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Abstract

Lattice enumeration is a linear-space algorithm for solving the shortest lattice vector prob-
lem(SVP). Extreme pruning is a practical technique for accelerating lattice enumeration, which
has mature theoretical analysis and practical implementation. However, these works are still remain
to be done for discrete pruning. In this paper, we improve the discrete pruned enumeration (DP
enumeration), and give a solution to the problem proposed by Léo Ducas et Damien Stehlé [19] about
the cost estimation of discrete pruning. Our contribution is on the following three aspects:

First, we refine the algorithm both from theoretical and practical aspects. Discrete pruning using
natural number representation lies on a randomness assumption of lattice point distribution, which
has an obvious paradox in the original analysis. We rectify this assumption to fix the problem,
and correspondingly modify some details of DP enumeration. We also improve the binary search
algorithm for cell enumeration radius with polynomial time complexity, and refine the cell decoding
algorithm. Besides, we propose to use a truncated lattice reduction algorithm – k-tours-BKZ as
reprocessing method when a round of enumeration failed.

Second, we propose a cost estimation simulator for DP enumeration. Based on the investigation
of lattice basis stability during reprocessing, we give a method to simulate the squared length of
Gram-Schmidt orthogonalization basis quickly, and give the fitted cost estimation formulae of sub-
algorithms in CPU-cycles through intensive experiments. The success probability model is also
modified based on the rectified assumption. We verify the cost estimation simulator on middle size
SVP challenge instances, and the simulation results are very close to the actual performance of DP
enumeration.

Third, we give a method to calculate the optimal parameter setting to minimize the running
time of DP enumeration. We compare the efficiency of our optimized DP enumeration with extreme
pruning enumeration in solving SVP challenge instances. The experimental results in medium di-
mension and simulation results in high dimension both show that the discrete pruning method could
outperform extreme pruning. An open-source implementation of DP enumeration with its simulator
is also provided1.
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1 Introduction

The shortest vector problem (SVP) and closest vector problem (CVP) are hard computing problems
of lattice, which have become central building blocks in lattice-based cryptanalysis. The security analysis
of many lattice-based cryptographic primitives is usually reduced to solving the underlying mathematical
problems, which are closely related to SVP and CVP. Some hard computing problems used in classical
public-key cryptosystems can also be converted to variant version of SVP or CVP, such as the knapsack
problem [17,37,39], the hidden number problem [32] and the integer factoring problem [42,43].

Lattice enumeration is a general SVP solver with linear space complexity, which can be traced back to
the early 1980s [20,30,38]. It outputs a lattice vector (or proves there is none) shorter than the given target
length within super-exponential time. Enumeration can be directly applied to solve exact/approximate
version of SVP, and can also be modified to solve CVP and bounded distance decoding problem(BDD),
see [10,34,42]. Enumeration can also be used as the subroutine of block-wise lattice basis reduction (BKZ)

1https://github.com/LunaLuan9555/DP-ENUM
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algorithm, and therefore play an important role in the security analysis and parameter assessment of
lattice-based cryptosystems [7, 12,24,33].

Pruning is the most important technique to accelerate lattice enumeration. In the classical enumera-
tion algorithm, all the coordinate vectors of lattice points are organized as an enumeration tree and are
searched in a depth-first way. Pruning method cuts off the branch and stops searching in depth when
the objective function value at current node exceeds the bounding function. It might cut off the correct
solution during searching, hence enumeration becomes a probability algorithm. Pruned enumeration
works well in practice since the target length is usually known, and it is expected to find a solution
to SVP if the algorithm is repeated on a lattice for enough times. Schnorr and Hörner [40] proposed
a heuristic pruning strategy and the algorithm implementation was given in NTL library [2]. Gama,
Nguyen and Regev [25] proposed the extreme pruning method by treating the bounding function as the
solution to an optimization problem. The optimal bounding function can be regarded as an extreme
point which minimizes the expected total running time (with a given success probability). Therefore the
extreme pruning method is believed to be the most efficient pruning method for classical enumeration.
The fplll library [1] provides a set of extreme pruning strategies for BKZ 2.0 [16] on random lattice, and
also provides a Nelder-Mead algorithm for searching the optimal bounding function for any given basis.

The classical pruned enumeration searches lattice vectors in a hyper cylinder intersection, which is
regarded as a continuous region in time analysis. Consequently, the computation of expected running
time of GNR enumeration is easy to be handled, which implies that the upper bound on the cost of lattice
enumeration is clear. Aono et al. also proved a lower bound on GNR enumeration [9]. In cryptanalysis,
most commonly used cost model of GNR enumeration is given in the LWE estimator [6], which adopted
some conclusion of [16].

Discrete pruning method is quiet different from that. The discrete pruned enumeration (DP enu-
meration for short) originated from a heuristic “Sampling - Reduction” algorithm [41], which iteratively
samples lattice vectors under the restriction on their Gram-Schmidt coefficients and then re-randomizes
basis by lattice reduction. Ajtai, Buchmann and Ludwig [4,14] gave some analyses on the time complexity
and success probability. Fukase and Kashiwabara [21] put forward a series of significant improvements,
including the natural number representation (NNR) of lattice point, to make sampling reduction method
more practical, and provided heuristic analysis. Teruya et al. [45] designed a parallelized version of
Fukase-Kashiwabara sampling reduction algorithm and solved a 152 dimensional SVP challenge, which
was the best record of that year. Other relevant studies can be referred to [18,22,23]. Sampling-Reduction
algorithm shows good practicality but lacks sufficient theoretical support, especially on the parameter
settings and estimation of running time. The conception of “discrete pruning” was formally put forward
on EUROCRYPT’ 17 by Aono and Nguyen [8]. They proposed a novel conception named “lattice parti-
tion” to generalize the previous sampling methods, and they solved the problem that what kind of lattice
points should be “sampled” using classical enumeration technique. The success probability of discrete
pruning can be described as the volume of “ball-box intersection”, and can be calculated efficiently using
fast inverse Laplace transform(FILT). Aono et al. [10] made some modifications to DP enumeration and
proposed a quantum variant. The theoretical foundation of DP enumeration is gradually developed, but
some problems still remain to be figured out:

1. A precise cost estimation. For classical cylinder pruning, the most time-consuming operation is
processing every node on the enumeration tree, and the running time is proportional to the total
number of nodes, which is reduced to calculating the volume of several hyper cylinder-intersections.
However, things are not that easy for discrete pruning. There is a gap between theoretical time
complexity and the actual cost. It is proved that each sub-algorithm of DP enumeration has
polynomial-time complexity, but the actual running time is not in proportion with the theoreti-
cal upper bound, since these sub-algorithms with different structure are analyzed using different
arithmetic operation. To estimate the precise cost of DP enumeration, it is necessary to define
a unified “basic operation” for all sub-algorithms of DP enumeration, and fit the coefficients of
polynomials. Furthermore, we can extrapolate the estimating model to higher dimensions through
some simulating techniques inspired by [16].

2. The optimal parameter setting. An important problem that [8, 10] did not explain clearly is how
many points should be enumerated in the iteration. [21] and [8] gave some examples of parameter
selection without further explanation. For a certain SVP instance, there should be an optimal
parameter settings to minimize the total running time. As a matter of fact, this is based on the
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solution to the first problem.

Contributions of this work.

1. Rectification on assumption. It is generally assumed that lattice point in participated “cells” follow
the uniform distribution, but Ludwig [35](Sec 2.4) pointed out that this randomness assumption
does not strictly hold for Schnorr’s sampling method, i.e. Schnorr’s partition. We point out that
this defect also exists in the randomness assumption of natural number partition, and lead to a
paradox that two symmetric lattice vectors with same length have different moment value and
success probability. We give a rectified assumption to describe lattice point distribution in cells
more cautiously and accurately, and consequently eliminate the paradox.

2. Improvement on algorithm implementation. We propose a new polynomial-time binary search
algorithm for finding the cell enumeration radius, which has lower time complexity than [10]. We
propose to use a truncated version of BKZ, which is called “k-tours-BKZ”, as the reprocessing
method when DP enumeration failed in one round and has to be repeated. This is not only a
heuristic strategy in practice, but also crucial to our cost estimator. We examine the stabilization
of basis quality during repeatedly reprocessing, and proposed a model to describe the relationship
between orthogonal basis information and the parameters of DP enumeration.

3. A cost simulator of DP enumeration. We provide an open-source implementation of DP enumer-
ation, and calculate the fitted time cost formula in CPU-cycles for each sub-algorithm of it. We
also modify the calculation procedures of success probability according to the rectified randomness
assumption. Then we propose a cost simulator to estimate the exact cost of DP enumeration under
any given parameters. In addition, for random lattices with GSA assumption holding, it works in
a simple and efficient way, without computing any specific lattice basis.

4. Optimization of algorithm parameters. The parameters of DP enumeration used to be set by
hand empirically. This paper provide an optimization model for finding a set of parameters which
minimize the expected total running time of DP enumeration for solving a given SVP instance.
The estimated running time under the optimal parameter setting can be regarded as an upper
bound of DP enumeration.

We compare the efficiency of extreme pruned enumeration in fplll library [1] and DP enumeration
in our implementation on SVP challenge [3]. The result shows that on SVP challenge instances, DP
enumeration under optimal parameter setting could outperform the extreme pruning when n & 80. We
also give an analytical cost formula as an asymptotic estimation.

Roadmap. Section 2 introduces the fundamental knowledge of lattice, and gives an overview of pruning
technologies of lattice enumeration. Section 3 first rectifies the basic randomness assumption of lattice
partition, and then describe the details of three improvements on discrete pruning enumeration. Section
4 shows the details of our cost simulator of DP enumeration, including the running time estimation of
every sub-algorithms and the rectified success probability model. Section 5 describes how to find the
optimal parameter setting for DP enumeration using our cost simulator, and gives experimental results
to verify the accuracy of our cost simulator. We also compare the efficiency of our implementation with
extreme pruned enumeration in fplll library. Finally, Section 6 6 gives conclusion and discusses some
further works.

