
Formal Security Definition of Metadata-Private Messaging

Shengtong Zhang

Anysphere, Inc.

New York, USA

stzh1555@anysphere.co

Arvid Lunnemark

Anysphere, Inc.

New York, USA

arvid@anysphere.co

Sualeh Asif

Anysphere, Inc.

New York, USA

sualeh@anysphere.co

ABSTRACT
We present a novel, complete definition of metadata-private mes-

saging (MPM), and show that our definition is achievable and non-

trivially more general than previous attempts that we are aware of.

Our main contributions are:

(1) We describe a vulnerability in existing MPM implementa-

tions through a variation of the compromised-friend (CF)

attack proposed by Angel et al. [ALT18]. Our attack can

compromise the exact metadata of any conversations be-

tween honest users.

(2) We present a security definition for MPM systems assuming

that some friends may be compromised.

(3) We present a protocol satisfying our security definition

based on Anysphere, an MPM system we deployed in prac-

tice [LZA22b].

1 INTRODUCTION
This paper is motivated by our experience of developing a metadata-

private messaging (MPM) service called Anysphere. In our whitepa-

per [LZA22b, Section 3], we describe Anysphere’s threat model and

core protocol at a high level. The original intent of this document

was to rigorously show that Anysphere’s core protocol satisfies the

metadata privacy we promise. In the process, we discovered the

need for a new security definition, which may be of independent

interest.

Existing security proofs of MPM systems (such as [CF10; CBM15;

AS16; Ahm+21]) have shown the privacy of a private-information-

retrieval (PIR) system where users can deposit and retrieve infor-

mation without revealing metadata to the server. We found that we

wanted stronger guarantees for several reasons.

• The security of the PIR system does not guarantee the se-

curity of the messaging system as a whole. A well-known

example illustrating this is the compromised-friend (CF) at-

tack proposed by Angel, Lazar and Tzialla ([ALT18]). They

show that if an honest user befriends a malicious user, then

the metadata of conversations between two honest users

might be compromised even with a secure PIR system. To

our knowledge, no proofs exist that show immunity against

CF attacks
1
.

We found a more powerful CF attack, described in Section 4,

while writing this paper. This vulnerability affects existing

implementations of Pung and Addra, and can result in full

1
Pung’s security proof [Ang18] assumes honest users only ever talk to honest users.

compromise of metadata (timing, sender and receiver of

PIR queries). This attack demonstrates that CF attacks can

potentially cause more damage than previously expected

[ALT18]. In light of this attack, we wish to rigorously prove

that our MPM system can defend against CF attacks.

• Anysphere is based on Addra [Ahm+21]. Addra is originally

designed for users to hold exactly one conversation at a

time. In our application, clients may hold many different

conversations at the same time. We need to ensure that our

adaptation does not introduce new vulnerabilities.

• Addra and Pung [AS16] assume that clients run in synchro-

nous round, and each client sends exactly one message to

the server each round. As clients have different level of

resources, running synchronous rounds is not economical.

For example, corporate users might wish rounds run faster

to receive timely updates, while individual users might not

want to participate in each round to preserve bandwidth.

Anysphere uses asynchronous rounds where each client

can transmit on a different schedule. We need to justify the

security definition to incorporate this.

• The MPM systems mentioned above lack a mechanism to

detect and retransmit lost or shuffled packets. We introduce

an acknowledgement (ACK) mechanism in Anysphere to

fix this issue. The security of this mechanism cannot be

justified by previous security definitions. This is because

the previous security definitions assume that the clients do

not change their behavior based on the server’s response,

which is inherently not true for messaging systems.

This paper is organized as follows. In Section 3, we present a for-

mal security definition of what it means for a whole messaging

system to be correct and secure under our threat model outlined

in [LZA22b]. In Section 4, we describe the new CF attack, which

we name the PIR replay attack. In Section 5, we describe a slightly

modified Anysphere core protocol in pseudocode. In Section 6 we

prove that the protocol defined in Section 5 satisfies the security

definition in Section 3. A technical detail in the proof is delayed to

Section 7. In Appendix A, we describe and prove the security of

Anysphere’s real-world implementation. We focus on a technique

we use called prioritization, which trades a small metadata leakage

for efficiency.

2 CONVENTIONS
We use the following notational conventions.

• When we write 𝑓 (·), the dot might hide several variables.

https://orcid.org/
https://orcid.org/
https://orcid.org/


Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

• Given an oracle 𝑂 (𝑥, ·) and a series {𝑥𝑖 }, we define
𝑂 ({𝑥𝑖 }, ·) as the oracle whose input contains an extra ar-

gument 𝑗 and outputs 𝑂 ({𝑥𝑖 }, 𝑗, arg) = 𝑂 (𝑥 𝑗 , arg).

• Given a series {𝑎𝑖 }, and a set of indices 𝑆 , let 𝑎𝑆 denote

{𝑎𝑖 }𝑖∈𝑆 .

• Experiments are always parametrized by the security pa-

rameter _. When we say two experiments are indistinguish-

able, we mean the views of the adversary in the two ex-

periments are indistinguishable. The view of the adversary

consists of all inputs, outputs, and internal randomness of

the adversary.

• When machines “return” in a method, they do not execute

any subsequent commands and exit the method immedi-

ately.

3 A NEW SECURITY DEFINITION
In this section, we design a general security definition for MPMs.

Our definition sharesmany similarities with Canetti and Krawczyk’s

foundational CK models [CK01], which define the security of key

exchange protocols over untrusted channels. However, we find it dif-

ficult to directly adapt the CK models, especially the authenticated-

links (AM) model, to account for metadata privacy. Therefore, we

design our security definition from scratch.

We start from the following basic principles.

(1) The messaging system has a centralized server in charge of

storing and routing messages. We do not consider decen-

tralized messaging systems in this paper.

(2) The messaging system has a large number of users, inter-

acting with “client” software on their computers. The client

software should allow the user to register, add friends, and

send messages at any time. It should display received mes-

sages to the user.

(3) The messaging system should hide metadata of conversa-

tions between honest users from a powerful adversary that

controls the server, the network, and any subset of clients.

(4) The messaging system should be reasonably robust. As long

as the server functions normally, even if the adversary com-

promises some users, it should not disrupt conversations

between honest users.

We now translate these principles into mathematical definitions

that apply to a general messaging system.

Definition 3.1. A timestep is our system’s basic unit of time.

We assume that the system starts on timestep 𝑡 = 1. Methods are

executed on positive integer timesteps.

The timestep is different from “rounds” used in most MPM security

definitions, since clients do not necessarily transmit real or fake

messages at every timestep. Instead, a timestep plays a similar role

as a clock cycle in computer hardware — think of it as being 1

nanosecond.

Definition 3.2. The view of a client is a tuple (F ,M) consisting
of

1. A list of friends F .

2. A list of messagesM received by the client, including the sender

and content of the messages.

Remark: For simplicity, the view does not include messages sent

by the client. The UI of the client can simply store such messages

locally and display them to the user.

Definition 3.3. A user input I is a command the user can issue

to the client. In our current protocol, it can take one of the following

values.

• ∅: noop.

• TrustEst(reg): Add the user identified by reg as a friend,

and enable the two parties to start a conversation.

• Send(reg,msg): Send the message msg to the client iden-

tified by reg. We assume that msg always has a constant

length 𝐿msg.
2

Without loss of generality, we assume each user issues exactly one

input per timestep.

Remark: In our implementation, we take 𝐿msg ≈ 1KB. To support

variable length messages, we pad short messages and split long

messages into chunks of length 𝐿msg. This modification does not

affect our security definition below.

Definition 3.4. The registration information, denoted reg in
this paper, is the unique identifier of a user.

Remark: Throughout the rest of the paper, we always use the

registration info as the “address” in the messaging system. For

example, we use registration info as the argument in the make-

friend and send-message methods. Registration info is ubiquitous

in practical messaging systems: in Messenger, it is the Facebook

handle; in Signal, it is the phone number. In Anysphere, it is the

“public ID” as defined in [LZA22b, Figure 6].

Definition 3.5. Amessaging system consists of the following

polynomial-time algorithms.

Client-side algorithms for the stateful client 𝐶:

• 𝐶.Register(1_, 𝑖, 𝑁 ) → reg. This algorithm is called once

for each client upon registration. It takes in a security pa-

rameter _, the index 𝑖 of the client, the total number of

users 𝑁 , and outputs a public registration info reg. It also
initializes client storage and states.

• 𝐶.Input(𝑡,I) → req. This algorithm handles a user input

I. It updates the client storage to reflect the new input, and

then issues a (possibly empty) request req to the server.

2
For simplicity, andwithout loss of generality, we assume this holds even for adversarial

inputs.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

• 𝐶.ServerRPC(𝑡, resp). This algorithm handles the server’s

response resp and updates client storage.

• 𝐶.GetView() → 𝑉 . This algorithm outputs the client’s view

(Definition 3.2). Its output is passed to the UI and displayed

to the user.

Server-side algorithms for the stateful server 𝑆 :

• 𝑆.InitServer(1_, 𝑁 ). This algorithm takes in the security

parameter _, the number of clients 𝑁 , and initializes the

server-side database 𝐷𝑆 .

• 𝑆.ClientRPC(𝑡, {req𝑖 }𝑁𝑖=1) → {resp𝑖 }𝑁𝑖=1. This algorithm

responds to all client requests req𝑖 the server received on

a given timestep 𝑡 . It outputs the responses resp𝑖 that get
sent back to the clients.

We have now mathematically described a general MPM system. In

the rest of this section, we describe three desired properties of MPM

systems: correctness, metadata privacy, and integrity.

3.1 Correctness
First, we describe how the server and clients interact when the

server behaves honestly. We call this scenario the honest server
experiment. To enforce robustness, we let an adversary control a

subset of users and passively monitor all conversations.

Definition 3.6.
The honest server experiment takes the following parameters.

(1) _, the security parameter.

(2) 𝑁 = 𝑁 (_), the number of clients, a polynomially-bounded

function of _.

(3) 𝑇 = 𝑇 (_), the number of timesteps, a polynomially-bounded

function of _.

(4) For each client 𝑖 ∈ [𝑁 ] and timestep 𝑡 ∈ [𝑇 ], a user input
I𝑖,𝑡 .

(5) A set of honest clientsH ⊂ [𝑁 ].

(6) A stateful probabilistic polynomial-time (p.p.t.) adversary

A.

Let 𝑆 denote the server machine, and let {𝐶𝑖 }𝑖∈H denote the honest

client machines. The experiment is described in Figure 1.

In this case, we expect the client’s view to be "correct". We first

need to define what "correct" means here. Informally speaking, the

correct view should satisfy

(1) The list of friends contains the friends we called TrustEst
on.

(2) Messages from friends should be present.

(3) No other messages should be present.

We state the formal definition.

Honest Server Experiment
(1) 𝑆.InitServer(1_, 𝑁 ).
(2) For each 𝑖 ∈ H , reg𝑖 ← 𝐶𝑖 .Register(1_, 𝑖, 𝑁 ).
(3) For 𝑡 from 1 to 𝑇 :

(a) For each 𝑖 ∈ H , req𝑖 ← 𝐶𝑖 .Input(𝑡,I𝑖,𝑡 ).
(b) {req𝑖 }𝑖∈[𝑁 ]−H ← A({req𝑖 }𝑖∈H).
(c) {resp𝑖 }𝑁𝑖=1 ← 𝑆.ClientRPC(𝑡, {req𝑖 }𝑁𝑖=1).
(d) For each 𝑖 ∈ H , 𝐶𝑖 .ServerRPC(𝑡, resp𝑖 ).
(e) A stores {resp𝑖 }𝑖∈[𝑁 ] .

Figure 1: The honest server experiment for a messaging sys-
tem.

