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Abstract

In this paper, we propose a new protocol for private computation on
set intersection (PCI) which is an extension of private set intersection
(PSI). In PSI, each party has a private set and both want to securely
compute the intersection of their sets such that only the result is revealed
and nothing else. In PCI, we want to additionally apply a private com-
putation on the result. The goal is to reveal only the result of such a
secure evaluation on the intersection and nothing else. We particularly
focus on a client-server setting where the server’s set is significantly larger
than the client’s set and the result of the computation should be revealed
only to the client. The protocol aims at a low communication overhead
which is sublinear in the server’s set size. Such PSI protocols have already
been realized using fully homomorphic encryption (FHE). However, they
do not allow for private post-processing to enable PCI. There are also
protocols enabling PCI which are in addition very fast with respect to the
computational overhead. Their drawback is that they have a communica-
tion overhead which is at least linear in the larger set. We present a PSI
protocol which can be used for arbitrary post-processing without creating
a new protocol for every special-purpose PCI functionality. Our construc-
tion relies on the evaluation of a branching program using an FHE scheme.
Using the properties of an FHE scheme, we build a non-interactive proto-
col with extendable functionalities. That means, we can not only securely
compute the intersection but use the encrypted result to apply further
computations without revealing the intersection itself. To the best of our
knowledge, this results in the first PCI protocol with communication cost
sublinear in the larger set. Compared to previous work, we can reduce
the communication by factor 47.
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1 Introduction

Imagine the scenario of ad conversion rates used to price online advertisement.
In such a scenario, an advertiser is payed by a merchant if someone who has seen
an ad buys a product or spends a certain amount of money at the merchant.
The advertiser has a list of all the users who have seen the ad and the merchant
has a list of all the users who have bought the product. Intersecting both lists
yield the users for which the advertiser has to be paid. However, the parties
may not want or are not allowed to reveal their whole customer data set [29].
This problem can be solved using Private Set Intersection (PSI) to reveal only
the set intersection and nothing else [10,32,33,41].

Depending on the use case, we can extend the setting further to find an
optimal solution. For the example of ad conversion rates, the set of the ad-
vertiser is much larger than the set of the merchant, i.e. we have unbalanced
sets. Moreover, we are basically not interested in the intersection itself but the
final revenue that has to be paid. This can depend on the cardinality of the
intersection, PSI-CAT [23, 26], or on a weighted sum of each element in the
intersection, PSI-Sum [29, 38, 39]. Allowing for any of such extensions is called
Private Computation on Set Intersection (PCI) [11,34].

Furthermore, there is a very broad range of applications for PSI, e.g., contact
discovery [19], genome testing [3, 46], or object-level tracking [49].

Unbalanced and Asymmetric PSI. A special case is the client-server set-
ting, where the server has a significantly larger set than the client (unbalanced)
and the intersection should be revealed only to the client (asymmetric). More-
over, the server has larger computational power and its set may undergo frequent
update, while the client’s computational and storage capacity is limited com-
pared to the server. In this paper, we focus on the unbalanced and asymmetric
case and refer to the server as the sender and to the client as the receiver. There
is a lot of work on PSI focusing on the balanced setting, i.e. with sets of nearly
the same size. These protocols yield a solution which is very efficient in terms of
computational overhead [41]. However, the communication overhead depends
at least linearly on the larger set such that it is not very efficient when applied
to the unbalanced case. Hence, there is need for special protocols using the fact
that one set is significantly smaller than the other.

Private Computation on Set Intersection. Another line of research con-
siders the scenario of post-processing the output of the PSI computation, i.e.
enable Private Computation in Set Intersection (PCI) [11, 34]. To ensure the
security of the new protocol, i.e, not revealing any additional information, most
generic PSI protocols cannot be used since they reveal the intersection to one
of the parties and not only the post-processed result. For an example of why
this is not possible, we refer to the related work in the following section. A
trivial approach is to create an new protocol for every use case which is a lot of
effort and opens the door to new security issues. Another approach is to create
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only one PSI protocol enabling PCI and not revealing the intersection to one of
the parties. One can then apply any protocol which has already proven to be
secure on top of the PSI protocol. Such PSI protocols can therefore be used in
a generic way and be built into larger protocols.

Our Contribution. Our goal is to combine sublinear communication with the
PCI functionality, i.e. construct a protocol with only sublinear communication
in the larger set size which additionally allows for efficient and non-interactive
secure computations on the intersection. The idea of our solution is to represent
the server’s set as a branching program (BP) and evaluate the client’s input on
the server’s set using fully homomorphic encryption (FHE). Instead of sending
the encrypted output to the client, it can also be used for further post-processing
extensions enabling PCI. This is possible since we do not require the client to
apply any further operations (except decryption) on the received output. To
improve communication and computation overhead, we propose optimizations to
the basic protocol including more efficient branching program evaluations as well
as improved PSI computations using different hashing techniques. Furthermore,
we present a security analysis proving the security of our protocol against a semi-
honest adversary in the standard model. Finally, we implement our protocol
and evaluate it with different parameters. To the best of our knowledge, this
results in the first PCI protocol with communication sublinear in the larger set.

Structure The remainder of the paper is structured as follows. We review
related work in Section 2. Then, we present preliminaries in Section 3 before
describing our basic protocol and its algorithms in Section 4. Section 5 con-
tains optimizations to our basic protocol and the full protocol is presented in
Section 6. The PCI property and further extensions are discussed in Section 7.
Our protocol is analyzed theoretically in Section 8 and practically in Section 9
before Section 10 concludes our work.

2 Related Work

There are a lot of protocols solving the PSI problem. A detailed overview can
be found in [41]. They differ in the setting, the tools they are built on and the
functionalities they include.

Public-Key PSI. The starting point of PSI protocols, based on public-key
cryptography, was built on Diffie-Hellmann key exchange [35]. Later, a protocol
based on blind-RSA operations was introduced by De Cristofaro et al. [17].
The proposed public-key operations have been combined with data structures
like hash tables [23], bloom filters [18, 32] or cuckoo filters [16] to reduce the
computation and communication complexity. However, all these protocols have
in common that they use computationally heavy public-key operations (e.g.,
exponentiations) and still have a communication complexity that is at least
linear in the set sizes.
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OT-based PSI. OT-based PSI are protocols based on oblivious transfer (OT)
[40, 41]. Due to their high use of fast symmetric primitives (so-called OT-
Extensions), they are the most efficient protocols with respect to computation
time [41]. However, compared to public-key PSI they have a higher communi-
cation overhead. Furthermore, they are usually considered in the equally-sized
input setting and do not scale well with unequal set sizes. State-of-the-art pro-
tocols have a communication complexity of O(∣X ∣ log ∣X ∣) where X is the larger
set [40,41]. Like public-key PSI, most OT-based PSI protocols do not allow for
generic extensions of functionalities [11].

PSI based on HE. These protocols are based on the use of a homomorphic
encryption (HE) scheme. The idea is to shift the expensive computations to one
party. These protocols are well suited for the unbalanced scenario in which one
party has computation restrictions such as a small device, i.e. client, and the
other party does not, i.e. server. Chen et al. [10] use a fully HE (FHE) scheme
to reduce the communication overhead. For a server’s set X and a client’s set
Y , they achieve communication cost linear in the size of the smaller set and
only logarithmic in the larger set: O(∣Y ∣ log ∣X ∣). This result has been improved
by additionally extending the setting to labeled PSI [9] but keeping the same
asymptotic complexity. Cong et al. [13] presented an improvement resulting
in communication complexity Õ(∣Y ∣(log log ∣X ∣)2). All the protocols are based
on a homomorphic evaluation of a polynomial representing the server’s set.
Specifically, they test if an input y leads to 0 when evaluating the polynomial

∏

x∈X
(y − x).

This line of research is the starting point of our work with respect to the com-
munication overhead which is sublinear in the larger set size. However, we can
also see that this approach cannot be used for arbitrary PCI because it needs
an interaction with the client to determine if the result is 0 or not.

PCI. In circuit-based PSI, generic methods to securely compute any circuit
are applied to the PSI problem. A generic method is, for example, Yao’s garbled
circuit [50]. Protocols based on circuit evaluation were introduced by Huang et
al. [28] and later improved by Pinkas et al. [37–39]. They use suitable hashing
schemes to speed up their computation by reducing the number of needed secure
comparisons. In contrast to previous categories, circuit-based PSI allows for
generic extensions of the functionalities, enabling PCI. Of particular interest is
the work of Ciampi and Orlandi [11] and a follow-up work of Ma and Chow [34].
Ciampi and Orlandi show why state-of-the-art PSI protocols from OT, e.g., [41],
cannot be combined with post-processing because they reveal the intersection
to one of the parties. Moreover, they present a new protocol based on a graph
structure which is evaluated using OT. They produce an “encrypted” output
that can directly be used by the client for further extensions based on garbled
circuits, secret-sharing [45], or HE. They achieve a small computation overhead
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since they highly rely on symmetric key operations. However, a drawback of
these protocols (which were built for the balanced setting) is the communication
overhead which is at least linear in the larger set.

3 Preliminaries

In this section, we define homomorphic encryption, security definitions and the
PSI functionality. Moreover, we shortly present how to securely evaluate a
branching program.

3.1 Homomorphic Encryption

Homomorphic encryption (HE) allows computations on ciphertexts by generat-
ing an encrypted result whose decryption matches the result of a function on
the plaintexts [6, 24].

HE Algorithms. An HE scheme consists of the following algorithms:

� pk, sk, ek ← KGen(λ): This probabilistic algorithm takes a security pa-
rameter λ and outputs public, private, and evaluation keys pk, sk, and
ek.

� c ← Enc(pk,m): This algorithm takes pk and a message m and outputs a
ciphertext c.

� c ← Eval(ek, f, c1, . . . , cn): This algorithm takes ek, an n-ary function f
and n ciphertexts c1, . . . cn and outputs a ciphertext c.

� m′ ← Dec(sk, c): This deterministic algorithm takes sk and a ciphertext c
and outputs a message m′.

We will use ⟦m⟧ as a shorthand notation for a ciphertext if ⟦m⟧ correctly de-
crypts to m. Further, we require IND-CPA security and the following correct-
ness conditions. Given any set of n plaintexts m1, . . . ,mn, any keys pk, sk, ek,
it muss hold:

� Dec(sk,Enc(pk,mi)) = Dec(sk, ⟦mi⟧) = mi ∀i = 1, . . . , n,

� Dec(sk,Eval(ek, f, ⟦m1⟧, . . . , ⟦mn⟧)) = f(m1, . . . ,mn).