2 Preliminaries

2.1 Lattice

Lattice. Let Rm denotes the m-dimensional Euclidean space. Given n linear independent vectors
b1, ...,bn ∈ Rm (m ≥ n), A lattice L is defined by a set of points in Rm: L = {

∑n
i=1 xibi : xi ∈ Z}. The

vector set {b1, . . . ,bn} is called a basis of lattice L and can be written in the form of column matrix
B = [b1, ...,bn]. The rank of matrix B is n, which is also known as the dimension of lattice. From a
computational perspective, we can only consider the case that bi ∈ Zm for i = 1, . . . , n for convenience,
since real number is represented by rational number in computer, and lattice with rational basis can
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always be scaled to one with integral basis. The lattice is full-rank when m = n, which is a common
case in lattice-based cryptanalysis. In the following we only consider the case B ∈ Zn×n.

A lattice have many different bases. Given two bases B1,B2 ∈ Zm×n of a lattice L, there exists
a unimodular matrix U such that B1 = B2U. A basis of the lattice corresponds to a fundamental
parallelepiped P(B) = {

∑n
i=1 bixi : 0 ≤ xi < 1, i = 1, . . . , n}. The shape of fundamental parallelepiped

varies depending on the basis, but the volume of those fundamental parallelepipeds is an invariant of the
lattice, which is denoted by vol(L). It is also called the determinant det(L) of a lattice, and we have
det(L) = vol(L) =

√
det(BTB).

Shortest vector problem (SVP). For a lattice L = L(B) with basis B ∈ Zm×n, one can find a lattice
vector Bx with x ∈ Zn \ {0} such that ‖Bx‖ ≤ ‖By‖ for any y ∈ Zn \ {0}. The length of the shortest
vector is denoted by λ1(L).

It is of great interest to find the shortest non-zero vector of a lattice in the fields of complexity
theory, computational algebra and cryptanalysis. But a more common case in cryptanalysis is to find
a lattice vector shorter than a given bound. In other words, researchers are more interested in finding
an approximate solution to SVP. For example, the target of SVP challenge [3] is to find a lattice vector
v ∈ L such that ‖v‖2 ≤ 1.05 ·GH(L) ≈ 1.05λ1(L).

Random lattice. The formal definition and generation algorithm of random lattice can refer to Gold-
stein and Mayer’s work in [26]. The SVP challenge also adopts Goldstein-Mayer lattice. The lattice of
an n-dimensional SVP challenge instance has volume about 210n.

Gaussian heuristic. For a lattice L and a measurable set S in Rn, we intuitively expect that the set
contains vol(S)/vol(L) fundamental parallelepipeds and therefore there should be the same number of
points in S ∩ L.

Assumption 1 Gaussian heuristic. Let L be a n-dimensional lattice in Rn, and S be a measurable set
of Rn. Then

#{S ∩ L} ≈ vol(S)/vol(L)

We note that Gaussian heuristic should be used carefully because in some “bad” cases this assumption
does not hold (see [15], Section 2.1.2). But in random lattice, this assumption generally holds especially
for some “nice” set S, and therefore we can use Gaussian heuristic to predict λ1(L):

GH(L) =
vol(L)1/n

Bn(1)1/n
=

1√
π

Γ
(n

2
+ 1
) 1
n

vol(L)
1
n ≈

√
n

2πe
vol(L)

1
n (2.1)

In fact, GH(L) is exactly the radius of an n-dimensional ball with volume vol(L). It is widely believed
that GH(L) is a good estimation of λ1(L) when n ' 45.

Orthogonal projection. The Gram-Schmidt orthogonalization can be considered as a direct decom-
position of lattice, and is frequently used in lattice problems.

Definition 1 Gram-Schmidt orthogonalization. Let B = [b1, . . .bn] ∈ Zm×n be a lattice basis, The

Gram-Schmidt orthogonal basis B∗ = [b∗1, . . .b
∗
n]Qm×n is defined with b∗i = bi−

∑i−1
j=1 µi,jb

∗
j , where the

orthogonal coefficient µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

Definition 2 Orthogonal projection. Let πi : Rm → span(b1, . . . ,bi−1)⊥ be the i-th orthogonal projec-

tion. For v ∈ Rm, we define πi(v) = v −
∑i−1
j=1

〈v,b∗j 〉
‖b∗j ‖2

b∗j . Since any lattice vector v can be represented

by the orthogonal basis B∗ as v =
∑n
i=1 uib

∗
i , we also have πi(v) =

∑n
j=i ujb

∗
j .

For lattice L(B) and i = 1, . . . , n, we can define the n−i+1-dimensional projected lattice πi(L(B)) =
L ([πi(bi), πi(bi+1), . . . , πi(bn)]). Note that the orthogonal basis of πi(L(B)) is exactly [b∗i ,b

∗
i+1, . . . ,b

∗
n].

2.2 Classical Enumeration and Pruning

For lattice vector represented by an orthogonal basis, we have
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v =

n∑
j=1

ujb
∗
j

=

n∑
j=1

xj +

n∑
i=j+1

µijxi

b∗j

Then we can enumerate the coordinates xn, . . . , x1 by a depth-first search method to find all lattice
vector shorter than R. The searching path can be organized in the form of enumeration tree. This
is the original idea of lattice enumeration [20] and was improved in [39]. In the k-th layer of the
tree, all possible values of (xn−k+1, . . . , xn) are enumerated and those with partial sum ‖πn−k+1(v)‖ =∑n
j=n−k+1 |xj +

∑n
i=j+1 µijxi|‖b∗j‖ ≤ R are kept. The expected number of nodes in k-th layer that need

to be process, denoted by Hk, equals to the number of vectors in projected lattice πn−k+1(L) with length
smaller than R :

Hk =
1

2

Vk(R)

vol(πn−k+1(L))
=

1

2

Vk(R)∏n
i=n+1−k ‖b∗i ‖

where Vk(R) denotes the volume of a k-dimensional ball with radiusR. Therefore, the algorithm processes
N =

∑n
k=1Hk nodes in total. Obviously the cost of enumeration is tightly related to the length of

orthogonal basis {‖b∗i ‖}ni=1. Hanrot et al. [28] proved that under a well-reduced basis, the complexity of
classical enumeration is Poly(logB,m) · n n

2e+o(n), and it is widely believed that the cost of enumeration

has an upper bound up to 2O(n2) on a slightly reduced basis such as LLL-reduced basis.

At some intermediate nodes of the tree, the partial sum ‖πn−k+1(v)‖ =
∑n
j=n−k+1 |xj+

∑n
i=j+1 µijxi|‖b∗j‖

is very close to R, which means it is unlikely to find a solution in this branch, and one can stop to search
downwards. To accelerate the searching, it is reasonable to prune the “hopeless” branches by restrict-
ing ‖πn+1−k(v)‖ ≤ Rk, where R1 ≤ R2 ≤ . . . ≤ Rn = R. Then the searching area of coordinates
(xn−k+1, . . . , xn) becomes a k-dimensional cylinder-intersection

Ck(R1, . . . , Rk) =

{
(xn−k+1, . . . , xn) ∈ Rk, ∀j ≤ k,

j∑
l=1

x2
n−l+1 ≤ R2

j

}

Pruning method may mistakenly cut off the branch which contains the right solution, and turns enu-
meration from a deterministic algorithm to a probabilistic one. The pruning function {Ri}ni=1 defines the
searching region, and consequently influences both the size of enumeration tree and success probability.
Gama and Nguyen [25] provided a detailed analysis on the success probability psucc and speedup of
various pruning functions, and proposed extreme pruning method to minimize the enumeration cost.

2.3 Discrete Pruning

In classical enumeration, we search for lattice points directly according to their coordinates (x1, . . . , xn)
with respect to basis B, such that ‖v‖ = ‖

∑n
i=1 xibi‖ ≤ R. However, enumeration with discrete pruning

behaves in a very different way.

Considering the representation v =
∑n
j=1 ujb

∗
j , it is an intuitive idea to search for lattice vector

with small |uj | especially for index j corresponding to a very large ‖b∗j‖. This idea is first applied in a
heuristic vector sampling method proposed by Schnorr [41] and dramatically improved by Fukase and
Kashiwabara [21]. These sampling strategies are summarized by Aono and Nguyen, and they defined
lattice partition to generalize these sampling methods.

Definition 3 (Lattice partition [8]. ) Let L to be a full-rank lattice in Zn. An L-partition (C(), T )
is a partition of Rn such that:

• Rn = ∪t∈TC(t) and C(t) ∩ C(t′) = ∅. The index set T is a countable set.

• There is exactly one lattice point in each cell C(t), and there exists an polynomial time algorithm
to convert a tag t to the corresponding lattice vector v ∈ C(t) ∩ L.
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A non-trivial partition is generally related to the orthogonal basis B∗. Some examples of it are given
in [8]. Here we only introduce natural partition which is first proposed by Fukase and Kashiwabara [21],
since it has smaller moments than other lattice partition such as Babai’s and Schnorr’s, implying that
enumeration with natural partition tends to have more efficiency. In this paper, we only discuss discrete
pruning basing on natural partition, following the work of [8, 10,21].

Definition 4 Given a lattice L with basis B ∈ Zn×n, and a lattice vector v =
∑n
j=1 ujb

∗
j , the natural

number representation (NNR) of v is a vector t = (t1, . . . , tn) ∈ Nn such that uj ∈
(
− tj+1

2 , − tj2
]
∪(

tj
2 ,

tj+1
2

]
for all j = 1, . . . , n. Then natural number representation t ∈ Nn leads to the natural partition

(C(),Nn) by defining

C(t) =

{
n∑
i=1

xib
∗
i ,−

ti + 1

2
< xi ≤ −

ti
2

or
ti
2
< xi ≤

ti + 1

2

}

The shape of C(t) =
{∑n

i=1 xib
∗
i ,− ti+1

2 < xi ≤ − ti2 or ti
2 < xi ≤ ti+1

2

}
( Rn is a union of 2j hyper-

cuboids (boxes) which are centrosymmetric and disjoint, where j is the number of non-zero coefficients
in t.

Given a certain cell, the lattice vector lying in it can be determined by the tag and lattice basis,
however, if we randomly pick some cells, the position of lattice vector in C(t) always shows a kind of
randomness. We can naturally assumed that the lattice point belonging to C(t) follows a random uniform
distribution. The prototype of this assumption was first proposed by Schnorr [41] and generalized by
Fukase and Kashiwabara [21]. Aono, Nguyen and Shen [8, 10] also use this assumption by default.

