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Abstract. Unique ring signatures (URS) were introduced by Franklin
and Zhang (FC 2012) as a unification of linkable and traceable ring
signatures. In URS, each member within a ring can only produce, on
behalf of the ring, at most one signature for a message.
Applications of URS potentially are e–voting systems and e–token sys-
tems. In blockchain technology, URS have been implemented for mixing
contract. However, existing URS schemes are based on the Discrete Log-
arithm Problem, which is insecure in the post-quantum setting.

In this paper, we design a new lattice-based URS scheme where the
signature size is logarithmic in number of ring members. The proposed
URS exploits a Merkle tree-based accumulator as building block in the
lattice setting. Our scheme is secure under the Short Integer Solution
and Learning With Rounding assumptions in the random oracle model.

Key words: unique ring signatures, lattice-based cryptography, Merkle tree
accumulator, zero knowledge argument of knowledge

1 Introduction

Ring signatures (RS) were firstly introduced by Rivest, Shamir, and Tauman
[RST01]. An RS of a group of signers (called the ring) is designed in such a way
that any member in the group can sign messages on behalf of the group, but
no one can tell who the real signer is. The ring can be dynamically formed by
a signer without the need of agreement from other members. Thus, RS schemes
offer the anonymity property. However, the strong anonymity of RS may be
uncontrollably overused in some scenarios, for instance, in the double-spending
problem in cryptocurrencies [Nak08].

⋆ A preliminary version of this paper appears in the 27th European Symposium on
Research in Computer Security (ESORICS 2022). This is the full version.
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Linkable ring signatures (LRS) [LWW04,LW05] is a variant of RS that not
only preserves the anonymity of RS but also provides an additional important
property in protecting RS from such problems as the double-spending. The prop-
erty is that given two or more signatures, even on different messages, a third
party can efficiently determine whether these signatures were produced by the
same signer or not. We call this property the linkability. However, note that even
if the same signer produced the signatures, that signer remains anonymous to
third parties.

Another variant of RS is traceable ring signature (TRS) which was first
introduced by Fujisaki and Suzuki in [FS07]. A TRS has to fulfil both of the
following two cases: (i) if a signer signs on two different messages using the same
ring and the same issue, then there is an efficient public procedure that will
learn the signer’s indentity; (ii) if a signer signs on the same message concerning
the same ring and the same issue twice, then the two corresponding signatures
can be efficiently determined to be produced by the same signer, but the signer
is still anonymous. The paper [FZ12] discusses many applications of TRS and
LRS, such as various e-voting systems, e-token systems and k-times anonymous
authentication.

Franklin and Zhang [FZ12, FZ13] introduced unique ring signatures (URS)
aiming to capture the features of both LRS and TRS. A URS signature has a
part called unique identifier. A URS offers anonymity, unforgeability, and the so-
called uniqueness property. The uniqueness property guarantees that k colluding
signers in the same ring cannot producemore than k valid signatures for the same
message. In general, URS is a special variant of LRS which enjoys a stronger
security property: In LRS, two signatures are linked if they are signed with
respect to the same ring, but in URS, two signatures are linked if they are signed
with respect to the same ring AND the same message. Informally speaking, In
a URS, the anonymity of an uncorrupted user should be preserved as long as
he/she does not issue 2 signatures with respect to the same pair (message, ring).
It is not the case with LRS, since any 2 signatures of the same user are linked.

URS schemes are potentially used in the e-voting systems, e-token systems
and k-times anonymous authentication applications mentioned above. Moreover,
in the blockchain technology, Mercer proposed a mixing contract based on the
URS. The author implemented the Franklin– Zhang URS protocol using the
secp256k1 elliptic curve (EC). The implementation makes URS compatible with
Bitcoin and Ethereum’s EC libraries [Mer16].

The rapid development of quantum algorithms, as well as the remarkable re-
alization of quantum computers, not only offer more powerful computational de-
vices but may also lead to severe threats to many modern cryptography schemes
and protocols. Indeed, from a cryptographic point of view, Peter Shor [Sho94]
showed that all cryptosystems, which are based on the hardness of classical
(number-theoretic) assumptions, e.g., the Integer Factorization Problem and the
Discrete Logarithm Problem (DLP), will be broken as soon as large-scale quan-
tum computers realized. To address this issue, there have been many proposed
alternative hard problems that are believed to be quantum-resistant. Among
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others, lattice-based cryptography, firstly introduced by Ajtai [Ajt96], is emerg-
ing as a promising direction as it has better asymptotic efficiency than others
and supports many advanced functionalities

There exist several schemes in the literature over lattices regarding ring sig-
natures [LLNW16,ESS+19,BDH+19,CGH+21], linkable ring signatures [BLO18,
LAZ19, BKP20], and traceable ring signatures [FLWL20]. So far, nevertheless,
there have been only URS constructions [FZ12,FZ13] that all base their security
on the Computational Diffie-Hellman (CDH) and/or Decisional Diffie-Hellman
(DDH) assumptions. The CDH and DDH, in turn, rely on the difficulty of the
DLP problem. Hence, these schemes would be no longer secure in the quan-
tum era. Moreover, these URS schemes, unfortunately, have the signature size
of O(λN) which is linear in N , where λ is the security parameter, and N is the
number of members in the corresponding ring. Ta et al. [TKN+21] addressed this
issue by proposing a URS scheme with logarithmic size. However, the signature
scheme is only based on DDH and DLP problems. Therefore, it is essential to
design new URS schemes that are not only based on alternative hard problems
offering quantum safety but also more efficient in terms of signature size.

1.1 Contributions

We propose a unique ring signature scheme based on the hardness of the Short
Integer Solution (SIS) and the Learning With Rounding (LWR) problems in lat-
tices. The construction exploits the accumulator technique introduced by Libert
et al. [LLNW16]. However, in order to obtain the uniqueness property, we add
a unique tag to every node of the Merkle tree. Since the tag only needs to be
computed once and then appended to every node, the extra computation cost
is insignificant. Specifically, the signature size of the proposed URS scheme is
O(λ logN) where λ is the security parameter, and N is the number of members
in the ring, versus O(λN) in the schemes of Franklin and Zhang [FZ13]. To the
best of our knowledge, the scheme is the first lattice-based unique ring signature.
Thus, the scheme is the first that is secure against classical adversaries basing
the security proofs on post-quantum assumptions. Moreover, in comparison with
existing URS schemes, our signature size is much smaller since it is logarithmic
in the number of ring members. In Table 1, we make a comparison of existing
URS schemes with ours.

1.2 Overview of the Results

Our key idea is to transform lattice-based ring signatures with logarithmic size to
get the desired unique ring signatures. To this end, we embed the so-called unique
tag (a.k.a., unique identifier) into the ring signature schemes. A unique tag
corresponding to a signer can be computed using a weak pseudorandom function.
Namely, if we denote the hash function (modelled as a random oracle) being used
here by HUT, a weak pseudorandom function F, a message by µ, a ring of signers
by R, and the secret key for a signer by sk, then the uniqueness tag for the signer
is of the form t := Fsk(HUT(µ,R)). Our starting point is a Merkle tree-based
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Table 1: Comparison our URS with the [FZ12,FZ13] URSs

URS
schemes

Assumptions
Security
model

Signature
size

Based on
post-quantum
assumptions?

Franklin &
Zhang [FZ12]

CDH
+ DDH

ROM
/SDM

linear ✗

Franklin &
Zhang [FZ13]

DDH ROM linear ✗

Ta et al. [TKN+21]
DDH
+ DLP

ROM logarithmic ✗

Ours
SIS

+ LWR
ROM logarithmic ✓

accumulator used in the LLNW ring signature in lattices [LLNW16]. Intuitively,
the Merkle tree there looks like a binary tree but travelling via the bottom-up
direction. The leaves’ values are ones that we want to accumulate, while the
root corresponds to the accumulator value. See Figure 1 for an illustration of
how data values p0, · · · , p7 are accumulated into the value vϵ. The associated
hash function used to accumulate is denoted by hA, being indicated by a random

matrix A := [A0|A1] ∈ Zn×m/2
q × ∈ Zn×m/2

q . Formally, hA(v) := bin(A0v0 +
A1v1 (mod q) ∈ {0, 1}m/2, for any vector v := (v0,v1) ∈ {0, 1}m/2×{0, 1}m/2.
Here, bin denotes the binary decomposition operation. Such a hash function is
proved to be collision-resistant under the hardness of the Short Integer Solution
(SIS) problem.

To transform the ring signature in [LLNW16] to a URS, we modify the Merkle
tree and the corresponding hash function. The modified Merke tree will also allow
to accumulate the uniqueness tag t. Specifically, for each hashing time in the
modified Merkle tree, each of two inputs is also appended to the uniqueness tag
t. For instance, the inputs now are (v⊤

0 |t⊤), (v⊤
1 |t⊤) instead of (v0,v1). (See

Figure 2 for the modified Merkle tree illustration used in our URS.) Accordingly,
the hash function hA will be changed to be

hA,B,t(v0,v1) := bin(A0v0 +A1v1 +B0t+B1t (mod q)) ∈ {0, 1}nk,

where B = [B0|B1]← HUT(µ,R). Since B and t are fixed as constants then by
a simple reduction, we can prove that hA,B,t is also collision-resistant assuming
the hardness of the average case SIS assumption in lattices.

In this paper, we consider the following relation:

RURS := {(A,B,v) ∈ Zn×m
q × Zn×m

q × {0, 1}nk;
x ∈ {0, 1}m,p ∈ {0, 1}nk, t ∈ {0, 1}nk,wit ∈ {0, 1}ℓ × ({0, 1}nk)ℓ :
ACC.VerifyA(B, t,v,p,wit) = 1 ∧ Ax = Gp ∧ Fx(B) = Gt}.

