
Toffoli gate count Optimized Space-Efficient
Quantum Circuit for Binary Field Multiplication

Sunyeop Kim1 Insung Kim1 Seonggyeom Kim1 and Seokhie Hong1

Institute of Cyber Security & Privacy (ICSP), Korea University, South Korea
kin3548@gmail.com, cmcom35@icloud.com, jeffgyeom@korea.ac.kr,

shhong@korea.ac.kr

Abstract. Shor’s algorithm solves Elliptic Curve Discrete Logarithm
Problem(ECDLP) in polynomial time. To optimize Shor’s algorithm for
binary elliptic curve, reducing the cost for binary field multiplication is
essential because it is most cost-critical basic arithmetic. In this paper,
we propose Toffoli gate count optimized space-efficient quantum circuits
for binary field (F2n) multiplication. To do so, we take advantage of
Karatsuba-like formula and show that its application can be provided
without ancillary qubits and optimized them in terms of CNOT gate and
depth. Based on the Karatsuba-like formula, we drive a space-efficient
CRT-based multiplication with two types of out-of-place multiplication
algorithm to reduce CNOT gate cost. Our quantum circuits do not use
ancillary qubits and have extremely low TOF gates count O(n2log

∗
2 n)

where log∗2 is a function named iterative logarithm that grows very slowly.
Compared to recent Karatsuba-based space-efficient quantum circuit, our
circuit requires only (12 ∼ 24%) of Toffoli gate count with comparable
depth for cryptographic field sizes (n = 233 ∼ 571). To the best of our
knowledge, this is the first result that utilizes Karatsuba-like formula
and CRT-based multiplication in quantum circuits.

Keywords: Quantum Computers, Karatsuba Multiplication, CRT, Bi-
nary Field, Toffoli gate

1 Introduction

Quantum algorithms have received a lot of attention from the cryptographic com-
munity due to their impact on the security reduction of cryptosystems. Shor’s
algorithm solves Integer Factorization Problem (IFP), the Discrete Logarithm
Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem (ECDLP) in
polynomial time, and Grover’s algorithm gives quadratic speed up in searching
problems. However quantum computers at present have only limited number of
qubits and further development must be needed to attack currently used cryp-
tographic algorithms. To estimate how much quantum resources will be needed
to attack the cryptographic algorithms, it is necessary to implement them in
quantum circuits. Therefore implementing cryptographic algorithms in quan-
tum circuits and estimating, optimizing the costs of those circuits have become

2 K, Sunyeop et al.

a widespread field of research. In this paper, we focus on binary field multi-
plications that are commonly used as basic arithmetic in many cryptographic
algorithms, especially ECDSA.

The primary ways to express binary field elements are normal basis represen-
tation and polynomial basis representation. The addition is the same in the two
representations, whereas the multiplication should be implemented differently.
The multiplication with normal basis can be implemented by a quantum circuit
that has O(n) depth and requires O(n2) Toffoli (TOF) gates without CNOT
gate [2]. The quantum circuits for the polynomial basis are based on either Mas-
trovito multiplier or Karatsuba multiplication. The Mastrovito-based quantum
circuit of [15] uses O(n2) TOF and CNOT gates, respectively. Regarding Karat-
suba multiplication, the quantum circuit of [13] needs O(nlog2 3) qubits with the
same gate complexity as that of classical Karatsuba multiplication.

For the space-efficient Karatsuba multiplication (3n qubits without ancilla),
ModMult of [11], which is based on the multiplication of polynomial over
GF(2)(so called carry-less product) algorithm KMult, needs O(nlog2 3) TOF
gates and O(n2) CNOT gates. ModMult is also used in solving ECDLP, i.e.,
the analysis of ECDSA [4] due to it’s space efficiency and small number of TOF
gates. Thereafter, the improved version of ModMult, ModMult Imp, with
a reduced number of CNOT gates was proposed in [19]. For depth optimized
Karatsuba multiplication circuit, trade-off between number of qubits and Toffoli
depth were proposed [12]. The number of Toffoli gate and qubits needed for the
circuit are both O(nlog2 3) with toffoli depth 1.

Karatsuba-like
formula

Base conditions
for degree 3 to 8

ModMultKMult

ModMult Imp

Polynomial
multiplication
over GF(2)

Binary field
multiplication

CRTModMult

Proposed in Sec. 4

Proposed in [19]

Proposed in [11]Proposed in [11]

Proposed in Sec. 3

TOF : O(nlog2 3)

CNOT : O(n2)

TOF : O(n2log
∗
2 n)

CNOT : O(n2)

Fig. 1. Quantum Space-Efficient Karatsuba Multiplication

1.1 Our Contribution

1. Karatsuba like formula in quantum circuit without ancilla. We show
that Karatsuba-like formula, which is a generalization of Karatsuba multi-
plication splitting polynomials into more than two terms [1, 17, 10, 7], can be

Title Suppressed Due to Excessive Length 3

implemented in quantum circuit without ancilla. We also give optimization
method in terms of CNOT gate count and depth, along with cost for 3-8
split Karatsuba-like formula.