Assumption 2 (Randomness Assumption [21]) Given a lattice L(B) ∈ Zn×n with orthogonal basis
B∗ and a natural number vector t ∈ Nn, for the lattice vector v =

∑n
j=1 ujb

∗
j contained in C(t), the

Gram-Schmidt coefficients uj (j = 1, . . . , n) are uniformly distributed over
(
− tj+1

2 , − tj2
]
∪
(
tj
2 ,

tj+1
2

]
,

and statistically independent with respect to j.

In such an ideal situation, by considering the GS coefficients uj of v as random variables, one can
compute the the expectation and variance value of ‖v‖2, since ‖v‖2 can also be considered as a random
variable. They are also defined as the first and second moment of cell C(t) [8]:

E[C(t)] =
1

12

n∑
j=1

(3t2j + 3tj + 1)‖b∗j‖2 (2.2)

V ar[C(t)] =

n∑
j=1

(
t2j
48

+
tj
48

+
1

180
)‖b∗j‖4 (2.3)

This means for a given tag t, we can predict the length of the lattice vector v ∈ C(t) immediately
without converting t to v, which is precise but cost a rather long time. This leads to the core idea of
discrete pruning method: We first search for a batch of cells ∪t∈SC(t) that are “most likely” to contain
very short lattice vectors, then we decode them to obtain the corresponding lattice vectors and check if
there exists a v such that ‖v‖ ≤ R. The pruning set is P = ∪t∈SC(t). If randomness assumption and
Gaussian heuristic holds, the probability that P contains a lattice vector shorter than R can be easily
described by the volume of the intersection vol(Balln(R) ∩ P ) =

∑
t∈S vol (Balln(R) ∩ C(t)).

The outline of discrete pruned enumeration is given in algorithm 1.

3 Improvements in Discrete Pruning Method

3.1 Rectification of Randomness Assumption

Most of the studies on discrete pruning take randomness assumption as a foundation of their analyses,
and therefore they can apply equation (2.2) to predict vector length. However, we can easily point out a
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Algorithm 1 Discrete Pruned Enumeration

Input: well-reduced lattice basis B, number of tags M , target vector length R
Output: vL(B) such that ‖v‖ < R = 1.05 ·GH(L)

1: Reduce lattice basis B;
2: while true do
3: S ← ∅;
4: Use binary search to find bound r such that there are M tags t satisfying f(t) < r;
5: Enumerate all these M tags and save them in set S
6: for t ∈ S do
7: Decode t to recover the corresponding v such that v ∈ C(t) ;
8: if ‖v‖2 < R2 then
9: return v; // Find a solution

10: end if
11: end for
12: Rerandomize B by multiply a light-weight unimodular matrix on it or rearrange the vectors in

basis;
13: Reprocess B using lattice reduction algorithms such as BKZ or LLL;
14: end while

paradox if the assumption holds: For two cells with tag t = [t1, . . . , tk 6= 0, 0, . . . , 0] and t′ = [t1, . . . , tk +
1 6= 0, 0, . . . , 0], if tk is odd, then it is easy to verify that the corresponding lattice vectors of t and t′

are in opposite directions with same length. However, the equation (2.2) indicates E[C(t)] < E[C(t′)].
In fact, we also have vol (Balln(R) ∩ C(t)) 6= vol (Balln(R) ∩ C(t′)) which means this two cells have
different success probability, while the lattice vectors contained in them are essentially the same.

This paradox implies that the distribution of lattice points in cells is not completely uniform. As a
matter of fact, for a tag t = [t1, . . . , tk 6= 0, 0, . . . , 0], GS coefficient uk, uk+1, . . . , un of the corresponding
lattice vector v ∈ C(t) are fixed integers rather than uniformly distributed real numbers. The exact
values of uk, uk+1, . . . , un are given in proposition 1.

Proposition 1 Given a lattice L(B) with orthogonal basis B∗ and a tag t = [t1, . . . , tk 6= 0, 0, . . . , 0],
the corresponded lattice vector is denoted by v =

∑n
j=1 ujb

∗
j ∈ C(t), then

uk =


−tk

2
, if tk is even

tk + 1

2
, if tk is odd

uk+1 = . . . = un = 0

(3.1)

Proof. We can verify the proposition through the procedures of algorithm 4, and a brief theoretical proof
is also provided. For lattice vector v =

∑n
i=1 xibi =

∑n
i=1 uib

∗
i ∈ C(t), where uk = xk +

∑n
i=k+1 µi,kxi,

the last non-zero coefficient of x is xk if and only if uk is the last non-zero coefficient of u, and uk = xk.
Then according to definition 4, we have tj = 0 for all j > k; uk is non-negative if and only if tk = 2xk−1
is odd; uk < 0 if and only if tk = −2xk is even. For brevity, the tag with odd and even number in the
last non-zero coefficient are called “odd-ended tag” and “even ended tag” respectively. �

Based on proposition 1, the rectified randomness assumption is given below, and therefore the mo-
ments of natural partition are also modified.

Assumption 3 (The Rectified Randomness Assumption) Let L(B) be an n-dimensional lattice
with orthogonal basis B∗. Given a tag t with corresponding lattice vector v =

∑n
j=1 ujb

∗
j ∈ C(t), suppose

the last non-zero coefficient of t is tk, then for j < k, we assume that uj is uniformly distributed over(
− tj+1

2 , − tj2
]
∪
(
tj
2 ,

tj+1
2

]
, and independent with respect to j; for j ≥ k, uj can be directly given by

proposition (3.1).

Then the moments of lattice partition should also be modified, since the last several coefficients are
not random variables after the rectification. For a tag t = [t1, . . . , tk 6= 0, 0, . . . , 0], the expectation of
the corresponded ‖v‖2 is:
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E′[C(t)] =
1

12

k−1∑
j=1

(3t2j + 3tj + 1)‖b∗j‖2 + u2
k‖b∗k‖2 (3.2)

where uk is defined by equation (3.1).

After the rectification, for two tags t, t′ which only differs by 1 in the last non-zero coefficient, now we
have E′[C(t)] = E′[C(t′)], and the paradox mentioned in the beginning of this subsection is eliminated.

3.2 Binary Search and Cell Enumeration

The crucial step of algorithm 1 is called cell enumeration (line 5), aiming to find the “best” M
cells. We use objective function f(t) to measure how good the cells are. E[C(t)] (eq. (2.2)) is a tacit
indicator for searching proper t since it is exactly the expected squared length of lattice vector v ∈ C(t).
Aono and Gama [8] directly use E[C(t)] as the objective function f(t) in cell enumeration, and Aono
et al. [10] use a modified version of E[C(t)] in order to guarantee its polynomial running time. They
requires the function f(t) =

∑n
i=1 f(i, ti) satisfying f(i, 0) = 0 and f(i, j) ≥ f(i, j′) for all i and j > j′,

which means we have to drop the constants in E[C(t)], i.e., let f(i, j) = 1
4 (j2 + j)‖b∗i ‖2. Based on their

work and the rectification above, now we proposed a modified objective function. Given a tag vector
t = [t1, . . . , tk 6= 0, 0, . . . , 0] as input, first define

f(i, ti)
def
=


0, for i > k

u2
i ‖b∗i ‖2, for i = k

1

4
(t2i + ti)‖b∗i ‖2, else

(3.3)

where ui is defined by equation (3.1). Then the objective function of cell enumeration is

f(t)
def
=

n∑
i=1

f(i, ti) =
1

4

n∑
i=1

(t2i + ti)‖b∗i ‖2 =
1

4

k∑
i=1

(t2i + ti)‖b∗i ‖2 + uki ‖b∗k‖2 (3.4)

Then the complete procedures of cells enumeration is given below:

Algorithm 2 CellENUM

Input: Orthongonal basis B∗ = [b∗1, . . . ,b
∗
n], r

Output: All t ∈ Nn such that f(t) ≤ r where f(t) as defined in equation (3.4), and t is even-ended

1: t1 = t2 = . . . = tn = 0;
2: c1 = c2 = . . . = cn+1 = 0;
3: k ← 1
4: while true do
5: ck ← ck+1 + f(k, tk);
6: if ck < r then
7: if k = 1 then
8: return t = (t1, t2, . . . , tn);
9: if tk+1 = . . . = tn = 0 then

10: tk ← tk + 2; // Only output “even-ended” tags
11: else
12: tk ← tk + 1;
13: end if
14: else
15: k ← k − 1;
16: tk ← 0;
17: end if
18: else
19: k ← k + 1;
20: if k = n+ 1 then
21: exit;

8



22: else
23: if tk+1 = . . . = tn = 0 or k = n then
24: tk ← tk + 2;
25: else
26: tk ← tk + 1;
27: end if
28: end if
29: end if
30: end while

Remark 1. Considering the symmetry of lattice vector, we only search for even-ended tags (line 10
and line 24).

Remark 2. For the last non-zero coefficient tk, the value f(k, tk) = u2
k‖b∗k‖2 changes very slightly

comparing with the original definition f(k, tk) = 1
4 (t2k + tk)‖b∗k‖2 indicated by [10], since ‖b∗k‖2 is very

small according to GSA. Therefore the modification of objective function will not make a perceptible
effect on the output of algorithm 5. But we note that when using discrete pruned enumeration in cases
where the GSA does not hold, this modification might provide a better result.

The time complexity of algorithm 2 is similar to that of [10]: The number of times that algorithm 2
enter the while loop is at most (2n− 1) ·M/2, where M is the number of tags such that f(t) ≤ r. For
each loop iteration the number of arithmetic operations performed is O(1) and the number of calls to
f() is exactly one. The proof is essentially the same as that of theorem 11 in [10]. 2

In cell enumeration, a bound r should be determined in previous such that there are exactly M tags
satisfying f(t) ≤ r. Aono and Nugyen [8] first proposed the idea to use binary search method to find
a proper r. Aono et al. [10] gave a detailed binary search algorithm (Alg. 5 in [10]) which is proved
to be have polynomial running time. Their binary search method output N tags in O(n(n + 1)M) +
nO(1) + O(log2M) where M ≤ N ≤ (n + 1)M . Then we have to find M tags with the smallest f(t)
value, which means an extra sorting algorithm with time complexity O(N logN) should be run. When
N is very large, the time consumption of sorting could not be ignored.

We provide a simple and practical polynomial-time binary search strategy to determine the parameter
r for cell enumeration. This method guarantees that cell enumeration algorithm (Alg. 5) outputs about
(1− ε)M to (1+ ε)M tags t satisfying f(t) < r. When ε is small, those tags can be directly used without
an extra sorting.