Here, the gadget matrix G is a special matrix with property that G ·bin(a) = a.
We are therefore able to utilize the same “extend-then-permute” technique done



Efficient Unique Ring Signatures From Lattices 5

vϵ

v0

v00

v000 v001

v01

v010 v011

v1

v10

v100 v101

v11

v110 v111

p0 p1 p2 p3 p4 p5 p6 p7

Fig. 1: An illustration for Merkle tree-based accumulator in [LLNW16], in which
23 data values p0, · · · ,p7 are accumulated into the value vϵ. It works as follows.
First, it assigns data values pi’s to the leaves of the tree (at depth 3) and re-
names it as vi1,i2,i3 where (i1, i2, i3) = bin3(i) ∈ {0, 1}3, i.e., vi1,i2,i3 ← pi. At
depth 3, it accumulates the pair (v000 := p0, v001 := p1) to get v00. Similarly
for (v010 := p2, v011 := p3), (v010 := p4, v011 := p5), (v010 := p6, v011 := p7)
to get v01, v10, v11, respectively. At depth 2, it continues to accumulate two
pairs (v00,v01), (v10,v11) to get v0 and v1, respectively. Finally, at depth 3,
(v0,v1) is accumulated to vϵ located at the root of the tree. The witness for
the fact that p3 (i.e., v011) (dark grey-filled boxes) has been accumulated is
wit = {011, {v010,v00,v1}} (light grey-filled boxes).

vϵ

v0|t

v00|t

v000|t v001|t

v01|t

v010|t v011|t

v1|t

v10|t

v100|t v101|t

v11|t

v110|t v111|t

p0|t p1|t p2|t p3|t p4|t p5|t p6|t p7|t

Fig. 2: The modified Merkle tree-based accumulator for our unique ring signa-
tures.

for Rring to handle the ZKAoK for RURS. The details of the induced URS will
be presented in Section 4.

1.3 Organization

In Section 2, we review some backgrounds neccessary for our work. Section 3
describes a parameterized accumulator in lattices, which will be applied to our
URS construction. Section 4 gives in details the lattice-based construction of
URS from accumulators and related proofs.
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2 Preliminaries

Notation. Throughout this work, all vectors are in column form unless otherwise
stated. A vector is written in bold-face small letter, e.g., v, while a matrix in
bold-face capital letter, e.g., A. The transpose operation of a vector or a matrix
denoted by the superscript ⊤; e.g., transpose of vector v is v⊤. For k ∈ N, the
notation [k] means {1, . . . , k}. We denote by |S| the cardinality of a discrete set
S.

2.1 Framework of Unique Ring Signatures

We first recall the framework of URS as introduced by Franklin and Zhang
in [FZ12,FZ13].

Syntax.AURS scheme consists of four algorithms URS= (URS.Setup, URS.KeyGen,
URS.Sign, URS.Verify) described as follows.

URS.Setup(1λ). This probabilistic polynomial time (PPT) algorithm takes as
input a security parameter λ to output public parameters pp.

URS.KeyGen(pp). This PPT algorithm takes as input a public parameters pp
to generate a secret signing key sk and a public verification key pk. This
algorithm will be used to generate a key pair for each user.

URS.Sign(pp, µ,R, sk). This PPT algorithm outputs a signature σ on the mes-
sage µ, the ring R = (pk1, pk2, . . . , pkN ) using the secret key sk of a member
of R. Note that, for URS the signature σ can be parsed as σ = (τ, π) where
τ is called the unique identifier or the unique tag.

URS.Verify(pp, µ,R, σ) . This deterministic polynomial time (DPT) algorithm
takes as input public parameters pp, a message µ, a ring of signers R and a
ring signature σ, returns 1 if the signature σ is valid, and 0 otherwise.

Correctness. The correctness of URS is defined in Definition 1.

Definition 1 (Correctness). For any pp ← URS.Setup(1λ), any integer N ,
i = 1, 2, . . . , N : (pki, ski) ← URS.KeyGen(pp), and R = {pk1, pk2, . . . , pkN},
for any message µ and any member (pkj , skj) of R, the correctness of a URS
holds that

URS.Verify(pp, µ,R,URS.Sign(pp, µ,R, skj)) = 1.

In order to formally define the security notions, we need some further defi-
nitions.

Queried Oracles. Given {(pki, ski)}Ni=1 and a ring S = {pki}Ni=1 for reference,
the adversaries can have access to one or more of the following oracles depending
the security they involve:

– The user secret key oracle Osk(i): Output the secret key ski of some
member i in R.



Efficient Unique Ring Signatures From Lattices 7

– The ring signature oracle OSign(i, R, µ): Output the ring signature on
message µ respective to a subring R ⊆ S, in which pki ∈ R is the real signer.

In addition to the above oracles, we need some more notations below.

– SIGNERR,µ denotes a set of users (i.e., secret keys) that have been queried
to OSign(·, R, µ) by the adversary.

–
−−−−−→
SIGNERR,M := {SIGNERR,µ : R ∈ R, µ ∈ M} where R is a set of rings and
M a set of messages.

– Corrupt denotes the set of all users whose secret keys are given to the adver-
sary.

– Also, CorruptR denotes the set of all users in the ring R, whose secret keys
are given to the adversary.

We now give formal definitions for the URS security notions.

URSAnom
A,N :

Setup. The challenger C runs URS.Setup(1λ) on input a security parameter λ,
to get public parameters pp. Now, the challenger runs URS.KeyGen(pp) to
get a key pair (pki, ski) ← URS.KeyGen(pp) for each user i = 1, 2, . . . , N .
Then C sets S = {pki}Ni=1 and hands (pp, S) to A. The challenger also sets

Corrupt← ∅ and
−−−−−→
SIGNERR,M ← ∅.

Query 1. A may make polynomially bounded number of queries to the oracles
Osk and OSign, and C responses it in the way mentioned above. Meanwhile,

C updates the sets Corrupt and
−−−−−→
SIGNERR,M.

Challenge. A chooses two indices i0, i1 together with a message µ∗ and a ring
R∗ ⊆ S such that i0, i1 /∈ Corrupt and i0, i1 /∈ SIGNERR∗,µ∗ , and sends
the tuple (i0, i1, µ

∗, R∗) to C. Then C choosed uniformly at random a bit
b← {0, 1} and runs σ ← URS.Sign(µ∗, R∗, skib). The challenger returns σ to
A.

Query 2. Same as Query 1, with restriction that A is not allowed to query to
Osk(i0), Osk(i1), and signing queries OSign(i0, µ

∗, R∗), OSign(i1, µ
∗, R∗).

Guess. A outputs a guess b′ for b. A wins if and only if b′ = b.

Fig. 3: Anonymity experiment for URS

Definition 2 (Anonymity). A URS is called anonymous if for any polynomial-

time adversary A, the advantage AdvURS,AnomA,N (λ) of A in the Anonymity exper-

iment URSAnomA,N presented in Figure 3 is negligible. That is, AdvURS,AnomA,N (λ) :=
2 |Pr[b′ = b]− 1/2| = negl(λ).

Definition 3 (Unforgeability). A URS is called unforgeable under adaptive

chosen-message attacks if for any PPT adversary A, the advantage AdvURS,UnforgeA,N (λ)
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URSUnforge
A,N :

Setup. Same as Setup of URSAnom
A,N .

Query. Same as Query 1 of URSAnom
A,N .

Forge. The adversary A outputs a ring signature σ∗ on a message µ∗ and a ring
R∗ ⊆ S, with the condition that R∗ does not contain corrupted users (i.e.,
R∗ ⊆ S \ Corrupt), and A has never made queries OSign(·, R∗, µ∗) before. A
wins the game if and only if URS.Verify(µ∗, R∗, σ∗) = 1.

Fig. 4: Unforgeability experiment for URS

of A in the Unforgeability experiment URSUnforgeA,N presented in Figure 4 is negli-
gible. That is,

AdvURS,UnforgeA,N (λ) := Pr[A wins] = negl(λ).

URSUnique
A,N :

Setup. Same as Setup of URSAnom
A,N .

Query. Same as Query 1 of URSAnom
A,N .

Forge. The adversary A outputs t := |CorruptR∗ ∪ SIGNERR∗,µ∗ | + 1 different
valid signatures σ1, . . . , σt on the same message µ∗ in regards the same ring
R∗. The challenger parses the signatures as σj = (τj , πj), and checks whether
the unique tags τk, k = 1, 2, . . . , t, are pairwise distinct. If this is the case,
then the challenger returns 1 and A wins; otherwise, returns 0 and A loses.

Fig. 5: Uniqueness experiment for URS

Definition 4 (Uniqueness). A URS is called unique if for any PPT adversary

A, the advantage AdvURS,UniqueA,N (λ) of A in the Uniqueness experiment URSUniqueA,N

presented in Figure 5 is negligible. That is,

AdvURS,UniqueA,N (λ) := Pr[A wins] = negl(λ).

Additionally, a URS is also required to satisfy the non-colliding property.
Note that the non-colliding property is not a security requirement.

Definition 5 (Non-colliding property). For all i ̸= j, a URS scheme is
non-colliding when the probability

Pr[σi = (τi, πi)← URS.Sign(µ,R, ski), σj = (τj , πj)← URS.Sign(µ,R, skj) : τi = τj ]

is negligible to the security parameter λ.
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Definition 6 (Security of URS). A URS is called secure if it satisfies the
correctness and the non-colliding property, and it is unforgeable, anonymous as
well as unique.

2.2 Lattices and Hardness Assumptions

An integer lattice L is a discrete subgroup which can be represented as L =
L(B) := {Bx : x ∈ Zm}, where B ∈ Zn×m is a basis of L. The lattice L is called
full-rank if n = m.

Definition 7 (SIS, [Ajt96,GPV08] ). Short Integer Solution problem SIS∞m,n,q,θ

is, given matrix A
$←− Zn×m

q , to find x ∈ Zm such that Ax = 0 (mod q) and
0 < ∥x∥∞ ≤ θ.

Definition 8 (Decision-LWR, [BPR12]). For a vector s ∈ Zn
q , define the

LWR distribution Ls to be the distribuiton over Zn
q × Zp obtained by choosing a

vector a
$←− Zn

q and outputting (a, b =
⌊
⟨a · s⟩

⌉
p
). The decision-LWRn,m,q,p is to

distinguish between m independent samples (ai, bi)← Ls, and m samples drawn
uniformly and independently from Zn

q ×Zp. We denote the advanatge of an LWR

solver S by AdvLWR(S).

Lemma 1 (Leftover Hash Lemma). Given m,n are positive integers, q ≥ 2

is a prime such that m ≥ 2n log q, and that x
$←− {0, 1}m,A

$←− Zn×m
q ,y

$←− Zn
q ,

the distribution (A,A · x) is statistically close to the distribution (A,y).

Proof. An unbounded adversary A can guess x correctly with the probability
υ = 1/2m ≤ 1/(22n log q). Because the range size is |Ω| = qn = 2n log q, the
distinguishing advantage of A is bounded by υ · |Ω| = 1/qn = negl(n).