2. Toffoli-count optimized space-efficient quantum circuit for binary
field multiplication. Based on the Karatsuba-like formula, we propose
TOF-count optimized space-efficient quantum circuit for binary field mul-
tiplication CRTModMult. CRTModMult provides TOF gate-optimized
multiplication circuit by utilizing the CRT-based multiplication of [9]. Also
we used two types of out-of-place multiplication algorithm to reduce CNOT
gate cost. This approaches extremely reduces the required TOF gates into
O(n2log

∗
2 n) from O(nlog2 3) with the asymptotically same number of CNOT

gates O(n2) compared to ModMult Imp. Fig. 1 demonstrates the compari-
son between the approaches of [4, 19] and ours. To the best of our knowledge,
this is the first result that utilizes Karatsuba-like formula and CRT-based
multiplication in quantum circuits.

3. Comparing with previous space-efficient circuit. We implemented
CRTModMult in quantum programming tool Qiskit and obtained the re-
source analysis. The required TOF gates is reduced to 12 ∼ 24% of Mod-
Mult Imp for cryptographic field sizes (n = 233 ∼ 571). Table 1 gives the
comparison of asymptotic costs. Our circuit also has a lower depth than
ModMult Imp, despite 3 ∼ 4 times many CNOT gates. Since our focus is
optimizing the number of TOF gate without ancilla, which is opposed to [12]
we will not compare our circuit with [12]. Considering the high cost of TOF
gate, which consists of 7 T gates and 8 Clifford gates [3], CRTModMult is
promising to be used in quantum computing for binary elliptic curves.

1.2 Organization

Section 2 introduces the relevant contents, basic quantum circuits and previ-
ous results of quantum Karatsuba multiplication. In Section 3, we introduce
Karatsuba-like formula in quantum circuit. Our proposed modular multiplica-
tion CRTModMult is given in Section 4. The implement results of CRTMod-
Mult in qiskit are demonstrated in Section 6. We conclude the paper in Section
7.

Table 1. Comparison of Asymptotic Costs with Previous Works

n
TOF CNOT Qubit Count

Ours [19] [11] [13] Ours [19] [11] [13] Ours [19] [11] [13]
16 64 81 81 81 974 655 725 376 48 48 48 113
127 737 2185 2185 2185 49040 20300 21028 13046 381 381 381 2433
233 1441 6307 6307 6307 154892 60453 63655 - 699 699 699 -
256 1590 6561 6561 6561 184948 63689 66107 57008 768 768 768 7043
283 1784 10241 10241 10241 224246 87929 89620 - 849 849 849 -
571 3813 31139 31139 31139 862604 267771 270940 - 1713 1713 1713 -

O(n2log
∗
2 n) O(nlog2 3) O(n2) O(nlog2 3) 3n O(nlog2 3)

4 K, Sunyeop et al.

2 Preliminary

This chapter defines the basic quantum circuits and previous quantum karatsuba
multiplication circuit ModMult.

2.1 Quantum Gate

We use CNOT, TOF, and SWAP gates throughout this paper.

CNOT gate : (x, y) → (x⊕ y, y)

TOF gate : (x, y, z) → (x⊕ y · z, y, z)
SWAP gate : (x, y) → (y, x)

In algorithms we write the above gates as CNOT(x, y) → x, TOF(x, y, z) → x,
and SWAP(x, y). Each gate can be illustrated as (a), (b), and (c) of Fig. 2,
respectively. Also for quantum circuit C, We define C† as the inverse of it.

y y

x x⊕ y ×x y

y x×z z

y y

x x⊕ y · z

(a) CNOT gate (b) TOF gate (c) SWAP gate

Fig. 2. Quantum Gates

2.2 Basic Setting

All polynomials considered in this paper are in F2[x] and deg(f) denote the
degree of polynomial f(x). A polynomial f(x) = f0 + f1x + · · · + fn−1x

n−1

of degree at most n − 1 is called an n-term polynomial and we represent it
as an n-qubit array (f0, f1, · · · , fn−1). M(n) denotes the number of TOF (or
AND) gates required to multiply two arbitrary n-term polynomials. k (0 <
k ≤ n) coefficients of x2n−1+k, . . . , x2n−2 of the multiplication f(x)g(x) are
called remainder coefficients and λ(k) denotes the number of TOF (or AND)
gates required to calculate them. Minimum value of M(n) is open problem for
n > 8. Binary field F2n can be identified with quotient ring F2[x]/⟨p(x)⟩ which is
called polynomial basis representation, where p(x) is an irreducible polynomial
of degree n.

2.3 Related Works on Space-efficient Karatsuba Multiplication

For given input polynomials f(x), g(x) of size n and h(x) size of 2n, output of
Karatsuba algorithm is h + fg. For k = ⌈n

2 ⌉, Karatsuba multiplication splits

Title Suppressed Due to Excessive Length 5

each polynomial as follows : f(x) = f0 + f1x
k, g(x) = g0 + g1x

k and h(x) =
h0 + h1x

k + h2x
2k + h3x

3.
Letting α = f0g0, β = f1g1, γ = (f0 + f1)(g0 + g1), h + fg can be rewrited

as follows.

h+ fg = h+ α+ (α+ β + γ)xk + βx2k

= h+ (1 + xk)α+ xkγ + xk(1 + xk)β

Using the fact that α, β, γ are results of k or n − k term polynomial multipli-
cations and multiplication of constant polynomial can be done inplace, recur-
sive polynomial multiplication algorithm ‘KMult’ was given in [11]. KMult
algorithm can be extend to binary field multiplication algorithm ‘ModMult’
along with constant polynomial multiplication on fixed modulus. ModMult
has O(nlog2 3) TOF gate complexity and O(n2) CNOT gate cost, which is far
efficient than school book multiplication. Afterwards, ModMult Imp, the im-
proved version of ModMult which changed the order of α, β, γ in computation
step, was given recently [19]. Compared toModMult,ModMult Imp has same
number of TOF gate but CNOT gate cost and depth were reduced. Therefore
ModMult Imp will be our main target but the number of gates in the paper
appears to be underestimated. So we will separately implement ModMult Imp
in Qiskit in that comparisons can be made under the same conditions.

