
Recursion over Public-Coin Interactive Proof Systems; Faster
Hash Verification

Alexandre Belling, Azam Soleimanian, Olivier Begassat

Consensys, Linea-Cryptography

firstname.lastname@consensys.net

ABSTRACT
SNARK is a well-known family of cryptographic tools that is in-

creasingly used in the field of computation integrity at scale. In

this area, multiple works have introduced SNARK-friendly cryp-

tographic primitives: hashing, but also encryption and signature

verification. Despite all the efforts to create cryptographic primi-

tives that can be proved faster, it remains a major performance hole

in practice. In this paper, we present a recursive technique that can

improve the efficiency of the prover by an order of magnitude com-

pared to proving MiMC hashes (a SNARK-friendly hash function,

Albrecht et al. 2016) with a Groth16 (Eurocrypt 2016) proof. We use

GKR (a well-known public-coin argument system by Goldwasser et

al., STOC 2008) to prove the integrity of hash computations and em-

bed the GKR verifier inside a SNARK circuit. The challenge comes

from the fact that GKR is a public-coin interactive protocol, and

applying Fiat-Shamir naively may result in worse performance than

applying existing techniques directly. This is because Fiat-Shamir

itself is involved with hash computation over a large string. We

take advantage of a property that SNARK schemes commonly have,

to build a protocol in which the Fiat-Shamir hashes have very short

inputs. The technique we present is generic and can be applied

over any SNARK-friendly hash, most known SNARK schemes, and

any (one-round) public-coin argument system in place of GKR. We

emphasize that while our general compiler is secure in the ran-

dom oracle model, our concrete instantiation (i.e., GKR plus outer

SNARK) is only proved to be heuristically secure. This is due to

the fact we first need to convert the GKR protocol to a one-round

protocol. Thus, the random oracle of GKR, starting from the sec-

ond round, is replaced with a concrete hash inside the outer layer

SNARK which makes the security-proof heuristic.

KEYWORDS
SNARK, Hash Verification, Proof Recursion, Proof Composition,

GKR, Public-Coin, Fiat Shamir, So-Far Digest Model

1 INTRODUCTION
SuccinctNon-InteractiveArgument ofKnowledge (zk-)SNARKs
are powerful cryptographic tools that allow a prover to convince a

verifier that it knows a witness𝑤 such that the relation R (usually

drawn from a large family) is satisfied with respect to the public

input 𝑥 1
(i.e., R(𝑥 ;𝑤) = 1). Particularly, the verifier needs less time

to verify the proof rather than redoing all the computations. In the

last few years, an ever-growing number of SNARK constructions

have emerged, including [21], [16], [6], [11], [30], [35], [9], [32] with

various security assumptions and performance trade-offs. SNARKs

1
This can be done without revealing additional information, if the SNARK has addi-

tionally the zero-knowledge property

are also widely adopted in the blockchain world for their appli-

cations for privacy (zk-SNARKs) [22] and scalable computational

integrity [8].

Hashing inside a SNARK Several important applications of SNARKs

involve proving the computation of numerous hashes: signature

and Merkle proof verification, which usually becomes the main

bottleneck in the runtime of the prover. A SNARK scheme typically

works over arithmetic circuits and a prespecified finite field. On

the other hand, common hash functions such as SHA256, Blake2,

or Keccak typically work with unsigned integers and bit-wise oper-

ations, since they are faster on CPUs. Subsequently, even though

they can be embedded within an arithmetic circuit, they incur a

prohibitive overhead on the prover’s runtime. Due to this fact, nu-

merous works — among which MiMC [1], Poseidon [19] — have

proposed SNARK-friendly hash functions
2
: functions that are more

efficient to embed in an arithmetic circuit by 2 orders of magnitude.

Our contribution essentially focuses on applying new techniques

to speed up the verification of MiMC hash function, resulting in a

speed-up of x35 (more details in Fig.14) compared to directly verify-

ing MiMC with Groth16 [21]. However, the techniques we present

can also be applied to other SNARK-friendly hash functions such

as Poseidon [19].

The GKR protocol [18] produces sublinear time verifiable proofs

(w.r.t the size of the circuit) for multiple parallel executions of

a layered arithmetic circuit 𝐶 . The works [31], [33], [36] extend

the GKR [18] protocol and improve its performance. In particular,

[34] describes a generalization of the GKR protocol for arbitrary

arithmetic circuits with a directed acyclic graph structure, which

- in practice - also has a faster prover than the original version of

GKR. Additionally, it does not require any particular cryptographic

operations (apart from the Fiat-Shamir hashes).

Hyrax [32] proposes to compile GKR using discrete logarithm

(DLog) assumptions to obtain a zk-SNARK.

LegoSnark, [9] presents a generic framework that enables linking

a statement proven using GKR (or more precisely Hyrax [32]) to

other ones using possibly different argument systems. Our work

differs from theirs by embedding the GKR verifier within another

SNARK. Our contribution is a construction that allows us to recurse

the GKR protocol within a SNARK.

Proof recursion Generally speaking, the “recursion” term refers to

the embedding of the verification algorithm of a proof system inside

the circuit of another proof system. One may use this concept for

2
Generally speaking, a SNARK-friendly hash is a hash function that is involved only

with algebraic operations such as multiplication, addition, etc...
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“incremental computation” (where two proof systems are homoge-

neous) similar to Halo [6] and Nova [24] suggesting the successive-

recursion techniques using a (possibly non-pairing-friendly) cycle

of elliptic curves.

Our work extends this model by working on public-coin non-

interactive argument systems, and practically, for massive paral-

lelization. In Appendix K, we also provide a discussion of how their

techniques can be applied to our use case.

Technical Aspects and Motivation
The GKR protocol is originally a multi-round public-coin interac-

tive protocol that is transformed to its non-interactive version by

applying the Fiat-Shamir (FS) transform [3, 10], being sound in the

random oracle model.
3

At first glance, it may not be convincing to use GKR for hash ver-

ification (proof of correct hash computation). In particular, because

the non-interactive version of GKR itself requires hash compu-

tations over long strings, to generate challenges (by Fiat-Shamir

transform). We highlight some technical details which may con-

vince the reader of the relevance of using GKR for hash verification.

• Parallelization for the layered circuits: GKR can be used to

efficiently prove and verify multiple instances of the same

layered circuit in parallel. Particularly, the verifier’s work is

logarithmic w.r.t the number of parallel executions. Thanks

to the layered circuit of most hash functions and also due

to the need for vast parallel hashing in our application, the

combination of hash and GKR seems a reasonable choice

here.

• Recursion: We recurse GKR inside a SNARK. Namely, a

SNARK is applied over the verifier of GKR such that the

GKR verifier checks the correct computation of all hashes

(leveraging the parallelization property of GKR) and the

SNARK proves the correct execution of the GKR verifier.

• Practical proof-time: Another key idea that makes GKR very

interesting for recursion is that its practical prover runtime

is comparable to the runtime of the alleged computation

itself. Regarding efficiency, not all circuits are equally suited

for the application of GKR. Generally speaking, layered

circuits with a small width, a large depth and low-degree (at

each layer) are more interesting. This makes hash functions

based on the S-Box 𝑥 → 𝑥𝛼 , where 𝛼 is small, such as

Poseidon [19] and MiMC [1] excellent candidates for GKR.
4

• Compressing the input for Fiat-Shamir: Instead of including

the input-output of GKR in the Fiat-Shamir hashes (as it

would be normally required), we pass a prover-generated

commitment which is much shorter. Moreover, we would

present a model for the application of Fiat-Shamir, called so-

far digest, making it to be more efficient inside the circuit.

3
Indeed, in [10] the authors proved that GKR is round-by-round sound which implies

security against state restoration attack [10]. In [3] the authors proved that if a multi-

round protocol is secure against such an attack, then it is sound in the random oracle

model. Finally, [12] directly discusses the soundness of sumcheck protocol in the

random oracle model.

4
It is also possible to use GKR for Boolean circuits, [17] gives an example of how to do

so.

• Externalizing the commitment: The challenge here is to

force the, possibly malicious, prover to compute the afore-

mentioned commitment correctly. We discuss how to cir-

cumvent this challenge in a non-trivial and efficient way.

Note that a more trivial solution is to embed the commit-

ment inside the circuit of SNARK, which is far less efficient.

Our technique provides a separate constant-size proof, for

the correct computation of the commitment, outside the

circuit. This guarantees the soundness of the system as a

whole.

Overview of our technique; generation of the
initial randomness
We present a technique to recurse a public-coin single-round in-

teractive protocol inside another SNARK. In public-coin protocols,

the verifier sends random challenges to the prover, which we call

“randomnesses”. GKR is an instance of public-coin protocols.

Our methodology allows the prover to handle the randomnesses

efficiently when compiling to a non-interactive protocol and re-

cursing inside a SNARK. A naive attempt would be to apply the

Fiat-Shamir transform over GKR straightforwardly, but this would

be inefficient. Indeed, when using the Fiat-Shamir transform, the

verifier and the prover are required to hash the past transcript

including the inputs of the verifier. If these inputs are very long,

this leads to long hashes to be performed inside the SNARK cir-

cuit, and these are expensive. Let’s assume 𝑛 alleged evaluation

of the MiMC keyed-permutation 𝐻𝑚𝑖𝑚𝑐 (𝑥, 𝑘) = 𝑦. Applying the

Fiat-Shamir transform directly would require hashing all the input-

output 𝑥,𝑦, 𝑘 of the GKR statement and would result in a protocol

where we hash at least 3𝑛 field elements to obtain the initial chal-

lenge (called the “initial randomness” through the paper): at least 3

times worse than directly verifying the same hashes inside a circuit.

Our protocol instead applies the Fiat-Shamir transform over a short

input provided by the prover and externalizes the relevant compu-

tations on how this short input was obtained, outside the circuit.

Slightly more in detail, the information that we use to generate

the randomness is a piece of computation (let us call it 𝛾𝑣 ) already

required in the SNARK verification. As an example, consider the

Groth16 scheme, where the verifier must first compute 𝛾 , a multi-

scalar multiplication (MSM) of the verification key and the public

input (as 𝛾 =
∏

𝑖 vk
𝑥𝑖
𝑖
). Second, it uses 𝛾 and the rest of the proof

inside a pairing check. When we recurse GKR inside Groth16, we

do so in such a way that all the inputs of the GKR protocol are

included in the public inputs. We call 𝛾𝑣 , the “part” of 𝛾 associ-

ated with the GKR inputs (i.e., 𝛾 =
∏𝑛

𝑖=0 vk
𝑥𝑖
𝑖

= 𝛾𝑣 ·
∏𝑛

𝑖=𝑛′ vk
𝑥𝑖
𝑖

and (𝑥0, . . . , 𝑥𝑛′−1) is the public input corresponding to the GKR

statement). In our scheme, the prover computes and sends 𝛾𝑣 to the

verifier and provides an argument of knowledge that it knows a

witness for 𝛾𝑣 regarding the appropriate verification key. Note that

the prover still has to prove the correct computation of 𝛾𝑣 , but the

advantage of using 𝛾𝑣 for generating the randomness is that,

• the verifier does not have to compute 𝛾𝑣 by itself.

• the prover is bound to ((𝑥0, . . . , 𝑥𝑛′−1)) through 𝛾𝑣 , since
it would be used in the verification of SNARKs.

In particular, thanks to the second property, we can give an

argument system with constant-size proofs to argue the correct
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computation of randomness (which is indeed 𝐻 (𝛾𝑣, . . .), computed

outside the circuit). Since 𝛾𝑣 depends on the outer-layer SNARK

scheme, we present two argument systems for the integrity of 𝛾𝑣 ,

separately for Groth16 [21] and PLONK [16] as the outer-SNARK.

Our contribution
Our contribution can be divided into two main parts: theory and

implementation.

Theoretical aspects: Although the idea of the paper was initially

motivated by hash verification through recursion over GKR, our

theoretical results are general and can be used for recursion over

any public-coin interactive argument system. More precisely, we

present a compiler that receives a single-round public-coin argu-

ment system and a SNARK (to generate the required randomness

based on𝛾𝑣 ) and outputs an efficient recursion system.We build our

compiler step-by-step, andwe analyze the security of each step sepa-

rately. We prove that if the inputs to the compiler, and the argument

of knowledge (AOK) for correct computation of the randomness

satisfy the common security notion (knowledge-soundness), then

the output of the compiler is also secure.

For the instantiation, we use GKR as the inner argument system,

where we first need to convert it to a one-round protocol. For

such conversion, we first apply Fiat-Shamir from the second round

and use the resulting scheme inside outer SNARK. This means

the security holds only heuristically. We also emphasize that the

construction and security of single-round GKR are not considered

in the standard random oracle model, also known as the “so-far

transcript” model, but rather inside what we call the “so-far digest”

model. That is a more efficient model for applying Fiat-Shamir

inside the circuit (defined in the following).

Implementation aspects: In our implementation, we use Groth16

as the outer-layer SNARK and recurse it over GKR with MiMC

as the hash function. To improve efficiency, we use the custom

gates specified in Fig.16 and include all optimizations of [34] and

[33] on the sumcheck protocol and GKR. Our implementation is in

Golang and is optimized for massive parallelism (benchmarked on

96 physical cores). We expand further on that matter in Fig.14.

Moreover, we use a realization of Fiat-Shamir that is more con-

venient for our construction. We call such realization “Fiat-Shamir

in the so-far digest model”, a counterpart of the standard “so-far
transcript model” (see Appendix H), where instead of hashing the

transcript, we hash the randomness of the previous round and the

last message of the prover. This improves the efficiency overall

since the Fiat-Shamir hash computation is done inside the circuit

(particularly, this realization avoids the hashing of public parame-

ters inside the circuit). Working in this model can be of independent

interest, for applications involved with Fiat-Shamir hashing inside

the circuit. Moreover, in Appendix H, we demonstrate that applying

the Fiat-Shamir transform in the so-far digest model is sound if it is

sound to do it in the so-far transcript model.

Overall:We enable a secure and efficient recursion over the public-

coin proof systems, by generating a short “initial randomness” and

presenting the “so-far digest model”. We use the results for an

application requiring vast hash verification. The relevance of more

applications remains to be seen. Recently, blockchain companies

have used PLONK over STARK [28] to get a trade-off on the size

and the time of the proof
5
and be compatible with the Ethereum

network
6
. Since STARK is a public coin system, one may use our

techniques for performance improvement.

2 BACKGROUND
2.1 Notations
We say 𝑓 (𝑥) = 𝜔 (𝑔(𝑥)), if and only if lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) = ∞.
Let _ denote the security parameter. We write 𝑓 (_) ≈ ℎ(_) when
|𝑓 (_) −ℎ(_) | = _−𝜔 (_) for two functions 𝑓 , ℎ : 𝑁 → [0, 1]. Then if

𝑓 (_) ≈ 0 we say that 𝑓 is negligible, and if 𝑓 (_) ≈ 1 we say that 𝑓

is overwhelming. We write 𝑦 ← 𝐴(𝑥) to show that the algorithm

𝐴 outputs 𝑦 on input 𝑥 . Through the paper, we assume that all the

algorithms are probabilistic polynomial time (p.p.t.). By 𝑥 ←$ 𝑋 ,

we mean that the element 𝑥 is chosen uniformly at random from

the set 𝑋 . The notation [𝑛] stands for the set {1, . . . , 𝑛}.