2.3 Accumulator Schemes

Syntax. An accumulator consists of the following algorithms:

pp← ACC.Setup(1λ): It takes as input a security parameter λ to output public
parameters pp.

v← ACC.Acc(pp,R): It takes as input public parameters pp, a list of N data
values R = (p1, · · · ,pN−1) to output an accumulator value v for R.

wit← ACC.Witness(pp,R,p): It takes as input public parameters pp, a list of
N data values R = (p1, · · · ,pN−1) and a data value p. It outputs ⊥ if p /∈ R.
Otherwise, it outputs a witness wit proving that p has been accumulated in
ACC.Acc.

0/1← ACC.Verify(pp,v,p,wit): It takes as input public parameters pp, a pair
(p,wit). It outputs 1 if (p,wit) is valid for the accumulator value v and
outputs 0 otherwise.
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Correctness. It is required for ACC that for all pp ← ACC.Setup(1λ), v ←
ACC.Acc(pp,R), wit← ACC.Witness(pp,R,p), it holds that

ACC.Verify(pp,v,p,wit) = 1, for all p ∈ R.

Security. An accumulator scheme is called secure if for all PPT adversaries A:

Pr[pp← ACC.Setup(1λ); (R,p∗,wit∗)← A(pp) :
p∗ /∈ R ∧ ACC.Verify(pp,ACC.Acc(pp,R),p∗,wit∗) = 1] = negl(λ).

2.4 String Commitment Schemes

In this work, we also exploit the so-called string commitment function. We need it
to be statistically hiding and computationally binding. The first property ensures
that any computationally unbounded adversarial receiver cannot distinguish two
commitment strings generated from two distinct strings. The second property
says that no polynomial-time algorithm can change the committed string after
sending the commitment. See [HM96,KTX08] for more details.

In lattices, such a string commitment scheme comes from Kawachi et al.
[KTX08]. It is statistically hiding and computationally binding if the SIS∞m,n,q,θ

problem is hard. We will denote it by COM : {0, 1}∗ × {0, 1}m → Zn
q and use it

for the ZKAoK, which is generally described later in Section 2.5.

2.5 Zero Knowledge Arguments of Knowledge (ZKAoK)

Let R := {(stm,wit) ∈ {0, 1}∗ × {0, 1}∗} be a polynomial time decidable binary
relation for a language L in the NP class. We call wit a witness for a statement
stm ∈ L if (stm,wit) ∈ R.

A statistical zero knowledge arguments (ZKA) system for the relation R
with soundness error ϵ is an interactive system (P, V) between a prover P and
a verifier V endowed with the following properties:

1. Completeness: If (stm,wit) ∈ R then Pr[(P(stm,wit),V(stm)) = 1] = 1.
2. ϵ-Soundness: If (stm,wit) /∈ R then for all PPT P∗, Advsound(P,V)(P∗) :=

Pr[(P∗(stm,wit), V(stm)) = 1] ≤ ϵ. Here, note that P∗ is a computation-
ally bounded cheating prover.

3. Statistical zero-knowledge: For any V∗(stm), there exists a PPT sim-
ulator S(stm)) who is able to simulate a transcript statistically close to
the transcript produced by the real interaction between P and V∗. We de-
fine the advantage of V∗ who can break the statistical zero-knowledge by
Advzk(P,V)(V∗).

The notion of Argument of Knowledge is related to the so-called withness-
extended emulation [Lin03]. Informally stating, the withness-extended emulation

Roughly speaking, transcript is what the prover and the verifier have exchanged in
a complete interaction.
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requires that given an adversary that produces an acceptable argument with
some probability, there exists an emulator that produces a similar argument with
the same probability together with a witness wit. Note that the emulator can
rewind the prover and verifier’s interaction to any previous move. See [BCC+16,
Def. 7] for a formal definition.

2.6 Weak Pseudorandom Function (wPRF)

In [YAL+17], a weak pseudorandom function under the LWR hardness assumtion
was proposed. More precisely, let n,m, p, q are positive integers, p ≥ 2, γ = q/p
is an odd integer and m ≥ n(log q + 1)(log p − 1), a wPRF F is described as
below:

– KeyGen(1λ). The algorithm takes as input a security parameter λ, and out-

puts x
$←− Zm

q .

– Eval(x,A). The algorithm takes as input A
$←− Zn×m

q , and outputs Fx(A) =⌊
Ax

⌉
p
.

Lemma 2 ( [YAL+17]). If the LWRn,p,q assumption holds, and m ≥ n(log q+
1)(log p− 1), then F is a secure wPRF.

We adapt the domain of x to {0, 1}m in this paper. A wRPF F has the
following properties:

– Weak Pseudorandomness. Let x1 ←− KeyGen(1λ), A
$←− Zn×m

q , y1 = Fx(A)

and x2
$←− {0, 1}m,y2

$←− Zn
p , any PPT adversary A successfully distinguishes

(x1,y1) and (x2,y2) with negligible probability.
– Strong Uniqueness. Let x1,x2 ←− KeyGen(1λ) be two secret keys, and two

random matrices A1,A2
$←− Zn×m

q , if we require m ≥ 2n(log q+1)(log p−1),
we have:

Pr[∃x1,x2,x1 ̸= x2 ∧ Fx1(A1) = Fx2(A2)] ≤ negl(λ).

3 The Underlying Accumulator for Our URS

Aiming to apply the lattice-based accumulator to constructing a unique ring
signature, we will build a modified Merkle tree and a corresponding family of
hash functions. Now the Merkle tree also allows us to accumulate the unique tag
t := bin(HUT(µ,R) · x), where µ is a message, R is a ring of signers and x is the
secret key for the real signer.

(See Figure 2 for the modified Merkle tree used in our URS). Accordingly,
we take into account the family of hash functions formally defined in Definition
9 below.
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Definition 9. Let k := ⌈log q⌉, and m := 2nk. Fix a message M and a ring R,
we define a family of hash functions as follows:

HB,t = {hA,B,t : A := [A0|A1]
$←− Zn×nk

q × Zn×nk
q ,B := [B0|B1] ∈ Zn×nk

q ×
Zn×nk
q , t ∈ {0, 1}nk} mapping from {0, 1}nk × {0, 1}nk to {0, 1}nk such that

hA,B,t(v0,v1) := bin(A0v0 +A1v1 +B0t+B1t (mod q)) ∈ {0, 1}nk.

Note that hA,B,t(v0,v1) = v is equivalent to A0v0 + A1v1 + B0t + B1t =
Gv (mod q).

Lemma 3. The family HB,t defined in Definition 9 is collision-resistant assum-
ing the hardness of the SIS∞m,n,q,θ.

Proof. Given a matrix B = [B0|B1] ∈ Zn×nk
q × Zn×nk

q and vector t ∈ {0, 1}nk.
Also given an instance SIS∞n,m,q,1 defined by A = [A0|A1]

$←− Zn×nk
q × Zn×nk

q ,
where k = ⌈log q⌉ and m = 2nk. Let hA,B,t be a hash function as defined in
Definition 9.

Suppose that there are two disticnt (v0,v1) ̸= (v′
0,v

′
1) ∈ {0, 1}nk × {0, 1}nk

such that hA,B,t(v0,v1) = hA,B,t(v
′
0,v

′
1). Then the following equalities are

equivalent.
hA,B,t(v0,v1) = hA,B,t(v

′
0,v

′
1),

G · hA,B,t(v0,v1) = G · hA,B,t(v
′
0,v

′
1) (mod q),

A0v0 +A1v1 +B0t+B1t (mod q) = A0v
′
0 +A1v

′
1 +B0t+B1t (mod q),

A0v0 +A1v1 (mod q) = A0v
′
0 +A1v

′
1 (mod q).

This equality is equivalent to A

(
v0 − v′

0

v1 − v′
1

)
= 0 (mod q). Let z :=

(
v0 − v′

0

v1 − v′
1

)
,

then z ̸= 0 and z ∈ {0, 1}m. Therefore, we have shown that z is a non-zero
solution to SIS∞n,m,q,1 problem. ⊓⊔

3.1 The Parameterized Lattice-based Accumulator Scheme

Let N = 2ℓ be a positive integer for some ℓ ∈ N. Let binℓ(·) be the binary
decomposition mapping an integer i ∈ 0, · · · , 2ℓ − 1 to a bit string in {0, 1}ℓ. For
example, 011← bin3(3), while 11← bin2(3).

The accumulator we consider in this work is parametrized by a matrix B ∈
Zn×2nk
q and a vector t ∈ {0, 1}nk, where k = ⌈log q⌉. We call it the parameterized

accumulator (or PACC for short). The PACC works as follows:

pp← PACC.Setup(n): On input a security parameter n, do:
1. Choose q. Let k := ⌈log2 q⌉, m := 2nk, N = 2ℓ.

2. Sample A
$←− Zn×m

q and output pp := A.

v← PACC.Accpp(B, t, R): On input public parameters pp and a list R :=
{p0, · · · , pN−1} with N = 2ℓ for some ℓ, do:
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1. For i ∈ {0, N − 1}, assign vi1,··· ,iℓ ← pi, where (i1, · · · , iℓ) ∈ {0, 1}ℓ ←
binℓ(i).

2. Build a Merkle tree of depth ℓ whose leaves are v0,0,··· ,0, · · · ,v1,1,··· ,1.
3. At depth i ∈ [ℓ], for j ∈ {0, i−1}, the value of the (j+1)-th node denoted

by vj1,··· ,ji , where (j1, · · · , ji) ∈ {0, 1}i ← bini(j), can be computed as

vj1,··· ,ji ← hA,B,t(vj1,··· ,ji,0,vj1,··· ,ji,1).

4. At depth 0, the root v := vϵ ← hA,B,t(v0,v1).
5. Output the accumulator value v.

wit← PACC.Witnesspp(B, t, R,p): On input public parameters pp, a ring R :=
{p0, · · · ,pN−1}, and p, perform:
1. If p /∈ R, return ⊥. Otherwise, we have p = pi for some i ∈ {0, · · · , N −

1}. Now, let (i1, · · · , iℓ) ∈ {0, 1}ℓ ← binℓ(i).
2. The witness for the fact p ∈ R is

wit := {(i1, · · · , iℓ), (vi1,··· ,iℓ−1,iℓ
, · · · ,vi1,i2

,vi1
)},

where vi1,··· ,iℓ−1,iℓ
, · · · ,vi1,i2

,vi1
are computed using PACC.Accpp(B, t, R).

0/1← PACC.Verifypp(B,v, t,p,wit): On input public parameters pp, an accu-
mulator value, a witness wit := {(i1, · · · , iℓ), (wℓ, · · · ,w1)} for p, compute:

1. Assign zℓ ← p. For j ∈ {ℓ− 1, · · · , 0}, compute

zj := ij+1 · hA,B,t(zj+1,wj+1) + ij+1 · hA,B,t(wj+1, zj+1). (1)

2. If z0 = v, return 1. Otherwise, return 0.

The following theorem guarantees the security of the PACC.

