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Abstract. The highly transmissible COVID-19 disease is a serious threat
to people’s health and life. To automate tracing those who have been
in close physical contact with newly infected people and/or to analyse
tracing-related data, researchers have proposed various ad-hoc programs
that require being executed on users’ smartphones. Nevertheless, the ex-
isting solutions have two primary limitations: (1) lack of generality : for
each type of analytic task, a certain kind of data needs to be sent to an an-
alyst; (2) lack of transparency : parties who provide data to an analyst are
not necessarily infected individuals; therefore, infected individuals’ data
can be shared with others (e.g., the analyst) without their fine-grained
and direct consent. In this work, we present Glass-Vault, a protocol that
addresses both limitations simultaneously. It allows an analyst to run
authorised programs over the collected data of infectious users, without
learning the input data. Glass-Vault relies on a new variant of generic
Functional Encryption that we propose in this work. This new variant,
called DD-Steel, offers these two additional properties: dynamic and de-
centralised. We illustrate the security of both Glass-Vault and DD-Steel
in the Universal Composability setting. Glass-Vault is the first UC-secure
protocol that allows analysing the data of Exposure Notification users in
a privacy-preserving manner. As a sample application, we indicate how
it can be used to generate “infection heatmaps”.

Keywords: Automated Exposure Notification · Secure Analytics · Functional
Encryption · Privacy · Universal Composability.

1 Introduction

The Coronavirus (COVID-19) pandemic has been significantly affecting indi-
viduals’ personal and professional lives as well as the global economy. The risk
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of COVID-19 transmission is immensely high among people in close proximity.
Tracing those individuals who have been near recently infected people (Contact
Tracing) and notifying them of a close contact with an infectious individual (Ex-
posure notification) is one of the vital approaches to efficiently diminishing the
spread of COVID-19 [22]. These practices allow to identify and instruct only
those who have potentially contracted the virus to self-isolate, without having
to require an entire community to do so. This is crucial when combating a pan-
demic, as widespread isolation can have destructive effects on people’s (mental
and physical) well-being and countries’ economies. Researchers have proposed
numerous solutions that can be installed on users’ smartphones to improve the
efficiency of data collection through automation. Most of the proposed solutions
attempt to implement privacy-preserving techniques, such as hiding infected
users’ contact graphs or adopting designs that prevent tracking of non-infected
users [32], to engender sufficient adoption throughout the population [29]. There
have also been a few ad-hoc privacy-preserving solutions that help analyse other
user-originated data, e.g., location history to map the virus clusters [15], or scan-
ning QR codes to notify those who were co-located with infected individuals [30].

This kind of data analytics can play a crucial role in better understanding the
spread of the virus and ultimately helps inform governments’ decision-making
(e.g., to close borders, workplaces, or schools) and enhance public health advice,
especially when the analytics result is combined with the general public’s health
records (e.g., a popluation’s average age and common risk factors, or people’s
previous exposure to infections). Despite the importance of this type of solutions,
only a few have been proposed that can preserve users’ privacy. However, they
suffer from two main limitations.

Firstly, they lack generality, in the sense that for each type of data analysis,
a certain data type/encoding has to be sent to the analyst, which ultimately
(i) limits the applications of such solutions, (ii) increases user-side computation,
communication, and storage costs, and (iii) demands a fresh cryptographic pro-
tocol to be designed, defined, and proven secure for every operation type. The
solutions proposed in [15, 30] are examples of such ad-hoc analytics protocols.
It is desirable that all kinds of user data, independent of their format could be
securely collected and transmitted through a unified protocol. In concrete terms,
such a unified protocol will (a) provide a generic framework for scientists and
health authorities to focus on the analysis of data without having to design ad-
hoc security protocols and (b) relieve users from installing multiple applications
on their devices to concurrently run data capturing programs, which could cause
issues, especially for users with resource-constrained devices.

Secondly, existing solutions lack transparency, meaning that users are not in
control of what kind of sensitive data is being collected about them by their
contact tracing applications. In some of these schemes, the data does not even
originate directly from the users, but from a third-party data collector, e.g., a
mobile service provider or national health service or even security services [8].

The importance of trustworthy access to raw health data has been recog-
nised by the UK’s National Health Service (NHS). It has recently established a
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large-scale mechanism called “Trusted Research Environments” (TRE) that lets
health data be analysed transparently and securely, by authorised researchers
[6]. However, even this advanced scheme does not give individuals the possibility
to explicitly choose and withdraw consent on their data being used as part of
these analytics programs, a right that privacy legislations across the world have
increasingly begun to recognise [23].

Our Contributions. To address the aforementioned limitations, in this work,
we propose a platform called “Glass-Vault”. Glass-Vault is an extension of reg-
ular privacy-preserving decentralised contact tracing, which additionally allows
infected users to share sensitive (non-contact tracing) data for analysis. It is a
generic platform, as it is (data) type agnostic and supports any secure compu-
tation that users authorise. It also offers transparency and privacy, by allowing
users to consensually choose what data to share, and forcing an analyst to exe-
cute only those computations authorised by a sufficient number of users, without
being able to learn anything about the users’ inputs beyond the result.

In this work, we formally define Glass-Vault in the Universal Composability
(UC) paradigm and prove its security. We consider a setting where both ana-
lysts and users are semi-honest parties who may collude with each other to learn
additional information about the data beyond what the analysts are authorised
to compute. Furthermore, we allow the adversary to dynamically corrupt users,
but assume a static set of corrupted analysts. To have an efficient protocol that
can offer all the above features, we construct Glass-Vault by carefully combining
pre-existing Exposure Notification algorithms with an extension of the gener-
alised functional encryption proposed by Bhatotia et al. [12]. We extend their
construction into a novel protocol called DD-Steel, which allows a functional key
to be generated in a distributed fashion while letting any authorised party freely
join a key generator committee. We believe DD-Steel is of independent interest.
As a concrete application of Glass-Vault, we show how it can be utilised to help
the analyst identify clusters of infections through a heatmap.

The rest of the paper has been organised as follows. Section 2 presents an
overview of related work and provides key concepts we rely on. Section 3 presents
a formal definition of the generic Functional Encryption’s new variant, called
DD-FESR, along withDD-Steel, a new protocol that realisesDD-FESR. Section
4 presents Glass-Vault’s formal definition, Glass-Vault protocol, and its security
proof. Section 5 provides a concrete example of a computation that an analyst in
Glass-Vault can perform, i.e., infection heatmaps. Appendices A and B provide
more detail on the underlying key concepts, while Appendix C elaborates on how
the infection heatmaps can be implemented. Appendix D provides more detail
about the concept used in DD-FESR and DD-Steel.

2 Background

We now give a brief overview of existing literature regarding our security frame-
work (2.1) and the building blocks for our constructions (2.2-2.4)
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2.1 Universal Composability

There are various paradigms via which a cryptographic protocol might be de-
fined and proven, such as game-based or simulation-based paradigms. Universal
Composability (UC), introduced by Canetti [16], is a simulation-based model
that ensures security even if multiple instances of a protocol run in parallel.
Informally, in this paradigm, the security of a protocol is shown to hold by com-
paring its execution in the real world with an ideal world execution, given a
trusted ideal functionality that precisely captures the appropriate security re-
quirements. A bounded environment Z, which provides the parties with inputs
and schedules the execution, attempts to distinguish between the two worlds.
To show the security of the protocol, there must exist an ideal world adversary,
often called a simulator, which generates a protocol’s transcript indistinguish-
able from the real protocol. We say the protocol UC-realises the functionality, if
for every possible bounded adversary in the real world there exists a simulator
such that Z cannot distinguish the transcripts of the parties’ outputs. Once a
protocol is defined and proven secure in the UC model, other protocols, that use
it as a subroutine, can securely replace the protocol by calling its functionality
instead, via the UC composition theorem.

Later, Canetti et al. [18] extend the original UC framework and provide a
generalised UC (GUC) to re-establish UC’s original intuitive guarantee even for
protocols that use globally available setups, such as public-key infrastructure
(PKI) or a common reference string (CRS), where all parties and protocols are
assumed to have access to some global information which is trusted to have
certain properties. GUC formalisation aims at preventing bad interactions even
with adaptively chosen protocols that use the same setup. Badertscher et al. [11]
proposed a new UC-based framework, UC with Global Subroutines (UCGS),
that allows the presence of global functionalities in standard UC protocols.

2.2 Privacy-Preserving Contact Tracing

In this section, we present an overview of various variants of privacy-preserving
solutions for contact tracing.

Centralized vs Decentralized Contact Tracing. Within the first few months
of the COVID-19 pandemic, a large number of theoretical (e.g., [10, 20, 37, 42])
and practical (e.g., [1, 4, 5, 7, 27]) automated contact tracing solutions were
quickly developed by governments, industry, and academic communities. Most
designs concentrated around two architectures, so-called “centralised” and “de-
centralised”. To put it simply, the major difference between the two architectures
rests on key generation and exposure notification. In a centralised system, the
keys are generated by a trusted health authority and distributed to contact
tracing users. In decentralised systems, the keys are generated locally by each
user. In both types, information is exchanged in a peer-to-peer fashion, com-
monly through Bluetooth Low Energy (BLE) messages broadcast by each user’s
phone. Once someone is notified of an infection, they upload some data to the
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health authority server. While in centralised systems the uploaded data usu-
ally corresponds to the BLE broadcast the infected users’ devices listened to,
in a decentralised system it will generally be the messages they sent. Since the
(centralised) authority knows the identity of each party in the system, it can
notify them about exposure. In this setting, the authority is able to construct
users’ contact graphs, which allows it to further analyse users’ movements and
interactions, at the cost of privacy. On the other hand, the decentralised users
download the list of broadcasts from exposed users and compare it with their
own local lists. This guarantees additional privacy compared to centralised sys-
tems (although several attacks are still possible, see [32]), while also preventing
the health authority from running large scale analysis on population infection
which would be possible in a centralised system. Despite this, the adoption of
decentralised systems such as DP-3T [43] has been more widespread due to
technical restrictions and political decisions forced by smartphone manufactur-
ers [9]. There has been much debate on how any effort to the adoption of a
more private and featureful contact tracing scheme could be limited by these
gatekeepers [10, 44, 45].

Formalising Exposure Notification in the UC framework. Canetti et al.
[19] introduce a comprehensive approach to formalise the Exposure Notification
primitive via the UC framework, showing how a protocol similar to DP-3T re-
alises their ideal functionality. Their UC formulation is designed to capture a
wide range of Exposure Notification settings. The modelling relies on a variety
of functionalities that abstract phenomena such as physical reality events and
Bluetooth communications. While the above work is unique in formalising Expo-
sure notification, a UC formalisation of the related problem of proximity testing
has been given in [40], based on the reduction to Private Equality Testing by
Narayanan et al. [35].