Algorithm 3 ComputeRadius

Input: M, ε
Output: r ∈ R such that #{t : f(t) < r} ≈M
1: Rl ←

∑n
i=1 f(i, 0) = 0

2: Rr ←
∑n
i=1 f(i, dM 1

n e)
3: while Rl < Rr do
4: Rm ← Rl+Rr

2
5: A←CellENUM probe(Rm,M, ε) // This function returns an integer A ∈ {−1, 0, 1}
6: if A = 1 then
7: Rl ← Rm // Rm is too large
8: else if A = −1 then
9: Rr ← Rm // Rm is too small

10: else
11: return r ← Rm // Rm is acceptable
12: end if
13: end while

In algorithm 3, the subalgorithm CellENUM probe() called in line 3 is a modification of cell enu-
meration (Alg. 2). It only counts the number of qualified tags and returns different values to indicate

2Noted that although we change the definition of f(i, ti) and therefore change the value calculated in line 3, it does
not affect the total number of while loops in the asymptotic sense. Furthermore, the modification of f(t) does not change
the key step in the proof: each partial assignment

∑n
i=i0

f(i, ti) ≤ R of a middle node can be expanded to a larger sum∑n
i=1 f(i, ti) ≤ R.
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whether the bound is too large or too small. The pseudocode of CellENUM probe() is given in appendix
A.1.

Theorem 1 gives the asymptotic time complexity of algorithm 3:

Theorem 1 Given lattice L(B), M , a relaxation factor ε, algorithm 3 ends within O
(
log n+ log 1

ε+

n log
(
ndet(L)

2
n

))
loops, and output the enumeration parameter r such that (1 − ε)M ≤ #{t ∈ Nn :

f(t) < R} ≤ (1 + ε)M . In each loop, subalgorithm 9 is called exactly once.

The approximate proof of theory 1 is given in appendix A.2. In the following experiments, we set
ε = 0.005. Although the binary search of us and that in [10] (Alg. 5) both have the same dominant
term n2M in asymptotic time complexity, in experiments we test them in a range of 60 ≤ n ≤ 200 and
105 ≤M ≤ 106, and find that our method is generally at least 2 ∼ 3 times faster than that in [10].

3.3 Lattice Decoding

The decoding algorithm converts a tag t ∈ Nn to a lattice vector v ∈ L(B) ⊂ Rn. The complete
algorithm is described both in [8, 21]. However, in discrete pruned enumeration, almost all the tags we
process do not correspond to the solution for SVP, and there is no need to recover the coordinates of
those lattice vector. Instead, inspired by classical enumeration, we use an intermediate result, the partial
sum of the squared length of lattice vector (line 14 in algorithm 4), as an early-abort indicator: when

the projected squared length of lattice vector ρ =
n∑
k=i

|xk +
n∑

i=k+1

µikxi|2‖b∗k‖2 is larger than the target

length of SVP, we stop the decoding since it is no way a short lattice vector. Therefore we avoid a
vector-matrix multiplication with time O(n2).

Algorithm 4 Decode(t, R, α,B)

Input: tag t ∈ Nn, SVP target length R = 1.05·GH(L), orthogonalization information U = (µi,j)n×n,
B∗ ∈ Rn×n ;

Output: lattice vector v such that ‖v‖2 < R2 or output ∅
1: ρ← 0
2: ∆← 1

// to indicate whether we should stop decoding;
3: for i = i to n do
4: ui = 0
5: end for
6: for i = n to 1 do
7: y = −

∑n
j=i+1 ujµj,i

8: ui = by + 0.5c
9: if ui ≤ y then

10: ui = ui − (−1)ti dti/2e
11: else
12: ui = ui + (−1)ti dti/2e
13: end if

14: ρ← ρ+ (ui − y)2‖b∗i ‖2 // ρ =
n∑
k=i

|xk +
n∑

i=k+1

µikxi|2‖b∗k‖2

15: if ρ > R then
16: ∆← 0
17: exit
18: else
19: ∆← 1 // find a solution to SVP
20: end if
21: end for
22: if ∆ = 1 then
23: return v = Bu
24: else
25: return ∅
26: end if

Algorithm 4 has O(n) loops, and in each loop there are about O(n) arithmetic operations mainly
contributed by line 7. Therefore the time complexity of Alg. 4 is O(n2). Besides, in experiments, we

10



noticed that for SVP challenge, decoding will terminate at index i ≈ 0.21n on average, which means the
early-abort technique does works and save time for decoding.

3.4 Lattice Reduction for reprocessing

3.4.1 BKZ with Fixed Tours

To solve an SVP instance, the DP enumeration should be repeatedly run on many different bases,
which means the lattice basis should be re-randomized when DP enumeration restarts, and hence it
should be re-processed to maintain good quality. A plain method is to use the polynomial-time LLL
reduction as reprocessing method, which only guarantees some primary properties and is not as good
as BKZ reduction. However, a complete BKZ reduction will take a rather longer time, and estimating
its running time is sophisticated. Besides, the BKZ algorithm produces diminishing returns: after the
first dozens of iterations, the quality of basis, such as the root Hermite factor, changes slowly during
iterations, which was illustrated in [13,16].

As a matter of fact, a complete reduction is unnecessary since our DP enumeration algorithm does not
require that the lattice basis is strictly BKZ-reduced. The key point of reprocessing for DP enumeration
is to achieve a compromise between time consumption and basis quality. An early-abort strategy called
terminating BKZ [27] is a good attempt to decrease the number of iterations of BKZ reduction while
maintaining some good properties. However, the running time of BKZ is still hard to estimate since the
number of iterations is not fixed, and those properties mainly describe the shortness of b1 and give little
help to our cost estimation.

We proposed to use “k-tours-BKZ” (algorithm 5) as our reprocessing method, which is efficient and
also beneficial to running time analysis. The k-tours-BKZ algorithm restricts the total number of “tours”
(line 4 - 17 in Alg. 5) of BKZ within k. Given BKZ blocksize β and k, the time consumption of Alg. 5
can be approximately estimated by multiplying k(n− β) and the cost of solving a single β-dimensional
SVP oracle. This will be explained in Section 4.

Algorithm 5 k-tours-BKZ

Input: Lattice basisB; BKZ blocksize β, k;
Output: a re-processed lattice basis B′;
1: Z ← 0; i← 0; // Z is used to judge the termination condition for original BKZ;
2: K ← 0; // K records the tours;
3: LLL(b1, . . . ,bn);
4: while Z < n− 1 or K < k do
5: K + +
6: i← i+ + mod (n− 1);
7: j ← min(i+ β − 1, n);
8: h← min(j + 1, n);
9: v← ENUM(πi(bi), . . . , πi(bj)); // call the SVP oracle

10: if v 6= 0 then
11: Z ← 0;
12: LLL( b1, . . . ,

∑n
i=1 vibi, . . . ,bh );

13: else
14: z + +;
15: LLL( b1, . . . ,bh);
16: end if
17: end while

To re-randomize the basis, instead of multiplying basis matrix by a unimodular matrix, we shuffle
the basis vectors by randomly swapping basis vectors for min(8, d0.12nc) times. In practice we find that
this method can guarantee a new basis matrix after reprocessing, meanwhile, it will not destroy the good
quality of basis too much, and therefore can help the k-tours-BKZ achieve a stable basis quality again in
only few tours, which means we can set k very small, such as k = 8 or less, to save time for reprocessing
procedure.

11



3.4.2 Average Quality of Lattice Basis During reprocessing

Even using the same parameters, DP enumeration will have different running time and success prob-
ability on different bases of a lattice. We expect the lattice basis should have a stable quality that will
not be changed by reprocessing operation, and can be easily simulated or predicted without conducting
a real lattice reduction. The very first work is to define what is the quality of a lattice basis, and study
how it changes during enumeration loops. We choose three indicators to describe the quality of a basis
and give observation on their behavior during reprocessing.

Root Hermite Factor.

In the studies of BKZ algorithm, the root Hermite factor δ is used to describe the “ability” of BKZ
to find a short lattice vector, which is given as the first basis vector b1 in the output basis:

δ
def
=

(
‖b∗1‖

(vol(L)
1/n

)

)1/n

(3.5)

Gama and Nguyen [24] pointed out a phenomenon that for BKZ algorithm, when blocksize parameter
β 5 n, the root Hermite factor is only affected by the blocksize parameter β, but has no relationship
with lattice dimension. More observation of root Hermite factor is given in [16], Table 2.

We generate a n = 120 dimensional SVP challenge basis at random, and show how the k-tours-BKZ
change the root Hermite factor δ of the basis during reprocessing. As shown in figure 1, on a BKZβ-
reduced basis, the lattice basis is re-randomized and re-processed by k-tours-BKZ for every k = 6 tours
with blocksize β, and δ hardly changes.
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Figure 1: The Evolution of δ During reprocessing, n = 120, k = 6, β = 25, 30, 35, 40

Gram-Schmidt Sum.

For DP-enumeration, its success probability is tightly related with the lengths of Gram-Schmidt basis
vectors {‖b∗1‖, . . . , ‖b∗n‖}, and Fukase et al. [21] proposed to use Gram-Schmidt Sum as a measurement
of lattice basis quality, which is defined as

GSS(B)
def
=

n∑
i=1

‖b∗i ‖2 (3.6)

They also gave an intuitive and approximate analysis of the relation between GSS(B) and the effi-
ciency of finding short lattice vector. Figure 2 shows the evolution of GSS(B). In general, when lattice
basis is iteratively re-processed, the value of GSS(B) only has mild fluctuation and does not increase
significantly. which implies that the success probability of finding very short lattice vectors is quite
stable.