There are two basic evaluation functions of particular interest, namely addi-
tion and multiplication of two ciphertexts or one ciphertext with one plaintext.
For simplicity, we introduce special notations for these operations. By ⊞, we
denote Eval(ek, f, ⟦m1⟧ , ⟦m2⟧) with f(m1,m2) = m1 + m2. By ⊡, we denote
Eval(ek, f, ⟦m1⟧ , ⟦m2⟧) with f(m1,m2) =m1 ⋅m2. We use the same symbols to
denote additions or multiplications with plaintext constant, e.g., ⟦m1⟧ ⊞m2 or
⟦m1⟧ ⊡m2.
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3.2 Security

We define security in the two-party computation model [27] and start with some
useful definitions.

Definition 3.1 (Probability Ensemble) We define a probability ensemble
X =X(a, λ)a,λ as an infinite sequence of random variables indexed by a ∈ {0,1}∗

and λ ∈ N.

Definition 3.2 (Computational Indistinguishability) Let a ∈ {0,1}∗ and
λ ∈ N. Two probability ensembles X =X(a, λ)a,λ and Y = Y (a, λ)a,λ are compu-

tationally indistinguishable, or X
c
≡ Y , if for every non-uniform PPT algorithm

D there exists a negligible function µ such that for every a and λ it holds

∣Pr[D(X(a, λ)) = 1] − Pr[D(Y (a, λ)) = 1]∣ ≤ µ(λ).

Both parties execute a protocol π on inputs x, y and the i-th party obtains
output

outputπ
i (x, y, λ).

The overall output is the tuple

outputπ
= (outputπ

1 (x, y, λ),output
π
2 (x, y, λ)).

Tuple viewπ
i (x, y, λ) describes the view of party i during the execution of pro-

tocol π on inputs x and y with security parameter λ. This is the party’s input
and all received messages.

Definition 3.3 (Semi-Honest Security) Let f = (f1, f2) be a deterministic
functionality. A protocol π securely computes f in the presence of semi-honest
adversaries if there exists PPT algorithms S1,S2 and a negligible function µ
such that

Pr[outputπ
(x, y, λ) ≠ f(x, y)] ≤ µ(λ) ∀x, y, λ

and
{S1(1

λ, x, f1(x, y))}x,y,λ
c
≡ {viewπ

1 (x, y, λ)}x,y,λ

{S2(1
λ, y, f2(x, y))}x,y,λ

c
≡ {viewπ

2 (x, y, λ)}x,y,λ

where ∣x∣ = ∣y∣.

3.3 Private Set Intersection

The PSI protocol consists of a server (or sender) holding a set X and a client
(or receiver) holding a set Y . We assume that both sets consist of µ−bit strings
and ∣X ∣, ∣Y ∣ are publicly known with ∣X ∣ >> ∣Y ∣. The ideal functionality FPSI

takes X from the sender and Y from the receiver. It computes and outputs
X ∩ Y to the receiver and nothing to the sender, as described in Figure 1.
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Server (Sender) Client (Receiver)

FPSI
X Y

∅ X ∩ Y

Figure 1: Illustration of the PSI Functionality

3.4 Secure Branching Program Evaluation

Our protocol relies on a branching program (BP) that is represented as a tree.
We use the notation from the work of Janneck et al. [30]. We therefore start
by defining our data structure and shortly present the secure evaluation.

3.4.1 Data Structure

The data structure is a binary tree consisting of inner nodes and terminal nodes.
Each inner node has two child nodes and terminal nodes have no child nodes.
There is a node with no parent node that is called root node. Let v be a node
in the tree. We define a node data structure Node consisting of the following
attributes:

� v.parent: a value representing the pointer to the parent node,

� v.left: a value representing the pointer to the left child node,

� v.right: a value representing the pointer to the right child node,

� v.lEdge: a bit representing the edge label to the left child node,

� v.rEdge: a bit representing the edge label to the right child node,

� v.cLabel: a value representing a node label,

� v.level: an integer representing the node level in the tree,

� v.cost: an integer representing the cost on the path from the root.

The pointer to the parent node v.parent is initially null and points to the
respective parent node when the child node is created. This pointer remains
null for the root node. The pointers to the child nodes v.left, v.right are initially
null, and point to the respective nodes if they are created. The edge labels to
the child nodes v.lEdge, v.rEdge are 0 on the left and 1 on the right. The node
label v.cLabel is 0 or 1 for terminal nodes and undefined for inner nodes. The
level v.level is 1 for the root node, 2 for the child nodes of the root and so on.
The cost attribute v.cost is computed during tree evaluation.
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Algorithm 1 Evaluating Nodes by Computing Decision Bits

1: function EvalNodes(root, ⟦ȳ⟧)
2: let Q be a new queue
3: Q.enqueue(root)
4: parse ⟦ȳ⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧← ⟦y[v.level]⟧⊞ 0
9: Q.enqueue(v.left)

10: if v.right ≠ null then
11: ⟦v.right.cost⟧← ⟦y[v.level]⟧
12: Q.enqueue(v.right)

3.4.2 Algorithms

Computing Decision Bits. Let Y = {y1, . . . , yNY
} be the set of the client.

The client sends each input in Y bitwise encrypted to the server. For each y ∈ Y ,
let ȳ = y[1], . . . , y[µ] be the corresponding bit string and ⟦ȳ⟧ = ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
the corresponding ciphertexts. The server computes the decision bits at each
inner node v by comparing each ⟦y[i]⟧ against the edge labels of node v. This
comparison is a bit equality test that returns ⟦1⟧ if the two bits are equal and
⟦0⟧ otherwise. It is therefore implemented using the boolean Xnor gate. We
denote the encryptedXnor gate by ⊞. Note that we can neglect theXnor gate
on the right branch since the branch is labeled with 1. The computation of
decision bits is illustrated in Algorithm 1. The algorithm uses a queue with
enqueue and dequeue functions which add and remove elements. We can reduce
the complexity by computing the decision bit only once per level and use it for
any node at this level. This minimizes the number of evaluations to the depth
of the tree.

Aggregating Decision Bits. For each leaf node v, the server aggregates
the comparison bits along the path from the root to v. This is done using
homomorphic multiplication of the decision bits. The aggregated result is stored
at the leaf node of the corresponding path. We implement it by using a queue
and traversing the tree in BFS order as illustrated in Algorithm 2.

Finalizing. After aggregating the decision bits along the paths to the leaf
nodes, each leaf node v stores either ⟦v.cost⟧ = ⟦0⟧ or ⟦v.cost⟧ = ⟦1⟧. Moreover,
there is a unique leaf with ⟦v.cost⟧ = ⟦1⟧ and all other leaves have ⟦v.cost⟧ = ⟦0⟧.
Then, the server aggregates the costs at the leaves by computing for each leaf
v the value ⟦v.cost⟧ ⊡ v.cLabel and summing up the results of all leaves. This
computation is illustrated in Algorithm 3. Note that we only need a constant
multiplication in step 4 since the server’s labels are stored as plaintexts.
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Algorithm 2 Evaluating Path by Aggregating Decision Bits

1: function EvalPaths(root)
2: let Q be a queue
3: let leaves be a queue
4: Q.enqueue(root)
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧← ⟦v.left.cost⟧ ⊡ ⟦v.cost⟧,
9: if v.left.isLeaf() then

10: leaves.enqueue(v.left)
11: else
12: Q.enqueue(v.left)

13: if v.right ≠ null then
14: ⟦v.right.cost⟧← ⟦v.right.cost⟧ ⊡ ⟦v.cost⟧,
15: if v.right.isLeaf() then
16: leaves.enqueue(v.right)
17: else
18: Q.enqueue(v.right)

19: return leaves

Algorithm 3 Evaluating Leaves by Summing up the Costs at Leaf Nodes

1: function EvalLeaves(leaves)
2: ⟦b⟧← ⟦0⟧
3: for each v ∈ leaves do
4: ⟦b⟧← ⟦b⟧ ⊞ (⟦v.cost⟧ ⊡ v.cLabel)

5: return ⟦b⟧
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Figure 2: Binary Tree for X = {2,3,5}

4 Our Basic Protocol

We now describe how to use the BP evaluation to implement the PSI function-
ality.

Initialization. The Initialization consists of a one time key generation. The
client generates an appropriate triple (pk, sk, ek) of public, private and evalua-
tion keys for a homomorphic encryption scheme. Then, the client sends (pk, ek)
to the server. For each computation, the client just encrypts its input and sends
it to the server. As explained before, the actual computation on the binary tree
is done only by the server. The following steps describe the computation at the
server starting by creating the binary tree.

Creating the BP. Let X = {x1, . . . , x∣X ∣}, where all inputs have bitlength
µ. The server starts by creating a binary tree representing X. The basic idea
consists of creating a binary tree representing all bit strings of length µ. Then,
each leaf that represents an input in X is labeled with 1 (i.e. v.cLabel = 1),
otherwise the leaf is labeled with 0 (i.e. v.cLabel = 0). Finally, we can prune all
subtrees labeled with the same bit. That is, if an inner node v has two child
nodes labeled with the same bit b,we remove the child nodes of v from the tree
and transform v into a leaf node labeled with b, (i.e. v.cLabel = b). This BP
creation is denoted by CreateTree.

Note that at this stage the computation is done on the plaintext represen-
tation of X and is therefore very fast. As an example, assume that µ = 3 and
X = {2,3,5}, then the tree in Figure 2 represents the binary tree of X before
pruning. Finally, Figure 3 illustrates the pruned tree.

Putting It Together. As illustrated in Protocol 4, the whole computation is
performed by the server. The server first creates a tree representation of its input
X.Then, for each y ∈ Y the client sends the encrypted bit representation ⟦ȳ⟧
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Figure 3: Pruned Binary Tree for X = {2,3,5}

and the server sequentially evaluates nodes (Algorithms 1), paths (Algorithm
2), and leaves (Algorithm 3) as described in Section 3.4. The server sends the
resulting ciphertext, ⟦by⟧ encrypting either 1 or 0, to the client. The client
decrypts and learns the result: if by = 1 then y is in the intersection, otherwise
y is not in the intersection.

5 Extensions and Optimization

All of the optimization techniques presented in [30] can be used in our scenario.
In this section, we present some additional optimizations useful for the PSI
functionality and applicable to our basic protocol.

