophisticated techniques (such as puncturing [SW14]) to overcome the weak
security of 𝑖O, producing cumbersome constructions with complex proofs
of security. The ideal obfuscation heuristic gives strong evidence that such
complication is actually unnecessary.

3. For many real-life security goals such as protecting software patches, creating
crippleware with parts of the functionality redacted, obfuscating machine
learning models, etc., 𝑖O security is insufficient. In these specific natural
contexts, virtual black-box security is plausible (the impossibility of [BGI+01]
does not apply) and can be heuristically instantiated.

When it comes to which concrete obfuscator to use when instantiating the ideal
obfuscation heuristic, in the literature, the standard-model 𝑖O construction is
typically used. Our construction of ideal obfuscation in the PrO model, when
instantiated with a well-designed hash function, provides another option. An
advantage of our obfuscator is that it can be based on polynomial hardness
assumptions, as opposed to requiring subexponential hardness.

Comparison with Best-Possible Obfuscation. Goldwasser and Rothblum showed
that 𝑖O is a “best-possible obfuscator” [GR07], in the sense that if some obfuscator is
capable of hiding some information of the program, then so does 𝑖O. Intuitively,
it says that if a program can be obfuscated with stronger security, then 𝑖O is a
good candidate achieving the stronger security. However, it does not address the
question when the premise is true. Our result that ideal obfuscation is feasible in
the PrO model gives supporting evidence that natural programs can be obfuscated
with stronger security, under the heuristic that PrO can be instantiated using real-
world hash functions in natural scenarios. It suggests that obfuscation with stronger
security is possible in most natural applications.

Alternative Interpretations: Hardware Tokens and Bootstrapping. Our result can
also be interpreted as constructing ideal obfuscation using hardware tokens. The
obfuscator chooses the PRF key 𝑘 and releases a hardware token that implements the
PRF 𝐻𝑘 (acting as the handle in the PrO model to provide black-box access to 𝐻𝑘)

2We note that after the initial pre-print and prior to the publication of this work, DE-PIR, FHE for
RAM [LMW23], and ABE for TM/RAM [ACFQ22,JLL23] are achieved in the standard model.
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and the obfuscated program containing encrypted 𝑘. There are several prior works
showing how to construct obfuscation using hardware tokens [DMMN11,BCG+11,
NFR+17]. However, in all cases, the hardware token is significantly more complex
than just implementing a PRF. Therefore, our work also provides an interesting new
take on how to construct obfuscation using extremely simple hardware tokens.

Alternatively, we can interpret our result as showing that ideal obfuscation for
PRFs implies ideal obfuscation for general functions. Indeed, the PrO model can
be thought of as exactly an ideal obfuscation for a PRF family 𝐻𝑘. The handle ℎ

is an ideal obfuscated program computing 𝐻𝑘.3 In the literature, there are several
bootstrapping theorems [GGH+13,App14,CLTV15] transforming obfuscation for weak
classes of functions to that for general functions. In these works, the weak classes
are typically weaker from a complexity-theoretic perspective, e.g., belonging to
NC1 or TC0, but are expressive enough to hardcode an arbitrary circuit in the
function description (e.g., verifying that a ciphertext is obtained by homomorphically
evaluating a circuit on some input ciphertexts, and if so, decrypting that ciphertext).
In comparison, our bootstrapping theorem starts with obfuscation of a single PRF
family 𝐻𝑘, apparently without the ability to embed the logic related to arbitrary
computation.

1.3 Further Discussion on the PrO Model

The motivation behind the usual ROM is providing a rigorous and well-defined model
capturing the intuition that outputs of a good hash function “appear random”, and
enabling formal security analysis based on this intuition. To be well-defined, the
ROM completely removes non-black-box access to the hash function. Intuitively, the
PrO model is a new well-defined ideal functionality capturing the same intuition (as
discussed earlier, it subsumes the random oracle model), and additionally allowing
us to formally reason about cryptosystems that make non-black-box use of the hash
function.

Formalizing Ad Hoc Non-Black-Box Uses of Hash Functions. The ROM was
motivated and guided by heuristic uses of hash functions that preceded it (e.g., the
Fiat–Shamir transformation [FS87]). However, the benefits of having an explicit ideal
model go beyond providing partial justification to these usages. It greatly facilitates
future design, as witnessed in the explosion of cryptosystems designed in the ROM
since its introduction [BR93]. In recent years, we saw heuristic non-black-box uses
of hash functions, for instance, in recursive composition of SNARKs [BCCT13], in
simulation-secure FE [DIJ+13], and in CCA-secure FHE [CRRV17]. It is well-motivated
to formalize a variant of the ROM capable of capturing some non-black-box uses of
hash functions. However, prior efforts met with the contradiction that one cannot
simultaneously model hash functions as random functions and assume efficient code
representation. As a result, previous heuristic non-black-box uses of hash functions
have been deemed less satisfactory than heuristics justified in the ROM.

The PrOmodel side-steps the contradiction — the oracle evaluates pseudorandom

3This is yet another reason why the PrO model and the ROM are morally equivalent. The ROM
essentially says that good hash functions are “self-obfuscated PRFs” since having the full description
of a hash function is no better than just having oracle access to a random function, which is also
what the PrO model stipulates.
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functions 𝐻𝑘 (·) with efficient code representation. However, as discussed earlier,
security proofs in the PrO model are subtle since we do not assume any security of
𝐻𝑘 (·) when the key 𝑘 is around. In effect, this means that the PrO model only allows
us to rely on RO-style modeling of 𝐻𝑘 (·) in hybrid games where all non-black-box use
of 𝑘 is removed.

We believe that the PrO model is a natural and more flexible variant of the ROM
that enables us to formally reason about cryptosystems making non-black-box use of
hash functions, while being “morally analogous” to the ROM.

(Non-)Contradiction of Non-Black-Box Ideal Hash Functions. At first sight, the
idea of an ideal model capturing non-black-box use of hash functions may seem
unnatural — if the cryptosystem makes non-back box use of the hash function,
why can’t the adversary? The PrO model gives a satisfactory answer to this from
two perspectives. In the formal security proof, we can only invoke PrO security in
hybrids where all non-black-box use of the hash function has been removed, in which
case it is reasonable to assume that the adversary also only has black-box access.
Conceptually, this means that the PrO model is only useful for a cryptosystem if its
non-black-box use of hash functions is indistinguishable to black-box use of them, so
it is again reasonable to assume only black-box access from the adversary.

Putting a Real-World Cryptosystem into the PrO Model. Suppose a real-world
cryptosystem uses some hash function, say SHA-3 with a public salt 𝑘. Parts of the
cryptosystem will only make black-box calls to SHA3(𝑘∥ ·), but do not rely on the code
otherwise, while other parts of the cryptosystem may use the code of SHA3(𝑘∥ ·) in
a non-black-box way. In the usual ROM, we model the former usage by replacing all
calls to SHA3(𝑘∥ ·) by oracle calls to a truly random public oracle, but do not have any
way of capturing the latter usage. In the PrO model, we can set 𝐻𝑘 (·) = SHA3(𝑘∥ ·)4
and replace all black-box calls to SHA3(𝑘∥𝑥) by oracle evaluation calls on (ℎ, 𝑥), where
ℎ is the handle to 𝑘. Additionally, if the original cryptosystem also uses SHA3(𝑘∥ ·) in
a non-black-box way, the PrO model allows parties knowing 𝑘 to make non-black-box
use of 𝐻𝑘 and ensures that the black-box use via oracle evaluation calls is consistent
with it.

The PrO Paradigm. Like the ROM, the PrO model articulates an explicit design
paradigm. To design a good scheme or protocol 𝑃 for a cryptographic notion Π:

1. Find a formal definition of Π in the model of computation where all parties
(including the adversary) share the pseudorandom oracle PrO𝐻 for some PRF
family 𝐻𝑘.

2. Devise an efficient scheme 𝑃 for Π in this PrO model.

3. Prove that 𝑃 satisfies the definition of Π in the PrO model.

4. Instantiate PrO𝐻 for some real hash function 𝐻.

In the above PrO paradigm, as well as the traditional RO paradigm, the proof of
security (Step 3) is in an ideal model and the instantiation (Step 4) is heuristic in

4We assume that SHA3(𝑘∥ ·) is a PRF with 𝑘 being the (secret) key, which is a very mild assumption
for real-world hash functions.
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nature. There are known schemes/protocols secure in the ROM, but never secure
when instantiated with real hash functions, e.g., [Bar01,GK03]. These counter-
examples extend to the PrOmodel. In addition, our construction of ideal obfuscation
separates the PrO model and the ROM. Despite these counterexamples, for the same
reasons that apply to the RO paradigm, having a security proof in the PrO model
maintains significant benefits. First, schemes secure in the PrO model are secure
against generic attacks that make only black-box calls to the hash functions. Second,
under the uber heuristic that in natural use cases, no adversary can effectively make
use of the code of well-designed hash functions beyond making black-box calls, we
obtain heuristically secure schemes in the standard model. The uber heuristic is the
same as the heuristic backing the RO paradigm.

Instantiating the PrO Model. Suppose some hash function 𝐻 is suitable for
instantiating the ROM, we argue that the salted version of 𝐻 is good for the PrO
model. For example, to instantiate the PrO model with SHA-3, we

• set 𝐻𝑘 (𝑥) = SHA3(𝑘∥𝑥),

• replace the handle ℎ by 𝑘 itself (!), and

• replace every evaluation call on (ℎ, 𝑥) by SHA3(ℎ∥𝑥).

Note the glaring difference between practice and formalism. The PrO model defines
the handle as a random string,5 yet the suggested instantiation simply sets ℎ = 𝑘.

Our rationale is based on the random oracle heuristics — since SHA-3 is suitable
for the ROM, an adversary, given the public salt ℎ = 𝑘, cannot do anything meaningful
about 𝑘 other than evaluating it at various inputs with prefix 𝑘. This is exactly what
the PrO model demands from the hash function! Also, when regarding the PrO
model as ideal obfuscation of PRF, the handle ℎ is the obfuscated PRF and the key 𝑘 is
hidden inside ℎ, but we can redefine the PRF as 𝐻′

ℎ
(𝑥) = ℎ(𝑥) = 𝐻𝑘 (𝑥) so ℎ becomes

the key, i.e., it is sensible to set ℎ = 𝑘. This matches the idea that hash functions
suitable for the ROM are “self-obfuscated PRFs”. Lastly, yet another reason to go with
this simple instantiation is that the choice of making ℎ a random string is merely a
formalism, a modeling method to enable invocation of PRF security when 𝑘 is absent.
The means should not be taken as the ends.

1.4 Related Works

Several prior works have attempted to rely on the random oracle heuristics of a hash
function while making non-black-box use of the hash function at the same time. For
example, the work of Valiant [Val08] constructs incrementally verifiable proofs of
knowledge and the work of [DIJ+13] constructs simulation-secure FE using this type
of approach. However, these works do not define a fully specified formal model
in which one can state the given results, making it difficult to even write down a
meaningful theorem. This is in contrast to our PrO model, which gives a formally

5This is similar to Shoup’s generic group model [Sho97]. Alternatively, we can define the handle
as a special symbol that cannot be operated on, like in Maurer’s GGM [Mau05]. The two models
are studied in the recent work of [Zha22]. We choose Shoup’s flavor for its potential flexibility,
although our construction is compatible with Maurer’s. However, in either flavor, per definition, ℎ is
independent of 𝑘, and the difference between practice and formalism still prevails.
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specified idealized model in which we can state and prove propositions. On the other
hand, the PrOmodel only allows very careful non-black-box use of the hash function,
where we can only make use of PrO security in hybrids where all non-black-box use
of the hash function is removed. It does not appear that the constructions of [Val08,
DIJ+13] could be directly translated into results in the PrO model.