Geometry Series Assumption and GS Slope.
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Figure 2: The Evolution of GSS(B) During reprocessing, n = 120, k = 6, β = 25, 30, 35, 40

For a well-reduced basis of a random lattice such as lattice of SVP challenge, the Gram-Schmidt
orthogonal basis generally has a regular pattern, which is called Geometry Series Assumption (GSA).
For an n-dimensional lattice with a BKZβ-reduced basis B, GSA means there exists a q ∈ (0, 1) such
that

log ‖b∗i ‖ = (i− 1) · log q + log ‖b1‖, i = 1, . . . , n (3.7)

If GSA holds, the points {(i, log ‖b∗i ‖)}ni=1 forms a straight line with a slope of log q. In other words, q
defines the “shape” of Gram-Schmidt sequence {‖b∗i ‖}ni=1. In the following we call q the GS slope. In
the real case of lattice reduction, the points {(i, log ‖b∗i )}

n
i=1 do not strictly lie on a straight line, and

the approximate value of q can be obtained by least square fitting. Figure 3 shows the change of fitted
q in reprocessing. As in the case of δ and GSS(B), q also shows a stable trend during the iterative
re-randomization and BKZ tours.
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Figure 3: The Evolution of GS slope q During reprocessing, n = 120, k = 6, β = 25, 30, 35, 40

Based on the observations above, we believe that in the reprocessing stage, only a few tours of BKZ
reduction can stabilize the properties of lattice bases.

4 Precise Cost Estimation of DP-ENUM

The precise cost estimation of DP enumeration calls for a great concern and is still an open problem
for cryptanalysis. However, there are several obstacles to build a good running time model which can be
consistent with the experimental results of viable dimension and also can be extrapolated to very high
dimension.
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First, DP enumeration contains many sub-algorithms with different structures such as binary search,
cell enumeration, decoding and reprocessing. Although the asymptotic time complexity expression of
each part is clearly discussed in Section 3, the real running time of DP enumeration still needs to be
handled carefully. These sub-algorithms involves a variety of arithmetic operations and logic operations,
which makes it hard to define a universal “basic operation” for all the procedures of DP enumeration.
To build a running time model for DP enumeration, our key idea is to use CPU-cycles as the basic
operation unit, since it can avoid the differences caused by different types of operations, and also easy
to be counted.

Second, the searching space of DP enumeration is a union of many discrete boxes irregularly dis-
tributed in Rn. It is quite hard to compute the volume of pruning set, which directly determine the
success probability for pruning. Aono et al. proposed to use FILT to compute the volume of its prun-
ing set [8], but this calculation model should be modified to achieve better accuracy, according to the
rectification of the original randomness assumption we made in Section 3.

According to algorithm 1, the cost of each loop in DP enumeration can be divided into 4 parts:

• Tbin: Use binary search to determine cell enumeration parameter r (Alg. 3)

• Tcell: Enumerate all the tags of candidate cells (Alg. 2)

• Tdecode: Decode a tag and check the length of corresponding lattice vector (Alg. 4)

• Trepro: If there is no valid solution to SVP, re-randomize lattice basis and re-process it by k-tours-
BKZ algorithm (Alg. 5)

Denote the success probability of finding a lattice vector shorter than R in a single loop of DP
enumeration by psucc, and assume that psucc is stable during re-randomizing, then the expected number
of loops is about 1

psucc
according to geometric distribution, and the total running time Ttotal of DP

enumeration can be estimated by

Ttotal = Tpre +
Trepro + Tbin + Tcell +M · Tdecode

psucc
(4.1)

We assume that the time of preprocessing Tpre, which denotes the time for a full-tour BKZβ reduction
on the initial lattice basis, is far less than the time spend in the main iteration and can be ignored when
β � n. In this section, our work is to determine the explicit expression of Trepro, Tbin, Tcell and Tdecode,
and give an accurate estimation of psucc.

For all the experiments in this paper, the computing platform is a server which has Intel Xeon E5-
2620 CPUs with 8 physical cores running at 2.10 GHz, and 64GB RAM. To obtain accurate CPU cycles
for DP enumeration algorithm, we fixed the CPU basic frequency and set CPU affinity, and all the time
data for fitting is obtained from our single-thread implementation.

4.1 Simulation of Lattice Basis

Some parts in the total time cost model eq. (4.1) are hugely dependent on the quality of basis, more
precisely, the vector lengths of Gram-Schmidt orthogonal basis {‖b∗i ‖}ni=1. Based on the reprocessing
method we proposed and the stability analysis in Section 3.4, we can reasonably assume the Gram-
Schmidt sequence {‖b∗i ‖}ni=1 will not change severely in the loops of DP enumeration. Then the issue is
to simulate an “average” GS sequence for a BKZβ reduced basis. BKZ simulator [13, 16] is a universal
method to this problem especially when β is quite large. We will give another simpler and faster method,
which is more suitable for DP enumeration since the blocksize of BKZ does not have to be very large for
preprocessing.

If we combine

vol(L) =

n∏
i=1

‖b∗i ‖

and equation (3.7), then we have

n · log ‖b1‖+
n(n− 1)

2
log q = log (vol(L)) (4.2)
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By equation (4.2), we can approximately calculate the whole Gram-Schmidt sequence {‖b∗i ‖}ni=1 if
GSA holds and one of ‖b1‖ or q is known. Here we prefer to use the GS slope q rather than the value
of ‖b1‖, since it contains more information of the Gram-Schmidt orthogonal basis. Besides, only using
‖b1‖ = δnvol(L)1/n to recover the Gram-Schmidt sequence might lead to an overly optimistic estimation
since the “head concavity” phenomenon [13] indicates that the ‖b1‖ can be obviously smaller than the
prediction given by GSA, especially when β is large. The question that remains is to give an average
estimation of q for a given lattice and BKZ parameter β.

Actually we find the GS slope has a property similar to the root Hermite factor: the GS slope of a
reduced basis is only related to blocksize β but not to lattice dimension, especially when β � n. 3 For
each parameter set (n, β) ∈ {102, 105, . . . , 150}×{15, 17, . . . , 39}, we generate 50 random SVP challenge
instances and apply BKZβ on the n-dimensional lattice basis. Then we use least square method to fit
log q of reduced bases. Figure 4 show the relationship between q and lattice dimension n, indicating that
q hardly dependent on lattice dimension n, and only varies with β.
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Figure 4: the relation between q and lattice dimension n

Figure 5 illustrates the positive correlation of q and β, which is consistent with the intuition: larger
blocksize β makes the lattice basis better, and the GS slope is milder, which means q < 1 goes closer to
1. Under GSA, we assume q and β satisfy q = 1− exp(−aβ + b), then the fitting function is

qβ = 1− exp(−0.0092200β − 3.3919) (4.3)

The fitting curve is also illustrated in figure 5.

Table 1 gives estimated value of qβ .

β 11 13 15 17 19 21 23 25 27
q 0.9698 0.9703 0.9708 0.9713 0.9718 0.9723 0.9727 0.9733 0.9737

β 29 31 33 35 37 39 41 43 45
q 0.9742 0.9746 0.9751 0.9755 0.9759 0.9763 0.9767 0.9772 0.9776

Table 1: The estimated GS slope q of BKZβ-reduced lattice basis

By using qβ , we can generate a virtual GS sequence {B1, B2, . . . , Bn} to simulate the real behavior
of the Gram-Schmidt orthogonal basis of a BKZβ-reduced lattice basis by solving equations:

vol(L) =
∏n
i=1Bi

n · logB1 + n(n−1)
2 log qβ = log (vol(L))

logBi = (i− 1) · log qβ + logB1, i = 1, . . . , n

(4.4)

3In the experiments we heuristically restrict β < n3/4.
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Figure 5: the relation between q and BKZ blocksize β

4.2 Cost of Sub-algorithms

Cost of Binary Search and Cell Enumeration.

For cell enumeration algorithm (Alg. 2), the asymptotic time complexity is O((2n−1) ·M). We take
n = 60, . . . , 160, M = 1.0× 104, 1.5× 104, . . . , 1.0× 105, and for each parameter set (n,M) we generate
100 SVP lattices at random. The fitting result is

Tcell ≈ 2.4339nM + 108.74M − 17455n+ 1334139 (4.5)

For binary search algorithm (Alg. 3), theory 1 indicates that the asymptotic time complexity has

an asymptotic upperbound
(

log n+ log 1
ε + n log(ndet(L)

2
n )
)
× (2n− 1)M . To simplify the fitting func-

tion and also retain accuracy, we only take the dominant term of the complete expansion, which is

n log
(
ndet(L)

2
n

)
· (2n− 1)M . In particular, for SVP challenge lattice, we have vol(L) ∼ 210n. Then the

fitting function of Tbin is

Tbin ≈ 0.11341Mn2 + 13.155Mn log n+ 265.65M − 84679n+ 15455380 (4.6)

Both fitting functions obtained by least square method have coefficient of determination (R-squared)
larger than 0.95.

Cost of Decoding.

To decode one tag by running algorithm 4, the number of entering the for loops is O(n), and in each
loop it performs O(n) arithmetic operations. Therefore Tdecode can be regarded as a quadratic function
of n. We take n = 60, . . . , 160 and fix M = 1.0× 105, and generate 100 SVP lattices at random for each
n. The expected running time Tdecode of decoding algorithm is fitted by

Tdecode = 0.39045n2 + 167.06n− 4350.4 (4.7)

Figure 6 shows that the fitting curve of Tdecode is almost strictly consistent with the experimental
data. The fitting function also have coefficient of determination (R-squared) larger than 0.95.

Cost of reprocessing.

The cost of k-tours-BKZ algorithm is a little complicated since it iteratively calls an O(β)-dimensional
SVP oracle. Our implementation of k-tours-BKZ is based on the BKZ 2.0 algorithm in fplll library [1].
In one tour of BKZβ , the total running time is composed of the processing time on n − 1 blocks. For
each block L[i, j] = L(bi, . . . ,bj) with i = 1, . . . , n − 1 and j = min(n, i + β − 1), the main steps are
classical enumeration and LLL reduction for updating:
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BlockCost(i, j) = BlockProcess(j, n, logA) + Cnode · EnumCost(i, j) (4.8)

Then the cost of k-tours-BKZ can be estimated by

BKZCost(L) = k ·
n−1∑
i=1

BlockCost(i, j), j = min(n, i+ β − 1) (4.9)

In equation (4.8), BlockProcess(j, n, logA) is the cost of updating basis (Alg 5, line 12). The asymp-
totic time complexity of this part is O(j3m logA) which is mainly donated by LLL reduction [44], where
A . 210n for SVP challenge lattice. When β is small, the cost of updating cannot be ignored. As for
the cost of classical pruned enumeration, Cnode is the CPU cycles for processing a single node in the
enumeration tree, which is said to be Cnode ≈ 200 [11]; EnumCost(i, j) is the total amount of nodes that
need to be traversed to find a short vector on L[i, j].