Theorem 1. Provided the hardness of the sdaÕ(n) problem, the accumulator
scheme PACC is secure.

Proof. Suppose by contradiction that there is a PPT adversary A such that the
probablity of the following event is non-negligible:

A← PACC.Setup(1λ); (R,p∗,wit∗)← A(A) :

p∗ /∈ R ∧ PACC.Verifypp(B,PACC.Accpp(B, t, R), t,p∗,wit∗) = 1.

Here matrix B and vector t parametrise the PACC. Now, we construct an algo-
rithm B that can break an SIS instance and hence break the asÕ(n) problem.

Assume that B wants to solve the SIS instance given by matrix A ∈ Zn×m
q .

Now B sets A as the output of PACC.Setup(1λ) then sends it to A. Finaly A
returns (R,p∗,wit∗). Here, the witness wit∗ := {(i∗1, · · · , i∗ℓ ), (wℓ, · · · ,w1)} in
which (i∗1, · · · , i∗ℓ ) is the binary expansion of some integer i∗ ∈ {0, · · ·N − 1}.
Let v∗ := PACC.Accpp(B, t, R). Accordingly, we will have a path [vi∗1 ,··· ,i∗ℓ = pi∗

→ vi∗1 ,··· ,i∗ℓ−1
→ · · · → vi∗1

→ v∗] from the leave pi∗ to the root v∗ of the
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Merkle tree formed through the execution of v∗ ← PACC.Accpp(B, t, R). How-
ever, through the execution of PACC.Verifypp(B,v∗, t,p∗,wit∗) = 1, we will have
the path [zℓ = p∗ → zℓ−1 → · · · → z1 → z0 = v∗]. Notice that p∗ /∈ R. Thus,
p∗ ̸= pi∗ . This implies by comparing these above two paths that there is the
smallest integer k ∈ [ℓ] satisfying that zk ̸= vi∗1 ,··· ,i∗k . Therefore, there will be
a collision for the hash function hA,B,t at the parent node of vi∗1 ,··· ,i∗k . At this
point, the theorem follows from Lemma 3 ⊓⊔

4 Lattice-based Unique Ring Signature from Accumulator

4.1 The Unique Ring Signature Construction

We present a construction of URS from ring signatures based on accumulators.
The key idea is to merge the unique tag (which is produced using the message,
the ring, and the real signer’s secret key) into the accumulator. The unique tag
defined in our work is the binary decomposition of HUT(µ,R) ·x, in which x is a
secret key. Note that we model the hash function HUT as a random oracle. The
URS construction is described below.

urs.pp← URS.Setup(n): On input a security parameter n, do:
1. Choose q. Let k := ⌈log2 q⌉, m = 2nk.

2. Sample A
$←− Zn×m

q , choose hash functions HUT and HFS, and output

urs.pp := ((n,m, q, k,A), HUT, HFS).

Here, HUT : {0, 1}∗ → Zn×m
q which will be modeled as a random orcale.

3. Consider the weak pseudorandom function F presented in Section 2.6.

(x,p)← URS.Key(urs.pp): On input public parameters urs.pp, choose x
$←−

{0, 1}m then compute p = bin(Ax ( mod q)) ∈ {0, 1}nk, and output (sk, pk) =
(x,p).

sig← URS.Sign(urs.pp, sk, µ,R): On input public parameters urs.pp := A, the
secret key sk = x for the real signer (with respect to the public key p :=
bin(Ax (mod q))) belonging to the ring R := {p1, · · · ,pN−1}, a message µ,
perform:
1. Compute B = [B0|B1]← HUT(µ,R).
2. Compute the unique tag t := bin(Fx(B) (mod p)).
3. Let acc.pp := A.
4. Run v← PACC.Accacc.pp(B, t, R) using the hash function hA,B.
5. Run wit← PACC.Witnessacc.pp(B, t, R,p) where

wit := {(i1, · · · , iℓ) ∈ {0, 1}ℓ, (wℓ, · · · ,w1) ∈ ({0, 1}nk)ℓ}.

6. Use the Fiat-Shamir Heuristic with the hash function HFS to transform
the ZKAoK in Figure 6 to a non-interactive ZKAoK protocol NIZKAoK.



Efficient Unique Ring Signatures From Lattices 15

The NIZKAoK protocol is repeated up to κ = ω(log n) (to get a negligible
soundness error) on input (A,B,v, t) and the prover’s witness (x,p,wit)
to produce a transcript Πurs := ({CMTj}κj=1, {CHj}κj=1, {RSPj}κj=1, t),
where

CHj := HFS(µ,CMTj ,A,v, R,B, t) ∈ {1, 2, 3}.

7. Output sig := Πurs.

0/1← URS.Verify(urs.pp, µ,R, sig): On input public parameters urs.pp, a mes-
sage µ, a ring of signers R and a signature sig, compute:

1. Compute B = [B0|B1]← HUT(µ,R). Let acc.pp := (n,m, q, k,A).
2. Run v← PACC.Accacc.pp(B, t, R) using the hash function hA,B,t.
3. Parse sig = Πurs := ({CMTi},CH, {RSPi}, t).

Return 0 if CH ̸= HFS(µ,CMT,A,v, R,B, t)..
4. Run ZKAoK.Verify to check the validity of each tuple (CMTi,CHi,RSPi).

If any of them does not hold then return 0. Otherwise, return 1.

4.2 A ZKAoK for the Unique Ring Signatures

For the accumulator-based unique ring signatures from lattices, we consider the
following relation:

RURS := {(A,B,v, t) ∈ Zn×m
q × Zn×m

q × {0, 1}nk × {0, 1}nk;
x ∈ {0, 1}m,p ∈ {0, 1}nk,wit ∈ {0, 1}ℓ × ({0, 1}nk)ℓ :
PACC.VerifyA(B,v, t,p,wit) = 1 ∧ Ax = Gp ∧ Fx(B) = Gt}.

We will design a ZKAoK for the relation RURS. That is, the ZKAoK is
to prove that a prover P knows a witness (x,p,wit) for a given statement
(A,B,v, t) such that ((A,B,v, t);x,p,wit) ∈ RURS. Note that v = z0, and
p = zℓ.

We introduce here some new notations:

– Let Bnkm := {x = (x1, · · · , xm) : x ∈ {0, 1}m ∧ ∥x∥1 = nk} be the set of
vectors in {0, 1}m having Hamming weight nk. Here ∥x∥1 :=

∑m
i=1 |xi|.

– Let Sm be the set of all permutations of m elements.

– Let ext(b, z) :=

(
b · z
b · z

)
, and dbl(t) :=

(
t
t

)
.

– For b ∈ {0, 1}, π ∈ Sm, we denote by Tb,π the permutation that transforms

w =

(
y0

y1

)
, where yi ∈ Zm

q , into Tb,π(y) =

(
π(yb)
π(yb)

)
, where zi ∈ Zm

q .

Note that, for all b, c ∈ {0, 1}, π, ϕ ∈ Sm and all z,w ∈ {0, 1}m, the following
equivalences hold:{

ẑ := ext(c, z) ∧ z ∈ Bnkm ⇐⇒ Tb,π(ẑ) = ext(c⊕ b, π(z)) ∧ π(z) ∈ Bnkm ;

ŵ := ext(c,w) ∧w ∈ Bnkm ⇐⇒ Tb,π(ŵ) = ext(c⊕ b, ϕ(w)) ∧ ϕ(w) ∈ Bnkm .
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Now, we analyze the relation RURS. We start with the condition

PACC.VerifyA(B,v, t,p,wit) = 1.

From Equation (1), we have

Gzj := ij+1·(A0zj+1+A1wj+1+B0t+B1t)+ij+1·(A0wj+1+A1zj+1+B0t+B1t),

which is equivalent to Gzj := A ·ext(ij+1, zj+1)+A ·ext(ij+1,wj+1)+B ·dbl(t).
Let ẑj+1 := ext(ij+1, zj+1), ŵj+1 := ext(ij+1,wj+1), and t̂ := dbl(t) we have{

Gzj = A · ẑj+1 +A · ŵj+1 +B · t̂,∀j ∈ [ℓ− 1]

Gv = A · ẑ1 +A · ŵ1 +B · t̂
.

We exploit the “extend-then-permute” technique for the ZKAoK. For doing
that, we

– extend A = [A0|A1] to A∗ = [A0|0n×nk|A1|0n×nk], A to Â := [A|0n×m],

B to B̂ := [B|0n×m], G to G∗ := [G|0n×nk]
– extend z1, · · · , zℓ, w1, · · · ,wℓ to z∗1, · · · , z∗ℓ , w∗

1, · · · ,w∗
ℓ ∈ Bnkm , respectively.

These vectors are extended by concatenating a length-nk vector of suitable
Hamming weight.

– also, extend x, t̂ to x∗, t̂
∗
by appending vector {0}m, respectively.

We will a brief description of the ZAKoK for RURS aiming to the goals and the
strategies that a prover P would like to perform.

Common inputs: (A,B,v, t), where A is extended to A∗ and Â, while B is

extended to B̂ as above.
P’s inputs: (x,p,wit), where wit := {(i1, · · · , iℓ), (wℓ, · · · ,w1))}.
P’s goal: P proves in zero knowledge that it knows that

Goal 1. z∗i , w
∗
i ∈ Bnkm , ẑ∗j = ext(ij , z

∗
j ), ŵ

∗
j = ext(ij ,w

∗
j ) for all i ∈ [ℓ]; and

that
Goal 2. the following equations hold:

∀j ∈ [ℓ− 1],A∗ · ẑ∗j+1 +A∗ · ŵ∗
j+1 +B · t̂ = G∗z∗j (mod q)

A∗ · ẑ∗1 +A∗ · ŵ∗
1 +B · t̂ = Gv (mod q)

Â · x∗ = G∗z∗ℓ = Gp (mod q)

Fx∗(B̂) = Gt (mod p)

(2)

Techniques/Strategies for Prover P:

For Goal 1: For each j ∈ [ℓ], P samples permutations πj , ϕj
$←− Sm and bj

$←−
{0, 1} then it shows that

πj(z
∗
j ) ∈ Bnkm ∧ Tbj ,πj

(ẑ∗j ) = ext(ij ⊕ bj , πj(z
∗
j ))

ϕi(w
∗
j ) ∈ Bnkm ∧ Tbj ,πj

(ŵ∗
j ) = ext(ij ⊕ bj , ϕj(w

∗
j ))
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For Goal 2: P uniformly samples random masking vectors r
(1)
z , · · · , r(ℓ)z ,

$←− Zm
q ;

r
(1)
ẑ , · · · , r(ℓ)ẑ ; r

(1)
ŵ , · · · , r(ℓ)ŵ ; r

(A)
x ; r

(B)
x

$←− Z2m
q ; r

(B)
e

$←− Zn
q .