To define a security notion, we may define a counterpart game GA
as

GA = (winning condition, game interactions)
We say that the adversary A fails (or its advantage in GA is negli-

gible) if,

Pr[Winning condition : Game interactions for A] ≈ 0

Groups. G denotes a cyclic group of prime order. If G is of order 𝑝 ,

𝑔 ∈ G, and 𝑥 ∈ Z𝑝 , then 𝑔𝑥 denotes the scalar multiplication. For

a list of 𝑛 scalars of Z𝑝 and group elements of G, the multi-scalar

multiplication (MSM) is

∏
𝑖∈[𝑛] 𝑔𝑖

𝑥𝑖
. When it is clear that 𝑔 is a

generator of G, we may use the notation [𝑥] for 𝑔𝑥 .

Definition 2.1 (Bilinear Groups). A bilinear group is a tuple (𝑝,G1,
G2,G𝑇 , 𝑒) such that: G1,G2,G𝑇 all cyclic groups, have prime or-

der 𝑝 , 𝑒 (G1,G2) → G𝑇 is a bilinear, non-degenerate map that is

efficiently computable. Also, throughout this work, 𝑔1, 𝑔2, 𝑔𝑇 im-

plicitly denotes generators of, respectively, G1,G2,G𝑇 such that

𝑒 (𝑔1, 𝑔2) = 𝑔𝑇 .

The argument systems Groth16 [21] and PLONK [16] are proved

to be secure under the 𝑞-DLog assumption (Appendix A, Def.A.1)

and in the Algebraic Group Model (AGM), formally defined as

follows.

Definition 2.2 (Algebraic adversary in an SRS-based7 protocol [5]).
An algebraic adversary A is a p.p.t algorithm such that, whenever

A outputs an element 𝐴 = [𝑎]𝑖 ∈ G𝑖 , it also outputs the associated

linear combination based on srs𝑖 , namely, a vector 𝑣 of scalars

such that 𝐴 = ⟨𝑣, srs𝑖 ⟩ =
∑

𝑗 𝑣 𝑗 · srs𝑖 𝑗 , where srs𝑖 is part of srs
belonging to the group G𝑖 . We call such a representation as the

linear-combination representation (LC-representation) of 𝐴.

2.2 Argument of Knowledge
We define R_ to be a relation generator (i.e., (R, 𝑧) ← R_) such
that R is a polynomial time decidable binary relation. For R(𝑥 ;𝑤),
we call 𝑥 the statement and𝑤 the witness. The relation generator

5
STARK for time, PLONK for size

6
That is based on the PLONK-elliptic curve

7
The structured reference string (SRS) is the set of public parameters generated by the

trusted setup with a special structure
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may also output some side information 𝑧 which will be given to

the adversary. When we have several families of relations, we may

show their relation generator as R𝐹𝑖 (rather than R_). We show

the set of true statements by LR = {𝑥 : ∃ 𝑤 R(𝑥 ;𝑤) = 1}. The
definitions in this section are mainly borrowed from [21].

Definition 2.3 (non-interactive Argument forR_). ANon-Interactive

Argument for R_ is a tuple of three p.p.t. algorithms (Setup, Prove,
Verify) defined as follows,

• 𝜎 ← Setup(R): on input R ← R_ , it generates a reference
string 𝜎 . All the other algorithms implicitly receive the

relation R.
• 𝜋 ← Prove(𝜎, 𝑥,𝑤): it receives the reference string 𝜎 and

for R(𝑥 ;𝑤) = 1 it outputs a proof 𝜋 .

• 1/0 ← Verify(𝜎, 𝑥, 𝜋): it receives the reference string 𝜎 ,

the statement 𝑥 and the proof 𝜋 and returns 0 (reject) or 1

(accept).

For the above argument system, we define the following security

requirements.

Definition 2.4 (Completeness). It says that given a true statement

𝑥 ∈ LR , the prover can convince the honest verifier; for all _ ∈
N, R ∈ R_, 𝑥 ∈ LR :

Pr [1 = Verify(𝜎, 𝑥, 𝜋) : 𝜎 ← Setup(R), 𝜋 ← Prove(𝜎, 𝑥,𝑤)] = 1

Definition 2.5 (Soundness). It says that, for the wrong statements,

it is not possible to convince the verifier. For any non-uniform p.p.t.

adversary A, we have,

Pr

[
1 = Verify(𝜎, 𝑥, 𝜋)
∧ 𝑥 ∉ LR

:

(R, 𝑧) ← R_, 𝜎 ← Setup(R),
(𝑥, 𝜋) ← A(𝜎, 𝑧)

]
≈ 0

Definition 2.6 (non-interactive Knowledge-Soundness). It strength-
ens the notion of soundness by adding an extractor that can com-

pute a witness from a given valid proof. The extractor gets full ac-

cess to the adversary’s state, including any random coins. Formally,

for any non-uniform p.p.t adversary A there exists a non-uniform

(expected polynomial time) extractor EA such that:

Pr

[
1 = Verify(𝜎, 𝑥, 𝜋)
∧ R(𝑥 ;𝑤) = 0

:

(R, 𝑧) ← R_, 𝜎 ← Setup(R),
((𝑥, 𝜋),𝑤) ← (A ∥ EA ) (𝜎, 𝑧)

]
≈ 0

The advantage of the adversary in the knowledge-soundness

game (the probability on the left side) is called as knowledge-error.
8

The Interactive AOK is defined similarly to the NIAOK (Def.2.3),

where the set (Prove and Verify) is a protocol between the prover

and the verifier.

An analog notion of knowledge-soundness can be defined for an

interactive protocol. In this context, the definition is identical except

that the extractor is only given black-box access to the prover but is

nonetheless allowed to rewind it up to any point in the interaction

and to send arbitrary messages.

8
Although, we only use the notion of knowledge-soundness throughout this work. The

reader should be aware, a more general notion exists: witness-extended emulation.
9

Fortunately, in [25] Lindell shows that knowledge-soundness implies witness-extended

emulation. Thus, for simplicity, we restrict ourselves to studying the knowledge-

soundness of the protocols we describe.

Definition 2.7 (interactive Knowledge-Soundness). An interactive

argument system (P,V) has knowledge-soundness if for all (p.p.t.
non-uniform) prover adversaries A there exists an (expected poly-

nomial time) extractor EA with oracle access to A, allowed to

rewind A to any point in the interaction and to send it arbitrary

messages such that the knowledge error in the following is negligi-

ble.

Pr


1 = Verify(𝜎, 𝑥, 𝜋)
∧ R(𝑥 ;𝑤) = 0

:

(R, 𝑧) ← R_, 𝜎 ← Setup(R),
𝑥 ← A(𝜎, 𝑧)
𝜋 ← Transcript

𝑤 ← EOA (𝜎, 𝑧, 𝑥)

 ≈ 0

Where O stands for the oracle access toA pursuing the interactions.

Definition 2.8 (Succinctness, SNARK). A non-interactive argu-

ment system Π for a relation R_ is succinct if the proof 𝜋 produced

by the prover has size 𝑜 ( |𝑤 |) and the run-time of the verifier is

𝑜 ( |𝑤 |) for all relations R drawn from R_ . A non-interactive argu-

ment system with this property is called SNARK.

2.3 Polynomial commitment
We conveniently adapt the definition of polynomial commitment

given by [5, 16] (to its non-interactive version) to match the formal-

ism of the present document. Formally, a polynomial commitment

is a tuple of p.p.t. algorithms (Setup, Commit, Prove, Verify) where,
• pp← Setup(1_, 𝑡) generates the public parameters pp suit-

able to commit to polynomials of degree < 𝑡 . It is to be done

by a trusted authority.

• 𝐶 ← Commit(pp, 𝑃 (𝑋 )) outputs a commitment𝐶 to a poly-

nomial 𝑃 (𝑋 ) of degree at most 𝑡 using pp.
• (𝑥,𝑦, 𝜋𝑥 ) ← Prove(pp, 𝑃 (𝑋 ), 𝑥) outputs (𝑥,𝑦, 𝜋𝑥 ) where
𝜋𝑥 is a proof for the evaluation of 𝑦 = 𝑃 (𝑥).

• 0/1 ← Verify(pp,𝐶, 𝑥,𝑦, 𝜋𝑥 ) verifies that 𝑦 = 𝑃 (𝑥) is the
correct evaluation of the polynomial committed in 𝐶 .

The correctness and security of Polynomial Commitments Schemes

are defined in Appendix A. We use the KZG polynomial commit-

ment scheme [23] to informally refer to the polynomial commitment

based on bilinear groups assumptions (Appendix C). This protocol

has been widely studied, extended and applied in numerous recent

works [16], [14], [11].

2.4 Fiat-Shamir
Informally, the Fiat-Shamir heuristic is a tool that allows transform-

ing interactive protocols from a specific class into non-interactive

protocols. This specific class is known as public-coin protocols and

is formally defined as follows.

Definition 2.9 (Public Coin). An interactive protocol between a

prover and a verifier is public-coin if all the messages sent by

the verifier to the prover are randomly and independently sampled

from the messages sent by the prover (that is, random coins from

the verifier are publicly available).

In Appendix H, we provide more details on how we adapt and in-

stantiate the Fiat-Shamir heuristic for our use case, and for building

a single-round version of GKR Appendix I.
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2.5 MiMC
Here we summarize the construction of MiMC [1]. Let 𝑞 be a prime,

and F𝑞 be the finite field of order 𝑞. Let 𝛼 be the smallest integer

co-prime with 𝑞 − 1; the map 𝑥 → 𝑥𝛼 defines a bijection of F𝑞 . Let
(𝑐𝑖 )0≤𝑖<𝑟 be a sequence of F𝑞 . Define the round function 𝐹𝑖 (𝑥) =
(𝑥 + 𝑘 + 𝑐𝑖 )𝛼 where 𝑐0 = 𝑐𝑟 = 0 and also define the cipher as

𝐸𝑘 (𝑥) = (𝐹𝑟−1 ◦ 𝐹𝑟−2 ◦ . . . ◦ 𝐹0) (𝑥) + 𝑘 . The authors of [1] suggest
that the number of rounds 𝑟 be chosen so that 𝑟 ≥

⌈
log𝑞

log𝛼

⌉
and that

the round constants (𝑐𝑖 ) be drawn independently and uniformly

at random from F𝑞 . One can obtain a hash function; either from

the cipher and using the Miyaguchi-Preneel construction [4, 29],

or from the permutation (where in 𝐸𝑘 (𝑥) the key is set to 0) and

using the sponge construction [1].

Following a suggestion in Libra ([33], Sec.5) for efficient applica-

tion of GKR over MiMC and Poseidon, we define the custom family

of gates for these hash functions in Appendix B.3.

2.6 Sumcheck protocol
The sumcheck protocol [26] is a multi-round interactive protocol

for the following relation where 𝑃 and 𝑎 are public inputs and the

witness is empty.(𝑃 (𝑋 ), 𝑎; ) :
∑︁

𝑥𝑘−1∈{0,1}
· · ·

∑︁
𝑥0∈{0,1}

𝑃 (𝑥0, . . . , 𝑥𝑘−1) = 𝑎


where 𝑃 is a 𝑘 multivariate polynomial of maximal degree 𝑑

on each variable. It consists of 𝑘 rounds of complexity 𝑂 (𝑑), each
doing sensibly the same thing (from the verifier’s point of view)

and a special final round where the verifier performs an evaluation

of 𝑃 (𝑋 ) at a random challenge point and compares the result with

the prover’s messages.

Remark 2.10. A useful takeaway to understand the role the sum-
check plays in GKR is to notice that the sumcheck protocol reduces a
claim about an exponential size sum of values of 𝑃 to a claim on a
single evaluation of 𝑃 at a random point.

3 GKR PROTOCOL; A PUBLIC-COIN
ARGUMENT SYSTEM

Description As mentioned, GKR generates proofs for the data-

parallel execution of a layered arithmetic circuit
10
. At a high level,

it is done by iteratively applying a sequence of sumcheck protocols

[26], one for each layer of the circuit. Each iteration of the sumcheck

protocol inside GKR establishes consistency between two successive

layers of computation (starting with the output layer, layer 0, and

working backward to the input layer, layer 𝑑). The reader can find

a detailed description of the protocol in Appendix B.

Fiat-Shamir transform The GKR protocol is not constant-round

and thus, one cannot straightforwardly compile it in the random

oracle model. Recent works [3, 10, 12] have studied the Fiat-Shamir

transform of the GKR protocol and the Fiat-Shamir of the sumcheck

protocol. We give an informal justification for the soundness of

GKR in the random oracle model below.

10
Meaning that the circuit can be decomposed into layers, and wires only connect

gates in adjacent layers

In [10] Canetti et al. proved that GKR is round-by-round sound

in the so-far transcript model.
11

Additionally, the authors of [10] ar-

gue that round-by-round soundness readily implies security against

state-restoration attack, which is a notion introduced in [3]. In [3]

the authors argue that if a public-coin interactive protocol is secure

against state restoration attack, then its non-interactive version via

Fiat-Shamir is also sound in the random oracle model. Putting it

together, this means GKR is sound in the (so-far transcript) random

oracle model. We also highlight that GKR is widely used in the

random oracle model [9, 33, 36].

In our compiler, we essentially need a single-round version of

GKR. In essence, only the first round of communication is initially

kept interactive, while all the other rounds are compiled using the

Fiat-Shamir. We elaborate on this version, its security and instanti-

ation in Appendices H and I.

When embedded in R1CS (or more broadly, any type of algebraic

circuit that does not have special support for hash functions), the

performance of the verifier is dominated by the Fiat-Shamir hashes.

Particularly, the verifier generates the first randomness by hashing

the statement supposed to be proven by GKR, this incurs the prover

to perform Fiat-Shamir hashes of size ( |𝑥 | + |𝑦 |) (corresponding to

the claim𝐻𝑚𝑖𝑚𝑐 (𝑥) = 𝑦). Since doing so entails the verifier working
with more computation than it would need to perform the hash

itself. We treat this issue in Sec.5.4. Additionally, the verifier and

prover perform a logarithmic number of hashes due to applying

Fiat-Shamir to the sumcheck instances.

Performances The verifier work has the overhead of the sum-

checks for each layer. Each of the sumchecks has a logarithmic

runtime for the verifier. On its hand, the prover runtime is driven

by the sumchecks runtime that is 𝑂 (𝑁 ) for 𝑁 the number of in-

stances of the parallel execution.

Compiling the GKR verifier in a R1CS As mentioned the veri-

fier’s work is dominated by Sumchecks that are expensive in prac-

tice, and their cost is driven by the hashes required by the Fiat-

Shamir transform. Even though this is a logarithmic overhead, it

has large constants and typically occupies between 1M to 10M

constraints (with Groth16) and twice more with Plonk, depending

on the number of hashes to be proven in the batch and the hash

function used for Fiat-Shamir. For instance, say for both Fiat-Shamir

and the instances to prove, we use the same MiMC function - with

degree 𝛼 = 7 and number of rounds 𝑅 = 91 - but with different

round-constants. Then, the number of constraints to recurse a GKR

verifier for 𝑁 = 2
20

instances of the MiMC permutation is approxi-

mated by 364𝑅(𝛼 + 2) log𝑁 ≈ 5.9𝑀 where 364 corresponds to the

number of R1CS constraints to permute a single element
12
. Indeed,

we have a layered circuit of 𝑅 layers, for each layer GKR needs

one sumcheck of log𝑁 rounds which itself provokes log𝑁 hashes

over 𝛼 + 2 field elements. Therefore, we have 𝑅(𝛼 + 2) log𝑁 per-

mutations where each permutation needs 364 constraints. Here we

have assumed the use of short “initial randomness” and working in

the “so-far digest model”. In the so-far transcript model, this goes

11
The authors of [10] also argue that their transformation is sound in the standard

model. We do not use this fact in this work.

12
In Groth16, the additions are free, and we need 4 multiplication to compute powers

of 𝛼 . So, in total we need 4 ∗ 91 = 364 constraints for one permutation.
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up to 364𝑅(𝛼 + 2) log2 𝑁 but is still better than Groth16 without

recursion that needs 364𝑁 constraints.

