An Optimal Universal Construction for the Threshold Implementation of Bijective S-boxes

Enrico Piccione1, Samuele Andreoli1, Lilya Budaghyan1, Claude Carlet1,2, Siemen Dhooghe3, Svetla Nikova1,3, and George Petrides4, Vincent Rijmen1,3

1 University of Bergen, Bergen, Norway, \{name.surname\}@uib.no
2 University of Paris 8, Saint-Denis, France, claude.carlet@gmail.com
3 KU Leuven, Leuven, Belgium, \{name.surname\}@esat.kuleuven.be
4 University of Cyprus, Nicosia, Cyprus g.petrides@yahoo.com

Abstract. Threshold implementation is a method based on secret sharing to secure cryptographic ciphers (and in particular S-boxes) against differential power analysis. Until now, threshold implementations were only constructed for specific types of functions and some small S-boxes, but no general construction for all S-boxes was ever presented. The lower bound for the number of shares of threshold implementation is \(t + 1 \), where \(t \) is the algebraic degree of the S-box. Since the smallest number of shares \(t + 1 \) is not possible for all S-boxes, as proven by Bilgin et al. in 2015, then there does not exist a universal construction with \(t + 1 \) shares. Hence, if there is a universal construction working for all permutations then it should work with at least \(t + 2 \) shares. In this paper, we present the first optimal universal construction with \(t + 2 \) shares. This construction enables low latency hardware implementations without the need for randomness. In particular, we apply this result to find the first two uniform sharings of the AES S-box. Area and performance figures for hardware implementations are provided.

Keywords: AES, DPA, Glitches, Masking, Permutation Polynomials, Sharing, Threshold Implementations, Vectorial Boolean Functions

1 Introduction

In 1999, Kocher et al. [KJJ99] introduced Differential Power Analysis (DPA), an attack which uses a physical device’s properties such as its power consumption to retrieve the secret keys of the embedded cryptographic algorithms, originally demonstrated on DES. The weakness is not in the design of DES, but rather in its implementation. As a result, side-channel countermeasures were developed, aiming for the secure implementation of symmetric primitives, including standards such as the Advanced Encryption Standard (AES) [DR01]. Since then, a lot of research has been done to improve the side-channel attacks and to develop protection mechanisms against them. The most prominent countermeasure in both academia and industry is called sharing (or also called masking) and was introduced by Goubin and Patarin [GP99] and Chari et al. [CJRR99] independently in the same year. In \(s \)-share Boolean sharing, a variable \(x \in \mathbb{F}_2^s \) is shared as \(s \) values \((x_1, \ldots, x_s) \in \mathbb{F}_2^s \), such that \(\sum_{i=1}^s x_i = x \). While masking helps to protect algorithms against formally defined adversary models, the method’s protection is not evident when translated to a physical device. For example, the transient behaviour of values on hardware (also called glitches) can undermine a naive sharing’s security. This leads to several attacks on shared AES implementations in hardware by Mangard et al. [MP05] in CHES 2005.

The next year, in 2006, Nikova, Rechberger and Rijmen [NRR06] published a methodology to build a countermeasure, called Threshold Implementations (TI), which addresses
this physical behaviour on hardware. The TI method adds two important properties over regular sharing. **First**, it requires that a sharing is **non-complete**. In its simplest form, non-completeness is satisfied if each coordinate function characterising the combinatorial logic between registers does not operate on all shares of a secret or, in other words, each share is absent from at least one coordinate function. **Second**, a sharing has to be **uniform** which, if the underlying function is a permutation, means that the shared function is a bijection. Given the above properties, a sharing ensures protection against **first-order attacks** where the mean of the power traces is used as a distinguisher. To help mitigate higher-order attacks (which use higher-order moments or mixed-order moments), Bilgin et al. [BGN+14] in Asiacrypt 2014 introduced an extension of threshold implementation properties, namely higher-order non-completeness. A lower bound on the number of shares $s \geq \deg(F) \times d + 1$ (where d is the security order) to achieve a threshold implementation is given in [NRR06, BGN+14, Pet19]. In Crypto 2015, Reparaz et al.[RBN+15] introduced another flavour of the TI method which requires only $d + 1$ shares, called CMS. For the rest of the paper, we focus only on the initial one with $s \geq \deg(F) \times d + 1$ shares.

The TI approach has been applied to many symmetric primitives. For example, on the AES by De Cnudde et al. [CRB+16] and by Moradi et al. [MPL+11]; on PRESENT by Poschmann et al. [PMK+11]; on Keccak by Groß et al. [GSM17]; etc. Each of these papers have implemented the countermeasure and verified its order of security in practice. The trust in the TI method as a countermeasure against side-channel analysis is based on the significant quantity of works with proven practical results.

Threshold implementations have proven to be an effective countermeasure, but finding a sharing which is both non-complete and uniform is non-trivial. There are three known methods to achieve such a sharing. The first is using direct sharing by Bilgin et al. [BNN+12] to guarantee the non-completeness of the sharing and apply correction terms [NRR06] for uniformity. However, this method does not guarantee success for any arbitrary permutation. The second method uses direct sharing, but adds fresh randomness as a re-sharing step to guarantee the uniformity. The third method is introduced by Daemen [Dae17] and is called the changing of the guards. It embeds the non-complete sharing in a Feistel construction to guarantee the uniformity.

There is currently no known universal construction of a threshold implementation for arbitrary permutations of any size. Instead, research on threshold implementations focuses on finding solutions for small sizes. It has been proven by Bilgin et al. [BNN+12] in CHES 2012 that threshold implementation is invariant up to affine equivalence. Then, using the classification of the affine equivalent classes for 3 and 4 bit permutations, Bilgin et al. provided threshold implementations for all of these classes. Later, Bozilov et al. [BBS17] in FSE 2017 and De Meyer and Bilgin [MB19] in FSE 2019 provided threshold implementations of 5 and 6 bits quadratic permutations. In Table 1.1 we summarise the results on threshold implementations found in [BNN+12] and [BBS17]. For each size, we report the number of S-boxes for which a threshold implementation with s shares is known. If a s-shares threshold implementation was not found for an S-box, then we report the length of the decomposition used to achieve a uniform sharing of the S-box. Note that for 5-bit only quadratic S-boxes are presented here.