Automated Data Analysis. A few attempts have been made to develop au-
tomated systems which can analyse population behaviour to better understand
the spread of the virus. The solution proposed in Bruni et al. [15] displays the
development of virus hotspots, as a heatmap. In this system, there are two main
players; namely, the health authority and a mobile phone provider, each of which
has a set of data that they have independently collected from their users. Their
goal is to find (only) the heatmap in a privacy-preserving manner, i.e., without
revealing their input in plaintext to their counterparty. To achieve its goal, the
system uses (a computationally expensive) homomorphic encryption, differen-
tial privacy, and the matrix representation of inputs. Thus, in this system, (i)
the two parties run the computation on users’ data, without having their fine-
grained consent and (ii) each party’s input has to be encoded in a specific way,
i.e., it must be encrypted and represented as a matrix.

The protocols in [13, 28, 30] allow users to provide their encoded data to
a server for a specific analysis. Specifically, Lueks et al. [30] design a privacy-
preserving “Presence-Tracing” system which notifies people who were in the
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same venue as an infected individual. The proposed solution mainly uses identity-
based encryption, hash function, and authenticated encryption to achieve its
goal and encode users’ input data. Biasse et al. [13] design a privacy-preserving
scheme to anonymously collect information about a social graph of users. In this
solution, a central server can construct an anonymous graph of interactions be-
tween users which would let the server understand the progression of the virus
among users. This solution is based on zero-knowledge proofs, digital signatures,
and RSA-based accumulators. Günther et al. [28] propose a privacy-preserving
scheme between multiple non-colluding servers to help epidemiologists simulate
and predict future developments of the virus. This scheme relies on heavy ma-
chineries such as oblivious shuffling, anonymous credentials, and generic multi-
party computation.

In all of the above solutions, the parties need to encode their inputs in a
certain way to support the specific computation that is executed on their inputs,
and thus do not support generality. Additionally, not all systems allow the users
to opt-out of the computation, and are therefore not transparent.

2.3 Trusted Execution Environments

Trusted Execution Environments (TEEs) are secure processing environments
(a.k.a. secure enclaves) that consist of processing, memory, and storage hardware
units. In these environments, the residing code and data are isolated from other
layers in the software stack including the operating system. TEEs ensure that
the integrity and confidentiality of data residing in them are preserved. They
can also offer remote attestation capabilities, which enable a party to remotely
verify that an enclave is running on a genuine TEE hardware platform. Under the
assumption that the physical CPU is not breached, enclaves are protected from
an attacker with physical access to the machine, including the memory and the
system bus. The first formal definition of TEEs notion was proposed by Pass et al.
[36] in the GUC model. This definition provides a basic abstraction called the
global attestation functionality (Gatt, described in Supporting material B.1), that
casts the core services a wide class of real-world attested execution processors
offer. Gatt has been used by various protocols both in the GUC model (e.g., in
[41, 46]) and recently in the UCGS model (in [12]). TEEs have been used in a
few protocols to implement Contact Tracing solutions, e.g., in [21, 31, 39].

2.4 Functional Encryption

Informally, “Functional Encryption” (FE) is an encryption scheme that ensures
that a party who possesses a decryption key learns nothing beyond a specific
function of the encrypted data. Many types of encryption (e.g., identity-based
or attribute-based encryptions) can be considered as a special case of FE. The
notion of FE was first defined formally by Boneh et al. [14]. FE involves three sets
of parties: A,B, and C. Parties in A are encryptors, parties in B are decryptors,
and parties in C are key generation authorities. The syntax of FE is recapped in
Supporting material A.

An FE scheme can also be thought of as a way to implement access control
to an ideal repository [34]. Since the introduction of FE, various variants of FE
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schemes have been proposed, such as those that (i) support distributed cipher-
texts, letting joint functions be run on multiple inputs of different parties; (ii)
support distributed secret keys that do not require a single entity to hold a mas-
ter key; or (iii) support both properties simultaneously. In particular (ii) and (iii)
affect the membership of sets A and C. We refer readers to [3, 33] for surveys
of FE schemes. Recently, Bhatotia et al. [12] proposed FESR, a generalisation of
FE that allows the decryption of the class of Stateful and Randomised functions.
This class is formally defined as F = {F | F : X × S ×R → Y × S}, where S is
the set of possible function states and R is the universe of random coins. They
also provide a protocol, called Steel, that realises FESR in the UCGS model
and relies on TEEs (as abstracted by Gatt). By introducing functions with state
and randomness, FESR allows computing a broader class of functions than most
other FE schemes. Moreover, other appealing properties of the scheme include
its secure realisation in the UC paradigm, and that it can be easily extended to
support multiple inputs (as we show in Subsection 3.4).

3 Dynamic and Decentralised FESR (DD-FESR) and
Steel (DD-Steel)

In this section, we present the ideal functionality DD-FESR and the protocol
that realises it, DD-Steel. As we stated earlier, they are built upon the original
functionality FESR and protocol Steel, respectively. In the formal descriptions,
we will highlight the main changes that we have applied to the original scheme (in
[12]) in yellow. For conciseness, we omit any reference to UC-specific machinery
such as “session ids” unless it is required to understand the specifics of our
protocol.

3.1 The ideal functionality DD-FESR

In this subsection, we extend FESR into a new functionality DD-FESR to cap-
ture two additional properties from the functional encryption literature:

– Decentralisation (introduced in [24]) allows a set of encryptors to be in con-
trol of functional key generation, rather than a single trusted authority of
type C. The KeyGen subroutine of the FESR scheme is replaced by a new
subroutine KeyShareGen, which can be run by any party A ∈ A to pro-
duce a “key share”. In this case, a decryptor B needs to collect at least k
shares for some function F before B is allowed to decrypt. This threshold pa-
rameter, k, is specified by A when it wants to encrypt, and is unique for each
ciphertext, but does not restrict key share generation to a specific subset of
A.

– Dynamic membership (introduced in [25]) allows any party to freely join set
A during the execution of the protocol. In our instantiation, a new party A
joins through a local procedure which only requires the public parameters.
DD-FESR can be instantiated with some preexisting A members, or with
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an empty set that is gradually filled through Setup calls. Our current scheme
is permissionless, meaning anyone can register as a new party.

Functionality DD-FESR[F,A,B,C]

The functionality is parameterised by the randomized function class F = {F | F :
X × S ×R → Y ×S}, over state space S and randomness space R, and by three
distinct types of party entities A ∈ A,B ∈ B,C interacting with the functionality
via dummy parties (that identify a particular role).

State variables Description

Â← [] List of corrupted As

B̂← [] List of corrupted Bs
F0 Leakage function returning the length of the message
F+ Union of the allowable functions and leakage function,

i.e., F ∪ F0

setup[·]← false Table recording which parties were initialized.
M[·]← ⊥ Table storing the plaintext for each message handler
P[·]← ∅ Table of authorised functions’ states for all decryption

parties
KS[·]← [] Table of key share generator for each (decryptor, func-

tion) pair

On message setup from P :

assert setup[P ] = false
send (setup, P ) to A and await OK; then
if P.code = A then A← A ‖ P

// Party membership is determined by the code in the UC identity tape

else if P.code = B then B← B ‖ P
else return
setup[P ]← true

On message (KeyShareGen,F,B) from A ∈ A:

if A ∈ Â then
// The adversary can only block key generation for corrupted parties

send (keysharequery,F,A,B) to A and await OK; then

if
(
F ∈ F+ ∧ setup[A] ∧ setup[B]

)
then

KS[B,F]← KS[B,F] ‖ A
// We store the identity of all parties in A who authorised F for B

send (keysharegen,F,A,B) to B

if B ∈ B̂ ∨ A ∈ Â then send (keysharegen,F,A,B) to A
else send (keysharegen,⊥,A,B) to A

On message (Encrypt, x,k) from party P ∈ {A ∪B}:
if
(
setup[P ] ∧ x ∈ X∧k is an integer

)
then

compute h← getHandle

// Generate a unique index, h, by running the subroutine getHandle
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M[h]← (x,k)
send (encrypted, h) to P

else
send (encrypted,⊥) to P

On message (Decrypt,F, h) from party B ∈ B:

(x,k)←M[h]; y← ⊥;
if F = F0 then

y← |x|
else if

(
(|KS[B,F]| ≥ k ∧ ∀A ∈ KS[B,F] : setup[A] ∧ ∀A are distinct )∨

∨(B ∈ B̂ ∧ |Â| ≥ k)
)
then

// There are at least k functional key shares, all generated by correctly setup

parties, OR B and at least k parties in A are corrupted

s← P[B,F]

r
$←R

(y, s′)← F(x, s; r)
P[B,F]← s′

return (decrypted, y)

On message (Corrupt, P ) from A:
if P ∈ A then

Â← Â ‖ P
// The functionality needs to keep track of corrupted parties in A to ensure

correctness

return {(B,F)|P ∈ KS[B,F]}
if P ∈ B then

B̂← B̂ ‖ P
return KS[P, ·]

3.2 The protocol DD-Steel

Now, we propose DD-Steel, a new protocol that extends the original Steel to
realise DD-FESR. We first briefly provide an overview of Steel and our new
extension, before outlining the formal protocol. Steel uses a public key encryption
scheme, where the master public key is distributed to parties in A, and the
master secret key is securely stored in an enclave running program progKME

on trusted party C. The secret key is then provisioned to enclaves running on
parties in B, only if they can prove through remote attestation that they are
running a copy of progDE. The functional key corresponds to signatures over the
representation of a function F and is generated by C’s progKME enclave. If party
B possesses any such key, its copy of progDE will distribute the master secret
key to a progFE[F] enclave, which can then decrypt any A’s encrypted inputs x
and will ensure that only value y of (y, s′)← F(x, s; r) is returned to B, with the
function states s and s′ protected by the enclave.

The protocol DD-Steel is similar to the original version as described, except
for a few crucial differences. Party C, who is now untrusted, still runs the public
key encryption parameter generation within an enclave and distributes it to a
party A or B when they first join the protocol. Each party A also generates a
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digital signature key pair locally and includes a key policy k along with their
ciphertext. Note that for simplicity our current version uses an integer k to
associate with each message, but it would be possible to use a public key policy
as a threshold version of Multi-Client Functional Encryption. Party A who wants
to authorise party B to compute a certain function will run KeyShareGen(F,B)
to generate a key share, which requires signing the representation of F with their
local key, and send the signature to B. For B’s progDEVK enclave to authorise the
functional decryption of F, it first verifies that all key shares provided by B for F
are valid and each was provided by a unique party in A; if all checks are passed,
then it will distribute the master secret key to progFEVK[F], along with the length
of recorded key shares kF. progFEVK[F] will only proceed with decryption if the
number of key shares meets the encryptor’s key policy. Provisioning of the secret
key between C and B’s progDEVK enclave remains as in FESR.