Definition 3.7. Given a set of honest clients identified by regH ,
and user inputs {I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] , a view (F𝑗 ,M 𝑗 ) of client 𝑗 is cor-
rect if it satisfies

F𝑗 ∩ regH = {reg𝑘 : 𝑘 ∈ H , ∃𝑡 ∈ [𝑇 ], TrustEst(reg𝑘 ) = I𝑗,𝑡 },

and, for each honest user 𝑘 ∈ H

{msg : (reg𝑘 ,msg) ⊂ M 𝑗 }
={msg : ∃𝑡 ∈ [𝑇 ], Send(reg𝑗 ,msg) = I𝑘,𝑡∧

∃𝑡 ′ < 𝑡, TrustEst(reg𝑗 ) = I𝑘,𝑡 ′∧
∃𝑡 ′′ ∈ [𝑇 ], TrustEst(reg𝑘 ) = I𝑗,𝑡 ′′ }.

Remark: We comment on some subtleties implied by this defini-

tion.

(1) The definition allows F to contain registration info not

corresponding to any client. We can rule out these "ghost"

friends by sending each friend a "hellomessage" andwaiting

for an ACK before including the friend in a view.

(2) If user 𝑘 tries to send user 𝑗 a message before user 𝑗 adds

user 𝑘 as a friend, user 𝑗 should be able to receive the

message.

Since the UI can query the client at any time, we expect the client’s

view to be “correct" all the time. There is a caveat: due to the lack

of synchronous rounds, the clients do not immediately read all mes-

sages sent by their friends. Thus, the strongest correctness notion

of sequential consistency might not be satisfied. Instead, we settle

for a pair of weaker consistency models defined in [Ter13].

Definition 3.8. We say a messaging system is correct if for any
choice of parameters of the honest server experiment, any 𝑗 ∈ H ,

and any positive integer 𝑇0 ≤ 𝑇 , the messaging system satisfies the

following two properties with probability 1 − negl(_).

(1) Consistent prefix: Let𝑉𝑗 ← 𝐶 𝑗 .GetView() be the view of

client 𝑗 after timestep 𝑇0 of the honest server experiment.

Consistent prefix means that 𝑉𝑗 is identical to the correct

view of the client 𝑗 where some prefix of user inputs have

been executed on each client machine. More formally, for

any 𝑗 ∈ H , there exists a map 𝑡 : H → [𝑇0] such that 𝑉𝑗



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

is a correct view of client 𝑗 with honest users regH and

inputs {I′
𝑖,𝑡
}𝑖∈H,𝑡 ∈[𝑇 ] , where we define

I′𝑖,𝑡 =
{
I𝑖,𝑡 , 𝑡 ≤ 𝑡 (𝑖)
∅, 𝑡 > 𝑡 (𝑖)

.

(2) Eventual consistency: For any 𝑇1, there is a polynomial

function 𝑇𝑐𝑜𝑛𝑠 = 𝑇𝑐𝑜𝑛𝑠 (𝑁,𝑇1) such that if 𝑇0 ≥ 𝑇𝑐𝑜𝑛𝑠 , such
that we can take 𝑡 (𝑖) ≥ 𝑇1 for every 𝑖 ∈ H .

3.2 Metadata Security
Next, we define security against an active adversary. We first recap

our threat model, defined in [LZA22b, Section 2.2]. We allow the

adversary to do the following.

(1) The adversary can control all servers and the entire internet.

In the definition below, the adversary reads all requests from

honest clients, computes any polynomial time function over

them, and returns any response to each client. Therefore,

the adversary can perform all transport- and application-

layer attacks considered by the security community that

we know of, such as eavesdropping, traffic analysis, and

active attacks like cut-and-paste, deep packet inspection,

and replay attacks [WS96].

(2) The adversary can control any subset of the users. In the

definition below, the adversary can compromise the friends

of honest clients and schedule conversations with honest

clients. This allows the adversary to launch the CF attacks

defined in [ALT18] and Section 4.

We do not allow the adversary to do the following.

(1) The adversary cannot access or launch side-channel at-

tacks on client machines such as timing attacks and Spectre

[Koc+19]. We assume timing data and the intermediate

state of client execution are invisible to the adversary.

(2) The adversary cannot break standard cryptography. In Sec-

tion 5, we describe standard security requirements on the

cryptography primitives we use.

We write our security definitions following the real-world-ideal-

world paradigm used in [SW21, Section 2.2]. On a high level, the

real-world experiment is the honest world experiment with an ad-

versarial server running arbitrary code. The ideal world experiment

is the real-world experiment with crucial information “redacted”.

We say the messaging system is secure if the adversary’s views

under the two experiments are indistinguishable.

We first define the real-world experiment.

Definition 3.9. The real-world experiment uses the parameters

_, 𝑁 ,𝑇 ,H from Definition 3.6. Let A be a stateful p.p.t. adversary.

The experiment RealAmsg is described in Figure 2.

We next define the ideal-world experiment. As in [SW21], we first

define the leakage, which describes the information the adversary is

Real-World Experiment RealAmsg

(1) H ← A(1_, 𝑁 ,𝑇 ).
(2) For each 𝑖 ∈ H , reg𝑖 ← 𝐶𝑖 .Register(1_, 𝑖, 𝑁 ).
(3) {I𝑖,1} ← A(1_, regH).
(4) For 𝑡 from 1 to 𝑇 :

(a) For each 𝑖 ∈ 𝐻 , req𝑖 ← 𝐶𝑖 .Input(𝑡,I𝑖,𝑡 ).
(b) {resp𝑖 }𝑖∈H, {I𝑖,𝑡+1}𝑖∈H ← A(1_, {req𝑖 }𝑖∈H).
(c) For each 𝑖 ∈ H , 𝐶𝑖 .ServerRPC(𝑡, resp𝑖 ).

Figure 2: Real-world experiment for a messaging system.

allowed to know. Informally, the adversary knows the time and con-

tents of trust establishment with compromised clients and messages

sent to compromised clients. The formal definition is below.

Definition 3.10. Let regH be the registration info of honest clients.

Let {I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] be the input from honest clients. We define the

leakage Leak({I𝑖,𝑡 }, regH) as
Leak({I𝑖,𝑡 }, regH) = (Leak𝑓 , Leak𝑚)

where

Leak𝑓 = {(𝑖, reg, 𝑡) : TrustEst(reg) = I𝑖,𝑡 , reg ∉ regH}.

Leak𝑚 = {(𝑖, reg,msg, 𝑡) : Send(reg,msg) = I𝑖,𝑡 , reg ∉ regH}.

Definition 3.11. We use the same parameters and notations as

Definition 3.9. Furthermore, let Sim be a stateful simulator. The

ideal-world experiment IdealA,Simmsg is described in Figure 3.

Ideal-World Experiment IdealA,Simmsg

(1) H ← A(1_, 𝑁 ,𝑇 ).
(2) regH ← Sim(1_, 𝑁 ,𝑇 ).
(3) {I𝑖,1}𝑖∈H ← A(1_, regH).
(4) For 𝑡 from 1 to 𝑇 :

(a) {req𝑖 }𝑖∈H ← Sim(𝑡, Leak({I𝑖,𝑡 }, regH)).
(b) {resp𝑖 }𝑖∈H, {I𝑖,𝑡+1}𝑖∈H ← A(1_, {req𝑖 }𝑖∈H).
(c) Sim(𝑡, {resp𝑖 }𝑖∈H).

Figure 3: Ideal-world experiment for a messaging system.

Finally, we define metadata security.

Definition 3.12. We say that amessaging system is SIM-metadata
secure if there exists a p.p.t. simulator Sim such that for any p.p.t.

adversary A, the view of A in RealAmsg is indistinguishable from

the view of A in IdealA,Simmsg .

Next, we describe an equivalent security definition for readers

who are more accustomed to indistinguishability-based security

definitions.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

Definition 3.13. We use the same notations as in Definition 3.11.

For each 𝑏 ∈ {0, 1}, the IND experiment IndA
𝑏

is described in Fig-

ure 4.

IND Experiment IndA
𝑏

(1) For each 𝑖 ∈ H , reg𝑖 ← 𝐶𝑖 .Register(1_, 𝑖, 𝑁 ).
(2) {I0

𝑖,1
}, {I1

𝑖,1
} ← A(1_, regH).

(3) For 𝑡 from 1 to 𝑇 :

(a) For each 𝑖 ∈ H , req𝑖 ← 𝐶𝑖 .Input(𝑡,I𝑏𝑖,𝑡 ).
(b) for 𝑏′ ∈ {0, 1}, {resp𝑏′

𝑖
}𝑖∈H, {I𝑏

′
𝑖,𝑡+1}𝑖∈H ←

A(1_, {req𝑖 }𝑖∈H).
(c) For each 𝑖 ∈ H , 𝐶𝑖 .ServerRPC(𝑡, resp𝑏𝑖 ).

Figure 4: Indistinguishability-based experiment for a mes-
saging system.

We say that the adversary A is admissible if with probability 1

we have

Leak({I0𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] , regH)
=Leak({I1𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] , regH) .

Definition 3.14. We say that amessaging system is IND-metadata
secure if for any 𝑁 and 𝑇 polynomially bounded in _, and any ad-

missible adversary A, the view of A in IndA
0

is indistinguishable

from the view of A in IndA
1
.

The argument in [SW21, Appendix A] shows that IND-metadata

security is equivalent to SIM-metadata security.

3.3 Integrity
Finally, we define the notion of integrity. Informally, while a mali-

cious server can deny service to users, it should not be able to forge

messages or selectively omit messages between honest users. In

other words, the client must guarantee consistent prefixes in our

threat model.

Definition 3.15. Consider the real-world experiment in Figure 2.

Define𝑉𝑗 = (F ,M) ← 𝐶 𝑗 .GetView() at the end of the experiment.

Then we say that the messaging system guarantees integrity if

for any pair of honest users 𝑖, 𝑗 ∈ H , there exists a 𝑡 (𝑖) ∈ [𝑇 ] such
that with probability 1 − negl(_),

{msg : (reg𝑖 ,msg) ⊂ M}
={msg : ∃𝑡 ≤ 𝑡 (𝑖), Send(reg𝑗 ,msg) = I𝑖,𝑡∧

∃𝑡 ′ < 𝑡, TrustEst(reg𝑗 ) = I𝑖,𝑡 ′∧
∃𝑡 ′′, TrustEst(reg𝑖 ) = I𝑗,𝑡 ′′ }.

3.4 A Weaker Security Definition
Unfortunately, Anysphere does not satisfy Definition 3.12, which is

very strong. In fact, Angel et al. [ALT18] argues that this security

notion is very hard to satisfy in general. For the threat model in

our whitepaper [LZA22b], we argued security based on the strong

assumption that no friends are compromised. In reality, this as-

sumption cannot be guaranteed. In this section, we define a weaker

security notion that allows the adversary to compromise friends

while still satisfying theoretical security.

Definition 3.16. We say that a set of inputs {I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] satis-
fies 𝐵-bounded friends if for any 𝑖 ∈ H , the set

{reg : ∃𝑡, TrustEst(reg) = I𝑖,𝑡 }
has cardinality at most 𝐵.

We say that a messaging system is correct with 𝐵-bounded friends

if it satisfies a modified Definition 3.8, where the only change is

that the honest server experiment (Figure 1) is parametrized by a

{I𝑖,𝑡 } that satisfies 𝐵-bounded friends.

We say that a messaging system is SIM-secure with 𝐵-bounded

friends if it satisfies a modified Definition 3.12, where the only

change is thatA is restricted to only p.p.t. adversaries that produce

an input set {I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] that satisfies 𝐵-bounded friends.

Remark: As Angel et al. points out in [ALT18], the 𝐵-bounded

friends hypothesis is a strategy to achieve perfect prevention against

CF attacks. However, Angel et al. shows that any protocol that per-

fectly defends against CF attacks would be very inefficient in prac-

tice. We can modify the protocol to remove the 𝐵-bounded friends

hypothesis and greatly increase efficiency if we are willing to leak

a small amount of additional information. Our implementation of

Anysphere described in Appendix A uses this modification.