4 CHALLENGE OF RECURSION OVER
PUBLIC-COIN ARGUMENT SYSTEMS

In this section, we explain the challenge of recursion over public-

coin argument systems.

Concrete Example. Before delving into the abstract matter, we

first give a concrete example of how we intend to embed GKR in

a SNARK. Consider, for instance, the problem of verifying Merkle

proofs in, say, Groth16 [21]. The circuit doing this performs two

distinct tasks: (1) routing Merkle paths (i.e., preparing the inputs

to be hashed and deciding the order in which to hash them) and

comparing the final output hash with a public Merkle root hash, (2)

actually computing the hashes.

The circuit performing the first task, call it C′, simply believes the

values output by the hashing sub-circuit. The most straightforward

option for the second task is to implement the hash as a sub-circuit,

i.e., do the second task by computing the hashes in the circuit. Our

solution is different: we verify those hashes using a GKR verifier

sub-circuit. As a result, combining C′ and the GKR verifier circuit

produces a circuit C that verifies Merkle proofs in their entirety.

Naive attempt.We could try to use the GKR verifier inside C in

its original form (non-interactive by Fiat-Shamir). The Fiat-Shamir

transform of the GKR protocol has been well studied, and we know

it is sound for rightfully chosen hash functions. The result would

be a sound protocol; however, this approach comes with a major

impediment. In the interactive version, the verifier is asked to send a

challenge to the prover after receiving the response from the prover.

In the Fiat-Shamir transform of GKR, this implies that the verifier

has to hash all the information it has received so far, including the

entire GKR statement. This is 3 times worse than directly checking

the hashes in an arithmetic circuit in the first place. Our goal here

is to circumvent the burden of hashing the entire GKR statement

to verify a (non-interactive) GKR proof inside the circuit.

Note that in the Fiat-Shamir transform version that we use, the

new randomness (for the new round) is obtained by hashing the

previous randomness and the last message, ignoring the past tran-

script (see Appendix H). Thus, the bottleneck in applying GKR

for hash verification is generating a challenge for the first round.

That is why we refer to the challenge for the first round as the

“Initial Randomness”, and we consider a public-coin single-round
interactive argument system rather than a multi-round one.

5 OUR COMPILER FOR RECURSION
This section introduces a generic compiler for building a special

class of recursion systems. Let PC be a public-coin single-round

interactive argument system (corresponding to GKR in our use case).

Our compiler aims at combining PC with a SNARK system S to

get an efficient recursion system (running the verifier of PC inside

S). Based on the challenge we described in Sec.4 and thanks to an

extra proof-system Γ for knowledge of committed value – which

we specify later in the present section – we develop a compiler that

solves the problem of initial randomness. Here we give a general

intuition of how to build such a compiler.

5.1 Intuition
The compiler goes through two main steps. In the first step, we

assume that PC is a single-round argument system (where the first

prover’s message is not included in the circuit) and the challenge is

available as part of the public input. In the second step, we replace

the first message of the prover with a short commitment (to the

public inputs). To clear up this intuition, we illustrate it in the

form of an example for our initial use case, embedding GKR inside

Groth16 for Merkle proofs.

5.1.1 Protocol 1. We embed the GKR verifier into a sub-circuit of C
alongside C′. We use the GKR statement and the initial randomness

as a public input of the embedding circuit. The resulting circuit C
can be succinctly described as in Fig.1, while Fig.2 describes the

steps of the protocol. Note that the circuit involved in the recursion

is the part after receiving the challenge 𝜌 (in Fig.2).

𝑥C′

C′

𝑥G

G

𝑤C′ 𝑤G

𝜌

Figure 1: Protocol 1 : Circuit C construction. 𝑥C′ and 𝑤C′ are
the public input vector and witness vectors of C′. G is a circuit
embedding the one-round GKR verifier. The GKR proof belongs to
𝑤G (witness of G). 𝑥G is the GKR statement vector, and 𝜌 is the initial
randomness.

Protocol 1: informal description of the recursion technique

P(𝑥𝐶′ , 𝑥G, 𝑤𝐶′ ) V (𝑥𝐶′ )

𝑥G

𝜌
𝜌 ←$ F∗

. . . . . . . . . . . . . . . . . . . . . Recursion circuit (below) . . . . . . . . . . . . . . . . . . . . .

𝑤G ← ProveGKR (𝑥G, 𝜌 )
𝜋C ← ProveGroth16 (𝑥C′ , 𝑥G, 𝜌, 𝑤′C, 𝑤G )

𝜋C

VerifyGroth16 (𝜋𝐶 , 𝑥C′ , 𝑥G, 𝜌 )

Figure 2: Protocol 1,We omit the passing of the public parameters.
The meaning of the variable is the one of Fig.1

Notice the following two points. First, Protocol 1 is interactive
(public-coin single-round), as such, it is not a SNARK. Secondly,
the public input vector is longer (it now contains the GKR in-

puts/outputs). This is highly undesirable: the verifier is no longer

sublinear in the circuit size. In this case, the protocol loses its suc-

cinctness, which sounds like a step backward. Nonetheless, one can

argue that this protocol is sound. This will be helpful for analyzing

Protocol 2.
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5.1.2 Protocol 2. Protocol 2 improves on Protocol 1 by removing

the unnecessary GKR inputs/outputs from the public inputs of the

circuit (more precisely, pushing them to the witness). This greatly

reduces the verifier’s overhead and brings back the succinctness

that we lost with protocol 1. We start from two observations in the

inner-working of the Groth16 presented in Fig.3. Firstly, the output

of the pairing check can be computed using only 𝛾 in place of the

public inputs. Secondly, doing a multi-scalar multiplication (MSM)

of a vector of field elements and a set of group elements for which

no discrete log is known can be viewed as a binding commitment

analog of the Pedersen commitment.

Verify(vk, 𝜋, x)
G, 𝐻 ← Parse(vk)
𝛾 ← MSM(G, 𝑥 )
return PairingCheck(𝐻, 𝜋,𝛾 )

Figure 3: Simplified take on the Groth16 verifier

Note that in verification of Groth16 (Fig.3), we have an MSM

where the entries of G = GC′ ∥GG ∥G𝜌 correspond to the entries

of 𝑥C′ , 𝑥G, 𝜌 in the MSM. The idea of protocol 2, is that instead

of sending the public inputs to the verifier, the prover computes

𝛾G = MSM(GG, 𝑥G) and sends it to the verifier. From there, the

protocol continues as in Protocol 1. When he checks the Groth16

proof, the verifier chooses 𝜌 and completes MSM by adding the

missing parts to 𝛾G .
An issue is that just doing that is insecure. Indeed, a malicious

prover can pass the verification check for any arbitrary (invalid)

𝑥 ′C′ by sending𝛾
′
G = 𝛾G+MSM(GC′ , 𝑥C′−𝑥 ′C′ ) where 𝑥C′ belongs

to L(C′) for which the prover knows a witness (we shall call such

attack "mix-and-match").

We rule out this attack by additionally requesting the prover to

send an argument of knowledge that she knows 𝑥G such that w.r.t

GG we have 𝛾G = MSM(GG, 𝑥G). This ensures that the prover

cannot use anything aside from group elements in GG in the claim

of 𝛾G . Also note that even though the 𝑥G is the GKR statement,

for the original problem, it is mainly in the witness and so the

prover can not choose it arbitrarily. For example, for the Merkle

tree paths, only the leaves and the root are in the statement and all

the intermediate hashes (which now are done by GKR) are in the

witness.

Protocol 2 is sound if Protocol 1 is sound (that implies the binding

property of 𝛾G ) and if the argument of knowledge ensuring the

right computation of 𝛾G is sound as well.

Finally, we apply the Fiat-Shamir transform, where the initial

randomness is computed as 𝜌 = 𝐻FS (𝛾G). This removes the only

interaction of the protocol, where the verifier sent the GKR initial

random coin. Thus, we no longer require the verifier to hash the

GKR statement, but rather, its commitment 𝛾G which consists of a

single element.

5.2 Preliminaries for our compiler
Our compiler has three layers. The first layer verifies the GKR proof,

or rather, all the parts that come after the initial randomness, inside

a SNARK (S) and sets all the public inputs of GKR, i.e., 𝑥G as public

inputs of the resulting SNARK. The second layer of compilation

assumes that the SNARK S has a set of properties allowing to move

the public inputs of GKR to the witness part. The last layer just

applies the Fiat-Shamir transform.

In the present section, we formalize the properties (2-Step ver-

ification with splitting compatibility) that SNARK should satisfy

(needed for the second layer). Informally, we require that compu-

tation relative to the public inputs, the Computation step, can be

factored out of the rest of the verifier’s computation, the Justifi-
cation step. This must be possible in such a way that the public

inputs do not appear in the Justification step, but rather only in

the “Computation step”. We formalize this as 2-steps verification.
Finally, we require that the Computation step can be computed by

“recombining” two partial intermediate results obtained from two

complementary subsets of the public input. The latter property is

what we formalize as splitting-compatibility and is defined in

the following, alongside the 2-steps verification property.

Definition 5.1 (2-Steps Verification). We say that a SNARK system

has 2-step verification if the verification algorithm can be expressed

as follows,

Verify(vk, 𝑥, 𝜋) =
{
1. Computation: 𝑐 ← 𝐹 (vk, 𝑥, 𝜋)
2. Justification: 0/1← Verify′ (vk, 𝑐, 𝜋)).

Where the input 𝑥 is not used in the justification-step and 𝑐

is much shorter than 𝑥 (i.e., 𝐹 is compressing, note that this re-

quirement implies a nontrivial choice of 𝐹 ). We emphasize that the

computation-step may itself include several steps of computations.

Remark 5.2. The 2-steps verification property becomes interesting
(and less trivial) whenwe impose a special property on the computation-
step called splitting-compatible, which we explain in the following.

Example 5.3. The verifier of Groth16 [21] satisfies the above

property. Loosely speaking, the first part consists in performing

an MSM of the public inputs with a subset of the verification key

see Fig.3 and the second part is the pairing check. For PLONK,

identifying the computation step is non-trivial. We elaborate on it

in Sec.6.2.1. At a high level, it amounts to computing two things:

a challenge z and evaluating a polynomial PI(z) interpolating the
public inputs vector.

We now, introduce the notions of splitting and partitioning. In-
formally, they can be understood as dividing a string into two

sub-strings (Fig.4).

Definition 5.4 (Splitting, Partitioning). We define splitting (res.

partitioning) as the map 𝜙 : 𝑋 → 𝑋𝐴 × 𝑋𝐵 that maps a vector 𝑋 to

two sub-vectors 𝑋𝐴, 𝑋𝐵 as follows. Let 𝐼 be the index set associated

with entries of the vector 𝑋 , i.e., 𝐼 = {1, . . . , |𝑋 |}. We denote a sub-

vector of 𝑋 associated with the index-set 𝐴 ⊆ 𝐼 as 𝑋𝐴 (using the

indices of 𝐴 in ascending order).

We say that 𝑋𝐴, 𝑋𝐵 is a splitting of 𝑋 if for 𝐴, 𝐵 ⊆ 𝐼 we have
𝐴∪𝐵 = 𝐼 . It is partitioning if𝐴, 𝐵 are partitioning of 𝐼 aswell, namely,

𝐴 ∩ 𝐵 = ∅. A visualization is given in Fig.4. For convenience, we

may abuse the notation to say 𝐴, 𝐵 is a splitting (or partitioning) of

𝑋 as 𝑋 = (𝐴, 𝐵).
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𝑋𝐴 𝑋𝐵

𝑋𝐴
𝑋𝐵

𝑋

splitting

partitioning

Figure 4: Splitting and partitioning of 𝑋 to 𝑋𝐴, 𝑋𝐵 .

A splitting-compatible map 𝑓 is a map that can be split and

recombined according to a splitting 𝜎 of its inputs (Fig.5). As a

toy example, one can consider the Pedersen commitment 𝑔
𝑎1
1
· 𝑔𝑎2

2

splitting to 𝑔
𝑎1
1

and 𝑔
𝑎2
2

according to the splitting (𝑎1, 𝑎2) to 𝑎1 and
𝑎2. The formal definition is as follows.

Definition 5.5. (𝜎-Compatibility) Consider finite subsets𝐴, 𝐵,𝑋,𝑌 ⊂
{0, 1}∗, a map 𝑓 : 𝑋 → 𝑌 , and a partitioning over its input space

as 𝜎 : 𝑋 → 𝐴 × 𝐵. We say that 𝑓 is 𝜎-compatible if there exists

𝑓𝐴 : 𝐴 → 𝑌𝐴 and 𝑓𝐵 : 𝐵 → 𝑌𝐵 and a combiner 𝑔 : 𝑌𝐴 × 𝑌𝐵 → 𝑌

such that ∀(𝑎, 𝑏) ∈ 𝐴×𝐵, 𝑓 (𝜎−1 (𝑎, 𝑏)) = 𝑔(𝑓𝐴 (𝑎), 𝑓𝐵 (𝑏)) (see Fig.5).
We may call 𝑓𝐴, 𝑓𝐵 as the splitting of the map 𝑓 .

𝐴 × 𝐵 𝑌𝐴 × 𝑌𝐵

𝑋 𝑌

𝑔

𝑓

𝜎

𝑓𝐴, 𝑓𝐵

Figure 5: Splitting-Compatible: the map 𝑓 is compatible with
the splitting 𝜎 .

5.3 Building Blocks of The Compiler
The compiler works based on three argument systems (S,PC, Γ),
each must satisfy several requirements that we specify in the fol-

lowing. In the description of the compiler, the notation S stands

for the outer SNARK, PC represents GKR as a public-coin protocol

and Γ is AOK for the commitment generated by the prover.

Requirements on S:
• S = (SetupS, ProveS,VerifyS) should be a secure SNARK

scheme for a family of relations RF0 closed under intersec-
tion.

• The verification algorithm VerifyS is a 2-step verification

(see Def.5.1).

• Let 𝐹S be an algorithm in the computation-step of the veri-

fication (cf Def.5.1), then for any vk and any partitioning

𝜎 of 𝑥 , the function 𝐹S (vk, •) should be compatible with

𝜎 . In the rest of the paper, we may call such 𝐹S or its out-

put as the contribution of the public input. We may also

use 𝐹S (𝑥) when vk is implicit. We emphasize that, if the

computation-step includes several computations, each of

these computations should be splittable (i.e., 𝜎-compatible).

Remark 5.6. Note that the soundness ofS implies that (SetupS, 𝐹S)
— viewed as a commitment scheme of the public inputs — must be
binding as well (see also Rem.5.9).

Requirement on PC:

We require PC = (SetupPC, ProvePC,VerifyPC) being a public-

coin single-round interactive argument of knowledge for some re-

lation family RF1 without any specific restriction on RF1. Further-
more, as the protocol is single-round of interaction VerifyPC (and

alsoProvePC ) can be split into two parts. Each part,VerifyPC,1,VerifyPC,2
executes respectively the first and the second round of the verifier.

We use the notation 𝜋PC,1, 𝜋PC,2 for the prover messages at round

(resp.) 1 and 2. Finally, we require that VerifyPC,2 be expressible in
a poly(_)-sized instance of RF1.

Remark 5.7. Implicitly, we want to use the GKR protocol as PC.
An apparent impediment is that GKR is not a single-round protocol, as
required. We address it in Appendix I, where we compile the GKR into a
single-round protocol. A second apparent issue is that in practice, GKR
does not prove or argue the knowledge of a witness. This corresponds
to the trivial case where the witness is an empty string.