5.1 SIMD

Many commonly used FHE schemes are defined over a number field over a poly-
nomial, Z2[X]/F . Assume this polynomial to be F (X) ∈ Z2[X] of degree N .
We further assume that F (X) splits into s irreducible and distinct polynomials
of degree d = N

s
, i.e.

F (X) =
s

∏

i=1
Fi(X).

The encryption scheme is based on plaintext space Z2[x]/F . Using the Chinese
remainder theorem, this yields an isomorphism between the plaintext space and
the factors above, the so called slots

Z2[X]/F ≅ Z2[X]/(F1)⊗⋯⊗Z2[X]/(Fs) ≅ Z2d ⊗⋯⊗Z2d .

The isomorphism can be used to encode multiple inputs into each of these slots
and encrypt it accordingly. We can further apply slot-wise operations on the
ciphertexts and obtain SIMD (single input multiple data) operations. This
procedure is called ciphertext packing or just SIMD. More details can be found
in the work of Smart and Vercauteren [47].

A straightforward optimization is to encode multiple client’s inputs into one
chiphertext and evaluate the protocol once. This reduces the computation as
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Server (Sender) Client (Receiver)

Input: X Input: Y

Output: ∅ Output: X ∩ Y
root← CreateTree(X) for each i ∈ {1, . . . , ∣Y ∣} do

⟦yi⟧← Enc(pk, yi)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟦y1⟧ , . . . , ⟦y∣Y ∣⟧
for each i ∈ {1, . . . , ∣Y ∣} do

EvalNodes(root, ⟦yi⟧)
leaves← EvalPaths(root)
⟦byi⟧← EvalLeaves(leaves)

⟦by1⟧ , . . . , ⟦by∣Y ∣⟧
for each i ∈ {1, . . . , ∣Y ∣} do

byi ← Dec(sk, ⟦byi⟧)
Output: ∅ Output: {y ∈ Y ∣ by = 1}

Protocol 4: The Basic Protocol

well as the communication overhead depending on the slot size. For a slot size

of s, the overhead is reduced by factor ∣Y ∣
⌈∣Y ∣/s⌉ ≈ s.

5.2 Non-binary Trees

One generalization approach of [30] is to rely on an m-ary tree instead of a
binary tree. To this end, we have to parse the elements of the sets to base m
and create a tree with m children for each inner node. The client has to encrypt
values from {0, . . . ,m − 1} which reduces the number of ciphertexts being sent.
Moreover, the computation time on the server can be reduced as well since
the server can parallelize the execution of independent sub-trees. However, the
evaluation becomes more complex. One technique evaluates a polynomial on
each of the branches. More specifically for the i-th node and the j-th branch:

Pj(⟦y⟧) =
∏

m−1
k=0,k≠j(⟦y⟧ − k)

cj
,

12



xi

P0 =
(⟦yi⟧−1)(⟦yi⟧−2)

2

P1 =
⟦yi⟧(⟦yi⟧−2)

−1

P2 =
⟦yi⟧(⟦yi⟧−1)

2

Figure 5: Example of polynomial evaluation for m = 3 at node xi

for a constant

cj =
m−1
∏

k=0,k≠j
(j − k).

In the offline phase we can rewrite the polynomials to obtain the coefficient
form, i.e. an array of n coefficients starting with the highest degree xm−1:

(cm−1, . . . , c0).

An example is presented in Figure 5.
In the online phase, we only need the powers of y which might be compu-

tationally expensive. Then, we can use the coefficient forms to evaluate the
polynomials by using constant multiplications and additions.

Overall effort per tree level (online phase):

� Powers from y2, y3, . . . , ym−1 (ciphertext powers),

� m ⋅ (m − 2) =m2
− 2m constant multiplications,

� m ⋅ (m − 2) + 1 =m2
− 2m + 1 additions (+1 since the first polynomial has

a constant term).

We can further decrease the computational costs. So far, we implicitly as-
sumed the computation to be done over some field (we assumed cj to have an
inverse element). If we introduce some further constraints, some quite practical
consequences occur. For example, the output of the polynomial is either 0 or
1 and the input is at most m. Then, it is sufficient to compute over Zm which
is a field if we assume m to be prime.1 The improvement can be illustrated by
considering polynomial P0 which simplifies to

P0(y) = (y
m−1
− 1) ⋅ c−10 mod m,

which saves many computations.
Finally, we can introduce a trade-off between communication and computa-

tion overhead. The most expensive operations are ciphertext-ciphertext multi-
plications. For evaluating the polynomials for multiple branches, these are the

1Otherwise we could take the smallest prime larger than m.
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ciphertext powers. To save some computation time, the client could precompute
these powers. This can be done in the offline phase and especially on plaintexts
before the encryption step.

Note that we can phrase our approach as a secure search in a trie [22]. If
we push this variant to extremes, we could obtain a “tree” of depth 1 and have
to evaluate polynomials of a high degree. This results in previous PSI work
based on HE [9, 10, 13]. The work of Cong et al. [13] introduces very efficient
techniques to compute these polynomials by using special powers precomputed
by the client. They combine the special powers in different ways to obtain
all powers needed to evaluate the polynomials. The same procedure could be
applied to improve our extension.

5.3 Partition

To improve the computational overhead we can apply a partition on the server’s
set to allow for parallelization. The server can partition its set X = ⋃n

i=1Xi with
Xi⋂Xj = ∅ for i ≠ j. We obtain

Y ⋂X = Y ⋂(⋃
i

Xi) =⋃
i

(Y ⋂Xi).

Thus, we can apply an intersection procedure on each subset and aggregate the
result. Note that we get a boolean result for every y ∈ Y indicating if y is in X.
Since the subsets Xi are disjoint, y can be in at most one subset and we can
just add up the results to obtain the overall result.

6 Our Full Protocol

Using hashing schemes, we can improve the computation time significantly. In-
stead of comparing each element of Y with each element ofX, we hash the values
to multiple bins and only compare elements in the same bin. The application of
hashing schemes for PSI protocols is well established [9, 10, 13, 37, 40, 41]. The
most common schemes are simple hashing, and Cuckoo Hashing or its variants
[36]. Another variant is permutation-based hashing, which was first used for
PSI by Pinkas et al. [37]. It can also be combined with Cuckoo Hashing.

6.1 General Construction

We start by describing the components of our full protocol as a general con-
struction which is then instantiated by two variants.

Cuckoo Hashing. The basic idea of optimizing the protocol via hashing is
based on the work of Chen et al. [10] and described in the following. The
client builds a hash table with β bins of at most one element using Cuckoo
Hashing with h hash functions. The number of bins should be sufficient such
that a hashing failure occurs with negligible probability. The introduction of
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a constant-size stash can reduce the failure probability. The server hashes its
elements into β bins using simple hashing and all h hash functions. We have to
apply all the hash functions since the server does not know which hash function
was used to hash a client’s element into a specific bin. Note that the bin size of
the server will be much larger than one.

Using this construction, we can correctly compute the intersection by com-
puting the intersection of each bin. That is because the server used all hash
functions. If an element of the client is hashed to bin Bi, the same element is
also hashed to the same bin if it occurs in the server’s set. However, the client
should pad all the empty bins with a dummy element to prevent any leakage. If
we use a stash, all elements of the stash have to be compared to all the server’s
elements. Depending on the construction, this can be more efficient than choos-
ing larger Cuckoo Hashing parameters. In our case, a stash would lead to a
significant overhead using the described procedure. That is why we must rely
on larger Cuckoo parameters to reduce the collision probability.

Packing the Client’s and Server’s Elements. The idea of the packing
technique is to use only one or a few evaluations to evaluate all the elements at
the same time. To this end, we want to apply the SIMD technique from Sec-
tion 5.1 on all the bins. The client’s side is straightforward since we bound the
client’s bin size at one and can therefore pack each element into one slot. Hence,
we can evaluate multiple inputs on one tree but we need to evaluate multiple
inputs on multiple trees since we have different elements in the server’s bins.
We can pack the server’s elements as well but with some slight modifications.
Note that the main evaluation of our protocol is generic, i.e. independent of
the actual underlying elements to be intersected. In fact, we can evaluate the
branching program except the leaf evaluation for all the inputs and apply the
leaf aggregation using packed elements. In more detail, we encode multiple leaf
node labels into one Node.cLabel and evaluate Algorithm 3 using a SIMD multi-
plication. That allows the application of multiple inputs on multiple programs
and hence the intersection on each bin with only one program evaluation.

As in the case of packed inputs, we have an additional restriction. The
number of elements per bin may not exceed the number of slots of a ciphertext.
This can be a problem for larger server sets. It can be avoided by choosing a
larger number of bins and compute on batches in the size of ciphertext slots but
that requires further evaluation procedures. In the following we present a more
efficient variant. We can batch the server’s elements such that each batch fits
into the encoding of one ciphertext. The evaluation of the tree can then be done
once and the leaf evaluation is done for every batch separately. The results of
the batches are aggregated using an Xor operation. We can slightly change
the data representation and let cLabel be a vector such that every entry encodes
as many elements as there are available slots. The changes to Algorithm 3 are
presented in a modified variant, Algorithm 4. To keep our notation correct, we
must also adjust the tree generation algorithm to allow for multiple labels and
hence represent multiple trees. We denote this algorithm by CreateTreeMT.
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Figure 6: Graphical Representation of Example 6.1

Algorithm 4 Evaluating Leaves for Multiple Trees

1: function EvalLeavesMT(leaves)
2: ⟦b⟧← ⟦0⟧
3: for each v ∈ leaves do
4: for each label ∈ v.cLabel do
5: ⟦b⟧← ⟦b⟧ ⊞ (⟦v.cost⟧ ⊡ label)

6: return ⟦b⟧

Example 6.1 Let us consider the following example which is graphically pre-
sented in Figure 6. The client holds set Y = {2,4} and the server holds set
X = {1,2,3,7}. They hash into three bins and the client obtains via Cuckoo
Hashing with two hash functions: B1 = {2},B2 = {δ},B3 = {4} where the
second bin was empty and filled with a dummy element δ. For this example,
we assume the dummy element to be 0. The server uses simple hashing and
hashes every element using both hash functions. It obtains the following bins
B′1 = {1,2,7},B

′
2 = {1,3},B

′
3 = {2,3,7} Then, the server builds a single tree

in which the leaf labels are arrays of size three since we have three bins. Posi-
tion i in the array indicates if the respective element is in bin B′i. We obtain
(0,0,0), (1,1,0), (1,0,1), (0,1,1), (0,0,0), (0,0,0), (0,0,0), (1,0,1). In the on-
line phase, the client send a packed input, i.e. a bit representation of (2,0,4).
Evaluating the BP, we obtain the results for the inputs. Multiplying with the
server’s labels and summing up yields the bin-wise result.