4 THE PIR REPLAY ATTACK
In this section, we present the PIR replay attack mentioned in the

introduction. While the CF attacks in [ALT18] can only directly

reveal the number of friends each honest user has, the PIR replay

attack can potentially directly reveal sender-recipient relationships,

if the recipient has a compromised friend. The vulnerability affects

existing implementations of both Pung and Addra.

Most PIR schemes (such as SealPIR [Ang+18], MulPIR [Ali+21],

FastPIR [Ahm+21], and Spiral [MW22]) use an underlying homo-

morphic public key cryptosystem, typically some variation of the

BFV cryptosystem [FV12]. Generating the necessary keypairs in

these cryptosystems is expensive. To improve performance, real-

world implementations of FastPIR
3
and Spiral

4
reuse PIR keys. Each

client generates a secret skpir once and use them to encrypt all PIR

queries ct = Query(1_, skpir, 𝑖). This optimization was regarded

safe since it preserves the UO-ER security definition in [AS16, Ex-

tended Version]. We show how to combine this optimization with

a compromised friend to leak metadata.

Suppose the adversary suspects that honest users 𝐴 and 𝐵 are

communicating, and honest user 𝐴 has a compromised friend 𝐶 .

On timestep 𝑇0, user 𝐴 sends a PIR request ct to the server. The

adversary wishes to know if ct is a query to honest user 𝐵’s mailbox

at index 𝑖𝐵 . Assume that

3
As of 08/31/2022, the following code reuses PIR keys: https://github.com/ishtiyaque/

FastPIR/tree/d50b1ba4ad4de64181bce71bccd352798dfa2bb3

4
As of 08/31/2022, the following code reuses PIR keys: https://github.com/menonsamir/

spiral-rs/tree/0f9bdc157086ea9534f70bb7d9e7f19920663e84

https://github.com/ishtiyaque/FastPIR/tree/d50b1ba4ad4de64181bce71bccd352798dfa2bb3
https://github.com/ishtiyaque/FastPIR/tree/d50b1ba4ad4de64181bce71bccd352798dfa2bb3
https://github.com/menonsamir/spiral-rs/tree/0f9bdc157086ea9534f70bb7d9e7f19920663e84
https://github.com/menonsamir/spiral-rs/tree/0f9bdc157086ea9534f70bb7d9e7f19920663e84


Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

• user𝐴 will have a conversation with user𝐶 at a future time

𝑇1 > 𝑇0,

• user 𝐴 does not switch their PIR key pair between time 𝑇0
and 𝑇1, and

• user 𝐴 will provide “feedback” 𝑓 (𝑚) to user𝐶’s message𝑚.

This could be any nonempty response to𝐶’s message, such

as the ACK message in our system (see Section 5.2), or in

systems without acknowledgements, a “I’m good! How are

you?” in response to a “Hi! How are you?”.

At time 𝑇0, the malicious server stores ct, and continues to serve 𝐴

honestly until time 𝑇1. During 𝐴 and 𝐶’s conversation, the server

responds to𝐴’s PIR requests with resp = Answer𝐷𝐵
′ (1_, ct), where

𝐷𝐵′ [𝑖𝐵] is a valid message𝑚 from 𝐶 to 𝐴, and 𝐷𝐵′ [𝑖] = 0 for any

𝑖 ≠ 𝑖𝐵 . If ct is a query to 𝑖𝐵 , 𝐴 will receive the message from 𝐶 and

send feedback 𝑓 (𝑚) to 𝐶 . Otherwise, 𝐴 will not receive a message

from 𝐶 and not send feedback to 𝐶 . Therefore, 𝐶 can observe 𝐴’s

feedback and learn if ct is a query to 𝑖𝐵 or not.

This attack can be prevented by changing the PIR key pair each

round, which increases both client-side computation and the band-

width required, because the server can no longer cache the big

Galois key used in many PIR protocols. The PIR replay attack shows

that compromised friends can do more damage to MPM systems

than previously known.

Remark: In [Hen+22], Henzinger et al. discovered another attack

exploiting key pair reuse. The two attacks are fundamentally dif-

ferent. The attack proposed in [Hen+22] is on the primitive level,

specific to the BFV cryptosystem, and assumes the attacker has full

access to the clients’ PIR decryption oracles. In contrast, our attack

is on the protocol level, applies to any public key homomorphic

encryption system, and makes no assumption on the particular

feedback the attacker gets.

5 A SECURE MPM PROTOCOL
In this section, we formally define the core protocol of a messag-

ing system satisfying Definition 3.12 under the 𝐵-bounded friend

hypothesis. Our protocol closely resembles the Anysphere core pro-

tocol described in our whitepaper [LZA22b], modified to achieve

full prevention against CF attacks.

5.1 Cryptographic Primitives
Anysphere relies on two cryptographic primitives: an authenti-

cated encryption (AE) system, and a PIR scheme. We outline formal

simulator-based security definitions of the two.

5.1.1 Authenticated Encryption Scheme. Our authenticated encryp-
tion (AE) scheme Πae consists of three randomized efficient algo-

rithms

(Gen, Enc,Dec)
with specifications

• Gen(1_) → sk,

• Enc(sk,𝑚) → ct,

• Dec(sk, ct) →𝑚.

We require the scheme to be correct and EUF-CMA unforgeable. We

also require a variation of IK-CCA key privacy defined in [Bel+01].

Below are the precise security requirements.

Definition 5.1. Let sk← Gen(1_). We say that our AE scheme is

correct if for any plaintext𝑚 of length 𝐿ae, we have

Dec(sk, Enc(sk,𝑚)) =𝑚

with probability 1.

Definition 5.2. Given a secret key sk, and a polynomial-time

computable function 𝑓 : Σ∗ × Σ∗ → Σ𝐿ae , the Eval oracle

Eval𝑓 (sk, sk′, argct, arg𝑝 ) → ct′

takes as input a set of ciphertexts argct = {ct𝑖 }, and a plaintext

argument arg𝑝 . It sets

𝑚𝑖 ← Dec(sk′, ct𝑖 )

and outputs ct′ = Enc(sk, 𝑓 ({𝑚𝑖 }, arg𝑝 )).

Definition 5.3. Let 𝑁 and 𝑅 be polynomial in _. Consider the two

experiments defined in Figure 5.

Real-World Experiment RealAEval
(1) For 𝑖 from 1 to 𝑁 , sk𝑖 ← Gen(1_).
(2) For 𝑟 from 1 to 𝑅

(a) 𝑖, 𝑗, argct, arg𝑝 ← A(1_).
(b) ct0𝑟 ← Eval𝑓 (sk𝑖 , sk𝑗 , argct, arg𝑝 ).
(c) A stores ct0𝑟 .

Ideal-World Experiment IdealA,SimEval
(1) For 𝑖 from 1 to 𝑁 , sk𝑖 ← Gen(1_).
(2) For 𝑟 from 1 to 𝑅

(a) 𝑖, 𝑗, argct, arg𝑝 ← A(1_).
(b) ct1𝑟 ← Sim(1_).
(c) A stores ct1𝑟 .

Figure 5: Real- and ideal-world experiments for authenti-
cated encryption (AE).

Then we say the AE scheme is eval-secure if there exists a p.p.t.
simulator Sim such that for any polynomial-time computable func-

tion 𝑓 : Σ∗ × Σ∗ → Σ𝐿ae and any p.p.t. adversary with oracle

A𝑂 , the real-world experiment and the ideal-world experiment are

computationally indistinguishable.

We will later show that eval-security is implied by an analogy of

IK-CCA [Bel+01, Definition 1] for symmetric-key cryptography.

Since the proof is quite lengthy, we delay it to Section 7.

Definition 5.4. Consider the forging experiment described in

Figure 6.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

Forging Experiment
(1) sk← Gen(1_) .
(2) ct← AEnc(sk,· ),Dec(sk,· ) (1_).

Figure 6: Forging experiment for authenticated encryption
(AE).

For each 𝑖 ∈ [𝑁 ], let ctQuery be the set of outputs of the Enc oracle.
We say the AE scheme is EUF-CMA if for any p.p.t adversary with

oracle A𝑂 , we have
P(Dec(sk, ct) ≠ ⊥ ∧ ct ∉ ctQuery) = negl(_) .

5.1.2 Symmetric Key Distribution. In our system, each pair of users

shares two secret keys, one for encrypting each direction of traffic.

For two users identified by registration info reg
0
and reg

1
, user

reg
0
decrypts messages from reg

1
using their read key sk𝑟 , and

encrypts messages to reg
1
using their write key sk𝑤 . Thus, reg0’s

read key is reg
1
’s write key, and vice versa.

Previous MPM systems like Pung and Addra assume each pair of

users has a shared secret distributed in advance. In this paper, we

assume these keys are independently generated by a trusted third

party. For users identified by registration info reg
0
and reg

1
, the

trusted third party delivers their shared secret keys (sk𝑟 , sk𝑤) to
user reg𝑖 when GenSec(reg𝑖 , reg1−𝑖 ) is called. The adversary does

not have access to the shared secret between trusted users.

In [LZA22b, Section 4], we describe separate trust establishment

protocols to replace the trusted third party without compromising

metadata security.

5.1.3 PIR Scheme. Like previous MPM systems, Anysphere relies

on a private information retrieval (PIR) scheme Πpir. A PIR scheme

supports three efficient algorithms

• Query(1_, 𝑖) → (ct, sk).

• AnswerDB (1_, ct) → 𝑎.

• Dec(1_, sk, 𝑎) → 𝑥𝑖 .

where DB is a database with 𝑁 entries of length 𝐿pir, and 𝑁 is

a parameter bounded by some polynomial 𝑁 (_). It should sat-

isfy the following standard correctness and security definitions

[KO97].

Definition 5.5. We say that the PIR scheme is correct if for any
database DB with 𝑁 entries of length 𝐿pir, the experiment

(1) (ct, sk) ←Query(1_, 𝑖).

(2) 𝑎 ← AnswerDB (1_, ct).

(3) 𝑥𝑖 ← Dec(1_, sk, 𝑎).

satisfies 𝑥𝑖 = 𝐷𝐵 [𝑖] with probability 1.

Definition 5.6. Let 𝑅 be polynomially bounded in _. Consider the

experiments in Figure 7. We say the PIR scheme is SIM-secure if

there exists a p.p.t simulator Sim such that for any stateful p.p.t.

adversary A, the view of A under the real-world experiment and

the ideal-world experiment are computationally indistinguishable.

Real-World Experiment RealApir
(1) for 𝑟 from 1 to 𝑅

(a) 𝑖𝑟 ← A(1_).
(b) ct0𝑟 , sk←Query(1_, 𝑖𝑟 ).
(c) A stores ct0𝑟 .

Ideal-World Experiment IdealApir
(1) for 𝑟 from 1 to 𝑅

(a) 𝑖𝑟 ← A(1_).
(b) ct1𝑟 , sk← Sim(1_).
(c) A stores ct1𝑟 .

Figure 7: Real- and ideal-world experiments for private in-
formation retrieval (PIR).

For our implementation, we use Libsodium’s key exchange function-

ality to implement theGenSec() functions as described in [LZA22b,

Section 4], and Libsodium’s secret key AEAD for the Enc and Dec
functions [Den13]. We use Addra’s FastPIR as the PIR protocol. The

definition, correctness, and security proof of FastPIR can be found

in [Ahm+21, Section 4] and in [Ang18] with more detail.

Throughout the rest of the document, we denote the AE scheme

Πae and the PIR scheme Πpir.

5.2 Messages, Sequence numbers, ACKs
This section describes how Anysphere adopts TCP’s acknowledge-

ment system to satisfy integrity (Definition 3.15).

Each client 𝑖 labels all outgoing messages to another client 𝑗 with a

positive integer called the sequence number. The client transmits

the labeled message
5 msg𝑙𝑏 = (𝑘,msg), where 𝑘 is the sequence

number and msg is the actual message.