Requirement on Γ:

We introduced above 𝐹S being defined in the computation-step of

verification of VerifierS and 𝜎 being a partitioning of the public

inputs. Recall that we already required that 𝐹S be compatible for

all partitioning 𝜎 : 𝑋 → 𝐿 × 𝑅 (where 𝑋 is the set of public input

of S). As a consequence, we can introduce splittings of the map 𝐹S
as 𝜙𝐿, 𝜙𝑅 and its combiner 𝑔 (see Def.5.5).

Note that in our protocol, we split the public input 𝑥 to (𝑥𝐿, 𝑥𝑅),
and delegate the computation of the map 𝜙𝐿 to the prover. We

require Γ = (SetupΓ, ProveΓ,VerifyΓ) be a succinct non-interactive
argument of knowledge for relations of the form

RΓ (vk, 𝜎) = {(𝛾 ;𝑥𝐿) : 𝛾 ← 𝜙𝐿 (𝑥𝐿)}
where vk is the verification key of S.

Remark 5.8. Γ works over a relation that is defined for fixed vk
and 𝜎 that are, respectively, the verification key of S and the splitting
over the public inputs ofS. This point is crucial as it addresses the mix-
and-match attack raised in Sec.5.1.2. For the sake of clarity, the role
of Γ is not just about extracting 𝑥𝐿 s.t. 𝛾 = 𝜙𝐿 (𝑥𝐿) but to enforce that
𝛾 was obtained only using the correct 𝜙𝐿 and no other information.

Remark 5.9. Following the Rem.5.6, 𝜙𝐿 (·) (and similarly for 𝜙𝑅)
can be seen as a binding commitment scheme as well. Indeed, if an
adversary were able to find 𝑥𝐿 ≠ 𝑥 ′

𝐿
such that 𝜙𝐿 (𝑥𝐿) = 𝜙𝐿 (𝑥 ′𝐿),

then for all 𝑥𝑅 , we have 𝑥 = 𝜎−1 (𝑥𝐿, 𝑥𝑅) ≠ 𝑥 ′ = 𝜎−1 (𝑥 ′
𝐿
, 𝑥𝑅) and

𝐹S (vk, 𝑥) = 𝐹S (vk, 𝑥 ′) which contradicts the soundness of S. The
binding property is interesting to intuitively see that we can replace 𝑥𝐿
with𝛾𝑣 = 𝜙𝐿 (𝑥𝐿) in the Fiat-Shamir transform, though in our security
proofs we directly reduce the security to the knowledge-soundness.
5.4 Formal Description of Compiler
The compiler proceeds in three layers of compilation, see Fig.6. In-

tuitively, the first step consists of recursing the verifier of PC (more

precisely, VerifyPC,2) inside the proof S, where PC additionally

passes its public inputs as part of the public inputs of the SNARK

schemeS. Then, a second layer of compilation allows us to delegate

some contributions of public-inputs of PC (e.g., a subpart of MSM

in the contexts of Groth16 [21]) from the verifier’s computations to

the prover’s (or equivalently, moving a subpart of the public input

to the witness part), via the AOK Γ. The last layer simply consists

of applying the Fiat-Shamir transform.
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Layer 1 Layer 2 FS

PC Γ H𝐹𝑆

S 𝜒 ′

Figure 6: Overview of the compiler

Now we are ready to present the inner-work of each layer sepa-

rately, as we are going through the layers, we prove the security of

each layer.

5.4.1 The first layer. The first layer (L1) takes as input a SNARK
scheme S for a relation R′ ∈ RF0, and a public-coin single-round

argument of knowledge PC for a relation, R1 ∈ RF1 as in Sec.5.3.

Note that since PC is recursed inside S, then S should also check

for some relation between the public input and witnesses R1 and
the rest of the circuit. Recalling the visualization given in Fig.1,

here one can imagine R0 as the circuit C′, R1 for the GKR, and the

connection between R0 and R1 is checked through some equality

relations (in the form of splittings). Thus, the relation for S can be

expressed as follows, where VerifyPC,2 refers to the second part of

VerifyPC (i.e., verification after the interaction step).

R′ =
(𝑥, 𝜌 ;𝑤) :

𝑥0, 𝑥1 = 𝜎𝑡 (𝑥), 𝑤0, 𝜋PC = 𝜎𝑢 (𝑤)
1← VerifyPC,2 (pp1, 𝑥1, 𝜋PC, 𝜌)
1← R0 (𝑥0,𝑤0)

 (1)

Where the compiler also receives two splittings 𝜎𝑡 , 𝜎𝑢 of the public

input and the witness spaces. Moreover, we require 𝜎𝑢 to be a

partitioning but not 𝜎𝑡 . In Appendix D we discuss the choice of

𝜎𝑡 , 𝜎𝑢 .

Intuitively, the first layer inherits the security property of the

underlying SNARK S and argument system PC and so for any

choice of 𝜎𝑢 , 𝜎𝑡 yields a secure protocol for the following relation,

R𝐿1 (R0,R1, 𝜎𝑡 , 𝜎𝑢 )

=

{
(𝑥 ∈ X;𝑤 ∈ W) : 𝑥0, 𝑥1 = 𝜎𝑡 (𝑥), R0 (𝑥0,𝑤0) = 1

𝑤0,𝑤1 = 𝜎𝑢 (𝑤), R1 (𝑥1,𝑤1) = 1

}
(2)

Remark 5.10. This way of combining relations allows the two
instances R0 and R1 to share some part of their public inputs, which
is the case in most applications13. In our use case (SNARK over GKR,
for Merkle tree), some public input of S are used in the Merkle tree
(because we need to commit to them). This is why 𝑥1 as the public-
input of R1 may share some entries with 𝑥0, the public-input of R0.
More in detail, 𝜎𝑡 not being a partitioning (but only a simple splitting)
implies equality constraints in addition to the constraints specified by
R0 and R1.

Layer 1 Construction. Fig.7 describes the construction of layer 1

with inputs R0,R1, 𝜎𝑡 , 𝜎𝑢 ,S,PC.

Remark 5.11. here we are using an equivalent representation of
Fig.2 where the verifier has all the public input of PC as its input.
This representation is more compatible with the definition of SNARK,
where the prover and the verifier receive the same public input.

13
Intuitively, we require𝜎𝑢 to be a partitioning because the witness of R1 is “wrapped"

inside the proof 𝜋1 and would not be directly accessible for the outer-proof system.

Hence, 𝑤0 and 𝑤1 cannot overlap.

Setup(1_,R𝐿1)
R0, R1, 𝜎𝑡 , 𝜎𝑢 ← Parse(R𝐿1 )

pp
1
← SetupPC (1_, R1 )

pp′ ← SetupS (1_, R′ ) for relation R′ in Eq.1

return pp = (pp
1
, pp′ )

Interactive Argument of Knowledge

Prove𝐿1 (pp, 𝑥, 𝑤0, 𝑤1 ) Verify𝐿1 (pp, 𝑥 )

pp
1
, pp′ ← Parse(pp)

𝜋PC,1 ← ProvePC (pp1, 𝑥1, 𝑤1 )

𝜋PC,1

𝜌
𝜌 ←$ C

𝜋PC,2 ← ProvePC (pp1, 𝑥1, 𝜌, 𝑤1 )
𝑤′ ← (𝑤0, 𝜋PC,1, 𝜋PC,2 )
𝜋 ′ ← ProveS (pp′, (𝑥, 𝜌 ), 𝑤′ )

𝜋 ′ VerifyS (pp′, (𝑥, 𝜌 ), 𝜋 ′ )

Figure 7: Setup and interactions of layer 1.

Completeness: It follows from the completeness of S and PC.
More precisely, the completeness of PC guarantees that for the cor-

rect statement (𝑥1, 𝜌) ∈ LR1 where R1 (𝑥1, 𝜌 ;𝑤1) = 1, the verifica-

tion of argument system PC satisfies VerifyPC (pp1, 𝑥1, 𝜌,𝑤1) = 1.

Which gives the right relation consumed by the argument system S
(i.e., Eq.1), then the completeness of S implies that the verification

algorithm of S (which is also the verification associated with R𝐿1)
outputs 1.

Knowledge-Soundness. Here, we denote our argument system

for layer 1 as X𝐿1, applied over the corresponding relation R𝐿1 (in
Eq.2). Let ES and EPC be the extractors respectively associated

with the argument systems S and PC. If X𝐿1 outputs a valid proof,
we can run the extractor ES to extract a witness𝑤 ; a witness for

R′ (relation associated with S) including a proof associated with

PC. There are two possible cases;

• Case 1. The witness for R′ is correct (i.e., satisfies the
relation R′): this means verification PC passed, and by

knowledge-soundness of PC, the probability that the ex-

tractor EPC fails (i.e., it extracts a non-satisfying witness

for R1 from the proof of PC) is negligible.
• Case 2. The relation R′ is not satisfied: it means the ex-

tractor ES failed, but it can only happen with negligible

probability by knowledge-soundness of S.
Wrapping up everything together, the extractor ES outputs the

correct witness (𝑤0, 𝜋) with overwhelming probability. This gives

a valid proof 𝜋 for PC (as part of the extracted witness), which

then the extractor EPC can use to extract the correct witness𝑤1.

Theorem 5.12 (Knowledge-Soundness of X𝐿1). Let S,PC be
as required in Sec.5.3. If S and PC have (resp.) knowledge errors 𝜖S
and 𝜖PC . Then, the aforementioned protocol X𝐿1 has knowledge error
𝜖 = 𝑂 (𝜖S + 𝜖PC).

The formal proof is given in Appendix E.
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5.4.2 The second layer. As stated in Sec.5.4.1, the missing part of

our compiler is that it can only make the two argument systems

communicate by their public inputs. The second layer of compi-

lation solves this problem by allowing moving parts of the public

inputs (called 𝑣) into the witness. Indeed, the aim is to delegate

parts of the computation (involved with 𝑣) to the prover, without

breaching the soundness.

Therefore, the second layer takes as input X𝐿1, a public-coin single-

round argument of knowledge for the relation R𝐿1. Let 𝐹S be the

computation-step in the verification algorithm (Def.5.1) of X𝐿1
(inherited from S)14. Let b, Z be (res.) the partitioning of the public

input and witness space of X𝐿1, and Γ be an AoK for the relation

RΓ (vk, b) = {(𝛾𝑣, 𝑣) : 𝛾𝑣 ← Φ𝐿 (𝑣)} where (𝑣 ;𝑥𝐿2) = b (𝑥) (and 𝜙𝐿
is the left-splitting of 𝐹S , as defined in Sec.5.3). The second layer of

compilation builds a SNARK for the following relation where 𝑥 and

𝑤 are associated with layer 1, and we are moving 𝑣 from 𝑥 to𝑤𝐿2.

R𝐿2 =
(𝑥𝐿2;𝑤𝐿2) :

Z (𝑤𝐿2) = (𝑤, 𝑣)
𝑥 = b−1 (𝑣, 𝑥𝐿2)
R𝐿1 (𝑥,𝑤) = 1

 (3)

=
{
(𝑥𝐿2;𝑤, 𝑣) : R𝐿1 (𝑣, 𝑥𝐿2;𝑤) = 1

}
where the second equality holds thanks to the fact that b and Z are

partitioning. The proof consists of three main parts; the proof of

the first layer, the value 𝛾𝑣 and a proof generated by Γ as the AoK

for the relation RΓ .
Layer 2 Construction The inner-work of the second layer of the

compiler is given in Fig.8. Here (Prove1,𝐿1, Prove2,𝐿1) stands for the
prover algorithm of layer 1. Note that the verification algorithm

of 𝐿1 has 2-step verification, here we use 𝛾 as the output of the

computation-step and Verify′
𝐿1

= Verify′S as the algorithm for the

justification-step (see Fig.7). Moreover, since 𝐹S (the map in the

computation-step) is compatible with the splitting b , we can denote

(𝜙𝐿, 𝜙𝑅) and 𝑔 as the splitting and combiner for 𝐹S (Def.5.5). The

last point is that though for clarity we use pp, ppΓ in the setup

(Fig.8), indeed we have pp ⊂ ppΓ , this fact is particularly used in

the security reduction.

Completeness: is straightforward from the completeness of X𝐿1
and Γ.
Knowledge-Soundness. Let EΓ and E𝐿1 be the extractors asso-
ciated, respectively, with Γ and X𝐿1. If our argument system X𝐿2
outputs a valid proof, to obtain a witness we should run the extrac-

tors EΓ and E𝐿1 (to obtain 𝑣 and𝑤 , respectively) and the probability

that either of these extractors fails is negligible.

Theorem 5.13. Let X𝐿1 be a succinct argument of knowledge for
a relation R𝐿1 whose verifier has a 2-steps structure such that its
computation-steps is compatible with all partitioning. (We do not re-
quire non-interactivity). If X𝐿1 and Γ both are knowledge-sound with
knowledge-error 𝜖𝐿1 and 𝜖Γ (res.), then the protocolX𝐿2 is knowledge-
sound with knowledge-error 𝜖𝐿2 = 𝑂 (𝜖𝐿1 + 𝜖Γ).

Our proof technique is similar to the one for Thm.5.12. The proof

is given in Appendix F.

In Appendix D, we combine layers of compilation together and

present the general form of the relations that our compiler deals

with.

14
Note that if S has 2-step verification, then our,X𝐿1 has this property as well.

Setup𝐿2 (1_,R𝐿2)
R𝐿1, b ← Parse(R𝐿2 )

pp← Setup(1_, R𝐿1 )
RΓ ← RGenΓ (b, pp)

ppΓ ← SetupΓ (1_, RΓ )
return pp𝐿2 = (ppΓ, pp)

Interactive protocol output of layer 2

Prover𝐿2 (pp𝐿2, 𝑥𝐿2, 𝑤𝐿2 ) Verifier𝐿2 (pp𝐿2, 𝑥𝐿2 )

(ppΓ, pp) ← Parse(pp𝐿2 ) (ppΓ, pp) ← Parse(pp𝐿2 )
𝑤, 𝑣 ← Z (𝑤𝐿2 )
𝑥 ← b−1 (𝑥𝐿2, 𝑣)
𝜋1 ← Prove1,𝐿1 (pp, 𝑥, 𝑤 )
𝛾𝑣 ← 𝜙𝐿 (𝑣)
𝜋Γ ← ProveΓ (ppΓ, 𝛾𝑣, 𝑣)

𝜋Γ, 𝛾𝑣, 𝜋1

VerifΓ (ppΓ, 𝜋Γ, 𝛾𝑣 )
𝜌 ←$ C

𝜌

𝜋2 ← Prove2,𝐿1 (pp, 𝑥, 𝜌, 𝑤 )

𝜋2

𝛾 ← 𝑔 (𝛾𝑣, 𝜙𝑅 (𝑥𝐿2 ∥𝜌 ) )
Verif′S (pp, 𝜋1, 𝜋2, 𝛾 )

Figure 8: Output protocol of the layer 2

5.5 Instantiation of Fiat-Shamir
Here, we present a technical description of how we apply Fiat-

Shamir to remove the interactive round of the protocol. We compile

the protocol in the random oracle model. Below, we discuss the

instantiation of Fiat-Shamir for our compiler.

The message to be sent to the random oracle must comprise

• The public parameters of X𝐿2 = (ppΓ, pp𝐿1)
• The prover message 𝜋Γ, 𝛾𝑣, 𝜋1
• The public inputs of the protocol 𝑥𝐿2

We then instantiate the random oracle with a hash function that

can be modeled as a random oracle. Here we do not require the

hash function to be efficiently verifiable in an arithmetic circuit
15
.

Thus, standard hash functions like Keccak, SHA2-256, or Blake2/3

can be used here.
16

As we explain in Appendix H, numerous hash functions, like

the one we mentioned above, work by iteratively updating the

state of a hash function before returning the result. This allows

us to precompute the state of the hash function with the public

parameters of X𝐿2 at the end of the setup and only hash the public

inputs of the protocol. This implementation detail is important

because otherwise, one would have to hash the (possibly gigantic)

public parameters of X𝐿2 at every run of the protocol.