Since the batching builds a partition on the bin’s elements (the elements in
each bin are still a set), the result is still correct. For the correctness of comput-
ing the intersection on partitions, see Section 5.3. A drawback of the hashing
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procedure is that we limit the usability or the impact of some optimization tech-
niques from the previous section. We have to keep a generic structure where
all the server’s element can be represented. Tree optimizations like pruning
can only be applied if the requirements are fulfilled for all the elements we are
evaluating the BP on. For the example above, we can only prune leaves 4 and
5 whereas in the original representation of the set the graph structure can be
optimized further. For a larger set and especially for a larger number of bins,
the probability of reductions decreases significantly.

Size of Elements. For some real world applications it might be necessary to
apply the protocol to any data representation such as phone numbers, passwords
or arbitrary files. Hashing the input elements solves the problem of different
data representations since we can intersect the sets of hashes. Using standard
hashing schemes, we obtain outputs of 128 or 256 bit which would lead to very
inefficient protocols since our complexity is based on the data representation,
i.e. the length of elements. However, we can truncate the hash values to σ bit
since we are only interested in matching values and the probability of a collision
is still negligible for a smaller domain. For the probability of a collision to be
smaller than 2−40, we need the bit-length to fulfill 40 + log ∣X ∣ + log ∣Y ∣ ≤ σ [9].
Note that the smaller hashing domain does not have any security implications
since we compare encrypted hash values. Instead of sets X and Y , we now
compare hashed sets X̃ and Ỹ .

A graphical presentation of the procedure can be found in Figure 7. It
describes the PSI computation for hashed sets Ỹ and X̃. The client uses Cuckoo
Hashing into β bins B1, . . . ,Bβ and the server uses simple hashing into the same
number of bins B′1, . . . ,B

′
β . We use ◻ to denote an element of a bin. The term

“Packed PSI” refers to an application of the packed protocol as described before.
The general construction is illustrated in Protocol 9. We assume the follow-

ing common inputs: r = ⌈β
s
⌉ the number of batched values, H1, . . . ,Hh the hash

functions for Cuckoo Hashing, and dummy element δ. As subroutines we use
SimpleH() and CuckooH() to denote the simple hashing or Cuckoo hashing
procedure returning a two- or one-dimensional table. Ciphertext packing or
SIMD as described in Section 5.1 is represented by two subroutines. To encode
multiply values into one plaintext, we use the routine Encode(). The inverse
operation is denoted by Decode().

The evaluation of σ-bit values and hence the evaluation of a tree of depth σ
can be further optimized. We have two variants to reduce the representation size.
One is a deterministic variant (Section 6.2) using permutation-based hashing
and the other one is a probabilistic variant (Section 6.3) using universal hashing.

6.2 Deterministic Variant

To improve the solution, we can use permutation-based hashing (PBH). PBH
reduces the bit-length of elements that are stored in the bins [1]. This improve-
ment suits our protocol very well since our comparison overhead mainly depends
on the bit-length.
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Figure 7: Schematic PSI Computation: On the left side, the client uses cuckoo
hashing to hash the set Ỹ into β bins. On the right side, the server uses simple
hashing to hash the set X̃ into β bins.

For example, if we consider 32-bit integers and choose β = 220 bins (see [37]),
the elements in the bins have only 12 bits. We can then apply our PSI protocol
for each bin and rely on comparisons of 12-bit values instead of 32 bits.

PBH ensures that two hash values which are equal and stored in the same bin
represent the same value. The Cuckoo Hashing construction from the previous
section also ensures the correctness of the comparison. However, combining
the two techniques yields a correctness issue. The correctness of PBH is based
on using the same hash function but in Cuckoo Hashing we are using multiple
hash functions. Consider the following example: Let x ≠ x′ be two elements
of length µ with xR = x′R. If we apply different hash functions H1,H2 on xR

and x′R, we probably obtain H1(xR) ≠ H2(x
′
R). Hence, it might also hold

xL ⊕H1(xR) = x
′
L ⊕H2(x

′
R) and they are stored in the same bin even though

they are different elements.
We overcome this problem by appending a hash identifier on the element

stored in the bin. Thus, we only recognize elements which are the same if they
were hashed using the same hash function. For h hash functions, this increases
the size of elements by log(h) bits, which again increases the depth of the BP.
However, this increase is constant-size and for our practical implementations it
is much less significant than the benefits of PBH which depends on the number
of bins.

6.3 Probabilistic Variant

A drawback of the general construction is that the computation time depends
exponentially on the domain of the server’s values. In the previous section,
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we restricted the domain by using permutation-based hashing but it might still
be much larger than the number of server elements. Therefore, we introduce
a method to limit the domain to approximately the number of elements we
are evaluating on. As a result, the computation time does not depend on the
representation of elements anymore but on the server’s set size.

Bloom Filter. The presented method has some similarities with bloom filters.
A bloom filter [4] is a space-efficient but probabilistic data structure. It can
represent a set of elements and one can check if an element is in the set via
a bloom filter query. A bloom filter of m bits is initialized by m 0-values. It
is filled by the following procedure. Hash an element x via k hash functions
H ∶ {0,1}∗ → {1, . . . ,m} to obtain k positions in the domain {1, . . . ,m}. Then,
set the bits on these positions to 1. To query for an element, one has to hash
the element using the same k hash functions and check if all the positions are
1. Hence, we might obtain false positive results if some of the positions were
coincidentally set by different elements. Tuning the size of the filter and the
number of hash functions can bound the probability of false positives. Bloom
filters, or an alternative called Cuckoo Filters [20], have been used in the context
of PSI before [31, 43]. However, these techniques are not able to reduce the
domain into a range which is approximately the number of elements in the bins.
We construct the following technique.

Our Construction. We keep the notation from the bloom filter description
above. Our goal is to choose a small m since our evaluation depends on the size
of the elements compared. We hash as in Bloom Filters but build a BP using
the hash positions. Let us first consider the approach for one bin. Let S be the
number of elements in that bin. We choose m to be approximately the same
as the number of elements S inserted and insert only the position for one hash
function. For a random function, the probability of a collision with only one
element in the bin is obviously 1

m
and the probability of no collision 1− 1

m
. The

probability for no collision with S elements in the bin is therefore

(1 −
1

m
)

S

.

Taking the complementary probability, we obtain the collision probability for
the whole bin:

1 − (1 −
1

m
)

S

. (1)

Depending on the chosen parameters, this might be too large and would lead to
a high false positive rate. However, if we apply the procedure multiple times, we
can reduce the collision probability and therefore the false positive rate while
the domain m on which we evaluate our comparison stays small. To apply
the procedure multiple times means to evaluate the procedure on different hash
values.
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As for bloom filters, we choose k hash functions and apply the procedure k
times. The BP is then evaluated on the hashed values and the results are multi-
plied. Thus, only if all k results indicate that the element is in the intersection,
it will be accepted. We only obtain a false positive result if there are collision
with all k hash functions. The aggregation of results increases the multiplicative
depth by log k.

This variant is depicted in Protocol 10. In addition to Protocol 9, we assume
further common inputs. Let Ĥ1, . . . , Ĥk be hash functions randomly chosen from
a hash family. For example, the functions can be chosen by the client and then
distributed together with the parameters of the encryption scheme

If the hash functions are well chosen, the false positive probability can be
bounded from above. For a false positive result, the elements must collide under
all k hash functions. Hence, using Equation 1, we obtain

(1 − (1 −
1

m
)

S

)

k

.

Note that this upper bound assumes that events of a collision with different
hash functions are independent. This bound holds if we use universal hashing
[8].

Definition 6.2 (Universal Hashing Family) A family of hash functions H =
{H ∶ U → {1, . . . ,m}} is called universal if

∀x, y ∈ U,x ≠ y ∶ Pr
H∈H
[H(x) =H(y)] ≤

1

m
.

In fact, the events are not independent but the bound is even lower, i.e. our
construction is actually more efficient in terms of false positive results. We
have to ensure that a collision with one hash function does not imply a higher
probability of collision with another hash function. Using universal hashing, it
is the other way around, i.e. the probability of another collision decreases.

Theorem 6.3 Let H = {H ∶ U → {1, . . . ,m}} be a universal hash family with
m > 1. Then, for every elements x, y ∈ U and every k > 1 it holds

Pr
Hk∈H∖{H1,...,Hk−1}

[Hk(x) =Hk(y) ∣H1(x) =H1(y), . . . ,Hk−1(x) =Hk−1(y)] <
1

m
.

The proof can be found in Appendix B.3.

Choice of Parameters. An open problem is to determine S, the numbers
of elements to be hashed. For the hashing scheme described in Section 6.1,
we evaluate the intersection bin-wise. Hence, we need the maximal number of
elements per bin over all bins. We can compute an upper bound which is fulfilled
with high probability. The upper bound is based on the number of bins which
is determined by the client’s set size and the number of the server’s elements,
which are both publicly known. Based on the maximal bin size, both client

20



and server can agree on the number of hash functions k. The client sends the
corresponding k hash values for each element.

The server can now evaluate the procedure on its bins. To reduce the com-
putation time, the server can possibly save some operations by using additional
information of its own set. After the hashing-to-bins-step, the server knows the
actual maximal number of elements over all bins. Therefore, the server needs
only as many iterations k as needed to fulfill the false positive requirements.
This might be smaller than the theoretical bound. Note that revealing the ac-
tual number would leak some information about the server’s set. To further hide
this information, the server should execute some additional operations on the
final results to achieve the same amount of noise as for the theoretical bound.
Note that this procedure still decreases the computation time since only the
multiplications to combine the results of different hash functions are applied
and the basic BP evaluation can be saved.

7 PCI and Extended Functionalities

In this section, we present possible extensions to our PSI protocol starting with
examples for PCI. Furthermore, we consider Updatable PSI, Labeled PSI, and
the possibility to outsource the computation to a third party.