3 Karatsuba-like formula

Karatsuba multiplication can be generalized by splitting polynomials more than
two terms. This is called Karatsuba-like formula and it has been first studied for
[1] and have been improved over the years [17, 10, 7]. Because of high searching
complexity, only up to 8-split Karatsuba-like formula were studied. In this pa-
per, we focus on Karatsuba-like formula which can be represented in symmetric
bilinear form [10]. Symmetric bilinear form consists of

1. a top layer consisting only of XOR gates with n bit inputs A,B
2. symmetric multiplication (AND) layer that computes following form∑

i∈S

ai ·
∑
i∈S

bi

where

A = [a0, ..., an−1], B = [b0, ..., bn−1], S ⊆ {0, ..., n− 1}

3. a bottom layer that uses only XOR gates with l bit output C

Symmetric bilinear form can be represented with k × n matrix T which
corresponds to top layer and k× l matrix R which corresponds to bottom layer.

C = R · [(T ·A) ◦ (T ·B)]

6 K, Sunyeop et al.

A0 : • • • •
A1 : • • • •
A2 : • • •
B0 : • • • •
B1 : • • • •
B2 : • • •
C0 : • •
C1 : • • • •
C2 : • •
C3 : • •
C4 :

Fig. 3. 3-split Karatsuba-Like Formula in Quantum Circuit

For example, karatsuba multiplication is symmetric bilinear form with following
T,R matrix.

T =

1 0
1 1
0 1

 , R =

1 0 0
1 1 1
0 0 1

Each row of T matrix can be converted to CNOT gates in A and B registers. For
i th column of R matrix, ‘1’ can be seen as CNOT operation controlled target bit
of i th TOF gate. So we can construct the symmetric bilinear form in quantum
circuit without ancilla. we define SBFT,R(a, b, c) as quantum circuit which sym-
metric bilinear formula with T,R matrix. Note that symmetric bilinear form of
n-split Karatsuba-like formula has parameter l = (2n−1) and k corresponds the
number of AND (or TOF) gate needed for polynomial multiplication. Fig 3 is
an example of 3-split Karatsuba-like formula in quantum circuit with following
T,R matrix.

T =

1 0 0
0 1 0
1 1 0
0 0 1
0 1 1
1 1 1

 , R =

1 0 0 0 0 0
1 1 1 0 0 0
0 0 1 0 1 1
0 1 0 1 1 0
0 0 0 1 0 0

3.1 Optimizing Karatsuba-Like Formula in Quantum Circuit

Optimizing Cost of T Matrix. Optimizing T matrix on quantum circuit can
be seen as problem similar to straight-line program but it is different in that only
intermediate values stored in qubit at the moment can be reused in this case.
Since this is a difficult problem likewise, we heuristically reduced the number of
CNOTs needed based of greedy algorithm.

Title Suppressed Due to Excessive Length 7

A0 : •
A1 :
A2 :
B0 : •
B1 :
B2 :
C0 : • • • • • •
C1 : • • • •
C2 :
C3 :
C4 :
C5 :
C6 :
C7 :
C8 :

Fig. 4. Example of Reducing the Depth of R Matrix

Optimizing Depth of R Matrix. With respect to R matrix, we focus on
reducing the depth and explain it by example. Assume that some column of R
matrix is [1,1,1,0,0,0,1,1,1]. If C0 is only used as the control qubit in Fig 4, depth
will be 11, considering † operation in front of the TOF gate. But if C1, where
value of C0 is already copied, is also used as a control bit, depth is reduced to
7. We reduced depth of every Karatsuba-like formula likewise.

3.2 Cost of (3 ∼ 8)-split Karatsuba-like formula with optimization

We examined 3 ∼ 8 Karatsuba-like formula in [17, 10, 7] and selected ones which
has lowest CNOT gate cost when above optimizations are applied. Table 2 gives
complexity of 3 - 8 degree polynomial multiplication circiut based on Karatsuba
like formula and KMult.

Table 2. number of TOF, CNOT gate and depth for (3 ∼ 8)-split Karatsuba-like
formula

Term
Karatsuba-like formula KMult

TOF CNOT depth TOF CNOT depth

3 6 20 13 7 28 21

4 13 48 33 17 88 52

5 13 80 53 17 88 52

6 17 124 77 21 116 63

7 22 180 95 25 152 77

8 26 310 157 27 176 84

8 K, Sunyeop et al.

4 CRT-Based Modular Multiplication

CRT-based modular multiplication uses the CRT formula (Theorem 1) to make
high-order multiplication circuit form low-degree circuit[9]. Because of huge num-
ber of XOR gates, CRT-based multiplication does not get much attention in
classical circuit. However it would be a good choice in quantum circuits where
cost of TOF gate is much higher than CNOT gate.