There are several ways to achieve a TI sharing of the AES S-box, but the most relevant for our considerations is the one started by Wegener and Moradi [WM18] who gave a decomposition of the AES S-box into two cubic power functions, namely $x \mapsto x^{26}$ and $x \mapsto x^{49}$. The following year, the list of all possible decompositions on quadratic and cubic power functions for the inversion over any binary field up to $n = 16$ was given by Nikova et al. [NNR19]. The list has recently been extended up to $n = 32$ by Petrides [Pet22]. In particular, for the inversion in \mathbb{F}_{2^n}, the decomposition in power functions up to algebraic degree three was presented.

Starting from n-bit bijective S-boxes, Varici et al. [VNNR19] construct new $(n + 1)$-bit
Table 1.1: Known threshold implementations of S-boxes of 3, 4, and 5 bit.

<table>
<thead>
<tr>
<th>size</th>
<th>degree</th>
<th>3 shares</th>
<th>4 shares</th>
<th>5 shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2 2 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5 1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>30 115 1</td>
<td>4 52 239</td>
<td>295</td>
</tr>
</tbody>
</table>

and (n + 2)-bit bijective S-boxes. The authors show that, if a threshold implementation for the n-bit bijective S-boxes exist, then the constructed (n + 1)-bit and (n + 2)-bit bijective S-boxes also have a threshold implementation.

Contributions. In the present paper, we construct a first-order threshold implementation with $t + 2$ shares for every bijective S-box of any algebraic degree $t \geq 2$. Since the theoretically smallest number of shares $t + 1$ is not possible for all S-boxes, as proven in [BNN+15], then there does not exist a universal construction with $t + 1$ shares. Hence, our construction is the first optimal universal TI construction and it enables low latency hardware implementations without the need for randomness. We demonstrate this by providing the first threshold implementations (direct and by using decomposition) of the AES S-box that are uniform by construction, comparing them to the state of the art.

A secondary contribution of our result is to the theory of permutation polynomials, since we are able to construct a new infinite family of permutations.

In the end, we conjecture that power permutations and APN permutations (functions with optimal resistance to differential cryptanalysis) do not admit a threshold implementation with the theoretically smallest number of shares. Hence, our construction would be optimal in those relevant cases.

Paper Outline. Section 2 introduces the notations and the main concepts used in the paper, such as Boolean functions and threshold implementations. Section 3 covers the main result of the paper, which is an optimal universal construction for the threshold implementation of bijective S-boxes. Section 4 applies the construction to achieve two uniform threshold implementations of the AES S-box, where performance results in hardware are given. Finally, Section 5 concludes the paper and presents conjectures on non-existence of threshold implementations with $t + 1$ shares for power and APN permutations.

2 Preliminaries

In this section, we are going to provide a prelude about Boolean functions, secret sharing, and threshold implementation.

2.1 Boolean Functions

Let n and s be positive integers. We denote by \mathbb{F}_2, respectively, by \mathbb{F}_{2^n} the finite field with 2, respectively, 2^n elements and by \mathbb{F}_2^n, respectively, by \mathbb{F}_{2^n}, the s-dimensional vector space over \mathbb{F}_2, respectively, over \mathbb{F}_{2^n}.

A Boolean function f in n variables is an \mathbb{F}_2-valued function on \mathbb{F}_2^n. The unique
representation of f as a polynomial over \mathbb{F}_2 in n variables of the form

$$f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}_2^n} c(u) \left(\prod_{i=1}^n x_i^{u_i} \right), \quad c(u) \in \mathbb{F}_2$$

is called the algebraic normal form of f. The global degree of the algebraic normal form of f is denoted by $\deg(f)$ and is called the algebraic degree of the function f [Car20]. A Boolean function f is affine, quadratic, or cubic if its algebraic degree is respectively less than or equal to 1, 2, or 3. Moreover, f is linear if it is affine and $f(0) = 0$. The Hamming weight $\text{wt}(f)$ of a Boolean function f is the size of its support $\{ x \in \mathbb{F}_2^n : f(x) \neq 0 \}$. A Boolean function F is called balanced if $\text{wt}(f) = 2^{n-1}$.

Any function F from \mathbb{F}_2^n into \mathbb{F}_2^m can be considered as a vectorial Boolean function, i.e. F can be presented in the form

$$F(x_1, \ldots, x_n) = (F_1(x_1, \ldots, x_n), \ldots, F_m(x_1, \ldots, x_n)),$$

where the Boolean functions F_1, \ldots, F_m are called the coordinate functions. A component function of F is any linear combination of its coordinate functions. The algebraic degree of F is equal to the maximum algebraic degree of the coordinate functions of F (see [Car20]). A vectorial Boolean function F is affine, quadratic, or cubic if its algebraic degree is respectively less than or equal to 1, 2, or 3. We define the derivative of F in the direction of the vector $a \in \mathbb{F}_2^n$ as $D_a F(x) = F(x + a)$.