Critical to both consistent prefix and eventual consistency are the

ACK messages. An ACK message denoted ACK(𝑘) encodes a single
integer𝑘 .6 It means “I have read all messages up to sequence number

𝑘 from you”. As we will soon define rigorously, user 𝑖 broadcasts

the message with sequence number 𝑘 until user 𝑗 sends ACK(𝑘),
in which case they begin broadcasting the message with sequence

number 𝑘 + 1. We ensure ACK messages are distinct from labeled

messages generated from user input.
7

Finally, we deal with the subtlety of the length of messages. Let

𝐿msglb denote the length of a labeled message msg𝑙𝑏 , and let 𝐿ct

be the length of a ciphertext generated by encoding msg𝑙𝑏 with

Πae .Enc. While the input messages have length 𝐿msg, the messages

5
Called chunk in the implementation.

6
In our implementation, the ACK message is slightly more complicated to take chunk-

ing into account.

7
In our implementation, we encode ACKs and labeled messages with different protobuf

structs.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

the client sent to the server have length 𝐿ct. We set parameter 𝐿ae =

𝐿msglb in the AE scheme, and 𝐿pir = 𝐿ct in the PIR scheme.

Remark: To support 𝑇 (_) rounds of messages between each pair

of users, we need to reserve log𝑇 (_) bits for the label. Therefore,
𝐿ae and 𝐿pir depend linearly on log _.

5.3 The Core Protocol
Recall some notations.

• _ is the security parameter.

• 𝑁 = 𝑁 (_) is the number of users.

• 𝑇 = 𝑇 (_) is the number of timesteps our protocol is run.

• 𝐿msg is the length of the raw message.

• Πae is an AE scheme satisfying Definition 5.1, Definition 5.3

and Definition 5.4.

• Πpir is a PIR scheme satisfying Definition 5.5 and Defini-

tion 5.6.

We now define the core protocol. We assume the 𝐵-bounded friends

scenario in Definition 3.16.

Definition 5.7. The 𝐵-bounded Anysphere messaging system
Π
asphr

implements the method signatures in Definition 3.5 with

the pseudocode below. In each method, the caller stores all inputs

for future use.

Π
asphr

.C.Register(1_, 𝑖, 𝑁 )

(1) Initialize empty map frdb (database of friends). The map

takes registration info reg as keys and the following fields

as values.
8

• sk, the secret keys shared with the friend identified by

reg.

• seqstart, the sequence number of the current message

being broadcasted to the friend identified by reg.

• seqend, the largest sequence number ever assigned to

messages to the friend identified by reg.

• seqrecv, the largest sequence number such that the

client has received all messages with sequence number

in 1, · · · , seqrecv from the friend.

(2) Initialize emptymaps in and out. Themaps take registration

info reg as keys and arrays of messages as values.
9

(3) Set a transmission schedule 𝑇trans (the time between mes-

sages sent over the network to the server). The user can cus-

tomize this parameter. We assume 𝑇trans is upper bounded

by a constant 𝑇𝑈trans.

(4) Initialize a “dummy” key skdummy ← Πae .Gen(1_).
8
These fields are currently implicit. They are made explicit here for simplicity

9
They are named Friend, Inbox, Outbox in our code. Our code is slightly more compli-

cated to support features like sending to multiple friends and chunking.

(5) Return reg = (𝑖).

Π
asphr

.S.InitServer(1_, 𝑁 ).

Initialize arrays msgdb, ackdb of length 𝑁 with entries of length

𝐿ct. Fill them with random strings.

Π
asphr

.C.Input(𝑡,I)

This method runs in two phases. Phase 1 handles the user input I,
and phase 2 formulates the request to the server.

Phase 1.

If I = ∅, do nothing.

If I = Send(reg,msg),

(1) Check that reg is in frdb. If not, skip to Phase 2.

(2) If reg is the registration of 𝐶𝑖 itself, append msg to in[reg],
and skip to Phase 2.

10

(3) Add 1 to frdb[reg] .seqend.

(4) Push msg𝑙𝑏 = (frdb[reg] .seqend,msg) to out[reg].

If I = TrustEst(reg).

(1) Check if reg is in frdb. If so, skip to Phase 2.

(2) sk𝑟 , sk𝑤 ← GenSec(reg𝑚, reg). Here reg𝑚 is the client’s

own registration information.

(3) frdb[reg] ← {sk : (sk𝑟 , sk𝑤), seqstart : 1, seqend : 0,

seqrecv : 0}.

Phase 2.

(1) If 𝑡 is not divisible by 𝑇trans, return ∅.

(2) Let {reg
1
, · · · , reg𝑘 } be the keys of frdb, where 𝑘 ≤ 𝐵 since

we assume 𝐵-bounded friends. Construct

𝑆 = [reg
1
, · · · , reg𝑘 , reg, · · · , reg],

where we add 𝐵−𝑘 copies of reg = (−1), a dummy registra-

tion info. Sample reg𝑠 , reg𝑟 uniformly and independently

at random from 𝑆 .11

(3) Let msg𝑙𝑏 be the labeled message with sequence number

frdb[reg𝑠 ] .seqstart in out[reg𝑠 ]. If out[reg𝑠 ] is empty, let

msg← (−1, 0𝐿msg ).

(4) sk𝑤 ← frdb[reg𝑠 ] .sk[1]. If reg𝑠 = reg
0
or does not exist in

frdb, set sk𝑤 ← skdummy .

(5) seqrecv ← frdb[reg𝑠 ] .seqrecv. If reg𝑠 = reg
0
or does not

exist in frdb, set seqrecv← −1.

(6) Encrypt Messages with sk𝑤 .

• ctmsg ← Πae .Enc(sk𝑤 ,msg𝑙𝑏 ) .
10
Skipping this step breaks consistent prefix.

11
This step is inefficient. We will change this step in Appendix A.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

• ctack ← Πae .Enc(sk𝑤 ,ACK(seqrecv)).

(7) Let reg𝑟 = (𝑖𝑟 ). Formulate a PIR request for index 𝑖𝑟 .

• ctQuery, skpir ← Πpir .Query(1_, 𝑖𝑟 ) .

(8) return req = (ctmsg, ctack, ctQuery).

(9) Remember reg𝑟 and skpir.

Π
asphr

.S.ClientRPC(𝑡, {req𝑖 }𝑁𝑖=1)

for 𝑖 from 1 to 𝑁

(1) If req𝑖 = ∅, let resp𝑖 = ∅, and continue to next 𝑖 .

(2) Parse req𝑖 = (ctmsg, ctack, ctQuery).

(3) msgdb[𝑖] ← ctmsg, ackdb[𝑖] ← ctack.

(4) 𝑎msg ← Πpir .Answermsgdb (1_, ctQuery) .

(5) 𝑎ack ← Πpir .Answerackdb (1_, ctQuery).

(6) resp𝑖 ← (𝑎msg, 𝑎ack) .

Π
asphr

.C.ServerRPC(𝑡, resp)

(1) If resp = ∅, return.

(2) Parse resp = (𝑎msg, 𝑎ack). Let reg𝑟 , skpir be defined in the

last call to Π
asphr

.𝐶.Input.

(3) ctmsg ← Πpir .Dec(1_, skpir, 𝑎msg) .

(4) ctack ← Πpir .Dec(1_, skpir, 𝑎ack).

(5) sk𝑟 ← frdb[reg𝑟 ] .sk[0].

(6) Decipher the message.

(a) msg𝑙𝑏 ← Πae .Dec(sk𝑟 , ctmsg).

(b) If msg𝑙𝑏 = ⊥ or msg𝑙𝑏 [0] ≠ frdb[reg𝑟 ] .seqrecv + 1,
skip the next two steps.

(c) Add 1 to frdb[reg𝑟 ] .seqrecv.

(d) msg← msg𝑙𝑏 [1]. Push msg to in[reg𝑟 ].

(7) Decipher the ACK.

(a) ack← Πae .Dec(sk𝑟 , ctack).

(b) If ack = ⊥ or ack is not the form ACK(𝑘) for some 𝑘 ,

return.

(c) Let ack = ACK(𝑘). If 𝑘 < frdb[reg𝑟 ] .seqstart, return.

(d) frdb[reg𝑟 ] .seqstart← 𝑘+1. Remove the message with

sequence number 𝑘 from out[reg𝑟 ].

Π
asphr

.C.GetView()

Let F be the set of keys in frdb. LetM be the set {(reg𝑟 ,msg) :
msg ∈ in[reg𝑟 ]}. Return (F ,M).

6 PROOFS
In this section, we prove that under the 𝐵-bounded friends assump-

tion, our messaging system Π
asphr

satisfies correctness (Defini-

tion 3.8), metadata security (Definition 3.12), and integrity (Defini-

tion 3.15).

6.1 Proof of Correctness and Integrity
We first show that Π

asphr
satisfies both Definition 3.8 and Defini-

tion 3.15.

We introduce some notations for convenience. Define

MSGSent(𝑡0, 𝑖, 𝑗) = {(𝑡,msg) : 𝑡 ≤ 𝑡0∧
Send(reg𝑗 ,msg) = I𝑖,𝑡∧
∃𝑡 ′ < 𝑡, TrustEst(reg𝑗 ) = I𝑖,𝑡 ′ }.

Let msg𝑖 𝑗 (ℓ) be the ℓ-th message in MSGSent(𝑡0, 𝑖, 𝑗) sorted by

timestep 𝑡 . Let msg𝑙𝑏
𝑖 𝑗
(ℓ) = (ℓ,msg𝑖 𝑗 (ℓ)) .

6.1.1 Consistent prefix. We show that Π
asphr

satisfies Definition

3.15, and the consistent prefix property in Definition 3.8.

Lemma 6.1. Consider the real-world experiment in Figure 2. Then
with probability 1 − negl(_), for any pair of honest users 𝑖 ≠ 𝑗 ∈ H
and any 𝑡 ≤ 𝑇 , the property below holds.

Property: One of the following holds at the end of timestep 𝑡 .

(1) reg𝑗 ∉ 𝐶𝑖 .frdb,𝐶𝑖 .out[reg𝑗 ] = 𝐶 𝑗 .in[reg𝑖 ] = ∅.

(2) reg𝑗 ∈ 𝐶𝑖 .frdb. Then for any ℓ , msg𝑖 𝑗 (ℓ) is labeled with sequence
number ℓ . Furthermore, denote

𝑆𝑡 = 𝐶𝑖 .frdb[reg𝑗 ] .seqstart,
𝐸𝑡 = 𝐶𝑖 .frdb[reg𝑗 ] .seqend,
𝑅𝑡 = 𝐶 𝑗 .frdb[reg𝑖 ] .seqrecv,

(we define 𝑅𝑡 = 0 if reg𝑖 ∉ 𝐶 𝑗 .frdb). Then we have 𝑆𝑡 ∈ {𝑅𝑡 , 𝑅𝑡 + 1},
and

|MSGSent(𝑡, 𝑖, 𝑗) | = 𝐸𝑡 ,
𝐶𝑖 .out[reg𝑗 ] = {msg𝑙𝑏𝑖 𝑗 (𝑆𝑡 ), · · · ,msg𝑙𝑏𝑖 𝑗 (𝐸𝑡 )},
𝐶 𝑗 .in[reg𝑖 ] = {msg𝑖 𝑗 (1), · · · ,msg𝑖 𝑗 (𝑅𝑡 )}.

Proof. When 𝑡 = 0, (1) is satisfied since 𝐶𝑖 .frdb is initialized as

empty. We now show if these properties hold for all timesteps

before 𝑡 , then they will hold at the end of timestep 𝑡 with probability

1 − negl(_).

The relevant variables are only modified in Phase 1 of 𝐶𝑖 .Input,
in 𝐶𝑖 .ServerRPC and in 𝐶 𝑗 .ServerRPC. We show that the lemma is

satisfied after each method (no matter in which order they execute).

Phase 1 of 𝐶𝑖 .Input

If (1) holds before timestep 𝑡 starts, then unless

I = TrustEst(reg𝑗 ),



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

none of the variables are changed. Otherwise, we have 𝑆𝑡 = 1, 𝐸𝑡 =

𝑅𝑡 = 0, and both 𝐶𝑖 .out[reg𝑗 ] = 𝐶 𝑗 .in[reg𝑖 ] = ∅, which satisfies

(2).