We can transform last equation in Equation (2) as
⌊
B̂x∗⌉

p
= Gt (mod p).

Given γ = p/q, let e = γ ·Gt− B̂x∗, we have B̂x∗ + e = γ ·Gt (mod q), or
equivalently

B̂(x∗ + r(B)
x ) + (e+ r(B)

e ) = γ ·Gt+ B̂r(B)
x + r(B)

e (mod q).

That ı́s, P proves V that

A∗(ẑ∗1 + r
(1)
ẑ ) +A∗(ŵ∗

1 + r
(1)
ŵ )−Gv+B · t̂ = A∗r

(1)
ẑ +A∗r

(1)
ŵ (mod q);

∀j ∈ [ℓ− 1],A∗(ẑj+1 + r
(j+1)
ẑ ) +A∗(ŵj+1 + r

(j+1)
ŵ ) +B · t̂−G∗(z∗j + r

(j+1)
z )

= A∗r
(j+1)
ẑ +A∗r

(j+1)
ŵ −G∗r

(j)
z (mod q);

Â(x∗ + r
(A)
x )−G∗(z∗ℓ + r

(ℓ)
z ) = Âr

(A)
x −G∗r

(ℓ)
z (mod q);

B̂(x∗ + r
(B)
x ) + (e+ r

(B)
e ) = γ ·Gt+ B̂r

(B)
x + r

(B)
e (mod q).

.

The following lemma says that there exists a ZKAoK for the relation RURS.
The ZKAoK given in Figure 6 is a Stern type one [Ste96] which is a 2-Sigma
protocol enjoying 3-special soundness. That is, we need up to 3 transcripts in
order to be able to extract the witness.

Lemma 4. Assume that the SIS∞m,n,q,θ problem is hard. Then there exists a sta-
tistical ZKAoK for the relation RURS with perfect completeness and communica-
tion cost Õ(ℓ · n). In particular:

– There exists an efficient simulator that, on input (A,v), outputs an accepting
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (x′,p′,wit′) such
that ((A,B,v, t),x′,p′,wit′) ∈ RURS.

4.3 Analysis of the ZKAoK for the Relation RURS

Theorem 2 (Completeness and Communication Cost). The interactive
protocol described in Figure 6 is perfectly complete and costs Õ(ℓ · n) bits for
communication. It is a statistical zero-knowledge argument of knowledge if the
string commitment COM is statistically hiding and computationally binding.

Follows section 3.1, one can easilly check that:

Pr[P((A,B,v, t),x,p,wit),V(B,v, t,p,wit) = 1] = 1,

where ((A,B,v, t),x,p,wit) ∈ RURS, that means an honest the prover P al-
ways successfully convinces the verifier V. To compare to the accumulator in

[LLNW16], our approach adds extra information of (η, r
(B)
x ,B, t) which just

costs marginally larger. Hence, the communication cost of our protocol is of
order Õ(ℓ ·m · logq) = Õ(ℓ · n) bits.
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Commitment. P performs:
1. Samples randomnesses ρ1, ρ2, ρ3 for COM

2. For j ∈ [ℓ], sample πj , ϕj
$←− Sm; τ, η

$←− S2m; ζ
$←− Sn; bj

$←− {0, 1}.
3. Sample random masking vectors r

(1)
z , · · · , r(ℓ)z

$←− Zm
q ;

r
(1)
ẑ , · · · , r(ℓ)ẑ ; r

(1)
ŵ , · · · , r(ℓ)ŵ ; r

(A)
x ; r

(B)
x

$←− Z2m
q ; r

(B)
e

$←− Zn
q .

4. Compute comitment CMT = (C1, C2, C3), where

(i) C1 := COM({bj , πj , ϕj}ℓj=1; τ ; η;A
∗r

(1)
ẑ +A∗r

(1)
ŵ ; Âr

(A)
x −G∗r

(ℓ)
z ;

γ ·Gt+ B̂r
(B)
x + r

(B)
e ; {A∗r

(j+1)
ẑ +A∗r

(j+1)
ŵ −G∗r

(j+1)
z }ℓ−1

j=1; ρ1)

(ii) C2 := COM({πj(r
(j)
z );Tbj ,πj (r

(j)
ŵ );Tb̄j ,ϕj

(r
(j)
ẑ )}ℓj=1; τ(r

(A)
x ), η(r

(B)
x ),

ζ(r
(B)
e ); ρ2)

(iii) C3 := COM({πj(z
∗
j + r

(j)
z );Tbj ,πj (ẑj

∗ + r
(j)
ẑ );Tb̄j ,ϕj

(ŵj
∗ + r

(j)
ŵ )}ℓj=1;

τ(r
(A)
x + x∗); η(r

(B)
x + x∗); ζ(r

(B)
e + e); ρ3)

Challenge. V chooses a challenge CH
$←− {1, 2, 3} and sends back to P.

Response. What P responds will depend on the value of CH. Namely,
1. If CH = 1: Let a

(A)
x := τ(x∗), a

(B)
x := η(x∗), b

(A)
x := τ(r

(A)
x ), b

(B)
x :=

η(r
(B)
x ), a

(B)
e := ζ(e);b

(B)
e := ζ(r

(B)
e ) and for each j ∈ [ℓ], compute:{

aj := ij ⊕ bj ;a
(j)
z := πj(z

∗
j );a

(j)
w := ϕj(w

∗
j );

b
(j)
z := πj(r

(j)
z );b

(j)
ẑ := Tbj ,πj (r

(j)
ẑ );b

(j)
ŵ := Tbj ,ϕj

(r
(j)
ŵ ).

.

Set RSP := ({aj ;a
(j)
z ;a

(j)
w ;b

(j)
z ;b

(j)
ẑ ;b

(j)
ŵ }

ℓ
j=1;a

(A)
x ;b

(A)
x ;a

(B)
x ;b

(B)
x ;

a
(B)
e ,b

(B)
e ; ρ2; ρ3)

2. If CH = 2: Let τ̂ := τ ; η̂ := η; ζ̂ := ζ; c
(A)
x := x∗ + r

(A)
x ; c

(B)
x := x∗ +

r
(B)
x ; c

(B)
e := e+ r

(B)
e and for each j ∈ [ℓ], compute:

cj = bj ; π̂j := πj ; ϕ̂j := ϕj ; c
(j)
z := z∗j + r

(j)
z ; c

(j)
ẑ := ẑ∗j + r

(j)
ẑ ;

c
(j)
ŵ := ŵ∗

j + r
(j)
ŵ .

Set RSP := ({cj ; π̂j ; ϕ̂j ; c
(j)
z ; c

(j)
ẑ ; c

(j)
ŵ }

ℓ
j=1; τ̂ ; c

(A)
x ; η̂; c

(B)
x ; ζ̂; c

(B)
e ; ρ1; ρ3).

3. If CH = 3 Let τ̃ := τ ; η̃ := η; ζ̃ := ζ; g(A)
x := r

(A)
x ; g(B)

x := r
(B)
x ;

g(B)
e := r

(B)
e and for each j ∈ [ℓ], compute:

gj := bj ; π̃j := πj ; ϕ̃j := ϕj ;g
(j)
z := r

(j)
z ;g

(j)
ẑ := r

(j)
ẑ ;g

(j)
ŵ := r

(j)
ŵ ;

Set RSP := ({gj ; π̃j ; ϕ̃j ;g
(j)
z ;g

(j)
ẑ ;g

(j)
ŵ }

ℓ
j=1; τ̃ ;g

(A)
x ; η̃;g(B)

x ; ζ̃;g(B)
e ; ρ1; ρ2).

ZKAoK.Verify. Upon receiving RSP, V verifies it following below cases:

1. If CH = 1: Parse RSP. Check that a
(A)
x ∈ Bm

2m; a
(B)
x ∈ Bm

2m. Check that:
(i) C2 := COM({b(j)

z ;b
(j)
ẑ ;b

(j)
ŵ }

ℓ
j=1;b

(A)
x ;b

(B)
x ;b

(B)
e ; ρ2)

(ii) C3 := COM({a(j)
z + b

(j)
z ;a

(j)
ẑ + b

(j)
ẑ ;a

(j)
ŵ + b

(j)
ŵ }

ℓ
j=1;a

(A)
x + b

(A)
x ;

a
(B)
x + b

(B)
x ;a

(B)
e + b

(B)
e ; ρ3)

2. If CH = 2 Parse RSP. Check that:
(i) C1 := COM({cj , π̂j , ϕ̂j}ℓj=1; τ̂ ; η̂;A

∗c
(1)
ẑ +A∗c

(1)
ŵ −Gv+ B̂t;

{A∗c
(j+1)
ẑ + A∗c

(j+1)
ŵ − G∗c

(j+1)
z }ℓ−1

j=1; Âc
(A)
x − G∗c

(ℓ)
z ; B̂c

(B)
x +

c
(B)
e ; ρ1)

(ii) C3 := COM({π̂j(c
(j)
z );Tcj ,π̂j (c

(j)
ẑ );Tcj ,ϕ̂j

(c
(j)
ŵ )}ℓj=1; τ̂(c

(A)
x ); η̂(c

(B)
x );

ζ̂(c
(B)
e ); ρ3)

3. If CH = 3 Parse RSP. Check that:
(i) C1 := COM({gj ; π̃j ; ϕ̃j}ℓj=1; τ̃ ; η̃;A

∗g
(1)
ẑ +A∗g

(1)
ŵ ;

{A∗g
(j+1)
ẑ +A∗g

(i+1)
ŵ −G∗g(j)

z }
ℓ−1
j=1; Âg(A)

x −G∗g(ℓ)
z ; γ ·Gt+B̂g(B)

x +

g(B)
e ; ρ1)

(ii) C2 := COM({π̂j(g
(j)
z );Tgj ,π̂j (g

(j)
ẑ );Tgj ,ϕ̂j

(g
(j)
ŵ )}ℓj=1; τ̃(g

(A)
x ); η̃(g(B)

x );

ζ̃(g(B)
e ); ρ2)

If all conditions hold, V returns accepted. Otherwise, V returns rejected.