2 Technical Overview

Now we describe the main ideas behind our construction. Our starting point
is the insights of [BV15,AJ15] and the follow-ups [LPST16,BNPW16,KNT18,KNTY19],
which establish that 𝑖O can implemented generically from subexponentially secure
single-key functional encryption (FE) scheme, a seemingly weaker primitive. These
works additionally require the FE scheme to satisfy certain encryption efficiency
guarantees. In the overview below, we assume that the FE scheme satisfies adaptive
indistinguishability security and has linear-time encryption.6

FE-to-𝒊O Transformation. In order to obfuscate circuit 𝐶 : {0, 1}𝐷 → {0, 1}, we give
out an FE ciphertext ct𝜀 encrypting 𝐶. We think of this ciphertext as being associated
with the root of a perfect binary tree of depth 𝐷. We also give out FE secret
keys for each of the 𝐷 levels in the tree, for functions that themselves compute FE
encryptions. By defining such functions carefully, we can expand any ciphertext ct𝜒
for some prefix 𝜒 ∈ {0, 1}<𝐷 associated with some internal node in the tree into two
ciphertexts ct𝜒∥0, ct𝜒∥1 for its children, with each such child ciphertext again carrying
information about 𝐶. Lastly, for leaf ciphertexts ct𝑥 with 𝑥 ∈ {0, 1}𝐷, we give out an
FE secret key that allows one to recover the output 𝐶(𝑥). This allows an evaluator to
compute 𝐶(𝑥) starting from ct𝜀 by going down the appropriate path in the tree.

In more detail, the obfuscator does the following:

• For 0 ≤ 𝑑 ≤ 𝐷, sample fresh FE key pairs (mpk𝑑, msk𝑑).

• Compute ct𝜀
$← Enc(mpk0, info𝜀), where info𝜀 = (𝐶, 𝜀,★) with ★ being a slot for

miscellaneous information to be specified later as needed.

• For 0 ≤ 𝑑 ≤ 𝐷, generate sk𝑑
$← KeyGen(msk𝑑, 𝑓𝑑). Under normal functioning,

𝑓𝑑 for 𝑖 < 𝐷 takes info𝜒 = (𝐶, 𝜒,★) as input and outputs two ciphertexts
(ct𝜒∥0, ct𝜒∥1) encrypting info𝜒∥𝑏 = (𝐶, 𝜒 ∥𝑏,★) for 𝑏 ∈ {0, 1} under mpk𝑑+1, and 𝑓𝐷

takes info𝑥 = (𝐶, 𝑥 ∈ {0, 1}𝐷,★) as input and outputs 𝐶(𝑥).

The obfuscated circuit is 𝐶 = (ct𝜀, {sk𝑑}0≤𝑑≤𝐷). To evaluate 𝐶 on 𝑥 ∈ {0, 1}𝐷, one
computes ct𝑥 at level 𝐷, then decrypts it using sk𝐷 to recover 𝐶(𝑥). The process
of computing ct𝑥 is inductive and proceeds like a binary tree traversal. Let 𝑥≤𝑑 be the
prefix of 𝑥 of length 𝑑. We start by decrypting ct𝑥≤0 = ct𝜀 using sk0 to obtain (ct0, ct1).
For 1 ≤ 𝑑 < 𝐷, we inductively decrypt ct𝑥≤𝑑 using sk𝑑 to derive (ct𝑥≤𝑑∥0, ct𝑥≤𝑑∥1), then
use ct𝑥≤𝑑+1 to further traverse down the tree.

The scheme satisfies polynomial slowdown. At every level, ct𝜒 encrypts info𝜒 and
the running time of 𝑓𝑑 is poly(𝜆, |info𝜒 |), so each 𝑓𝑑 is polynomial-sized. Some care is

6The encryption time is |𝑧| poly(𝜆), where 𝑧 is the plaintext. This is independent of the functions
for which secret keys are issued.
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needed to ensure that the ★ slots used by the ciphertexts do not blow up as the levels
increase — the proof is designed in a way that this happens.

The security proof is slightly tricky. Given the obfuscation, there are around 2𝐷 FE
ciphertexts, ct𝜒 for 𝜒 ∈ {0, 1}≤𝐷, encrypting info𝜒 = (𝐶, 𝜒,★), containing the circuit 𝐶
being obfuscated. For two equivalent circuits 𝐶0, 𝐶1, we want to show 𝐶0 ≈ 𝐶1. Since
the adversary is given ct𝜀 and sk0, . . . , sk𝐷, it can compute ct𝜒 for any 𝜒 ∈ {0, 1}≤𝐷
of its choice, and can do so internally without the reduction knowing the 𝜒’s “of the
adversary’s interest”. Therefore, the proof resorts to switching ct𝜒 from containing 𝐶0
to 𝐶1 for every 𝜒 ∈ {0, 1}≤𝐷, taking around 2𝐷 steps (hybrids) and creating a security
loss of Ω(2𝐷).

Why the Scheme Fails to Be an Ideal Obfuscation. In ideal obfuscation, we require
that 𝐶 can be simulated by a polynomial-time simulator having only oracle access to 𝐶.
This implies that the simulator must come up with a short ciphertext ct𝜀 (ignoring
the [short] keys for now) capable of evaluating 𝐶 at every 𝑥 ∈ {0, 1}𝐷 from just black-
box access to 𝐶. Assuming that hard-to-learn functions exist, this is impossible as the
simulator can only query 𝐶 at a polynomial number of points. Indeed, this simple
argument shows that ideal obfuscation cannot exist, which is also implied by the
the work of [BGI+01] showing that even a more restricted notion, VBB obfuscation,
cannot exist. In this work, one of our primary goals is to identify a reasonable model
capturing real-world adversaries in which ideal obfuscation is possible. We take
inspiration from the random oracle model [BR93] — there are several applications
known to be impossible in the standard model but achievable in the ROM.

Simplified Idea Using Random Oracles. From the observation discussed earlier,
one of the obstacles to proving ideal security of the scheme above is that once the
reduction or the simulator produces some ciphertext ct𝜀, it has implicitly specified
all the ciphertexts in the tree and all the outputs of the circuit. There is no place to
“program” any information. The random oracle could be useful in solving this issue.
Imagine a world where ct𝜀 makes the first decryption yield 𝐻 (𝜀) ⊕ (ct0 ∥ct1) so that
adversary has to query 𝐻 (𝜀) to unmask the next layer ciphertexts. Similarly, assume
that the result of decrypting ct𝜒 for 𝜒 ∈ {0, 1}≤𝐷−1 is 𝐻 (𝜒) ⊕ (ct𝜒∥0 ∥ct𝜒∥1).

If the above were possible, we would be able to come up with a simulation
strategy. The random oracle offers two powerful capabilities, observability and
programmability, that enable such simulation. As the evaluator queries 𝐻 at various 𝜒,
the simulator can keep track of the paths the adversary is taking to evaluate the
circuit. By programming, one can enter a hybrid where ct𝜒 decrypts to a random
value 𝑣𝜒 and (simultaneously) the random oracle responds to 𝐻 (𝜒) by answering
𝑣𝜒 ⊕ (ct𝜒∥0 ∥ct𝜒∥1).

Once this is done, any ct𝜒 can only be accessed by querying the oracle. The
issue of programming space would be resolved as the random oracle provides an
exponentially large one. In addition, since the adversary only makes polynomially
many queries, the proof only has to switch a polynomial number of ciphertexts,
reducing the security loss to polynomial. In particular, the proof would replace ct𝜒
for 𝜒 ∈ {0, 1}≤𝐷−1 by dummy ciphertexts independent of 𝐶, and ct𝑥 for 𝑥 ∈ {0, 1}𝐷 by
simulated ciphertexts containing 𝐶(𝑥), only for 𝜒’s and 𝑥’s at which 𝐻 is queried.

Unfortunately, so far this is just wishful thinking! There is a fundamental flaw
with the above idea that must be addressed before we can materialize this approach.
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Using the PrO Model. The flaw with the aforementioned idea is the premise itself.
We assume that decrypting ct𝜒 yields 𝐻 (𝜒) ⊕ (· · ·), but this requires the FE scheme
to evaluate the hash function 𝐻. This makes sense only if the FE key functions 𝑓𝑑

contain the code of 𝐻, meaning that 𝐻 must be a real hash function and not a random
oracle! We now have seemingly conflicting requirements — we need the code of the
hash function to define the scheme syntactically, but we also need to idealize the
hash function as a public random function to take advantage of observability and
programmability.

This is where our model comes in. We precisely show that the above approach
can be done in the PrO model. Let us briefly recall the model. There are two oracle
algorithms hGen and hEval with syntax

O(hGen, 𝑘) ↦→ ℎ, O(hEval, ℎ, 𝑥) ↦→ 𝐻 (𝑘, 𝑥),

where O(hGen, ·) maps a key 𝑘 into a handle ℎ and O(hEval, ℎ, 𝑥) maps the handle ℎ

back into its key 𝑘 and outputs 𝐻 (𝑘, 𝑥) for some fixed function 𝐻. The handle map
is a random permutation and can be efficiently implemented using lazy sampling.
Furthermore, we require that 𝐻 is a pseudorandom function — this implies that
given a handle ℎ for a random 𝑘, when 𝑘 is absent from the view of the adversary,
O(hEval, ℎ, ·) = 𝐻 (𝑘, ·) is indistinguishable from a random function.

The PrO model provides the right abstraction needed to solve our problem. A
random key 𝑘 can be used inside the FE ciphertext, together with the code of 𝐻 in
the FE keys, to compute 𝐻 (𝑘, 𝜒) ⊕ (ct𝜒∥0 ∥ct𝜒∥1), and the corresponding handle ℎ can
be used outside the FE scheme when evaluating the obfuscated circuit. At the same
time, if 𝑘 is absent from the adversary’s view, we can still program O(hEval, ℎ, ·). Of
course, the difficulty is that the key 𝑘 is part of the adversary’s view whenever it is
(encrypted) inside the FE ciphertext. Therefore, we must come up with a careful
proof strategy involving a sequence of hybrids to first remove 𝑘 then program the
oracle. We explain how to do so below.

First Attempt. Let 𝐺 : {0, 1}𝜆 → {0, 1}4𝜆 be a PRG for deriving the encryption
randomness of the intermediate FE ciphertexts. Here, we assume that both PrO hash
keys and encryption randomness are of length 𝜆. To obfuscate 𝐶, one computes ct𝜀
encrypting (𝐶, 𝜀, 𝑘, 𝑠𝜀), where 𝑘 is a fresh hash key (with ℎ being its handle) and 𝑠𝜀 is
a fresh PRG seed. The function 𝑓0 on input (𝐶, 𝜀, 𝑘, 𝑠𝜀) outputs 𝐻 (𝑘, 𝜀) ⊕ (ct0 ∥ct1), and
𝑓1, . . . , 𝑓𝐷 are defined analogously. The obfuscator outputs 𝐶 = (ℎ, ct𝜀, {sk𝑑}0≤𝑑≤𝐷). We
give an outline in Figure 1.