Theorem 1. Let m1(x), ...,mt(x) be pairwise co-prime polynomials and define

m(x) =
∏t

n=1 mi(x), hi(x) = (m(x)
mi(x)

)(m(x)
mi(x)

)−1 mod mi(x)). Then following

equation holds for every polynomial r(x) which satisfies deg(r(x)) < deg(m(x)).

r(x) =

t∑
i=1

ri(x)hi(x) mod m(x),

where ri(x) = r(x) mod mi(x)

We will follow the method in [9], which separately calculate remainder coef-
ficients

c2n−1−w, c2n−2−w, . . . , c2n−1

and merge with CRT result.(known as modulo (x−∞)w construction). We also
add modular p(x) reduction, which is linear operation that does not change TOF
gate complexity, to original algorithm. Based on parameters m1(x), ...,mt(x),
m(x) =

∏t
n=1 mi(x) and w = 2n− 1− deg(m), CRT-based modular multiplica-

tion is performed by following steps. Since TOF(or AND) gates are used only in
the modular multiplication in step 2 and 4, M(n) ≤

∑t
i=1 M(deg(mi)) + λ(w)

holds.

1. modular reduction

fi(x) := f(x) mod mi(x), gi(x) := g(x) mod mi(x)

for 1 ≤ i ≤ t
2. modular multiplication

Ci(x) = fi(x)gi(x) mod mi(x)

for 1 ≤ i ≤ t
3. CRT

C ′(x) =

t∑
i=1

(Ci(x)hi(x) mod m(x)) mod p(x)

4. modulo (x−∞)w

compute remainder coefficients

c2n−2, ..., c2n−1−w

and

C(x) = C ′(x) +

2n−2∑
i=2n−1−w

ci((x
i) + (xi mod m(x))) mod p(x)

Title Suppressed Due to Excessive Length 9

4.1 Choice of mi’s for CRT-Based Multiplication

To reduce TOF(or AND) gate as much as possible, it is typical to choose
m1(x), ...,mt(x) as power of irreducible polynomials. Theorem 2 gives the num-
ber of irreducible polynomials.

Theorem 2. Let I(n) be number of irreducible polynomials of degree n over F2.
Then

I(n)
(I)

=
1

n

∑
d|n

µ(
n

d
)2d

(II)

=
2n −O(2n/2)

n
≈ 2n

n

where µ is Möbius function.

Proof. Equality (I) is given in [18], [16]. So we will only prove equality (II).
By Möbius inversion formula, 2n =

∑
d|n d · I(d). Therefore I(n) ≤ 2n/n

Also,

2n =
∑
d|n

d · I(d)

≤ nI(n) + 2n/2 +
∑

d|n,d<n/2

d · 2d

≤ nI(n) + 2n/2 + n · 2n/3

Then,

I(n) ≥ (2n − (1/2)2n/2 − n/3 · 2n/3)
n

=
(2n −O(2n/2))

n
.

Based on theorem 2, it is enough to use powers of irreducible polynomials of

degree up to n for multiplication of 2n- term polynomials since
∑n

i=1 k × 2k

k ≈
2n+1. For cryptographic field size, it is sufficient to use irreducible polynomials
up to degree 10 and I(n) for 2 ≤ n ≤ 10 are given in Table 3.

5 Quantum Circuit Implementation of CRT Modular
Multiplication

In this chapter we introduce sub-algorithms, including computation of remain-
der coefficient and matrix multiplication, and propose our main circuit. CRT

Table 3. I(n) for 2 ≤ n ≤ 10

degree 1 2 3 4 5 6 7 8 9 10

I(n) 2 1 2 3 6 9 18 30 56 99

10 K, Sunyeop et al.

based multiplication includes constant polynomial multiplication and modular
reductions with fixed modulus which can be seen as a linear operation (i.e.,
matrix multiplication). Therefore matrix multiplication circuits will be used as
important sub-algorithms.

5.1 Computation of remainder Coefficients

In modulo (x − ∞)w step coefficients of x2n−1+k, ..., x2n−2 are calculated sep-
arately to reduce TOF gate cost. Let f(x), g(x) be n-term polynomials and
h(x) := f(x)g(x) be (2n − 1)-term polynomial whose i-th coefficient is fi, gi,
and hi , respectively. Define si = figi and si,j = (fi + fj)(gi + gj). Then it is
straightforward to see that

h2n−2−t =
∑

i+j=2n−t−2,n>i>j

si,j +
2n−2∑

i=2n−t−2

si

Based on above formula algorithm 1 computes h2n−2, h2n−3, ..., h2n−k−1 with
cost of k + (k2/4) TOF gates and 3(k − 1) + k2 CNOT gates.

Algorithm 1: HighDegk,n. computation of k high degree coefficients

Quantum input : Two binary n term polynomials f, g, t stored in arrays
F,G, and H, respectively

Quantum output: H as t(x) + h2n−k+1 + h2n−k+2x
1 + ...+ h2n−1x

k−1 where
h(x) := f(x)g(x) = h0 + h1x

1 + ...+ h2n−1x
2n−1

1 for i = n− 1 . . . n− k do
2 H[i+ k − n]← TOF(H[i],F[i],G[i])
3 H[i+ k − n− 1]← CNOT(H[i+ k − n− 1],H[i])

4 for i = n− 1 . . . n− ⌈(k + 1)/2⌉ do
5 for j = i− 1 . . . 2n− 1− k − i do
6 F[j]←− CNOT(F[j],F[i])
7 G[j]←− CNOT(G[j],G[i])
8 H[i+ j − 2n− 2 + k]←− TOF(H[i+ j − 2n− 2 + k],F[j],G[j])
9 F[j]←− CNOT(F[j],F[i])

10 G[j]←− CNOT(G[j],G[i])

5.2 In-Place Multiplication.

PLU decomposition factors an invertible matrix M as a product of permutation
matrix P , lower triangular matrix L and upper triangular matrix U ; M = PLU .
Such a decomposition allows in-place multiplication, which does not require any
ancillary qubits. In the multiplication, P can be implemented with swap gates
and U and L are implemented as a sequence of CNOT gates. ‘1’ not on the
diagonal in U and L is converted to a CNOT gate controlled by the column

Title Suppressed Due to Excessive Length 11

index on the row index. For U , the order of CNOT gates should be top row to
bottom row whereas the order for L should be bottom row to top row. Algorithm
2 gives the in-place multiplication circuit using at most n2 − n CNOT gates.