If (2) holds before timestep 𝑡 starts, then unlessI = Send(reg𝑗 ,msg)
none of the variables are changed. Otherwise, 𝐸𝑡 = 𝐸𝑡−1 + 1. We

can check that

MSGSent(𝑡, 𝑖, 𝑗) = MSGSent(𝑡 − 1, 𝑖, 𝑗) + (𝑡,msg) .
Thus we have

|MSGSent(𝑡, 𝑖, 𝑗) | = |MSGSent(𝑡 − 1, 𝑖, 𝑗) | + 1 = 𝐸𝑡 .
Furthermore, we have msg = msg𝑖 𝑗 (𝐸𝑡 ), and it will be labeled

with sequence number 𝐸𝑡 by step (3) in Π
asphr

.𝐶.Input() Phase
1. Thus msg𝑙𝑏 = msg𝑙𝑏

𝑖 𝑗
(𝐸𝑡 ), so the equality with 𝐶𝑖 .out[reg𝑗 ] is

maintained. All the other variables remain unchanged. Thus the

property remains true.

𝐶𝑖 .ServerRPC

The relevant variables only change during ACK decipher when a

request is sent during Phase 2 of 𝐶𝑖 .Input. Let 𝑗 ′ = 𝑖𝑟 be the PIR
index chosen in that phase. No relevant variable changes if 𝑗 ′ ≠ 𝑗 ,

so assume 𝑗 ′ = 𝑗 . We apply the EUF-CMA property of Πae. With

probability 1 − negl(_), the ack variable defined in step (7a) by

ack = Πae .Dec(sk𝑟 , ctmsg)
is either equal to ⊥, or equal to a message user 𝑗 encrypted using

sk𝑟 . Since user 𝑗 only encrypts messages and ACKs to user 𝑖 using

sk𝑟 , we conclude that either ack = ACK(𝑅′) for some 𝑅′ ≤ 𝑅𝑡−1,
or ack is equal to a previous labeled message user 𝑗 sent to user 𝑖 .

If ack is equal to a labeled message or ⊥, client 𝑖 will skip steps (7c)

and (7d), and no variable will be changed. Now consider the case

ack = ACK(𝑅′) .
In step (7c), we have 𝐶𝑖 .frdb[reg𝑗 ] .seqstart = 𝑆𝑡−1. By the induc-

tion hypothesis, we have

𝑆𝑡−1 ≥ 𝑅𝑡−1 ≥ 𝑅′ .
So no variable is changed unless 𝑆𝑡−1 = 𝑅𝑡−1 = 𝑅′, in which case

𝑆𝑡 = 𝑅𝑡−1 + 1, and after popping msg𝑙𝑏
𝑖 𝑗
(𝑆𝑡−1) we get

𝐶𝑖 .out[reg𝑗 ] = {msg𝑙𝑏𝑖 𝑗 (𝑆𝑡−1 + 1), · · · ,msg𝑙𝑏𝑖 𝑗 (𝐸𝑡 )}.

Thus, the desired properties still hold.

𝐶 𝑗 .ServerRPC

The relevant variables only change during step (6) (message deci-

pher). Let 𝑖′ = 𝑖𝑟 be the PIR index chosen in the previous call to

𝐶𝑖 .Input. No relevant variable changes if 𝑖′ ≠ 𝑖 , so assume 𝑖′ = 𝑖 . By
EUF-CMA, with probability 1 − negl(_), the deciphered message

msg𝑙𝑏 is either ⊥, or an ACK message, or a labeled message sent

from user 𝑖 to user 𝑗 in a previous timestep 𝑡 ′ ≤ 𝑡 . In the first two

cases, steps (6c) and (6d) are skipped, and no variable is updated.

We now consider the last case. In this case, we have

msg𝑙𝑏 =

{
(−1, 0𝐿msg ), 𝑆𝑡 ′−1 > 𝐸𝑡 ′ .

msg𝑙𝑏
𝑖 𝑗
(𝑆𝑡 ′−1), 𝑆𝑡 ′−1 ≤ 𝐸𝑡 ′ .

Step (6c) and (6d) is not skipped only in the second case with

𝑆𝑡 ′−1 = 𝑅𝑡−1 + 1. By the induction hypothesis, in this case we have

𝑆𝑡−1 = 𝑆𝑡 ′−1 = 𝑅𝑡−1 +1. So 𝑅𝑡 = 𝑅𝑡−1 +1 = 𝑆𝑡−1, and after popping
msg𝑖 𝑗 (𝑆𝑡−1) we get

𝐶𝑖 .out[reg𝑗 ] = {msg𝑙𝑏𝑖 𝑗 (1), · · · ,msg𝑙𝑏𝑖 𝑗 (𝑆𝑡−1)}.

Thus, the desired properties still hold.

We have proven that the desired properties hold at the end of

timestep 𝑡 with probability 1 − negl(_). □

We now show that Π
asphr

satisfies Definition 3.15. We use the

notations in Lemma 6.1. Let (F ,M) = 𝐶 𝑗 .GetView(). Take 𝑡 ( 𝑗) =
𝑇0. Unpacking the definition of F andM, we need to verify that for

each 𝑖 ∈ [𝑁 ], with probability 1 − negl(_) there exists a 𝑡 (𝑖) ≤ 𝑇0
such that

𝐶 𝑗 .in[reg𝑖 ] = {msg : ∃𝑡 ≤ 𝑡 (𝑖), Send(reg𝑗 ,msg) = I𝑖,𝑡∧
∃𝑡 ′ < 𝑡, TrustEst(reg𝑗 ) = I𝑖,𝑡 ′∧

∃𝑡 ′′ ≤ 𝑇0, TrustEst(reg𝑖 ) = I𝑗,𝑡 ′′ }.
If 𝑖 = 𝑗 , then the equation holds for 𝑡 ( 𝑗) = 𝑇0 since messages to one-

self are deposited to𝐶 𝑗 .in immediately in Phase 1 of Π
asphr

.𝐶.input.
Now assume 𝑖 ≠ 𝑗 .

We show that 𝑡 (𝑖) exists as long as Lemma 6.1 holds at the current

timestep𝑇0.We considerwhich scenario in the lemma holds.

If (1) holds, let 𝑡 (𝑖) = 𝑇0. In this case, both sides of the equation are

∅.

If (2) holds, let 𝑡 (𝑖) = 𝑇0 if reg𝑖 ∉ 𝐶 𝑗 .frdb at the current timestep.

Otherwise, let 𝑡 (𝑖) be the timestep before𝐶𝑖 .Send(reg𝑗 ,msg𝑖 𝑗 (𝑅𝑡 +
1)) is called(or the current timestep ifmsg𝑖 𝑗 (𝑅𝑡 + 1) does not exist).
If reg𝑖 ∉ 𝐶 𝑗 .frdb, we have 𝑅𝑡 = 0, so both sides of the equation are

empty sets. Otherwise, by the definition of msg𝑖 𝑗 (ℓ), both sides of

the equation are equal to {msg𝑖 𝑗 (1), · · · ,msg𝑖 𝑗 (𝑅𝑡 )}. So the equal-

ity in Definition 3.15 holds when the property in Lemma 6.1 holds

for all pair of honest users 𝑖, 𝑗 ∈ H . Thus, Lemma 6.1 implies

Definition 3.15.

The consistent prefix property in Definition 3.8 is an easy corollary

of Definition 3.15 when the server behaves honestly.

6.1.2 Eventual consistency. We now show the eventual consistency

property in Definition 3.8. Take the same choice of 𝑡 (𝑖) as in the

previous subsection. Let 𝑇𝑐𝑜𝑛𝑠 = 2_𝐵2𝑇𝑈trans ·𝑇1 +𝑇1 .We show that

this 𝑇𝑐𝑜𝑛𝑠 satisfies the desired property.

We wish to show that if 𝑇0 ≥ 𝑇𝑐𝑜𝑛𝑠 , then with probability 1 −
negl(_) we have 𝑡 (𝑖) ≥ 𝑇1. Let 𝐸 = |MSGSent(𝑇1, 𝑖, 𝑗) | (note that
𝐸 is independent of the protocol execution). If 𝑅𝑇1 ≥ 𝐸, then by

casework on the definition we always have 𝑡 (𝑖) ≥ 𝑇1. So it suffices

to show that 𝑅𝑇1 < 𝑅 with negligible probability.

We use the same notation as Lemma 6.1. For each 𝑘 ≤ 𝐸, let 𝑋𝑘
be the random variable denoting the first 𝑡 such that 𝑅𝑡 ≥ 𝑘 , with
𝑋0 = 0. Let 𝑌𝑘 denote the first 𝑡 such that 𝑆𝑡 > 𝑘 . It suffices to show

that for any 𝑘 ≤ 𝐸, we have

𝑌𝑘 − 𝑋𝑘 > _𝐵2𝑇𝑈trans



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

or

𝑋𝑘 −max(𝑌𝑘−1,𝑇1) > _𝐵2𝑇𝑈trans
with negligible probability. For each timestep 𝑡 between 𝑋𝑘 and

𝑋𝑘+1 such that 𝑡 divides𝐶𝑖 .𝑇trans, let 𝑗𝑡 denote the 𝑖𝑟 that𝐶𝑖 chooses,
and let 𝑖𝑡 denote the 𝑖𝑠 that 𝐶 𝑗 chooses for their last non-empty

request to the server before timestep 𝑡 +1. If (𝑖𝑡 , 𝑗𝑡 ) = (𝑖, 𝑗), we must

have 𝑆𝑡 ≥ 𝑘 + 1 by the protocol definition since 𝐶𝑖 reads the ACK

message𝐶 𝑗 deposited to the server database. Furthermore, if we let

𝐾 =
⌈
𝑇𝑈trans/𝐶𝑖 .𝑇trans

⌉
𝐶𝑖 .𝑇trans, then the random variables

(𝑖𝑡 , 𝑗𝑡 ), (𝑖𝑡+𝐾 , 𝑗𝑡+𝐾 ), (𝑖𝑡+2𝐾 , 𝑗𝑡+2𝐾 ) · · ·
aremutually independent since client 𝑖 and client 𝑗 bothmade a non-

empty request to the server during timestep (𝑡, 𝑡 + 𝐾]. Therefore,
the probability that 𝑌𝑘 − 𝑋𝑘 > _𝐵2𝑇𝑈trans is at most

(1 − 𝐵−2)_𝐵
2𝑇𝑈

trans/𝐾 = negl(_)
as desired. Analogously, the event𝑋𝑘−max(𝑌𝑘−1,𝑇1) > _𝐵2𝑇𝑈trans is
also negligible. Thus, eventual consistency holds for Π

asphr
.

6.2 Proof of Security
In this section we show that Π

asphr
satisfies Definition 3.12.

Let 𝑁 ′ (_) = 𝑁 (_)2 and 𝑅′ (_) = 2𝑁 ′ (_)𝑇 (_). Assume the sim-

ulator Simae satisfy Definition 5.3 with parameters (𝑁, 𝑅) equal
to (𝑁 ′ (_), 𝑅′ (_)), and let Simpir be a simulator satisfying Defini-

tion 5.6 with parameters (𝑁, 𝑅) = (𝑁 (_), 𝑅′ (_)).

At step (2), (4a), and (4c) of Figure 3, the simulator Sim
asphr

runs

modified versions of the client methods in the corresponding steps

of Figure 2 for each client 𝑖 ∈ H . Modifications are marked with a

siderule.

For each pair of honest users 𝑖, 𝑗 ∈ H , let

(sk𝑖 𝑗,𝑟 , sk𝑖 𝑗,𝑤) = GenSec(reg𝑖 , reg𝑗 )
be their shared secret. Here sk𝑖 𝑗,𝑟 = sk𝑗𝑖,𝑤 denote the read key of

user 𝑖 for messages from user 𝑗 .