The protocol DD-Steel makes use of the global attestation functionality Gatt,
the certification functionality FCERT, the common reference string functionality
CRS, the secure channel functionality SCSR, and the repository functionality
REP that are presented in Supporting material B.1, B.2, B.3, B.4, and B.5
respectively. The code of the enclave programs progKMEVK , progDEVK , progFEVK[·] in
DD-Steel is hardcoded with the value of the verification key VK returned by
FCERT, and can be generated during the protocol runtime.

Protocol DD-Steel[F,PKE, Σ,N, λ]

The protocol is parameterised by the class of functions F as defined in DD-FESR,
the public-key encryption scheme PKE denoted as the triple of algorithms PKE :=
(PGen, Enc,Dec), the digital signature scheme Σ denoted as the triple of algo-
rithms Σ := (Gen, Sign,Vrfy), the non-interactive zero-knowledge protocol N that
consists of prover P and verifier V, and the security parameter λ.

State variables Description

KS[·]← ∅ Table of function key shares at B
K[·]← ∅ Table of functional enclave details at B

Key Generation Authority C:

On message (Setup, P ) from SCP :
if mpk = ⊥ then

send Get to CRS and receive (Crs, crs)
send GetK to FCERT and receive VK
eidKME ← Gatt.install(C.sid, progKMEVK )
(mpk,σKME)← Gatt.resume(eidKME, (init, crs,C.sid))

if P.code = A then
send (Setup,mpk,σKME,eidKME) to SCP

else if P.code = B then
send (Setup,mpk,σKME, eidKME) to SCP and receive (provision, σDE, eidDE, pkKD)
(ctkey, σsk)← Gatt.resume(eidKME, (provision, (σDE, eidDE, pkKD, eidKME)))
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send (provision, ctkey, σsk) to SCP
Encryption Party A:
On message Setup from a party P :

assert mpk = ⊥
send (Setup,A.pid) to SCC and receive mpk,σKME,eidKME

send getpk to Gatt and receive vkatt

send GetK to FCERT and receive VK
assert Σ.Vrfy(vkatt, (sid, eidKME, progKMEVK ,mpk), σKME)
send Get to CRS and receive (Crs, crs)
(vkΣ , skΣ)← Σ.Gen(1λ)
send (Sign,vkΣ) to FCERT and receive cert
store mpk, crs, vkΣ , skΣ , cert

On message (KeyShareGen,F,B) from a party P :

σ ← Σ.Sign(skΣ ,F,B)
send (KeyShareGen,F, σ, vkΣ , cert) to SCB

On message (Encrypt,m,k) from a party P :

assert mpk 6= ⊥ ∧m ∈ X ∧ k is an integer
ct

r←− PKE.Enc(mpk, (m,k))
π ← P((mpk, ct), ((m,k), r), crs); ctmsg ← (ct, π)
send (write, ctmsg) to REP and receive h
return (encrypted, h)

Decryption Party B:
On message Setup from a party P :

assert mpk = ⊥
send Setup to SCC and receive mpk,σKME, eidKME

KS = {},K = {}
send getpk to Gatt and receive vkatt

send GetK to FCERT and receive VK
assert Σ.Vrfy(vkatt, (idx, eidKME, progKMEVK ,mpk), σKME)
store mpk; eidDE ← Gatt.install(B.sid, progDEVK )
send Get to CRS and receive (Crs, crs)
((pkKD, ·, ·), σ)← Gatt.resume(eidDE, (init-setup, eidKME, σKME, crs,B.sid))
send (provision, σ, eidDE, pkKD) to SCC and receive (provision, ctkey, σKME)
Gatt.resume(eidDE, (complete-setup, ctkey, σKME))

On message (KeyShareGen,F, σ, vkΣ , cert) from SCA:

KS[F]← KS[F] ‖ (σ, vkΣ , cert)

On message (Decrypt,F, h) from a party P :

if K[F] = ⊥ then
eidF ← Gatt.install(B.sid, progFEVK[F])
(pkFD, σF)← Gatt.resume(eidF, (init,mpk,B.sid))
K[F]← (eidF, pkFD, σF)

send (read, h) to REP and receive ctmsg

(eidF, pkFD, σF)← K[F]
((ctkey,kF, crs), σDE)← Gatt.resume(eidDE, (provision,KS[F], eidF, pkFD, σF,F,B.pid))
((computed, y), ·)← Gatt.resume(eidF, (run, σDE, eidDE, ctkey, ctmsg,kF, crs,⊥))
return (decrypted, y)
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progKMEVK

on input init
(pk, sk)← PKE.PGen(1λ)
return pk

on input (provision, (σDE, eidDE, pkKD, eidKME)):
vkatt ← Gatt.vkatt; fetch crs, idx, sk
assert Σ.Vrfy(vkatt, (idx, eidDE, progDEVK , (pkKD, eidKME, crs), σDE)
ctkey ← PKE.Enc(pkKD, sk)
return ctkey

progDEVK

on input (init-setup, eidKME, crs, idx):
assert pkKD 6= ⊥
(pkKD, skKD)← PKE.Gen(1λ)
store skKD, eidKME, crs, idx
return pkKD, eidKME, crs

on input (complete-setup, ctkey, σKME):
vkatt ← Gatt.vk
fetch eidKME, skKD, idx
m← (idx, eidKME, progKMEVK , ctkey)
assert Σ.Vrfy(vkatt,m, σKME)
sk← PKE.Dec(skKD, ctkey)
store sk, vkatt

on input (provision,KSF, eidF, pkFD, σF,F, pid):
fetch eidKME, vkatt, sk, idx, crs
m← (idx, eid, progFEVK[F], pkFD)
assert ∀(σvkΣ , vkΣ , cert) ∈ KSF :
: (Σ.Vrfy(VK, vkΣ , cert)∧ Σ.Vrfy(vkΣ , (F, pid), σvkΣ )∧
∧∀vkΣ are distinct) ∧Σ.Vrfy(vkatt,m, σF)
return PKE.Enc(pkFD, sk),|KSF|, crs

progFEVK[F]

on input (init,mpk, idx):
assert pkFD = ⊥
(pkFD, skFD) = PKE.Gen(1λ)
mem← ∅; store skFD,mem,mpk, idx
return pkFD

on input (run, σDE, eidDE, ctkey, ctmsg,kF, crs, y′):
if y′ 6= ⊥

return (computed, y′)
vkatt ← Gatt.vk; (ct, π)← ctmsg

fetch skFD,mem,mpk, idx
m← (idx, eidDE, progDEVK , (ctkey,kF, crs))
assert Σ.Vrfy(vkatt,m, σDE)
sk = PKE.Dec(skFD, ctkey)
assert N.V((mpk, ct), π, crs)
(x,k) = PKE.Dec(sk, ct)
assert kF ≥ k
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out,mem′ = F(x,mem)
store mem← mem′

return (computed, out)

3.3 Proof of security

We now formally state the security guarantees of DD-Steel as a Theorem:

Theorem 1. For a class of functions F, CCA-secure encryption scheme PKE,
EU-CMA secure signature scheme Σ, and non-interactive zero-knowledge proof
system N, Protocol DD-Steel[F,PKE, Σ,N, λ] UC-realises ideal functionality
DD-FESR[F,A,B,C], in the presence of global functionality Gatt.

Proof. We first construct a simulator, SDD-FESR. For simplicity of exposition,
we use the simulator SFESR in [12] as a subroutine to SDD-FESR. We instantiate
SFESR such that shared functionalities (e.g., the secure channels between mul-
tiple parties) are implemented by SDD-FESR, so that it can intercept messages
to the parties whose behaviour is simulating and act accordingly. SDD-FESR also
acts as the ideal functionality in the eyes of the SFESR simulator. We reproduce
the original SFESR, with appropriate modifications to conform to the message
syntax of DD-FESR and DD-Steel, in Supporting material D.

We assume that at least one party in the set B ∪ C is corrupted at the
start of the protocol. We choose this party, GG, to install all Gatt enclaves for
all participants in the protocol, be they honest or corrupted. Due to the prop-
erty of anonymous attestation guaranteed by Gatt, the simulator can install all
programs on the same machine to produce the attested trace of the real-world
protocol, as long as it does not allow GG to execute other parties’ enclaves on
its own initiative (we use the table G from simulator SFESR to keep track of
which party installed each enclave). Similar to the original simulator, we use
the shorthand output ← Gatt.command(input) to indicate “simulate sending
(command, input) to Gatt through GG and receive output”; note, in [12], the
message was always sent from B instead, given the simpler setting of one honest
C and one corrupted B in their proof.

We also give SDD-FESR white-box access to SFESR, letting the former freely
access the internal tapes of the latter. We mark the names of the variables that
are read from SFESR in the state variable declaration below. In particular, we use
the internal values of SFESR to keep track of messages sent to the enclaves and
their attestation signatures. For all calls to an enclave, the SDD-FESR simulator
always activates SFESR so that these internal variables can be updated.
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Simulator SDD-FESR

State variables Description

K ← {} set of A keypairs and FCERT certificates
KS ← {} set of generated keyshares
GG← ⊥ The corrupted party on which we run simulated enclaves

G = SFESR.G Collects all messages sent to Gatt and its response
B = SFESR.B Collects all messages signed by Gatt

crs = SFESR.crs Simulated common reference string

On message (Setup, P ) from DD-FESR:

if P.code = A then
if P is honest then

if C is honest then
send (setup, P ) to SFESR

else
send (Setup,A.pid) to SCC and receive mpk, σKME, eidKME

assert (C.sid, eidKME, progKMEVK ,mpk) ∈ B[σKME]

vkatt ← Gatt.getPK()
send GetK to FCERT and receive VK
(vkΣ , skΣ)← Σ.Gen(1λ)
simulate sending (Sign, vkΣ) to FCERT through P and receive cert
K[P ]← (vkΣ , skΣ , cert)
send OK to DD-FESR

else
if C is honest then

simulate sending (setup, P ) to P on behalf of Z
await for message (setup, P ) on SCC