Evaluating such an obfuscated circuit is straightforward. Given 𝑥 ∈ {0, 1}𝐷, for
each prefix 𝜒 of 𝑥 starting from 𝜀, decrypting ct𝜒 yields the child ciphertexts
masked by 𝐻 (𝑘, 𝜒), which the evaluator can unmask by querying (hEval, ℎ, 𝜒) before
proceeding to the next level. Lastly, decrypting ct𝑥 yields 𝐶(𝑥).

As envisioned, the simulator programs O(hEval, ℎ, ·) and changes the ciphertexts
into some simulation mode. A natural idea to prove security is to replace the
(intermediate) ciphertexts layer by layer in a sequence of hybrids, starting from the
root ct𝜀. This approach faces an immediate obstacle. In the PrO model, O(hEval, ℎ, ·)
can only be programmed if the key 𝑘 is not given to the adversary, but in the scheme,
𝑘 appears inside all the intermediate ciphertexts. Therefore, it is not clear how to
switch even just ct𝜀 into simulation, as 𝑘 appears in the deeper ciphertexts in both
hybrids. We would have to first remove 𝑘 from all the intermediate ciphertexts to
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appeal to the programmability of O(hEval, ℎ, ·). This appears rather difficult without
first simulating the ciphertexts by programming, i.e., there is a circularity issue.

Input. 𝐶, the circuit being obfuscated.
Steps.
1. Sample 𝑘

$← {0, 1}𝜆 and obtain its handle ℎ from PrO.
2. Sample 𝑠𝜀

$← {0, 1}𝜆.
3. For 0 ≤ 𝑑 ≤ 𝐷, sample fresh FE key pair (mpk𝑑, msk𝑑) and
run sk𝑑

$← KeyGen(msk𝑑, 𝑓𝑑) for 𝑓𝑑 defined below.
4. Run ct𝜀

$← Enc(mpk0, info𝜀) with info𝜀 = (normal, 𝜀, 𝑘, 𝑠𝜀).
Here, normal is a flag indicating the mode of the ciphertext.

5. Output 𝐶 = (ℎ, ct𝜀, {sk𝑑}0≤𝑑≤𝐷).
Functions. (normal mode)
− For 0 ≤ 𝑑 < 𝐷, the function 𝑓𝑑(normal, 𝜒, 𝑘, 𝑠𝜒)

1. computes 𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥0 ∥𝑟𝜒∥0 ← 𝐺(𝑠𝜒);
2. for 𝑏 ∈ {0, 1}, runs ct𝜒∥𝑏 ← Enc(mpk𝑑+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏),
where info𝜒∥𝑏 = (normal, 𝐶, 𝜒 ∥𝑏, 𝑘, 𝑠𝜒∥𝑏);

3. outputs 𝐻 (𝑘, 𝜒) ⊕ (ct𝜒∥0 ∥ct𝜒∥1).
− For 𝑑 = 𝐷, the function 𝑓𝐷(normal, 𝐶, 𝑥, 𝑘, 𝑠𝑥) outputs 𝐶(𝑥).

Figure 1. First attempt of ideal obfuscator.

Second Attempt. To circumvent the issue, we use different key/handle pairs (ℎ𝑖, 𝑘𝑖)
for each layer as opposed to the same pair. Now, a ciphertext ct𝜒 for 𝜒 ∈ {0, 1}𝑑 at
level 𝑑 will only contain {(ℎ𝑖, 𝑘𝑖)}𝑑≤𝑖<𝐷. Note that each ciphertext is independent
of the keys for the previous layers, thus breaking the circularity. The scheme is
described in Figure 2.

The simulator now programs O(hEval, ℎ𝑑, ·)’s accordingly. Our proof strategy is
again hybridizing over the layers. Suppose the ciphertexts ct𝜒 for 𝜒 ∈ {0, 1}<𝛿 are
already simulated so that they contain no information about 𝐶, 𝑘0, . . . , 𝑘𝛿−1, and we
want to simulate ct𝜒 ’s for 𝜒 ∈ {0, 1}𝛿. Now that 𝑘𝛿 only appears in ct𝜒 ’s for 𝜒 ∈ {0, 1}𝛿
and nowhere else, it is easier to completely remove 𝑘𝛿, at which point we can observe
and program O(hEval, ℎ𝛿, ·) and replace ct𝜒 ’s by dummy ciphertexts.

Take 𝛿 = 0 as an example, for which our goal is to change ct𝜀 from encrypting
(normal, 𝐶, 𝜀, {𝑘𝑖}0≤𝑖<𝐷, 𝑠𝜀) to being simulated and to program O(hEval, ℎ0, ·). This can
be done in three steps:
1. Change ct𝜀 to encrypting (sim, 𝐻 (𝑘0, 𝜀) ⊕ (ct0 ∥ct1)). Seeing the sim flag, the
function 𝑓0 simply outputs the second component, the hardwired output. This
change is indistinguishable to the security of FE.

2. Replace the appearance of 𝐻 (𝑘0, 𝜀) in ct𝜀 and the response to O(hEval, ℎ0, 𝜀) by
a random string otp𝜀. This change is indistinguishable by the PRF security of 𝐻.

3. Change ct𝜀 to encrypting (sim, 𝑣𝜀) and replace the response to O(hEval, ℎ0, 𝜀)
by 𝑣𝜀 ⊕ (ct0 ∥ct1), where 𝑣𝜀 is a random string. This is identical to the previous
hybrid.
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After these steps, we are ready to work with ct0, ct1. This strategy generalizes to
every layer of the tree, except that each leaf ct𝑥 will hardwire 𝐶(𝑥) instead of a
random 𝑣𝑥 during simulation. Moreover, the simulator only creates ct𝜒∥0, ct𝜒∥1 when
the adversary queries O(hEval, ℎ|𝜒 |, 𝜒), and only queries 𝐶(𝑥) if it has to create ct𝑥.
This implies that the simulator is polynomial-time and the security loss of the proof
is polynomial.

While the intuition is simple, there is still an important issue that we overlooked.
The problem is that the plaintext inside ct𝜒 is of length

��ct𝜒∥0 ∥ct𝜒∥1
��, twice as long

as a (one-layer-deeper) ciphertext. As such, |ct𝜀 | grows at least exponentially as 𝐷

increases. To resolve this issue, we revisit the simulation strategy at the very first
layer and then apply the idea to the all layers.

Input. 𝐶, the circuit being obfuscated.
Steps.
1. For 0 ≤ 𝑖 < 𝐷, sample 𝑘𝑖

$← {0, 1}𝜆 and obtain its handle ℎ𝑖 from PrO.
2. Sample 𝑠𝜀

$← {0, 1}𝜆.
3. For 0 ≤ 𝑑 ≤ 𝐷, sample fresh FE key pair (mpk𝑑, msk𝑑) and
run sk𝑑

$← KeyGen(msk𝑑, 𝑓𝑑) for 𝑓𝑑 defined below.
4. Run ct𝜀

$← Enc(mpk0, info𝜀) with info𝜀 = (normal, 𝜀, {𝑘𝑖}0≤𝑖<𝐷, 𝑠𝜀).
5. Output 𝐶 = ({ℎ𝑖}0≤𝑖<𝐷, ct𝜀, {sk𝑑}0≤𝑑≤𝐷).

Functions. (normal mode)
− For 0 ≤ 𝑑 < 𝐷, the function 𝑓𝑑(normal, 𝜒, {𝑘𝑖}𝑑≤𝑖<𝐷, 𝑠𝜒)

1. computes 𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥0 ∥𝑟𝜒∥0 ← 𝐺(𝑠𝜒);
2. for 𝑏 ∈ {0, 1}, runs ct𝜒∥𝑏 ← Enc(mpk𝑑+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏),
where info𝜒∥𝑏 = (normal, 𝐶, 𝜒 ∥𝑏, {𝑘𝑖}𝑑+1≤𝑖<𝐷, 𝑠𝜒∥𝑏);

3. outputs 𝐻 (𝑘𝑑, 𝜒) ⊕ (ct𝜒∥0 ∥ct𝜒∥1).
− For 𝑑 = 𝐷, the function 𝑓𝐷(normal, 𝐶, 𝑥, 𝑠𝑥) outputs 𝐶(𝑥).
(There are no 𝑘’s in the leaf ciphertexts.)

Figure 2. Second attempt of ideal obfuscator.

Fixing Simulation Efficiency. To fix the simulator itself, instead of a long, truly
random 𝑣𝜀, we encrypt a short PRG seed in ct𝜀 and let 𝑓0 output the PRG expansion
during simulation. We must also not hardwire the complete decryption result into
ct𝜀 in Step 1 above. The solution is to work on the decryption result block by block.
The scheme is outlined in Figure 3.

To demonstrate that, let |ct| be (an upper bound of) FE ciphertext length. We
define two parameters 𝐵, the number of blocks, and 𝐿, the length of each block,
which we set so that 𝐿𝐵 ≥ 2|ct|. Now, instead of one key/handle pair (ℎ0, 𝑘0) for the
first layer, we use 𝐵 pairs {(ℎ0, 𝑗 , 𝑘0, 𝑗)}1≤ 𝑗≤𝐵. We also assume 𝐻 (𝑘, ·) is of length 𝐿.
To switch ct𝜀 from real to simulation, consider the following series of hybrids for
1 ≤ 𝛽 ≤ 𝐵:

1. Remove 𝑘0,𝛽 from ct𝜀 and hardwire 𝐻 (𝑘0,𝛽, 𝜀) ⊕ [ct0 ∥ct1]𝛽, the 𝛽th block of the
output, into ct𝜀. Here, [·]𝛽 is the 𝛽th block of a string.
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2. Replace the hardwired block in ct𝜀 by random and program O(hEval, ℎ0,𝛽, 𝜀) for
consistency. This is allowed since 𝑘0,𝛽 has been removed from the view of the
adversary.

3. Replace the hardwired block in ct𝜀 by PRG expansion (while reprogramming
O(hEval, ℎ0,𝛽, 𝜀) for consistency). This change is indistinguishable due to the
security of PRG.

4. Undo hardwiring by putting the PRG seed into ct𝜀.

This idea can be generalized to every node in every layer, except that the last layer
is handled using 𝐶(𝑥). The hybrid argument will proceed layer by layer, and inside
each layer, block by block. For each block, all the (queried) ciphertexts are switched
together.

To see that the lengths are under control, note that the plaintext contains
(at most) the circuit, an input prefix, 𝐷𝐵 hash keys, one 𝐿-bit block, and 𝐵

PRG seeds. Recall that we assume linear-time encryption in this overview, so
|ct| = O( |𝐶 | + 𝐷 + 𝐷𝐵𝜆 + 𝐿 + 𝐵𝜆). The constraint 𝐿𝐵 ≥ 2|ct| can be easily satisfied by
setting 𝐿 = 𝐵 = Θ( |𝐶 |𝐷𝜆).

Input. 𝐶, the circuit being obfuscated.
Steps.
1. For 0 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵, sample 𝑘𝑖, 𝑗

$← {0, 1}𝜆 and
obtain its handle ℎ𝑖, 𝑗 from PrO.

