
VMEO: Vector Modeling Errors and Operands for
Approximate adders

Vishesh Mishra
Dept. of Computer Science and Engineering

IIT Kanpur, India
vishesh@cse.iitk.ac.in

Urbi Chatterjee
Dept. of Computer Science and Engineering

IIT Kanpur, India
urbic@cse.iitk.ac.in

Abstract—Approximate computing techniques are extensively
used in computationally intensive applications. Addition archi-
tecture being the basic component of computational unit, has
received a lot of interest from approximate computing commu-
nity. Approximate adders are designed with the motivation to
reduce area, power and delay of their accurate versions at the
cost of bounded loss in accuracy. A major class of approximate
adders are implemented using binary logic circuits that operate
with a high degree of predictability and speculation. This paper
is one of the early attempt to vector model error values that
occur in approximate architectures and the inputs fed to them. In
this paper, we propose two vectors namely Error Vectors (EVs)
and the Input Conditioning Vectors (ICVs) that will form the
mathematical foundation of several probabilistic error evaluation
methodologies. In other words, the suggested vectors can be
used to develop assessment methods to measure the performance
of approximate circuits. Our proposed vectors when utilised
to analyze approximate circuits, will provide a descriptive idea
about (i) chances of error generation and propagation, (ii) the
amount of error at specific bit locations and its impact on overall
result. This is however not conceivable with existing state-of-the-
art methodologies.

Index Terms—Approximate Computing, Computational Unit,
Approximate Adders, Vectors, Mathematical modeling

I. INTRODUCTION

Approximate computing [1] has gathered a significant role
in the design of power-aware architecture [2]. In a typical
case of approximate computing deployed at hardware level,
traditional accurate circuits are often replaced with energy-
efficient approximate circuits [3]. These approximate circuits
provide significantly lower computational time and additional
power and energy benefits. Previous research works suggest
that introduction of approximate computing at hardware level
can play a major role in lowering the area, power and delay
estimation of a VLSI design [4].

Modern day computer applications such as machine learn-
ing, artificial intelligence, scientific computing, and image
processing deal with massive data. Furthermore, large number
of convolution operations in these applications repeatedly
invoke addition and multiplication architectures. This has been
a major reason behind the popularity of approximate adder
design among approximate computing community. Previous
works have furthered the design of approximate adders ranging
from low latency block-based designs to low power truncation-
based architectures that come up with bounded imprecision in

results [5], [6]. Although existing works claim the bounded-
ness of error by evaluating their designs over error-resilient
applications such as image processing and machine learning
tools, the error may still get out-of-bound and affect the
Quality of Results (QoR) in the end.

The evaluation of approximate addition architectures is ma-
jorly done using the error metrics [7], namely Mean Relative
Error Distance (MRED), Mean Error Distance (MED) and
Normalized Mean Error Distance (NMED). A large number
of random inputs are fed to the targeted design and the error
occurred at each iteration is calculated. Hereafter, the above-
mentioned metrics are evaluated based on the statistical anal-
ysis of Error Distance (ED), where ED is the absolute gap
between mean error and the error occurred at each iteration.
Evaluation of these metrics require significant computational
time since the results are to be generated from the scratch.
Additionally, despite consuming sufficient time to analyze,
they still fail to differentiate between the designs that have
same error margins. The existing error metrics also struggle
to pick the most appropriate approximate design for specific
applications that usually deal with repetitive set of binary
numbers. It is found that ED values do not vary for repetitive
set of inputs, therefore the error metrics evaluation may not
be helpful in driving conclusive inferences. Other than this,
since such metrics only deal with the error analysis of design
as a whole, they do not provide any probabilistic inference
about the chances of error at specific bit locations and about
correctness of sum bits. Furthermore, these metrics provide
no conclusive inference about impact that occurred error can
cause at specific bit locations and about the number of bits
required to completely sink-in the occurred error.

A. Motivation and Contribution

As discussed earlier, the standard error metrics for reliability
of approximate adders do not give specific inference about
the behavior of approximations in contrast to varying input
operands. Therefore, there is a need of error metrics that
do not restrict the error-analysis to mere numbers. Rather,
the error metrics should provide a descriptive idea about the
(i) probable chances of error generation and/or propagation
and (ii) impact of error occurred on bunch of bits out of
the total sum bits. To address this, we propose an alternative
mathematical foundation which is different from conventional

ED values computation. To the best of our knowledge, this
is the early attempt that presents vector modeling of errors
and operands for approximate adders through VMEO. These
vectors can be utilised to design a probabilistic model for
analyzing approximate circuits.

In summary, the novel contributions provided by this work
are as follows:

• The foundation of any approximate adder is a 1-bit full
adder circuit, thus we first investigate all the theoretical
and real-world error-occurring cases corresponding to 1-
bit full adder.

• The prospective error value for each case is then calcu-
lated. As a result, we obtain seven different error values
that are eventually used to construct an error vector
(
−−→
EV).