7.1 PCI

Our goal was to construct a protocol that allows Private Computation on Set
Intersection (PCI). Our construction computes the intersection between the
client’s set Y and the server’s set X. More specifically, the servers computes
an encrypted bit ⟦by⟧ which tells if y ∈ X ∩ Y . The output makes it possi-
ble to do any further computations on the intersection without first decrypting
the result. This property has two advantages. First, we do not reveal the in-
tersection itself to any of the parties which allows a simple extension without
modifying the PSI protocol and obtaining a secure protocol at the same time
(assuming the applied extension is secure). Second, we do not even need an-
other interaction between the parties since the server has a meaningful output.
Previous low-communication PSI protocols lack these two properties [9, 10,13].
Some examples for PCI are PSI-CAT [23,26], Threshold-PSI [23], and PSI-Sum
[38,39]. We start by describing solutions for these common PSI extensions and
then generalize the construction to allow for arbitrary extensions.

PSI-CAT. In PSI-CAT the goal is to reveal only the cardinality of the inter-
section. We can homomorphically compute the size of the intersection S:

⟦S⟧ =
∣Y ∣

∑

i=1
⟦byi⟧ .

Then, ⟦S⟧ can be sent to the client.
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Threshold-PSI. In Threshold-PSI the goal is to reveal the intersection or the
intersection size only if it exceeds a specific threshold t. In a first step, we can
compute the size of the intersection as above:

⟦S⟧ =
∣Y ∣

∑

i=1
⟦byi⟧ .

We can then apply a homomorphic comparison to a plaintext threshold and
obtain

⟦bCAT ⟧ = ⟦S ≥ t⟧ .

For secure integer comparison, we refer to Tueno and Janneck [48].
For the variant where the size should be revealed, the server can send

⟦bCAT ⟧ ⊡ ⟦S⟧

to the client. For the variant revealing the intersection, the server sends

⟦bCAT ⟧ ⊡ ⟦byi⟧ ∀i = 1, . . . , β.

Note that the computations need additional multiplications. However, the num-
ber of operations is known to both parties and the parameters for the scheme
can be chosen accordingly or the intersection result can be bootstrapped.

PSI-Sum. In PSI-Sum, the goal is to sum up payloads associated with each
input for all the inputs of the intersection. Let pi be the payload corresponding
to element yi. Then, we obtain the result

⟦bsum⟧ =
∣Y ∣

∑

i=1
⟦byi⟧ ⋅ pi.

Note that this construction does not even need a homomorphic multiplication.
We can even go a step further and consider the case of private payloads,

i.e. payloads pi are only known to the client. In this scenario, the client can
send encryptions of pi to the server and the server can then homomorphically
compute

⟦bsum⟧ =
∣Y ∣

∑

i=1
⟦byi⟧ ⊡ ⟦pi⟧ .

PCI-capable PMT. Many PSI protocols, including ours, can be seen as the
combination of Cuckoo hashing and a secure private membership test (PMT)
protocol. PMT protocols enable a client to test for one element y whether it is
included in a set X given by the server. Performing a PMT for every element in
the Cuckoo hash table yields a secure PSI protocol. However, this construction
does not allow PCI since the client receives the PMT result. Ciampi and Orlandi
describe a variation of the PMT functionality that allows arbitrary PCI. Here,
instead of a boolean b indicating whether y ∈ X, the client learns γ1 if y ∈ X
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and γ0 otherwise. Both γ0 and γ1 are arbitrary strings input by the server.
To support PCI, γ0 and γ1 could encode input wire labels for garbled circuits,
secret-shares of the PMT result b for arithmetic circuits [15] or HE ciphertexts
Enc(b) where the server holds the secret key. Our protocol can also realize this
PMT variation if the server sends back

γ1
⋅ ⟦byi⟧ ⊞ γ

0
⋅ ⟦1 − byi⟧ .

Generalization The previous examples describe customized functionalities
on the calculated intersection which are of practical interest. With the PCI-
capable PMT approach, any functionality f can be computed on the intersection
[11]. Formally, given a function f that should be applied to the intersection, we
can securely compute the ideal (asymmetric) PCIf functionality defined as

F
PCIf

(X,Y ) = (F
PCIf
1 (X,Y ),F

PCIf
2 (X,Y )) = (∅, f(X ∩ Y )).

in the semi-honest security setting. However, using Ciampi and Orlandi’s PCI-
capable PMT approach, either the client has to perform the PCI computation2

or at least one more round of communication is needed. In our case, we can
simplify the PCI computation without additional rounds of communication.
Remark, in our protocol, the client sends the encryption of all elements ⟦yi⟧
to the server. Since the server also obtains ⟦byi⟧ = ⟦1⟧ if yi ∈ (X ∩ Y ) and

⟦byi⟧ = ⟦0⟧ otherwise, the server can (efficiently) construct FHE circuits f̂ to
compute any functionality f on the intersection. This construction is the same
as the FHE-based PCI-capable PMT approach but on the server’s side and with
encrypted client elements. Such generic computations are possible because the
server can address each element of the intersection on its own using a homomor-
phic multiplication of the boolean output and the element. For example, adding
intersection elements to an arbitrary encrypted value ⟦x⟧ can be implemented
by computing

⟦x⟧ ⊞ (⟦byi
⟧ ⊡ ⟦yi⟧) . (2)

If the element is not in the intersection, 0 is added. Dealing with elements that
are not in the intersection (i.e. ⟦byi⟧ = ⟦0⟧) seems to be an unavoidable overhead
since the size of the intersection needs to be hidden from the server (or even
from the client itself).

Now for PCIf , in the online phase, instead of sending back ⟦byi
⟧, the server

evaluates and sends f̂ ((⟦by1⟧ , . . . , ⟦byβ
⟧), (⟦y1⟧ , . . . , ⟦yβ⟧)) to the client. An

overview is depicted in Protocol 11. Note, in our improved protocol we operate
on packed ciphertexts. However, generic computations as described above are
still possible with packed ciphertexts. Addressing all the elements separately,
e.g., to compute the sum, can be achieved by rotations [25]. Thus, we aggregate
multiple packed ciphertexts into one tuple and evaluate the homomorphic circuit
on these tuples.

2In the secret-sharing scenario, the server and client jointly perform the PCI computation.
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7.2 Updatable PCI

For many real-world applications of PSI, like contact discovery [19], it is desir-
able to support updates of the input sets (and the resulting intersection) without
executing the whole PSI protocol again. A proposed requirement for updatable
PSI is that the complexity of an update should only scale with the size of the
update (i.e. the number of additions and deletions). Kiss et al. [32] and Badri-
narayanan et al. [2] introduce different updatable PSI models and protocols that
(partially) meet this complexity requirement. Our protocol can support efficient
updates of the server set where updates are assumed to happen more frequently.
In the full protocol execution, we store the encrypted client elements ⟦yi⟧ for all
bins i ∈ {1, . . . , β}. Afterwards, for adding or deleting a server element x, the
server computes all h bin indices J ∶= {H1(x), . . . ,Hh(x)} ⊆ {1, . . . , β} where x
could be placed. The server homomorphically compares

⟦x = yj⟧ ∶= x[1]⊞ ⟦yj[1]⟧ ⊡ ⋅ ⋅ ⋅ ⊡ x[µ]⊞ ⟦yj[µ]⟧

for each bin j ∈ J . Further, the server computes x ⊡∑j∈J ⟦x = yj⟧ (in a larger
plaintext space) and sends it back to the client. If the client obtains ⟦0⟧, the
only revealed information is that an item (which is not part of the intersection)
has been updated. If the result is ⟦x⟧, it depends on whether x has already been
in the calculated intersection. If yes, the client learns that x has been removed
from the server set and thus the intersection. Otherwise, the client adds x to
the intersection. As such, server additions and deletions are performed in the
exact same way.

However, such updates allow no generic PCI on an updated intersection. Our
protocol can support server updates with a computation complexity of O(∣Y ∣)
which can be used for generic PCI without additional client interactions. We
extend the previous update approach as follows. In the full protocol execution,
the server additionally stores all bin results ⟦byi⟧. Now, the encrypted booleans
for PCI are updated as ⟦byj

⟧ = ⟦byj
⟧⊞⟦x = yj⟧ for j ∈ J . For all other bin results

⟦byi⟧, the server adds ⟦0⟧ (with the same noise level as ⟦x = yj⟧) to hide which
bins have been updated. Remark that both update approaches can be easily
adjusted to work with permutation-based hashing and packed ciphertexts.

7.3 Labeled PSI

Labeled PSI has been considered in recent works on PSI based on homomorphic
encryption [9, 13]. In labeled PSI, the sender holds a label Li for each of its
elements x ∈ X. In addition to the intersection, the receiver obtains label Li

for each item in the intersection, i.e. yi ∈ X ∩ Y . In previous techniques,
the sender builds interpolation polynomials which are then evaluated on the
encrypted receiver’s input. The receiver obtains the label if the element is in the
intersection and a random element otherwise. Such a construction introduces
additional computation and communication overhead.

In contrast, our protocol can be adapted with nearly no additional com-
putation or communication overhead. In the final step of our BP evaluation
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algorithm (Algorithm 3), we just multiply the cost of the paths with the label
of the leave nodes. In the standard PSI case, these labels are 1 or 0 indicating
if the element is in the set. For labeled PSI, we can replace the 1’s with the
corresponding label. Thus, the client obtains the label if the element is in the
intersection and 0 otherwise. The computational overhead stays the same. The
same holds for the communication overhead except for the case in which we
need a larger larger ciphertext to represent the labels than we would needed in
the standard PSI case.

7.4 Third-Party Computation

Our protocol is built for a client-server scenario in which the server holds the
larger set and has a lot of computation power. In case the latter is not given, the
server might outsource the computational effort to a third party. With some
slight modifications, we are able to extend our protocol such that the server
can outsource the main computation to a third party in a secure way. Like
the client, the server encrypts its program and the third party can evaluate the
protocol on encrypted inputs Y and an encrypted tree built from X. To this
end, the server applies the hashing procedure, builds the tree and encrypts the
leaf node labels. Then, the server sends the encrypted labels to the third-party
which can then use the standard evaluation process with only one difference.
The multiplications with leaf nodes are no longer constant multiplications but
ciphertext-ciphertext multiplications. In this scenario, we cannot apply direct
tree optimization procedures since the leaf nodes would not be unambiguous
anymore. The client can decrypt the result using the help of a proxy [24]. An
extension to also obfuscate possible optimization is described in Appendix C.