6 INSTANTIATING THE COMPILER
Here, we give a specification for the choice of building blocks: S as

the outer-layer SNARK, PC as the public-coin single-round inter-

active argument of knowledge, and Γ as AOK for the computation

of 𝛾𝑣 . We instantiate S by Groth16 or Plonk and present the single-

round GKR as the instantiation for PC. Finally, we give a concrete
AOK (corresponding to Γ) compatible with the outer-layer SNARK,

15
Unlike the hash function in the single-round version of GKR that we describe in

Def.I.1 (i.e., GKR𝑠 )
16
We have considered the Fiat-Shamir transformation over our scheme as a solo-

protocol (where our scheme is not part of a larger protocol). If the present protocol is

being used as part of a larger protocol, we recommend designers of such protocols use

the interactive version of our protocol X𝐿2 and then apply the Fiat-Shamir transform

over this.
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that is, S. For both Groth16 [21] and Plonk [16], we present our

AOK system Γ separately. We emphasize that the AOK system Γ is

not general and is built with respect to the underlying S.

6.1 Argument of knowledge Γ for Groth16
Remember that in our layer 2, the prover sends a commitment𝛾𝑣 to a

part of public input (denoted as 𝑣) of underlying SNARK S, and also
an AOK that commitment is computed correctly. Here, we discuss

how to build Γ for the case thatS is instantiated with Groth16. Note

that under the algebraic group model [13], the Groth16 [21] proto-

col has witness extended emulation (thus, knowledge-soundness).

It also has the requirement that S should satisfy; 2-step verifica-

tion, where the public-input contribution 𝐹S is a MSM and so is

𝜎-compatible for any splitting 𝜎 . We provide a protocol Γ as the

AOK compatible with Groth16. We remind the reader that the aim

of Γ is to provide an AOK for the following relation;

RΓ (vk, b) : {(𝛾𝑣 ; 𝑣) : 𝛾𝑣 = 𝜙𝐿 (𝑣)}
where vk is the Groth16 verification key, and 𝜙𝐿 is the left split

of 𝐹S (the computation step of Groth16 verification) according to

the splitting b , and 𝑣 comes from b (𝑥) = (𝑣, 𝑥𝐿2) splitting of the

Groth16’s public input 𝑥 . Thus, 𝛾𝑣 = 𝜙𝐿 (𝑣) = MSM(vk𝐿, 𝑣) for
b (vk) = (vk𝐿, vk𝑅).

The protocol Γ is described in Fig.9. Assume (G1,G2,G𝑇 ;F) to
be the description of a bilinear group, 𝑛 ∈ N∗ and vk ∈ G1𝑛 the

Groth16 verification key that can be extracted from the public

parameters of Groth16. The setup simply splits vk according to b
and randomized vk𝐿 . The proof is just a MSM of randomized vk𝐿
and 𝑣 .

Setup(pp𝐺𝑟𝑜𝑡ℎ16,G1,G2, F, b)
𝑟 ←$ F, 𝑔←$ G2

(vk ∈ G1, −) ← Parse(pp𝐺𝑟𝑜𝑡ℎ16 )
vk𝐿, vk𝑅 ← b (vk)
L← vk𝑟𝐿

return srs = (pp𝐺𝑟𝑜𝑡ℎ16, 𝑔, 𝑔
1

𝑟 , L)

Prove(L, 𝑣)
𝜋 ← MSM(L, 𝑣)
return 𝜋

Verify(vk, L, 𝜋,𝛾𝑣, 𝑔, 𝑔
1

𝑟 )
𝑒 (𝜋,𝑔

1

𝑟 ) ?

= 𝑒 (𝛾𝑣, 𝑔)

Figure 9: Argument of Knowledge for Groth16

Note that the above AOK prevents the mix-and-match attack (see

Sec.5.1.2), since the toxic randomness 𝑟 is hidden. Slightly more in

detail, if the adversary tries to mix𝛾𝑣 with the rest of the verification

equation of Groth16, to pass the verification check of Groth16, it

can not pass the verification of Γ.
Now we prove the knowledge-soundness of Γ in the algebraic

group model.

Theorem 6.1. Our Argument of Knowledge Γ for Groth16 (Fig.9) is
knowledge-sound in the Algebraic Group Model [13] under the DLog
assumption.

Since we are in the algebraic model, the extractor simply receives

the LC-representations of 𝛾𝑣 and 𝜋 , which gives the witness. Based

on the pairing check, these LC-representations should satisfy a

special equality. We show that the only way that the adversary

passes the equality check for a specific value 𝑟 is to break the

Scheme public input witness verifier part Prover part Prover Contrib.

PLONK {𝑤𝑖 }𝑖∈[ℓ ] {𝑤𝑖 }3𝑛𝑖=ℓ+1 {𝑤𝑖 }𝑖∈[𝑄 ] {𝑤𝑖 }𝑖∈[ℓ\𝑄 ] 𝐶,𝑦z

Ours 𝑥 = b (𝑣, 𝑥𝐿2) 𝑤 𝑥𝐿2 𝑣 𝛾𝑣

Figure 10: Notation-Equivalence for PLONK and our scheme

DLog assumption. On the other hand, it cannot pass the check

for arbitrary 𝑟 , since this imposes a special structure on the LC-

representations which essentially forces the relation to hold (so the

winning condition cannot be satisfied). The formal proof is given

in Appendix G.

6.2 Argument of Knowledge Γ for Plonk
The very popular PLONK [16] protocol is a zk-SNARK for arithmetic

constraint systems. As described by its authors, it does not have

the 2-step verification property. Thus, we cannot directly apply our

compiler on the original PLONK protocol. Fig.11 illustrates a very

simplified view of how the Plonk verifier processes its public input.

In the following, we borrow the notation of [16]. For an assignment

vector𝑤 (meaning the concatenation of the public inputs with the

witness in a single vector), the ℓ first entries𝑤𝑖≤ℓ denote the public
inputs and𝑤𝑖>ℓ the witness, ppPlonk denotes the public parameters

(including the preprocessed inputs) and 𝜋Plonk the proof. As in [16],
𝐿𝑖 denotes the Lagrange polynomial for the root of unity 𝜔𝑖

on a

larger subgroup of roots of unity Ω.
As explained in Fig.11), at a high level, a randomness z, among

other randomnesses, is obtained by hashing the verifier’s input in

(1). This randomness is used as an evaluation point for the inter-

polation polynomial of the public inputs on Ω in (2). Informally,

we could try to pick (1) and (2) as the computation-step and (3)

as the justification-step (see Def.5.1). This is unfortunately invalid:

in order to compute z, we need to include the proof in the Fiat-

Shamir hash (denoted by Hash). This illustrates why splitting the

computation is no trivial task.

Verify(ppPlonk,𝑤𝑖<𝑙 , 𝜋Plonk)
// Implicitly, test that the proof and the public-inputs

// are valid fields and subgroup elements

1 : z, · · · other randomnesses← Hash(ppPlonk, 𝑤𝑖≤ℓ , 𝜋Plonk )

2 : PI(z) ) =
∑︁
𝑖≤ℓ

𝑤𝑖𝐿𝑖 (z)

· · ·
3 : 𝑏 ← OtherCheck(ppPlonk, PI(z), 𝜋Plonk )
return 𝑏

Figure 11: A very simplified description of the PLONKverifier

6.2.1 Our variant of Plonk. To bypass the aforementioned problem,

we consider a family of variants of Plonk instead of the original

protocol itself. We use the notations of [16] to make it easier for the

reader to determine the changes compared to the original scheme,

although we give the equivalent notation of our compiler in Fig.10.

In Fig.12 we represent our variant where the verifier does not

directly evaluate PI(z) as in (2) for [16]. Instead, he splits the public

input into two parts: 𝑤 (1) ,𝑤 (2) = Part(𝑤𝑖≤ℓ ) and computes the

KZG commitment to the polynomial [PI2 (𝑥)]1. We denote by𝑄 the
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Preprocess(R, [𝑥𝑖 ]1, [𝑥𝑖 ]2 : 𝑖 = 0 · · ·𝑛 + 5)
for 𝑖 ∈ 𝑈 : [𝐿𝑖 (𝑥 ) ]1 ←

∑︁
𝑘< |Ω |

𝐿𝑖,𝑘 · 𝑥𝑘 · [1]1

ppPlonk ← PreprocessPlonk (R, { [𝑥
𝑖 ]1, [𝑥𝑖 ]2 : 𝑖 = 0 · · ·𝑛 + 5})

return pp′ = (ppPlonk, [𝑥
𝑗 ]2{ [𝐿𝑖 (𝑥 ) ]1 : 𝑖 ∈ 𝑈 , 𝑗 = 0 · · ·𝑛 + 5})

Prove(pp′,𝑤)
// We add the following steps at the beginning

𝑤(1) , _← Part(𝑤𝑖<𝑙 )

[PI2 (𝑥 ) ]1 ←
∑︁
𝑖∈𝑈

𝑤𝑖 · [𝐿𝑖 (𝑥 ) ]1

· · ·
// Run Plonk’s prover rounds 1, 2, 3

// For the Fiat-Shamir hashes use

// [PI2 (𝑥 ) ]1 in place of 𝑤(2)

𝜋1,2,3 ← · · ·
· · ·
// Then, at round 4

z← Hash(Transcript)
· · ·
// Resume with the original Plonk prover

· · ·
𝜋4,5 ← · · ·
return (𝜋1,2,3, 𝜋4,5 )

Verify(pp′,𝑤𝑖<𝑙 , 𝜋
′)

[PI2 (𝑥 ) ]1 ←
∑︁
𝑖∈𝑈

𝑤𝑖 · [𝐿𝑖 (𝑥 ) ]1

· · ·
z← Hash(Transcript)

PI1 (z) ←
∑︁
𝑖∈𝑄

𝑤𝑖𝐿𝑖 (z)

PI(z) = PI1 (z) + PI2 (z)
· · ·
// Resume with the normal Plonk verifier

Figure 12: A variant of the Plonk protocol

subset of indices selected by Part for𝑤 (1) . Part is to be considered

as a parameter of the protocol.

Picking Part : 𝑤 → (𝑤, ∅) yields the same protocol as Plonk. For

𝑤 (1) ,𝑤 (2) = Part(𝑤𝑖≤ℓ ), it is similar to the PLONK, except that, for

generating the randomness z, instead of𝑤 (2) , we use the KZG com-

mitment [𝑃𝐼2 (𝑥)]1 ( Namely, KZG.Commit(srs, 𝑃𝐼2) = [𝑃𝐼2 (𝑥)]1
for 𝑥 given via srs). As the verifier computes 𝑃𝐼2 (𝑥) itself, from
a security standpoint the variant described above is not differ-

ent from PLONK, for any splitting Part. Implicitly, we will select

Part = b (from Sec.5.4.2) to make it compatible with our com-

piler. The last point is that though in [16] they use only the terms

[𝑥𝑖 ]1, [𝑥]2 for 𝑖 = 0 · · ·𝑛 + 5 (as pp), the security proof is based

on srs = ( [𝑥𝑖 ]1, [𝑥𝑖 ]2, 𝑖 = 0 · · ·𝑛 + 5). Here, we use the whole srs,
since we use the elements of [𝑥𝑖 ]2 in our AOK system Γ.

Our variant of Plonk is secure under the Algebraic Group Model

[13] and has 2-step verification. The computation-step involves

the evaluation of hashes and the polynomial 𝑃𝐼 (𝑋 ) over the point
𝑋 = z. Through our compiler, we split this computation into two

parts; for the hash computation, we use the trivial splitting given

in Fig.13 where the commitment is computed by the prover. For

splitting 𝑃𝐼 (𝑋 ) over the point 𝑋 = z, the verifier part is 𝑃𝐼1 (z)
and the prover part is 𝑃𝐼2 (z). The prover should give proof for the

correct computation of its share. We present the AOK Γ for our

Plonk variant in Appendix J.

7 IMPLEMENTATION AND PERFORMANCE
ANALYSIS

The implementation is in Golang which is optimized and bench-

marked for massive parallelism: the protocol has been benchmarked

𝑤 (1 ) ×𝑤 (2 ) 𝑌𝐴 × 𝑌𝐵

{𝑤𝑖 }𝑖 ∈𝑙 𝑌

𝐻

𝑓

b

𝐼𝑑, 𝐶𝑜𝑚𝑚𝑖𝑡

Figure 13: Splitting for hash computation; 𝐼𝑑 is the identical
function and Commit is the KZG commitment.

over AWS hpc6a instances (96 physical cores and 384 Gb of mem-

ory). The implementation uses the libraries gnark17 and gnark-
crypto18 for the finite field arithmetic and the Groth16 implementa-

tion. Various kinds of optimizations have been carried out: lowering

the overheads of parallelization, pooling the memory to reduce the

overheads of allocations, and reducing the number field of arith-

metic operations. The parallelization gives us a speed-up of 34x

over a single-threaded benchmark.

In Fig.14, we give the results of benchmarks measuring the

speed at which our implementation can prove MiMC permuta-

tions. The benchmarks are performed using the curve BN254 [2]

and the results are presented in Fig.14. As a point of comparison,

we have benchmarked the prover time of a circuit performing mul-

tiple MiMC permutations using gnark’s implementation of Groth16

(without using GKR). For a number 2
18

of MiMC permutations, it

runs in 38.3 sec. This corresponds to proving 6835 permutations per

second. Our techniques also bring a small improvement in memory

usage between the two approaches, but it is much smaller. That

is because the GKR prover still needs to write the set of all the

intermediate values at the same time.

Numb.of Hash 2
19

2
20

2
21

2
22

2
23

2
24

Initial Rand. 120 ms 196 ms 412 ms 756 ms 1293 ms 2504 ms

Gkr Prover 3.4 s 5.4 s 13.1 s 19.7 s 29.1 s 51.8 s

Groth16 Prover 4.0 s 6.4 s 7.1 s 12.5 s 21.3 s 24.5 s

Total (GKR) 7.6 s 12.0 s 20.7 s 33.0 s 51.7 s 78.9 s

Hash per second 68400 86500 101000 127000 162000 212000

Figure 14: Runtime efficiency benchmarks for GKR

Regarding the hashing framework, one can use sponge construc-

tion or Miyaguchi-Preneel construction. We highlight the following

points,

• the benchmarks are given w.r.t. the number of permutations

which is independent of the framework for hashing.

• As far as the length extension attack is not a concern by the

application (as this is the case for our use case), working

with Miyaguchi-Preneel construction remains a nice choice,

especially since it needs fewer calls to the permutation
19
.

17
https://github.com/ConsenSys/gnark

18
https://github.com/ConsenSys/gnark-crypto

19
The Sponge construction with permutation size 𝑛, rate 𝑟 , and output size 𝑡 ; has

security level 𝑠 = 𝑚𝑖𝑛 (𝑡/2, (𝑛 − 𝑟 )/2) . While for MiMC with Miyaguchi-Preneel,

the security level is 𝑛/2 bits. For a fixed security level 𝑛/4 < 𝑠 < 𝑛/2, and messages

of size𝑚, in sponge construction we need𝑚/𝑟 + ⌈2𝑠/𝑟 ⌉ calls to the permutation

(𝑚/𝑟 calls during the absorption and ⌈2𝑠/𝑟 ⌉ calls during the squeezing), while in

Miyaguchi–Preneel we need𝑚/𝑛 calls. For example, for 𝑛 = 254, and security level

𝑠 = 100 and messages of length𝑚, sponge construction needs𝑚/54 + 4 calls to the
permutation while Miyaguchi-Preneel needs𝑚/254 calls.
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• Proving the dependencies between the instances of the hash

is negligible compared to the cost of proving the permuta-

tion themselves in terms of constraints (<1%)
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SUPPLEMENTARY MATERIALS
A BACKGROUND
The knowledge-soundness of Groth16 and Plonk is proved based

on 𝑞-DLog assumption defined in the following.