If we identify \mathbb{F}_2^n with the finite field \mathbb{F}_{2^n}, then any function $F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ is also uniquely represented as a univariate polynomial over \mathbb{F}_{2^n} of degree smaller than 2^n

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$$

For any integer k, $0 \leq k \leq 2^n - 1$, the number $w_2(k)$ of non-zero coefficients k_s, $0 \leq k_s \leq 1$, in the binary expansion $\sum_{n=0}^{n-1} 2^s k_s$ of k is called the 2-weight of k. The algebraic degree of a function $F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ is equal to the maximum 2-weight of the exponents i of the polynomial $F(x)$ such that $c_i \neq 0$ (see [CCZ98]), that is

$$\deg(F) = \max_{0 \leq i \leq 2^n-1} w_2(i).$$

In particular, F is linear if and only if $F(x)$ is a linearized polynomial over \mathbb{F}_{2^n} that is of the form:

$$\sum_{i=0}^{n-1} c_i x^{2^i}, \quad c_i \in \mathbb{F}_{2^n}.$$

Let F be a function from \mathbb{F}_2^n to itself. Then, F is called a permutation if it is bijective. In this case, the transformation

$$F \mapsto F^{-1}$$

is called the inverse transformation (or simply inversion). A function $F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ is called balanced if $n \geq m$ and F takes every value of \mathbb{F}_2^n the same number 2^{n-m} of times. The balanced functions from \mathbb{F}_2^n to itself are the permutations of \mathbb{F}_2^n. A function F is balanced if and only if all non-zero component functions of F are balanced. That is, if and only if the Boolean function $v \cdot F$ is balanced for every non-zero $v \in \mathbb{F}_2^n$ (see [Car20]). Let $A_1, A_2 : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ be affine permutations, then the functions F and $A_1 \circ F \circ A_2$ are called affine equivalent. We have that the two affine equivalent functions have the same algebraic degree. The algebraic degree of a function is not invariant under the inverse transformation.
Let \(N = ns_1 \) and \(M = ns_2 \), then we can represent a function \(F \) from \(\mathbb{F}_2^N \) to \(\mathbb{F}_2^M \) as a function from \((\mathbb{F}_2^2)^{s_1}\) to \((\mathbb{F}_2^2)^{s_2}\) in the following way

\[
F(x_1, \ldots, x_s) = (F_1(x_1, \ldots, x_s), \ldots, F_s(x_1, \ldots, x_s)),
\]

where the functions \(F_1, \ldots, F_s : (\mathbb{F}_2^2)^{s_1} \rightarrow \mathbb{F}_2^{s_2} \) are called the coordinate functions of the function \(F \).

A function \(F : \mathbb{F}_2^N \rightarrow \mathbb{F}_2^m \) where \(N = ns \) can be represented as a function from \(\mathbb{F}_2^n \) to \(\mathbb{F}_2^n \) as a multivariate polynomial over \(\mathbb{F}_2^n \) of the following form:

\[
F(x_1, \ldots, x_s) = \sum_{u \in \{0, \ldots, 2^n-1\}^s} c(u) \left(\prod_{i=1}^{s} x_i^{u_i} \right), \quad c(u) \in \mathbb{F}_2^n.
\]

2.2 Threshold Implementations

A Boolean \(s \)-sharing of \(x \in \mathbb{F}_2^n \) is a tuple \(x = (x_1, \ldots, x_s) \in (\mathbb{F}_2^2)^s \) over \(\mathbb{F}_2^2 \) such that

\[
x = \sum_{i=1}^{s} x_i.
\]

The value \(x \) can be interpreted as the secret, and \(x_1, \ldots, x_s \) as the shares.

For every \(x \in \mathbb{F}_2^n \), we define the set of \(s \)-sharings of \(x \) as

\[
\text{Sh}_s(x) := \left\{ x = (x_1, \ldots, x_s) \in (\mathbb{F}_2^2)^s \mid \sum_{i=1}^{s} x_i = x \right\}.
\]

It follows directly from the definition that \(|\text{Sh}_s(x)| = |(\mathbb{F}_2^2)^{s-1}| = 2^{n(s-1)} \) for every \(x \in \mathbb{F}_2^n \).

From now on, we will use simply \(s \)-sharing instead of Boolean \(s \)-sharing for the sake of brevity.

Let \(s_x, s_y \) be positive integers. We refer to a function \(F : (\mathbb{F}_2^2)^{s_x} \rightarrow (\mathbb{F}_2^2)^{s_y} \) as an \(s_x \) to \(s_y \) sharing.

We say that \(F \) is correct, or equivalently that it has the correctness property, with respect to \(F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \), if it maps any \(s_x \)-sharing of \(x \) over \(\mathbb{F}_2^n \), to an \(s_y \)-sharing \(y \) over \(\mathbb{F}_2^n \), i.e. for all \(x \in \mathbb{F}_2^n \), and \(\bar{x} \in \text{Sh}_s(x) \) we have

\[
F(\bar{x}) \in \text{Sh}_{s_y}(F(x)).
\]

Note that the notion of Correctness given in [Bil15], i.e. that for all \(x \in \mathbb{F}_2^n \), we have that \(x \in \text{Sh}_s(x) \) and \(\sum_{i=1}^{s} F_i(x) = F(\sum_{i=1}^{s} x_i) \), immediately follows from Equality (1) and the definition of \(s \)-sharing.

For \(i \in \{1, \ldots, s_x\} \), \(j \in \{1, \ldots, s_y\} \), and \(a \in \mathbb{F}_2^2 \) we denote the derivative of \(F \) over coordinate \(i \) in direction \(a \) as

\[
D_a^{(i)} F_j(\bar{x}) = F_j(x_1, \ldots, x_{i-1}, x_i + a, x_{i+1}, \ldots, x_s) - F_j(\bar{x}).
\]

We note that if \(D_a^{(i)} F_j = 0 \) for all \(a \in \mathbb{F}_2^2 \), then the value of \(F_j \) is unaffected by the variable \(x_i \) and we say that \(F_j \) does not depend on \(x_i \), or equivalently that \(F_j \) is independent of \(x_i \). Otherwise, we say that \(F_j \) depends on \(x_i \). We can now define the set of all \(i \) such that \(F_j \) does not depend on \(x_i \) as

\[
S_j = \{ i \in \{1, \ldots, s_x\} \mid \forall a \in \mathbb{F}_2^n, D_a^{(i)} F_j = 0 \}.
\]