2. Sample 𝑠𝜀
$← {0, 1}𝜆.

3. For 0 ≤ 𝑑 ≤ 𝐷, sample fresh FE key pair (mpk𝑑, msk𝑑) and
run sk𝑑

$← KeyGen(msk𝑑, 𝑓𝑑) for 𝑓𝑑 defined below.
4. Run ct𝜀

$← Enc(mpk0, info𝜀) with info𝜀 = (normal, 𝜀, {𝑘𝑖, 𝑗}0≤𝑖<𝐷
1≤ 𝑗≤𝐵

, 𝑠𝜀).
5. Output 𝐶 = ({ℎ𝑖, 𝑗}0≤𝑖<𝐷

1≤ 𝑗≤𝐵
, ct𝜀, {sk𝑑}0≤𝑑≤𝐷).

Functions. (normal mode)
− For 0 ≤ 𝑑 < 𝐷, the function 𝑓𝑑(normal, 𝜒, {𝑘𝑖, 𝑗}𝑑≤𝑖<𝐷

1≤ 𝑗≤𝐵
, 𝑠𝜒)

1. computes 𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥0 ∥𝑟𝜒∥0 ← 𝐺(𝑠𝜒);
2. for 𝑏 ∈ {0, 1}, runs ct𝜒∥𝑏 ← Enc(mpk𝑑+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏),
where info𝜒∥𝑏 = (normal, 𝐶, 𝜒 ∥𝑏, {𝑘𝑖, 𝑗}𝑑+1≤𝑖<𝐷

1≤ 𝑗≤𝐵
, 𝑠𝜒∥𝑏);

3. outputs
(
𝐻 (𝑘𝑑,1, 𝜒) ∥ · · · ∥𝐻 (𝑘𝑑,𝐵, 𝜒)

)
⊕ (ct𝜒∥0 ∥ct𝜒∥1).

− For 𝑑 = 𝐷, the function 𝑓𝐷(normal, 𝐶, 𝑥, 𝑠𝑥) outputs 𝐶(𝑥).
(There are no 𝑘’s in the leaf ciphertexts.)

Figure 3. Final construction of ideal obfuscator.

3 Preliminaries

We denote by 𝜆 the security parameter, and use the standard notions ≈,≈s,≡ for
computational indistinguishability, statistical indistinguishability, and identity. The
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order of tuples of ordered objects is lexicographical, so (𝑎, 𝑏) ≤ (𝑐, 𝑑) means either
𝑎 = 𝑐 and 𝑏 ≤ 𝑑 or 𝑎 < 𝑐, for integers 𝑎, 𝑏, 𝑐, 𝑑. For two strings 𝑥, 𝑦, we write 𝑥 ∥ 𝑦 for
their concatenation. The empty string is denoted by 𝜀. Given a string 𝑥 and a length
0 ≤ 𝑖 ≤ |𝑥|, we let 𝑥≤𝑖 be the length-𝑖 prefix of 𝑥. In the context where strings are
canonically split into blocks, [𝑥] 𝑗 denotes the 𝑗th block of 𝑥 for 𝑗 ≥ 1. For a circuit 𝐶,
we write 𝐶[𝑤] for 𝐶 with 𝑤 hardwired into its leading portion of input.

Pseudorandom Generators and Pseudorandom Functions. We assume that the PRG
seed length is always 𝜆, that its output length ℓout can be freely specified, and that
its running time is ℓout poly(𝜆). Similarly, we assume that the PRF key is uniformly
random over {0, 1}𝜆, that its input/output lengths ℓin, ℓout can be freely specified, and
that its running time is ℓinℓout poly(𝜆).7

Functional Encryption. We base our obfuscation scheme on 1-key functional
encryption, which is weaker than the standard notion:8

Definition 1 (1-key FE [BV15]). A (public-key) 1-key functional encryption scheme (for
circuits) consists of 3 efficient algorithms:

• Gen(1𝜆, 𝑓 ) takes a circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗ as input. It outputs a pair (pk, sk𝑓 )
of public (encryption) key and secret (decryption) key for 𝑓 .

• Enc(pk, 𝑧) takes as input the public key and some plaintext 𝑧 ∈ {0, 1}𝑛. It outputs
a ciphertext ct.

• Dec(sk𝑓 , ct) takes as input the secret key and a ciphertext. It is supposed to
compute 𝑓 (𝑧).

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗, input
𝑧 ∈ {0, 1}𝑛, it holds that

Pr

[
(pk, sk𝑓 ) $← Gen(1𝜆, 𝑓 )

ct $← Enc(pk, 𝑧)
: Dec(sk𝑓 , ct) = 𝑓 (𝑧)

]
= 1.

We require the encryption algorithm to run in time subquadratic in |𝑧| and sublinear
in | 𝑓 |:

Definition 2 (efficiency). A 1-key FE scheme (Gen, Enc, Dec) (Definition 1) has
subquadratic-sublinear efficiency (or sufficiently efficient for the purpose of this work)
if Enc runs in time

(𝑛2−2𝜀 + 𝑚1−𝜀) poly(𝜆) for some constant 𝜀 > 0,

where 𝑛 = |𝑧| is the input length of 𝑓 and 𝑚 = | 𝑓 | is the circuit size of 𝑓 .

By a standard result [PF79] in circuit complexity, a circuit of Enc of subquadratic-
sublinear size can be efficiently computed. Hereafter, we will use such a bound for
uniform circuit complexity of Enc.

7The required properties can be achieved by standard PRG extension techniques and indifferen-
tiable domain extension of random oracles.

8In retrospect, this notion is an interpolation between functional encryption and unary function-
revealing encryption [JP18].
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We need the 1-key FE scheme to be adaptively secure:

Definition 3 (adaptive security). A 1-key FE scheme (Gen, Enc, Dec) (Definition 1) is
adaptively secure if Exp0

1-key ≈ Exp1
1-key, where Exp𝑏

1-key(1
𝜆) with adversary A proceeds as

follows:

• Setup. Launch A(1𝜆), receive a circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗ from A, run

(pk, sk𝑓 ) $← Gen(1𝜆, 𝑓 ),

and send (pk, sk𝑓 ) to A.

• Challenge. A chooses two inputs 𝑧0, 𝑧1 ∈ {0, 1}𝑛. Run ct $← Enc(pk, 𝑧𝑏) and send
ct to A.

• Guess. A outputs a bit 𝑏′ ∈ {0, 1}. The outcome of the experiment is 𝑏′ if
𝑓 (𝑧0) = 𝑓 (𝑧1). Otherwise, the outcome is set to 0.

There is a long series of works [AJS15,ABSV15,BV15,GS16,LM16,AS16,KNTY19,JLL23]
studying the transformations among functional encryption schemes with various
security and efficiency guarantees. It is known [JLL23,Nis22] that standard public-key
FE with encryption time 𝑚1−𝜀 poly(𝜆, 𝑛) and weak selective security against one key
query implies standard public-key FE with encryption time 𝑛poly(𝜆) and full adaptive
security against unbounded collusion.9 The latter can be used as a sufficiently
efficient and adaptively secure 1-key FE.

We can assume, without loss of generality (neither efficiency nor security), that
Enc uses a uniformly random 𝜆-bit string as its randomness, by using a PRG with
efficiency stated earlier in this section.

Idealized Model. We will define ideal obfuscation with respect to an idealized model,
and construct such a scheme in a particular idealized model.

Definition 4 (idealized model). In an idealized model with oracle O, all algorithms,
including adversaries, are given access to O. The oracle is programmable, i.e.,
security reductions as well as simulators in simulation-based security notions can
provide an alternative implementation of O.

As an example, the standard model is an idealized model with O() = ⊥.

Oracle Circuits. In an idealized model, we may consider circuits containing gates
calling into O, referred to as oracle circuits. Like a usual circuit, the description 𝐶• of
an oracle circuit consists of its gates and wires, with the convention that oracle gates
are just placeholders, i.e., 𝐶• does not specify the behavior of the oracle. The circuit
can be evaluated given an input 𝑥 and an oracle O (with appropriate input/output
lengths), which is denoted by 𝐶O (𝑥).

9In a standard public-key FE, the scheme is set up for a master public/secret key pair not tied
to 𝑓 , and a key for 𝑓 can be derived separately from the master secret key. Weak selective security
means that the adversary chooses 𝑓 , 𝑧0, 𝑧1 independent of the master public key. Full adaptive security
against unbounded collusion means that the adversary can choose 𝑧0, 𝑧1 and arbitrarily many 𝑓𝑞’s after
seeing the master public key and in an arbitrary interleaving manner.
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4 The Pseudorandom Oracle (PrO) Model

We now formally define the pseudorandom oracle model.

Definition 5 (PrOM). Let 𝐻 be a pseudorandom function. The pseudorandom oracle
model for 𝐻 is the idealized model with the oracle O that internally uses a random
permutation

hMap : {0, 1}𝜆 → {0, 1}𝜆

and that responds to the following 2 types of queries:

O(hGen, 𝑘) = hMap(𝑘), O(hEval, ℎ, 𝑡) = 𝐻 (hMap−1(ℎ), 𝑡).

5 Ideal Obfuscation

We still define ideal obfuscators as algorithms and security properties in idealized
models, instead of an idealized model itself. The reason is elaborated after the
security definition.

Definition 6 ((circuit) obfuscation). A (circuit) obfuscation scheme in an idealized
model with oracle O is an efficient algorithm ObfO (1𝜆, 𝐶) that, given a circuit 𝐶 as
input, outputs an oracle circuit 𝐶•. The scheme must be correct, i.e., for all 𝜆 ∈ ℕ,
circuit 𝐶 : {0, 1}𝐷 → {0, 1}∗, input 𝑥 ∈ {0, 1}𝐷, it holds that

Pr
[
𝐶•

$← ObfO (1𝜆, 𝐶) : 𝐶O (𝑥) = 𝐶(𝑥)
]
= 1.

We remark that the scheme can only obfuscate vanilla circuits, which do not use the
idealized model oracle O, yet the oracle O can be used during evaluation. This gap
is necessary to avoid the impossibility results [BGI+01].

Our definition of ideal obfuscation in an idealized model is inspired by the
indifferentiability framework [MRH04]:

Definition 7 (ideal obfuscation). An obfuscation scheme ObfO (Definition 6) is an
ideal obfuscation (with universal simulation) if there exists an efficient simulator
S = (S1,S2,S3) (with shared state) such that for all efficient adversary A = (A1,A2)
(with shared state), its advantage is negligible:

Pr

[
𝐶

$← AO
1 (1𝜆)

𝐶•
$← ObfO (1𝜆, 𝐶)

: AO
2 (𝐶•) = 1

]
− Pr

[
𝐶

$← AS1
1 (1

𝜆)

𝐶•
$← S𝐶

2 (1
𝜆, 1𝐷, 1𝑆)

: AS𝐶
3

2 (𝐶
•) = 1

]
.

Here, 𝐷 = |𝑥| is the input length of 𝐶, and 𝑆 = |𝐶 | is the circuit size of 𝐶.

Although Definition 7 does not guarantee security when multiple circuits are
obfuscated, the simulator for our construction readily extends to handle multiple
circuits.

We add a remark about our security definition and the ideal obfuscation model
alluded to in the introduction. The idealized model IdealObf is as follows:

• IdealObf(hGen, 𝐶) takes a circuit 𝐶 : {0, 1}𝑛 → {0, 1} as input and outputs a
handle ℎ.
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• IdealObf(hEval, ℎ, 𝑥) takes as input a handle ℎ and some 𝑥 ∈ {0, 1}𝑛, and outputs
𝐶(𝑥), where 𝐶 is the circuit corresponding to ℎ.