P

send (setup, P ) to SFESR

send OK to DD-FESR
else

simulate sending (setup, P ) to P on behalf of Z
await for message (Sign, vkΣ) from P to FCERT

send OK to DD-FESR
else if P.code = B then

if P is honest then
if C is honest then

notify SFESR that (install, progDEVK ) was sent from P to Gatt and
capture response eidDE

send (setup, P ) to SFESR and receive mpk, σKME, eidKME

notify SFESR that (resume, init-setup, eidKME, crs, P.sid) was sent from
P to Gatt and capture response (pkKD, eidKME, crs), σinit

send (provision, σinit, eidDE, pkKD) to SFESR and receive (provision, ctkey, σKME)

notify SFESR that (resume, complete-setup, ctkey, σKME) was sent from
P to Gatt

send OK to DD-FESR
else

simulate sending (setup, P ) to P on behalf of Z

14



await for setup message on SCC
P

send (setup, P ) to SFESR

else
if C is honest then

send (setup, P ) to SFESR

send OK to DD-FESR
else

simulate sending (setup, P ) to P on behalf of Z
await for (resume, complete-setup, ctkey, σKME) from P to Gatt

(idx, eid,prog, ctkey)← B[σKME]
assert idx = P.sid ∧ prog = progDEVK ∧ (σKME, ·, ctkey) ∈ G[eid].resume
send OK to DD-FESR

On message (Sign, vkΣ) from corrupted party P to FCERT:

forward (Sign, vkΣ) and receive response cert
K[P ]← (vkΣ ,⊥, cert)

On message (keysharequery, x,A,B) from DD-FESR:

// A is corrupted

send (KeyShareGen, x,A,B) to A on behalf of Z and await for (KeyShareGen, x,A,B)
from A to SCB

return OK

On message (keysharegen, f,A,B) from DD-FESR:

if A is honest then
if B is honest then F← F0

else F← f

(vkΣ , skΣ , cert)← K[A]
σ ← Σ.Sign(skΣ ,F,B)
KS[F,A,B]← σ
send (KeyShareGen,F, σ, vkΣ , cert) to SCB

A

On message (resume, eid, input) from corrupted party P to Gatt:

if G[eid].install[1] = progDEVK ∧ input[0] = provision then
(provision,KSF, eidF, pkFD, σF,F, pid)← input
for (σ, vkΣ , cert) ∈ KSF do

assert (vkΣ , ·, cert) = K[F,A, P ] for some A
if σ 6∈ KS[F,A, P ] then

KS[F,A, P ]← σ
send (KeyShareGen,F, σ, vkΣ , cert) to DD-FESR through A and

await (KeyShareQuery,F,A, P ); then send OK to DD-FESR

send (resume, eid, inp) to SFESR

On message (encrypt, input) from SFESR on behalf of P :

send (encrypt, input) toDD-FESR through P and receive (encrypted, output)
send (encrypted, output) to SFESR on behalf of DD-FESR

On message (decrypt, input) from SFESR on behalf of P :

send (decrypt, input) toDD-FESR through P and receive (decrypted, output)
send (decrypted, output) to SFESR on behalf of DD-FESR

On message *:

forward * to SFESR
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We now show, via a series of hybrid experiments, that given the above simulator,
the real and ideal worlds are indistinguishable from the environment’s viewpoint.
We begin with the real-world protocol, which can be considered as Hybrid 0.

Hybrid 1 consists of the ideal protocol for DD-FESR, which includes the
relevant dummy parties, and the simulator S ′DD-FESR, which on any message
from the environment ignores the output of the ideal functionality, and faithfully
reproduces protocolDD-Steel. The equivalence between Hybrids 0 and 1 is trivial
due to the behaviour of S ′DD-FESR.

Hybrid 2 replaces all operations of S ′DD-FESR where the protocol DD-Steel
behaves in the same way as Steel (except that it sends messages with the full
set of arguments expected by DD-Steel rather than those in Steel, and receives
the equivalent DD-Steel return values) with a call to an emulated SFESR as
defined in Supporting Material D. Due to the security proof of the Steel protocol
in [12], we now use the simulator of Hybrid 2 to simulate FESR with respect
to protocol Steel, making the two hybrids indistinguishable. An environment
that is able to distinguish between the two hybrids could create an adversary
that can distinguish between executions of FESR and Steel; but due to the UC
emulation statement, no such environment can exist in the presence of SFESR.
The reduction to SFESR greatly simplifies the current proof, as we are guaranteed
the security of the secure key provisioning and decryption due to the similarities
of these two phases of the protocols between Steel and DD-Steel.

Hybrid 3 modifies the simulator of Hybrid 2 by replacing all the signature ver-
ification operations for attestation signatures in DD-FESR with a table lookup
from SFESR.B. The new table lookups for attestation signatures complement the
ones enacted by SFESR, while capturing behaviour that is unique to DD-Steel.
Similar to [12, Lemma 2], if the environment can distinguish between this hybrid
and the previous one, it can construct an adversary to break the unforgeability
of signatures.

Hybrid 4 modifies the simulator of Hybrid 3 by replacing KeyShareGen
and KeyShareQuery requests for any functions with a request for a dummy
function (such as the natural leakage function F0), for all these requests where
both the encryptor and the decryptor are honest. The environment is not able
to distinguish between the two hybrids due to the security of the secure channel
functionality (as defined in Supporting Material B.4): the secure channel only
leaks the length of a message exchanged between sender and receiver, and assum-
ing that we represent functions with a fixed-length string (such as a hash of it’s
code), the leakage between this hybrid and the previous one is indistinguishable.

Hybrid 5 adds an additional check to the simulator of Hybrid 4 before it can
run the provision command on enclave progDEVK through the internal SFESR sim-
ulator. The check ensures that all keyshares passed by the malicious decryptor
to the enclave are signed by a party who has first registered their verification
key with the certificate authority. Then, if the signature has not been generated
through a call to the ideal functionality but rather through a local signing opera-
tion, the simulator notifies the ideal functionality to update its internal keyshare
count. This hybrid essentially replaces the algorithmic signature verification op-
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erations in the previous one with two table lookups (for both verification key
certification and keyshare authenticity). If an adversary was able to bypass the
checks by providing either a certificate that wasn’t produced by the ideal func-
tionality or a keyshare that didn’t match with the triple of (F,A,B), they would
be able to create an adversary that could break the unforgeability of signature
scheme Σ in the same manner as in Hybrid 3. Thus the hybrid is indistinguish-
able from the previous one.

The simulator defined in Hybrid 5 is identical to SDD-FESR; thus, it holds
that DD-Steel UC-emulates DD-FESR. �

3.4 Turning Stateful functions into Multi-Input

As pointed out in [12], FESR subsumes Multi-Input Functional Encryption [26]
in that it is possible to use the state to emulate functions over multiple inputs.
We now briefly outline how to realise a Multi-Input functionality using FESR
(and by extension DD-FESR) through the definition of a simple compiler from
single-input stateful functions to multi-input functions. To compute a stateless,
multi-input function F : (X × · · · × X︸ ︷︷ ︸

n

) → Y we define the following stateful

functionality:

function AggF,n(x, s)
if |s| < n then return (⊥, s ‖ x)
else return (F(s||x), ∅)

// s is equivalent to the array containing x1, . . . , xn−1

where input x is in X , the state s is in S, and n is bounded by the maximum
size of S. The above aggregator function is able to merge the inputs of multiple
encryptors because in FESR the state of a function is distinct between each
decryptor; therefore, multiple decryptors attempting to aggregate inputs will
not interfere with each other’s functions. There are several possible extensions
to the above compiler:

1. In AggF,n(·), the order of parameters relies on the decryptor’s sequence of
invocations. If F is a function where the order of inputs affects the result,
malicious decryptor B could choose not to run decryption in the same order
of inputs as received. It is possible to further extend the decryption function
to respect the order of parameters set by each encryptor. If a subset of
encryptors is malicious, we can parametrise the function by a set of public
keys for each party, and ask them to sign their inputs.

2. The compiler can be easily extended to multi-input stateful functionalities,
by keeping a list of inputs (as a field) within the state array and not dis-
carding the state on the n-th invocation of the compiler.

3. One additional advantage of implementing Multiple-Input functionalities
through stateful functionalities is that we are not constrained to functions
with a fixed number of inputs. If we treat the inner functionality to the
compiler as a function taking as input a list, we can use the same compiler
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functionality for inner functions of any n-arity (we denote this type of func-
tions as JX K → Y). On the first (integer) input to the aggregator, we set it
as a special field n in the state, and for the next n−1 calls we simply append
the inputs to the state, while returning the empty value. On the nth call,
we execute the function on the stored state field (now containing n entries),
erase the state and index from memory and wait for the next call to set a
new value to n.

In the next section, we will use the compiler AggSF, which combines the
above defined compiler extensions 2 and 3 to compute any stateful function F
with variable number of inputs (F : JX K× S ×R → Y × S) from DD-FESR.

4 The Glass-Vault platform

In this section, first, we provide the formal definition of “Analysis-augmented
Exposure Notification” (EN+) which is an extension of the standard Exposure
Notification (EN), proposed in [19], to allow arbitrary computation on data
shared by users. Then, we present Glass-Vault and show that it UC-realises the
ideal functionality of EN+, i.e., FEN+ .

4.1 Analysis-augmented Exposure Notification (EN+)

Since EN+ is built upon EN, we first re-state relevant notions used in the UC
modelling of EN. Specifically, EN relies on the time functionality T and the
“physical reality” functionality R that we present in Supporting Material B.6
and B.7, respectively. In particular, R models the occurrence of events in the
physical world (e.g., users’ motion or location data). Measurements of a real-
world event are sent as input from the environment, and each party can retrieve
a list of their own measurements. The functionality only accepts new events if
they are “physically sensible”, and can send the entire list of events to some
privileged entities such as ideal functionalities. Using T and R as subroutines,
the functionality of EN, i.e., FEN (presented formally in Supporting Material
B.8), is defined in terms of a risk estimation function ρ, a leakage function L,
a set of allowable measurement error functions E , and a set of allowable fak-
ing functions Φ. The functionality queries R and applies the measurement error
function chosen by the simulator to compute a “noisy record of reality”. This in
turn is used to decide whether to mark a user as infected, and to compute a risk
estimation score for any user. The adversary can mark some parties as corrupted
and obtain leakage of their local state, as well as modifying the physical real-
ity record with a reality-faking function. This allows simulation of adversarial
behaviour such as relay attacks (where an infectious user appears to be within
transmission distance from a non-infectious malicious user). The functionality
captures a variety of contact tracing protocols and attacker models via its pa-
rameters. For simplicity, it does not model the testing process the users engage
in to find out they are positive, and it assumes that once a user is notified of
exposure they are removed from the protocol.
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The extension to EN+ involves an additional entity to the above scheme,
namely, analyst Ä, who wants to learn a certain function, α, on data contributed
by exposed users, some of which might be sensitive. Thus, exposed users are
provided with a mechanism to accept whether an analyst is allowed to receive the
result of the executions of any particular function. In order to receive the result,
the analyst needs to be authorised by a portion of exposed users determined by
function K. We denote by SEC a field in the physical reality record for a user to
be used for storing any sensitive data.