Finally, we can say that \(F \) is \(d \)-th order non-complete, or equivalently that it has the \(d \)-th order non-completeness property, if for all \(I \subseteq \{1, \ldots, s_y\} \) with \(|I| \leq d \), we have that

\[
\bigcap_{j \in I} S_j \neq \emptyset.
\]
We note that according to [Bil15], if
\[F : \mathbb{F}_2^n \to \mathbb{F}_2^n. \]
We say that \(F \) is \emph{uniform}, or equivalently that it has the \emph{uniformity} property, if for all \(x \in \mathbb{F}_2^n \) and \(y \in \text{Sh}_{s_0}(F(x)) \), the following holds:
\[
\left| \{ z \in \text{Sh}_{s_0}(x) \mid F(z) = y \} \right| = 2^{n(s_0-1)} / 2^{m(s_0-1)}.
\]

We say that \(F \) is a \(d \)th \emph{order threshold implementation} of \(F : \mathbb{F}_2^n \to \mathbb{F}_2^n \) if \(F \) is correct with respect to \(F \), \(d \)th order non-complete, and uniform. We call \(F \) symmetric if \(s_x = s_y \).

We note that according to [Bil15], if \(F \) is symmetric and \(F \) is a permutation, we have that \(F \) being uniform is equivalent to \(F \) being a permutation. This statement is not proven in literature to the best of our knowledge. Thus, we give a brief proof of it in Appendix A.

We know that for a \(d \)th order threshold implementation of a vectorial Boolean function \(F \) of algebraic degree \(t \) to exist, \(s_x \) must satisfy \(s_x \geq td + 1 \) [NRR06, BGN+14, Pet19].

In this paper, we focus on symmetric \(1 \)st order threshold implementations of permutations. In this setting, we have that the lower bound on the number of shares becomes \(s \geq t + 1 \). From the definition, we have that \(F \) is non-complete if and only if, for each coordinate function \(F_j \), there exists a component \(x_i \) such that \(F_j \) does not depend on \(x_i \).

For the sake of brevity, we will only write threshold implementation instead of symmetric \(1 \)st order threshold implementations from now on.

3 A Universal Construction for the Threshold Implementation with \(t + 2 \) Shares

In this section, we construct a threshold implementation \(F \) with \(t + 2 \) shares for every permutation \(F \) over \(\mathbb{F}_2^n \) of algebraic degree at most \(t \), for \(t \geq 2 \). This construction does not depend on the dimension \(n \) of the vector space \(\mathbb{F}_2^n \) that is permuted by \(F \).

Let \(F : (\mathbb{F}_2^n)^{t+2} \to (\mathbb{F}_2^n)^{t+2} \) be defined for every \(x = \langle x_1, \ldots, x_{t+2} \rangle \in (\mathbb{F}_2^n)^{t+2} \) as

\[
F(x) = \begin{pmatrix}
F_1(x) \\
F_2(x) \\
F_j(x) \\
F_{t+2}(x)
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\sum_{i=3}^{t+2} x_i + F(\sum_{i=3}^{t+2} x_i) \\
x_j + \sum_{I \in I_{j-2}} F(\sum_{i \in I_j} x_i + \sum_{i=3}^{t+2} x_i) \\
\sum_{I \in I_{t+2}} F(\sum_{i \in I} x_i)
\end{pmatrix}, \tag{2}
\]

where for any \(k \geq 1 \) we denote by \(I_k \) the set of all subsets of \(\{1, \ldots, k\} \) (including \(\emptyset \)). We will also denote \(I_k = I_k \setminus \{\{1, \ldots, k\}\} \). Moreover, we use the convention that \(\sum_{i \in \emptyset} x_i = 0 \).

Our construction is done for \(t \geq 2 \) and can not be defined for \(t = 1 \). However, it is already known how to construct threshold implementations of affine permutations.

First, we observe that \(F \) is non-complete. Indeed, \(F_1 \) is independent of \(x_2, \ldots, x_{t+2} \), and functions \(F_j(x) \) are independent of \(x_{j-1} \) for any \(j = 2, \ldots, t + 2 \). Furthermore, we will prove that \(F \) is correct with respect to \(F \) (Theorem 2) and uniform (Theorem 3). With this, we will conclude that \(F \) is a threshold implementation of \(F \). As a consequence, we can state the following theorem that sums up the main result of this section.

Theorem 1. Let \(F \) be a permutation over \(\mathbb{F}_2^n \) with algebraic degree \(t \). Then for every \(s \geq t + 2 \), function \(F \) admits a threshold implementation with \(s \) shares.

Note that, according to this theorem, it is sufficient for \(F \) to have algebraic degree at most \(t \), making the construction viable even if \(F \) has algebraic degree strictly lower than \(t \).
There are instances where the flexibility with the number of shares might be useful. For instance, when composing functions with different algebraic degrees, one might choose the construction necessary for the highest algebraic degree and apply it to all functions to achieve a seamless composition.

3.1 Proving the Correctness Property

We prove the following theorem.

Theorem 2. Let \(F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) be of algebraic degree at most \(t \geq 2 \). Then for every \(x_1, x_2, \ldots, x_{t+2} \in \mathbb{F}_2^n \) we have that \(F \left(\sum_{i=1}^{t+2} x_i \right) \) is equal to

\[
F \left(\sum_{i=2}^{t+2} x_i \right) + \sum_{j=1}^{t+1} \sum_{I \subseteq \mathcal{I}_{t-j}} F \left(\sum_{i \in I} x_i \right)
\]

It is easy to note that, for every \(x = (x_1, \ldots, x_{t+2}) \in (\mathbb{F}_2^n)^{t+2} \), the sum \(\sum_{i=1}^{t+2} F_i(x) \) is equal to Expression (3). Hence, using Theorem 2 we can prove that the function \(F \) defined in (2) satisfies the correctness property with respect to \(F \).

We can see that the correctness property does not depend on the condition that \(F \) is a permutation.

To prove Theorem 2 we need the following lemmas.

