
1

Secure Batch Deduplication Without
Dual Servers in Backup System

Haoyu Zheng, Shengke Zeng, Hongwei Li, Member, IEEE , and Zhijun Li

Abstract—Cloud storage provides highly available and low cost resources to users. However, as massive amounts of outsourced data
grow rapidly, an effective data deduplication scheme is necessary. This is a hot and challenging field, in which there are quite a few
researches. However, most of previous works require dual-server fashion to be against brute-force attacks and do not support batch
checking. It is not practicable for the massive data stored in the cloud. In this paper, we present a secure batch deduplication scheme
for backup system. Besides, our scheme resists the brute-force attacks without the aid of other servers. The core idea of the batch
deduplication is to separate users into different groups by using short hashes. Within each group, we leverage group key agreement
and symmetric encryption to achieve secure batch checking and semantically secure storage. We also extensively evaluate its
performance and overhead based on different datasets. We show that our scheme saves the data storage by up to 89.84%. These
results show that our scheme is efficient and scalable for cloud backup system and can also ensure data confidentiality.

Index Terms—Batch Deduplication, Cloud Storage, Semantic Security, Brute-force Attack

F

1 INTRODUCTION

C LOUD storage provides the customers and enterprises
big space to outsource their data. With data volume

proliferating quickly [1], however, it puts a heavy strain on
cloud service providers. Redundancy is the main problem
faced by cloud service providers as they store large amounts
of duplicate data [2] [3]. Data deduplication technique is a
solution to reduce the storage cost. Therefore, it has attracted
more and more attention from academia and industry, i.e.,
Google Drive [4], Dropbox [5], and Memopal have em-
ployed the deduplication technique to reduce the storage
overheads [6] and improve the performance on their backup
systems [7].

However, for the sensitive data stored in the cloud, the
deduplication is not trivial. In case of curious cloud service
providers, their data should be encrypted to avoid the leak-
age of users’ privacy [8] [9] [12] [13] [14] [15] [16]. Obviously,
different users produce different ciphertexts although they
have the same plaintexts. It makes cross-users deduplication
impossible. Furthermore, after achieving cross-user dedu-
plication, one more problem is to retrieve the ciphertext en-
crypted by other keys. Therefore, encrypted deduplication
was proposed. Nowadays, encrypted data deduplication
schemes can be broadly classified into serverless deduplica-
tion and server-aided deduplication. Convergent Encryption
(CE) [10] is the first encrypted deduplication scheme that
has been proposed without the help of additional servers in
which the hash value of the raw data is the encryption key.

H. Zheng is with Xihua College, Xihua University, Chengdu, 610039, China.
S. Zeng is with the school of Computer and Software Engineering, Xihua
University, Chengdu, 610039, China. She is also with the School of Computer
Science and Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China.
H. Li is with the School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu 611731, China.
Z. Li is with the MIG Group, Cisco Systems Canada Co., Ottawa, ON, K2K
3E8, Canada.
*Corresponding Author: Shengke Zeng; Email: zengsk@mail.xhu.edu.cn.
Manuscript received ****, ****; revised ****, ****.

In this way, the same data results the identical ciphertext.
Although CE [10] realizes the cross-users deduplication,
however, it is vulnerable to offline brute-force attacks [8] and
tag-consistency problem [11] for its deterministic output.
Then Message-Locked-Encryption (MLE) [11] was proposed
and each chunk of data is encrypted by the key which
derived from that chunk. However, it also suffers from the
offline brute-force attack and information leakage [9] for
its deterministic tag. Therefore, Bellare et al. [17] proposed
the first server-aided secure deduplication named DupLESS
to be against the offline brute-force attacks. However, the
requirement of the aid of additional servers is a strong
assumption. It is vulnerable to the single-point-of-failure.
Moreover, current server-aided schemes [18] [19] require
fully trusted entities. If entities are compromised, the secu-
rity can not be guaranteed. Therefore, how to achieve secure
(i.e., against brute-force attacks) encrypted deduplication
without the help of additional servers is a challenge.

Hence, Liu et al. [20] proposed the first deduplication
scheme without additional servers to resist against brute-
force attacks. Their scheme makes use of the high collision
rate of the short hash to be resistant to the offline brute-force
attack. An underlying Password Authenticated Key Exchange
(PAKE) [21] protocol is run by the clients to produce the
sharing encryption key. The interactive steps are necessary
as it does not require the extra servers. However, we note
that it can only check the duplication one by one. It cannot
be extended to support batch deduplication of massive data.
For the backup system with the extremely large amounts of
data, their scheme is not practical. Ma et al. [36] proposed
a lazy deduplication for disk storage in local machines. It
buffered the fingerprints of chunks that are used to execute
on-disk lookups in batches. It can highly reduce the disk
I/O. Obviously, it does not support encrypted deduplication
for cloud storage. Apparently, how to perform efficient du-
plicate checking in cloud with the extremely large amounts
of encrypted data is also a challenge. We notice that most

2

deduplication schemes can only check the duplication files
one by one. It’s very time-consuming and inefficient for the
cloud system to scan all the data set which incurs a huge
delay. Therefore, implementing an encrypted deduplication
which supporting batch checking is significant.

In the era of big data, we need to store and manage
enormous amounts of private data in cloud server. There-
fore, improving the storage performance and security are
necessary. If the server can only compare 2 files in a ses-
sion for deduplication, it is very inefficient obviously. How
to support batch checking on duplication for the massive
amounts of storage data and achieve semantically secure
encryption without multi-server collaboration is our goal to
deduplicate efficiently and securely in the modern backup
system.

1.1 Contribution
We focus on the deduplication efficiency in backup system
with mass data and present a batch deduplication with
encrypted files in this paper. Our scheme supports semantic
security without requiring the aid of additional independent
servers hence it is more practical. Our main contributions
can be summarized as follows.