Sim
asphr

.Register(1_, 𝑖, 𝑁 )

No modification.

Sim
asphr

.Input(𝑡, 𝑖,Hybrid 3: replace I with Leak)

Phase 1:

Hybrid 3:

Initialize I.

(1) If (𝑖, reg, 𝑡) ∈ Leak𝑓 , I ← TrustEst(reg).

(2) If (𝑖, reg,msg, 𝑡) ∈ Leak𝑚 , I ← Send(reg,msg).

(3) Else, I ← ∅.

If I = ∅, do nothing.

If I = Send(reg,msg),

(1) Check that reg is in frdb. If not, skip to Phase 2.

(2) If reg is the registration of 𝐶𝑖 itself, append msg to in[reg],
and skip to Phase 2.

12

(3) Add 1 to frdb[reg] .seqend.

(4) Push msg𝑙𝑏 = (frdb[reg] .seqend,msg) to out[reg].

If I = TrustEst(reg).

(1) Check if reg is in frdb. If so, skip to Phase 2.

(2) sk𝑟 , sk𝑤 ← GenSec(reg𝑚, reg) . Here reg𝑚 is the user’s

own registration information.

(3) frdb[reg] ← {sk : (sk𝑟 , sk𝑤), seqstart : 1, seqend : 0,

seqrecv : 0}.

Phase 2:

(1) If 𝑡 is not divisible by 𝑇trans, return ∅.

(2) Let {reg
1
, · · · , reg𝑘 } be the keys of frdb, with 𝑘 ≤ 𝐵. Con-

struct 𝑆 = [reg
1
, · · · , reg𝑘 , reg, · · · , reg], wherewe add𝐵−𝑘

copies of reg = (−1), a dummy registration info . Sample

reg𝑠 , reg𝑟 uniformly and independently at random from 𝑆 .

(3) Let msg𝑙𝑏 be the (labeled) message with sequence number

frdb[reg𝑠 ] .seqstart in out[reg𝑠 ]. If out[reg𝑠 ] is empty, let

msg𝑙𝑏 = (−1, 0𝐿msg ).

(4) sk𝑤 ← frdb[reg𝑠 ] .sk[1]. If reg𝑠 = reg
0
or does not exist in

frdb, set sk𝑤 ← skdummy.

(5) seqrecv ← frdb[reg𝑠 ] .seqrecv. If reg𝑠 = reg
0
or does not

exist in frdb, set seqrecv← −1.

(6) Encrypt Messages with sk𝑤 .

Hybrid 1:

If reg𝑠 ∈ regH or reg𝑠 ∉ frdb,

• ctmsg ← Simae (1_),

• ctack ← Simae (1_),

Else,

• ctmsg = Πae .Enc(sk𝑤 ,msg𝑙𝑏 ).

• ctack = Πae .Enc(sk𝑤 ,ACK(seqrecv)).

(7) Let reg𝑟 = (𝑖𝑟 , _). Formulate a PIR request for index 𝑖𝑟 .

Hybrid 2:

If reg𝑟 ∈ regH ,

• ctQuery ← Simpir (1_) .

Else,

• ctQuery, skpir ← Πpir .Query(1_, 𝑖𝑟 ) .

(8) return req = (ctmsg, ctack, ctQuery).

12
Skipping this step breaks consistent prefix.



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

(9) Remember reg𝑟 .

Sim
asphr

.ServerRPC(𝑡, resp)

Hybrid 1’: if reg𝑟 ∈ regH , return.

(1) If resp = ∅, return.

(2) Parse resp = (𝑎msg, 𝑎ack). Let reg𝑟 , skpir be defined in the

last call to Π
asphr

.𝐶.Input.

(3) ctmsg ← Πpir .Dec(1_, skpir, 𝑎msg) .

(4) ctack ← Πpir .Dec(1_, skpir, 𝑎ack).

(5) sk𝑟 ← frdb[reg𝑟 ] .sk[0].

(6) Decipher the message.

(a) msg𝑙𝑏 ← Πae .Dec(sk𝑟 , ctmsg).

(b) Ifmsg𝑙𝑏 = ⊥ ormsg𝑙𝑏 [0] is not frdb[reg𝑟 ] .seqrecv+1,
ignore the message.

(c) Add 1 to frdb[reg𝑟 ] .seqrecv.

(d) Let msg be msg𝑙𝑏 [1]. Push msg to in[reg𝑟 ].

(7) Decipher the ACK.

(a) ack← Πae .Dec(sk𝑟 , ctack).

(b) If ack = ⊥ or ack is not the form ACK(𝑘) for some 𝑘 ,

ignore the ack.

(c) Let ack = ACK(𝑘). If 𝑘 < frdb[reg𝑟 ] .seqstart, ignore
the ack.

(d) frdb[reg𝑟 ] .seqstart← 𝑘+1. Remove the message with

sequence number 𝑘 from out[reg𝑟 ].

We use a hybrid argument to show that the two views are indistin-

guishable. We start from the original implementation of the client

methods Π
asphr

.𝐶 , and use a hybrid argument to transform it into

the simulator methods Sim
asphr

. We call the real-world experiment

Hyb
0
.

First Hybrid: We add the statements marked Hybrid 1 and run the

experiment in Definition 3.9.We call this modified experimentHyb
1
.

To argue this preserves indistinguishability, suppose on the contrary

that an adversaryA and a distinguisherD can distinguish the view

before and after the modification. Then we can build an adversary

A𝑂
1
and a distinguisher D′ breaking Definition 5.3.

The adversary A𝑂
1

simulates the real-world experiment in Fig-

ure 2. tTe key idea is to choose a powerful function 𝑓 : Σ∗ × Σ∗ →
Σ𝐿 . For each pair of honest users 𝑖, 𝑗 ∈ H , define data𝑟 [reg𝑖 ] =
(frdb[reg𝑖 ], in[reg𝑖 ], out[reg𝑖 ]).A1 stores a log of changes to data
encrypted using sk = sk𝑖 𝑗,𝑟 . Whenever it wants to access or up-

date these data in the client simulation, it calls Eval𝑓 . We choose

𝑓 to decrypt the log, recover the plaintext of the fields, do the cor-

responding simulation, then re-encrypt the outputs and update to

the log (𝑓 can use arg𝑝 to determine which line it is on). For such

an 𝑓 , A𝑂
1

can use 𝑓 to perfectly simulate client updates on the

sk-encrypted data[reg]. Finally, note that any client outputs com-

puted from data are encrypted using sk𝑖 𝑗,𝑟 , so 𝑓 can also perfectly

simulate client outputs.

With this choice of 𝑓 , we describeA𝑂
1
. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , denote

sk𝑖 𝑗,𝑟 = sk𝑗𝑖,𝑤 = sk𝑖∗𝑁+𝑗 and sk𝑖,dummy = sk𝑖 , where thesk∗ on
the right hand side denote the secret keys generated on line (1)

of Definition 5.3. The step numbers below refer to the steps in

Definition 3.9 unless otherwise indicated.

• Simulate step (1), (2), (3), and (4.b) identical to Definition 3.9.

• After step (2), for each pair of 𝑖, 𝑗 ∈ H , A1 "set"
13

GenSec(reg𝑖 , reg𝑗 ) = (sk𝑖 𝑗,𝑟 , sk𝑖 𝑗,𝑤),
𝐶𝑖 .skdummy = sk𝑖,dummy .

A1 independently generates all other shared secrets using

Πae .Gen(1_) .

• On step (4.a), A1 iterates over 𝑖 ∈ H . A1 simulates client

𝑖’s action in Π
asphr

.Input verbatim until Phase 2 Step (6). In

Step (6), A1 do casework based on if reg𝑠 ∈ regH .

– If reg𝑠 ∉ regH and reg𝑠 ∈ frdb, A1 knows the shared

secrets sk𝑟 and sk𝑤 between reg𝑖 and reg𝑠 , so A1 can

simulate this step verbatim.

– Otherwise, let (𝑘, 𝑘′) = ( 𝑗 ∗ 𝑁 + 𝑖, 𝑖 ∗ 𝑁 + 𝑗) if reg𝑠 =
reg𝑗 where 𝑗 ∈ H , else let (𝑘, 𝑘′) = (𝑖, 𝑖). A1 sets

(argct, arg𝑝 ) so that

Eval𝑓 (sk𝑘 , sk𝑘 ′ , argct, arg𝑝 )

simulates the original step (6) to compute ctmsg, out-

puts (𝑘, 𝑘′, argct, arg𝑝 ), then moves to line (4.b) in Def-

inition 5.3.A1 sets ctmsg = ct𝑏𝑟 to be the output of line
(4.b). A1 repeats this for ctack.

• On step (4.c), A1 simulates client action Π
asphr

.ServerRPC
using Eval𝑓 .

We note that in RealAEval, A1 perfectly simulates the view of A
in Hyb

0
. In IdealA,Simae

Eval , A1 perfectly simulates the view of A in

Hyb
1
. Thus, A1 just need to output the view of A at the end of

the simulation, and the same distinguisherD′ = D can distinguish

between the views of A1 in the real- and ideal-world. This contra-

dicts our assumption that Πae satisfies Definition 5.3. Therefore,

we finally conclude that

Hyb
0
≡𝑐 Hyb1 .

Corollary of First Hybrid: We add the statements marked Hybrid

1’ and run the experiment in Definition 3.9. We call this modified

experiment Hyb
1
′ .

We argue that this hybrid does not change the adversary’s view at

all. Π
asphr

.𝐶.ServerRPC only updates fields of data[reg𝑟 ]. In Hyb
1
,

for any reg ∈ regH , the fields of data[reg] does not affect the

13
In other word, A1 simulates the honest users as if GenSec(reg𝑖 , reg𝑗 ) = sk𝑖 𝑗 and

𝐶𝑖 .skdummy = sk𝑖,dummy . A1 does not have access to sk𝑖 𝑗 .



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

client’s output. So adding the statement’ Hybrid 1’ does not affect

the client’s output. We conclude that

Hyb
1
≡𝑐 Hyb1′ .

Second Hybrid: We add the statements marked Hybrid 2 and run

the experiment in Definition 3.9. We call this modified experiment

Hyb
2
.

We argue by contradiction that Hyb
1
′ and Hyb

2
are indistinguish-

able. Suppose that an adversaryA and a distinguisherD canHyb
1
′

and Hyb
2
. Then we can build an adversary A2 and a distinguisher

D′ breaking Definition 5.6.

A2 simulates a modified version of Hyb
1
.A2 simulates line (1, 2, 3,

4b, 4c) in Definition 3.9 verbatim as in bothHyb
1
′ andHyb

2
. On line

(4a), A2 simulates everything but Phase 2 step (7) verbatim. When

it reaches Phase 2 step (7), if reg𝑟 ∉ regH then it simulates this step

verbatim as well. If reg𝑟 ∈ regH , then A2 returns 𝑖𝑟 and exits line

(1a) of the experiment in Definition 5.6. Let ct𝑏𝑟 be the return value

of line (1b).A2 sets ctQuery = ct𝑏𝑟 and continues simulation.

Contrary to the first hybrid, A2 knows all the key exchange se-

cret keys. Furthermore, if reg𝑟 ∉ regH , A2 knows skpir generated
by Π

asphr
.𝐶.Input. If reg𝑟 ∉ regH , then A2 does not know the

skpir, but this skpir will never be used since Hybrid 1’ ensures that

Π
asphr

.𝐶.ServerRPC is skipped. Thus, we conclude that A2 can

complete the simulation.

In RealA
pir
, A2 simulates Hyb

1
′ verbatim, while in IdealA,Sim

pir
, A2

simulates Hyb
2
verbatim. Thus,A2 just need to output the view of

A at the end of the simulation, and the same distinguisherD′ = D
can distinguish between the views ofA1 in the real- and ideal-world.

This contradicts our assumption that Πpir satisfies Definition 5.6.

Therefore, we conclude that

Hyb
1
′ ≡𝑐 Hyb2 .