Lemma 1 ([CPRR15, Corollary 1]). Let \(F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) be of algebraic degree at most \(t \geq 1 \) and let \(s > t \). Then for every \(x_1, x_2, \ldots, x_s \in \mathbb{F}_2^n \) we have that

\[
F \left(\sum_{i=1}^{s} x_i \right) = \sum_{j=0}^{t} \mu_{s,t}(j) \sum_{I \subseteq \mathcal{I}_j, |I| = j} F \left(\sum_{i \in I} x_i \right)
\]

where \(\mu_{s,t}(j) = \binom{s-j}{t-j} \mod 2 \) for every \(j = 0, \ldots, t \).

Lemma 2. Let \(F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \). Let \(k \geq 1 \), then for every \(x_1, x_2, \ldots, x_{k+1}, z \in \mathbb{F}_2^n \) we have that

\[
\sum_{I \subseteq \mathcal{I}_{k+1}} F \left(\sum_{i \in I} x_i + z \right) = \sum_{I \subseteq \mathcal{I}_{k}} F \left(\sum_{i \in I} x_i + z \right) + \sum_{I \subseteq \mathcal{I}_{k+2}} F \left(\sum_{i \in I} x_i + x_{k+1} + z \right).
\]

Proof. It follows from the following disjoint union \(\mathcal{I}_{k+1} = \mathcal{I}_k \cup \{I \cup \{k+1\} : I \in \mathcal{I}_k \} \). \(\square \)

Lemma 3. Let \(F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) and \(t \geq 2 \). Then for every \(x_1, x_2, \ldots, x_{t+2} \in \mathbb{F}_2^n \) and for every \(3 \leq k \leq t+1 \) we have that

\[
\sum_{I \subseteq \mathcal{I}_t} F \left(\sum_{i \in I} x_i + \sum_{j=t+1}^{t+2} x_j \right) = \sum_{j=k}^{t+1} \sum_{I \subseteq \mathcal{I}_{j-2}} F \left(\sum_{i \in I} x_i + \sum_{i=3}^{j+2} x_i \right) + \sum_{I \subseteq \mathcal{I}_{t-k}} F \left(\sum_{i \in I} x_i + \sum_{i=k-1}^{t} x_i \right).
\]

Proof. We use induction from \(k = t+1 \) to \(k = 3 \). Set \(z_k = \sum_{j=k}^{t+2} x_j \). By using Lemma 2, we can prove the base case \(k = t+1 \):

\[
\sum_{I \subseteq \mathcal{I}_t} F \left(\sum_{i \in I} x_i + z_{t+1} \right) = \sum_{I \subseteq \mathcal{I}_{t-1}} F \left(\sum_{i \in I} x_i + z_{t+1} \right) + \sum_{I \subseteq \mathcal{I}_{t-1}} F \left(\sum_{i \in I} x_i + z_{t+1} \right) = \sum_{I \subseteq \mathcal{I}_{t-1}} F \left(\sum_{i \in I} x_i + z_t \right) + \sum_{I \subseteq \mathcal{I}_{t-1}} F \left(\sum_{i \in I} x_i + z_t \right).
\]
Hence, inserting the obtained expression into Equality (4) we get

$$\sum_{t \in I_t} F\left(\sum_{i \in I} x_i + z_{t+1}\right) = \sum_{j=0}^{t+1} \sum_{t \in I_{t-2}} F\left(\sum_{i \in I} x_i + z_{j+1}\right) + \sum_{t \in I_{t-2}} F\left(\sum_{i \in I} x_i + z_{k-1}\right) .$$

(4)

If $t = 2$ we have that $t + 1 = 3$, so there is nothing more to prove. Assuming $t \geq 3$, we consider the second term on the right side of Equality (4) and using again Lemma 2 we get

$$\sum_{t \in I_{t-2}} F\left(\sum_{i \in I} x_i + z_{k-1}\right) = \sum_{t \in I_{t-3}} F\left(\sum_{i \in I} x_i + z_{k-1}\right) + \sum_{t \in I_{t-3}} F\left(\sum_{i \in I} x_i + z_{k-2}\right) .$$

Hence, inserting the obtained expression into Equality (4) we get

$$\sum_{t \in I_t} F\left(\sum_{i \in I} x_i + z_{t+1}\right) = \sum_{j=0}^{t+1} \sum_{t \in I_{t-2}} F\left(\sum_{i \in I} x_i + z_{j+1}\right) + \sum_{t \in I_{t-2}} F\left(\sum_{i \in I} x_i + z_{k-1}\right) .$$

Now we can prove Theorem 2.

of Theorem 2. Set $z_{t+1} = \sum_{j=t+1}^{t+2} x_j$, $z_i = x_i$ for $i = 1, \ldots, t$. By using Lemma 1 for the case $s = t + 1$ on z_1, \ldots, z_{t+1}, we obtain

$$F\left(\sum_{i=1}^{t+2} x_i\right) = F\left(\sum_{i=1}^{t+1} z_i\right) = \sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} z_i\right) .$$

In fact, $\mu_{t+1, t}(j)\equiv (t-j)\mod 2 = 1$ for all $j = 0, \ldots, t$.

By using Lemma 2 we have that

$$\sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} z_i\right) = \sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} z_i\right) + \sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} z_i + z_{t+1}\right) = \sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} x_i\right) + \sum_{t \in \mathcal{I}_{t+1}} F\left(\sum_{i \in I} x_i + \sum_{j=t+1}^{t+2} x_j\right) .$$

We use the case $k = 3$ of Lemma 3 to conclude that

$$\sum_{t \in \mathcal{I}_t} F\left(\sum_{i \in I} x_i + \sum_{j=t+1}^{t+2} x_j\right) = \sum_{j=0}^{t+1} \sum_{t \in \mathcal{I}_{t-2}} F\left(\sum_{i \in I} x_i + \sum_{i=j}^{t+2} x_i\right) + \sum_{t \in \mathcal{I}_t} F\left(\sum_{i \in I} x_i + \sum_{i=2}^{t+2} x_i\right) = \sum_{j=0}^{t+1} \sum_{t \in \mathcal{I}_{t-2}} F\left(\sum_{i \in I} x_i + \sum_{i=j}^{t+2} x_i\right) + F \left(\sum_{i=2}^{t+2} x_i\right) .$$
3.2 Proving the Uniformity Property

We are going to prove the following theorem.