Firstly, our scheme achieves semantic security and pre-
vents online/offline brute-force attacks without dual-server
collaboration. We use a short hash followed by the idea of
[20] and a group key agreement protocol as our building
block. The short hash has 2 sides of purpose. The one
is to avoid brute-force guess attack for its high collision
rate. Another one is to filtrate the potential identical files
owners who will be invited by the cloud server provider to
determine the real identical files. The group key agreement
is used to randomize the group tag against the outsider (i.e.,
the corrupted server).

Secondly, our scheme provides the batch checking for the
underlying identical files. We use a symmetrical encryption
to separate the identical files. The encryption key is the hash
value of the unloading file. Each client chooses a random
value to be encrypted under this key and forwards to others
by the cloud server. Then each client decrypts and gets the
random values. Finally, the group tag is a hash value of these
obtained values. Obviously, the server provider separates
the identical files by these tags without checking them one
by one.

Thirdly, we design a map and set programming model
and leverage it to perform server-side deduplication. Our
experiments not only simulate our scheme to deduplicate
on three different datasets, but also result to the optimal
threshold selection to perform our solution effectively. We
also analyze the performance and overhead of file opera-
tions. These results show that the proposed scheme is secure
and efficient.

1.2 Organization
This paper is organized as follows. In Section 1, we give in-
troduction and problem statement. In Section 2, we present
the preliminaries of this work. In Section 3, we present the
system model and attack model of our scheme. In Section 4,
we present our concrete construction in detail with further
discussions and the security analysis is provided in Section

5. In Section 6, we show the performance evaluations and
present the experimental results. Finally, we conclude the
paper in Section 7.

2 PRELIMINARIES
2.1 Deduplication

Deduplication is a compression technique that can effec-
tively eliminate redundant data. It just saves one copy of
duplicate files or chunks. By using some pointers, other
duplicate data is referred to the only one copy. Based on
the data units processed, deduplication can be divided
into file-level deduplication and chunk-level deduplication.
Depending on where the deduplication takes place, it can
be categorized into client-side deduplication and server-side
deduplication. Our work focuses on file-level and server-side
deduplication, although it can be extended to support client-
side deduplication.

2.2 Encrypted Deduplication

Encrypted data deduplication preserves the efficiency of
deduplication while protecting the privacy and security of
users. Douceur et al. [10] proposed the notion of Convergent
Encryption (CE) to first handle the deduplication with data
confidentiality. As explained above, CE and its varaint [29]
[30] [31] have been realized and deployed in many systems.
But they are vulnerable to offline brute-force attack [8] for
the predictable files, as the adversary can brutely force
to compute the hash value of all possible plaintexts to
check the underlying plaintext. Therefore, its security is only
achieved when the target data comes from an unpredictable
space or that space is large enough.

Bellare et al. [17] proposed DupLESS, which realizes the
server-aided MLE [12] to overcome the offline brute-force
attack. However, its security is at the cost of managing
a semi-trusted key server. The user runs an interactive
protocol with the server. The server not only generates the
convergent key, but also uses a global secret as an input when
computing convergent key. By doing so, the convergent key
is independent of data itself. As long as the global secret is
inaccessible to attackers, high security can be ensured. How-
ever, once the global secret is compromised, DupLESS is
reduced to the conventional MLE. In addition, to strengthen
the confidentiality, DupLESS encrypts data with conver-
gent keys obtained from a key-server via oblivious pseudo-
random function (OPRF) [22]. Such that, users do not leak
any information about their data to the server. However,
DupLESS induces considerable computational overheads in
deduplication as OPRF protocol is time-consuming. Several
works [19] [32] [33] realize secure deduplications depending
on the idea that requires the aid of additional independent
servers. However, server-aided schemes ensure the security
under the strong assumption which is not practical. To
handle this problem, Liu et al. [20] proposed the first single-
server deduplication scheme to achieve semantical security.
It adopts the short hash value which has high collision rate
to avoid the guess attack. However, it requires 6 rounds
to communicate during one upload which is impractical to
implement in applications. Li et al. [23] proposed the Tunable
Encrypted Deduplication (TED) scheme, which allows users

3

to balance the trade-off between storage efficiency and data
confidentiality. TED is based on the MLE, but the deriva-
tion key not only from the chunk itself but also from the
number of identical chunk copies, which makes TED against
frequency analysis attack [34]. Zhang et al. [24] proposed a
secure password-protected MLE key scheme called SPADE,
which can resist compromised key servers by supporting
periodical changes of the key servers and free users from
the key management problems. By using re-encryption,
several schemes are also proposed. For example, Yuan [25]
proposed a secure data deduplication scheme by using re-
encryption based on the convergent all-or-nothing transform
(CAONT) [28] and randomly sampled bits from the bloom
filter which enhances the security of REED [26]. Attribute-
based encryption is also applied to encrypted deduplication.
Cui et al. [27] proposed an attribute-based deduplication in
hybrid cloud setting, which achieves the semantic security
for data confidentiality but with additional servers. They
also exploited zero-knowledge proof of knowledge and
commitment scheme for solving data consistency problems
[11]. Zhang et al. [38] proposed the Secure and Efficient Data
Deduplication (SED) scheme, which uses the collaboration
between joint clouds to complete the deduplication. It does
not require a trusted key server, but in fact still requires the
collaboration with other servers. We summarize some works
in the following table 1.

2.3 Hash Collisions

Hash functions are simply functions that take inputs of some
length and compress them into fixed-length outputs. A hash
function H takes a string x ∈ {0, 1}∗ as input and outputs
a string H(x) ∈ {0, 1}n where n is the length. We assume
that hash function with long outputs is collision resistant
but short hash function has many collisions. We make use
of the short hash function to avoid guess attack and improve
efficiency.

2.4 Group Key Agreement Protocol

Key agreement protocol is used to calculate a shared key
between participants without being known to outsiders.
Original key agreement protocol is performed between 2
parties and it can be extended to a group. BD protocol
was proposed by Burmester and Desmedt [35] to realize
a constant-round group key agreement. The members in a
group can obtain a shared group key while others know
nothing. Suppose there are n members want to share a
group key. These members form a ring to compute the
common group key through BD protocol. The parameters
are: g is a generator of a cyclic group G with prime order p,
for each member Mi, i = 1, . . . , n:

• input a random value ti ← Zp, compute and broad-
cast zi = gti mod p.