We now present a formal definition of the ideal functionality for EN+. High-
lighted sections of the functionality represent where EN+ diverges from EN.

Functionality FEN+ [ρ,E , Φ,L,AF ,K]

The functionality is parametrised by exposure risk function ρ, a set of allowable
error functions E for the physical reality record, a set of faking functions Φ for
the adversary to misrepresent the physical reality, and a leakage function L, as in
the regular FEN. AF is the set of all functions {α | α : JX K×S ×R → Y ×S} an
analyst could be authorised to compute. K() is a function of the current number
of users required to determine the minimum threshold of analyst authorisations.

State variables Description

SE List of users who have shared their exposure status and
time of upload

U List of active users; SE ∩U = ∅
Ũ List of corrupted users

A For each pair of analyst and allowed function, the dic-
tionary A contains the users that have authorised this
pair˜̈

A Static set of corrupted analysts
ST State table for function, analyst pairs

On message (Setup, ε∗) from A:
assert ε∗ ∈ E
R̃ε ← ∅
// Initialise noisy record of physical reality

On message (ActivateMobileUser,U ) from a party P :

U← U ‖ U
send (ActivateMobileUser,U ) to A

On message (ShareExposure,U ) from a party P :

send (AllMeas, ε∗) to R and receive R̃∗

R̃ε ← R̃ε ‖ R̃∗

if R̃ε[U ][INFECTED] = ⊥ then return error
else

send time to T and receive t
SE← SE ‖ (U , t);U← U \ {U }
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if U ∈ Ũ then send (ShareExposure,U , R̃ε[U ][SEC]) to A
else send (ShareExposure,U ,⊥) to A

On message (ExposureCheck,U ) from a party P :

if U ∈ U then
send (AllMeas, ε∗) to R and receive R̃∗

R̃ε ← R̃ε ‖ R̃∗;µ← R̃ε[U ] ‖ R̃ε[SE]
return ρ(U , µ)

else return error

On message (RegisterAnalyst, α, Ä) from Ä:

if α ∈ AF then

send (RegisterAnalyst, α, Ä) to A
for all U ∈ SE do send (RegisterAnalystRequest, α, Ä,U ) to U

A[α, Ä]← []

On message (RegisterAnalystAccept, α, Ä,U ) from U :

if U ∈ Ũ ∨ Ä ∈ ˜̈A then send (RegisterAnalystAccept,α, Ä,U ) to A and
await OK; then

A[α, Ä]← A[α, Ä] ‖ U
send (RegisterAnalystAccept, U , α) to Ä

On message (Analyse, α) from a party P :

if |A[P, α]| ≥ K(|SE|) then

(y,ST ′)← α(R̃ε[SE][SEC],ST [α, Ä])

ST [α, Ä]← ST ′

if P ∈ ˜̈A then send (Analysed,α, P, y) to A and await OK; then

return y

On message (RemoveMobileUser,U ) from a party P :

U← U \ {U }
On message (Corrupt,U ) from A:

Ũ← Ũ ‖ U
return {(α, Ä) : U ∈ A[α, Ä]}

On message (MyCurrentMeas,U ,A, e) from A:
if U ∈ Ũ then

send (MyCurrentMeas,U ,A, e) to R and receive ue
A

send (MyCurrentMeas, ue
A) to A

On message (FakeReality, φ) from A:
if φ ∈ Φ then R̃ε ← φ(R̃ε)

On message Leak from A:
send (Leak,L({R̃ε,U,SE})) to A

On message (IsCorrupt,U ) from Z:

return U
?
∈ Ũ
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4.2 Glass-Vault protocol

In this section, we present the Glass-Vault protocol. It is a delicate combination of
two primary primitives; namely, (i) the original exposure notification proposed by
Canetti et al. [19], and (ii) the enhanced functional encryption that we proposed
in Section 3. In this protocol, infected users upload not only the regular data
needed for exposure notification but also the encryption of their sensitive mea-
surements (e.g., their GPS coordinates, electronic health records, environment’s
air quality). Once an analyst requests to execute some specific computations on
exposed users’ data, the users are informed via public announcements. At this
stage, users can provide permission tokens to the analyst (in the form of func-
tional keysahres), who can run such computations only if the number of tokens
exceeds a threshold defined by the function K over the number of parties in the
set A of DD-FESR (note that since a party is registered to DD-FESR only if
they are exposed, the number of exposed users matches the size of A). Due to
the security of the proposed functional encryption scheme, the Glass-Vault ana-
lyst does not learn anything about the users’ sensitive inputs beyond what the
function evaluation reveals.

It is not hard to see that this protocol (a) is generic, as it supports arbi-
trary secure computations (i.e., multi-input stateful and randomised functions)
on users’ shared data, and (b) is transparent, as computations are performed
only if permission is granted by a sufficient number of users and in that the
user can choose whether they are willing to share their sensitive data or not,
making the collection of information consensual. Besides the EN and DD-FESR
functionality, the Glass-Vault protocol makes use of the physical reality function-
ality R, the exposure notification functionality FEN, and the trusted bulletin
board functionality FTBB, described in Supporting Material B.7, B.8, and B.9,
respectively.

Protocol Glass-Vault[ρ,E , Φ,L,AF ,K,C]

The protocol takes the same class of parameters as defined in FEN+ , and the iden-
tity of a trusted authority C. We use U to refer to a normal user of the Exposure
Notification System (corresponding to A in DD-FESR). We use Ä to refer to an
analyst (corresponding to DD-FESR’s decryptor, B). Among other ideal setups,
Glass-Vault leverages the exposure notification ideal functionality EN[ρ,E , Φ,L]
and functional encryption ideal functionality DD-FESR[AF , ∅, ∅,C].
User U :
On message ActivateMobileUser from a party P :

send (ActivateMobileUser,U ) to FEN

On message ShareExposure from a party P :

send (ShareExposure,U ) to FEN and receive r
if r 6= error then

send Setup to DD-FESR
send (MyCurrentMeas,U , SEC, e) to R and receive ue

SEC
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send (Encrypt, ue
SEC,K(|DD-FESR.A|)) toDD-FESR and receive (encrypted, h)

erase ue
SEC and send (Add, h) to FTBB

On message ExposureCheck from a party P :

send (ExposureCheck,U ) to FEN and receive ρU
if ρU 6= error then return ρU

On message (RegisterAnalystAccept, α, Ä) from a party P :

send (KeyShareGen,AggSα, Ä) to DD-FESR
send (RegisterAnalystAccept,U , α) to Ä

Analyst Ä:

On message (RegisterAnalyst, α, Ä) from a party P :

send Setup to DD-FESR
for all exposed U do send (RegisterAnalystRequest, α, Ä,U ) to P

On message (Analyse, α) from a party P :

send Retrieve to FTBB and receive C
send (Encrypt, (|C|, 0)) to DD-FESR and receive hn
send (Decrypt, hn,AggSα) to DD-FESR and receive (decrypted, |C|)
for h ∈ C do

send (Decrypt, h,AggSα) to DD-FESR and receive (decrypted, y)

if y 6= ⊥ then return (Decrypted, α, P, y)

4.3 Proof of security

We now show that Glass-Vault is secure:

Theorem 2. Let ρ,E , Φ, Φ+,L,L+,AF ,K, and C be parameters such that the
following conditions hold: (1) Φ ⊂ Φ+, (2) for every input x, it holds that4

L(x) = L(L+(x)), and (3) there is a function φ+ ∈ Φ+ such that for every input

x, every noisy physical reality record R̃ε ∈ x, every function φ ∈ Φ, and every set
of users U , (3.1) φ(R̃ε) does not tamper with sensitive data record R̃ε[U ][SEC]

but φ+(R̃ε) does, and (3.2) L(x) does not contain any instruction to leak the

contents of R̃ε[U ][SEC] but L+(x) does. Then, it holds that

Glass-Vault[ρ,E , Φ,L,AF ,K,C] UC-realises FEN+ [ρ,E , Φ+,L+,AF ,K],

in the presence of global functionalities T and R.

Proof. We construct a simulator SGV to prove Theorem 2. The high-level task
of our simulator is to synchronise the inputs of the analysis functions between
the ideal world (where they are stored in R), and the real world (where they
are held in the DD-FESR ideal repository). The simulator updates a simulated
trusted bulletin board by obtaining, through the leakage function, the secret data
for all honest users who have shared their exposure, and encrypting it through
DD-FESR.
4 Note, if x is a labelled dictionary and L returns a dictionary which includes a subset

of entries in x and optionally any other additional records, L+ strictly returns more
records than L.
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When any registered and corrupted analyst executes an Analyse request in
the ideal world, the simulator allows the ideal functionality to return the ideal re-
sult of the computation only if the adversary instructs the analyst to correctly ag-
gregate the ciphertexts stored in the bulletin board through DD-FESR decryp-
tion requests to the appropriate aggregator function. We also simulate the Reg-
isterAnalyst and RegisterAnalystAccept sequence of operations by trig-
gering the corresponding Setup and KeyShareGen subroutines in DD-FESR.
Any other adversarial calls to FEN+ such as (Setup, ε∗) and (FakeReality, φ)
are allowed and redirected to FEN, as long as ε∗ ∈ E and φ ∈ Φ).

Simulator SGV

State variables Description

L+ function to leak anything that L does, as well as the con-
tents of SEC for all users

T ← {} Table that stores messages uploaded to the Trusted Bul-
letin Board

Ũ List of corrupted users
SE List of exposed users

On message (ShareExposure,U , ue
SEC) from FEN+ :

simulate sending Setup to DD-FESR on behalf of U
if ue

SEC = ⊥ then
// simulate honest user:

send Leak to FEN+ and receive r
ue

SEC ← r[U ][SEC]

simulate sending (Encrypt, ue
SEC,K(|DD-FESR.A|)) toDD-FESR through

U and receive (encrypted, h)
SE← SE ‖ U ; T ← T ‖ h

On message (RegisterAnalyst, α, Ä) from FEN+ :

simulate sending setup to DD-FESR on behalf of Ä

for U ∈ SE do simulate sending
(
RegisterAnalystRequest, α, Ä,U

)
to

Z on behalf of Ä

On message (RegisterAnalystAccept, α, Ä,U ) from FEN+ :

if U ∈ Ũ then
await for

(
KeyShareGen,AggSα, Ä

)
from U to DD-FESR

else
simulate sending

(
KeyShareGen,AggSα, Ä

)
to DD-FESR on behalf

of U
return OK

On message (Analysed, α, P, y) from FEN+ :

await for (Encrypt, (|T |, 0)) from P toDD-FESR and for response (encrypted, hn)
await for (Decrypt, hn,AggSα) from P toDD-FESR and for response (decrypted, |T |)
for h ∈ T do

await for (Decrypt, h,AggSα) from P toDD-FESR and for response (decrypted, )
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return OK

On message Leak from A to FEN:

send Leak to FEN+ and receive r
return L(r)

On message (FakeReality, φ) from A to FEN:

assert φ ∈ Φ
send (FakeReality, φ) to FEN+

On message (Corrupt,U ) from A to FEN:

Ũ← Ũ ‖ U
send (Corrupt,U ) to FEN+ and receive AU

for (α, Ä) ∈ AU do

simulate sending
(
KeyShareGen,AggSα, Ä

)
to DD-FESR on behalf

of U

On message * from A to FEN:

send * to FEN+

On message Retrieve from A to FTBB:

return T

We prove that the Glass-Vault protocol is secure under a model of semi-honest
adversarial behaviour; this means showing that viewZREAL ≈ viewZIDEAL.