Definition A.1 (q-Discrete Log Problem [5, 16]). Fix an integer 𝑞.

The 𝑞-DLog assumption for (G1,G2) states that, given
[1]1, [𝑥]1, . . . , [𝑥𝑞]1; [1]2, [𝑥]2, . . . , [𝑥𝑞]2

for uniformly chosen 𝑥 ∈ F𝑝 , the probability that a p.p.t adversary

A outputs 𝑥 is negligible.

Polynomial Commitment. Here we define the correctness and
the security of a polynomial commitment scheme.

Definition A.2 (Correctness). We say that a polynomial commit-

ment scheme has (perfect) completeness if for all 𝑃 (𝑋 ), 𝑡, _, 𝑥 ,

Pr

 1← Verify(pp,𝐶,𝑦, 𝜋) :

pp← Setup(1_, 𝑡)
𝐶 ← Commit(pp, 𝑃 (𝑋 ))
𝜋 ← Prove(pp, 𝑃 (𝑋 ), 𝑥)
𝑦 = 𝑃 (𝑥)

 = 1

Definition A.3 (Secure polynomial commitment [5]). A polyno-

mial commitment (Setup, Commit, Prove, Verify) is secure if it is
knowledge-sound w.r.t the relation,

R = {(𝑥,𝑦, 𝑐 ; 𝑃 (𝑋 )) : 𝑃 (𝑥) = 𝑦, 𝑐 = Commit(pp, 𝑃 (𝑋 ))}
The original paper [23] introduces the notion of polynomial

commitment. In [5, 16], the authors gave a general security notion

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://github.com/zcash/zips/blob/main/protocol/protocol.pdf
https://docs.hermez.io/zkEVM/Overview/Overview/
https://docs.hermez.io/zkEVM/Overview/Overview/
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supporting batching of the proofs and well-detailed for interac-

tive public-coin polynomial commitments. We expand on this in

Appendix C.

Both [16] and [7] provide an analysis of an extended version of

the KZG protocol under the algebraic group model [13] in which

the authors demonstrate knowledge soundness [16] and bounded-

polynomial extractability [27] of the protocol. Both these results

are achieved using the q-DL assumption.

B DESCRIPTION OF THE GKR PROTOCOL
B.1 Background
In the following section, we will often use the following notations.

Let G be a directed acyclic graph. 𝐸 (G) denotes the set of edges
of G and 𝑉 (G) the vertex. For two vertices 𝑣, 𝑣 ′, (𝑣, 𝑣 ′) is the edge
going from 𝑣 to 𝑣 ′. We assume a total ordering over 𝑉 (G) com-

patible with the natural partial ordering defined by the edges of

G. 𝐼 : 𝑉 → 𝑉 ∗ maps each vertex 𝑣 to the ordered list of vertices

𝐼 (𝑣) = {𝑣 ′ ∈ 𝑉 (G) : (𝑣 ′, 𝑣) ∈ 𝐸 (G)} such that ∀𝑣 ′ ∈ 𝐼 , (𝑣 ′, 𝑣) ∈
𝐸 (G). Conversely, 𝑂 (𝑣) = {𝑣 ′ ∈ 𝑉 (G) : (𝑣, 𝑣 ′) ∈ 𝐸 (G)}. We will

use directed acyclic graphs to describe the “shape” of a computa-

tion, as such, we call any vertex 𝑣 with 𝐼 (𝑣) = ∅ an input gate,
and any vertex 𝑣 with 𝑂 (𝑣) = ∅ an output gate. In the follow-

ing, eq denotes the multilinear polynomial eq(𝑋0· · ·𝑛−1, 𝑌0· · ·𝑛−1) =∏
𝑖<𝑛 [𝑋𝑖𝑌𝑖 + (1 − 𝑋𝑖 ) (1 − 𝑌𝑖 )].

B.1.1 Layered arithmetic circuits. In the following, we give a broad

definition of an arithmetic circuit that encompasses gates with

arbitrary low-degree multivariate polynomials (as opposed to just

additions and multiplications). This broad definition will be useful

for specifying custom gates as in [15] (e.g., in Appendix B.3 for

applying GKR over the MiMC and Poseidon permutations).

Definition B.1. An arithmetic circuit C over a ring K is a pair

(G, 𝑓 ) where G is a directed acyclic graph and 𝑓 maps vertices 𝑣 of

𝐺 to |𝐼 (𝑣) |-multivariate polynomials over K.

Definition B.2 (batch assignment). For 𝑛 ∈ N, a batch assign-
ment B for an arithmetic circuit C = (G, 𝑓 ) on K is a mapping

from 𝑉 (G) to the set of 𝑛-multilinear polynomials such that

∀𝑥 ∈ {0, 1}𝑛,∀𝑣 ∈ 𝑉 (G), B(𝑣) (𝑥) = 𝑅𝑣 (B(𝑢0) (𝑥), . . . ,B(𝑢𝑘−1) (𝑥))

where we note 𝐼 (𝑣) = {𝑢0, ..., 𝑢𝑘−1} and 𝑅𝑣 = 𝑓 (𝑣). Equivalently,
this corresponds to 2

𝑛
assignments of an arithmetic circuit. We

recall that

In other words, B(𝑣) interpolates 𝑅𝑣 (B(𝑢0), . . . ,B(𝑢𝑘−1)) on the

hypercube {0, 1}𝑛 . If 𝑣 is an input gate or an output gate, we call

B(𝑣) (resp.) an input or output polynomial.

Remark B.3. IfB is a batch assignment toC, then for all 𝑣 ∈ 𝑉 (G),
if we note 𝐼 (𝑣) = (𝑢0, ..., 𝑢𝑘−1) and 𝑃 = 𝑓 (𝑣), then

∀𝑥 ∈ K𝑛,B(𝑣) (𝑥) =
∑︁

ℎ∈{0,1}
eq(𝑥, ℎ)𝑃 (B(𝑢0) (ℎ), . . . ,B(𝑢𝑘−1) (ℎ))

The latter remark is fundamental to the GKR protocol. It gives a

relation between a vertex assignment and its input layer in the form

of a summation.

B.2 GKR protocol
The GKR protocol can be described as follows: the prover starts with

a description of an arithmetic circuit C and a batch assignment B to

C. The verifier starts with only the input and output polynomials,

(𝑃𝐼 ) and (𝑃𝑂 ). Our description of the GKR protocol is organized in

two steps. First, we present a set of “mini-protocol” and then we

give the full description in Fig.15 using the mini-protocols.

Mini-protocol 1: multi-claim reduction. The prover wants to con-

vince the verifier that, given a polynomial 𝑃 , it holds that 𝑃 (𝑥𝑖 ) = 𝑦𝑖
for 𝑘 couples (𝑥𝑖 , 𝑦𝑖 ) ∈ K2. The verifier initiates the protocol by
sending a random challenge 𝜏 ←$ K𝑘 . The prover and the verifier

then engage in a sumcheck for the sum relation∑︁
𝑖<𝑘

𝜏𝑖𝑦𝑖 =
∑︁

ℎ∈{0,1}𝑛
(
∑︁
𝑖<𝑘

𝜏𝑖eq(𝑥𝑖 , ℎ))𝑃 (ℎ)

In the last step of the sumcheck, the verifier is interested in

verifying a claim in the form, for some 𝛼 and 𝑟 that were established

during the sumcheck.

𝛼 =
∑︁
𝑖<𝑘

𝜏𝑖eq(𝑥𝑖 , 𝑟 ))𝑃 (𝑟 )

Instead of letting the verifier directly evaluate 𝑃 (𝑟 ), the prover
directly sends a claim of 𝑝 = 𝑃 (𝑟 ). The verifier can then verify

that the claimed value of 𝑝 is consistent with the above claim. The

protocol then outputs the claim 𝑃 (𝑟 ) = 𝑝 . At the end of the protocol,
the verifier does not learn that 𝑃 (𝑥𝑖 ) = 𝑦𝑖 . But we have that if any
of these claims were wrong, then with overwhelming probability

𝑃 (𝑟 ) ≠ 𝑝 , hence the name “claim reduction”.

Mini-protocol 2: single-claim reduction. The prover is given an as-

signment B to C. The verifier is input a claim that for some 𝑣 ,

not an input gate, and 𝑃𝑣 = B(𝑣), we have 𝑃𝑣 (𝑥) = 𝑦. The aim of

mini-protocol 2 is to reduce the verifier’s claim into a collection

of evaluation claims 𝑃𝑢,𝑗 (𝑟 ) = 𝛼𝑢 for all 𝑢 ∈ 𝐼 (𝑣). As for the mini-

protocol 1, this is achieved using a sumcheck protocol, but over the

relation given in Fig.B.3.

𝑦 =
∑︁

ℎ∈{0,1}𝑛
eq(𝑥, ℎ)𝑅𝑣 (𝑃𝑢,0 (ℎ), . . .)

where 𝑅𝑣 is the low-degree polynomial associated to 𝑣 in the circuit.

The rest goes as in the mini-protocol 1. The protocol outputs claims

of the form 𝑝𝑢 = 𝑃𝑢 (𝑟 ) and we have that if 𝑦 ≠ 𝑃𝑣 (𝑥), then with

overwhelming probability, one of the 𝑝𝑢 ≠ 𝑃𝑢 (𝑟 ) is wrong.

The full GKR protocol. The verifier samples a random 𝜌 ←$ K𝑛 .
He then computes the evaluations of all 𝑉𝑂 (𝜌) and sends 𝜌 to the

prover. The prover and the verifier then engage in an iterative

process, going through each vertex of the arithmetic circuit in

reverse order. Each step of the process aims at reducing the claims,

made on the B(𝑣), to the claims on children vertices of 𝑣 .

B.3 Custom gates for the GKR
This section presents the use of the GKR protocol for the MiMC

and Poseidon keyed permutation.

MiMC custom gates. Let 𝛼 be the exponent for MiMC in F, and
𝑟 be the number of rounds for the MiMC permutation. Recalling
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GKR protocol outlines

// initialize the claim register, it maps each vertex to a list of claim

claims := {}
for each output gate 𝑣𝑂 :

append claims[𝑣𝑂 ] with𝑉𝑂 (𝜌 )
// in reverse order

for 𝑣 ∈ 𝑉 (G) :
if |claims(𝑣) | > 1 :

claim′ ← miniProtocol1(𝑣, claims(𝑣) )
else :

claim′ ← claims(𝑣)
// input gate

if 𝐼 (𝑣) = ∅ :
verifier checks directly claim’

continue

newclaims← miniProtocol2(v, claim)

for {𝑢, claim𝑢 } ∈ newclaims :

append claim[𝑢 ] = claim𝑢

Figure 15: GKR protocol

Sec 2.5, with 𝑐1, . . . , 𝑐𝑟 being elements in F𝑞 , we define 𝑅𝑐𝑖 ,𝛼 as the

polynomial:

𝑅𝑐𝑖 ,𝛼 (𝑋0, 𝑋1) = (𝑋0 + 𝑋1 + 𝑐𝑖 )𝛼

We then give an overview of the arithmetic circuit C for the

MiMC permutation in figure Fig 16.

· · ·

· · ·

msg

key

output𝑅𝑐0, 𝛼 𝑅𝑐1, 𝛼 𝑅𝑐𝑟 , 𝛼

Figure 16: Structure of the arithmetic circuit for MiMC

As highlighted in Fig 16, the gate 𝑅𝑐𝑖 ,𝛼 (𝑋0, 𝑋1) can just be se-

quentially repeated with the appropriate constants and number of

rounds to instantiate a variant of the GKR protocol specialized for

the MiMC permutation.

Poseidon Custom gates. Poseidon [19] applies the Hades [20]

strategy to build a SNARK-friendly hash function. It uses the same

S-box 𝑥 → 𝑥𝛼 as in MiMC, but is optimized to permute messages

from multiple field elements (here 𝑛 + 1) at once. At a high level,

it works by alternating heterogeneous nonlinear layers in which

either only one of the field elements is passed through the S-Box

(partial rounds): (𝑥0, 𝑥1, · · · , 𝑥𝑛) → (𝑥0𝛼 , 𝑥1, · · · , 𝑥𝑛) or in which

all field elements are passed through the S-Box element-wise (full

rounds): (𝑥0, 𝑥1, · · · , 𝑥𝑛) → (𝑥0𝛼 , 𝑥1𝛼 , · · · , 𝑥𝑛𝛼 ). The non-linear

layers are interleaved with linear layers instantiated by an MDS

matrix.

Although our implementation does not include these custom

gates for the Poseidon permutation, we describe below a list of

custom gates to allow obtaining a GKR variant for the Poseidon

permutation.

The S-box for partial-rounds : at the beginning of a partial-S-box

layer, the prover and the verifier both have preemptively agreed
on a set of evaluation claims for the polynomial B(𝑣0), · · · ,B(𝑣𝑛)
representing each of the outputs of the partial-round functions.

As only the first entry is modified by the round function, only it

needs to be reduced to a claim on the (unique) polynomial B(𝑢0)
for 𝐼 (𝑣0) = {𝑢0}. For this, we use a GKR round with polynomial

𝑅(𝑥0) = 𝑥𝛼 . We can then retain all other claims on B(𝑣𝑖>0) for the
next round.

The S box for full rounds : Here, we need to do a sumcheck for

every claim. At a high level, we suggest reusing the same sum-

check as for the partial-rounds for all entries and batch them using

a random linear combination. Equivalently, the verifier samples

(𝑟0, · · · , 𝑟𝑛) ←$ F𝑛+1 public coins and engages with the prover in

the following sumcheck. We note 𝐼 (𝑣𝑖 ) = {𝑢𝑖 } since they all can

have only one single input vertex.

∑︁
𝑖≤𝑛

𝑟𝑖B(𝑣𝑖 ) (𝑥) =
∑︁

ℎ∈{0,1}𝑁
eq(𝑥, ℎ)

[∑︁
𝑖≤𝑛

𝑟𝑖B(𝑢𝑖 ) (ℎ)𝛼
]

The MDS layers : here we can directly convert the claim (without

the claims) since all operations are linear and since MDS matrices

are invertible and the ones we use are typically small: typically at

most 16x16 in real-world applications. Namely, if we note𝑀 to be

the MDS matrix, then we can obtain claims for the input vertices

by multiplying the vector of the current claim (properly ordered)

by𝑀−1.

C BATCHED KZG COMMITMENT
In this section, we recall the batched version of the KZG polynomial

commitment of [5, 16]. Their work extends [23] and allows for

multi-point opening for multiple polynomials.

Formally, given a finite field F of prime order and an integer

𝑛 ∈ N, c we consider a set of polynomial {𝑃0 (𝑋 ), · · · , 𝑃𝑛−1 (𝑋 )}, a
set of evaluation points𝑇 = {𝑥0, 𝑥1, · · · 𝑥𝑡 }, a set of evaluation point
𝑆𝑖 ⊂ 𝑇 and 𝑟𝑖 : 𝑆𝑖 → F, the minimal degree polynomial mapping

each evaluation point 𝑆𝑖 to a claimed value for the polynomial 𝑃𝑖 .

For any subset 𝑆 ⊂ F, 𝑍𝑆 denotes the polynomial

∏
𝑠∈𝑆 (𝑋 − 𝑠).