• compute and broadcast Xi = (zi+1/zi−1)ti mod p.
• compute the group shared key K = zntii−1 · Xn−1

i ·
Xn−2

i+1 . . . Xi−2 = gt1t2+t2t3+···+tnt1 mod p

It is easy to see that the interaction step in BD protocol
is constant no matter what number of members are in this
group and it is secure under Diffie-Hellman assumption.

3 SECURE DEDUPLICATED BACKUP SYSTEM
MODEL

3.1 Design Goals
1) How to achieve secure encrypted deduplication without the
help of additional servers on the server side? Current server-
aided schemes require fully trusted entities. If entities are
compromised, the security can not be guaranteed. Therefore,
a semantically secure deduplication scheme against brute-
force attacks without strong assumptions is necessary.

2) How to perform efficient duplicate checking in cloud with
the extremely large amounts of data? We notice that most
deduplication schemes can only check the files one by
one. It’s very time-consuming and inefficient for the cloud
system to scan all the data set which incurs a huge delay.
Therefore, implementing an encrypted deduplication which
supporting batch checking is significant.

3) How to support the client to retrieve the encrypted files
which are deleted for the duplication? Since these files are
encrypted under the different keys, when the client requires
to download files, the secure cross user key transfer is
necessary.

3.2 Backup System Model
The backup system consists of central storage service
provider and a set of local storage servers in general. The
local storage servers run as the clients to duplicate their files
to the central storage service provider for the redundant
storage. Once the data disaster occurs, the local server
retrieves the files from the central server. Undoubtedly, the
storage load of the central storage service provider is heavy
and it is urgent to delete the identical files uploaded by
different local storage servers. On the other hand, these data
provided by local servers are fused in the central server, the
encryption is necessary for the data privacy. Therefore, the
data is encrypted stored in the servers. The backup system
model is as shown in Fig.1. From a realistic viewpoint, these
local servers do not communicate with each other directly.
Instead, they communicate with the central server which
forwards the messages to realize the communication of local
servers. We assume the communication channels are secure,
and attackers can not eavesdrop the channels.

Fig. 1. Backup System Model

4

TABLE 1
Comparison of Deduplication Schemes

Schemes brute-force attack resistance check model
[10] 6 one by one
[17] server-aided based one by one
[38] blind signature based one by one
[39] blind signature based one by one
[18] server-aided based one by one
[19] server-aided based one by one
[20] without dual-server one by one

Our Goals without dual-server batch checking

3.3 Attack Model
For the data privacy, we focus on the attack model in the
backup system for the server-side. In server-side dedu-
plication, all files are uploaded and stored in the server,
which then deletes the duplicates. The client C (i.e., the
local server in the backup system) is unaware of dedupli-
cation. Therefore, the compromised C is not considered in
this threat model. In our model, we pay attention to the
malicious central server S , which stores the backup files of
the local servers. S may guess the files stored in it though
they are encrypted. Indeed, if these files are predicable,
the deterministic encryption results help S to determine
whether a certain file is stored or not. In general, there are
two kinds of threats by S .

• Online brute-force attack: The compromised active S
can masquerade as the local server, say the client C
to run the interactive deduplication protocol to check
the underlying possible files by observing which one
causes deduplication.

• Offline brute-force attack: The compromised passive S
can guess its stored files offline from the determinis-
tic tags of the predictable files, even though they are
encrypted.

3.4 Ideal Goals
To achieve secure and practical deduplication in cloud
server, our scheme should have following features.

• Security. The scheme should be resistant to the brute-
force attack. Indeed, the encryption files should
achieve semantical security and any adversary can-
not get the client file content by online/offline brute-
force attacks.

• Efficiency. Reducing computational and communi-
cation overhead is required. Besides, for the huge
amounts of data, the duplication check for files one
by one is not practicable obviously. Therefore, the
batch check is deserved thereby the parallel compu-
tation for the underlying files should be supported.

• Deduplication Effectiveness. The deduplication ef-
fectiveness should be maximized which will detect
all duplicates. It is expressed by the deduplication
ratio, which requires that the ratio of the number
of bytes input and the number of bytes output is
maximized.

4 THE PROPOSED SCHEME
In this section, we describe a concrete construction of secure
batch deduplication. The files in our scheme are not checked

one by one, instead, the central server S can divide the
massive encrypted files into several groups (i.e., in which
the files are the same) in constant executions. Since the files
in a group are the same, S deletes the copies.

4.1 Overview
In traditional server-side deduplication, when a client wants
to upload a file to server, he first sends a hash value h of the
file. Therefore the server can check whether the file is in its
storage or not. However this approach is insecure, dishonest
server can easily launch offline brute-force attacks on the
hash value h if the file is predictable.

In our scheme, the clients are the local servers Ci which
make a backup of the stored files to a remote central server
S . Our strategy is that, Ci uploads a short hash value of
the file F, i.e., 10 or 20 bits long, to S . For S , it identifies
the underlying identical files by the same short hash value.
Let Cis with the same short hash value negotiate a group
tag, which is produced by the file F. Obviously, the same
file outputs the same tag. In this way, S can determine the
ciphertexts encrypting the same file to a logic group by a
constant computation complexity. If the data disaster occurs,
Ci wants to recover the file from S after deduplication, S
runs a ciphertext transfer protocol with Ci to help its clients
to retrieve the files.

Therefore, our scheme for the secure backup with batch
deduplication is divided to 3 phases: uploading, batch dupli-
cation check and file retrieval.