Fig. 6: The ZKAoK for the relation RURS. Here COM is the string commitment
scheme introduced in Section 2.4
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Lemma 5 (Zero-Knowledge Property). The interactive protocol described
in Figure 6 is a statistical zero-knowledge argument, that is Advzk(P,V)(V∗) ≤
negl(λ), if the string commitment COM is statistically hiding.

Proof. The proof is given in Appendix A.1.

Lemma 6 (Argument of Knowledge (i.e., Soundness)). Suppose the string
commitment COM is computationally biding, there exists a knowledge extractor K
that takes input as a commitment CMT and its valid reponses (RSP1,RSP2,RSP3)
then outputs (x∗,p∗,wit∗) such that ((A,B,v, t),x∗,p∗,wit∗) ∈ RURS. That is,
Advsound(P,V)(P∗) ≤ negl(λ).

Proof. The proof is given in Appendix A.2.

4.4 Analysis of the Unique Ring Signature Scheme

Correctness. The completeness of the underlying ZKAoK protocol described
in Figure 6 directly implies the correctness of the corresponding unique ring sig-
nature. An honest ring member’s signature is always accepted by the verification
algorithm since he can efficiently produce a tuple (x,p,wit) such that

((A,B,v, t),x,p,wit) ∈ RURS.

Efficiency. The signature bit-size of the given unique ring signature is of order
Õ(logN · n) as the communication cost of the underlying ZKAoK protocol is of
order Õ(ℓ · n).

Theorem 3 (Unforgeability). In the random oracle model, the unique ring
signature scheme given in Section 4 is unforgeable with respect to insider cor-
ruption under the hardness of the SIS∞m,n,q,θ problem.

Theorem 4 (Anonymity). In the random oracle model, the unique ring sig-
nature scheme is statistically anonymous under the zero-knowledge of the under-
lying ZKAoK protocol and the hardness of the decision-LWRn,m,q,p problem.

Theorem 5 (Uniqueness). In the random oracle model, the unique ring sig-
nature scheme provides uniqueness against a probabilistic polynomially bounded
adversary under the zero-knowledge property, the soundness of the underlying
ZKAoK protocol, and the hardness of the decision-LWRn,m,q,p problem.

Theorem 6 (Non-colliding property). The unique ring signature scheme
given in Section 4 is non-colliding under the hardness of decisional-LWRn,q,p

problem with m ≥ n(log q + 1)(log p− 1).

We provide the proof of these theorems in Appendix B.
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5 Concrete Parameters

We choose the parameters m,n, q, p such that m ≥ n(log q + 1)(log p − 1) and
θ = 1 to ensure that the SIS and LWR problems are computationally hard. The
security level for all parameter sets is for the root Hermite factor δ ≈ 1.007.

The concrete parameters for our URS scheme are provided in Table 2. Since
our URS scheme has a signature size that is logarithmic to the number of ring
members, the signature size gradually grows when this number increases.

Table 2: Concrete instantiations of URS scheme.
Parameters Size in MB

Number of ring users (N) m n q θ p Public key Signature

16 4608 128 218 1 4 2.4 7.85

32 4608 128 218 1 4 2.4 9.53

64 4608 128 218 1 4 2.4 11.2

128 4608 128 218 1 4 2.4 12.89

256 4608 128 218 1 4 2.4 14.56

6 Conclusions

In this paper, we present the first URS based on post-quantum hardness as-
sumptions with logarithmic signature size. We showed that our scheme enjoys
anonymity, unforgeability and unique properties in the random oracle model
under the SIS and LWR assumptions. Since we only prove our URS scheme
in ROM, we leave the proof in the quantum random oracle model as an open
problem.

7 Acknowledgements

We are grateful to the ESORICS 2022 anonymous reviewers for their helpful
comments. This work is partially supported by the Australian Research Council
Linkage Project LP190100984. Dung Duong is also partially suported by the
RevITAlise (RITA) Research Grants from University of Wollongong. Huy Quoc
Le has been sponsored by a CSIRO Data61 PhD Scholarship and CSIRO Data61
Top-up Scholarship.

References

Ajt96. M. Ajtai. Generating Hard Instances of Lattice Problems (Extended Ab-
stract). In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, pages 99–108, New York, NY, USA, 1996.
ACM.



Efficient Unique Ring Signatures From Lattices 21

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, Advances in Cryptology – EUROCRYPT 2016, pages 327–357, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.
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LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: Logarithmic-size ring
signatures and group signatures without trapdoors. In Marc Fischlin and
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A Proof of The Underlying Accumulator

A.1 Proof of Lemma 5

Proof. Let S be a PPT simulator which interacts with a (possibly dishonest)

verifier V̂. S will choose a random value CH ∈ {1, 2, 3}. Depending on the chal-

lenge value chosen by V̂ (possibly dishonest) and CH, we simulate the protocol

as following scenarios. We denote by Π
(sim)
urs := (CMT(sim),CH,RSP(sim), t) the

simulated transcript.

Case CH = 1: S follows below steps:

1. Sample x′∗, {ẑ′j∗, ŵ
′
j
∗}ℓj=1 ∈ Z2m

q , {z′∗j }ℓj=1 ∈ Zm
q , e′ ∈ Zn

q such that:

∀j ∈ [ℓ− 1],A∗ · ẑ′∗j+1 +A∗ · ŵ′∗
j+1 +B · t̂ = G∗z′∗j (mod q)

A∗ · ẑ′∗1 +A∗ · ŵ′∗
1 +B · t̂ = Gv (mod q)

Â · x′∗ = G∗z′∗ℓ = Gp (mod q)

Fx′∗(B̂) = Gt (mod p)

B̂x∗ + e = γ ·Gt (mod q)

2. Sample randomnesses ρ1, ρ2, ρ3 for COM.

3. For j ∈ [ℓ], sample permutations πj , ϕj
$←− Sm; τ, η

$←− S2m; ζ
$←− Sn and

bj
$←− {0, 1}.

4. Sample random masking vectors r
(1)
z , · · · , r(ℓ)z

$←− Zm
q ;

r
(1)
ẑ , · · · , r(ℓ)ẑ ; r

(1)
ŵ , · · · , r(ℓ)ŵ ; r

(A)
x ; r

(B)
x

$←− Z2m
q ; r

(B)
e

$←− Zn
q .

5. Send V̂ a commiment CMT(sim) := (C ′
1, C

′
2, C

′
3) computed as below:

C ′
1 := COM({bj , πj , ϕj}ℓj=1; τ ; η; ζ;A

∗r
(1)
ẑ +A∗r

(1)
ŵ ; Âr

(A)
x −G∗r

(ℓ)
z ;

B̂r
(B)
x + γ ·Gt+ r

(B)
e ; {A∗r

(j+1)
ẑ +A∗r

(j+1)
ŵ −G∗r

(j+1)
z }ℓ−1

j=1; ρ1)

C ′
2 := COM({πj(r

(j)
z );Fbj ,πj

(r
(j)
ŵ );Fb̄j ,ϕj

(r
(j)
ẑ )}ℓj=1; τ(r

(A)
x ); η(r

(B)
x ); ζ(r

(B)
e ); ρ2)

C ′
3 := COM({πj(z

′
j
∗ + r

(j)
z );Fbj ,πj

(ẑ′j
∗
+ r

(j)
ẑ );Fb̄j ,ϕj

(ŵ′
j

∗
+ r

(j)
ŵ )}ℓj=1;

τ(r
(A)
x + x′∗); η(r

(B)
x + x′∗); ζ(r

(B)
e + e′); ρ3);

6. Upon receving a challenge CH ∈ {1, 2, 3} from V̂, S responds as follows:

https://ia.cr/2017/781
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– If CH = 1: Output ⊥ and abort.

– If CH = 2: Send reponse RSP := ({cj ; π̂j ; ϕ̂j ; z
′
j
∗ + r

(j)
z ; ẑ′∗j + r

′(j)
ẑ ; ŵ′∗

j +

r
(j)
ŵ }

ℓ
j=1; τ̂ ; η̂; ζ̂;x

′∗ + r
(A)
x ;x′∗ + r

(B)
x ; e′ + r

(B)
e ; ρ1; ρ3).

– If CH = 3: Send response RSP := ({bj ; π̃j ; ϕ̃j ; r
(j)
z ; r

(j)
ẑ ; r

(j)
ŵ }

ℓ
j=1; τ̃ ; r

(A)
x ; η̃; r

(B)
x ; ζ̃; r

(B)
e ρ1; ρ2).

Case CH = 2: S follows below steps:

1. Sample x′∗ $←− Bm2m, e′
$←− Zn

q .

2. For j ∈ [ℓ], sample {i′j , b′j}
$←− {0, 1}; πj , ϕj

$←− Sm; τ, η
$←− S2m; ζ

$←− Sn and

{z′∗j ,w′∗
j }

$←− Bnkm .

3. Sample random masking vectors r
(1)
z , · · · , r(ℓ)z

$←− Zm
q ; r

(1)
ẑ , · · · , r(ℓ)ẑ ;

r
(1)
ŵ , · · · , r(ℓ)ŵ ; r

(A)
x ; r

(B)
x

$←− Z2m
q ; r

(B)
e

$←− Zn
q .

4. Let ẑ′∗j := ext(i′j , z
′∗
j ), ŵ

′∗
j := ext(i′j ,w

′∗
j ).

5. Send V̂ a commiment CMT(sim) := (C ′
1, C

′
2, C

′
3) computed as below:

C ′
1 := COM({bj , πj , ϕj}ℓj=1; τ ; η; ζ;A

∗r
(1)
ẑ +A∗r

(1)
ŵ ; Âr

(A)
x −G∗r

(ℓ)
z ;

B̂r
(B)
x + γ ·Gt+ r

(B)
e ; {A∗r

(j+1)
ẑ +A∗r

(j+1)
ŵ −G∗r

(j+1)
z }ℓ−1

j=1; ρ1);

C ′
2 := COM({πj(r

(j)
z );Fbj ,πj

(r
(j)
ŵ );Fb̄j ,ϕj

(r
(j)
ẑ )}ℓj=1; τ(r

(A)
x ); η(r

(B)
x ); ζ(r

(B)
e ); ρ2);

C ′
3 := COM({πj(z

′
j
∗ + r

(j)
z );Fbj ,πj

(ẑ′j
∗
+ r

(j)
ẑ );Fb̄j ,ϕj

(ŵ′
j

∗
+ r

(j)
ŵ )}ℓj=1;

τ(r
(A)
x + x′∗); η(r

(B)
x + x′∗); ζ(r

(B)
e + e′); ρ3).