• Finally, we examine the input operands fed to an archi-
tecture to formulate the input conditioning vector (

−−→
ICV).

II. VMEO: VECTOR MODELING ERRORS AND OPERANDS

In this section, we initially discuss the mathematical basis
behind the vector modeling of errors and operands. We later
discuss the formulation of

−−→
EV s and

−−−→
ICV s.

The measure of accuracy in a cascaded system of full
adders is typically determined by the relative performance of
the individual full adders. Moreover, the accuracy of results
provided by a full adder depends upon two factors namely:
i)correctness of carry input fed to it and ii) the computational
logic of full adder itself. Now, since in a cascaded system,
1-bit full adders gets the carry input from the carry output of
the full adder preceding it, the individual performance of a
full adder is also dependent upon the full adder preceding it.

• Formulation of EVs: 1 A full adder takes three inputs
A, B, and carry input (Cin) to generate outputs sum-
bit (S), carry output (Cout) respectively. This way, a full
adder can encounter 23 = 8 different input patterns.
We analyze each input pattern separately and take into
account all hypothetical error possibilities that can occur
when compared with accurate output for the chosen input
pattern. Thereafter, we compute the exact error (EE)
value as follows:

EE = (Sapp + 2Capp)− (S + 2Cout). (1)

This results in six distinct values ranging from -3 to -3
(excluding 0). Here in Eqn.1, Sapp are Capp are the error
prone sum and carry bits and S, Cout are accurate sum
and carry bits of full adder. Also a factor of 2 is multiplied
to carry bits Capp and Cout respectively. This is done
because carry bit is always weighted when compared to
a sum bit. Table I shows all possible EE values if the
error has definitely occurred. Also, if error-prone bits are
equal to accurate bits, it means there is no error and EE
value for this case comes out to be zero. Therefore, we
now formulate a set X that contains all seven solutions
of linear Eqn.1 given by:

X = {−3,−2,−1, 0, 1, 2, 3} (2)

Now, keeping in mind the elements of set X , we define
the error vector (

−−→
EV s) given by,

−−→
EV =a1.n⃗1+a2.n⃗2+a3.n⃗3+a4.n⃗4+a5.n⃗5+a6.n⃗6+a7.n⃗7

(3)
where aiϵ{0, 1}, |n⃗i| = 1 and n⃗i × n⃗j = 0 ∀ i, j ϵ[1, 7].
Here in Eqn.3, we have mapped different EE values to
different unit vectors along hypothetically different direc-
tions. This is done because each EE value independently
impacts the overall result in a way indifferent to other.
We will use (

−−→
EV) to denote error of a cascaded system

of full adders in upcoming section.
• Formulation of ICVs: The probable chances when a full

adder may produce error prone sum bit and/or carry bit
are already discussed earlier. However, the occurrence
and further propagation of error greatly depends upon
various input patterns. Clearly, if both inputs (A and B)
fed to the accurate full adder are (0, 0) or (1, 1) then
the carry-out is certainly accurate. Furthermore, if the
input bits are (0, 1) and (1, 0) respectively, then error
occurrence and propagation becomes probabilistic in na-
ture. From this we infer that error generation/propagation
and input bit patterns are greatly related to each other.
Therefore, to clearly identify a specific input pattern, we
associate operands pattern detector (OPD) correspond-
ing to two distinct type of input patterns. We define OPD
as follows:

OPD = A⊕B (4)

Clearly, OPD can have two values namely 0 or 1.
Table II shows possible OPD values Therefore, we now
define a set Y that contains solution of linear Eqn.4 given
by:

Y = {0, 1} (5)

Now, keeping in mind the elements of set Y , we define
conditioning vector (

−−→
ICV) given by:

−−→
ICV = b1.m⃗1 + b2.m⃗2 (6)

where biϵ{0, 1}, |m⃗i| = 1 and m⃗i × m⃗j = 0 ∀ i, j
ϵ{1, 2}. Here in Eqn.3, we have mapped different OPD
values to different unit vectors along hypothetically dif-
ferent directions. This is done because each OPD value
independently impacts the overall result in a all together
different way. We will use (

−−→
ICV) to denote input pattern

of a cascaded system of full adders in upcoming section.

III. EVALUATION

In this section, we demonstrate the evaluation of
−−→
EV and−−→

ICV with the help of an example. For this purpose, we con-
sider two 8-bit inputs [01010110] and [10010111] respectively.
Clearly, we require ’8’ 1-bit full adders to compute the addi-
tion of two considered numbers. Therefore, we assume that
the addition is performed by a circuitry that will contain ’8’
1-bit full adders. Now, we perform the addition via an accurate
adder and a hypothetical approximate adder respectively. As a
result, we get 8-bit sum and 8-bit carry out corresponding to