4.2 Construction
Our detailed constructions of scheme are described as fol-
lows:

• Uploading.
Ci uploads an encrypted file Ci = SE(κi, F) with
the corresponding short hash value sh = SH(F) to
S . Note that, SE is a secure symmetric encryption
scheme, κi = H(ki, F) is the encryption key gener-
ated by the long-term secret key ki of Ci and H is
a cryptographic hash function with onewayness and
collision-resistance. S records them and maintains a
tuple of the form (IDi, Ci, sh) for Ci, where IDi is the
identity of Ci.

• Batch Duplication Check.
When S wants to check duplication, it first checks the
list (IDi, Ci, sh) for the same sh and updates the list
as ({IDi, Ci}n, sh), where n is the client number who
has the same sh. Then S communicates with Ci in
the list ({IDi, Ci}n, sh) to negotiate a group tag. That

5

Fig. 2. Batch Deduplication

is, the n clients which have the same sh to determine
whether the encrypted files in Ci are identical or not.
If yes, they form a logic group to share one copy of
this file as shown in Fig.2. This logic group is formed
as follows:

1) Ci chooses 2 random numbers ri, ti,
computes w = H(F), ci = SE(w, ri), zi = gti ,
sends (ci, zi) to S .

2) S forwards {ci, zi, IDi}n to those clients who
are in the list ({IDi, Ci}n, sh).

3) Upon the receipt of {ci, zi, IDi}n from S ,
each Ci calculates Xi = (zi+1/zi−1)ti and de-
crypts {ci}n to obtain {r′i}n by using its
owned w. Then, Xi is sent to S.

4) S forwards {Xi}n to Ci to calculate sk = Zntii−1·
Xn−1i · Xn−2i+1 · · · Xi+n−2 = gt1t2+t2t3+···+tnt1 ,
gk = sk ·H(w|r′1|r′2| · · ·), Ki = SE(gk, κi).
Then (H(gk), Ki) is sent to S . S collects
these Ci who have the same H(gk) to a
logic group and maintains another tuple
({IDi, Ki}, H(gk)). Note that, the same file F
produces the same H(gk) of course. Therefore,
S can determine the logic group by the value
of H(gk) which represents a group tag. The
duplication check is shown in Fig. 3.

• File Retrieval.
The next thing for S is to preserve one copy of
some client, say Cj , and delete the other redundant
ciphertexts Cs in this group. For the preserved tuple
(IDj, C, sh), S sends Kj to another client Ci. Then Ci
uses its gk to decrypt for obtaining κj. Once Ci needs
to retrieve the file, it uses κj to decrypt C.

4.3 Discussion

4.3.1 Our Scheme v.s. Liu’s Scheme
Liu et al. proposed the first single-server secure deduplication
with encrypted data in CCS 2015. It is resistant to offline
brute-force guess attack by a short hash value of the upload-
ing file F as the value of short hash has high collision rate.
On the other hand, the 2 clients with the same short hash
value perform the same-input-PAKE protocol. Therefore,
the 2 clients get the same session key k if they have the
same file F. And the interaction of PAKE protocol avoids

the offline brute-force guess. However, the same session key
is not used as the identical tag of the file directly. Instead,
an additively homomorphic encryption scheme is called to
transfer E(H1(kF), F) to E(H1(kFj), Fj) iff F = Fj. Hence, the
server S can check the duplication.

However their scheme can not be extended to the batch
deduplication. The underlying 2-party PAKE protocol only
supports the deduplication one by one. Moreover, the ho-
momorphic encryption increases the interaction steps and
computation cost undoubtedly. It does not adapt to large-
scale data backup system.

By contrast, our scheme focuses on batch check for
the duplicative files in the backup system. Besides, the
offline/online guess attacks should be resistant in case of file
privacy leakage. Similar to Liu’s scheme, we make use of the
high collision rate of short hash to avoid using dual servers
to prevent offline guess attack. Therefore in the first step,
Ci uploads (IDi, SE(κi, F), sh) to S . Semantically secure
symmetric encryption scheme SE with unknown encryption
key κi and short hash sh prevent the adversary’s guess on
the possible files. Moreover, κi may be transit later for others
who have the identical files to decrypt. It thus can not be
the long-term secret key of the client. Instead, we make use
of the onewayness of function H to protect the secret key
ki of the client Ci. Then S checks the same sh to filter the
possible identical files. In the phase of duplication check,
we focus on batch check. That is S determines the identical
files from database in constant number of execution. This is
the obvious improvement compared to Liu’s scheme. Our
strategy is to use the key derived from the file to encrypt
a random value ri for each client. Then the encryption
is forwarded by S to other clients. Each one decrypts to
obtain these random values by the key derived from its
own file. Obviously, the same file results to get the same
random values. Therefore, the tag = H(w|r1| · · ·) can be used
to determine the underlying identical files. Hence, S can
check the same encrypted files by collecting these tags and
it is not necessary for S to check the duplication files one
by one. In order to prevent S guessing the files by the given
tags offline, we require each client who has the same sh to
perform a group key exchange, e.g., BD protocol. The shared
group session key blinds the tag, thus S can not launch such
attacks. Moreover, the decryption key κi of the encrypted
file is encrypted under gk with symmetric encryption, it is
easy for the others who have the identical files to obtain.

6

Ci
1. compute
Ci = SE(κi, F)
sh = SH(F)

2. upload (Ci, sh)-

S

3. store {(IDi, Ci, sh)}n
4. check the same sh

5. check duplication� 5’. check duplication-
6. compute
w = H(F)
ci = SE(w, ri)
zi = gti

7. send (ci, zi) - 7’. send (cj, zj)�

8. forward (cj, zj, IDj)� 8’. forward (ci, zi, IDi)-

Cj
1’. compute
Cj = SE(κj, F)
sh = SH(F)

2’. upload (Cj, sh)�

6’. compute
w = H(F)
cj = SE(w, rj)
zj = gtj

9. compute
Xi = (zi+1/zi−1)ti

r′j = Dec(cj)

9’. compute
Xj = (zj+1/zj−1)tj

r′i = Dec(ci)
10. send (Xi) - 10’. send Xj�

11. forward Xj� 11’. forward Xi -
12. compute
sk = gt1t2+···+tnt1

gk = sk · H(w|r′1| · · ·)
Ki = SE(gk, κi)