The usual way of defining that Obf is a construction of IdealObf in (or from) O via
indifferentiability [MRH04] is to require

(ObfO,O) ≈ (IdealObf,S IdealObf)
for some (potentially distinguisher-dependent) simulator S. In this framework, the
distinguisher communicates directly with IdealObf. The simulator only plays the
role of O without observing or controlling the interaction between the distinguisher
and IdealObf. In contrast, in Definition 7, the simulator gets partial information of
the circuit being obfuscated (namely, its size and its input length) and simulates
its obfuscation, in addition to handling O-queries. The reason we do not use the
language of indifferentiability is as follows. Unlike hash functions (often considered
for indifferentiability), whose desired output is just a random string, an obfuscated
circuit is a structured object, whose format has no a priori specification and is
inherently obfuscator-dependent.10 In addition, the simulator must somehow learn
the unavoidable leakage of circuit size and input length. This makes it cumbersome,
if possible at all, to formulate the definition as indifferentiability. Nevertheless, we
consider our definition essentially indifferentiability with minimal and necessary
“interface gluing”.

6 Construction of Ideal Obfuscation in the PrOModel

Similar to many prior works [AJ15,BV15] building obfuscation from FE, our scheme
involves a binary tree of FE ciphertexts, with certain difference to take advantage
of the PrO model. The binary tree structure is instructive for understanding the
correctness, as well as the security proof in Section 7, of our construction.

The obfuscation of a circuit 𝐶 with 𝐷-bit input involves a perfect binary tree of
(𝐷 + 1) levels, as depicted in Figure 4. Each node is identified by its root-to-node
path, each leaf an input 𝑥 to 𝐶, and each internal node a proper prefix of 𝑥. For
each 𝜒 ∈ {0, 1}≤𝐷, node 𝜒 is associated with ct𝜒 encrypting 𝐶, 𝜒 plus some other
information. The behavior of decrypting ct𝜒 is as follows:

• For an internal node, 𝜒 ∈ {0, 1}<𝐷 is a proper fix of the input, and decrypting
ct𝜒 yields its children ct𝜒∥0 and ct𝜒∥1 padded by the one-time pad otp𝜒 associated
with 𝜒, which is the PrOM oracle output.

• For a leaf, 𝜒 = 𝑥 ∈ {0, 1}𝐷 is the input, and decrypting ct𝑥 yields 𝐶(𝑥).
The obfuscated circuit 𝐶• contains the root ciphertext ct𝜀, FE secret keys, and handles
of PrOM. To evaluate 𝐶(𝑥), starting from the root ciphertext ct𝜀, for each proper
prefix 𝜒 of 𝑥, we decrypt ct𝜒, unpad the result using otp𝜒, and keep either 𝜒𝜒∥0 or
ct𝜒∥1 (depending on the next bit of 𝑥), until we reach ct𝑥, which we decrypt one last
time for 𝐶(𝑥).
10Suppose Obf1 is an ideal obfuscator, then Obf2 that adds a dummy gate to the output of Obf1 should

also be considered ideal. However, the outputs of the two obfuscators are clearly distinguishable.
Therefore, they cannot both be indifferentiable implementations of a single ideal obfuscation model,
i.e., no fixed IdealObf (with fixed format of handle) can comprehensively capture ideal obfuscation
in the indifferentiability framework. To cast our definition as indifferentiability, it is necessary to
consider a different IdealObf for each obfuscator.
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ct𝜀

ct0 ct1

ct00 ct01 ct10 ct11

(ct0 ∥ ct1) ⊕ otp𝜀
(FE decryption result)

(ct00 ∥ct01) ⊕ otp0 (ct10 ∥ct11) ⊕ otp1

otp𝜀
(oracle output)

otp0 otp1

ct𝜒 (𝜒 ∈ {0, 1}<𝐷)

ct𝜒∥0 ct𝜒∥1

(ct𝜒∥0 ∥ct𝜒∥1) ⊕ otp𝜒

otp𝜒

· · · · · ·

ct𝑥 (𝑥 ∈ {0, 1}𝐷)

𝐶(𝑥)· · · · · ·

Figure 4. The binary tree of ciphertexts in Construction 1 (normal behavior).
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Expand𝑑 [pk𝑑+1] (flag𝜒, 𝜒, info𝜒) — Function for Level 0 ≤ 𝑑 < 𝐷

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. flag𝜒 ∈ {normal, hyb, sim}, flag associated with 𝜒;

𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;
info𝜒, information associated with 𝜒, format varying by flag𝜒.

Output. 
Expand𝑑,normal [pk𝑑+1] (𝜒, info𝜒), if flag𝜒 = normal;

Expand𝑑,hyb [pk𝑑+1] (𝜒, info𝜒),
Expand𝑑,sim(𝜒, info𝜒),

if flag𝜒 = hyb;
if flag𝜒 = sim.

}
Figure 7

Eval(flag𝜒, 𝜒, info𝜒) — Function for Level 𝐷

Input. flag𝜒 ∈ {normal, sim}, flag associated with 𝜒;
𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒, information associated with 𝜒, format varying by flag𝜒.

Output. {
Evalnormal(𝜒, info𝜒), if flag𝜒 = normal;

Evalsim(𝜒, info𝜒), if flag𝜒 = sim. (Figure 7)

Expand𝑑,normal [pk𝑑+1] (𝜒, info𝜒)

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;

info𝜒 = (𝐶, {𝑘𝑖, 𝑗}𝑑≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒):
𝐶, circuit being obfuscated;
𝑘𝑖, 𝑗, keys of 𝐻 for level 𝑑, . . . , 𝐷 − 1;
𝑠𝜒, seed of 𝐺𝑠𝑟 associated with 𝜒.

Output. Computed as follows.
𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥1 ∥𝑟𝜒∥1 ← 𝐺𝑠𝑟 (𝑠𝜒)
for 𝜂 = 0, 1:

flag𝜒∥𝜂 ← normal
info𝜒∥𝜂 ← (𝐶, {𝑘𝑖, 𝑗}𝑑+1≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒∥𝜂)
ct𝜒∥𝜂 ← Enc(pk𝑑+1, flag𝜒∥𝜂, 𝜒 ∥𝜂, info𝜒∥𝜂)

otp𝜒 ← 𝐻 (𝑘𝑑,1, 𝜒 ∥0𝐷−𝑑) ∥ · · · ∥𝐻 (𝑘𝑑,𝐵, 𝜒 ∥0𝐷−𝑑)
output 𝑣𝜒 ← (ct𝜒∥0 ∥ct𝜒∥1) ⊕ otp𝜒

Evalnormal(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒 = (𝐶, 𝑠𝜒):

𝐶, circuit being obfuscated;
𝑠𝜒, unused.

Output. 𝐶(𝜒), computed by evaluating a universal circuit at (𝐶, 𝜒).

Figure 5. The circuits Expand𝑑 and Eval in Construction 1 (branches for correctness).
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Ingredients of Construction 1. Let
• 𝐷 be the input length of the circuit 𝐶 to be obfuscated;

• 𝑆 the circuit size of 𝐶;

• 𝐿 the block length, a parameter to be determined later;

• 𝐵 the number of blocks, a parameter to be determined later;

• 𝐻 : {0, 1}𝜆 × {0, 1}𝐷 → {0, 1}𝐿 the PRF of PrOM;

• 𝐺𝑠𝑟 : {0, 1}𝜆 → {0, 1}4𝜆 the PRG for encryption randomness;

• 𝐺𝑣 : {0, 1}𝜆 → {0, 1}𝐿 the PRG for decryption result simulation;

• (Gen, Enc, Dec) an FE scheme whose Enc uses 𝜆-bit uniform randomness.
We construct an obfuscation scheme in the PrO model for 𝐻:
Construction 1 (obfuscation). ObfO (1𝜆, 𝐶) does the following.
1. It sets up (𝐷 + 1) FE instances:

(pk𝐷, sk𝐷) $← Gen(1𝜆, Eval),

(pk𝑑, sk𝑑) $← Gen(1𝜆, Expand𝑑 [pk𝑑+1]) for 𝑑 = 𝐷 − 1, . . . , 0,

where Expand𝑑 and Eval are defined in Figures 5 and 7.

2. It samples keys of 𝐻 and obtains their handles:

𝑘𝑖, 𝑗
$← {0, 1}𝜆, ℎ𝑖, 𝑗 ← O(hGen, 𝑘𝑖, 𝑗) for 0 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵.

3. It samples the seed and the encryption randomness for the root ciphertext, sets
its flag and information, and computes ct𝜀:

𝑠𝜀
$← {0, 1}𝜆, 𝑟𝜀

$← {0, 1}𝜆,
flag𝜀 ← normal, info𝜀 ← (𝐶, {𝑘𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒),

ct𝜀 ← Enc(pk0, flag𝜀, 𝜀, info𝜀; 𝑟𝜀).

4. It outputs 𝐶• [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵], defined in Figure 6, as an
obfuscation of 𝐶.

Correctness. 𝐶O in Figure 6 follows the tree structure in Figure 4. Correctness
readily follows by inspecting the branches of Expand𝑑 and Eval in Figure 5 and noting

𝐻 (𝑘𝑑,1, 𝜒𝑑 ∥0𝐷−𝑑) ∥ · · · ∥𝐻 (𝑘𝑑,𝐵, 𝜒𝑑 ∥0𝐷−𝑑)
= O(hEval, ℎ𝑑,1, 𝜒𝑑 ∥0𝐷−𝑑) ∥ · · · ∥O(hEval, ℎ𝑑,𝐵, 𝜒𝑑 ∥0𝐷−𝑑).

Remarks. In our construction, the domain/codomain of the hash function are
dependent on (the size and the input length of) the circuit being obfuscated.
Formally, our obfuscator works in different PrO models (relative to different PRFs)
for circuits of different sizes and input lengths. However, it is simple to tweak
the construction as well as the security proof so that the obfuscator works in a
single PrO model for 𝐻 : {0, 1}𝜆 × {0, 1}∗ → {0, 1} for all circuits. This is similar to
how {0, 1}∗ → {0, 1} implements the ROM for every domain/codomain by domain
separation.
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𝐶O [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵] (𝑥)

Hardwired. ct𝜀, root ciphertext;
sk𝑑, secret keys;
ℎ𝑖, 𝑗, handles of PrOM.

Input. 𝑥 ∈ {0, 1}𝐷, circuit input.
Output. Computed as follows.

for 𝑑 = 0, . . . , 𝐷 − 1:
𝜒𝑑 ← 𝑥≤𝑑

𝑣𝜒𝑑
← Dec(sk𝑑, ct𝜒𝑑

)
otp𝜒𝑑

← O(hEval, ℎ𝑑,1, 𝜒𝑑 ∥0𝐷−𝑑) ∥ · · · ∥O(hEval, ℎ𝑑,𝐵, 𝜒𝑑 ∥0𝐷−𝑑)
ct𝜒𝑑∥0 ∥ct𝜒𝑑∥1 ← 𝑣𝜒𝑑

⊕ otp𝜒𝑑

output Dec(sk𝐷, ct𝑥)

Figure 6. The circuit 𝐶• in Construction 1.