We argue that for all messages sent by the environment, the ideal world
simulator produces a view that is indistinguishable from viewZREAL. In particular:

– ShareExposure: when a user U shares their exposure status, SGV is ac-
tivated. If U is corrupted, it additionally receives the noisy record of U ’s
sensitive data, ue

SEC. For honest users, SGV obtains the same sensitive records
by using the Leak function. As in the real world, DD-FESR is invoked to
encrypt the sensitive data, and the resulting handle is stored in an emulated
trusted bulletin board. In both worlds, the array of stored handles follows a
similar distribution as they are both generated by DD-FESR for the same
messages. All other behaviour of ShareExposure is handled by FEN+ in
the same way that FEN would.

– RegisterAnalyst: when analyst Ä requests permission to compute a func-
tion α ∈ AF , the simulator registers them as a decryptor in DD-FESR (the
same analyst can request to be registered multiple times, but the DD-FESR
functionality will ignore all but the first request). SGV then emulates a request
for RegisterAnalystRequest for all exposed users. For the semi-honest
case, when both honest and corrupted users are allowed by the environ-
ment to accept the request for a function, they will ask DD-FESR for a
KeyShareGen. SGV learns abouts these RegisterAnalystAccept calls
when either the analyst or user is corrupted. In the former case SGV proac-
tively sends the request to DD-FESR on behalf of the user, while in the
latter it waits for the adversary to trigger the request. If both user and an-
alyst were honest, the adversary (in either world) should not learn that a
request was granted. However, given we are in the dynamic user corruption
setting, the simulator has to handle keyshare generation for newly corrupted
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users, by requesting keyshare generation to DD-FESR for all functions they
had authorised pre-corruption.

– Analyse: for a corrupted analyst, SGV will ensure that they sync the state
of the ideal function α with that of the aggregated AggSα in DD-FESR.
To aggregate all inputs stored in its emulated trusted bulletin board T , the
analyst first encrypts the integer equal to the size of T and passes it for
decryption to AggSα to initialise it. Then, for all handles stored in T , it
also decrypts the corresponding values to the same aggregator. When all the
decryptions have occurred, the final returned value will be the evaluation of
α on the sensitive data of all exposed users; SGV ignores this value and yields
back to FEN+ , which will return the ideal world result to the analyst.
Since the inputs to the aggregator (the set of uploaded sensitive data to the
trusted bulletin board) in the real world fully correspond to the input of α
in the ideal, the distributions of states and outputs for AggSα in DD-FESR
and for α in FEN+ are indistinguishable.

– Leak: on an adversarial request to learn some values from the combination
of noisy record of reality, exposed users, and corrupted users, SGV obtains the
corresponding leakage r from FEN+ , and filters it by the admissible leakage
L for FEN.

– FakeReality: SGV ensures that the request to modify the noisy record of
reality through FEN+ is also admissible in the real world with FEN.

All other messages are handled by redirecting them from FEN+ to FEN, since
both functionalities behave in the same manner outside the cases we have already
outlined. �

In the rest of this section, we make a few additional remarks. At a high level,
the Glass-Vault protocol can support any computation in a privacy-preserving
manner, in the sense that nothing beyond the computation result is revealed to
the analyst; more formally, in the simulation-based model, a corrupted party’s
view of the protocol execution can be simulated given only its input and out-
put. The Glass-Vault protocol can be considered as an interpreter that takes
a description of any multi-input functionality along with a set of inputs, exe-
cutes the functionality on the inputs and returns only the result to a potentially
semi-honest analyst.

While the above simulator guarantees security in the semi-honest setting, it
is possible to design a simulator that allows corrupted parties to diverge from
the protocol. In particular, this simulator would need to handle the case of a
malicious user who encrypts via DD-FESR dishonestly generated data (in that
it does not match with the corrupted user’s physical reality measurements).
Following the lead of Canetti et al. [19], we can account for these malicious
ciphertexts by using functions in Φ+ to modify the noisy record of physical reality
in FEN+ . Note that this simulation strategy imposes additional deviations from
the physical reality beyond those unavoidably inherited by Φ due to its own
simulation needs. This makes it harder to justify the usage of the protocol by an
analyst who is interested in the correctness of the data processing; hence, our
choice of adversarial model.
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Recall that the primary reason the Glass-Vault protocol offers “transparency”
is that it lets users have a chance to decide which computation should be executed
on their sensitive data. This is of particular importance because the result of
any secure computation (including functional encryption) would reveal some
information about the computation’s inputs. However, having such an interesting
feature introduces a trade-off: if many users value their privacy and decide not
to share access to their data, the analyst may not get enough to produce any
useful results, foregoing the collective benefits this kind of data sharing can
engender [38]. One way to solve such a dilemma would be to integrate a (e.g.,
blockchain-based) mechanism to incentivise users to grant access to their data
for such computations; however, even then careful considerations are required,
as the framing of why a user is asked to disclose their information can impact
how much they value privacy [2].

4.4 Cost evaluation

In the Glass-Vault protocol, an infected user’s computation and communication
complexity for the proposed data analytics purposes is independent of the to-
tal number of users, while it is linear with the number of functions requested
by the analysts. An analyst’s computation overhead depends on each function’s
complexity and the number of decryptions (as each decryption updates the func-
tion’s state). The cost to non-infected users is comparable to the most efficient
EN protocols that realise FEN (such as the protocol in [19, Section 8.5]): besides
passively collecting measurements of sensitive data, no other data-analytics op-
eration is required until the ShareExposure phase.

While the costliest component of the protocol is the functional encryption
module, it is possible to build an efficient implementation of Glass-Vault due to
the construction of DD-Steel, which relies on efficient operations facilitated by
trusted hardware.

5 Example: infections heatmap

In this section, we provide a concrete example of a computation that a Glass-Vault
analyst can perform: generating a daily heatmap of the current clusters of infec-
tions. This is an interesting application of Glass-Vault, as it relies on collecting
highly-sensitive location information from infected individuals.

Heatmapk,q(x, s) is defined as a multi-input stateful function, parametrised
by k: the number of distinct cells we divide the map into, and q: the minimum
number of exposed users that have shared their data. The values of these pa-
rameters affect the granularity of the results, computational costs, and privacy
of the exposed users. Thus, they need to be approved as part of the KeyShare-
Gen procedure (in that the parameters’ values are hardcoded in the Heatmap
program, so that different parameter values require different functional keys).

Given the full set of exposed users’ sensitive data, the Heatmap function fil-
ters it to the exposed users’ location history for the last T days (the maximum
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number of days since they might have been spreading the virus due to its incu-
bation period), and constructs a list of T × k matrices, where an entry in each
matrix u contains the number of hours within a day an infected individual spent
in a particular location. Location data is collected once every hour by the user’s
phone, and divided into k bins. The u matrix rows are in reverse chronological
order, with the last row of the matrix corresponding to the locations during the
most recent day and each row above in decreasing order until the first row which
contains the locations T days ago.

Heatmap maintains as part of its state a list, m, of T -sized circular buffers
(a FIFO data structure of size T ; once more than T entries have been filled,
the buffer starts overwriting data starting from the oldest entry). On every call
with input x, the function allocates a new circular buffer b for each matrix u it
constructed from x, and assigns each of u’s rows to one of b’s T elements, starting
from the top row. Each element in b now contains a list of k geolocations for a
specific day, with the first element containing the locations T days ago, and so
on. For any buffer already in m, we append a new zero vector, effectively erasing
the record of that user’s location for the earliest day. If there is a buffer that is
completely zeroed out by this operation, we remove it from m.

If we have |m| ≥ q, we return the row-wise sum of vectors
∑
b∈m

T−1∑
i=0

b[i]. The

result is a single k-sized vector containing the total number of hours spent by all
users within the last T days: our heatmap. The full pseudocode for the function
is provided in Supporting material C. For the results’ correctness, an analyst
should run the function (through a decryption operation) once a day. As the
summation of user location vectors is a destructive operation, the probability
that a malicious analyst can recover any specific user’s input will be inversely
proportional to q.

While the security proof of Theorem 2 is in the semi-honest setting, a fully
malicious setting is not unrealistic, as a user can tamper with their own client
applications to upload malicious data (terrorist attack [44]). Since there is no
secure pipeline from the raw measurements from sensors to a specific applica-
tion, unless we adopt the strong requirement that every client also runs a TEE
(as in [28]), it is impossible to certify that the users’ inputs are valid. Like most
other remote computation systems, Glass-Vault cannot provide blanket protec-
tion against this kind of attack. However, due to its generality, Glass-Vault allows
analysts to use functions that include “sanity checks” to ensure that the data
being uploaded are at least sensible, in order to limit the damage that the attack
may cause. In the heatmap case, one such check could be verifying that for each
row of u, it must hold that its column-wise sum is equal to 24, since each row
represents the number of hours spent across various locations by the user in a
day (assuming the user’s phone is on and able to collect their location at least
once an hour throughout a day). To capture this type of attack in the ideal
functionality FEN+ , we instantiate it with a FakeReality function in Φ+ such
that, if a malicious user U uploads this type of fake geolocation, it will update
U ’s position within the noisy record of physical reality to match U ’s claimed
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location, while making sure that other users who compute risk exposure and
have been in close contact with U will still be notified.

We highlight that Bruni et al. [15] propose an ad-hoc scheme that produces
similar output. Their scheme relies on combining infection data provided by
health authorities with the mass collection of cell phone location data from
mobile phone operators. Unlike Glass-Vault, with its strong level of transparency,
the approach in [15] does not support any mechanism that allows the subjects of
data collection to provide their direct consent and opt-out of the computation.