12’. compute
sk = gt1t2+···+tnt1

gk = sk · H(w|r′1| · · ·)
Kj = SE(gk, κj)

13. send (H(gk), Ki)- 13’. send (H(gk), Kj)�

14. delete the copies

1

Fig. 3. Duplication Check

4.3.2 Threshold Selection

In our scheme, the users who have the same short hash
value sh would be invited by S to perform the following
algorithm of duplication check. Since the high collision rate
of short hash, the same sh does not imply the same file. In
other words, several interactions to check duplication are in
vain. In order to trade off the communication/computation
overhead and storage cost, it is necessary for us to research
the threshold value that needs to perform the duplication
check. It is obvious to see that if the number of the same
sh which is in S’s list (IDi, Ci, sh) is too small, say 2, it will
cause lots of unnecessary communication overhead. If the
selected threshold value is too big, it will cause unchecked
duplication. Therefore, we implement our scheme in differ-
ent thresholds to show our result. It will be elaborated in
Section 6.

4.4 Comparative Analysis

We analyze the efficiency of the proposed scheme in this
section. TABLE 2 shows the comparison of our scheme and
some typical schemes [10], [17], [19], [20], [39], [38].

Among deduplication schemes, CE or MLE has the
lowest computational cost because they do not have com-
plex mathematical operations like group multiplication
operation and exponentiation to perform file encryption.
However, due to the key space is so small, it can not
prevent brute-force attack. Therefore, the outsourced data
confidentiality can not be guaranteed. There are also some
other encrypted deduplication without the aid of additional
servers like Shin [38] and Abadi [37]. Abidi proposed a
full randomized all components of the ciphertexts which
is based on pairing operation. Shin’s solution is also based
on a bilinear pairing operation to test whether the files are
identical. Obviously, it can only check the duplication one by
one and bilinear pairing operation is very time-consuming.

Under the aid of additional servers, some schemes en-
able resistance to brute-force attacks by using OPRF and
other variants. The encryption key is derived from the file
F and an additional global secret which is from servers.
Therefore, the key is independent of the file content. But
these schemes suffered from server-compromise attacks.
Miao [18] and Duan [19] try to mitigate this problem by
employing multiple key servers. If more than k servers (i.e.,

7

TABLE 2
Comparison of deduplication schemes

Test Groups MLE(CE) [10] DupLESS [17] Liu et al. [20] SED [39] Shin et al. [38] Our Scheme
Tag Computation H H H + SE 3E E SH
Key Generation H H + 2M + 2E H H H + E H
File Encryption SE SE SE SE + M + P + 2Xor SE + 3E + P H + SE

Server-aided Requirement 6 4 6 4 6 6

Brute-force Attack Resistance 6 4 4 4 4 4
Server-compromise Attack Resistance 6 6 4 6 4 4

Batch Checking 6 6 6 6 6 4

H: hash operation, SE: symmetric encryption, M: group multiplication, E: group exponentiation, P: pairing operation, k: number of key servers.

threshold) servers are compromised, then these approaches
will still fail. In addition, the security of these schemes wiil
reduce to that of the original MLE if the global secret is
leaked from servers. Moreover, the cost of employing mul-
tiple key servers is very expensive. The interaction between
the client and the key servers introduces significant latency
and communication overhead before the data is encrypted
and uploaded to the server.

5 SECURITY ANALYSIS

According to the attack model presented in Sec. 3.3, our sys-
tem mainly focuses on Online Brute-force Attack and Offline
Brute-force Attack by the malicious server S .

Intuitively, our scheme is against online brute-force at-
tacks by limiting the number of Deduplication Check runs.
Indeed, the algorithm of deduplication check is interactive.
Although it is communication consuming and online for
both sides required, the restricted runs can improve the
security to some extent and reduce the overhead both, i.e.,
the malicious server S pretends to one of the uploader to
run with other uploaders who have the same short hash
value sh for predictable files.

Generally, our scheme is against offline-force attacks
without dual servers aid. Firstly, the file uploaded to the
server is encrypted by a secure encryption with a random
key. It is impossible for S to guess the underlying file F as
κi is random. Then, the short hash sh stored in S avoids
guessing the content of F offline by S . Due to the high
collision rate of SH(), a same short hash sh may be associated
with different encrypted files whose plaintext maps to sh.
BD protocol (group key agreement protocol) is performed to
generate a shared secret sk to blind the value of H(w|r′1| · · ·).
It prevents a curious server S to predict a file by computing
the right ri offline.

In order to prove our scheme presented in Sec. 4.2 is
secure against malicious central server S , we follow the
work [20] to show that the execution of the deduplication
in the real model is computationally indistinguishable from
the execution in the ideal model.
Ideal Model. The deduplication protocol can be modeled
as two roles: the central backup server S and the clients
(local servers Ci). Ci upload their encrypted files to S and
S interacts with Ci to check the duplication. Specifically,
S has no information about Ci’s files although these files
may be predictable. The ideal functionality of deduplicating
encrypted files is defined in Fig. 4.
Real Model. However, an adversary A may compromise S
in the real model, say the malicious server S ′. The compro-

Input:

• Uploading: Each Ci input Fi and ki.
• Duplication Check: Each Ci with the same short

hash sh input Fi, random numbers (ri, ti).
• S’s input in the two phases are empty.

Output:

• Each Ci with the same short hash sh gets its own
gk. If the underlying file Fi are identical, these
gk are identical.

• Uploading: S gets the cipertext SE(ki, Fi) for Ci.
• Duplication Check: S gets ({IDi, ki}, H(gk)) for

a logic group which has the same file.

Fig. 4. The Ideal Functionally of Deduplicating Encrypted File

mised S ′ may masquerade as one client Ci to check the files
stored in it by observing which one causes deduplication.