Algorithm 2: InMult(G;M = PLU) : in-place multiplication of an
invertible n× n binary matrix M

Fixed input : PLU -decomposition (P,L, U) of M
Quantum input : an input 1× n binary vector g stored in an array G
Quantum output: G stores the output Mg

1 for i = 0 . . . n− 1 do
2 for j = i+ 1 . . . n− 1 do
3 if U [i, j] = 1 then
4 G[i]← CNOT(G[i],G[j])

5 for i = n− 1 . . . 0 do
6 for j = i− 1 . . . 0 do
7 if L[i, j] = 1 then
8 G[i]← CNOT(G[i],G[j])

9 for i = 0 . . . n do
10 for j = i+ 1 . . . n− 1 do
11 if P [i, j] = 1 then
12 SWAP(G[i],G[j])
13 Swap the (i, j)-th columns of P

5.3 Out-of-place multiplications

LetM be an arbitrary n2×n1 matrix and |A⟩ , |B⟩ be n1, n2-qubit vectors respec-
tively. We present two types of out-of-place matrix multiplication circuit that
computes |A⟩ |B⟩ → |A⟩ |B +MA⟩. Considering the matrix size and the possi-
bility of combining two matrices, each algorithms will be used for appropriate
situation.

Näıve Approach. Algorithm 3 gives out-of-place multiplicationOutMultnäıve.
This algorithm simply uses |A⟩ as control bit of CNOT gate and |MA⟩ is XORed
to |B⟩. CNOT gates needed are equal to the number of ’1’, which means that
(n1 × n2)/2 CNOT gates will be used in average case. Note that two Out-
Multnäıve can be merged to one OutMultnäıve. More explicitly, following
equality holds.

OutMultnäıve(A,B;M1) +OutMultnäıve(A,B;M2)

= OutMultnäıve(A,B;M1 +M2)

12 K, Sunyeop et al.

Algorithm 3: OutMultnäıve(A,B;M) : out-of-place matrix multi-
plication algorithm type 1

Fixed input : n2 × n1 binary matrix M
Quantum input : n1, n2-qubit vectors |A⟩ , |B⟩ stored in A and B,

respectively
Quantum output: B stores the output |A⟩ |B +MA⟩

1 for i = 0 . . . n1 − 1 do
2 for j = 0 . . . n2 − 1 do
3 if M [j, i] = 1 then
4 B[j]← CNOT(B[j],A[i])

Algorithm 4: OutMultReuse(A,B;M,M ′) : out-of-place matrix
multiplication algorithm type 2

Fixed input : n2 × n1 binary matrices M , M ′

Quantum input : n1, n2-qubit vectors |A⟩ , |B⟩ stored in A and B,
respectively

Quantum output: B stores the output |A⟩ |M ′B +MA⟩
// SCol and SCNOT can be pre-computed by greedy approach with M.

// M ′ is determined by SRow and SCNOT.

1 for Row ∈ mathcalRM do
2 for (c, t) ∈ SCNOT(Row) do

// (c, t) are control and target qubit indices of C =

[
A
B

]
.

// c is the index on any parts of C, whereas t ≥ n1 is the

index on the B part of C.

3 B[t− n1]← CNOT(C[c],B[t− n1])

Reusing Intermediate Values. OutMultReuse uses both of |A⟩ and |B⟩ as con-
trol qubits. This can be seen as a linear straight-line program where intermediate
values are continuously updated can be reused in the process of computation [6].
Every solutions of linear straight-line program can be converted to quantum
circuit if intermediate variables are less than n2. Since it is difficult to find the
shortest solution of linear straight-line program, we used a greedy approach.
This approach selects each row of M by the minimum implementation cost con-
sidering the intermediate values (input |A⟩ and continuously updated |B⟩). For
n2 × n1 binary matrix M , this greedy approach gives the optimal sequence of
rows of M as

RM = {Row0, . . . , Rown2−1}
and the sequence of control and target qubit indices of |A⟩ × |B⟩ for the CNOT
gates to generate each column:

SCNOT(Rowi) = {(c0, t0), · · · , (ct−1, tt−1)}.

Algorithm 4 describes this out-of-place multiplication OutMultReuse. In con-
trast withOutMultnäıve,OutMultReuse gives |A⟩ |M ′B +MA⟩, whereM ′

Title Suppressed Due to Excessive Length 13

f(x)

f(x) mod mi(x)

ctrl

Ri

Fig. 5. Modular Reduction

is determined by SRow and SCNOT. However, one does not need to care of |M ′B⟩
because this part will be discarded by † operation during CRTModMult. Note
that, unlike OutMultnäıve, it is hard to merge two OutMultnäıve to one
OutMultnäıve or other simple circuits because of the |M ′B⟩ term.