Theorem 3. Let F be a permutation over \mathbb{F}_2^n of algebraic degree at most $t \geq 2$. Then the function F as defined in (2) is a permutation over $(\mathbb{F}_2^t)^{t+2}$.

Proof. Let $F_0 : (\mathbb{F}_2^t)^{t+2} \to (\mathbb{F}_2^t)^{t+2}$ be as defined in (2). We have that F is correct with respect to F because of Theorem 2. Let $x = (x_1, \ldots, x_{t+2}) \in (\mathbb{F}_2^t)^{t+2}$. We introduce variables $y_i = F_0(x)$ over \mathbb{F}_2^t for $i = 1, \ldots, t+2$ to define a system of equations:

$$
\begin{align*}
\begin{cases}
y_1 &= x_1 \\
y_2 &= \sum_{i=3}^{t+2} x_i + F \left(\sum_{i=2}^{t+2} x_i \right) \\
y_j &= x_j + \sum_{i \in I_j} F \left(\sum_{i \in I} x_i + \sum_{i=1}^{t+2} x_i \right) \quad j = 3, \ldots, t+1 \\
y_{t+2} &= x_{t+2} + x_1 + \sum_{i \in I} F \left(\sum_{i \in I} x_i \right).
\end{cases}
\end{align*}
$$

Let $y = (y_1, \ldots, y_{t+2})$. Then F is a permutation if and only if for every $i = 1, \ldots, t+2$ there exists a function $G_i : (\mathbb{F}_2^t)^{t+2} \to \mathbb{F}_2^n$ such that $x_i = G_i(y)$. We are going to use the fact that since $F \left(\sum_{i=1}^{t+2} x_i \right) = \sum_{i=1}^{t+2} y_i$, then

$$
\sum_{i=1}^{t+2} x_i = F^{-1} \left(\sum_{i=1}^{t+2} y_i \right).
$$

We have that $x_1 = y_1 = G_1(y)$ using the first equation of System (5). By using the second equation of System (5), we have that

$$
\sum_{i=3}^{t+2} x_i = y_2 + F \left(\sum_{i=2}^{t+2} x_i \right) = y_2 + F \left(G_1(y) + F^{-1} \left(\sum_{i=1}^{t+2} y_i \right) \right) = H_3(y)
$$

for some function H_3. By using Equality (6), we have that

$$
x_2 = x_1 + \sum_{i=3}^{t+2} x_i + F^{-1} \left(\sum_{i=1}^{t+2} y_i \right) = G_1(y) + H_3(y) + F^{-1} \left(\sum_{i=1}^{t+2} y_i \right) = G_2(y).
$$

We continue by using the induction method. We claim that at step $2 \leq j \leq t+1$ we have that $x_j = G_j(y)$ for all $1 \leq i \leq j$ and $\sum_{i=j+1}^{t+2} x_i = H_{j+1}(y)$ for some function H_{j+1}. Observe that the case $j = 2$ is true since we have that $x_1 = G_1(y)$, $x_2 = G_2(y)$, and $\sum_{i=3}^{t+2} x_i = H_3(y)$. Now we prove it for $3 \leq j \leq t+1$, assuming it is true for $j-1$. By using the j-th equation of System (5), we have that

$$
x_j = y_j + \sum_{i \in I_{j-2}} F \left(\sum_{i \in I} x_i + \sum_{i=j}^{t+2} x_i \right) = y_j + \sum_{i \in I_{j-2}} F \left(\sum_{i \in I} G_i(y) + H_j(y) \right) = G_j(y).
$$

By using Equality (6), we have that

$$
\sum_{i=j+1}^{t+2} x_i = \sum_{i=1}^{j} x_i + F^{-1} \left(\sum_{i=1}^{t+2} y_i \right) = \sum_{i=1}^{j} G_i(y) + F^{-1} \left(\sum_{i=1}^{t+2} y_i \right) = H_{j+1}(y).
$$

Hence, we get $x_i = G_i(y)$ for all $i \leq t+1$ and $x_{t+2} = \sum_{i=t+2}^{t+2} x_i = H_{t+2}(y) = G_{t+2}(y)$. \square
We observe that we never used the last equation of System (5) in the proof of Theorem 3. The reason being that the last coordinate function can be deduced from the first \(t + 1 \) coordinates using the correctness property and the fact that \(\sum_{i=1}^{t+2} F_i(x) = F \left(\sum_{i=1}^{t+2} x_i \right) \).

Due to Theorem 3 we have that the function \(F \) is a permutation, and it is correct with respect to \(F \) due to Theorem 2. Hence, \(F \) is also uniform.

3.3 Adding Correction Terms without Losing any Property

The use of correction terms has been proposed first in [NRR06, NRS08] as a method to make a direct sharing [BNN+12] uniform. Correction terms are coordinate terms that are added in pairs to more than one share, such that the new function obtained still satisfies the non-completeness property. Our aim is to take the threshold implementation \(F \) as constructed in (2) and add some correction terms so that the new function obtained is still a threshold implementation. This procedure is important to study because it gives the possibility to construct new threshold implementations that may have better cryptographic properties than the one described in (2) e.g., higher algebraic degree.

In the following corollary we present functions \(C \), such that \(F + C \) is still a threshold implementation with \(t + 2 \) shares.