Theorem 1. The deduplication protocol presented in Sec. 4.2 is
secure against malicious server S ′ if the BD protocol is a secure
group key agreement and SE is a semantically secure symmetric
encryption scheme.

Proof. The proof idea is to show that the execution of
the deduplication protocol in the real model is computa-
tionally indistinguishable from the ideal model. Therefore,
we construct a simulator SIM that can both access our
deduplication oracle in ideal model and obtain messages
the compromised S ′ would send in real model. SIM
generates the communication transcript of the real model
execution that is computationally indistinguishable from
that of the ideal model execution. Similar to [20], we assume
that the underlying BD group key agreement protocol is
implemented as an oracle the parties can quire.

We construct the simulator SIM for the compromised
server S ′. SIM now plays the role of the clients Ci to send
short hash values shi to S ′. S ′ collects the clients Ci with the
same shi. Then these {Ci} perform the duplication check
protocol and S ′ forwards the messages produced by Ci in
this protocol. SIM continues to pretend to be these {Ci}
to generate (ci, zi, Xi) by randomly chosen w, ri, ti. Once
upon the receipt of the encryption ci and Xi from S ′, SIM
picks ri chosen before and sets gk as a random value x in
the ideal model. Then SIM sends (H(x), Ki) to S ′.

The view of S ′ in the real model is viewS
′

REAL =
< SE(κi, F), sh, H(sk · H(w|r1| · · ·)), Ki > and the view of

8

S ′ in the ideal model is viewS
′

IDEAL = < C̃, sh, H(x), Ki >
where C̃ and x are random. We show that the distributions
of viewS

′

REAL and viewS
′

IDEAL are identical. Since SE is
semantically secure encryption algorithm and F is encrypted
by a randomly generated key κi, the ciphertext of F is
indistinguishable from a random value C̃ . Meanwhile, sk is
the output of a secure group key agreement, it is a random
group key output by the BD protocol. Therefore, S ′ cannot
distinguish sk · H(w|r1| · · ·) in the real model from a random
x in the ideal model. Thus we can see that viewS

′

REAL and
viewS

′

IDEAL are identically distributed, which means that S ′
cannot violate the security of deduplication protocol.

6 PERFORMANCE EVALUATION
We implement our scheme by C++ language and test its
performance on a virtual machine using Ubuntu version
20.04 with an Intel Core i5-9300H, CPU @ 2.40GHz, and
4G DRAM. We use OpenSSL (version 1.1.1f) to implement
MD5 as the cryptographic hash function and set the length
of short hash n = 16 bits. We used AES as the symmetric en-
cryption scheme. We did not take the time of file uploading
and downloading into consideration. For performance tests,
we present the average results over 20 runs.

6.1 File Encryption and Decryption

In the experiment, we first tested the time of file encryption
and decryption if the SE algorithm is an AES initialization.
We used key with different size (128 bits, 196 bits and 256
bits) to operate different file size. As shown in Fig. 5 and Fig.
6, we noted that even when using the 256-bit key to operate
600Mb file, the decryption/encryption time is still less than
9 seconds. We acknowledge that the decryption/encryption
time almost increases linearly with the increase of the
file size. This is unavoidable in all symmetric encryption
schemes. AES is very efficient and practical to be applied
for encrypted data deduplication. Computational overhead
includes one AES encryption and one hash operation. We
also tested the performance of MD5 for tag generation as
shown in Fig. 7. We note that the delay caused by the hash
operation is a small fraction of the overall file operation
process. File encryption accounts for a large portion of the
computational overhead on the user side. Therefore, we
also tested file encryption time for several schemes. The
results are shown in Fig. 8. The y-axias refers to the time
taken by the client to calculate the encrypted file C from
the corresponding file F. The comparisons are as shown
in Fig. 8. We find that the time spent implementing file
encryption of all schemes increases with the size of files
increasing. However, our scheme is more efficient than the
previous schemes. Bellare et al.’s scheme [17] require large
computations with remote entity during file encryption.

6.2 File Deduplication

6.2.1 Dataset
In backup storage systems, workloads usually are a series
of backups versions. Thus, backup systems have high du-
plicate ratio. For our experiment, it is not easy to obtain a
large volume of real-world backup files. To investigate the

Fig. 5. File encryption time with AES

Fig. 6. File decryption time with AES

Fig. 7. Hash operation time with MD5

9

Fig. 8. File encryption for different schemes

performance of our proposed batch deduplication scheme,
we synthesized three 600Mb datasets with different dupli-
cate ratios (70%, 80%, 90%) before deduplication.

6.2.2 Parameters
The short hash used in our experiment were implemented
by truncating the hash values of the encrypted data and we
set the length = 16 bits. Morever, to save bandwidth, we set
up different thresholds. If the number of logic group mem-
bers is less than the threshold, no negotiation is performed.
We use these parameters in our simulations.

Our experiment was inspired by the map and set primi-
tives present in many functional languages. We realized that
most of our computations involved applying a unordered
map operation to each logical record in server’s input in
order to compute a lot of intermediate key/value pairs.
Then we applied a set operation to all the values that
share the same key, in order to store different encrypted
values. The use of a functional model allow us to paral-
lelize large computation easily. In our scheme, grouping
and key negotiation are the most time-consuming opera-
tions in deduplication phase. Therefore, our work mainly
makes it more applicable in cloud storage. Fortunately, our
scheme supports parallel execution of the grouping and
key negotiation which makes our scheme outperform other
deduplication schemes [17] [18] [19]. Our scheme requires
only a simple upload of encrypted files. Liu’s scheme, on
the other hand, requires a series of interactive negotiations
before uploading the file. This scheme is hard to achieve in
practical applications

The experiment was conducted as follows. We simulated
users encrypted the files in the dataset and calculated the
short hash of all the files. Then they sent them to the server.
For a file, we created a mapping between its short hash
value and the encrypted value in the server. We checked the
map and considered files with the same short hash value
as a group. In each group, we executed batch duplication
check with different thresholds and group key agreement
protocol. After that, we use set to store the deduplicated files
values. By using map and set primitives, we can and rapidly

executed the batch checking and accurately computed the
duplicate ratio.