Third Hybrid: We add the statements marked Hybrid 3, and run

the experiment in Definition 3.9. We call this modified experiment

Hyb
3
. This modification does not change the view of the adversary

at all. After the changes in Hybrid 1, 1’, and 2, for any 𝑖, 𝑗 ∈ H , the

contents of 𝐶𝑖 .frdb[reg𝑗 ],𝐶𝑖 .in[reg𝑗 ],𝐶𝑖 .out[reg𝑗 ] does not affect
client 𝑖 output. (In particular, whether reg𝑗 lies in frdb or not does

not affect the distribution of reg𝑠 or reg𝑟 ). For any reg ∉ regH ,
Hybrid 3 does not affect updates to 𝐶𝑖 .frdb[reg],𝐶𝑖 .in[reg], and
𝐶𝑖out[reg]. So we conclude

Hyb
2
≡𝑐 Hyb3 .

Finally, we conclude that

Hyb
0
≡𝑐 Hyb3

Note that Hyb
0
= RealAmsg and Hyb

3
= Ideal

A,Simasphr

msg ,. Therefore,

Π
asphr

satisfies Definition 3.12.

7 IK-CCA IMPLIES EVAL-SECURITY
In this section, we propose a symmetric key analog of the IK-CCA

security introduced by Bellare et. al. in [Bel+01, Definition 1]. We

then show that IK-CCA security implies the eval-security Defini-

tion 5.3 needed for the security of our system.

Recall that anAE schemeΠae consists of algorithms (Gen, Enc,Dec)
with syntax defined in Section 5.1.1.

Definition 7.1 (IK-CCA). Consider the following distinguishing

experiment, where 𝑁 = 𝑁 (_) is polynomial in _.

Distinguishing Game ExpAIK−CCA
(1) sk0, sk1 ← Gen(1_) .
(2) 𝑚0,𝑚1 ← AEnc({sk𝑖 },· ),Dec({sk𝑖 },· ) (1_) .
(3) 𝑏 ← 𝑈 ({0, 1}).
(4) ct← Enc(sk𝑏 ,𝑚𝑏 ).
(5) 𝑏′ ← AEnc({sk𝑖 },· ),Dec({sk𝑖 },· ) (ct).

Figure 8: Distinguishing game for IK-CCA security.

Let ctQuery denote the queriesA sent to both decryption oracles on

line (5). We define the output of the experiment as 1 if both 𝑏′ = 𝑏
and ct ∉ ctQuery, and 0 otherwise.

Then we say the AE system Πae is IK-CCA secure if for any p.p.t

with oracle adversary A𝑂 , we have

P(ExpIK−CCAA = 1) ≤ 1

2

+ negl(_) .

Assume that Πae is IK-CCA. We now show that Πae is Eval-secure.

We recall the relevant definitions, where the simulator simply out-

puts Enc(sk0, 0𝐿) for sk0 ← Gen(1_).

Real-World Experiment RealAEval
(1) For 𝑖 from 1 to 𝑁 , sk𝑖 ← Gen(1_).
(2) For 𝑟 from 1 to 𝑅

(a) 𝑖, ct, arg𝑝 ← A(1_) .
(b) ct0𝑟 ← Eval𝑓 (sk𝑖 , ct, arg𝑝 ).
(c) A stores ct0𝑟 .

Ideal-World Experiment IdealAEval
(1) For 𝑖 from 1 to 𝑁 , sk𝑖 ← Gen(1_).
(2) For 𝑟 from 1 to 𝑅

(a) 𝑖, ct, arg𝑝 ← A(1_).
(b) sk0 ← Gen(1_), ct1𝑟 ← Enc(sk0, 0𝐿).
(c) A stores ct1𝑟 .

Figure 9: Recap of Definition 5.3.

We use a standard hybridizing argument to show that the views of

A are indistinguishable.

Definition 7.2. Define the Oracle
�Eval𝑘,𝑓 (sk𝑖 , ·) as follows. For

the first 𝑘 time it behaves exactly the same as Eval𝑓 (sk𝑖 , ·). After 𝑘
calls, it outputs Enc(sk1, 0𝐿) for sk← Gen(1_).

For each 𝑘 ≥ 0, define HybEval, 𝑗 as the Real World Experiment

RealAEval with Eval𝑓 ({sk𝑖 }, ·) replaced by
�Eval𝑘,𝑓 ({sk𝑖 }, Eval, ·).



Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

Lemma 7.3. For any 0 ≤ 𝑘 ≤ 𝑅, we have
HybEval,𝑘+1 ≡𝑐 HybEval,𝑘 .

Proof. Suppose the contrary. Let 𝐷 be any distinguisher such that

P(𝐷 (HybEval,𝑘+1)) − P(𝐷 (HybEval,𝑘 )) ≥ poly(_)−1 .
We design an adversary A′ to win the IK-CCA game. Let 𝑖∗ ∈ [𝑁 ]
be any index. On line (2) of ExpA

′

IK−CCA, the adversaryA
′
simulates

HybEval,𝑘 with sk𝑖∗ = sk1, and all other sk𝑖 randomly generated.

A′ simulates A until the 𝑘 + 1-th call to the oracle
�Eval𝑗,𝑓 . Let

𝑖𝑘+1, 𝑗𝑘+1, ct = {ctℓ }, arg𝑝 be the output of A. If 𝑖𝑘+1 ≠ 𝑖
∗
, then A′

just guess randomly. Otherwise, A′ use the Dec oracle to compute

𝑚′
ℓ
= Dec(sk𝑗∗ , ctℓ ). Then it outputs𝑚0 = 0

𝐿
,𝑚1 = 𝑓 ({𝑚′ℓ }, arg𝑝 ),

and exits line (2) of ExpA
′

IK−CCA. Let ct be the output of line (5). A
′

uses ct as the output of�Eval𝑘,𝑓 , then continue to simulateHybEval,𝑘
until the end. A′ returns 𝑏′ = 1 iff 𝐷 accepts the resulting view.

We condition on 𝑖𝑘+1 = 𝑖∗. If 𝑏 = 1, then A′ perfectly simulates

HybEval,𝑘+1, while if 𝑏 = 0, then A′ perfectly simulates HybEval,𝑘 .
Furthermore, in line (6) of Definition 7.1, A′ never use the Dec
oracle, so ctQuery = ∅. Therefore, we have

P(ExpA
′

IK−CCA = 1)

=
1

2

+ P(𝑏′ = 1, 𝑏 = 1, 𝑖𝑘+1 = 𝑖
∗) − P(𝑏′ = 1, 𝑏 = 0, 𝑖𝑘+1 = 𝑖

∗)

=
1

2

+ 1

2

P(𝐷 (HybEval,𝑘+1), 𝑖𝑘+1 = 𝑖∗)

− 1

2

P(𝐷 (HybEval,𝑘 ), 𝑖𝑘+1 = 𝑖∗).

By IK-CCA, there exists a negligible function ` (_) such that

P(ExpA
′

IK−CCA = 1) ≤ 1

2

+ ` (_).

Summing over all 𝑖∗ ∈ [𝑁 ], we obtain a contradiction

P(𝐷 (HybEval,𝑘+1)) − P(𝐷 (HybEval,𝑘 )) ≤ negl(_) .
□

Since HybEval,0 is identical to IdealAEval, and HybEval,𝑅 is identical

to RealAEval, we conclude that IdealAEval is indistinguishable with

RealAEval. So Πae is Eval-Secure as desired.

8 CONCLUSION AND OPEN QUESTIONS
Our paper is an attempt to rigorously justify the security of a real-

world metadata-private messaging system. The proof can convince

users that our messaging service satisfies the security properties

we promise, as well as help us find and fix existing security vulner-

abilities in our implementation.

Nevertheless, many open problems remain unexplored in this paper.

Below, we give a few examples.

• In Section 5.1.2, we assume that pairs of honest users can

obtain pre-distributed symmetric keys from a trusted third

party. We believe that the key exchange protocols proposed

in [LZA22b] can replace the third party, but we have no

rigorous proof of this property. Is it possible to develop a

theory similar to the CK model [CK01] that addresses the

metadata security of key exchange protocols?

• To prevent CF attacks, the core protocol described in Sec-

tion 5.3 is very inefficient in practice. In Appendix A, we

describe a method we call prioritization that speeds up

the core protocol in exchange for some limited metadata

leakage. Can we find more efficient protocols that defend

against CF attacks fully?

• Is it possible to integrate PIR protocols into the universal

composability framework [Can20]? This would greatly sim-

plify the security proofs of future real-world MPM systems,

but we are unaware of any attempt at this.

• Is it possible to formalize the proof using automated proof

assistants, such as Coq or Lean?

REFERENCES
[Ahm+21] Ishtiyaque Ahmad et al. “Addra: Metadata-private

voice communication over fully untrusted infrastruc-

ture”. In: 15th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 21). 2021.

[Ali+21] Asra Ali et al. “Communication–Computation Trade-

offs in PIR”. In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021,

pp. 1811–1828. isbn: 978-1-939133-24-3. url: https :

/ /www.usenix . org / conference /usenixsecurity21 /

presentation/ali.

[ALT18] Sebastian Angel, David Lazar, and Ioanna Tzialla. “

What’s a little leakage between friends?” In: Proceed-
ings of the 2018 Workshop on Privacy in the Electronic
Society. 2018, pp. 104–108.

[Ang+18] Sebastian Angel et al. “PIR with compressed queries

and amortized query processing”. In: 2018 IEEE sympo-
sium on security and privacy (SP). IEEE. 2018, pp. 962–
979.

[Ang18] Sebastian Angel. “Unobservable communication over

untrusted infrastructure”. PhD thesis. The University

of Texas at Austin, 2018.

[AS16] SebastianAngel and Srinath Setty. “Unobservable com-

munication over fully untrusted infrastructure”. In:

12th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 16). 2016, pp. 551–
569.

[Bel+01] Mihir Bellare et al. “Key-Privacy in Public-Key Encryp-

tion”. In: Advances in Cryptology — ASIACRYPT 2001.
Ed. by Colin Boyd. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 566–582.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. “Reduc-

ing the Servers Computation in Private Information

Retrieval: PIR with Preprocessing”. In: Proceedings
of the 20th Annual International Cryptology Confer-
ence on Advances in Cryptology. CRYPTO ’00. Berlin,

Heidelberg: Springer-Verlag, 2000, pp. 55–73. isbn:

3540679073.

https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali


Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

[Can20] Ran Canetti. “Universally Composable Security”. In: J.
ACM 67.5 (Sept. 2020). issn: 0004-5411. doi: 10.1145/

3402457. url: https://doi.org/10.1145/3402457.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Maz-

ières. “Riposte: An anonymous messaging system han-

dling millions of users”. In: 2015 IEEE Symposium on
Security and Privacy. IEEE. 2015, pp. 321–338.

[CF10] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: ac-

countable anonymous group messaging”. In: Proceed-
ings of the 17th ACM conference on Computer and com-
munications security. 2010, pp. 340–350.

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of Key-

Exchange Protocols and Their Use for Building Se-

cure Channels”. In: Advances in Cryptology — EURO-
CRYPT 2001. Ed. by Birgit Pfitzmann. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2001, pp. 453–474.

[Den13] Frank Denis. The Sodium cryptography library. June
2013. url: https://download.libsodium.org/doc/.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat

practical fully homomorphic encryption”. In: Cryptol-
ogy ePrint Archive (2012).

[Hen+22] Alexandra Henzinger et al. One Server for the Price of
Two: Simple and Fast Single-Server Private Information
Retrieval. Cryptology ePrint Archive, Paper 2022/949.

https://eprint . iacr.org/2022/949. 2022. url: https:

//eprint.iacr.org/2022/949.

[Ish+04] Yuval Ishai et al. “Batch Codes and Their Applications”.

In: Proceedings of the Thirty-Sixth Annual ACM Sym-
posium on Theory of Computing. STOC ’04. Chicago,

IL, USA: Association for Computing Machinery, 2004,

pp. 262–271. isbn: 1581138520. doi: 10.1145/1007352.