Let n = 60, . . . , 150, β = 11, 13, . . . , 43 and k = 6, we record the cost of each stages (including running
time and the number of nodes) of k-tours-BKZβ on 50 random lattices. The least squares fitting shows
Cnode ≈ 205.45, and

BlockProcess(j, n, logA) ≈ 0.000904381× j3n2 + 28752188 (4.10)

The remaining part is EnumCost(i, j), which is the number of nodes of enumeration on block L[i, j].
For full enumeration on L[i, j], the total number of nodes can be derived by Gaussian heuristic easily,
which can be considered as a baseline of enumeration cost:

FullEnumCost(i, j) =
1

2

j−i+1∑
k=1

Vk(‖b∗i ‖)∏j
`=j−k+1 ‖b∗`‖

(4.11)

where Vk(R) denotes the volume of a k-dimensional ball with radius R.

However, in our implementation of k-tours-BKZ, the SVP oracle uses extreme pruning and heuristic
enumeration radius c = min(1.1GH(L[i, j]), ‖b∗i ‖) for acceleration. We assume that for classical enumer-
ation on a β′ = j− i+1 dimensional block L[i, j], these methods offer a speedup ratio of rβ′ in total, and
rβ′ is independent with the block index i and lattice dimension n. The key point is getting an explicit
expression of rβ′ .

4

4An alternative (lowerbound) estimation of enumeration cost is provided by Chen and Nguyen [16]. The coefficients of
their model are given in LWE estimator [6] . However their model is more suitable for β is very high, and not very precise
when the blocksize is small.
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rβ′ =
FullEnumCostβ′

ExtremeEnumCostβ′
(4.12)

The value of FullEnumCostβ′ can be calculated by equation (4.11) with GS sequence {‖b∗i ‖}ni=1, and
the actual number of enumeration nodes ExtremeEnumCostβ′ is obtained from experiments. We recorded
the number of enumeration nodes ExtremeEnumCostβ′ to calculate the speedup ratio data. For fitting
rβ′ , we run k-tours-BKZβ on BKZβ reduced bases with n = 60, . . . , 150 and β = 11, 13, . . . , 43, then all
the data of the same blocksize are gathered and averaged. It is well known that the extreme pruning can
offer an exponential speedup [25], and the tightening of radius also leads to a super-exponential speedup.
We assume rβ ∼ expO(β′ log β′), and by fitting we have

log rβ = 0.35461β log β − 1.5331β + 4.8982 log β − 2.9084 (4.13)

Figure 7 shows the fitting results and the value of rβ in experiments, reflecting that the assumption
we made are reasonable.
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Figure 7: Speed-up Ratio of Extreme Pruning

To predict EnumCost(i, j) without any information of a specific lattice basis, the GS sequence con-
tained equation (4.12) should be replaced by the simulated values {B1, B2, . . . , Bn} derived by equations
set (4.4).

Algorithm 6 Calculating Trepro

Input: β, lattice dimension n, k, vol(L)
Output: The running time Trepro of reprocessing with k-tours-BKZβ

1: q ← 1− exp(−0.0092200β − 3.3919); // Eq. (4.3)
2: logB1 ← 1

n

(
log (vol(L))− 1

2n(n− 1)
)

// Eq. (4.2)
3: logBi ← (i− 1) · log q + logB1; // Eq. (3.7)
4: i← 0
5: Cost← 0
6: while i = 1 to n− 1 do
7: β′ = min(β, n− i+ 1)
8: rβ′ ← exp (0.35461β log β − 1.5331β + 4.8982 log β − 2.9084) // Eq. (4.13)
9: Cost = Cost+ 1

rβ′
·FullENUMCost(Bi, . . . , Bi+β′−1) + BlockProcess(i+ β′ − 1, n) // by

repalcing ‖b∗i ‖ with Bi in equation(4.11)
10: end while
11: return k · Cnode · Cost
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4.3 Success Probability

Under Gaussian Heuristic, the success probability of pruned enumeration can be directly reduced to
computing the volume of pruning set. For discrete pruning, the shape of pruning set has always been
considered as a union of “ball-box intersections”, which is not easy to compute. Aono et al. [8] proposed
an efficient numerical method based on fast inverse Laplace transform (FILT) to compute the volume
of a single “ball-box intersection” C(t) ∪ Balln(R), and they use stratified sampling to deduce the total
volume of the union.

However, the flaw in original randomness assumption (assumption 2) also causes the flaw in success
probability model of discrete pruning. For two cells with tag t = [t1, . . . , tk 6= 0, 0, . . . , 0] and t′ =
[t1, . . . , tk + 1 6= 0, 0, . . . , 0], if tk is odd, i.e., t is odd-ended and t′ is the corresponding even-ended tags,
they will have different success probability according to the model given by [8]. However, the lattice
vectors contained in C(t) and C(t′) have exactly the same length.

Figure 8 depicts the paradox in a larger scale. For the parameter settings n = 60, . . . , 84,M = 50, 000
and β = 20, 30, we used 30 BKZβ reduced n-dimensional lattice bases to compute the average value of
theoretical success probability psucc,odd of M odd-ended cells enumerated by algorithm 2, and compute
psucc,even of their corresponding even-ended cells, both using the method provided by [8]. Then we run
a complete DP enumeration on each lattice basis using the same parameters, and recorded the number
of iteration rounds. Figure 8 shows that the actual number of rounds of DP enumeration is in the
gap between expectation value 1/psucc,odd and 1/psucc,odd, which are estimated using odd-ended and
even-ended cells respectively.
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Figure 8: The difference of psucc estimated with odd-ended cells and even-ended cells

This phenomenon calls for a proper rectification on success probability model. As a matter of fact, in
Section 3.1, proposition 1 and the rectified assumption 3 indicate that lattice point is actually randomly
distributed in an hyper-plane contained in C(t) ∪ Balln(R), which can be described by the assumption
below:

Assumption 4 Given lattice basis B and its orthogonal basis B∗, for a tag vector t = [t1, . . . , tk 6=
0, 0, . . . , 0], the lattice vector of C(t) can be considered to be uniformly distributed over C′(t) ⊂ C(t),
where

C′(t)
def
=


n∑
i=1

xib
∗
i , xi ∈ R and

{xi ∈ (−ti + 1/2,−ti/2] ∪ (ti/2, ti + 1/2] for i < k

xk = uk as defined in eq. (3.1)

xk+1 = . . . xn = 0

 (4.14)
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This assumption gives a more precise distribution of lattice vector in the cell. In fact C′(t) is the
union of 2k−1 k − 1 dimensional “box”, which is formally denoted by

Ck−1(t)
def
=

{
k−1∑
i=1

xib
∗
i , xi ∈

(
− ti + 1

2
,− ti

2

]
∪
(
ti
2
,
ti + 1

2

]}

Based on proposition 1 and the new assumption of lattice vector distribution, we redefine the success
probability of DP enumeration on a single cell. For a C(t) with t = [t1, . . . , tk 6= 0, 0, . . . , 0], denoting
the lattice vector v ∈ C(t) by v =

∑n
j=1 ujb

∗
j , the probability that ‖v‖ ≤ R is defined by

psucc(t)
def
= Prob

v←C′(t)

(
‖v‖2 ≤ R2

)
= Prob

v←C′(t)

(
k−1∑
i=1

u2
i ‖b∗i ‖2 < (R2 − u2

k‖b∗k‖2)

)

=
vol
(
Ballk−1(

√
R2 − u2

k‖b∗k‖2) ∩ Ck−1(t)
)

vol(Ck−1(t))

=
vol
(
Ballk−1(

√
R2 − u2

k‖b∗k‖2) ∩ Ck−1(t)
)

∏k−1
i=1 ‖b∗i ‖2

(4.15)

Let R′ =
√
R2 − u2

k‖b∗k‖2, αi = ti
2R′ ‖b

∗
i ‖ and βi = ti+1

2R′ ‖b
∗
i ‖, then the numerator part in equation

(4.15) can be written as

vol (Ballk−1(R′) ∩ Ck−1(t))

=2k−1 ·R′k−1 ·
k−1∏
i=1

(βi − αi) · Pr
(x1,...,xk−1)←

∏k−1
i=1 [αi,βi]

{
k−1∑
i=1

x2
i ≤ 1

}
(4.16)

Then the calculation of psucc(t) is reduced to computing the sum distribution of k − 1 independent and
identically distributed variables x2

1, . . . , x
2
k−1, which can be approximated by FILT method combined

with Euler transformation. The details of these methods are given in appendix B.

For a set of tags U , which is the output of sub-algorithm 5 in DP enumeration, the total success
probability of finding a short lattice vector among U is

psucc ≈ min

(
1,
∑
t∈U

psucc(t)

)
(4.17)

To extrapolate the probability model to higher dimensional SVP instances without performing any
time-consuming computation of real lattice reduction, the concrete value of GS-sequence involved in
the calculation of psucc should be replaced by the simulated GS sequence {B1, B2, . . . , Bn} derived by
equations 4.4.

Figure 9 verifies the accuracy of rectified success probability model (eq. (4.15) and (4.17)). We
take the SVP instances with n = 60, . . . , 84, β = 20, 30 and M = 50000 as examples, and we run
the DP enumeration algorithm for solving SVP challenge on each SVP instance to record the total
iteration rounds. Experiment on each parameter set is repeated for 30 times to get average value The
dashed line shows the expected iteration rounds 1/psucc calculated with the original {‖b∗i ‖}ni=1 of the
real reduced basis, and the dotted line is calculated only with the simulated GS sequence {Bi}ni=1. The
results illustrates that the rectified model gives a more precise estimation of success probability than the
original method provided in [8].

4.4 Simulator for DP Enumeration

Based on all the works in this section, the running time of DP enumeration can be estimated by
algorithm 7 below. This simulator only needs minimum information of a lattice L.
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Figure 9: Verification of the Rectified success probability model

Algorithm 7 DP-simulator

Input: Lattice dimension and volume n, vol(L), k, β, M , target length R of SVP
Output: Expected running time (CPU cycles) of finding v ∈ L such that ‖v‖ ≤ R by DP enumeration

1: Generate the simulated GS sequence B1, . . . , Bn by solving equations (4.4)
2: Calculate rβ by equation (4.13)
3: Calculate Trepro by calling Algorithm6 with parameters(β, n, k, vol(L)) as input
4: Calculate Tcell by equation (4.5) with M, n
5: Calculate Tbin by equation (4.6) with M, n
6: Calculate Tdecode by equation (4.7) with n
7: Call algorithm 3 and algorithm 2 with B1, . . . , Bn as the GS sequence, and output the M tags with

minimal value of f(t)
8: Calculate the total success probability psucc on the M tags, with GS sequence B1, . . . , Bn
9: return

Trepro+Tbin+Tcell+M ·Tdecode
psucc

Remarks. The simulating method of GS sequence (line 1) only works for lattice bases that meet
GSA. For those lattices who lack good “randomness” and don’t satisfy GSA, one have to call a real
BKZβ reduction algorithm on several lattice bases and compute an averaged GS sequence B1, . . . , Bn as
a good simulation of {‖b∗i ‖}ni=1.