5.4 Proposed Circuit

We propose binary field multiplication circuit named CRTModMult which fol-
lows the CRT based multiplication steps in chapter 4. Algorithm 5 in Appendix
A gives CRTModMult. We define di = deg(mi(x)) and assume m1(x) = xd1

and d2 ≤ d3 ≤ ... ≤ dt for efficiency of modular reduction.

Modular Reduction. Modular reduction for polynomial mi(x) can be repre-
sented as (d−di)×di reduction matrix Ri whose k th column is xk+di mod m(x).
Ri is implemented using out-of-place matrix multiplication circuit and this step
is depicted in Fig 5.

Modular Multiplication and CRT. Let Ti, Ri be matrix corresponding to
symmetric bilinear form of di-split Karatsuba-like formula. Then multiplication
over mod mi(x) can be written in symmetric bilinear form using Ti, R

′
i ma-

trix where R′
i is mod mi(x) reduced version of Ri. we define MODMULTi :=

SBFTi,R′
i
. For CRT operation, we should compute (Ci(x)hi(x) modm(x)) mod p(x)

which can be expressed as matrix form Hp
i Ci where Hp

i is n× di matrix whose
k th column is (hi(x)x

k mod m(x)) mod p(x). Choosing di linearly independent
columns, Hp

i can be decomposed into three matrices:

Hp
i = Sp

i

[
Mp

i

Np
i

]
,

where n× n permutation matrix Sp
i , di × di matrix Mp

i and n− di × di matrix
Np

i . M
p
i and Np

i correspond to in-place and out-of-place matrix multiplication,
respectively. † operation is needed before modular multiplication to remove the
effects of the values from previous step and this is depicted in Table 4. Permu-
tation matrix Sp

i can be implemented implicitly without SWAP gate cost by

14 K, Sunyeop et al.

(Sp
i)

† (M p
i)

†

(N p
i)

† N p
i

M p
i

Sp
i

H

G

+Ci(x)ctrl ctrl
··
·

F

··
·

ctrl

ctrl

Fig. 6. One Step of Modular Multiplication and CRT

changing the positions of control bits and target bits and this step is written as
Permutation(H[0 : n];SP

i) in the algorithm. Note that ModMult algorithm
also does not consider cost of permutation. One step of modular multiplication
and CRT is depicted in Fig 6.

Applying Modulo (x − ∞)w. This step can be expressed as matrix form

C = C ′ +Hp
∞

c2n−w

|
c2n−1

 ,

whereHp
∞ is n×wmatrix whose k th column is (((xk)+(xk modm(x))) mod P (x).

Like CRT operation, Hp
∞ be decomposed into three matrices : n×n permutation

Table 4. Step-by-step calculation of Modular Multiplication and CRT step. N ′ denotes
the matrix in OutMultReuse. N ′ = I if OutMultnäıve is used

STEP H[0 : di] H[di : n]

initial value A B

InMULT†(M) M−1A B

OutMult†(N) M−1A (N ′)−1(B +N(M−1A))

+Ci(x) M−1A+ C (N ′)−1(B +N(M−1A))

OutMult(N) M−1A+ C B +NC

InMULT(M) A+MC B +NC

Title Suppressed Due to Excessive Length 15

matrix Sp
i , w × w matrix Mi and (n− w)× w matrix Ni.

Hp
∞ = Sp

∞

[
Mp

∞
Np

∞

]
Similar to CRT, we can construct Mp

∞ and Np
∞ using in-place, out-of-place

matrix multiplication respectively.

5.5 What Out-of-place multiplications to use?

Modular reduction Matrix Ri for modular reduction has size n×di where di ≈
log(n). Therefore it is less likely that rows of Ri collides, which means that using
OutMultReuse will not be very efficient. Instead, we used OutMultnäıve
to merge consecutive Ri and Ri+1 to Ri + Ri+1 and remove duplicated CNOT
gates.

CRT and (x − ∞)w Matrix Np
i for CRT has size (n − di) × di. Since it is

hard to compute average cost of OutMultReuse, we will assume the worst
case where all 2di linear combination exists in rows of Np

i . In such worst case,
OutMultReuse will use n+ 2di − di ≈ 2n CNOT gates in total where 2× 2di

CNOT gates for generating gray code, n− di − 2di CNOT gates are copying to
others. Considering that average cost of OutMultnäıve is ((n− di)× di)/2 ≈
n×(di/2), OutMultReuse will definitely outperform OutMultnäıve in most
of case if 4 ≤ di. Therefore we will useOutMultReuse for Np

i and Np
∞ likewise.

One can think of the case whereNp
i andNp

i+1 are merged usingOutMultnäıve,
but this will be hard because of the permutation Sp

∞.

5.6 Asymptotic Cost for CRT-Based Mod Multiplication

This chapter proves asymptotic cost of CRTModMult algorithm : O(n2log
∗n)

TOF gate and O(n2) CNOT gates. The number of CNOT gates depends on the
choice of mi, but we assume that every matrix is randomly selected (i.e., half of
the entries are 1).

TOF Gate Count.

M(n) ≤
t∑

i=1

M(deg(mi)) + λ(w)

≈ t×M(⌊log2(n)⌋)

≈ 2n

log2(n)
M(⌊log2(n)⌋)

⇒ M(n)

n
≤ 2× M(⌊log2(n)⌋)

log2(n)
(1)

Applying the above inequality (1) iteratively, we get the bound M(n) ≤
O(n2log

∗
2 n), where log∗2 is iterative logarithm.