7 Security Proof of Ideal Obfuscation in the PrOModel

Theorem 1 (¶). Assuming PRF security of 𝐻, PRG security of 𝐺𝑠𝑟, 𝐺𝑣, adaptive security
(Definition 3) of (Gen, Enc, Dec), and appropriate choice of 𝐿, 𝐵 (Section 7.4), then
Construction 1 is an ideal obfuscation (Definition 7) in the PrO model (Definition 5) for 𝐻.

We specify the simulator in Section 7.1 and prove Theorem 1 in Section 7.2.

Branches for Proof and Hybrid Template. The simulator for Construction 1 and the
proof of Theorem 1 use the branches of Expand𝑑 and Eval defined in Figure 7.

The hybrids as well as the simulator follow a common template shown in Figure 8,
and we define a hybrid by specifying the placeholders in the hybrid. The three phases
of the interaction are as follows:

• S1 (pre-obfuscation PrOM). In this phase, S1 efficiently implements the PrOM
using lazy sampling.

• S2 (creating the obfuscation). In this phase, S2 generates FE keys, samples
(“special”) PrOM handles and keys used in the obfuscation, generates the root
ciphertext ct𝜀, and outputs the obfuscation. The handles are distinct, but the
keys are not necessarily distinct (to facilitate application of PRF security), and
not all handles correspond to a key. The placeholders specify which handles
have a corresponding key and how ct𝜀 is generated.

• S3 (post-obfuscation PrOM). There are multiple cases, depending on whether
the query is related to the “special” handles and keys:

– For (hGen, 𝑘𝑖, 𝑗), the output is ℎ𝑖, 𝑗, as it should be. Not all 𝑘𝑖, 𝑗 ’s are
considered in all hybrids (specified by the placeholders). Intuitively, this
case can happen only with negligible probability, yet this very fact is
proved using the hybrids and the branch is gradually removed as the proof
proceeds.
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– For (hEval, ℎ𝑖, 𝑗 , 𝜒 ∥0𝐷−𝑖), its output is supposed to unmask Dec(sk|𝜒 |, ct𝜒) and
specified by the placeholders.

– For (hEval, ℎ𝑖, 𝑗 , ·), the output is unrelated to obfuscation and specified by
the placeholders.

– For the other queries (excluded from (hGen, 𝑘𝑖, 𝑗) or unrelated to “special”
handles and keys), it is the same as S1.

Expand𝑑,hyb [pk𝑑+1] (𝜒, info𝜒)

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;

info𝜒 = (𝐶, {𝑘𝑖, 𝑗}𝑑<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,
{𝜎𝜒, 𝑗}1≤ 𝑗<𝛽, 𝑤𝜒, {𝑘𝑑, 𝑗}𝛽< 𝑗≤𝐵):

𝐶, circuit being obfuscated;
𝑘𝑖, 𝑗, keys of 𝐻 for level 𝑑 + 1, . . . , 𝐷 − 1;
𝑠𝜒, seed of 𝐺𝑠𝑟 associated with 𝜒;
𝛽, hybrid index;
𝜎𝜒, 𝑗, seeds of 𝐺𝑣 associated with 𝜒 (gradually introduced);
𝑤𝜒, hardwired block of decryption result;
𝑘𝑑, 𝑗, keys of 𝐻 for level 𝑑 (gradually removed).

Output. Computed as follows ( difference from Expand𝑑,normal).
𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥1 ∥𝑟𝜒∥1 ← 𝐺𝑠𝑟 (𝑠𝜒)
for 𝜂 = 0, 1:

flag𝜒∥𝜂 ← normal
info𝜒∥𝜂 ← (𝐶, {𝑘𝑖, 𝑗}𝑑+1≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒∥𝜂)
ct𝜒∥𝜂 ← Enc(pk𝑑+1, flag𝜒∥𝜂, 𝜒 ∥𝜂, info𝜒∥𝜂)

output 𝑣𝜒 ← 𝐺𝑣(𝜎𝜒,1) ∥ · · · ∥𝐺𝑣(𝜎𝜒,𝛽−1) ∥𝑤𝜒

∥
(
[ct𝜒∥0 ∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝑑,𝛽+1, 𝜒 ∥0𝐷−𝑑)

)
∥ · · ·

∥
(
[ct𝜒∥0 ∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝑑,𝐵, 𝜒 ∥0𝐷−𝑑)

)
Expand𝑑,sim(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;
info𝜒 = {𝜎𝜒, 𝑗}1≤ 𝑗≤𝐵, seeds of 𝐺𝑣 associated with 𝜒.

Output. 𝑣𝜒 ← 𝐺𝑣(𝜎𝜒,1) ∥ · · · ∥𝐺𝑣(𝜎𝜒,𝐵).

Evalsim(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒 = 𝑦𝜒, hardwired circuit output at 𝜒.

Output. 𝑦𝜒.

Figure 7. The circuits Expand𝑑 and Eval in Construction 1 (branches for security proof).
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Hybrid Template with Placeholders

Shared State:
Tother, set of (𝑘, ℎ) pairs for hMap, initially ∅, with

Keys(Tother)
def
== { 𝑘 | ∃ℎ such that (𝑘, ℎ) ∈ Tother },

Handles(Tother)
def
== { ℎ | ∃𝑘 such that (𝑘, ℎ) ∈ Tother };

𝐶, circuit being obfuscated, available in S2 and S3;
{ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵, handles of PrOM in obfuscation, initially ⊥;
{pk𝑑, sk𝑑}0≤𝑑≤𝐷, public and secret keys, initially ⊥;
{𝑘𝑖, 𝑗} , keys of 𝐻 in obfuscation, initially ⊥;
{𝐹𝑖, 𝑗}, 𝐹𝜎, 𝐹𝑟, 𝐹𝑠 , random functions (lazily sampled) for

non-programmed portion of O(hEval, ℎ𝑖, 𝑗 ,★), and 𝜎𝜒, 𝑗, 𝑟𝜒, 𝑠𝜒;
flag𝜒, info𝜒, 𝑟𝜒 , components of

ct𝜒 = Enc(pk|𝜒 |, flag𝜒, 𝜒, info𝜒; 𝑟𝜒), available in S2 and S3.

S1(hGen, 𝑘):
if �ℎ such that (𝑘, ℎ) ∈ Tother:

ℎ
$← {0, 1}𝜆 \

(
Handles(Tother) ∪ {ℎ𝑖, 𝑗}

)
Tother ← Tother ∪ {(𝑘, ℎ)}

output the unique ℎ such that (𝑘, ℎ) ∈ Tother
S1(hEval, ℎ, 𝑡):

if �𝑘 such that (𝑘, ℎ) ∈ Tother:
𝑘

$← {0, 1}𝜆 \ Keys(Tother)
Tother ← Tother ∪ {(𝑘, ℎ)}

output 𝐻 (𝑘, 𝑡) for the unique 𝑘 such that (𝑘, ℎ) ∈ Tother
S2:

generate {pk𝑑, sk𝑑}0≤𝑑≤𝐷 as specified in Construction 1
sample uniformly random distinct ℎ𝑖, 𝑗 from {0, 1}𝜆 \ Handles(Tother)
{𝑘𝑖, 𝑗} $← {0, 1}𝜆

output 𝐶• [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵]

S3(hGen, 𝑘):
if 𝑘 = 𝑘𝑖, 𝑗 for “𝑘 ?

= 𝑘𝑖, 𝑗”, range of (𝑖, 𝑗) being tested :
output ℎ𝑖, 𝑗 for the smallest such (𝑖, 𝑗)

else: same as S1(hGen, 𝑘)

S3(hEval, ℎ, 𝑡):
if ℎ = ℎ𝑖, 𝑗:
if 𝑡 = 𝜒 ∥0𝐷−𝑖 for 𝜒 ∈ {0, 1}𝑖:

“ℎ𝑖, 𝑗 : 𝜒”, response to S3(hEval, ℎ𝑖, 𝑗 , 𝑡 = 𝜒 ∥0𝐷−𝑖)
else:

“ℎ𝑖, 𝑗 : 𝑡”, response to S3(hEval, ℎ𝑖, 𝑗 , 𝑡 ≠ 𝜒 ∥0𝐷−𝑖)
else: same as S1(hEval, ℎ, 𝑡)

Figure 8. The hybrid template for the security proof of Construction 1.
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7.1 Simulator

The simulator is specified in Table 1:

• ct𝜒 is in simulation mode and uses truly random 𝑟𝜒 for Enc;

• no ℎ𝑖, 𝑗 has a corresponding PRF key; and

• ct𝜒 for 𝜒 ≠ 𝜀 is not computed by Expand|𝜒 |−1, but programmed into the PrOM
responses to ℎ|𝜒 |−1, 𝑗 ’s.

Although the template in Figure 8 has 𝐶 (the circuit being obfuscated) as part of its
share state, the template itself does not use 𝐶. The simulator only uses evaluations
of 𝐶 in S3 (to generate ct𝜒 for |𝜒 | = 𝐷 on demand), hence adheres to the required
syntax of a simulator in Definition 7.

Table 1. Specification of the simulator (see Figure 8).

{𝑘𝑖, 𝑗} non-existent
{𝐹𝑖, 𝑗} {0, 1}𝐷 → {0, 1}𝐿 for 0 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵

𝐹𝜎 {0, 1}<𝐷 × {1, . . . , 𝐵} → {0, 1}𝜆
𝐹𝑟 {0, 1}≤𝐷 → {0, 1}𝜆
𝐹𝑠 non-existent

flag𝜒 sim

info𝜒

{
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵, if |𝜒 | < 𝐷;
𝐶(𝜒), if |𝜒 | = 𝐷.

𝑟𝜒 𝐹𝑟 (𝜒)
state ↑

S3 ↓ in simulator

𝑘
?
= 𝑘𝑖, 𝑗 non-existent

ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0 ∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)

7.2 Hybrids over Levels

To prove Theorem 1, we consider Hyb𝛿,★
11 for 0 ≤ 𝛿 ≤ 𝐷 specified in Table 2.

The main hybrids are Hyb𝛿,$$’s:

• ct𝜒 for |𝜒 | < 𝛿 is in simulation mode and uses truly random 𝑟𝜒 for Enc;

• ct𝜒 for |𝜒 | = 𝛿 is in normal mode and uses truly random 𝑟𝜒;

• ct𝜒 for |𝜒 | > 𝛿 is in normal mode and uses pseudorandom 𝑟𝜒 expanded from 𝑠𝜒≤𝛿 ;

• ℎ𝑖, 𝑗 for 𝑖 < 𝛿 does not have a corresponding PRF key;

• ℎ𝑖, 𝑗 for 𝑖 ≥ 𝛿 has a corresponding PRF key;

11The mnemonic is the form of 𝑠, 𝑟 at level 𝛿 — in Hyb𝛿,$$ they are truly random, and in Hyb𝛿,𝐺($)
they are PRG image.
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• ct𝜒 for 0 < |𝜒 | ≤ 𝛿 is not computed by Expand|𝜒 |−1, but programmed into the PrOM
responses to ℎ|𝜒 |−1, 𝑗 ’s; and

• ct𝜒 for |𝜒 | > 𝛿 is computed by Expand|𝜒 |−1, not programmed into the PrOM.