1007396. url: https : / / doi . org / 10 . 1145 / 1007352 .

1007396.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. “Replication is

not needed: Single database, computationally-private

information retrieval”. In: Proceedings 38th annual
symposium on foundations of computer science. IEEE.
1997, pp. 364–373.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Specu-

lative Execution”. In: 2019 IEEE Symposium on Security
and Privacy (SP). 2019, pp. 1–19. doi: 10.1109/SP.2019.
00002.

[LT21] Zeyu Liu and Eran Tromer. “Oblivious Message Re-

trieval”. In: Cryptology ePrint Archive (2021).
[LZA22a] Arvid Lunnemark, Shengtong Zhang, and Sualeh Asif.

Anysphere Client. Version 0.1.15. Aug. 2022. url: https:

//github.com/anysphere/client.

[LZA22b] Arvid Lunnemark, Shengtong Zhang, and Sualeh Asif.

Anysphere: Private Communication in Practice. 2022.
url: https://anysphere.co/anysphere-whitepaper.pdf.

[MW22] Samir Jordan Menon and David J. Wu. Spiral: Fast,
High-Rate Single-Server PIR via FHE Composition. Cryp-
tology ePrint Archive, Paper 2022/368. https://eprint.

iacr.org/2022/368. 2022. url: https://eprint.iacr.org/

2022/368.

[SW21] Elaine Shi and Ke Wu. “Non-Interactive Anonymous

Router”. In: Annual International Conference on the

Theory and Applications of Cryptographic Techniques.
Springer. 2021, pp. 489–520.

[Ter13] Doug Terry. “Replicated Data Consistency Explained

through Baseball”. In:Commun. ACM 56.12 (Dec. 2013),

pp. 82–89. issn: 0001-0782. doi: 10.1145/2500500. url:

https://doi.org/10.1145/2500500.

[WS96] David Wagner and Bruce Schneier. “Analysis of the

SSL 3.0 Protocol”. In: Proceedings of the 2nd Confer-
ence on Proceedings of the Second USENIX Workshop on
Electronic Commerce - Volume 2. WOEC’96. Oakland,

California: USENIX Association, 1996, p. 4.

A PRIORITIZATION
Anysphere’s client-side source code is at [LZA22a]. Our implemen-

tation mostly adheres to the core protocol described in Section 5.3.

However, the core protocol is very inefficient as stated: for each pair

of communicating users 𝑖, 𝑗 , each PIR query from 𝑖 has a probability

of 𝐵−1 to retrieve from 𝑗 ’s mailbox in the database, and 𝑗 has a

probability of 𝐵−1 to put the message to 𝑖 there. Therefore, the ex-

pected time between 𝑗 sending a message and 𝑖 receiving a message

is𝑇trans𝐵
2
. Due to the high cost of handling PIR queries, our system

takes𝑇trans ≈ 30𝑠 . If a user is allowed to have 20 friends, this results

in a latency of three hours per single-trip delivery, which is not

practical.

We can use efficient batch PIR retrieval [BIM00; Ish+04; AS16; LT21],

which allows a client to retrieve from all friends at once with𝑂 (𝑁 )
server work. However, since each client can only deposit one mes-

sage into their mailbox at a time, the single-trip latency is still about

𝐵 · 3𝑇trans ≈ 600𝑠 , where the constant 3 accounts for the additional

work the server has to do for batch retrieval. If we expand the

mailbox to allow each user to deposit multiple messages at once,

the cost of PIR queries scales linearly with the size of the mailbox,

so it is hard to save more work.

In our code, we use an optimization we name “prioritization” to

address this problem. When choosing reg𝑠 and reg𝑟 in Phase 2 step

(2) of Input(), the clients select a set of “prioritized users", and select
reg𝑠 and reg𝑟 from these users. Ideally, the prioritized users are

friends who are actively conversing with the client.

More formally, our clients support a priority function

𝐶.getPr(reg) → (𝑝reg,𝑠 , 𝑝reg,𝑟 )

that takes in a registration info reg and outputs priorities 𝑝reg,𝑠 , 𝑝reg𝑟
for sending and receiving messages from and to the user. Phase 2

of Π
asphr

.𝐶.Input(𝑡,I) is modified as follows.

ΠgetPr
asphr

.C.Input(𝑡,I), Phase 2

(1) If 𝑡 is not divisible by 𝑇trans, return ∅.

(2) Let {reg
1
, · · · , reg𝑘 } be the keys of frdb. Let reg0 = (−1)

be a dummy registration info.

(a) For 𝑖 = 0, 1, · · · , 𝑘 , (𝑝𝑖,𝑠 , 𝑝𝑖,𝑟 ) ← 𝐶.getPr(reg𝑖 ) .

(b) Sample 𝑖𝑠 ∼ {0, 1, · · · , 𝑘} such that P(𝑖𝑠 = 𝑖) ∝ 𝑝𝑖,𝑠 .

https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://download.libsodium.org/doc/
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://github.com/anysphere/client
https://github.com/anysphere/client
https://anysphere.co/anysphere-whitepaper.pdf
https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://doi.org/10.1145/2500500
https://doi.org/10.1145/2500500


Formal Security Definition of Metadata-Private Messaging Zhang, Lunnemark, Asif

(c) Let reg𝑠 = reg𝑖𝑠 .

(d) Sample 𝑖𝑟 ∼ {0, 1, · · · , 𝑘} such that P(𝑖𝑟 = 𝑖) ∝ 𝑝𝑖,𝑟 .

(e) Let reg𝑟 = reg𝑖𝑟 .

(3) Every step below is unchanged.

We call this modified protocol the core protocol with prioritiza-
tion, and denote it

Π
getPr
asphr

.

Example 1: If the client sets 𝑝𝑖,𝑠 = 𝑝𝑖,𝑟 = 1 for 𝑖 ≥ 1 and 𝑝0,𝑠 =

𝑝0,𝑟 = 𝐵 − 𝑘 , we recover the original protocol defined in Sec-

tion 5.3.

Example 2: If the client sets 𝑝𝑖,𝑠 = 𝑝𝑖,𝑟 = 1 for 𝑖 ≥ 1 and 𝑝0,𝑠 =

𝑝0,𝑟 = 0, we get a slightly more efficient protocol where we select

a random friend to send to and retrieve from. The tradeoff is a

small metadata leakage already described in [ALT18]: an adver-

sary can learn the number of friends a friend has by measuring

latency.

Example 3: Some priority functions can lead to more serious meta-

data leakage. For example, consider the “intuitive” optimization

which assigns higher priority to friends with non-empty outbox.

Suppose a user 𝑖 disconnects from the internet. If user 𝑗 is user 𝑖’s

friend and sends 𝑖 at least one message after the disconnect, 𝑗 ’s out-

box to 𝑖 would always be nonempty since 𝑗 does not receive ACKs

from 𝑖 , so 𝑗 ’s latency with other users would increase as well. The

latency increase propagates across the social graph until it reaches

the compromised clients. Therefore, a very powerful adversary can

potentially learn the whole social graph by DoSing each client and

observing how the latency of the compromised clients changes. It

could then plausibly map this social graph onto any other public

friend graph (say Facebook’s) to determine exactly who is talking

to whom.

Fortunately, we can provably prevent metadata leakage by imposing

the following condition on the priority function.

Definition A.1. The priority function 𝐶.getPr(reg) is static if its
output on timestep 𝑇 is uniquely determined by the argument reg
and the user inputs I𝑡 to 𝐶 on timesteps 𝑡 ≤ 𝑇 . In other words,

there exists a function getPr such that on timestep 𝑇 we have

𝐶.getPr(reg) = getPr({I𝑡 }𝑡 ∈[𝑇 ] , reg).

If 𝐶.getPr(·) is a static priority function, we define its leakage as

LeakgetPr ({I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] , regH) = (𝑆1, 𝑆2) .

where

𝑆1 ={(𝑖, 𝑡, reg, 𝑝𝑠 , 𝑝𝑟 ) : 𝑖 ∈ H , 𝑡 ∈ [𝑇 ], reg ∉ regH ⊔ reg0
∧ ∃𝑡 ′ ≤ 𝑡, TrustEst(reg) = I𝑖,𝑡 ′
∧ (𝑝𝑠 , 𝑝𝑟 ) = getPr({I𝑖,𝑡 ′ }𝑡 ′∈[𝑡 ] , reg).}

and

𝑆2 ={(𝑖, 𝑡, 𝑝𝑠,H, 𝑝𝑟,H) : 𝑖 ∈ H , 𝑡 ∈ [𝑇 ],
∧ ∃𝑡 ′ ≤ 𝑡, reg ∉ regH ⊔ reg0, TrustEst(reg) = I𝑖,𝑡 ′

∧ (𝑝𝑠,H, 𝑝𝑟,H) =
∑︁

reg∈regH⊔reg0
getPr({I𝑖,𝑡 ′ }𝑡 ′∈[𝑡 ] , reg)}

where reg
0
= (−1) is the dummy registration info.

For each user with compromised friend, the leakage consists of the

priority of each compromised friend, plus the sum of the priority

of all honest friends. Most importantly, the leakage contains no

information about users with no compromised friend. This is a

desirable property in practice: the compromise of a single user

would only affect the metadata privacy of them and their friends,

instead of jeopardizing the security of the whole network.

Using the same method in Section 6, we can prove the correctness,

security and integrity of the prioritized protocol Π
getPr
asphr

.

Theorem A.2. Suppose the priority function 𝐶.getPr(·) is static,
and its output is always in the range [𝑃𝐿, 𝑃𝑈 ] for positive constants
𝑃𝐿, 𝑃𝑈 . Then the prioritized core protocol ΠgetPr

asphr guarantees correct-

ness(Definition 3.8) and integrity(Definition 3.15). ΠgetPr
asphr is also SIM-

secure (Definition 3.12), but with the leakage function in the ideal
world experiment Definition 3.11 replaced by

Leak′ ({I𝑖,𝑡 }𝑖∈H,𝑡 ∈[𝑇 ] , regH) = (Leak𝑓 , Leak𝑚, LeakgetPr)
where Leak𝑓 and Leak𝑚 are defined in Definition 3.10 and LeakgetPr
is defined in Definition A.1.

The proofs of correctness and integrity are the same. The proof

of security is very similar, except we change Hybrid 3 to ensure

that compromised friends are chosen as reg𝑠 and reg𝑟 with the

probability defined in the modified Π
getPr
asphr

.

We are exploring the best priority function. Currently, the client

assigns higher priorities (𝑝reg,𝑠 , 𝑝reg,𝑟 ) to friend reg if the user sent

message to reg more recently. During a synchronous conversation

between two users, we can achieve a latency of almost 2𝑇trans ≈ 60𝑠

because the users put each other on high priority.

On the other hand, if a user has a compromised friend, the adversary

can theoretically learn their number of friends and the number

of active conversations they participate in using the CF attack

described in [ALT18]. Angel et al. argues in the same paper that

the attack is hard to execute in practice. Therefore, we believe that

the amount of information leaked is small compared to the massive

efficiency benefit, so our use of prioritization is justified.


	Abstract
	1 Introduction
	2 Conventions
	3 A New Security Definition
	3.1 Correctness
	3.2 Metadata Security
	3.3 Integrity
	3.4 A Weaker Security Definition

	4 The PIR Replay Attack
	5 A Secure MPM protocol
	5.1 Cryptographic Primitives
	5.1.1 Authenticated Encryption Scheme
	5.1.2 Symmetric Key Distribution
	5.1.3 PIR Scheme

	5.2 Messages, Sequence numbers, ACKs
	5.3 The Core Protocol

	6 Proofs
	6.1 Proof of Correctness and Integrity
	6.1.1 Consistent prefix
	6.1.2 Eventual consistency

	6.2 Proof of Security

	7 IK-CCA implies Eval-Security
	8 Conclusion and Open Questions
	A Prioritization