Proposition 1. Let \(F \) be a permutation over \(\mathbb{F}_2^n \) of algebraic degree at most \(t \geq 2 \) and \(F \) be the function defined in (2). Let \(C: (\mathbb{F}_2^n)^{t+2} \rightarrow (\mathbb{F}_2^n)^{t+2} \) be defined as

\[
C(x) = \begin{pmatrix}
C_1(x) &=& x_1 + P_1(x_1) \\
C_2(x) &=& \sum_{i=3}^{t+2} x_i + P_2 \left(\sum_{i=3}^{t+2} x_i \right) + C_2 \left(\sum_{i=2}^{t+2} x_i \right)
C_j(x) &=& x_j + P_j(x_j) + C_j(x_1, \ldots, x_{j-2}, \sum_{i=j}^{t+2} x_i) \\
C_{t+2}(x) &=& C_{t+2}(x_1, \ldots, x_t, x_{t+2})
\end{pmatrix}\]

where function \(P_j \) is a permutation over \(\mathbb{F}_2^n \) for all \(j = 1, \ldots, t + 1 \); \(C_j \) is a function from \((\mathbb{F}_2^n)^{t-1} \) to \(\mathbb{F}_2^n \) for \(j = 2, \ldots, t + 2 \), such that \(\sum_{i=1}^{t+2} C_i(x) = 0 \). Then \(F + C \) is a permutation over \((\mathbb{F}_2^n)^{t+2} \).

Proof. The proof is very similar to the one of Theorem 3, so we will not give too many details. First, we have that

\[
\sum_{i=1}^{t+2} F_i(x) = \sum_{i=1}^{t+2} F_i(x) + \sum_{i=1}^{t+2} C_i(x).
\]

We introduce variables \(y_i = F_i(x) + C_i(x) \) for \(i = 1, \ldots, t + 2 \).

Since \(F_1(x) + C_1(x) = P_1(x_1) \) and \(P_1 \) is a permutation, we can write \(x_1 \) and \(\sum_{i=2}^{t+2} x_i \) in terms of the \(y \)'s.

Since \(F_2(x) + C_2(x) = P_2 \left(\sum_{i=3}^{t+2} x_i \right) + C_2 \left(\sum_{i=2}^{t+2} x_i \right) + F \left(\sum_{i=2}^{t+2} x_i \right) \) and \(P_2 \) is a permutation, we can write \(\sum_{i=3}^{t+2} x_i \) in terms of the \(y \)'s and consequently \(x_2 \) in terms of the \(y \)'s.

We continue using a similar induction argument as in the proof of Theorem 3. We will prove that, for \(2 \leq j \leq t + 1 \), we can write \(x_1, \ldots, x_j \), and \(\sum_{i=j+1}^{t+2} x_i \) in terms of the \(y \)'s. For \(j = 2 \), it is true. Now, assuming it is true for \(j - 1 \), we prove it for \(j \geq 3 \). Since \(F_j(x) + C_j(x) = P_j(x_j) + C_j(x_1, \ldots, x_{j-2}, \sum_{i=j}^{t+2} x_i) \) and \(P_j \) is a permutation, we can write \(x_j \) in terms of the \(y \)'s and consequently \(\sum_{i=j+1}^{t+2} x_i \) in terms of the \(y \)'s.
4 Two Uniform Implementations of the AES S-box

We use the construction (2) from Section 3 to find the first threshold implementations of the AES S-box without the use of additional randomness or the changing of the guards construction by Daemen [Dae17]. We implement the sharings and provide an area cost in hardware.

The first implementation is a direct application of the construction (2) from Section 3 on the AES S-box. Since this S-box has an algebraic degree of seven, we use nine shares. The result is a sharing with a large area cost, but which requires only one cycle to compute.

The second implementation uses the decomposition given in the work by Wegener and Moradi [WM18]. There, the inversion over \mathbb{F}_{2^8} is represented as a composition of two cubic functions, namely x^{26} and x^{49}. Each of the two cubic functions is then shared using the construction (2) of Section 3. The result is a sharing with a much smaller area overhead compared to the first implementation, but it requires two cycles to compute.

We have estimated the hardware cost of these two uniform masked S-boxes. The area is measured in gate equivalences (GE), i.e., the S-box area normalised to the area of a 2-input NAND gate in a given standard cell library. In this work, we use the NANGATE 45nm Open Cell Library [NAN] where the synthesis results are obtained with the Synopsis Design Compiler v2021.06 using the KEEP_HIERARCHY option to prevent optimisation across modules in the synthesis step. The results of the synthesis and its comparison with sharings of the AES S-box in the literature, using the same standard cell library, are shown in Table 4.1. The latency of the masked S-boxes is given in the number of cycles, denoted cc, and we provide the total number of random bits which are needed in the computation of the masked AES S-box.

Table 4.1: Hardware cost of the masked AES S-box in the NANGATE 45nm library.

<table>
<thead>
<tr>
<th>Design</th>
<th>Area [kGE]</th>
<th>Latency [cc]</th>
<th>Randomness [bits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work [without decomposition]</td>
<td>128.27</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>This work [with decomposition]</td>
<td>21.86</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Wegener-Moradi [WM18]</td>
<td>4.20</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Sugawara [Sug19]</td>
<td>3.50</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Gross et al. [GIB18]</td>
<td>60.76</td>
<td>1</td>
<td>2 048</td>
</tr>
<tr>
<td>Gross et al. [GIB18]</td>
<td>6.74</td>
<td>2</td>
<td>416</td>
</tr>
</tbody>
</table>

1. Wegener and Moradi wrote that without serialisation their design costs will be “more than 20 kGE” which is comparable to our design’s cost.

The first implementation on the AES S-box provides a sharing costing 128.27 kGE. However, it is the first sharing of the AES S-box in one cycle, which requires no fresh randomness. The implementation of the decomposed shared AES S-box is a direct improvement over the S-box design by Wegener and Moradi who used the changing of the guards method by Daemen to ensure the uniformity of their five-share non-complete sharing of the cubic functions x^{26} and x^{49}. Instead, this work’s sharing method provides both non-completeness and uniformity. Note that the difference in implementation results of this work and Wegener and Moradi’s is in the architecture. Whereas their work made a highly serialised implementation, we went with a rolled-out design of each cubic function. The result is a low-latency sharing at the cost of an increased area. The sharing requires only two cycles and is randomness-free.