The helper hybrids are Hyb𝛿,𝑠’s. Their only difference from the main hybrids is that
(𝑠, 𝑟) expansion starts at level (𝛿 − 1) instead of 𝛿, i.e., ct𝜒 for |𝜒 | ≥ 𝛿 is in normal
mode and uses pseudorandom 𝑟𝜒 expanded from 𝑠𝜒≤𝛿−1 .

The following lemmas hold for Hyb𝛿,★’s:

Lemma 2 (¶). Let Hybreal be the real experiment (implicit in the minuend in Definition 7),
then Hybreal ≈s Hyb0,$$.

Lemma 3 (¶). Hyb𝛿,$$ ≈ Hyb𝛿+1,𝐺($) for all 0 ≤ 𝛿 < 𝐷.

Lemma 4 (¶). Hyb𝛿,𝐺($) ≈ Hyb𝛿,$$ for all 1 ≤ 𝛿 ≤ 𝐷.

Lemma 5 (¶). Let Hybsim be the simulation experiment (implicit in the subtrahend in
Definition 7), then Hyb𝐷,$$ ≈ Hybsim.

Table 2. Specification of Hyb𝛿,★ for 0 ≤ 𝛿 ≤ 𝐷 (see Figure 8).

{𝑘𝑖, 𝑗} 𝛿 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵

{𝐹𝑖, 𝑗} {0, 1}𝐷 → {0, 1}𝐿 for 0 ≤ 𝑖 < 𝛿, 1 ≤ 𝑗 ≤ 𝐵

𝐹𝜎 {0, 1}<𝛿 × {1, . . . , 𝐵} → {0, 1}𝜆
𝐹𝑟 {0, 1}≤𝛿 → {0, 1}𝜆 {0, 1}≤𝛿−1 → {0, 1}𝜆
𝐹𝑠 {0, 1}𝛿 → {0, 1}𝜆 {0, 1}𝛿−1 → {0, 1}𝜆

▶ |𝜒 | < 𝛿:
flag𝜒 sim
info𝜒 {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵

𝑟𝜒 𝐹𝑟 (𝜒)
▶ |𝜒 | = 𝛿:

𝑟𝜒 𝐹𝑟 (𝜒) expand from
𝑠𝜒 𝐹𝑠(𝜒) 𝑠𝜒≤𝛿−1 = 𝐹𝑠(𝜒≤𝛿−1)

▶ |𝜒 | ≥ 𝛿:
flag𝜒 normal
info𝜒 (𝐶, {𝑘𝑖, 𝑗} |𝜒 |≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)
(𝑠,𝑟)

expansion 𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥1 ∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒)
state ↑

S3 ↓ in Hyb𝛿,$$ in Hyb𝛿,𝐺($)

𝑘
?
= 𝑘𝑖, 𝑗 𝛿 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵 (checks for all existent 𝑘𝑖, 𝑗 ’s)
▶ 𝑖 < 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0 ∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)
▶ 𝑖 ≥ 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐻 (𝑘𝑖, 𝑗 , 𝜒 ∥0𝐷−𝑖)
ℎ𝑖, 𝑗 : 𝑡 𝐻 (𝑘𝑖, 𝑗 , 𝑡)

25 / 36



Proof (Theorem 1). It follows from a standard hybrid argument over

Hybreal
2≈s Hyb0,$$

3≈ Hyb1,𝐺($)
4≈ Hyb1,$$

3≈ · · · 4≈ Hyb𝐷,$$
5≈ Hybsim,

where the number over each “≈” references the lemma used. □

Lemmas 2, 4, and 5 are straightforward and we prove them below. We present the
proof of Lemma 3 in Section 7.3.

Proof (Lemma 2). Starting from Hybreal, the following modifications are made to
reach Hyb0,$$:

1. Change ℎ𝑖, 𝑗 ’s from being uniformly random to being uniformly random and
distinct over {0, 1}𝜆 \ Handles(Tother).

2. Change 𝑘𝑖, 𝑗 ’s from being uniformly random and distinct over {0, 1}𝜆\Keys(Tother)
to being uniformly random. (𝑘𝑖, 𝑗 ’s are still excluded in the sampling of 𝑘’s in S3.)

3. Stop excluding 𝑘𝑖, 𝑗 ’s in the sampling of 𝑘’s in S3.

Hybreal ≈s Hyb0,$$ follows from a standard birthday bound argument. □

Proof (Lemma 4). In Hyb𝛿,𝐺($), all PRG seed 𝑠𝜒 for |𝜒 | = 𝛿 − 1 has been removed
from ct𝜒 and it is only used to obtain

𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥1 ∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒).

In Hyb𝛿,$$, the left-hand side is replaced by true randomness. The two hybrids
are otherwise identical, and their indistinguishability follows from the PRG security
of 𝐺𝑠𝑟.

The reduction is a hybrid argument over all 𝑠𝜒 for 𝜒 ∈ {0, 1}𝛿−1 such that at
least one of 𝑠𝜒∥0, 𝑟𝜒∥0, 𝑠𝜒∥1, and 𝑟𝜒∥1 is used (to create ct𝜒∥0 and ct𝜒∥1) to respond
to S3(hEval, ℎ𝛿−1, 𝑗 ,★). Since there are only polynomially queries from an efficient
adversary, the reduction only incurs a polynomial loss of security. Hereafter, the
same trick implicitly applies to the reduction implied by any other proof of this
paper. □

Proof (Lemma 5). The only difference between Hyb𝐷,$$ (Table 2 with 𝛿 = 𝐷) and
Hybsim (Table 1) is the plaintext encrypted under ct𝜒 for |𝜒 | = 𝐷:

(flag𝜒, 𝜒, info𝜒) = (normal, 𝜒, (𝐶, 𝑠𝜒)) in Hyb𝐷,$$,

(flag𝜒, 𝜒, info𝜒) = (sim, 𝜒, 𝐶(𝜒)) in Hybsim.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝐷 are all encrypted using true randomness (that is
not used elsewhere) under the public key pk𝐷. Since the secret key sk𝐷 is for the
function Eval and

Eval(normal, 𝜒, (𝐶, 𝑠𝜒)) = Evalnormal(𝜒, (𝐶, 𝑠𝜒))
= 𝐶(𝜒)
= Evalsim(𝜒, 𝐶(𝜒)) = Eval(sim, 𝜒, 𝐶(𝜒)),

Hyb𝐷,$$ ≈ Hybsim reduces to the adaptive security of 1-key FE. □
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Table 3. Specification of Hyb𝛿,𝛽,★ for 0 ≤ 𝛿 < 𝐷, 1 ≤ 𝛽 ≤ 𝐵 (see Figure 8).

{𝑘𝑖, 𝑗} 𝑖=𝛿:𝛽≤ 𝑗≤𝐵
𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵

𝑖=𝛿:𝛽+1≤ 𝑗≤𝐵
𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵

{𝐹𝑖, 𝑗} {0,1}𝐷
→{0,1}𝐿 for

0≤𝑖<𝛿: 1≤ 𝑗≤𝐵
𝑖=𝛿: 1≤ 𝑗<𝛽

0≤𝑖<𝛿: 1≤ 𝑗≤𝐵
𝑖=𝛿: 1≤ 𝑗<𝛽+1

𝐹𝜎
({0,1}<𝛿×{1,...,𝐵})
∪({0,1}𝛿×{1,...,𝛽−1}) → {0, 1}𝜆 {0, 1}𝜆 ← ({0,1}<𝛿×{1,...,𝐵})

∪({0,1}𝛿×{1,...,𝛽})
𝐹𝑟 {0, 1}≤𝛿 → {0, 1}𝜆
𝐹𝑠 {0, 1}𝛿 → {0, 1}𝜆

▶ |𝜒 | < 𝛿:
flag𝜒 sim
info𝜒 {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵

𝑟𝜒 𝐹𝑟 (𝜒)
▶ |𝜒 | = 𝛿:

𝑟𝜒 𝐹𝑟 (𝜒)
𝑠𝜒 𝐹𝑠(𝜒)

𝑤𝜒 [ct𝜒∥0 ∥ct𝜒∥1]𝛽 ⊕ 𝐻 (𝑘𝛿,𝛽, 𝜒 ∥0𝐷−𝛿) [ct𝜒∥0∥ct𝜒∥1]𝛽
⊕𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿) 𝐹𝛿,𝛽 (𝜒 ∥0𝐷−𝛿) 𝐺𝑣(𝐹𝜎 (𝜒,𝛽))

flag𝜒 hyb

info𝜒
(𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽, 𝑤𝜒 , {𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵)

▶ |𝜒 | > 𝛿:
flag𝜒 normal
info𝜒 (𝐶, {𝑘𝑖, 𝑗} |𝜒 |≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)
(𝑠,𝑟)

expansion 𝑠𝜒∥0 ∥𝑟𝜒∥0 ∥ 𝑠𝜒∥1 ∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒)
state ↑

S3 ↓ in Hyb𝛿,𝛽,1 in Hyb𝛿,𝛽,2 in Hyb𝛿,𝛽,3 in Hyb𝛿,𝛽,4 in Hyb𝛿,𝛽,5

𝑘
?
= 𝑘𝑖, 𝑗

𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵
𝑖=𝛿:𝛽≤ 𝑗≤𝐵

𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵
𝑖=𝛿:𝛽+1≤ 𝑗≤𝐵

▶ 𝑖 < 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0 ∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 < 𝛽:

ℎ𝛿, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0 ∥ct𝜒∥1] 𝑗
ℎ𝛿, 𝑗 : 𝑡 𝐹𝛿, 𝑗 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 = 𝛽:

ℎ𝛿,𝛽 : 𝜒 𝐻 (𝑘𝛿,𝛽, 𝜒 ∥0𝐷−𝛿) 𝐹𝛿,𝛽 (𝜒 ∥0𝐷−𝛿) 𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿)
⊕[ct𝜒∥0∥ct𝜒∥1]𝛽

𝐺𝑣 (𝐹𝜎 (𝜒,𝛽))
⊕[ct𝜒∥0∥ct𝜒∥1]𝛽

ℎ𝛿,𝛽 : 𝑡 𝐻 (𝑘𝛿,𝛽, 𝑡) 𝐹𝛿,𝛽 (𝑡) 𝐹𝛿,𝛽 (𝑡) 𝐹𝛿,𝛽 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 > 𝛽:

ℎ𝛿, 𝑗 : 𝜒 𝐻 (𝑘𝛿, 𝑗 , 𝜒 ∥0𝐷−𝛿)
ℎ𝛿, 𝑗 : 𝑡 𝐻 (𝑘𝛿, 𝑗 , 𝑡)
▶ 𝑖 > 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐻 (𝑘𝑖, 𝑗 , 𝜒 ∥0𝐷−𝑖)
ℎ𝑖, 𝑗 : 𝑡 𝐻 (𝑘𝑖, 𝑗 , 𝑡)
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7.3 Hybrids over Blocks at Each Level

To prove Lemma 3, we consider Hyb𝛿,𝛽,★ for 0 ≤ 𝛿 < 𝐷, 1 ≤ 𝛽 ≤ 𝐵 specified in Table 3.
In these hybrids, ct𝜒 ’s at level |𝜒 | ≠ 𝛿 and responses to S3(hEval, ℎ𝑖, 𝑗 ,★) at level 𝑖 ≠ 𝛿

remain the same as in Hyb𝛿,$$. We focus on the changes at level 𝛿.
Recall that the decryption result is the one-time-padded child ciphertexts, which

(at each level, and in particular, level 𝛿) are split into 𝐵 blocks, the one-time pad
of each block corresponding to a handle ℎ𝛿, 𝑗. In Hyb𝛿,𝛽,1, the first (𝛽 − 1) blocks
have been switched to pseudorandom, and those blocks of the child ciphertexts, at
level (𝛿 + 1), are hardwired into the responses to S3(hEval, ℎ𝛿, 𝑗 ,★) so that correctness
is maintained. The 𝛽th block is hardwired into the level-𝛿 ciphertext, which is set
to the block of the child ciphertexts padded using 𝑘𝛿,𝛽. The last (𝐵 − 𝛽) blocks
are computed in the same way as in Hyb𝛿,$$, from 𝜒, 𝑠𝜒, and 𝑘𝑖, 𝑗 ’s for 𝛿 < 𝑖 < 𝐷

and 1 ≤ 𝑗 ≤ 𝐵. The handles ℎ𝛿, 𝑗 for 1 ≤ 𝑗 < 𝛽 do not have a corresponding PRF key,
whereas ℎ𝛿, 𝑗 for 𝛽 ≤ 𝑗 ≤ 𝐵 do.