As in Sec.2.3, the protocol satisfies the completeness and com-

putational knowledge-soundness property in the algebraic group

model under the 𝑄 − 𝐷𝑙𝑜𝑔 assumption. We give a description of

the (interactive form) of the protocol in Fig.17. The protocol can be

transformed into an interactive protocol through the Fiat-Shamir

transforms, as it is public-coin and has a constant number of rounds.

D PLUGGING THE LAYERS TOGETHER
Here we just put together both layers to see the general form of the

relation. Let R0 and R1 be the relation associated to (respectively)

S and PC (defined in Sec.5.4.1). Our compiler can output a proof

system for relations of the form
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Setup(F,G1,G2,G𝑇 , 𝑄)
𝑥 ←$ F

pp← ([𝑥𝑘 ]1, [𝑥𝑘 ]2 )𝑖≤𝑄
return pp

Commit(pp, 𝑃 (𝑋 ) = ∑
𝑖≤𝑄 𝑝𝑖𝑋

𝑖 )
[𝑃 (𝑥 ) ]1 ←

∑︁
𝑖≤𝑄

𝑝𝑘 [𝑥𝑘 ]1

return [𝑃 (𝑥 ) ]1

Batch Evaluation Opening and Verification

Prove(pp, { [𝑃𝑖 (𝑥 ) ]1, 𝑆𝑖 , 𝑟𝑖 , 𝑃𝑖 : 𝑖 < 𝑛}) Verify(pp, { [𝑃𝑖 (𝑥 ) ]1, 𝑆𝑖 , 𝑟𝑖 : 𝑖 < 𝑛})

𝛾 ←$ F

𝑃 (𝑋 ) ←
∑︁
𝑖<𝑛

𝛾𝑖𝑍𝑇 \𝑆𝑖 (𝑋 ) (𝑃𝑖 (𝑋 ) − 𝑟𝑖 (𝑋 ) )

ℎ (𝑋 ) ← 𝑃 (𝑋 )
𝑍𝑇 (𝑋 )

[ℎ (𝑥 ) ]
1

∀𝑖 < 𝑛 : 𝑍𝑖 ← [𝑍𝑇 \𝑆𝑖 (𝑥 ) ]2
𝐹 ←

∏
𝑖<𝑛

𝑒 (𝛾𝑖 [𝑃𝑖 (𝑥 ) ]1 − [𝑟𝑖 (𝑥 ) ], [𝑍𝑖 ]2 )

𝐹
?

= 𝑒 ( [ℎ (𝑥 ) ]
1
, [𝑍𝑇 (𝑥 ) ]2 )

Figure 17: Batching of KZG

R′ (R0,R1, 𝜎𝑥 , 𝜎𝑤 , 𝜎1, ^) =(𝑥
′ ∈ F𝑙

′
;𝑤 ′ ∈ F𝑛

′
) :

𝑤𝐿1, 𝑣 = Z (𝑤 ′)
𝑥 ′, 𝑣 = b (𝑥𝐿1) R0 (𝑥0;𝑤0) = 1

𝑥0, 𝑥1 = 𝜎𝑡 (𝑥𝐿1) R1 (𝑥1;𝑤1) = 1

𝑤0,𝑤1 = 𝜎𝑢 (𝑤𝐿1)


We reuse the notations for the splittings introduced in Sec.5.4. To

apply the compiler, one needs to select the appropriate 𝜎𝑡 , 𝜎𝑢 , b, Z .

To illustrate how to do so, we give a concrete example of how an

assignment for the target relation R′ would be structured. Then

we clarify how this relates to the informal description of the con-

struction in Sec.5.1.

We first conveniently split the complete assignment (𝑥 ′,𝑤 ′) fine-
grained way as,

• \𝐶 : the public inputs exclusive to R0
• \𝐺 : the public inputs that are shared by R0 and R1
• 𝜓𝐺 : the public inputs of R1 shared with the witness of R0
• 𝜓𝐶 : the part of the witness exclusive to R0
• 𝑤1 : the (entire) witness of R1

To obtain a proof system for R′, one can then successively

apply the layer 1 and 2 compilers Sec.5.4 and set the following:

𝜎𝑡 (𝑥𝐿1) = (\𝐶 ∥\𝐺 , \𝐺 ∥𝜓𝐺 ), 𝜎𝑢 (𝑤𝐿1) = (𝜓𝐶 ,𝑤1), b (\𝐶 ∥\𝐺 ∥𝜓𝐺 ) =
(\𝐶 ∥\𝐺 ,𝜓𝐺 ), Z (𝜓𝐶 ∥𝜓𝐺 ∥𝑤1) = (𝜓𝐺 ,𝜓𝐶 ∥𝑤1).

E PROOF OF THEOREM 5.12
LetA be the attacker to the knowledge-soundness ofX𝐿1. Through
ES, EPC and A we build an adversary B = (BS,BPC) that can
break the knowledge-soundness of S or PC. The proof proceeds
through defining an auxiliary game H, where we show that H is

computationally indistinguishable from the game for knowledge-

soundness (called G) and the winning probability of the adversary

A in H is negligible (≈ 0).

Game H: is the same as the knowledge-soundness game (w.r.t

X𝐿1), except that, we modify the winning condition by adding the

condition:

Cond∗ : R1 (𝑥1, 𝜌,𝑤1) = 0 and VerifyPC,2 (pp1, 𝑥1, 𝜌, 𝜋PC) = 1

Then we prove two following claims:

• Claim 1. The game H is computationally indistinguishable

from the game for knowledge-soundness (i.e., G), if S is

knowledge-sound.

• Claim 2. The winning probability of A in the game H is

negligible, if PC is knowledge-sound.

In Lem.E.1 and E.2, we give the proof of these claims.

Lemma E.1. Claim 1 is true.

Proof. Consider the distinguisherD which aims to distinguish

the games H from G. We build an adversary BS that simulates the

games forD and use the responses fromD to attack the knowledge-

soundness of S. The simulation is as follows:

• BS receives the parameters pp′ for the argument system

S, runs the setup for PC to get pp
1
and then sends pp =

(pp′, pp
1
) to D.

• the adversary D responds by 𝑥 = (𝑥0, 𝑥1), 𝜋PC,1, and BS
sends the randomness 𝜌 .

• when the adversaryD responds with 𝜋 ′, the adversary BS
outputs (𝑥, 𝜋) = (𝑥0, 𝑥1, 𝜌 ;𝜋 ′).

We define the event Bad∗ where the Cond∗ is not satisfied. This
means if Bad∗ happens with probability 𝜖 , then D can distinguish

two games with the same probability (if the adversary wins, we

know it is in the game G). We show the probability that Bad∗

happens is negligible by knowledge-soundness of S (i.e., 𝜖 ≤ 𝜖S
where 𝜖S is the knowledge error for S). The reason that the event

Bad∗ breaks the knowledge-soundness of S is because:

• ifR1 (𝑥1, 𝜌 ;𝑤1) = 1 since the output ofD satisfiesR𝐿1 (𝑥,𝑤) =
0, we conclude that one of the equalities in R′ associated
with S is not satisfied and therefore BS has an admissible

tuple (𝑥0, 𝑥1, 𝜌, 𝜋 ′) to break the knowledge-soundness of

S.
• if VerifyPC,2 (pp1, 𝑥1, 𝜌, 𝜋PC) = 0, clearly, this means R′ is

not satisfied, which again, gives an admissible output to

break the knowledge-soundness of S.
Putting together, the probability that D can distinguish two games

is the probability that Bad∗ happens, and the latter is negligible.

This proves that two games G and H are indistinguishable. □

Lemma E.2. Claim 2 is true.

Proof. To prove that the winning probability of A in the game

H is negligible, we build an attacker BPC that simulates the game

H for A and uses the responses from A to attack the knowledge-

soundness of PC. The simulation is as follows.

• BPC receives the parameters pp
1
and runs the setup for S

to get pp′. Then it sends pp = (pp′, pp
1
) to A.

• A responds by𝑥 = (𝑥0, 𝑥1), 𝜋PC,1, andBPC sends𝑥1, 𝜋PC,1
to its challenger and relays the randomness 𝜌 .
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• When A responds with 𝜋 ′, the adversary BPC runs the

extraction ES to extract the witness (𝑤0, 𝜋PC,2). Finally, it
outputs 𝜋PC,2.

By the definition of the gameH andCond∗, the output (𝑥1, 𝜌 ;𝜋PC)
is an admissible output for the knowledge-soundness of PC. This
concludes the knowledge-soundness of X𝐿1 w.r.t the extractor

(ES, EPC) and with knowledge error 𝜖𝐿1 ≤ 𝜖S + 𝜖PC . □

F PROOF OF THEOREM 5.13
Our proof technique is similar to the one for Thm.5.12. The differ-

ence is that to define the auxiliary game H, we modify the winning

condition to RΓ(𝛾𝑣 ; 𝑣) = 0.

Proof. Let A be the attacker to the knowledge-soundness of

X𝐿2, we build an adversary B = (B𝐿1,BΓ) that uses A as the

inner-component to break the knowledge-soundness of X𝐿1 or Γ.
Again, we define an auxiliary game H that is indistinguishable

from the knowledge-soundness game, and the probability that A
wins in H is negligible.

Game H: is the same as the game for knowledge-soundness of

X𝐿2, except that, the winning condition is modified by adding the

following condition:

Cond∗ : RΓ (𝛾𝑣 ; 𝑣) = 0

We prove two following claims regarding H.

• Claim 1. Game H is computationally indistinguishable

from the game for knowledge-soundness (i.e., G), if X𝐿1 is
knowledge-sound.

• Claim 2. The probability of winning A in the game H is

negligible if Γ is knowledge-sound.

Proof of Claim 1: Assume the distinguisher D aims to distin-

guish H from G. The adversary B𝐿1 (the attacker to the knowledge-
soundness of X𝐿1) simulates the games for the adversary D as

follows.

• It receives the parameters for X𝐿1, then runs the rest of the

setup algorithm to get ppΓ and sends pp𝐿2 = (pp, ppΓ) to
D.

• when D responds with 𝑥𝐿2, 𝜋1, 𝜋Γ, 𝛾𝑣 , the adversary B𝐿1
runs the extractor EΓ to extract a witness 𝑣 from 𝜋Γ, 𝛾𝑣 .

Then, it forwards (𝑥 = b−1 (𝑥𝐿2, 𝑣), 𝜋1) to its challenger

and relays the challenge 𝜌 .

• when D responds by 𝜋2, the adversary B𝐿1 outputs 𝜋2.
We claim that the output (𝑥 = b (𝑣, 𝑥𝐿2)) and (𝜋1, 𝜋2) is an admis-

sible output to break the knowledge-soundness of X𝐿1. To see this,

note that the only way A can distinguish the two games is when

(notCond∗) happens, that is, when RΓ (𝛾𝑣 ; 𝑣) = 1 happens. Having

RΓ (𝛾𝑣 ; 𝑣) = 1 and the fact that verification X𝐿2 passes, result in
passing the verification for X𝐿1 (since the verification algorithm

of X𝐿2 includes the verification algorithm of X𝐿1). While we have

R𝐿1 (𝑣, 𝑥𝐿2;𝑤) = 0, this complete the proof for claim 1.

Proof of Claim 2: LetA be the attacker trying to win in the game

H, we build the adversary BΓ that runs A as its inner-component

to use its responses for breaking the knowledge-soundness of Γ,
the simulation is as follows,

• It receives the parameters for Γ, by the fact that pp ⊂ ppΓ ,
it can find pp and sends pp𝐿2 = (pp, ppΓ) to A.

• when A responds with 𝑥𝐿2, 𝜋1, 𝜋Γ, 𝛾𝑣 , the adversary BΓ
chooses the challenge 𝜌 and sends it to A.

• when A responds by 𝜋2, it outputs (𝛾𝑣 ;𝜋Γ).
Clearly, (𝛾𝑣 ;𝜋Γ) is an admissible output for breaking the knowledge-

soundness of Γ, since in this game we have R(𝛾𝑣 ; 𝑣) = 0 while the

verification passes (since the verification algorithm of X𝐿2 includes
the verification algorithm of Γ). □

G PROOF OF THEOREM 6.1
Proof. LetA be the algebraic adversary attacking the knowledge-

soundness of Γ, we show that the probability that it wins is neg-

ligible. The adversary receives srs = (𝑔,𝑔1/𝑟 , pp𝐺𝑟𝑜𝑡ℎ16, L = vk𝑟
𝐿
)

and outputs the proof 𝜋 ∈ G1 and the public input 𝛾𝑣 ∈ G1. Define
srs′ as the elements of srs in G1 that excludes L. It also outputs the

vectors ®𝑎 = ( ®𝑎1, ®𝑎2) and ®𝑏 = ( ®𝑏1, ®𝑏2) as the LC-representations of 𝜋
and 𝛾𝑣 (where ®𝑎2, ®𝑏2 are associated with the part L and ®𝑎1, ®𝑏1 are
associated with the part srs′). The extractor E receives ®𝑎, ®𝑏. Note
that LC-representations of 𝜋 and 𝛾𝑣 can be respectively written as

follows (where ⟨·, ·⟩ stands for the inner-product of two vectors and
DL stands for the discrete logarithm),

LC-representation 𝜋 : 𝑎′
1
+ 𝑟𝑎′

2
= ⟨DL(srs′), ®𝑎1⟩ + 𝑟 ⟨DL(vk𝐿), ®𝑎2⟩

LC-representation 𝛾𝑣 : 𝑏
′
1
+ 𝑟𝑏′

2
= ⟨DL(srs′), ®𝑏1⟩ + 𝑟 ⟨DL(vk𝐿), ®𝑏2⟩

Since the verification passes, the adversary’s response must satisfy

the following equation (𝑟 being the unknown here),

𝑎′
1
+ 𝑟𝑎′

2
= 𝑟𝑏′

1
+ 𝑟2𝑏′

2
(4)

There are two possible cases here, either the equation is satisfied

independently of the choice of 𝑟 or it has a specific solution (w.r.t. 𝑟

as the unknown). We now discuss what will happen in each case.

1. The first case occurs if and only if 𝑎′
1
= 𝑏′

2
= 0 and 𝑎′

2
= 𝑏′

1
, which

then implies that
®𝑏2 = ®0, ®𝑎1 = ®0, ®𝑎2 = ®𝑏1,𝐿 = ®𝑎∗ and ®𝑏1 = (®0, ®𝑏1,𝐿),

for some ®𝑎∗ and ®𝑏1,𝐿 being part of
®𝑏1 associated with vk𝐿 in the LC-

representation. Thus, the extractor E has indeed extracted ®𝑎∗. But
this cannot pass the second condition of the knowledge-soundness

game which says𝑀𝑆𝑀 (vk𝐿, ®𝑎∗) ≠ 𝛾𝑣 (by the LC-representation of

𝛾𝑣 , and the fact that 𝑏1,𝐿 is associated with the vk𝐿 part). Thus, the

probability that the extractor can output a witness satisfying the

required condition is zero in this case.

2. In the second case, we can reduce the knowledge-soundness to

the DLog problem. Where the attacker B to the DLog-problem

builds srs from its given challenge 𝑔1, 𝑔
𝑟
1
, runs the adversary A

(attacker to the knowledge-soundness), then as explained in the

current case it can solve Eq.4 to find 𝑟 .

Therefore, we have shown that the probability that Eq.4 has a spe-

cific solution is negligible, which means the case (1) would happen

with overwhelming probability, while in this case, the probabil-

ity that expected extractor E exists is zero. Putting together the

knowledge-error is at most 𝜖DL where 𝜖DL is the probability of

breaking the DLog-assumption.