[Cin, A, B] S Cout Sapp Capp Exact Error (EE)
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 2
0 0 0 0 0 1 1 3
0 0 1 1 0 0 0 -1
0 0 1 1 0 1 1 2
0 0 1 1 0 0 1 1
0 1 0 1 0 0 0 -1
0 1 0 1 0 1 1 2
0 1 0 1 0 0 1 1
0 1 1 0 1 1 1 1
0 1 1 0 1 0 0 -2
0 1 1 0 1 1 0 -1
1 0 0 1 0 0 0 -1
1 0 0 1 0 1 1 2
1 0 0 1 0 0 1 1
1 0 1 0 1 1 1 1
1 0 1 0 1 0 0 -2
1 0 1 0 1 1 0 -1
1 1 0 0 1 1 1 1
1 1 0 0 1 0 0 -2
1 1 0 0 1 1 0 -1
1 1 1 1 1 0 1 -1
1 1 1 1 1 1 0 -2
1 1 1 1 1 0 0 -3

TABLE I
TRUTH TABLE FOR 1-BIT ACCURATE FULL

ADDER[(Cin, A,B) → (S,Cout)], POSSIBLE ERROR-PRONE SUM, CARRY
BIT (Sapp, Capp) AND CORRESPONDING EEs

A B Operands Pattern Detector (OPD)
0 0 0
0 1 1
1 0 1
1 1 2

TABLE II
POSSIBLE INPUT COMBINATIONS A, B AND CORRESPONDING OPDs

accurate and approximate adder. Thereafter, we perform the
following steps:

STEP 1: Firstly, compute EEs and OPDs with help of
Eqn.1 and Eqn.4.

STEP 2: Secondly, note EE and OPD values correspond-
ing to each full adder and then write

−−→
EV and

−−→
ICV for

each full adder using Eqn.3 and Eqn.6 (starting from least
significant bit side).

STEP 3: Finally, add the obtained individual
−−→
EV s and−−−→

ICV s to get the
−−→
EV and

−−→
ICV for 8-bit approximate adder

design.
Tab.III contains

−−→
EV s and

−−−→
ICV s corresponding to each full

adder. Based on these values, we now formulate,
−−→
EV and

−−→
ICV

for 8-bit adder as follows:
−−→
EV = n⃗2 + 4n⃗4 + 2n⃗5 + n⃗6 (7)

−−→
ICV = 5m⃗1 + 3m⃗2 (8)

Here in Eqn.8, m⃗1 is multiplied by scalar 5 since exactly
five values of OPDs are zero and m⃗2 is multiplied by scalar
3 because three values of OPDs are 1. Eqn.7 can also be
interpreted in a similar manner. Fig.1 depicts the ilusration
example considered for evaluating

−−→
EV and

−−→
ICV . This way,−−→

EV and
−−→
ICV can be evaluated for any generic architecture.

Later, these vectors can be utilised to design a mathematical
model for accuracy analysis of approximate architectures.

OPD EE
−−→
ICV

−−→
EV

1 1 m⃗2 n⃗5

0 0 m⃗1 n⃗4

0 -2 m⃗1 n⃗2

0 0 m⃗1 n⃗4

0 0 m⃗1 n⃗4

0 0 m⃗1 n⃗4

1 1 m⃗2 n⃗5

1 2 m⃗2 n⃗6

TABLE III
OPD, EE , AND CORRESPONDING

−−−→
ICV s,

−−→
EV s

Fig. 1. Illustration example depicting evaluation of OPDs and EEs

IV. CONCLUSION

This article presents one of the earliest attempts to vector
model error values that appear in approximate designs and
the inputs provided to them. In this article, we present two
vectors, called error vectors (

−−→
EV s) and input conditioning

vectors (
−−−→
ICV s), which will serve as the mathematical basis

for a number of probabilistic error evaluation approaches. To
put it another way, the suggested vectors can be utilised to
create evaluation techniques to gauge how well approximation
circuits operate. With current state-of-the-art approaches, this
is not nevertheless practicable.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), 2013, pp. 1–6.

[2] S. S. Dayapule, F. Yao, and G. Venkataramani, “Powerstar: Improving
power efficiency in heterogenous processors for bursty workloads with
approximate computing,” in 2019 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2019, pp. 175–
182.

[3] M. Breuer, “Hardware that produces bounded rather than exact results,”
in Design Automation Conference, 2010, pp. 871–876.

[4] Z. Aizaz and K. Khare, “Area and power efficient truncated booth
multipliers using approximate carry based error compensation,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2021.

[5] R. Bhattacharjya, V. Mishra, S. Singh, K. Goswami, and D. S. Banerjee,
“An approximate carry estimating simultaneous adder with rectification,”
in Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020,
pp. 139–144.

[6] S. Singh, V. Mishra, S. Satapathy, D. Pandey, K. Goswami, D. S. Banerjee,
and B. Jajodia, “Efcsa: An efficient carry speculative approximate adder
with rectification,” in 2022 23rd International Symposium on Quality
Electronic Design (ISQED), 2022, pp. 1–7.

[7] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, no. 9, pp. 1760–1771, 2013.