6. Upon receving a challenge CH ∈ {1, 2, 3} from V̂, S responds as follows:

– If CH = 1: Send response RSP(sim) := ({i′j ⊕ b′j ;πj(z
′
j
∗);ϕ(w′

j
∗);πj(r

(j)
z );

Fbj ,πj
(r

(j)
ẑ );Fbj ,ϕj

(r
(j)
ŵ )}ℓj=1; τ(x

′∗); η(x′∗); ζ(e′); τ(r
(A)
x ); η(r

(B)
x ); ζ(r

(B)
e ); ρ2; ρ3)

– If CH = 2: Output ⊥ and abort.
– If CH = 3: Send response RSP(sim) as in the case {CH = 1,CH = 3}.

Case CH = 3: S follows steps (1, 2, 3, 4) as in the case CH = 2 and then follows:

5. Send V̂ a commiment CMT(sim) := (C ′
1, C

′
2, C

′
3) computed as below:

C ′
1 := COM({b′j , π̂j , ϕ̂j}ℓj=1; τ̂ ;A

∗(ẑ′1 + r
(1)
ẑ ) +A∗(ŵ′

1 + r
(1)
ŵ )−Gp;

{A∗(ẑ′j+1 + r
(j+1)
ẑ ) +A∗(ŵ′

j+1 + r
(j+1)
ŵ )−G∗(z′j

∗ + r
(j+1)
z )}ℓ−1

j=1;

Â(x′∗ + r
(A)
x )−G∗(z′ℓ

∗ + r
(ℓ)
z ); B̂(x′∗ + r

(B)
x ) + e′ + r

(B)
e ; ρ1);

C ′
2 := COM({πj(r

(j)
z );Fbj ,πj

(r
(j)
ŵ );Fb̄j ,ϕj

(r
(j)
ẑ )}ℓj=1; τ(r

(A)
x ); η(r

(B)
x ); ζ(r

(B)
e ); ρ2)

C ′
3 := COM({πj(z

′
j
∗ + r

(j)
z );Fbj ,πj

(ẑ′j
∗
+ r

(j)
ẑ );Fb̄j ,ϕj

(ŵ′
j

∗
+ r

(j)
ŵ )}ℓj=1;

τ(r
(A)
x + x′∗); η(r

(B)
x + x′∗); ζ(r

(B)
e + e′); ρ3).

6. Upon receving a challenge CH ∈ {1, 2, 3} from V̂, S responds as follows:

– If CH = 1: Send response RSP(sim) as in the case {CH = 2,CH = 1}.
– If CH = 2: Send response RSP(sim) as in the case {CH = 1,CH = 2}.
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– If CH = 3: Output ⊥ and abort.

In the aforementioned cases, in comparison with the commitment CMT and
the challenge CH in the real interaction, the distribution of CMT(sim) and the
distribution of CH are statistically close since COM is statistically hiding. Let ϵ
denoted a negligible probability, one can check that the simulator S aborts with
probability equal to ( 13 + ϵ). In the case that S does not halt, compared to the
distribution of the transcript of the prover in the real interaction, that of the one
generated by S is also statistically close. As a result, S successfully simulates
the honest prover with probability equal to (23 + ϵ). ⊓⊔

A.2 Proof of Lemma 6

Proof. We now prove the soundness property of the protocol described in Figure
6 in order to show that it is a zero knowledge argument of knowledge for the
relation RURS. Let K be a knowledge extractor which takes input as 3 valid
responses of CMT, where:
RSP1 := ({aj ;a(j)z ;a

(j)
w ;b(j)

z ;b
(j)
ẑ ;b

(j)
ŵ }

ℓ
j=1;a

(A)
x ;b(A)

x ;a
(B)
x ;b(B)

x ;a
(B)
e ;b(B)

e ; ρ2; ρ3)

RSP2 := ({cj ; π̂j ; ϕ̂j ; c
(j)
z ; c

(j)
ẑ ; c

(j)
ŵ }

ℓ
j=1; τ̂ ; c

(A)
x ; η̂; c

(B)
x ; ζ̂; c

(B)
e ; ρ1; ρ3)

RSP3 := ({gj ; π̃j ; ϕ̃j ;g
(j)
z ;g

(j)
ẑ ;g

(j)
ŵ }

ℓ
j=1; τ̃ ;g

(A)
x ; η̃;g

(B)
x ; ζ̃;g

(B)
e ; ρ1; ρ2),

and outputs (x′,p′,wit′) such that:

((A,B,v, t),x′,p′,wit′) ∈ RURS.

Following the verification steps in Figure 6, by comparing each item in the same
commitments between different cases of CH the verification algorithm, we have:

a
(A)
x ∈ Bm2m,a

(B)
x ∈ Bm2m, τ̃ = τ̂ , η̃ = η̂, ζ̃ = ζ̂

B̂c
(B)
x = η̂(c

(B)
x ) mod q,

b(A)
x = τ̃(g

(A)
x ),b(B)

x = η̃(g
(B)
x ),b(B)

e = η̃(g
(B)
e ),a

(A)
x + b(A)

x = τ̂(c
(A)
x ),

a
(B)
x + b(B)

x = η̂(c
(B)
x ),a

(B)
e + b(B)

e = ζ̂(c
(B)
e )

A∗c
(1)
ẑ +A∗c

(1)
ŵ −Gp = A∗g

(1)
ẑ +A∗g

(1)
ŵ mod q,

Âc
(A)
x −G∗c

(ℓ)
z = Âg

(A)
x −G∗g

(ℓ)
z mod q,

{A∗c
(j+1)
ẑ +A∗c

(j+1)
ŵ −G∗c

(j+1)
z }ℓ−1

j=1 = {A∗g
(j+1)
ẑ +A∗g

(i+1)
ŵ −G∗g

(j+1)
z }ℓ−1

j=1 mod q,

and for all j ∈ [ℓ] :
cj = gj , π̂j = π̃j , ϕ̂j = ϕ̃j

a
(j)
z + b(j)

z = π̂j(c
(j)
z ),a

(j)
ẑ + b

(j)
ẑ = Tcj ,π̂j (c

(j)
ẑ ),a

(j)
ŵ + b

(j)
ŵ = Tcj ,ϕ̂j

(e
(j)
ŵ ),

b(j)
z = π̂j(g

(j)
z ),b

(j)
ẑ = Tgj ,π̂j (g

(j)
ẑ ),b

(j)
ŵ = Tgj ,ϕ̂j

(g
(j)
ŵ ).
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Let x∗ = τ̂−1(a
(A)
x ), ∀j ∈ [ℓ], we have: ij = aj ⊕ cj ; z

∗
j = π̂−1

j (a
(j)
z );w∗

j =

ϕ̂−1
j (a

(j)
w ); ẑj = c

(j)
ẑ − p

(j)
ẑ ; ŵj = c

(j)
ŵ − p

(j)
ŵ . We observe that:{

x∗ ∈ Bm2m; {z∗j ,w∗
j}ℓj=1 ∈ Bnkm ;

ẑj = ext(ij , z
∗
j ); ŵj = ext(ij ,w

∗
j ).

The knowledge extractor K now computes:{
Gz∗j = A∗ · ext(ij+1, z

∗
j+1) +A∗ · ext(ij+1,w

∗
j+1) +B · t̂ mod q,∀j∈ [ℓ− 1]

Gv = A∗ · ext(i1, z∗1) +A∗ · ext(i1,w∗
1) +B · t̂ mod q

Next, K performs:

– Reduce x∗ ∈ Bm2m to x′ ∈ {0, 1}m by dropping the last m coordinates.
– Reduce {z∗j ,w∗

j}ℓj=1 ∈ Bnkm to {z′j∗,w′
j
∗}ℓj=1 ∈ {0, 1}nk by dropping the last

nk coordinates.

Now we have:{
Gz′j = A · ext(ij+1, z

′
j+1) +A · ext(ij+1,w

′
j+1) +B · t̂ mod q,∀j∈ [ℓ− 1]

Gv = A · ext(i1, z′1) +A · ext(i1,w′
1) +B · t̂ mod q

These above equations hold when:{
z′0 = v

z′j := ij+1 · hA,B,t(z
′
j+1,w

′
j+1) + ij+1 · hA,B,t(w

′
j+1, z

′
j+1),∀j ∈ [ℓ− 1]

Let p′ = z′ℓ, wit
′ = ((ij)

ℓ
j=1, (w

′
j)

ℓ
j=1), we have PACC.Verifypp(B,v, t,p′,wit′) =

1. Hence, K can successfully outputs a tuple (x′,p′,wit′) such that:

((A,B,v, t),x′,p′,wit′) ∈ RURS.

This completes the proof. ⊓⊔

B Proof of The Lattice-based URS Scheme

B.1 Proof of Theorem 3

The following lemma will be helpful for the proof of the unforgeability of our
proposed URS.

Lemma 7 ( [Lyu08, Lemma 8]). For any matrix A ∈ Zn×m
q and a uniformly

random x
$←− {0, 1}m, the probability that there exists another x′ ∈ {0, 1} \ {x}

such that Ax = Ax′ mod q is at least 1− 2n·log q−m.
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Proof. Suppose that there is an adversary A that can break the unforgeability of
the URS given in Section 4 with non-negligible advantage ϵ. We now construct
an algorithm B with a non-negligible advantage that either breaks the soundness
of the ZKAoK protocol given in Lemma 6, breaks the security of the accumulator

presented in Theorem 1, or solves the SIS instance given by A
$←− Zn×m

q .

To simulate the Unforgeability game for A, B sets the public parameter
urs.pp to the matrix A. To answer A’s corruption query on the i-th member to
Osk, B faithfully returns pairs of (sk, pk) which are distributed exactly as the

real scheme. Namely, B chooses a secret key x
$←− {0, 1}m and then returns the

public key computed as p := bin(Ax mod q). Here, B models HFS as a random
oracle. To answer each of qFS hash queries to HFS from A, B returns a value
chosen uniformly from {1, 2, 3}κ. Notice that each hash query to HFS consists
of a message µ, κ commitments CMTj ’s, matrix A, vector v,, matrix B, ring R
and unique tag t. In order to answer a query (µ,R) to OSign from A, B returns
a valid triple (µ,R, sig).

Assuming that after querying,A successfully forges a valid triple (µ(for), R(for), sig(for))
and wins the game defined in Figure 4 with a non-negligible probability, in which

sig(for) := ({CMT
(for)
j }κj=1, {CH

(for)
j }κj=1, {RSP

(for)
j }κj=1, t

(for)).