8 Analysis

We first present a security analysis of our protocol followed by some complexity
considerations.

8.1 Security

General Remark. Common security definitions, e.g. Definition 3.3, assume
the inputs x, y to have the same bitlength, i.e. ∣x∣ = ∣y∣. For our unbalanced PSI
setting this seems not to be the case at first glance since the sets have different
sizes. This is a general problem which is mainly of formal nature but is not
explicitly discussed in the literature. However, we can still adjust our model to
fulfill the formal requirements. Note that both set sizes as well as the length of
elements are common knowledge. Hence, the client with the smaller set could
pad its input to the same bitlength as the larger set. Both the ideal functionality
and the protocols do not use the additional “input”. In this way we can bypass
the formal problem without changing any functional aspect. In the following,
we ignore the padding step to not make the proofs unnecessarily complicated.
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Semi-Honest Security. To give an intuition, let us first consider the security
against a semi-honest adversary in an informal way. We have dealt with cor-
rectness in the previous sections. Regarding privacy, we must think about what
a corrupted party can learn. On the one hand, the server operates on IND-CPA
ciphertexts, i.e. does not have any (unencrypted) information belonging to the
client. Thus, a corrupted server should not be able to learn anything. On the
other hand, the only result the client receives from the server is the bit indicat-
ing if its element is in the server’s set. This information would be learned by
the client anyway because the required client output is the intersection.

Theorem 8.1 (Semi-Honest Security of Full Protocol) If the underlying
encryption scheme is IND-CPA secure, the full protocol with the general con-
struction (Protocol 9) ΠPSI securely computes functionality FPSI in the presence
of a semi-honest adversary.

Theorem 8.2 (Semi-Honest Security of Deterministic Variant) If the un-
derlying encryption scheme is IND-CPA secure, the full protocol with the deter-
ministic variant ΠPSI (Section 6.2) securely computes functionality FPSI in the
presence of a semi-honest adversary.

Theorem 8.3 (Semi-Honest Security of Probabilistic Variant) If the un-
derlying encryption scheme is IND-CPA secure and the chosen hashing family
is universal, the full protocol with the probabilistic variant ΠPSI (Protocol 10) se-
curely computes functionality FPSI in the presence of a semi-honest adversary.

Theorem 8.4 (Semi-Honest Security of PCI) If the underlying encryption
scheme is IND-CPA secure, the PCI construction (Protocol 11) for a function
f , ΠPCIf , securely computes functionality FPCIf in the presence of a semi-honest
adversary.

Proofs can be found in Appendix B.1.

Receiver Privacy in Case of a Malicious Sender. For a malicious server,
we can additionally guarantee privacy for the client. To obtain a full simulation,
we would need (among other things) to ensure correctness of the output. Our
protocol does not provide such a property since the sender can do arbitrary
computations on the receiver’s input, e.g., outputting the whole input set as an
intersection result or an empty set. However, we can at least ensure privacy of
the receiver in the setting of a malicious sender. In our scenario, this is very
simple since we can use a definition of privacy for the case the sender does not
obtain an output [27]. This yields the following privacy property

{ViewAπ,A(z),1(X,Y,λ)}X,Y,Y ′,z,λ
c
≡ {ViewAπ,A(z),1(X,Y ′, λ)}X,Y,Y ′,z,λ,

for a PPT adversary A with auxiliary input z.

Theorem 8.5 (Receiver Privacy) If the underlying encryption scheme is IND-
CPA secure, the full protocol with the general construction π (Protocol 9) fulfills
receiver privacy in the presence of a malicious sender.
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A proof can be found in Appendix B.2. The same technique can be used to
prove receiver privacy in the malicious setting for the other protocol variants,
similar to the semi-honest setting.

Security in the Third-Party Setting. The easiest way to securely imple-
ment the third-party setting (Section 7.4) is to encrypt both the client and
server input with the client’s public key. Then, client and server send their in-
puts to the third party. To obtain the same security properties, we additionally
have to assume non-colluding parties, especially no collusion between client and
third-party. Otherwise all of the server’s input could be easily extracted.

8.2 PSI Extension

Our goal was to design a protocol with low communication costs, as well as the
ability to enable PCI. With our protocol, we can combine the PSI computation
with any computation, i.e. for any functionality f , we can compute f(X ∩ Y )
without revealing X ∩ Y . The complexity of the extensions mainly depends
on the complexity of the function that should be applied, i.e. the number
of operations of the corresponding FHE circuit. Unfortunately, we apply the
operations on O(∣Y ∣) elements because the server does not know which of the
elements are in the intersection. As described in Section 7.1, we argue this is
a necessary overhead to hide the size of the intersection. Still, in our improved
protocol this does not make a big difference since we are operating on packed
ciphertexts anyway.3 Compared to a plain circuit of f , we might need additional
operations in some cases. In Section 7, we show how to retrieve the encrypted
input elements by multiplying with the boolean result. If the PCI functionality
operates on original elements, we have to apply these operations. Note that our
applications of the standard PSI extensions (PSI-CAT, PSI-Sum, Threshold-
PSI) only operate on the encrypted result bits and therefore do not need to
include the encryptions of the client elements.

8.3 Complexity

We consider both communication and computation complexity starting with
communication, for which our goal is to achieve a sublinear overhead.

8.3.1 Communication

Using HE, we can achieve communication sublinear in the larger set since we can
shift most of the computation to one party and only need to communicate the
initial inputs. Thus, instantiating our protocol with an FHE scheme, we would
get a communication complexity independent of the server’s set, i.e. O(∣Y ∣).
In practice, a leveled FHE scheme is often the more efficient choice because it
is a lot faster. However, in terms of communication we have a new problem.

3It does affect the asymptotic behavior, and is especially prevalent in cases where the
client’s set is large, which does not fit into our setting.
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Leveled FHE has an additional depth parameter D as an input and only allows
to evaluate circuits of depth at most D. The circuit the server has to evaluate
depends on its set and for a larger set, the depth of circuits increases as well. For
both variants, the depth of the BP to be evaluated increases logarithmically with
the size of the server’s set, i.e. for a BP depth d, it holds d ∈ O(log ∣X ∣). We are
able to evaluate a BP of depth d with a multiplicative depth which is logarithmic
in the BP depth. For detailed information, we refer to the work of Janneck et al.
[30]. Combining these results, we obtain an overall multiplicative depth D with
D ∈ O(log log ∣X ∣). Commonly used leveled FHE schemes like BGV [7] or BFV
[5,21] introduce quasipolynomial communication overhead, in detail Õ(D2

) for
depth parameter D. Hence, we obtain communication cost Õ(∣Y ∣(log log ∣X ∣)2).
The communication cost still depends on the server’s set but in a magnitude
which is really small for real-world applications.

8.3.2 Computation

The computational complexity is the weak point of our protocol since it asymp-
totically depends exponentially on the element size or the server’s set size. The
reduction mechanisms can reduce the complexity to evaluate the BP but as
mentioned in Section 6 their impact is significantly reduced using the hashing
construction. Other optimizations such as PBH and the probabilistic variant
can reduce the computation time but do not decrease the overhead in terms
of the asymptotic complexity. However, for practical uses it has a significant
impact and can make the protocol applicable for real world applications. In
the following we present the number of operations to give an overview of the
variants of our protocol.

Deterministic Variant. Let s be the number of slots for plaintext encod-
ing and β the number of bins required for the Cuckoo Hashing (depends on
the client’s set size ∣Y ∣) and σ the bitlength of input elements. We apply the
complete procedure ⌈β

s
⌉ times.

Each procedure consists of a SIMD BP evaluation of depth σ−logβ (because
of PBH). Such a BP evaluation needs 2d multiplications for d the depth of the
BP. If the depth is of relevance, we can compute the BP with logarithmic depth.
In this case, we need even more multiplications, approximately log d ⋅2d log d [30].

Since σ ∈ O(log ∣X ∣), we obtain a depth D ∈ O(log log ∣X ∣). This matches
the results of the previous subsection.

Probabilistic Variant. In addition to parameters s and β from the deter-
ministic variant, we also need to consider the number of hash functions k. We
now need ⌈β

s
⌉ ⋅ k SIMD BP evaluations. The depth of such a BP does not de-

pend on σ anymore but on a chosen parameter m which is the size of the image
of the hash functions. We have chosen m near S, the number of elements in
the server’s bins. The parameter S depends on the size of the server’s set, the
number of bins, and the actual values. We refrain from a detailed analysis and

28



only present the average to give a rough overview. The average number of ele-
ments is ∣X ∣/β and thus m and the BP depth are of the same magnitude. For
a concrete analysis, we have to compute an upper bound which will be higher
than the average case.

For the probabilistic variant, we have to take the additional multiplications
based on the second hashing procedure into account. For k hash functions, we
need k multiplications for each of the ⌈β

s
⌉ rounds which increases the multiplica-

tive depth by log k, which is a constant factor.

9 Evaluation

In this section, we describe implementation details and present the results of
our evaluation.

9.1 Implementation

We implemented both variants of our protocol as a proof of concept. The
implementation is based on BGV [7] from HElib [44]. Since the evaluation
of a branching program is a basic building block of our protocol, we base its
implementation on Janneck et al. [30]. For Cuckoo Hashing, we used three
hash functions and Tabulation Hashing [8] which has been proven to provide a
low hashing failure rate [42]. The number of bins is at least β = 1.5 ⋅ ∣Y ∣ which
yields a very low failure probability of less than 2−40 [41]. To instantiate the
hash functions of our probabilistic variant, we relied on the linear congruential
hash family which is known to be universal [8]. We conducted experiments with
different parameters to elaborate advantages and disadvantages of our methods.
All experiments were performed on an AWS instance equipped with 24 virtual
cores of an Intel Xeon scalable processor with up to 4GHz and 192 GB of RAM
running Ubuntu 20.04.

9.2 Experimental Results

We start by examining the communication results and then explore the compu-
tation results.

9.2.1 Communication

In the theoretical analysis in Section 8.3 we have seen that we achieve a commu-
nication overhead sublinear in the server’s set. This is a substantial improvement
compared to previous PCI work [11, 34]. In Table 1 and Figure 8, we present
the communication in MB between client and server for different sizes for our
protocol and previous work executing the PSI functionality. The data of the
previous work is estimated using the analysis of Ma and Chow [34], our data is
measured during the protocol execution. We use the unbalanced setting, with
size ∣Y ∣ = 500 for the client’s set and different sizes of the server’s set. The
protocol of Ma and Chow has better communication than Ciampi and Orlandi
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for server set sizes 220 and larger. Our protocol has a larger communication
overhead for small sizes of the server’s set but has a significant improvement on
larger sets. For ∣X ∣ = 224 we can reduce the communication by factor 47.