5 The Optimal Parameters for DP-ENUM

5.1 Finding the Optimal Parameter Setting by Simulator

To solve a certain SVP instance, the parameters of DP enumeration that need to be determined
manually are: β of BKZ reduction algorithm, k of preprocessing and M of cell enumeration.

It should be noted that k could be a fixed constant. There is no need to set k very large because
of the “diminishing returns” of lattice reduction, which means the improvement of basis quality would
slow down with k increases. We heuristically set k = 6 for SVP instances with n ≤ 200, which is also
roughly consistent with the observation of [5] (Section 2.5). Then only β and M should be determined
with restriction 0 < β ≤ n and M > 0. The two parameter should minimize the total cost of DP
enumeration, i.e., the value of expression (4.1). This value is calculated by algorithm 7 and can barely
be represented by a differentiable function. Nelder-Mead simplex method is an effective method to solve
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this type of optimization problem. Since there are only two independent variables, it is reasonable to
believe that Nelder-Mead method can converge quickly to the optimal solution.

Algorithm 8 gives the optimal parameter β,M for a certain SVP instance based on the standard
version of Nelder-Mead method.

Algorithm 8 Finding optimal parameters for DP enumeration

Input: lattice dimension n, lattice volumn vol(L) and the target vector length R of SVP
Output: (β,M) that minimizes the output of DP-simulator(n, β,M,R)

1: S(β,M) := DP-simulator(n, β,M,R) + P (β,M)
// P (β,M) is a penalty function to avoid that parameters exceed feasible region, i.e., β > n or

M < 0.
2: N ← 2 // 2 independent variables
3: Select initial points x1 = [β1,M1], . . . ,xN+1 = [βN+1,MN+1] at random
4: while true do
5: reorder the N + 1 points such that S(x1) < . . . < S(xN+1)
6: y1 ← S(x1), . . . , yN+1 ← S(xN+1)
7: if |β1 − βN+1| < 2 and |M1 −MN+1| < 1000 then
8: break;
9: end if

10: xm ← 1
N

∑N
i=0 xi // calculate the centroid (midpoint)

11: xr ← 2xm − xN+1 // reflection
12: yr ← S(xr)
13: if y1 ≤ yr < yN then
14: xN+1 ← xr
15: continue;
16: else if yr < y1 then // expansion
17: xe ← xm + 2(xr − xm)
18: if S(xe) < yr then
19: xN+1 ← xe
20: else
21: xN+1 ← xr
22: end if
23: else if yN ≤ yr < yN+1 then // contraction
24: xc ← xm + (xr − xm)/2
25: if S(xc) < yr then
26: xN+1 ← xc
27: continue;
28: end if
29: else
30: xc ← xm + (xN+1 − xm)/2
31: if S(xc) < yr then
32: xN+1 ← xc
33: continue;
34: end if
35: end if
36: for i = 2 to N + 1 do // shrink
37: xi ← x1 + (xi − x1)/2
38: end for
39: end while
40: return The optimal parameters xmin ← x1 = [β1,M1] and the corresponding cost estimation

S(xmin)

Table 2 gives some concrete values of optimal parameter sets for solving medium size SVP challenges
(R = 1.05GH(L)) and the corresponding estimation of running time. For the medium size SVP chal-
lenges, the optimal parameter set basically follows that M ∼ 105 and β < n/2. Both of them increase
not very rapidly with the growth of n.

Figure 10 compares the performance of extreme pruned enumeration and discrete pruned enumeration
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n β M
Expected Time
(CPU cycles)

80 39 65000 9.08e+10
82 42 110000 1.22e+11
84 42 95000 1.96e+11
86 42 175000 2.92e+11
88 42 155000 4.83e+11
90 42 100000 8.90e+11
92 39 150000 1.52e+12
94 42 150000 2.09e+12
96 39 170000 6.88e+12
98 42 180000 1.08e+13
100 42 145000 2.15e+13
102 39 195000 4.16e+13
104 39 190000 1.11e+14
106 42 130000 1.34e+14
108 42 175000 4.24e+14
110 44 190000 1.23e+15

Table 2: Optimal parameters of DP ENUM for solving SVP challenge
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Figure 10: The performance of optimized discrete pruning vs. extreme pruning

for solving SVP challenge. For each n, the experiments are repeated on 30 different instances. In figure 10,
the green broken line is the experimental running time of extreme pruned enumeration in fplll library [1]
with the default pruning function up to n = 90. The green dashed line is a lower bound of extreme
pruned enumeration, first proposed by Chen and Nguyen in 2011 [16], and it explicit fitting function is
given by LWE estimator [6]:

Textreme = Cnode × 20.27019n log(n)−1.0192n+16.103

The orange dashed line is the running time estimation given by our simulator under the optimal pa-
rameter set given by algorithm 8, and the orange broken line is the experimental running time of our
implementation of discrete pruned enumeration. For n . 80, DP enumeration algorithm sometimes find
a solution before the first round ends, and therefor the actual running time is slightly smaller than the
simulated time. And for n > 80, it shows that our implementation of DP enumeration (with optimal
parameter set) coincides with the DP simulator and also outperformed extreme pruning method.

We also use the DP simulator with optimal parameter set to predict the running time of discrete
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pruning on high dimensional SVP challenge. The fitting result is 5

Tdiscrete = exp (0.23102n log(n)− 1.0327n+ 28.464)

Figure 11 compares the asymptotic behavior of classical enumeration with extreme pruning (Textreme [6]),
and the fitting function of DP simulator Tdiscrete. Both the experimental and asymptotic comparison
reveals that the discrete pruned enumeration might have more practical potential especially for solving
high dimensional SVP.
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Figure 11: The asymptotic behavior of extreme pruning vs. discrete pruning

6 Conclusion

In this paper, we rectify the probability model of lattice point distribution in discrete pruning method
to give a more rigorous description of discrete pruning. We also propose some improvements on DP enu-
meration algorithm to make it more practical. The most valuable part is our discrete pruning simulator
combined theoretical analysis and many numerical techniques. For a certain SVP instance, we can use
the DP simulator to find optimal parameters to minimize the running time of DP enumeration. The ex-
plicit time and space consumption is also given by the simulator. By simulation experiments, we believe
that the time complexity of DP enumeration is still super-exponential and the space complexity is still
linear, which does not change the conclusion of enumeration algorithm.

However, the experimental result shows our implementation of DP enumeration has higher efficiency
than extreme pruning method implemented in fplll library, at least in medium dimensional SVP challenge
(80 < n < 110). It also shows that the DP simulator can precisely predict the performance of DP
enumeration. Then in higher dimension (100 < n < 300), we roughly compare the asymptotic behavior
of DP enumeration and extreme pruned enumeration, which also shows the possible advantage of discrete
pruning method.

There are several possible directions for improvement:

• Simulating the GS sequence more precisely. In some cases where GSA does not hold, for example,
the blocksize β ∼ O(n) or the lattice is not a “ random” one, some other efficient simulating
techniques should be introduced. For β ∼ O(n), the BKZ simulator [13,16] works well on random
lattice, but for non-random lattice it remains to be studied and should be treated carefully.

• Using stronger reduction algorithm. As the result indicated, when n & 80, DP enumeration out-
performs classical enumeration with extreme pruning, which means the BKZ algorithm for prepro-
cessing and reprocessing should call DP enumeration as SVP oracle to achieve higher efficiency, and

5We use the fitting function in this form to be consistent with [CN11]. Actually, the asymptotic analysis of DP
enumeration is still insufficient, and we don’t know whether the asymptotic cost function of DP enumeration is exp

(
O(n2)

)
or exp(O(n logn)), and this fitting function can only be regarded as a lower bound estimation.

24



sieving is also an alternative SVP oracle. Besides, the structure of progressive BKZ algorithm [11]
also shows strong power, although it has a very complicated running time estimator.

• Discussing the efficiency of many heuristic methods. Fukase and Kashiwabara [21] tried to improve
the quality of basis by inserting short lattice vectors into basis, but it barely has theoretical proof.
Since this method will influence the psucc in every round, the success probability model of FK
algorithm should be modified.

• A parallelized implementation of DP enumeration.
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2013.

25

https://github.com/fplll/fplll
http://www.shoup.net/ntl/
https://www.latticechallenge.org/svp-challenge/


[16] Yuanmi Chen and Phong Q. Nguyen. Bkz 2.0: Better lattice security estimates. volume 7073, pages
1–20, 12 2011.

[17] Matthijs Coster, Antoine Joux, Brian Lamacchia, Andrew Odlyzko, Claus Schnorr, and Jacques
Stern. Improved low-density subset sum algorithms. volume 2, 04 1999.

[18] Dan Ding and Guizhen Zhu. A random sampling algorithm for svp challenge based on y-sparse
representations of short lattice vectors. 12 2014.
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A Details of Cell Enumeration

A.1 Subalgorithm of Alg. 3

Algorithm 9 CellENUM probe

Input: R, M , ε
Output: All t ∈ Nn such that f(t) ≤ r where f(t) as defined in equation 3.4

1: t1 = t2 = . . . = tn = 0;
2: c1 = c2 = . . . = cn+1 = 0;
3: k ← 1
4: cnt← 0 // counter
5: while true do
6: ck ← ck+1 + f(k, tk);
7: if ck < r then
8: if k = 1 then
9: cnt+ +

10: if cnt > (1 + ε)M then
11: return 1 // R is too large
12: end if
13: if tk+1 = . . . = tn = 0 then
14: tk ← tk + 2;
15: else
16: tk ← tk + 1;
17: end if
18: else
19: k ← k − 1;
20: tk ← 0;
21: end if
22: else
23: k ← k + 1;
24: if k = n+ 1 then
25: break;
26: else
27: if tk+1 = . . . = tn = 0 then
28: tk ← tk + 2;
29: else
30: tk ← tk + 1;
31: end if
32: end if
33: end if
34: end while
35: if cnt < (1− ε)M then
36: return −1 // R is too small
37: else
38: return 0
39: end if

The time complexity of algorithm 9 is the same with algorithm 2, which is O((2n− 1)M).