Moving from Hyb𝛿,𝛽,1 to Hyb𝛿,𝛽+1,1:

• Hyb𝛿,𝛽,2 no longer checks 𝑘
?
= 𝑘𝛿,𝛽 in S3(hGen, 𝑘).

• Hyb𝛿,𝛽,3 replaces 𝐻 (𝑘𝛿,𝛽,★), thus S3(hEval, ℎ𝛿,𝛽,★), by random function 𝐹𝛿,𝛽.

• Hyb𝛿,𝛽,4 makes the 𝛽th block of the decryption result random and programs the
𝛽th block of the child ciphertexts into S3(hEval, ℎ𝛿,𝛽,★).

• Hyb𝛿,𝛽,5 makes the 𝛽th block of the decryption result pseudorandom.

• Hyb𝛿,𝛽+1,1 collects the PRG seed for the 𝛽th block and recycles the hardwiring
space for the (𝛽 + 1)st block.

The following lemmas hold for Hyb𝛿,𝛽,★’s:

Lemma 6 (¶). Hyb𝛿,$$ ≈ Hyb𝛿,1,1 for all 0 ≤ 𝛿 < 𝐷.

Lemma 7 (¶). For all 0 ≤ 𝛿 < 𝐷 and 1 ≤ 𝛽 ≤ 𝐵,

Hyb𝛿,𝛽,1 ≈ Hyb𝛿,𝛽,2 ≈ Hyb𝛿,𝛽,3 ≡ Hyb𝛿,𝛽,4 ≈ Hyb𝛿,𝛽,5.

Lemma 8 (¶). Hyb𝛿,𝛽,5 ≈ Hyb𝛿,𝛽+1,1 for all 0 ≤ 𝛿 < 𝐷 and 1 ≤ 𝛽 < 𝐵.

Lemma 9 (¶). Hyb𝛿,𝐵,5 ≈ Hyb𝛿+1,𝐺($) for all 0 ≤ 𝛿 < 𝐷.

Proof (Lemma 3). It follows from a standard hybrid argument over

Hyb𝛿,$$
6≈ Hyb𝛿,1,1

7≈ Hyb𝛿,1,5
8≈ Hyb𝛿,2,1

≈
7

Hyb𝛿,2,5 ≈8 · · · ≈7 Hyb𝛿,𝐵,5 ≈9 Hyb𝛿+1,𝐺($) ,

where the number over or under each “≈” references the lemma used. □

It remains to prove Lemmas 6, 7, 8, and 9.

Proof (Lemma 6). The only difference between Hyb𝛿,$$ (Table 2) and Hyb𝛿,1,1 (Table 3)
is the plaintext encrypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (normal, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)) in Hyb𝛿,$$,

28 / 36



(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,

𝛽︷︸︸︷
1 ,

∅︸︷︷︸
{𝜎𝜒, 𝑗 }1≤ 𝑗<1

, [ct𝜒∥0 ∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒 ∥0𝐷−𝛿)︸                                       ︷︷                                       ︸
𝑤𝜒

, {𝑘𝛿, 𝑗}1< 𝑗≤𝐵))

in Hyb𝛿,1,1.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not
used elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. As

Expand𝛿 (normal, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒))
= (ct𝜒∥0 ∥ct𝜒∥1) ⊕ (𝐻 (𝑘𝛿,1, 𝜒 ∥0𝐷−𝛿) ∥ · · · ∥𝐻 (𝑘𝛿,𝐵, 𝜒 ∥0𝐷−𝛿))
= ( [ct𝜒∥0 ∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒 ∥0𝐷−𝛿))
∥ ([ct𝜒∥0 ∥ct𝜒∥1]2 ⊕ 𝐻 (𝑘𝛿,2, 𝜒 ∥0𝐷−𝛿)) ∥ · · ·
∥ ( [ct𝜒∥0 ∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝛿,𝐵, 𝜒 ∥0𝐷−𝛿))

= Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 1,
∅, [ct𝜒∥0 ∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒 ∥0𝐷−𝛿), {𝑘𝛿, 𝑗}1< 𝑗≤𝐵)),

Hyb𝛿,$$ ≈ Hyb𝛿,1,1 reduces to the adaptive security of 1-key FE. □

Proof (Lemma 7). For Hyb𝛿,𝛽,1 ≈ Hyb𝛿,𝛽,2, the two are identical until (“bad event”)
the adversary queries S3(hGen, 𝑘𝛿,𝛽). Prior to the bad event, the only interaction
of the adversary with 𝑘𝛿,𝛽 amounts to querying its evaluations at various points.
For appropriate choice of 𝐵 (Section 7.4), the bad event can happen only with
negligible probability due to the PRF security of 𝐻. Therefore, the two hybrids are
indistinguishable.

Hyb𝛿,𝛽,2 ≈ Hyb𝛿,𝛽,3 reduces to the PRF security of 𝐻, because in Hyb𝛿,𝛽,2, the PRF
key 𝑘𝛿,𝛽 is only used for evaluating at various points (thanks to removing 𝑘

?
= 𝑘𝛿,𝛽 in

the previous step).
Hyb𝛿,𝛽,3 ≡ Hyb𝛿,𝛽,4 is the perfect secrecy of one-time pad.
Hyb𝛿,𝛽,4 ≈ Hyb𝛿,𝛽,5 reduces to the PRG security of 𝐺𝑣. □

Proof (Lemma 8). The only difference between Hyb𝛿,𝛽,5 and Hyb𝛿,𝛽+1,1 is the plaintext
encrypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽,

↷

𝐺𝑣(𝐹𝜎 (𝜒,𝛽)),
{𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵)) in Hyb𝛿,𝛽,5,

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽 + 1,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽+1,

[ct𝜒∥0 ∥ct𝜒∥1]𝛽 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒 ∥0𝐷−1),

↷ {𝑘𝛿, 𝑗}𝛽+1< 𝑗≤𝐵)) in Hyb𝛿,𝛽+1,1.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not
used elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. It suffices to verify

Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽, 𝐺𝑣(𝐹𝜎 (𝜒,𝛽)), {𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵))
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= 𝐺𝑣(𝐹𝜎 (𝜒, 1)) ∥ · · · ∥𝐺𝑣(𝐹𝜎 (𝜒,𝛽 − 1))
∥𝐺𝑣(𝐹𝜎 (𝜒,𝛽)) ∥ ([ct𝜒∥0 ∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒 ∥0𝐷−𝛿))
∥ ([ct𝜒∥0 ∥ct𝜒∥1]𝛽+2 ⊕ 𝐻 (𝑘𝛿,𝛽+2, 𝜒 ∥0𝐷−𝛿)) ∥ · · ·
∥ ( [ct𝜒∥0 ∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝛿,𝐵, 𝜒 ∥0𝐷−𝛿))

= Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽 + 1,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽+1,

[ct𝜒∥0 ∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒 ∥0𝐷−𝛿),
{𝑘𝛿, 𝑗}𝛽+1< 𝑗≤𝐵)),

and Hyb𝛿,𝛽,5 ≈ Hyb𝛿,𝛽+1,1 reduces to the adaptive security of 1-key FE. □

Proof (Lemma 9). The only difference between Hyb𝛿,𝐵,5 (Table 3) and Hyb𝛿+1,𝐺($)
(Table 2) is the plaintext encrypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 𝐵,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝐵, 𝐺𝑣(𝐹𝜎 (𝜒, 𝐵))︸           ︷︷           ︸
𝑤𝜒

, ∅︸︷︷︸
{𝑘𝛿, 𝑗 }𝐵< 𝑗≤𝐵

)) in Hyb𝛿,𝐵,5,

(flag𝜒, 𝜒, info𝜒) = (sim, 𝜒, {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵) in Hyb𝛿+1,𝐺($) .

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not
used elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. It holds that

Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 𝐵,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝐵, 𝐺𝑣(𝐹𝜎 (𝜒, 𝐵)),∅))
= 𝐺𝑣(𝐹𝜎 (𝜒, 1)) ∥ · · · ∥𝐺𝑣(𝐹𝜎 (𝜒, 𝐵 − 1)) ∥𝐺𝑣(𝐹𝜎 (𝜒, 𝐵))
= Expand𝛿 (sim, 𝜒, {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵),

so Hyb𝛿,𝐵,5 ≈ Hyb𝛿+1,𝐺($) reduces to the adaptive security of 1-key FE. □

7.4 Choice of Parameters

Wewill set 𝐿 = 𝐵. Let 𝑛, 𝑚 be the length of plaintexts and circuits in 1-key FE. Expand𝑑

and Eval (Figures 5 and 7) have

• a universal circuit for circuits up to size 𝑆,

• 2 copies of Enc of 1-key FE,

• 𝐵 copies of 𝐻,

• 𝐵 copies of 𝐺𝑣, and

• other components of size poly(𝜆) or subsumed by the above.

Suppose the encryption circuit is of size at most (𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 for some constant
𝑒1 > 0 and 0 < 𝜀 < 1/2.12 We have (below, |·| is the bit length of everything)

𝑛 = |flag| + |𝜒 | + |𝐶 | + 𝐷𝐵|𝑘| + |𝑠| + |𝛽 | + 𝐵|𝜎 | + |𝑤| ≤ 𝑆𝐷𝐵𝜆𝑒2

12This derivation assumes 𝜆 ≥ 2 and 𝑛, 𝑚 ≥ 1. We also assume 1 ≤ 𝐷, 𝑆, 𝐿, 𝐵 ≤ 2𝜆.
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for some constant 𝑒2 > 0. For representing the circuit, we need

𝑚 = Ω(𝑆 log 𝑆) + 2(𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 + 𝐵𝐿poly(𝜆) log 𝐿 + poly(𝜆),

for which we require

𝑚 ≥ (𝑆2𝐷2𝐵2 + 𝑚1−𝜀)𝜆𝑒3

for a certain constant 𝑒3 > 0. For sufficiently long one-time pads, we also need

2(𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 ≤ 𝐿𝐵 = 𝐵2.

To satisfy these constraints, it suffices to set

𝐿 = 𝐵 = 2𝑚(1−𝜀)/2𝜆𝑒1+𝑒2 , 𝑚 = (5𝑆2𝐷2𝜆2𝑒1+2𝑒2+𝑒3)1/𝜀 .
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