16 K, Sunyeop et al.

CNOT Gate Count.

1. modular reduction

t∑
i=1

(deg(mi)× (n− deg(mi)) ≈ (2n/ log2 (n)× log2 (n))× n = O(n2)

2. modular multiplication(induction applied)

O(

t∑
i=1

deg(mi)
2 + w2) = O((2n− 1)/ log2 (n)× (log2 (n))

2) = O(n log2 (n))

3. CRT (assumed that OutMultWide is used)

(

t∑
i=1

deg(mi))(2n− 1− w)/2 ≤ (2n× 2n)/2 = O(n2)

4. modulo (x−∞)w

2w(2n− 1− w) + 2(w − 1) + w2 = O(n log2 (n))

summing up, we get CNOT count O(n2).

6 Results

In this section we evaluate gate complexity and depth of of CRTModMult
and compare it to ModMult Imp, which is most recent space-efficient quan-
tum binary field multiplication circuit [19]. Multiplication circuit in [12] is not
comparable to our circuit because the optimization target is different : depth and
TOF-gate, respectively. CRTModMult is implemented in Qiskit and built-in
function of Qiskit is used to compute the complexity. The Result and irreducible
polynomials we used are given in Table 5 and Table 7 in Appendix B, respectively.
Table 5 shows that TOF gate grows almost linearly and uses only (12 ∼ 24)%
in cryptographic field size (n = 233 ∼ 571) compared to the previous Mod-
Mult Imp. In terms of CNOT gates, CRTModMult requires about 3 × 2n,
which is (3 ∼ 4) times more then ModMult Imp. Despite the increased CNOT
gates, CRTModMult has even low depth in cryptographic field size due to the
depth optimization in R matrix.

For more precise comparison, we converted a TOF gate to 7 T-gates and 8
Clifford gates[3] and the result are in Table 6. For field size (n = 233 ∼ 571),
CRTModMult will outperform ModMult Imp if the cost of T-gate is more
than twice high as the cost of Clifford gates. Although the exact comparison
between T-gate and Clifford gate costs is hard to examine because of its de-
pendency on physical system and fault tolerant implementation, it is commonly
recognized that T-gate has significantly higher cost than Clifford gates. There-
fore, we think that CRTModMult will outperform ModMult Imp.

Title Suppressed Due to Excessive Length 17

Table 5. CNOT and TOF gate count and depth upper bounds for various instances
of ModMult Imp and CRTModMult

Degree
This Work Previous Work

CRTModMult ModMult Imp
TOF CNOT Depth TOF CNOT Depth

16 64 974 405 81 655 286
32 149 3604 1018 243 2153 855
64 337 13022 2595 729 6728 2468
127 737 49040 6953 2183 20300 7000
128 740 49632 6879 2187 20838 7071
163 992 76262 10210 4355 36439 13814
233 1441 154892 16383 6307 60453 19294
256 1590 184948 18504 6561 63689 20188
283 1784 224246 22050 10241 87929 31894
571 3813 862604 61771 31139 267771 95863
1024 6978 2740484 257684 59049 585331 180193

Table 6. T gate and Clifford gate count for various instances for various instances of
ModMult Imp and CRTModMult

Degree
This Work Previous Work

CRTModMult ModMult Imp
T gate Clifford gate T gate Clifford gate

16 448 1486 567 1303
32 1043 4796 1701 4097
64 2359 15718 5103 12560
127 5159 54936 15281 37764
128 5180 55552 15309 38334
163 6944 84198 30485 71279
233 10087 166420 44149 110909
256 11130 197668 45927 116177
283 12488 238518 71687 169857
571 26691 893108 217973 516883
1024 48846 2796308 413343 1057723

7 Conclusion

In this paper, we present TOF-count optimized space-efficient binary field multi-
plication circuit CRTModMult which provides extremely low TOF gate count
O(n2log

∗
2(n)). Our circuits are based on Karatsuba-like formulas and CRT-based

multiplication that have not previously been applied to quantum circuits. The
number of TOF gates are fixed for CRT-based multiplication whereas the num-
ber of CNOTs can be reduced. Therefore we optimized Karatsuba-like for-
mula in terms of CNOT gate and depth. Also two out-of-place multiplica-
tion OutMultReuse,OutMultnäıve are used to reduce CNOT gate cost
in CRT-based multiplication. For cryptographic field sizes, CRTModMult re-
duces 76 ∼ 88% of TOF gates compared to recent results. Considering high cost

18 K, Sunyeop et al.

of TOF gate and comparable depth, CRTModMult can be used to enhance
quantum cryptanalysis of ECDSA.