6.2.3 Threshold Selection
There is a dilemma between deduplication efficiency and
communication cost. Obviously, if the selected threshold
value is too small, it will cause a lot of unnecessary commu-
nication overhead. That is because the identical short hashes
do not mean the same files. If the selected threshold value is
too big, there will many identical files that are not checked.
Therefore, in our simulation, we set up different thresholds
and test the performance. The efficiency of deduplication
has different results for different threshold values. The batch
deduplication effect is shown in Fig.9. Our proposed scheme
is implemented with a 90% repetition ratio dataset. When
the threshold value is 2, the duplicate ratio of the dataset
after deduplication is only 0.16%, and the duplicate ratio
after de-duplication are 1.49%, 5.60%, and 17.30% when
the threshold values are 3, 4 and 5, respectively. When the
threshold is set to 2, the communication overhead reaches
its maximum. With a 90% duplicate ratio dataset, when
the threshold is 5, communication overhead decreases by
2.74% compared to the threshold is 2. However, with an 80%
duplicate ratio dataset, communication overhead decreases
by 32.83% compared to the threshold is 2.

Therefore, we suggest that when the backup system
has a high duplicate ratio, users can lower the threshold
value to save more storage space, and when the repetition
rate is low, the system can make a trade-off based on the
actual situation. In addition, in our scheme, communication
overhead is independent of file size. Therefore, when the file
is large enough, the overhead is negligible.

The results demonstrate that our scheme can save a mass
of storage space in small threshold and very efficient to be
applied in real-world backup systems.

Fig. 9. Deduplication percentage with different thresholds

6.3 Efficiency Of Duplicate File Checking
In this section, we implemented some other deduplication
schemes [17] [20] and compare the efficiency between them.
We choose [17] because it has the lowest computational
overhead among the server-aided schemes. Our scheme
focuses on the security and efficiency of deduplication, thus

10

we test whether our scheme is effective in detecting dupli-
cates, rather than the speed of eliminating them. Therefore,
we select a different number of files from the dataset to
perform file-level deduplication. Because our scheme sup-
ports batch checking, as shown in Fig.10, we find that as the
number of files increases, the time taken to implement dedu-
plication increases for all schemes. However, the growth
rate of our scheme is the slowest. Because the probability of
short hash collisions rises as the number of files increases,
batch checking is faster than other schemes. In summary,
our scheme outperforms other previous schemes in terms of
the efficiency of duplicate data checking.

Fig. 10. The running time for different amounts of files.

7 CONCLUSION

In this paper, we proposed a novel semantic secure en-
crypted deduplication scheme without dual servers that
supports batch checking for underlying identical files. By
using the high collision rate of the short hash, it not only
singles out the underlying identical files, but also prevents
offline guesses by the central server. Each local server, i.e.,
the client, needs to interact with other clients to check
whether their files are the same. By limiting the number of
protocol instances, it prevents online guesses. The parallel
calculations make the central server to check whether the
massive encrypted files are the same or not in constant
executions.

We extensively evaluate batch deduplication from file
encryption, hash operation, and storage efficiency aspects.
We show that our scheme significantly mitigates the en-
crypted data storage overhead in cloud storage especially
in backup systems.

ACKNOWLEDGMENT

This work is supported by Chengdu Science and Technology
Program (2021-YF08-00151-GX) and Sichuan Science and
Technology Program (2019YFG0508, 2020JDTD0007).

REFERENCES

[1] IDC. Data age 2025. https://www.seagate.com/our-story/
data-age-2025/.

[2] D. T. Meyer and W. J. Bolosky, A study of practical deduplication,
ACM Trans. Storage, vol. 7, no. 4, pp. 1-20, 2012.

[3] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, et al., Characteristics of Backup Workloads in Production
Systems,. In Proc. 10th USENIX Conf. FAST, pp. 1-16, 2012.

[4] GoogleDrive. [Online]. Available: http://drive.google.com (2012).
[5] Dropbox. [Online]. Available: http://www.dropbox.com (2007).
[6] Memopal. [Online]. Available: http://www.memopal.com (2018).
[7] D. Harnik, B. Pinkas and A. Shulman-Peleg, Side Channels in

Cloud Services: Deduplication in Cloud Storage. In IEEE Security
& Privacy, vol. 8, no. 6, pp. 40-47, 2010.

[8] P. Puzio, R. Molva, M. Onen and S. Loureiro, ClouDedup: Secure
deduplication with encrypted data for cloud storage. In Proc. IEEE
Int. Cof. Cloud Comput. Technol. Sci., pp. 363-370, 2013.

[9] J. Li, C. Qin, P. P. Lee and X. Zhang, Information leakage in en-
crypted deduplication via frequency analysis. In Proc. 47th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw., pp. 1-12, 2017.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon and M. Theimer,
Reclaiming space from deplicate files in a serverless distributed file
ststem. In Proc. IEEE Int. Conf. Distrib. Comput. Syst., pp. 617-624,
2002.

[11] M. Bellare, S. Keelveedhi, and T. Ristenpart, Message-locked en-
cryption and secure deduplication. In Proc. 32nd Annu. Int. Conf.
Theory Appl. Cryptographic Techn., pp. 296-312, 2013.

[12] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou and X. Lin, Healthdep:
An efficient and secure deduplication scheme for cloud-assisted
ehealth systems. In IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4101-4112, 2018.

[13] F. Armknecht, C. Boyd, G. T. Davies and Gjsteen, Side channels in
deduplication: Trade-offs between leakage and efficiency. In Proc.
ACM Conf. Comput. Commun. Security, pp. 266-274, 2017.

[14] H. Cui, C. Wang, Y. Hua, Y. Du and X. Yuan, A Bandwidth-Efficient
Middleware for Encrypted Deduplication. In Proc. of IEEE DSC,
2018.