6 Future directions

There are several possible directions for future research. An immediate goal
would be to implement Glass-Vault for various data analytics, examine their
run-time, and optimise the system’s bottlenecks. Since Glass-Vault’s analytics
results could influence public policy, it is interesting to investigate how this
platform could be equipped with mechanisms that allow result recipients to verify
the authenticity of outputs provided by the analyst. Another appealing future
research direction is to investigate the design of privacy-preserving contact graph
analysis as an application of Glass-Vault, which would let an analyst construct
a contact (sub)graph, using users’ data, with minimum leakage and maximum
transparency, bridging the gap between centralised and decentralised contact
tracing.

Acknowledgments

Lorenzo Martinico was supported by the National Cyber Security Centre, the UK
Research Institute in Secure Hardware and Embedded Systems (RISE). Aydin
Abadi was supported in part by The National Research Centre on Privacy, Harm
Reduction and Adversarial Influence Online (REPHRAIN), under UKRI grant:
EP/V011189/1.

References

[1] Abbas, R., Michael, K.: COVID-19 contact trace app deployments: learnings
from australia and singapore. IEEE Consumer Electronics Magazine 9(5),
65–70 (2020)

[2] Acquisti, A., John, L.K., Loewenstein, G.: What is privacy worth? The
Journal of Legal Studies 42(2), 249–274 (2013)

[3] Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In:
Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th International
Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceed-
ings, Part II, Lecture Notes in Computer Science, vol. 13043, pp. 224–255,
Springer (2021), URL https://doi.org/10.1007/978-3-030-90453-1_8

28



[4] Ahmed, N., Michelin, R.A., Xue, W., Ruj, S., Malaney, R.A., Kanhere, S.S.,
Seneviratne, A., Hu, W., Janicke, H., Jha, S.K.: A survey of COVID-19
contact tracing apps. IEEE Access 8, 134577–134601 (2020), URL https:

//doi.org/10.1109/ACCESS.2020.3010226

[5] AISEC, F.: Pandemic contact tracing apps: DP-3T, PEPP-PT NTK, and
ROBERT from a privacy perspective. Cryptology ePrint Archive, Report
2020/489 (2020), https://eprint.iacr.org/2020/489

[6] Alliance, U.H.D.R., NHSX: Building Trusted Research Environments - Prin-
ciples and Best Practices; Towards TRE ecosystems (Dec 2021), URL
https://doi.org/10.5281/zenodo.5767586

[7] Alsdurf, H., Bengio, Y., Deleu, T., Gupta, P., Ippolito, D., Janda, R., Jarvie,
M., Kolody, T., Krastev, S., Maharaj, T., Obryk, R., Pilat, D., Pisano, V.,
Prud’homme, B., Qu, M., Rahaman, N., Rish, I., Rousseau, J.F., Sharma,
A., Struck, B., Tang, J., Weiss, M., Yu, Y.W.: Covi white paper. CoRR
(2020), URL http://arxiv.org/abs/2005.08502v1

[8] Altshuler, T.S., Hershkowitz, R.A.: How Isreal’s COVID-19 mass surveil-
lance operation works (2020), https://www.brookings.edu/techstream/
how-israels-covid-19-mass-surveillance-operation-works/

[9] Apple, Google: Exposure notification API. https://www.google.com/

covid19/exposurenotifications/ (2020)
[10] Avitabile, G., Botta, V., Iovino, V., Visconti, I.: Towards defeating mass

surveillance and SARS-CoV-2: The pronto-C2 fully decentralized automatic
contact tracing system. Cryptology ePrint Archive, Report 2020/493 (2020),
https://eprint.iacr.org/2020/493

[11] Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal
composition with global subroutines: Capturing global setup within plain
UC. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III, LNCS, vol. 12552,
pp. 1–30, Springer, Heidelberg, Germany, Durham, NC, USA (Nov 16–19,
2020), https://doi.org/10.1007/978-3-030-64381-2˙1

[12] Bhatotia, P., Kohlweiss, M., Martinico, L., Tselekounis, Y.: Steel: Com-
posable hardware-based stateful and randomised functional encryption.
In: Garay, J. (ed.) PKC 2021, Part II, LNCS, vol. 12711, pp. 709–
736, Springer, Heidelberg, Germany, Virtual Event (May 10–13, 2021),
https://doi.org/10.1007/978-3-030-75248-4˙25

[13] Biasse, J.F., Chellappan, S., Kariev, S., Khan, N., Menezes, L., Seyi-
toglu, E., Somboonwit, C., Yavuz, A.: Trace-Σ: a privacy-preserving con-
tact tracing app. Cryptology ePrint Archive, Report 2020/792 (2020),
https://eprint.iacr.org/2020/792

[14] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011, LNCS, vol. 6597, pp. 253–273,
Springer, Heidelberg, Germany, Providence, RI, USA (Mar 28–30, 2011),
https://doi.org/10.1007/978-3-642-19571-6˙16

[15] Bruni, A., Helminger, L., Kales, D., Rechberger, C., Walch, R.: Privately
connecting mobility to infectious diseases via applied cryptography. Cryp-
tology ePrint Archive, Report 2020/522 (2020), https://eprint.iacr.

org/2020/522

29



[16] Canetti, R.: Universally composable security: A new paradigm for
cryptographic protocols. In: 42nd FOCS, pp. 136–145, IEEE Com-
puter Society Press, Las Vegas, NV, USA (Oct 14–17, 2001),
https://doi.org/10.1109/SFCS.2001.959888

[17] Canetti, R.: Universally composable signature, certification, and authentica-
tion. In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA, p. 219, IEEE Computer
Society (2004), URL https://doi.ieeecomputersociety.org/10.1109/

CSFW.2004.24

[18] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007, LNCS, vol. 4392,
pp. 61–85, Springer, Heidelberg, Germany, Amsterdam, The Netherlands
(Feb 21–24, 2007), https://doi.org/10.1007/978-3-540-70936-7˙4

[19] Canetti, R., Kalai, Y.T., Lysyanskaya, A., Rivest, R.L., Shamir, A., Shen,
E., Trachtenberg, A., Varia, M., Weitzner, D.J.: Privacy-preserving auto-
mated exposure notification. Cryptology ePrint Archive, Report 2020/863
(2020), https://eprint.iacr.org/2020/863

[20] Canetti, R., Trachtenberg, A., Varia, M.: Anonymous collocation discovery:
Harnessing privacy to tame the coronavirus (2020)

[21] Castelluccia, C., Bielova, N., Boutet, A., Cunche, M., Lauradoux, C.,
Métayer, D.L., Roca, V.: DESIRE: A third way for a european exposure
notification system leveraging the best of centralized and decentralized
systems. CoRR abs/2008.01621 (2020), URL https://arxiv.org/abs/

2008.01621

[22] Centers for Disease Control and Prevention: Contact Tracing.
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/

contact-tracing.html (2021)

[23] Chassang, G.: The impact of the EU general data protection regulation on
scientific research. ecancermedicalscience 11 (2017)

[24] Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: De-
centralized multi-client functional encryption for inner product. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II, LNCS, vol. 11273, pp.
703–732, Springer, Heidelberg, Germany, Brisbane, Queensland, Australia
(Dec 2–6, 2018), https://doi.org/10.1007/978-3-030-03329-3˙24

[25] Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dy-
namic decentralized functional encryption. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I, LNCS, vol. 12170, pp. 747–775,
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020), https://doi.org/10.1007/978-3-030-56784-2˙25

[26] Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sa-
hai, A., Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014, LNCS, vol. 8441, pp. 578–602,
Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014),
https://doi.org/10.1007/978-3-642-55220-5˙32

30



[27] Gvili, Y.: Security analysis of the COVID-19 contact tracing specifications
by apple inc. and google inc. Cryptology ePrint Archive, Report 2020/428
(2020), https://eprint.iacr.org/2020/428

[28] Günther, D., Holz, M., Judkewitz, B., Möllering, H., Pinkas, B., Schneider,
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A Syntax of Functional Encryption

FE is defined over a class of functions F = {F | F : X → Y}, where X is the
domain and Y is the range, consisting of the following algorithms:

– Setup (run by C ∈ C). It takes a security parameter 1λ as input and outputs
a master keypair (mpk,msk).

– KeyGen (run by C ∈ C). It takes msk and a function’s description F ∈ F as
inputs and outputs functional key skF.

– Enc (run by A ∈ A). It takes a plaintext string x ∈ X and mpk as inputs. It
returns a ciphertext ct or an error.

– Dec (run by B ∈ B). It takes ciphertext ct and functional key skF as inputs
and returns a value y ∈ Y.
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Informally, correctly evaluating the decryption operation on a ciphertext
ct ← Enc(mpk, x) using functional key skF should result in y ← F(x). The
party B should not learn anything about A’s input, except for any information
that y reveals about x and some natural leakage from the ciphertext, e.g., the
length of the ciphertext.

B Background Functionalities

In this section, we provide an overview of the functionalities that are invoked in
the description of DD-Steel, EN+, and Glass-Vault (presented in Subsections 3.2,
4.1, and 4.2, respectively). The overview is sufficient for the clarification of the
communication interface among said functionalities and the interacting entities.
For a detailed description of each background functionality, we refer readers to
the relevant work, except the exposure notification functionality FEN, which we
present in detail as pseudocode to allow an easy comparison with the extended
functionality FEN+ .

B.1 The global attestation functionality Gatt

The ideal functionality Gatt was introduced in [36] and can be seen as an ab-
straction for a broad class of attested execution processors. The functionality
operates as follows:

– On message initialize from a party P , it generates a pair of signing and
verification keys (spk, ssk). It stores spk as the master verification key vkatt,
available to enclave programs, and ssk as the master secret key msk, protected
by the hardware.

– On message getpk from a party P , it returns vkatt.
– On message (install, idx, prog) from a (registered and honest) party P , it

asserts that idx corresponds to the calling party’s session id. Then, it creates
a unique enclave identifier eid and establishes a software enclave for (eid, P )
as (idx, prof, ∅). It provides P with eid.

– On message (resume, eid, input) from a (registered) party P , it calls the
enclave (idx, prog,mem) for (eid, P ), where mem is the current memory state.
It runs prog(input,mem) which returns output and an update memory state
mem′. Finally, it produces a signature σ on (idx, eid, prog, output) using msk
and sends (output, σ) to P .