A.2 Proof of Theorem 1

Let f(t) =
∑n
i=1 f(i, ti) =

∑n
i=1(t2i + ti)‖bi‖2 be the original objective function proposed in [10].

We only prove theory 1 in the case that algorithm 3 uses f(t) as objective function. When GSA holds,
f(t) ≈ f(t) and we assume the conclusion of f(t) is asymptotically the same with the f(t) case.

We note that the initial value R1 ←
∑n
i=1 f(i, dM 1

n e) guarantees that there are at least M tags such
that f(t) < R1, which is a necessary condition of the correctness of algorithm 3.
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Proof: LetR0 = 0, R1 =
∑n
i=1 f(i, dM 1

n e), and denote an n-dimensional ellipsoid by

En(a, R) =

{
x ∈ Rn :

n∑
i=1

x2
i

a2
i

≤ R

}

In algorithm 3, for any R ∈ [R0, R1], the inequalityf(t) ≤ R is equivalent to

n∑
i=1

f(i, ti) =

n∑
i=1

(ti +
1

2
)2‖bi‖2 −

1

4

n∑
i=1

‖bi‖2 ≤ R

i.e.,
n∑
i=1

(ti +
1

2
)2‖bi‖2 ≤ R+

1

4

n∑
i=1

‖bi‖2

The number of tags t ∈ Zn such that satisfying the inequality above, is exactly the number of integer
points in an n-dimensional ellipsoid centered on (− 1

2 , . . . ,−
1
2 ). To simplify the problem, we assume that

a translation operation on the ellipsoid would not change the total number of integer points in it, and
then we can focus on a centrosymmetric ellipsoid En(a, R′), where ai = 1

‖bi‖ and R′ = R+ 1
4

∑n
i=1 ‖bi‖2.

Then we define

M(R)
def
= #{t : f(t) ≤ R} ∼ # {En(a, R′) ∩ Zn}

It is obvious that M(R) is a monotone undecreasing function of R. Assume that binary search
algorithm 3 terminates at the k-th iteration and denote the upper bound and lower bound of radius by
Rlk and Rrk, then we have (1− ε)M0 ≤M(Rrk+Rlk

2 ) ≤ (1 + ε)M0 with M0 being the input of algorithm
3. The target of our proof is to find a ∆R such that Rrk −Rlk > ∆R holds for all possible terminating
values of (Rlk, Rrk). Then it is easy to prove that the binary search ends in log R1−R0

∆R rounds of iteration.

Now assume Rlk, Rrk satisfying M(Rlk) < (1 − ε)M0 ≤ M(Rrk+Rlk
2 ) ≤ (1 + ε)M0 < M(Rrk). Then

we have
M(Rrk)−M(Rlk) > 2εM0 (A.1)

Let An(R′) = #En(a, R′ = R+ 1
4

∑n
i=1 ‖bi‖2) ∩ Zn, we can investigate the asymptotic behavior of

M(R) by estimating the value of An(R′) .

There are some mature conclusions on the estimation of An(x) [31,36]. An(x) can be written as

An(x) =
V (Bn)∏n
i=1 ‖bi‖

xn/2 + Pn(x) (A.2)

where Pn(x)� x
n
2 ·
n−1
n+1 and can be written as Pn(x) = O(xn), and V (Bn) is the volume of n-dimensional

unit sphere:

V (Bn) =
πn/2

Γ( 1
2 + 1)

≈
(

2πe

n

)n
2

Although M(R) is a discrete function of R, we can use the value of An(x) at x = R + 1
4

∑n
i=1 ‖bi‖2

as an approximation. In this case An(x) = O(2xn/2) in an asymptotic sense, and then according to the
Lagrange mean value theorem, for xlk = Rlk + 1

4

∑n
i=1 ‖bi‖2, xrk = Rrk + 1

4

∑n
i=1 ‖bi‖2, there exists

xξ ∈ (xlk, xrk) such that

An(xrk)−An(xlk)

xrk − xlk
= A′n(xξ) ≤ nxξ

n
2−1 < nxrk

n
2−1 (A.3)

Combining equation (A.1) and (A.3), we have

Rrk −Rlk = xrk − xlk =
An(xrk)−An(xlk)

A′n(xξ)
'

2εM0

nxrkn/2−1
(A.4)
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Therefore the total rounds of iteration of algorithm 3 is at most

log
R1 −R0

Rrk −Rlk

< log n+
n

2
log (R1 +

1

4

n∑
i=1

‖bi‖2)− log 2εM0

= log n+
n

2
log

((
dM

1
n

0 e+
1

2

)2

GSS(B)

)
− log 2εM0

(A.5)

where GSS(B) =
∑n
i=1 ‖bi‖2 ≤ ndet(L)

2
n . By further approximation and simplification, we can know

that the algorithm ends in at most O
(

log n+ log 1
ε + n log

(
ndet(L)

2
n

))
rounds. �

B Calculating Success Probability by FILT and Euler Transfor-
mation

In this part we will introduce some detailed derivation of the numerical methods for computing success
probability.

Let xi uniformly distributed on [αi, βi], then the probability density function of x2
i is

ρx2
i
(z) =

{
1

2(βi−α)

√
z
, z ∈ [α2

i , β
2
i ]

0, else

Therefore the p.d.f. of
∑n
i=1 x

2
i is

ρ∑n
i=1 x

2
i
(z) =

(
ρx2

1
∗ ρx2

2
∗ . . . ∗ ρx2

n

)
(z)

where “∗” denotes the convolution operation f ∗ g(z)
def

====
∫ z

0
f(τ)g(z − τ) dτ .

To estimate the success probability of DP enumeration, our goal is to calculate Pr
{∑n

i=1 x
2
i ≤ 1

}
.

Step 1. Fast inverse Laplace transform

Theorem 2 If random variable X is non-negative and has p.d.f. p(x), then the c.d.f of X is

D(x) = L−1

{
1

s
L{p}(s)

}
(x)

Here the symbol L specially refers to the Laplace transform, which satisfies

L
{
ρ∑n

i=1 x
2
i
(z)
}

= L{ρx2
1
} · . . . · L{ρx2

n
}

Then our goal is to calculate the value

D(1) = Pr

{
n∑
i=1

x2
i ≤ 1

}
= L−1

{
1

s
L{ρ∑n

i=1 x
2
i
}(s)

}
(t)

∣∣∣∣
t=1

(B.1)

Note that s ∈ C since Laplace inverse transform is an integral in complex field with integral path
perpendicular to x-axis.

To calculate D(1) in equation (B.1), we first do the Laplace transform

F (s)
def

====
1

s
L{ρ∑n

i=1 x
2
i
}(s)

=
1

s
L{ρx2

1
} · . . . · L{ρx2

n
} =

πn/2

s
n
2 +1

n∏
i=1

erf(βi
√
s)− erf(αi

√
s)

2(βi − αi)
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and then apply inverse Laplace transform

D(1) =Pr

{
n∑
i=1

x2
i ≤ 1

}

=
1

2πi

∫ c+∞i

c−∞i

F (s)est ds

∣∣∣∣
t=1

=
1

2πi

∫ c+∞i

c−∞i

F (s)es ds

=
1

2πi

∫ c+∞i

c−∞i

 π
n
2

s
n
2 +1
·
n∏
j=1

erf(βj
√
s)− erf(αj

√
s)

2(βj − αj)

 · es ds

(B.2)

Step 2: Approximate integral calculation with series

Put the approximation of es in complex filed

es ≈ Eec(s, a)
def

====
exp(a)

2 cosh(a− s)
=

ea

2

+∞∑
m=−∞

i(−1)m

s− a− (m− 1
2 )πi

into equation (B.2), 6 now notice that the integral has singularity points sm = a+(m− 1
2 )πi, m = 1, . . . ,∞

7

According to the residue theorem and Jordan theorem, equation (B.2) can be approximated by

D(1) ≈ ea ·
+∞∑
m=1

ImF

(
a+ (m− 1

2
)πi

)
(B.3)

Step 3. Using Euler transformation to accelerate the convergence of series

Since the series in equation (B.3) converges slowly, the Euler transformation is a practical method to
accelerate the convergence. Therefore we can use fewer terms to approximate the infinite series.

Let Fm = ImF
(
a+ (m− 1

2 )πi
)
, then the value of equation (B.3) can be calculated by finite terms:

+∞∑
m=1

(−1)mFm ≈
K∑
m=1

(−1)mFm + (−1)K
J∑
j=1

(−1)j∆j−1FK+1

2j

where ∆j−1FK+1 =
∑j−1
i=0 (−1)j

(
j−1
i

)
Fj+K−1 is the “forward difference” that can be iteratively computed

by van Wijingaarden transformation. In our implementation, we set K = 40, J = 30 by default.

Remarks. The computation of ImF (s) at s = a+(m− 1
2 )πi is a time-consuming procedure. It involves

the computation of erf(·) over complex field C, which also need to be approximated by series expansion.
In the original computation model, since αi and βi only have a few of fixed values only related with
the GS sequence, we can accelerate the computation by building an “erf table” to record some value of
erf(αi

√
s) and erf(βi

√
s) that would be repeatedly used in the calculation. However, for the rectified

success probability model, the value of αi and βi are also connected with the explicit value of cell tag
t, which makes the “erf table” invalid and the running time could be very long. Fortunately, we still
find the original computation model could help us to estimate the rectified success probability. In our
implementation of DP enumeration, besides the step-by-step computation, we also provide a heuristic
method that using the harmonic average of psucc,odd and psucc,even, which can be calculated efficiently,
to roughly estimate the actual success probability.

6Here the value of a should guarantee the convergence of series. For example, Hosono [29] claimed that the error is very
small when a� 1, and Aono and Nugyen [8] recommended to use a = max(50, 30 + 3

√
n).

7In equation (B.2), the integral path should be to the right of all singularities, i.e., c > a. Besides, for the
√
s in F (s)

since s is a complex variable, the argument of
√
s should satisfy | arg(z)| < π

4
to be consistent with the integration path.
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