We note that by using the correction terms from Section 3.3, one could get improved area costs. However, we did not pursue this direction and leave this possible optimisation for future investigation.
5 Conclusions

In this paper, we have presented a universal construction for a threshold implementation with \(t + 2 \) shares, where \(t \) is the algebraic degree of the S-box. This is the first construction that applies to all bijective S-boxes of any size. This result is a significant advance with respect to the state of the art on the construction of threshold implementations, which were either computational searches for small sizes using direct sharing \([BNN^{+}12]\), or techniques to restore uniformity of a non-complete sharing. For instance, the use of correction terms \([NRR06]\), fresh randomness, or the changing of the guards \([Dae17]\). It was also noted that this construction yields a threshold implementation with \(t + 2 \) shares in the case of the 3-bit inversion. Such an implementation was proven to be optimal for this S-box by Bilgin et al. \([BNN^{+}15]\). This means that this construction is optimal for some S-boxes, even if it does not achieve the theoretical lower bound on the number of shares.

We observed that the construction is rather flexible, allowing to change the form of the constructed threshold implementation using correction terms and providing a description of the terms that can be used for this purpose.

We applied this construction to obtain the first uniform sharing of the AES S-box. We have analysed the cost of the implementation using this construction, both directly to the AES S-box and to a decomposition of the S-box using cubic power permutations. The results include the first design of a randomness-free AES S-box in one cycle and a direct improvement on the S-box design by Wegener and Moradi \([WM18]\). We noted that it might be possible to improve the presented implementation using correction terms. However, we leave this investigation as future work.

The result is also of importance for the research on permutation polynomials, as it provides a method for the construction of new infinite families of permutations.

This result is a very important advance in the understanding of the general theory of threshold implementation. Regarding other aspects of this topic, very little is known. In some cases, it is very hard to find even computational results. For instance, we know very few constructions of 2\(^{nd}\) order threshold implementations. Achieving the uniformity property for non-permutations is very challenging, since there is no characterisation that is computationally faster to verify than the definition. Moreover, we do not know the reasons why some permutations do not admit a threshold implementation with \(t + 2 \) shares. In fact, we have very little data to study the non-existence because it is only feasible to run the exhaustive search of correction terms \([BNN^{+}12]\) for 3-bit S-boxes. However, we could still observe that the only examples of permutations that admit a threshold implementation with \(t + 2 \) shares are ones with bad cryptographic properties.

We believe that the fact that the 3-bit inversion (which in this specific case is equivalent to the Gold function \(x^3 \)) does not admit such a threshold implementation is not a coincidence. There have been many examples in the vectorial Boolean function theory where properties of the Gold functions reflected general results \([Car20]\). The fact that the function \(x^3 \) over \(\mathbb{F}_{2^3} \), being the simplest non-linear power permutation and the simplest case of APN functions does not admit \(t + 2 \) shares, leads us to the conjectures presented below.

Conjecture 1. No power permutation of algebraic degree \(t \geq 2 \) admits a threshold implementation with \(t + 1 \) shares.

Conjecture 2. No APN permutation of algebraic degree \(t \) admits a threshold implementation with \(t + 1 \) shares.

These conjectures are supported by all computational data available nowadays \([BNN^{+}12, BBS17, MB19]\).

Acknowledgements We thank Ventzislav Nikov for useful discussions. The research of this paper is supported by the Norwegian Research Council.
References

An Optimal Universal Construction for the TI of Bijective S-boxes

A Characterisation of the uniformity property

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ and let \mathcal{F} be an s to s sharing that is correct with respect to F. In Section 2.2, we claimed that if F is a permutation, then \mathcal{F} is a permutation if and only if \mathcal{F} is uniform.

We are going to prove the following proposition. It is not exactly what we claim, but it is indeed stronger.

\mathcal{F} is a permutation if and only if \mathcal{F} is uniform and \mathcal{F} is a permutation.

Proof. Let \mathcal{F} be uniform and \mathcal{F} be a permutation. We claim that \mathcal{F} is surjective and since the domain of \mathcal{F} is equal to its codomain, this implies that \mathcal{F} is a permutation. Let $y \in \mathbb{F}_2^n$ and $y \in \text{Sh}_s(y)$. Since F is surjective, there exists an $x \in (\mathbb{F}_2^n)^s$ such that $F(x) = y$.

Because of correctness, there exists an $x \in \mathbb{F}_2^n$ such that $x \in \text{Sh}_s(x)$ and $F(x) = y$.

Let \mathcal{F} be a permutation. We claim that \mathcal{F} is surjective and since the domain of \mathcal{F} is equal to its codomain, this implies that \mathcal{F} is a permutation. Let $y \in (\mathbb{F}_2^n)^s$ and $y \in \mathbb{F}_2^n$ be such that $y \in \text{Sh}_s(y)$. Since \mathcal{F} is surjective, there exists an $x \in (\mathbb{F}_2^n)^s$ such that $\mathcal{F}(x) = y$.

Since \mathcal{F} is correct, then there exists $x \in \mathbb{F}_2^n$ such that $x \in \text{Sh}_s(x)$ and $F(x) = y$. So we conclude that \mathcal{F} is surjective. We claim that \mathcal{F} is uniform. Let $x \in \mathbb{F}_2^n$ and $y \in \text{Sh}_s(F(x))$. Since F is a permutation, exists a unique $x' \in \mathbb{F}_2^n$ such that $F(x') = F(x)$. Because of correctness, there exists an $x' \in \mathbb{F}_2^n$ such that $x' \in \text{Sh}_s(x')$ and $F(x') = F(x)$. Since F is a permutation, we have that $x' = x$. This implies that \mathcal{F} is uniform. \qed