□
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H FIAT-SHAMIR TRANSFORM IN THE SO-FAR
DIGEST MODEL

In the way that we instantiate the Fiat-Shamir transform, we only

hash the current message and the previous randomness to obtain

the new randomness. We call this model the “so-far digest”, instead

of the so-far transcript which is usually used in the original version

of Fiat-Shamir transform. We argue that there is no concrete differ-

ence between the two approaches, as ultimately each Fiat-Shamir

randomness depends on the previous transcript. Indeed, each ran-

domness is the digest of the so-far transcript (thus, the name “so-far

digest”).

Motivation. In real applications, the random oracle is replaced

with a hash function. And numerous hash functions are updatable,
meaning that the hash of the message

𝑀 = 𝑀′∥new block of message

can be built from the new block of the message and a short input,

the hash state after hashing𝑀′. This means for an updatable hash

two models so-far transcript and so-far digest (with the same hash

for all the rounds) are, in practice, roughly equivalent in terms of

performance. The reason we prefer the so-far digest model is mainly

due to our one-round GKR. If we had used the so-far transcript
model, the verifier would still have to hash the entire transcript

from scratch in the second round (public parameters, public inputs,

past prover’s messages, etc.). Indeed, in that scenario, the random-

coin of the verifier for the first round would count as a message
which is part of the transcript and cannot be used as a previous hash
state. As a result, we would require the prover to hash a potentially

very long string of inputs within a SNARK circuit, but this is what

we are trying to avoid in this work.

H.1 From So-Far Transcript model to So-Far
Digest model

Here, we formally define the so-far digest model which provides us

with a more efficient implementation of the Fiat-Shamir transform

in the circuit. Then, we prove that if a protocol is sound in the so-far

transcript random oracle model, it is also sound in the so-far digest

random oracle model.

Definition H.1 (So-Far Digest Model). Let P be a FS-transform of

a public-coin interactive protocol in the random oracle model. Let

also𝑚𝑖 and ℎ𝑖 be respectively, the prover message and the output

of the FS-hash in the round 𝑖 . In the so-far digest model, we have

ℎ𝑖 = 𝐻FS (𝑚𝑖 , ℎ𝑖−1) for 𝑖 > 1, and ℎ1 = 𝐻FS (𝑚1, pp, 𝑥), where pp
stands for the public parameters and 𝑥 is the public input of the

verifier.

Note that in the so-far transcript model, we simply have

ℎ𝑖 = 𝐻FS (so-far Transcript𝑖 )

and so-far transcript is whatever the verifier has received so far dur-
ing the protocol execution (this includes all the public parameters,

the public input of the verifier, and all the messages of the prover).

TheoremH.2. IfP (defined above) is sound in the so-far transcript
model with soundness error 𝜖𝑡𝑟 , then it is also sound in the so-far digest

model with soundness-error 𝑡−1 .𝜖𝑡𝑟 where 𝑡 = (1 − 1/2_𝐻 ) and _𝐻 is
the length of the random oracle’s response (in bits).

Proof. We first define the initial admissible trace as (pp, 𝑥,𝑚1)
i.e., the concatenation of public parameters, public inputs, and some

𝑚1.We say that the trace 𝑡𝑟𝑘 = (pp, 𝑥,𝑚1,𝑚2 . . . ,𝑚𝑘 ;ℎ1, ℎ2, . . . , ℎ𝑘−1)
in the so-far transcript model is admissible if in the so-far digest

model ℎ𝑖 has been the response to the RO-query (𝑚𝑖 , ℎ𝑖−1)𝑘>𝑖>1.
Now we are ready to present the reduction between the two

models. Let A and B be the attacker respectively to the soundness

of P in the so-far transcript model, and the so-far digest model.

The attacker A simulates the soundness game for the adversary B
as follows,

(1) for any RO-query issued by B before an initial admissible

trace, A responses by a random value.

(2) When B outputs a RO-query over (𝑚,ℎ),A first checks if it

can extend any admissible trace via such query (namely, it

adds𝑚,ℎ to an admissible trace and the trace is still admis-

sible). If yes, it sends a RO-query over the corresponding

trace to its challenger and relays the response to B.
(3) A responds with random values if it can not extend any

admissible trace.

(4) it repeats the same responses for the repeated queries.

(5) A outputs the output of B, if for the output (𝑚1, . . . ,𝑚𝑘 ),
public parameters pp and the public input 𝑥 , there has been

an admissible trace during the game.

In the case of the “Bad Event”, defined in the following, the

adversary A would abort.

A bad event in general is when A encounters a conflict in the

simulation.

Bad Event 1. a single RO-query of B can be used to extend more

than one admissible trace. In this case, it is not clear by which trace

A is going to respond to the query of B, thus it just aborts.
Bad event 2. a query fromB is repeated but its second repetition

leads to a new admissible trace. This makes a conflict between cases

(a) and (c).

Clearly, the adversary A can win its game if it has not aborted

(“Bad Events” have not happened) and B has won its game under

the mentioned condition over the output.

First note that by the definition of so-far digest, namely ℎ𝑖 =

(𝑚𝑖 , ℎ𝑖−1) any output of B satisfies the demanded condition over

the output. Secondly, by the definition of the random oracle, the

probability that bad events 1 or 2 happen is negligible.

More in detail, event 1 happens if there exists the same ℎ∗ inside
two different admissible traces. Since the traces are different ℎ∗

should have been the response to two different RO-queries of A
(collision) which would happenwith the probability of 1/2_𝐻 for _𝐻
being the bit-length of the random oracle output. Similarly, event 2

happens if for the repeated query 𝑞∗ = (𝑚∗, ℎ∗) we have that for
a RO-query issued by A (and after the first repetition of 𝑞∗) the
response is ℎ∗. Again this happens by the probability 1/2_𝐻 . □

I ONE-ROUND GKR
In this section, we explicitly specify a single-round version of the

GKR protocol. We then carefully discuss its security in the random
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oracle model step-by-step, motivate our technical choices and fi-

nally explain how to instantiate it using the Fiat-Shamir transform.

The reader can assume that GKR stands for the original interac-

tive GKR protocol and GKR𝑠 for the single-round version of the

GKR protocol. For the security proof and reduction from 𝐺𝐾𝑅𝑠 to

𝐺𝐾𝑅, we juggle with several variants of the GKR protocol these

intermediate versions are depicted in Fig.18. We emphasize that the

single-round GKR used in the compiler Sec.5.4 is GKR𝑠 that is pre-
cisely instantiated by a deterministic hash function (starting from

the second round). We explain how we choose the hash function in

Appendix I.3.

I.1 The single-round version of GKR in the
random oracle

Let the variants of GKR be defined as in Fig. 18. To clarify the

description of GKR𝑠,𝑅𝑂 ,

• The initial challenge 𝜌1 is a genuine public-coin sampled

by the verifier

• The second challenge 𝜌2 is obtained by querying the ran-

dom oracle with inputs: the last prover message together

with 𝜌1. In particular, the random oracle is not sent the

GKR statement 𝑥 at this round.

.

.

.

• The 𝑖-th challenge 𝜌𝑖 is obtained by querying the random

oracle with the last prover message together with the pre-

vious challenge 𝜌𝑖−1
The reader can see that the present protocol GKR𝑠,𝑅𝑂 is some-

what different from a standard compilation in the full random oracle

model. Two points are important here. First, we use a so-far digest
(e.g., sending the previous challenge and the last message) construc-

tion while the compiling in the Random Oracle Model requires

to hash all the transcript so far. Secondly, the protocol 𝐺𝐾𝑅𝑠,𝑅𝑂
retains an initial genuine interactive round while a common (FS-)

transform of a protocol in the random oracle model does not “let

even a single round” of protocol remain. While the security of this

construction can seem somewhat intuitive, its security must be

studied with great care.

I.2 Analysis in the random oracle model
Fig. 18 summarizes the justification between each two adjacent

variants. Namely, if GKR is (round-by-round) knowledge-sound,

then GKR𝑎 is knowledge-sound in the (so-far transcript) random

oracle model (see Sec. 3). Also, if GKR𝑎 is knowledge-sound in the

so-far transcript model, then by our Thm. H.2, its variant in the

so-far digest model GKR𝑏 is knowledge-sound. Here we present

the missing Lemma I.1 justifying if GKR𝑏 is knowledge-sound, so

is GKR𝑠,𝑅𝑂 .

Lemma I.1. Our single-round GKR (i.e., GKR𝑠,𝑅𝑂 ) is sound in the
random oracle model, if non-interactive GKR (i.e.,𝐺𝐾𝑅𝑏 ) is sound in
the so-far digest random oracle model.

Proof. Let A and B be respectively the attackers to the sound-

ness of GKR𝑏 and GKR𝑠,𝑅𝑂 . The adversaryA simulates the sound-

ness game for B.

• when B sends the message 𝑥 , the adversary A sends a RO-

query on 𝑥 . It sets the response as the challenge (generated

by the verifier) for the first round and sends it to B
• If B queries the random oracle 𝐻FS for the same value 𝑥 ,

the adversary A responds with a different random value.

• When B outputs a proof 𝜋 , the adversary A outputs 𝑥 and

𝜋 .

Note that by this simulation, both protocols are technically the

same. But, as B does not understand what it received at the first

round was indeed a response to a RO-query over 𝑥 (asked by the

verifier, namely A here), from its perspective, the adversary B is

inside a single-round interactive version. □

The last game GKR𝑠 is simply the Fiat-Shamir transformation

of GKR𝑠,𝑅𝑂 .

Protocol Details Justification

GKR The original protocol, fully interactive -

GKR𝑎 full ROM, so-far transcript model Standard ROM

GKR𝑏 full ROM, so-far digest model Thm.H.2

GKR𝑠,𝑅𝑂 Def.I.1 ROM from the second round, so-far digest Lem.I.1

GKR𝑠 instantiated one-round GKR Appendix I.3 Fiat-Shamir hash

Figure 18: Overview of the security reduction

I.3 Instantiation of the random oracle
We apply the Fiat-Shamir heuristic to instantiate the random oracle

in GKR𝑠,𝑅𝑂 which results in GKR𝑠 . We do so, by selecting a hash

function such that:

• It behaves like a random oracle

• It can be efficiently verified in an arithmetic circuit

• When the construction is applied for proving hashes, it is

preferable to either use another hash function (different

from the one that is being proved) or at least to change the

parameters of the hash functions.

In our implementation, we use MiMC with different constants.

We stress that, during this step, the transform only applies for

the calls to the random oracle and not the genuine random-coin of

the first round. Though finally at the third layer of our compiler

(Sec.5.4), we again use the Fiat-Shamir heuristic to instantiate the

first round interaction with a hash function (again MiMc with

different parameters). Note that what we are using in the compiler

in (Sec.5.4) is GKR𝑠 .

J DESCRIPTION OF AOK Γ FOR OUR VARIANT
OF PLONK

Let 𝜔𝑖 ’s be the 𝑛-th roots of unity (such that for public inputs 𝑥 we

have |𝑥 | ≤ 𝑛, where in our case b (𝑥) = (𝑣, 𝑥𝐿2), using our notation

Fig.10), we can derive three subsets 𝜔𝐿2, 𝜔𝑣, 𝜔𝑛\ℓ ⊂ Ω = {𝜔𝑖 }𝑖
where the first two subsets correspond to 𝑥𝐿2 and 𝑣 , respectively.

One can consider 𝑃𝐼 (𝑋 ) = 𝑃𝐼1 (𝑋 ) + 𝑃𝐼2 (𝑋 ) such that the poly-

nomial 𝑃𝐼1 (𝑋 ) is handled by the verifier and over unity roots 𝜔𝐿2

interpolates to the public inputs of layer 2 (i.e. 𝑥𝐿2) while 𝑃𝐼2 (𝑋 ) is
handled by the prover and interpolates to 𝑣 over the corresponding

unity roots 𝜔𝑣 and to zero over 𝜔𝐿2 ∪ 𝜔𝑛\ℓ . Our compiler, outputs

𝛾𝑣 = (𝐶,𝑦z) (where 𝐶 =
∑
𝑖 𝑣𝑖 [𝐿𝑖 (𝑥)]1 is the KZG commitment to
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𝑃𝐼2 (𝑋 ) =
∑
𝑖 𝑣𝑖𝐿𝑖 (𝑋 ), and 𝑦z = 𝑃𝐼2 (z)) and an AOK Γ, as given in

Fig.19, allowing the verifier to check that 𝑃𝐼2 (𝑋 ) := 𝑉 (𝑋 ) evaluates
to 0 on the entries 𝜔𝐿2 ∪ 𝜔𝑛\ℓ , and to 𝑦z at 𝑋 = z. The former

guarantees that 𝐶 is computed using only the correct Lagrange

basis, while the latter guarantees the correct computation of 𝑃𝐼2 (z).
The first part of the proof can be done with a batch opening of

KZG polynomial commitment. Thus, the argument system Γ is a

batch opening of KZG at points𝜔𝐿2∪𝜔𝑛\ℓ and a single opening for
𝑋 = z. In [5] the authors proved the knowledge-soundness of batch

KZG opening in the algebraic group model and based on 𝑞-DLog

assumption ( Appendix A, Def.A.1). Here, our srs is longer but all

the extra terms are linear combinations of elements in the original

srs in [5], thus the security still holds in the algebraic group model.

Setup(pp′,G1,G2, F, b)
[𝐿𝑖 (𝑥 ) ]1, [𝑥 𝑗 ]2 ← pp′

𝑍 (𝑋 ) ←
∏
𝑖∈𝑇
(𝑋 − 𝜔𝑖 )

Z← 𝑍 (𝑥 ) · [1]2
return

srs = (pp′, L = ( [𝐿𝑖 (𝑥 ) ]1 ),Z)

Prove(L, 𝑣, z)
𝑣 (𝑋 ) =

∑︁
𝑣𝑖 · 𝐿𝑖 (𝑋 )

𝑦z ← 𝑣 (z)
𝜋 ← KZG.Prove(𝑣 (𝑋 ), 𝑦z, z)

𝜋 ′ ← KZG.Prove(𝑣 (𝑋 ), ®0, {𝜔𝑖 }𝑖∈𝑇 )
return (𝜋, 𝜋 ′ )

Verify(𝜋, 𝜋 ′,𝐶,𝑦z, 𝑔𝑥
1
,Z)

𝑒 (𝐶, [1]1 )
?

= 𝑒 (𝜋, [𝑥 − z]2 )

𝑒 (𝐶, [1]1 ]
?

= 𝑒 (𝜋 ′,Z)

Figure 19: Argument of Knowledge for PLONK.Here, pp′ is the
public parameter of our variant in Fig.12, and𝑇 is the set of indices
associated with the unity roots in 𝜔𝐿2 ∪𝜔𝑛\ℓ

K RECURSION IN THE INCREMENTAL
COMPUTATION MODEL

One may also think of applying Nova or Halo in the incremental

computation model for 𝐹𝑛 (𝑋 ) = 𝑦 where 𝐹 is the round function

of the hash. The key difference between these techniques and GKR

is that these techniques require committing to (at least) the entire

trace of the computation (due to the use of R1CS of 𝐹 ). This is the ex-

pensive part of proving claims in practice, as this involves perform-

ing elliptic-curve multi-scalar-multiplications. For a single MiMC

permutation, this means 360 field elements (using quadratic con-

straints). With a GKR-based approach, the prover is only required

to commit to the inputs and the outputs of the permutations (so 3

field elements). Techniques like folding or accumulation schemes

(Nova and Halo), however, have the advantage that they allow prov-

ing multiple instances in a “streaming” manner. Consequently, the

memory requirements do not scale with the number of instances to

prove. Finally, Nova uses Spartan to reduce the proof size from |𝐹 |
to 𝑙𝑜𝑔( |𝐹 |). Thanks to the outer snark, our technique reduces the

proof size to constant and needs neither cycles of elliptic curves

(like Nova/Halo) nor non-native arithmetization (naive approach).
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