References

1. A. Weimerskirch, C.P.: “generalizations of the karatsuba algorithm for efficient
implementations. IEEE Transactions on Computers 54(3), 362–369 (2003)

2. Amento, B., Rötteler, M., Steinwandt, R.: Quantum binary field inversion:
improved circuit depth via choice of basis representation. arXiv preprint
arXiv:1209.5491 (2012)

3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)

4. Banegas, G., Bernstein, D.J., Van Hoof, I., Lange, T.: Concrete quantum crypt-
analysis of binary elliptic curves. Cryptology ePrint Archive (2020)

5. Banegas, G., Custódio, R., Panario, D.: A new class of irreducible pentanomials
for polynomial-based multipliers in binary fields. Journal of Cryptographic Engi-
neering 9(4), 359–373 (2019)

6. Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program
for computing linear forms. In: International Symposium on Mathematical Foun-
dations of Computer Science. pp. 168–179. Springer (2008)

7. Çalık, Ç., Dworkin, M., Dykas, N., Peralta, R.: Searching for best karatsuba re-
currences. In: International Symposium on Experimental Algorithms. pp. 332–342.
Springer (2019)

8. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC press (2005)

9. Fan, H., Hasan, M.A.: Comments on” five, six, and seven-term karatsuba-like for-
mulae. IEEE Transactions on Computers 56(5), 716–717 (2007)

10. Find, M.G., Peralta, R.: Better circuits for binary polynomial multiplication. IEEE
Transactions on Computers 68(4), 624–630 (2018)

11. van Hoof, I.: Space-efficient quantum multiplication polynomials for binary finite
fields with sub-quadratoc toffoli gate count. Quantum Information and Computa-
tion 20(9&10), 721–735 (2020)

12. Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation
of quantum binary field multiplication with toffoli depth one. In: International
Conference on Information Security Applications. pp. 284–297. Springer (2022)

13. Kepley, S., Steinwandt, R.: Quantum circuits for f2n -multiplication with sub-
quadratic gate count. Quantum Information Processing 14(7), 2373–2386 (2015)

14. Kerry, C.F., Gallagher, P.D.: Digital signature standard (dss). FIPS PUB pp. 186–4
(2013)

15. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An o (m2)-depth quantum
algorithm for the elliptic curve discrete logarithm problem over gf (2m) a. Quantum
Information & Computation 9(7), 610–621 (2009)

16. Metropolis, N., Rota, G.C.: Witt vectors and the algebra of necklaces. Advances
in Mathematics 50(2), 95–125 (1983)

17. Montgomery, P.L.: Five, six, and seven-term karatsuba-like formulae. IEEE Trans-
actions on Computers 54(3), 362–369 (2005)

18. Moreau, C.: Sur les permutations circulaires distinctes. Nouvelles annales de
mathématiques: journal des candidats aux écoles polytechnique et normale 11,
309–314 (1872)

Title Suppressed Due to Excessive Length 19

19. Putranto, D.S.C., Wardhani, R.W., Larasati, H.T., Kim, H.: Another concrete
quantum cryptanalysis of binary elliptic curves. Cryptology ePrint Archive (2022)

20. Seroussi, G.: Table of low-weight binary irreducible polynomials. Citeseer (1998)

A The Proposed Algorithm

Algorithm 5: CRTModMult(F,G,H;m(x), w, p(x))

Fixed input : m(x) =
∏t

n=1 mi(x), w = 2n− 1− deg(m), p(x)
Quantum input : Two binary n term polynomials f, g store in array F and

G respectively of size n, A binary polynomial h stored in
array H of size 2n− 1

Quantum output: H as h+ fg mod p(x)
1 for i = 1..t do

// duplicated CNOT gates with next loop will be removed

2 OutMultWide(F[di : n],F[0 : di];Ri)
3 OutMultWide(G[di : n],G[0 : di];Ri)

4 Permutation†(H[0 : n];Sp
i) // implicit permutation

5 InMult†(H[0 : di];M
p
i)

6 OutMultNarrow†(H[0 : di],H[di : n];N
p
i)

// 3 ∼ 8 Karatsuba-like formula is used

7 if di ≤ 8 then
8 T,R← symmetric bilinear form of di-split karatsuba like formula
9 Ri ← mod mi reduced matrix of R

10 SBF (T,Ri)(F [0 : di], G[0 : di], H[0 : di])

// recursive call for CRTModMult for degree larger than 8

11 else
12 m′(x), w′ ← predefined parameters for degree di multiplication
13 CRTModMult(F[0 : di],G[0 : di],H[0 : di];m

′(x), w′,mi(x))

14 OutMultNarrow(H[0 : di],H[di : n];N
p
i))

15 InMult(H[0 : di];M
p
i)

16 Permutation(H[0 : n];Sp
i)

17 OutMultWide(F[di : n],F[0 : di];Ri)
18 OutMultWide(G[di : n],G[0 : di];Ri)

// Modulo (x−∞)w step

19 Permutation†(H[0 : n];Sp
∞)

20 InMult†(H[0 : w];Mp
∞)

21 OutMultNarrow†(H[0 : w],H[w : n];Np
∞)

22 HighDegw,n (F[n− w : n],G[n− w : n],H[0 : n])
23 OutMultNarrow(H[0 : w],H[w : n];Np

∞)
24 InMult(H[0 : w];Mp

∞)
25 Permutation(H[0 : n];Sp

∞)

20 K, Sunyeop et al.

B Considered Irreducible Polynomials

Table 7. Considered Irreducible Polynomials

Degree Irreducible Polynomial Ref.

16 x16 + x5 + x3 + x+ 1 [8]
32 x32 + x7 + x3 + x2 + 1 [8]
64 x64 + x4 + x3 + x+ 1 [8]
127 x127 + x+ 1 [8]
128 x128 + x7 + x2 + x+ 1 [8]
163 x163 + x7 + x6 + x3 + 1 [14]
233 x233 + x74 + 1 [14]
256 x256 + x10 + x5 + x2 + 1 [8]
283 x283 + x12 + x7 + x5 + 1 [5]
571 x571 + x10 + x5 + x2 + 1 [14]
1024 x1024 + x19 + x6 + x1 + 1 [20]