B.2 The certification functionality FCERT

We assume the existence of an ideal certification functionality FCERT, inspired by
the certification functionality and the certification authority functionality intro-
duced in [17]. The difference between FCERT and the certification functionality
in [17] is that (i) instead of taking over signature verification, FCERT allows the
verifier to verify the validity of a signature offline, and (ii) it allows the generation
of only one certificate (signature) for each party.
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In particular, the functionality FCERT exposes methods GetK and Sign. On
the first call to GetK via a message GetK from a party P , it initialises an
empty record and generates a signing keypair for signature scheme Σ, returning
the verification key VK on all subsequent calls to GetK. In a call to Sign, the
input is a message (Sign, vk) from a party P . The functionality checks that no
other message has been recorded from the same UC party id as P . If this holds,
then it returns the certificate cert, which is a signature on vk under the generated
signing key.

B.3 The common reference string functionality CRS

The CRS functionality, as described in [12], is parameterised by a distribution D.
On the first request message Get from a party P , the functionality samples a
CRS string crs from D and sends crs to P . On any subsequent message Get, it
returns the same string crs.

B.4 The secure channel functionality SCS
R

We adopt the functionality SCSR from [12] that models a secure channel between
sender S and receiver R. The functionality keeps a record M of the length of
messages that are being sent. On message (send,m) from S, it sends (sent,m)
to R and appends the length ofm to the recordM . The adversary is not activated
upon sending, but can later on request the record M . For simplicity, when the
identity of the receiver or the sender is obvious, we will use the notation SCS or
SCR, respectively.

B.5 The repository functionality REP

We relax the functionality REP from [12] by allowing any party to read/write,
as long as the read/write request refers to some specified session. Namely, the
functionality keeps a table M of the all the messages submitted by writing
requests. On message (write, x) from W , it runs the subroutine getHandle to
obtain an identifying handle h, and records x in M [h]. On message (read, h)
from a party P ∈ R, it returns M [h] to P .

B.6 The time functionality T

The time functionality T of [19] can be used as a clock within a UC protocol.
It initialises a counter t as 0. On message increment from the environment, it
increments t by 1. On message time from a party P , it sends t to P .

B.7 The physical reality functionality R

Functionality R introduced in [19], represents the “physical reality” of each par-
ticipant to a protocol, meaning the historical record of all physical facts (e.g.,
location, motion, visible surroundings) involving the participants.
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R is parameterised by a validation predicate V for checking that the records
provided by the environment are sensible, and a set F of ideal functionalities that
have full access to the records obtained by R. The functionality only considers
records that have a specific format and include the party identity, time, and
the types of measurement (e.g., location, altitude, temperature, distance of the
party from each other party, health status) that evaluate the physical reality for
the said party. It initialises a list R of all submitted records that are in correct
format and operates as follows:

– On message (P, v) from the environment, where P is a party’s identity and
v is a record in correct format, it appends (P, v) to R. Then, it sends time
to T (the time functionality presented in B.6) and obtains t. It checks that
t matches the time entry in v and that V (R) holds. If any check fails, then
it halts.

– On message (MyCurrentMeas, P, L, e) that comes from either party P or
a functionality in F (otherwise, it returns an error), where L is a list of fields
that refer to the correct record format and e is an error function:
1. It finds the latest entry v in the sublist of entries in R whose first element

is P .
2. It sets vL as the record v restricted to the fields in L.
3. It computes e(vL), i.e., the result of applying the error function e to vL.
4. It returns e(vL).

– On message (AllMeas, e) from a functionality in F, it applies e to each
record in R and obtains R̃. It returns R̃.

B.8 The exposure notification functionality FEN

The Exposure Notification functionality, also introduced in [19], builds on the
previous two functionalities to provide a mechanism for warning people who
have been exposed to infectious carriers of the virus. The description of the
functionality is recapped in section 4.1; we show the formal description for the
purposes of comparing this functionality with FEN+ .

Confirmation of test results when sharing exposure and re-registration into
the system for no longer infectious users is not captured by the functionality.

Functionality FEN[ρ,E , Φ,L]

State variables Description

SE List of users who have shared their exposure status

U List of active users

Ũ List of corrupted users

R̃ε Noisy record of physical reality

On message (Setup, ε∗) from A:
assert ε∗ ∈ E ; R̃ε ← ∅

On message (ActivateMobileUser,U ) from a party P :
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U← U ‖ U
send (ActivateMobileUser,U ) to A

On message (ShareExposure,U ) from a party P :

send (AllMeas, ε∗) to R and receive R̃∗

R̃ε ← R̃ε ‖ R̃∗

if R̃ε[U ][INFECTED] = ⊥ then
return error

else
send time to T and receive t
SE← SE ‖ (U , t)
U← U \ {U }
send (ShareExposure,U ) to A

On message (ExposureCheck,U ) from a party P :

if U ∈ U then
send (AllMeas, ε∗) to R and receive R̃∗

R̃ε ← R̃ε ‖ R̃∗

µ← R̃ε[U ] ‖ R̃ε[SE]
return ρ(U , µ)

else return error

On message (RemoveMobileUser,U ) from a party P :

U← U \ {U }
On message (Corrupt,U ) from A:

Ũ← Ũ ‖ U
On message (MyCurrentMeas,U ,A, e) from A:

if U ∈ Ũ then
send (MyCurrentMeas,U ,A, e) to R and receive ue

A

send (MyCurrentMeas, ue
A) to A

On message (FakeReality, φ) from A:
if φ ∈ Φ then

R̃ε ← φ(R̃ε)

On message Leak from A:
send (Leak,L({R̃ε,U,SE})) to A

On message (IsCorrupt,U ) from Z:

return U
?
∈ Ũ

B.9 The trusted bulletin board functionality FTBB

The functionality FTBB, as presented in [19], maintains a state that is updated
whenever new data are uploaded (for infectious parties). It initializes a list C of
records. On message (Add, c) from a party P , it checks with R whether P is infec-
tious (formally, FTBB sends a message (MyCurrentMes, P, “health status”, id)
to R, where id is the identity function). If this holds, then it appends c to C. On
message Retrieve from a party P , it returns C to P .
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C Heatmap pseudocode

In this section, we provide the pseudocode for the heatmap function discussed
in Section 5. For simplicity of exposition, we assume that the input x is already
a fully formed list of T ×k matrices containing a single user’s location data over
the last T days. While Glass-Vault functionalities typically expect a subset of R’s
noisy record of reality for fields in SEC, turning those records in a list of matrices
can be delegated to the aggregator run by Glass-Vault to turn individual user’s
ciphertext into the multi-input list x.

function Heatmapk,q(x, state)
if state = ∅ then m← []

for c ∈ m do
c← c ‖ ~0
if ∀i ∈ c : i = ~0 then m← m \ c

for u ∈ x do
b← CircularBuffer(T )
for {i = 0; i < T ; i++} do

assert
k−1∑
j=0

u[i, j] = 24

b← b ‖ u[i, :]

m← m ‖ b
y← ~0
if |m| ≥ q then

for u ∈ m do
for {i = 0; i < T ; i++} do

y← y + u[i, :]

return y

The above pseudocode uses the following notation conventions:

– Given matrix z, the notation z[i, j] denotes accessing the i-th row and j-th
column of z.

– z[i, :] denotes the row vector corresponding to the i-th row of z; z[:, j] is the
column vector corresponding to the j-th column

– We denote by CircularBuffer(n) the creation of a new n-sized circular buffer.
Appending an item to the buffer is accomplished through concatenation
operator ‖ . After n items have been appended to a buffer, it will overwrite
the first record in the buffer, and so on

D Steel simulator

We now describe the simulator presented in [12], while adapting the message
syntax to fit with the messages sent by DD-FESR and DD-Steel.
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Simulator SFESR[PKE, Σ,N, λ, F]

State variables Description

H[·]← ∅ Table of ciphertext and handles in public repository
K ← [] List of progFEVK[F] enclaves and their eidF

G ← {} Collects all messages sent to Gatt and its response
B ← {} Collects all messages signed by Gatt

(crs, τ)← N.S1 Simulated reference string and trapdoor

On message (setup, P ) from SDD-FESR:

if mpk = ⊥ then
eidKME ← Gatt.install(C.sid, progKMEVK )
(mpk, σKME)← Gatt.resume(eidKME, init, crs,C.sid)

if P = A then
send (setup,mpk,σKME) to SCA

else if P = B then
send (setup,mpk,σKME, eidKME) to SCC

B and receive (provision, σ, eidDE, pkKD)
assert (C.sid, eidDE, progDEVK , pkKD) ∈ B[σ]
(ctkey, σKME)← Gatt.resume(eidKME, (provision, (σ,eidDE, pkKD, eidKME, crs))))
send (provision, ctkey, σKME) to SCB

On message (read, h) from party B to REP:
send (decrypt,F0, h) to SDD-FESR on behalf of B and receive (decrypted, |(m,k)|)
assert |(m,k)| 6= ⊥
ct← PKE.Enc(mpk, 0|(m,k)|)
π ← N.S2(crs, τ, (mpk, ct))
ctmsg ← (ct, π); H[ctmsg]← h
send (read, ctmsg) to B

On message (install, idx, prog) from party P ∈ {B ∪ C} to Gatt:

eid ← Gatt.install(idx, prog)
G[eid].install← (idx, prog,P )
// G[eid].install[1] is the program’s code

forward eid to B

On message (resume, eid, input) from party P ∈ {B ∪ C} to Gatt:

assert G[eid].install[2] = P
if G[eid].install[1] 6= progFEVK[·] ∨ (input[0] 6= run ∨ input[−1] 6= ⊥) then

(output, σ)← Gatt.resume(eid, input)
G[eid].resume← G[eid].resume ‖ (σ, input, output)
B[σ]← (G[eid].install[0], eid,G[eid].install[1], output)
forward (output, σ) to P

else
(idx, progFEVK[F],P )← G[eid].install
(run, σDE, eidDE, ctkey, ctmsg,kF, crs,⊥)← input
assert (σF, (init,mpk, idx), (pkFD)) ∈ G[eid].resume
assert (idx, eid, progFEVK[F], pkFD) ∈ B[σF]
assert (idx, eidDE, progDEVK , ctkey,kF, crs)) ∈ B[σDE]
// If the ciphertext was not computed honestly and saved to H
if H[ctmsg] = ⊥ then
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(ct, π)← ctmsg

((m,k), r)← N.E(τ, (mpk, ct), π)
send (encrypt,m,k) to SDD-FESR on behalf of P and receive (encrypted, h)
if h 6= ⊥ then H[ctmsg]← h
else return

h← H[ctmsg]
send (decrypt,F, h) to SDD-FESR on behalf of P and receive (decrypted, y)
((computed, y), σ)← Gatt.resume(eidF, (run,⊥,⊥,⊥,⊥,⊥,⊥, y))
G[eid].resume← G[eid].resume ‖ (σ, input, (computed, y)))
B[σ]← (G[eid].install[0], eid,G[eid].install[1], (computed, y))
forward ((computed, y), σ) to P
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