Table 1: Communication (in MB) for Different Server’s Set Sizes and Different
Numbers of Hash Functions k for Our Probabilistic Variant

Server’s Set Size ∣X ∣ 212 216 220 224

Ciampi and Orlandi [11] 41 299 3605 53204
Ma and Chow [34] 54 339 3465 41480
Ours (k = 8) 141 223 332 441
Ours (k = 16) 277 441 659 877

Figure 8: Communication (in MB) for the PSI Functionality

9.2.2 Computation

We first compare how the element bitlength and the size of the server’s set in-
fluences the computational overhead of the server and then analyze the running
time of different post-processing routines.
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Element Bitlength. To analyze the influence of the element size, we fix
the server set at size ∣X ∣ = 210. Table 2 presents the running times for both
variants. We can clearly see that the deterministic variant strongly depends on
the element size whereas the element size does influence the running time of the
probabilistic significantly.4

Table 2: Running Time (in s) for ∣X ∣ = 210 and Different Element Bitlengths

Element Bitlength σ 12 16 20 22
Deterministic Variant 0.941 14.811 274.856 1170.140
Probabilistic Variant 1.672 1.009 0.935 1.009

Server’s Set Size. We now increase the size of the server’s set and analyze
both variants. The element size is fixed to σ = 16 bits and for the probabilistic
variant we use k = 4 hash functions. The results are depicted in Table 3. As
expected, the deterministic variant has the same running time for all sizes of
the server’s set whereas the running time of probabilistic variant increases.

Table 3: Running Time (in s) for σ = 16, k = 4 and Different Server’s Set Sizes

Server’s Set Size ∣X ∣ 210 212 214 216

Deterministic Variant 14.811 14.759 14.906 14.774
Probabilistic Variant 4.666 7.396 28.015 48.064

PCI. For PCI, we evaluate different protocols on the set intersection and
measure the required time for the post-processing. The computation is applied
on the resulting representation which is a boolean result for each client’s ele-
ment. Thus, the computational complexity of the post-processing depends on
the client’s set size. Results are depicted in Table 4. For real-world use cases,
we can first compute the set intersection and different post-processing could be
applied if it is needed. Therefore, we only have to compute the comparably
expensive basic PSI functionality once and evaluate the post-processing very
efficiently.

Table 4: Running Time (in ms) for Secure Post-Processing on an Intersection

Number of Bins β 64 128 256 512 1024 2048
Cardinality 20.52 28.67 42.08 71.23 128.30 257.88
Weighted Sum 265.39 579.91 806.85 1719.63 2811.75 5425.84

Comparison. In the previous work, the client obtains an encrypted tree and
traverses it using multiple OTs. The evaluation of the tree is therefore done by
the client. Moreover, the additional PCI functionality has to be applied by the

4The comparably high value for the probabilistic variant and σ = 12 seems to be an outlier.
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client as well or the parties have to establish a new communication round as
described in Section 7.1. In our protocols, all computations are still solely done
by the server and we do not need any further interaction with the client. Hence,
we can not only outsource the effort of the PSI computation to the server but
the entire PCI functionality. This opens up opportunities to apply the protocol
in the asymmetric case where the client has only small computation power
and the server has much larger computing resources with plenty of options for
parallelization. Furthermore, previous work depends on the bitlength of input
elements. This holds only for our deterministic variant whereas our probabilistic
variant can process inputs of arbitrary length.

10 Conclusion

We proposed a new protocol for private set intersection between a server and a
client. Both parties have private sets where it is assumed that the server’s set is
significantly larger. The result of the computation is revealed only to the client.
Our protocol delegates the complete computation to a server using fully homo-
morphic encryption (FHE). The server homomorphically evaluates the client’s
inputs on a branching program representing its set. With this construction
we achieve sublinear communication. Moreover, we enable PCI, i.e. arbitrary
post-processing on the intersection without any further interaction. However,
the computation costs do not scale efficiently with the size of the server’s set
such that we do not achieve a very efficient computational overhead. Therefore,
our protocol is applicable to scenarios with large computing resources of the
server where we need low communication costs and the ability to apply efficient
post-processing, i.e. without any further client interaction.
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A Protocol Descriptions

Server (Sender) Client (Receiver)

Input: X Input: Y

Output: ∅ Output: X ∩ Y
B1[ ][ ] = SimpleH(X,{H1, . . . ,Hh}, β) B2[ ] = CuckooH(Y,{H1, . . . ,Hh}, β)
for j = 1, . . . , r do for i = 1, . . . , β do

rootj ← CreateTreeMT(B1[j ∶ j + s]) If B2[i] empty,B2[i]← δ

I ← ∅
for j = 1, . . . , r do

mj ← Encode(B2[j ∶ j + s])⟦mj⟧← Enc(pk,mj)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟦m1⟧ , . . . , ⟦mr⟧
for j = 1, . . . , r do

EvalNodes(rootj , ⟦mj⟧)
leaves← EvalPaths(root)
⟦bmj ⟧← EvalLeavesMT(leaves)

⟦bm1⟧ , . . . , ⟦bmr⟧
for j = 1, . . . , r do

bmj ← Dec(sk, ⟦bmj ⟧)
b[ ]← Decode(bmj )
for i = 1, . . . , s do

If b[i] == 1
add B2[(j − 1)s + i] to I

Output: ∅ Output: I

Protocol 9: Full Protocol with General Hashing Construction
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Server (Sender) Client (Receiver)

Input: X Input: Y

Output: ∅ Output: X ∩ Y
B1[ ][ ] = SimpleH(X,{H1, . . . ,Hh}, β) B2[ ] = CuckooH(Y,{H1, . . . ,Hh}, β)
B̂1[ ][ ][ ] B̂2[ ][ ]
for l = 1, . . . , k do for l = 1, . . . , k do

B̂1[l][∶][∶]← Ĥl(B1[∶][∶]) B̂2[l][∶]← Ĥl(B2[∶])
for j = 1, . . . , r and l = 1, . . . , k do for i = 1, . . . , β do

rootj,l ← CreateTreeMT(B̂1[l][j ∶ j + s]) If B2[i] empty,B2[i]← δ

I = ∅
for j = 1, . . . , r and l = 1, . . . , k do

mj,l ← Encode(B̂2[l][j ∶ j + s])⟦mj,l⟧← Enc(pk,mj,l)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟦m1,1⟧ , . . . , ⟦mr,k⟧
for j = 1, . . . , r do

for l = 1, . . . , k do

EvalNodes(rootj,l, ⟦mj,l⟧)
leaves← EvalPaths(root)
⟦bmj,l

⟧← EvalLeavesMT(leaves)
⟦bmj ⟧← k∏

l=1 ⟦bmj,l
⟧

⟦bm1⟧ , . . . , ⟦bmr⟧
for j = 1, . . . , r do

bmj ← Dec(sk, ⟦bmj ⟧)
b[ ]← Decode(bmj )
for i = 1, . . . , s do

If b[i] == 1
add B2[(j − 1)s + i] to I

Output: ∅ Output: I

Protocol 10: Full Protocol with Probabilistic Variant
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Server (Sender) Client (Receiver)

Input: X Input: Y

Output: ∅ Output: f(X ∩ Y )
B1[][] = SimpleH(X,{H1, . . . ,Hh}, β) B2[] = CuckooH(Y,{H1, . . . ,Hh}, β)
f̂ ← BuildCircuit(f) for i = 1, . . . , β do

for each j = 1, . . . , r do If B2[i] empty,B2[i] = δ
rootj ← CreateTreeMT(B1[j ∶ j + k]) for each j = 1, . . . , r do

mj = Encode(B2[j ∶ j + r])⟦mj⟧← Enc(pk,mj)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟦m1⟧ , . . . , ⟦mr⟧
for each j = 1, . . . , r do

EvalNodes(rootj , ⟦mj⟧)
leaves← EvalPaths(root)
⟦bmj ⟧← EvalLeavesMT(leaves)

⟦r⟧← f̂((⟦bm1⟧ , . . . , ⟦bmr⟧), (⟦m1⟧ , . . . , ⟦mr⟧))
⟦r⟧

r ← Dec(sk, ⟦r⟧)
Output: ∅ Output: r

Protocol 11: Protocol for f -PSI with Basic Hashing Construction

B Postponed Proofs

B.1 Semi-Honest-Security Proofs

Proof of Theorem 8.1. Correctness has been shown in Section 4 and Sec-
tion 6. For the privacy property we construct two simulators S1,S2 simulating
the client’s and the server’s view.

We start with a simulation of the server, S1. The server gets no output from
the ideal functionality, hence the simulator looks like S1(1

λ,X,∅). The server
receives only one message, thus its view is easy to simulate.
We define the following simulator S1:

1. Choose β random elements r1, . . . , rβ from the ciphertext space of the
encryption scheme.

2. Send ⟦r1⟧ , . . . , ⟦rβ⟧ to the server.

Hence, the simulator outputs

{S1(1
λ,X,∅)}X,Y,λ = {(⟦r1⟧ , . . . , ⟦rβ⟧)}X,Y,λ.

39



By δ we denote the dummy element of the client. It follows

{(⟦r1⟧ , . . . , ⟦rβ⟧)}X,Y,λ
c
≡ {(⟦ỹ1⟧ , . . . , ⟦ỹβ⟧) ∣ ỹ1, . . . ỹβ ∈ Y ∪ {δ}}X,Y,λ, (3)

where we use, as before, ỹ1, . . . , ỹβ to denote elements in the client’s bins. This
holds, since we assume the encryption scheme to be IND-CPA secure. This is
equivalent to real-or-random security which means, that β random encryptions
cannot be distinguished from encryptions of real client elements. Finally we
have

{(⟦ỹ1⟧ , . . . , ⟦ỹβ⟧) ∣ ỹ1, . . . ỹβ ∈ Y ∪ {δ}}X,Y,λ = {View
ΠPSI

1 (X,Y,λ)}X,Y,λ

and constructed a simulator S1 simulating the server’s view.
Now we consider a simulator S2 for the client’s view, which again receives

one message. In contrast to the server, the client gets an output which has to
be simulated correctly.
We construct the following simulator S2(1

λ, Y,X ∩ Y ):

1. Hash all elements from Y according the Cuckoo Hashing scheme from
protocol ΠPSI into β bins.

2. Fill the empty bins with dummy elements δ such that there are β elements
ỹ1, . . . , ỹβ from Y ∪ {δ} (again the same procedure as in the protocol).5

3. For all i = 1, . . . , β if ỹi ∈ X ∩ Y encrypt a 1, i.e. mi = Enc(1). Otherwise
encrypt a 0, i.e. mi = Enc(0).

4. Extract the number of multiplications M and additions A that are applied
by the server to every ciphertext. This number depends on the size of the
server’s set and the algorithm which are both publicly known.