Note that, with probability ϵ−3−κ, there is a hash query made by the adversary
A at the Query phase, which is indexed by some t∗ ∈ {1, · · · , qFS} such that

(µ(for),CMT
(for)
j ,A,v(for), R(for),B(for), t(for))j∈[κ] has been the t∗-th hash query of

A, where B(for) := HUT(µ
(for), R(for)), t(for) := bin(Fx(for)(B(for))(modq)), v(for) :=

PACC.AccA(B(for), t(for), R(for)) for some x(for) ∈ {0, 1}m .

To extract the solution to the given SIS instance, B needs to re-run up to
32·qFS/(ϵ−3−κ) executions of A with the same random tape and the same input
as in the first A’s execution. In each new execution, the first t∗− 1 hash queries
to HFS get the same responses as in the first execution. However, from the t∗-th
hash query to the qFS-th one, the responses are freshly sampled at random from
{1, 2, 3}κ. Using the forking lemma [BPVY01], at the t∗-th hash query where
a forking occurs, with the probability at least 1/2, the algorithm B can obtain

a 3-fork with distinct reponses CH(t∗,1),CH(t∗,2),CH(t∗,3) ∈ {1, 2, 3}κ regarding

to the same hash query input (µ(for),CMT
(for)
j ,A,v(for), R(for),B(for), t(for))j∈[κ].

By the result of [BPVY01], with probability 1 − (7/9)κ, there exists an index

j ∈ {1, · · · , κ} such that (CH
(t∗,1)
j ,CH

(t∗,2)
j ,CH

(t∗,3)
j ) = (1, 2, 3). Following the

proof of soundness property in Section 4.3 (i.e., the proof of Lemma 6), with

the responses (RSP(t∗,1),RSP(t∗,2),RSP(t∗,3)), B can output (x(for),p(for),wit(for)),

where wit(for) := {(i(for)1 , · · · , i(for)ℓ ), (w
(for)
ℓ , · · · ,w(for)

1 )} such that:

{
A · x(for) = Gp(for) (mod q)

PACC.VerifyA(B(for),v(for), t(for),p(for),wit(for)) = 1
. (3)
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Here, (i
(for)
1 , · · · , i(for)ℓ ) is a binary expansion of some index i(for) ∈ {0, · · · , |R(for)|−

1}. If p(for) /∈ R(for), then B successfully breaks the security of the accumulator

with the tripple (x(for),p(for),wit(for)). Otherwise, i.e., p(for) = pi(for) ∈ R(for), then
we have the corresponding secret key xi(for) ∈ {0, 1}m satisfying that p(for) =
bin(A · xi(for)). Hence,

A · xi(for) = Gp(for) (mod q). (4)

Because no any member in R(for) (hence, the i(for)-th signer ) is corrupted,
with probability at least 1/2 we have x(for) ̸= xi(for) . This is because if x(for) =
xi(for) , then we can apply Lemma 7 to get a new xi(for) such that x(for) ̸= xi(for) ,
following a standard witness indistinguishability argument (see, e.g., [Lyu08,
Lyu12]). From Equations (3)-(4), we have A ·(xi(for)−x(for)) = 0 (mod q), which
shows (xi(for) − x(for)) ∈ {−1, 0, 1}m is a solution to the SIS instance. Therefore,
algorithm B can solve the SIS problem with a non-negligible probability. Hence,
assuming SIS∞m,n,q,θ problem is hard, our scheme is unforgeable with respect to
insider corruption. ⊓⊔

B.2 Proof of Theorem 4

Proof. We proceed the proof with a sequence of games. Let Pr[Wini] be the
probability of A to win Game i.

Game 0. This is the original anonymity experiment defined in Figure 3, we have

AdvURS,AnonA,N = |Pr[Win0]− 1/2|.

Game 1. This game is similar to Game 0, except in order to produce the
challenge signature sig∗ with respect to the choice (µ∗, R∗, skib), C returns the
simulated transcript Π(sim) produced as in the proof of Lemma 5 (see Ap-
pendix A.1).In this game, based on the zero-knowledge property of the proposed
ZKAoK, A can only successfully distinguish the real proof and the simulated
one with negligible probability, we have

|Pr[Win1]− Pr[Win0]| ≤ Advzk(P,V)(V∗).

Game 2. This game is similar to Game 1, except that in the challenge phase,
the challenger C also chooses the unique tag randomly over {0, 1}nk. Game 2 and
Game 1 are indistinguishable under the pseudorandomness of F, which in turn
relies on the hardness of the decision-LWR problem, we have |Pr[W2]−Pr[W1]| ≤
AdvLWR(S) for some LWR solver S.
Game 3. This game is similar to Game 2, except C first guesses two target

indices i′0, i
′
1 in advance and randomly chooses pki′0 , pki′1

$←− {0, 1}nk. After that,
if A queries for these two indices to Osk,Osign, C aborts and and restarts the
game. Similarly, if A chooses i0 ̸= i′0 or i1 ̸= i′1 in the challenge phase, C also
aborts and restarts the game. In this game, because the integers i′0, i

′
1 are in-

dependent of the view of A until C aborts. Also in Game 3, using the leftover
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hash lemma (i.e., Lemma 1), we have (A, pki′b) is statistically close to the real
public keys (A, pkib = Axib (mod q)) for some xib ∈ {0, 1}m, then A also only
can distinguish with negligible probability. Thus, the probability of A in Game
3 is just negligibly changed compared with that in Game 2. Therefore, we have
|Pr[W3]−Pr[W2]| ≤ negl(λ). Notice that, in Game 3, bit b is independent of the
A’s view, and the public key pkib is random, the unique tag is also random, and
the signature is the simulated transcript. Thus, we have Pr[W3] = 1/2. Overall,
the advantage of A in the Anonymity experiment is

AdvURS,AnonA,N = |Pr[Win0]− 1/2| ≤ Advzk(P,V)(V∗) + AdvLWR(S) + negl(λ).

This completes the proof of anonymity. ⊓⊔

B.3 Proof of Theorem 5

Proof. In order to prove the uniqueness for the scheme, we proceed a sequence
of hybrid security games. Let Wini be the event that the adversary A wins Game
i. Assume that, A can makes up to qcor corruption queries.
Game 0. This is the original uniqueness experiment presented in Figure 5. The
challenger C interacts with the adversary A as below:

– Setup. C runs urs.pp← URS.Setup(1λ). Then, for eachh user i ∈ [N ] it runs

(pki, ski) ← URS.KeyGen(urs.pp). The challenger C gives S = {pki}Ni=1 to
A. It also initializes Corrupt← ∅ and SIGNERR,M ← ∅.

– Hash Queries to HFS.Upon receiving a random oracle query with input (µ,CMT,A,v, µ,
R,B, t) from the adversary A, if it has been queried before, the challenger
returns the associated hash value hFS, else the challenger computes h’FS =
HFS(µ,CMT,A,v, R,B, t), then returns h’FS to A and adds the new tuple
((µ,CMT,A,v, R,B, t), h’FS) to the list LFS.

– Signing Queries. Upon receiving a signing query with input (ski, µ,R), the
challenger runs URS.Sign(urs.pp, ski, µ,R) to obtain sig and returns to the
adversary.

– Corupption Queries. Upon receiving a corruption query with input pki, the
challenger returns ski to the adversary.

– Forge. The adversary A outputs ζ := |CorruptR∗ ∪ SIGNERR∗,µ∗ |+1 different
valid signatures sig1, . . . , sigζ on the same message µ∗ in regards the same
ring R∗. A wins if all the signatures are valid and their corresponding unique
identifiers t1, . . . , tζ are pairwise distinct. Note that ζ ≤ N + 1.

Acording to the definition, we have

AdvURS,UniqueA,N = Pr[Win0].

Game 1. This game is similar to Game 0 except that for each signature sigj ,
the challenger C takes one further action which is to check that if there exists at
least one i∗j ∈ [N ] and xi∗j

such that for j ∈ [ζ],{
pki∗j ∈ R∗,

Fxi∗
j
(HUT(µ

∗, R∗)) = tj .



30 T.N. Nguyen et al.

To this end, the challenger must also run the knowledge extractor described in
the proof of Lemma 6 (given in Appendix A.2), up to ζ times, to get xi∗j

’s. Then,
we have

|Pr[Win1]− Pr[Win0]| ≤ ζ · Advsound(P,V)(P∗) ≤ negl(λ).

Game 2. This game is similar to Game 1 except that the challenger C uses a

simulated transscript Π
(sim)
urs instead of a real one to reponse to a signing query.

The simulated proof is formed as in the security proof of Lemma 5 (given in
Appendix A.1) for the underlying ZKAoK. We have,

|Pr[Win2]− Pr[Win1]| ≤ Advzk(P,V)(V∗) ≤ negl(λ).

Game 3. Game 3 should be the same as Game 2 with the following difference.
When answering signing queries regarding any user in R∗ \ CorruptR∗ (i.e., un-
corrupted users in R∗), the challenger chooses a unique tag uniformly at random
over {0, 1}nk. Note that |R∗ \ CorruptR∗ | ≤ N − qcor, in which the right-hand
side term N − qcor is the total number of uncorrupted users in the system. The
indistinguishability of Game 3 and Game 2 is guaranteed by the hardness of the
decision-LWR problem. Therefore,

|Pr[Win3]− Pr[Win2]| ≤ (N − qcor) · AdvLWR(S) ≤ N · AdvLWR(S),

for some LWR solver S. Suppose thatA wants to produce a valid triple (µ∗, R∗, sig∗)
whose unique identifier differs from those of queried signatures. Then, A can use
secret keys received when making corruption queries, and may forge some valid
signatures on the same messsage µ∗ and the same ring R∗, each having a new
unique tag.

However, in this game, A only knows |CorruptR∗ | secret keys in the ring R∗.
Thus, A must guess the rest of them (i.e., ζ−|CorruptR∗ | secret keys). Therefore,
the probability that A wins Game 3 is

Pr[Win3] ≤ (ζ − |CorruptR∗ |) ·N/2nk ≤ ζ ·N/2nk.

Overall, we have

Pr[Win0] ≤ ζ · Advsound(P,V)(P∗) +N · Advzk(P,V)(V∗) + AdvLWR(A′) + ζ ·N/2nk.

⊓⊔

B.4 Proof of Theorem 6

Proof. Recall that the non-colliding property ensures that two unique identifiers
computed by two different signers on the same message and the same ring are
the same only with a negligible probability. Since in our URS scheme, unique
identifiers are computed by the weak pseudorandom function F presented in
Section 2.6, the non-colliding property follows by the strong uniqueness property
of F that is guaranteed by the hardness of decision-LWRn,q,p problem. ⊓⊔
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