[15] S. Halevi, D. Harnik, B. Pinkas and A. Shulman-Peleg, Proofs of
ownership in remote storage systems. In Proc. 18th ACM Conf.
Comput. Commun. Secur., pp. 491-500, 2011.

[16] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in
cloud services: Deduplication in cloud storage. In IEEE Security
& Privacy, 8(6):40-47, 2010.

[17] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: Server-
aided encryption for deduplicated storage. In Proc. of USENIX
Security, 2013.

[18] M. Miao, J. Wang, H. Li, and X. Chen, Secure multi-server-aided
data deduplication, cloud computing, Pervasive Mobile Comput.,
vol. 24, pp. 129-137, 2015.

[19] Y. Duan, Distributed key generation for encrypted deduplication
achieving the strongest privacy. In Proc. 6th Ed. ACM Workshop
Cloud Comput. Security, pp. 57-68, 2014.

[20] J. Liu, N. Asokan, and B. Pinkas, Secure deduplication of en-
crypted data without additional independent servers. In Proc. 22th
ACM SIGSAC Conf. Comput. Commun. Secur., pp. 874-885, 2015.

[21] S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In Proc. IEEE
Security & Privacy, pp. 72-84, 1992.

[22] M. Naor and O. Reingold. Number-theoretic constructions of effi-
cient pseudo-random functions. In Journal of the ACM, 51(2):231-
262, 2004.

[23] J. Li, Z. Yang, Y. Ren, P. Lee, and X. Zhang. Balancing storage
efficiency and data confidentiality with tunable encrypted dedupli-
cation. In Proc. of ACM Eurosys, 2020.

[24] Y. Zhang, C. Xu, N. Cheng and X. Shen, Secure password-
protected encryption key for deduplicated cloud storage systems.
In IEEE Transactions Dependable and Secure Computing, pp. 1-18,
2021.

[25] H. Yuan, X. Chen, J. Li, T. Jiang, J. Wang, and R. Deng, Secure
Cloud Data Deduplication with Efficient Re-encryption. In IEEE
Transactions on Services Computing, 2019.

[26] J. Li, C. Qin, P. P. C. Lee and J. Li, Rekeying for encrypted
deduplication storage. In Proc. 46th Annu. IEEE/IFIP Int. Conf.
Depend. Syst. Netw., pp. 618-629, 2016.

[27] H. Cui, R. H. Deng, Y. Li, and G. Wu, Attribute-based storage
supporting secure deduplication of encrypted data in cloud. In
IEEE Transactions on Big Data, vol. 5, no. 3, pp. 330-342, Sep. 2019.

[28] M. Li, C. Qin and P. P. Lee, CDStore: Toward reliable secure
and cost-efficient cloud storage via convergent dispersal. In Proc.
USENIX Conf. Usenix Annu. Tech. Conf., pp. 111-124, 2015.

https://www.seagate.com/our-story/data-age-2025/.
https://www.seagate.com/our-story/data-age-2025/.
http://drive.google.com
http://www.dropbox.com
http://www.memopal.com

11

[29] P. Anderson and L. Zhang, Fast and Secure Laptop Backups with
Encrypted De-Duplication. In Proc. USENIX LISA, pp. 1-8, 2010.

[30] M. Bellare and S. Keelveedhi, Interactive message-locked encryp-
tion and secure deduplication. In Public-Key Cryptography, pp.
516-538, 2015.

[31] M. W. Storer, K. Greenan, D. D. E. Long and E. L. Miller, Secure
data deduplication. In Proceedings of 4th ACM International Work-
shop Storage Security Survivability, pp. 1-10, 2008.

[32] Y. Zhang, C. Xu, N. Cheng, and X. Shen, Secure Encrypted
Data Deduplication for Cloud Storage against Compromised Key
Servers. In IEEE Global Communications Conference, pp. 1-6, 2019.

[33] Y. Ren, J. Li, Z. Yang, P. P. C. Lee and X. Zhang, Accelerating
encrypted deduplication via SGX. In Proc. of USENIX ATC, 2021.

[34] Li, C. Qin, P. P. C. Lee, and X. Zhang. Information leakage in en-
crypted deduplication via frequency analysis. In Proc. of IEEE/IFIP
DSN, 2017.

[35] M. Burmester and Y. Desmedt, A secure and efficient conference
key distribution system.In Proc. Workshop Theory Appl. Crypto-
graph. Techn., pp. 275-286, May 1994.

[36] J. Ma, R. J. Stones, Y. Ma, J. Wang, J. Ren, G. Wang, et al., Lazy
exact deduplication. In ACM Transactions on Storage, vol. 13, no.
2, pp. 11, 2017.

[37] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
Message-locked encryption for lock-dependent messages, Ad-
vances in Cryptology-CRYPTO 2013, vol. 8042, pp. 374-391, 2013.

[38] Y. Shin, D. Koo, J. Yun, and J. Hur, Decentralized server-aided
encryption for secure deduplication in cloud storage. In IEEE
Transactions on Services Computing, vol. 13, no. 6, pp. 1021-1033,
2020.

[39] D. Zhang, J. Le. Secure and Efficient Data Deduplication in Joint-
Cloud Storage. In IEEE Transactions on Cloud Computing. 2021.

	Introduction
	Contribution
	Organization

	PRELIMINARIES
	Deduplication
	Encrypted Deduplication
	Hash Collisions
	Group Key Agreement Protocol

	Secure Deduplicated Backup System Model
	Design Goals
	Backup System Model
	Attack Model
	Ideal Goals

	THE PROPOSED SCHEME
	Overview
	Construction
	Discussion
	Our Scheme v.s. Liu's Scheme
	Threshold Selection

	Comparative Analysis

	Security Analysis
	PERFORMANCE EVALUATION
	File Encryption and Decryption
	File Deduplication
	Dataset
	Parameters
	Threshold Selection

	Efficiency Of Duplicate File Checking

	Conclusion
	References
	Biographies
	Haoyu Zheng
	Shengke Zeng
	Hongwei Li
	Zhijun Li