5. Multiply each ciphertext M times with 1 and add A times 0, resulting in
m′1, . . . ,m

′
β .

6. Send m′1, . . . ,m
′
β to the client.

Hence, the simulator outputs

{S2(1
λ, Y,X ∩ Y )}X,Y,λ = {(m

′
1, . . . ,m

′
β)}X,Y,λ.

The view executing the real protocol is

{ViewΠPSI

2 (X,Y,λ)}X,Y,λ = {(⟦b1⟧ , . . . , ⟦bβ⟧)}X,Y,λ,

where bi indicates if the i-th element is in the intersection. Compared to the
server, the client can decrypt received messages. Step 3 of the simulator ensures

Dec(mi) = Dec(⟦bi⟧) ∀i = 1, . . . , β.

5This step is not necessary but eases the understanding.
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Step 5 does not change the value of the underlying plaintext, thus we obtain

Dec(⟦bi⟧) = Dec(mi) = Dec(m
′
i) ∀i = 1, . . . , β

and at least the plaintexts of the received messages are indistinguishable.
However, the ciphertexts have to be computational indistinguishable as well.

If we apply operations on an FHE ciphertext, we increase the noise and can
therefore distinguish a fresh ciphertext from a ciphertext which is the result of
some evaluations. Step 5 of the simulator ensures that the number of operations
matches with the number of operations the server applies in the real world.
Hence, the noise level of ⟦ci⟧ cannot be distinguished from the noise level of m′i.
Finally, it follows

{(m′1, . . . ,m
′
β)}X,Y,λ

c
≡ {(⟦b1⟧ , . . . , ⟦bβ⟧)}X,Y,λ

which concludes the proof.

Proof of Theorem 8.2. The only difference to the general construction is
that we store only parts of the message in the Cuckoo Table. Nevertheless, we
can construct the same simulator for the server as in the proof of Theorem 8.1
and obtain the exact same equivalence as in Equation (3).

The same holds for the simulator of the client. It must simply store for each
Cuckoo Table element (element’s right part) the corresponding original element.
Hence, the same proof as for Theorem 8.1 can be applied.

Proof of Theorem 8.3. To prove privacy, we can construct the same
simulator for the server as in the proof of Theorem 8.1 and obtain the exact
same equivalence as in Equation (3) except that we need more ciphertexts to
simulate all the different hash functions. The same holds for the simulator of the
client. Hence, the same proof as for Theorem 8.1 can be applied. The remaining
task is to ensure correctness to achieve semi-honest security. By Theorem 6.3,
we obtain a decreasing false positive rate since we use a universal hashing family.
Thus, we can choose a sufficiently large number of hash functions to obtain any
statistical security requirement.

Proof of Theorem 8.4. Correctness is ensured since we assume the PCI
to correctly implement functionality f . For privacy, we consider simulators S1
and S2. For S1, the simulator for the server’s view, we take the same simulator
as for the proof of Theorem 8.1. It fulfills the same security guarantees since
the PCI does not influence the server’s view.

Constructing a simulator for the client’s view is an even simpler task than
for the PSI protocol. For S2(1

λ, Y, f(X,Y )), we define:

1. Encrypt the final result, m = Enc(f(X,Y )).

2. Apply the same kind of operations on m as an honest server would do,
resulting in a noisy m′.
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3. Send m′ to the client.

The sets created by the simulator and the one of the real view are indistinguish-
able with the same arguments as in the proof of Theorem 8.1.

B.2 Malicious Security Proofs

Proof of Theorem 8.5. Since the protocol consists of only one interaction,
the sender’s view is just the encrypted bins. Let ỹ1, . . . , ỹβ ∈ Y ∪ {δ} be the
elements of the receiver’s bins when executing the protocol on input Y . Then,
we have

{ViewAπ,A(z),1(X,Y,λ)}X,Y,Y ′,z∈{0,1}∗,λ = {(⟦ỹ1⟧ , . . . , ⟦ỹβ⟧)}.

Analogously, let ỹ′1, . . . , ỹ
′
β ∈ Y ∪ {δ} be the elements of the receiver’s bins when

executing the protocol on input Y ′. Hence, it holds

{ViewAπ,A(z),1(X,Y ′, λ)}X,Y,Y ′,z∈{0,1}∗,λ = {(⟦ỹ
′
1⟧ , . . . , ⟦ỹ

′
β⟧)}.

From the IND-CPA security of the underlying scheme, it follows

{(⟦ỹ1⟧ , . . . , ⟦ỹβ⟧)}
c
≡ {(⟦ỹ′1⟧ , . . . , ⟦ỹ

′
β⟧)}.

B.3 Proof of Universal Hashing Implications

To proof Theorem 6.3, we introduce some notation in addition to Definition 6.2.

Definition B.1 For a family of hash functions H = {H ∶ U → {1, . . . ,m}} we
define two random variables for elements x, y ∈ U :

δH(x, y) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

1 ,H(x) =H(y) and x ≠ y

0 , else

δH(x, y) ∶= ∑
H∈H

δH(x, y)

Note that δH is in fact a “random” variable without any randomness since H is
the whole family. This notation is another variant of defining universal hashing
[14] which is equivalent to our definition.

Lemma B.2 A hash family H = {H ∶ U → {1, . . . ,m}} is universal iff ∀x, y ∈ U

it holds δH(x, y) ≤
∣H∣
m
.

Proof. Let H = {H ∶ U → {1, . . . ,m}} be a universal hash family, then it
holds

Pr
H∈H
[H(x) =H(y)] ≤

1

m
.
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By definition of δH , we obtain

Pr
H∈H
[δH(x, y) = 1] ≤

1

m

and

E[δH(x, y)] = Pr
H∈H
[δH(x, y) = 0] ⋅ 0 + Pr

H∈H
[δH(x, y) = 1] ⋅ 1 ≤

1

m
.

By definition of δH it follows

E[δH(x, y)] = ∑
H∈H

E[δH(x, y)] ≤
∣H∣

m
.

δH is deterministic since we take the sum over all hash functions, it holds

δH(x, y) ≤
∣H∣

m
.

For the other direction, assume that δH(x, y) ≤
∣H∣
m
. That means, there are at

most ∣H∣
m

hash functions under which x and y collide. If we choose one hash
function uniformly at random, we obtain

Pr
H∈H
[H(x) =H(y)] ≤

∣H∣/m

∣H∣

=
1

m

which concludes the proof.
We can now prove that the probability of additional collisions decreases.

Theorem B.3 Let H = {H ∶ U → {1, . . . ,m}} be a universal hash family with
m > 1. Then, for every elements x, y ∈ U and every k > 1 it holds

Pr
Hk∈H∖{H1,...,Hk−1}

[δHk
(x, y) = 1 ∣ δH1(x, y) = . . . = δHk−1

(x, y) = 1] <
1

m
.

Proof. Let H = {H ∶ U → {1, . . . ,m}} be a universal hash family with
m > 1. If we randomly choose hash function Hk from H ∖ {H1, . . . ,Hk−1} and

H1, . . . ,Hk−1 led to a collision, then there are at most ∣H∣
m
− (k − 1) left which

lead to a collision. Hence, we obtain

Pr
Hk∈H∖{H1,...,Hk−1}

[Hk(x) =Hk(y) ∣H1(x) =H1(y), . . . ,Hk−1(x) =Hk−1(y)]

= Pr
Hk∈H∖{H1,...,Hk−1}

[δHk
(x, y) = 1 ∣ δH1(x, y) = . . . = δHk−1

(x, y) = 1]

≤
∣H∣/m − (k − 1)

∣H∣ − (k − 1)

=
1

m
⋅
∣H∣ −m(k − 1)

∣H∣ − (k − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<1

<
1

m
,

concluding the proof.
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Algorithm 5 Evaluating Nodes (Encrypted Case)

1: function EvalNodes(root, ⟦ȳ⟧)
2: let Q be a new queue
3: Q.enqueue(root)
4: parse ⟦ȳ⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧← ⟦y[v.level]⟧ ⊞ ⟦v.rEdge⟧ ▷ Encrypted label
9: Q.enqueue(v.left)

10: if v.right ≠ null then
11: ⟦v.right.cost⟧← ⟦y[v.level]⟧ ⊞ ⟦v.lEdge⟧ ▷ Encrypted label
12: Q.enqueue(v.right)

C Extended Third-Party Computation

If we want to apply tree optimizations in the third-party case and want to
guarantee the server’s privacy, we must create the tree in a generic way such
that the resulting structure does not leak anything about the server’s set. Hence,
we discard the requirement that branches are always labeled with 0 on the left
and 1 on the right. This obfuscates possible optimizations like pruning.6 The
server sends these encrypted values and the client sends the encrypted elements
to the third party which applies the same evaluation as before except for an
encrypted node evaluation algorithm. In contrast to the plaintext case, the
evaluation has to be done homomorphically. We need the original Xnor as
mentioned in the description of Algorithm 1. Thus, for a boolean input x, we
want to compute

x⊕v.lEdge and x⊕v.rEdge.

Since v.lEdge = 1 − v.rEdge, we can simplify to

x⊕ v.rEdge and x⊕ v.lEdge.

The modification can be found in Algorithm 5 where lines 8 and 11 changed
compared to the basic protocol.

We must also modify the evaluation of leaves (Algorithm 3). Instead of
multiplying by a plaintext in step 4, we now must apply a homomorphic multi-
plication.

Overall, we need an additional homomorphic Xor for each node, i.e. depth
of the BP additional homomorphic additions, and for each leaf a homomorphic
multiplication instead of a constant multiplication. Hence, the multiplicative
depth is increased by one.

6This obfuscation might not be enough for a full security proof such that we might need
to omit tree optimizations.
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