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Abstract. Differential cryptanalysis is one of the most effective meth-
ods for evaluating the security level of block ciphers. For this, an attacker
tries to find a differential or a characteristic with a high probability that
distinguishes a block cipher from a random permutation to obtain the se-
cret key. Although it is theoretically possible to compute the probability
of a differential for a block cipher, there are two problems to compute
it practically. The first problem is that it is computationally impossi-
ble to compute differential probability by trying all plaintext pairs. The
second problem is that the probability of a differential over all choices
of the plaintext and key might be different from the probability of the
differential over all plaintexts for a fixed key. Thus, to evaluate the se-
curity against the differential cryptanalysis, one must assume both the
hypothesis of stochastic equivalence and the Markov model. However,
the hypothesis of stochastic equivalence does not hold in general. Indeed,
we show on simple ciphers that the hypothesis of stochastic equivalence
does not hold. Moreover, we observe that the differential probability is
not equal to the expected differential probability. For these results, we
study plateau characteristics for a 4-bit cipher and a 16-bit super box. As
a result, when considering differential cryptanalysis, one must be careful
about the gap between the theoretical and the practical security of block
ciphers.
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1 Introduction

Differential cryptanalysis invented Biham and Shamir is one of the most
powerful and popular attack method applied to block ciphers, [1]. It was
the first attack faster than brute force for full round DES, [2]. After this
discovery, the differential cryptanalysis has became an important secu-
rity criterion in block cipher design. Differential cryptanalysis consider a



pair of differences (α, β) such that for a given input difference α the out-
put difference after certain number of rounds, say r > 1, is β with high
probability. In practice, it is usually infeasible to calculate the probability
of differential characteristics for an r-round block cipher. The reasonable
approach to compute such probability is that to calculate the product of
one round differential characteristics in iterative rounds. However, in this
case we have to face with two problems to find the real probability of
differential characteristics for a block cipher with r rounds.

The first problem is that the probability of such differential character-
istic depends on the initial pair of plaintexts and the dependence of the
differences in each round, as the round functions are in general not in-
dependent. This corresponds to the assumption that for a Markov cipher
with uniformly distributed and independent round keys, the probability
of an r-round characteristic is the product of the probabilities of the r
one-round characteristics, [3]. Markov ciphers are defined as iterated ci-
phers whose round functions satisfy the condition that the differential
probability is independent of the choice of one of the component plain-
texts under an appropriate definition of difference. DES and AES with
independent subkeys are Markov ciphers when the notion of difference is
the exclusive-or operation. Thus, the study of differential cryptanalysis
for an r-round Markov cipher is reduced to the study of the transition
probabilities created by its round function. Actually, experimental differ-
ential analysis of the DES block cipher using ⊕ as difference operator
demonstrated that the concatenation of 1-round characteristics is a good
approximation to the real probability for differential attacks in practice,
even when the round subkeys are generated from a deterministic key
schedule algorithm.

The second problem is while finding a differential characteristic, the
attacker computes differential characteristics independent of the value of
the secret key. For this, it is reasonable to assume that the probability of
a differential characteristic is independent of the value of the secret key.
This assumption is known as the hypothesis of stochastic equivalence.
This hypothesis states that the probability of a differential characteristic
behave (almost) in the same way for all keys, [3].

When designing a block cipher, we need to give its security proof
and hence we need to assume the hypothesis of stochastic equivalence
and Markov model. By these assumptions we can calculate the expected
differential probability (EDP) of an iterated cipher by taking product of
probability of single round characteristics. As a result we can give bounds
on the expected data complexity which an attacker uses in her/his attack.
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However, since the hypothesis of stochastic equivalence does not hold in
ciphers used in practice, it can not be used to calculate the probability of
differential characteristic. As an example, it was shown that for the AES
there are keys with differential probability (DP) 2100 times greater than
the expected differential probability (EDP),[4] .

Actually, the fixed key probability of a differential characteristic de-
pend on value of the key. This notion was defined as plateau characteris-
tics by Daemen and Rijmen, [4]. Plateau characteristics are a special type
of characteristics whose probability depends on key and can have only 2
values. For a (usually small) subset of the keys it has a non-zero probabil-
ity and for all other keys its probability is zero. In [4], it is proved that for
a large group of ciphers, including the AES, all two-round characteristics
are plateau characteristics, [4].

In this paper, we give plateau characteristics for an 4-bit cipher (we
call it X cipher), a 16-bit super box with 4 bit S box and 4 × 4 MDS
(Maximum Distance Separable) matrix and finally a 16-bit super box
with Midori block cipher’s S box, and its almost MDS matrix, [5]. For
these ciphers, we show that the hypothesis of stochastic equivalence does
not hold and the probability of a differential characteristic is different
form the expected differential characteristic probability.

This paper is organized as follows. In Section 2, we give preliminaries
of differential cryptanalysis, the definition of probability of characteris-
tics, the expected differential probability and the definiton of plateau
characteristic. In Section 3, we give a plateau characteristic for a 4-bit
cipher X. Then the definition of super boxes is given Section 4. Finally
we give plateau characteristics for a super box with 4-uniform S box and
an MDS matrix and for Midori’s super box in Section 5 and Section 6,
respectively.

2 Definitions

In this section we give some definitions, [6], [4]. Let F2 be the finite field
with two elements. Let Fn

2 be the vector space. A differential of a function
f : Fn

2 → Fn
2 is a pair (a, b) ∈ Fn

2 × Fn
2 such that

f(x)⊕ f(x⊕ a) = b.

for some x, [3]. We call a the input difference and b the output difference.
The differential probability DP (a, b) of a differential (a, b) (with respect
to f) is defined as

DP (a, b) = 2−n#{x ∈ Fn
2 : f(x⊕ a)⊕ f(x) = b}.
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The difference table of a function f is the matrix containing all the differen-
tial probabilities DTf [a, b] = DP (a, b). When it is clear from the context
which function f is meant, we will often drop it from the notation. If f is a
function parameterized by a key k, we can also define the parameterized
differential probability DP [k](a, b) in a straightforward way.

The expected differential probability (EDP) is the average of the dif-
ferential probability over all keys. Then EDP of a differential (a, b) is
defined as the mean value of DP [k](a, b) :

EDP (a, b) = E(DP [k](a, b); k) = 2−|K|
∑
k∈K

DP [k](a, b).

Here, k is assumed to be a uniformly distributed random variable taking
values in K.

The weight of a differential (a, b) or a characteristic Q is minus the
binary logarithm of their EDP, [4] :

weight(a, b) = −log2EDP (a, b) ; weight(Q) = −log2EDP (Q).

So for a function parameterized by a key, the difference table consists of
the values DTf [a, b] = EDPf (a, b).

Let B[k](x) denote a function composed of r steps f i[ki](x) parame-
terized by r keys k1, k2, ..., kr ∈ {0, 1}n:

B[k](x) = (f r[kr] ◦ ... ◦ f1[k1])(x).

A characteristic through B[k](x) is a vector Q = (b0, b1, ..., br) with
bi ∈ {0, 1}n for i = 0, 1, . . . , r. A characteristic Q = (b0, b1, ..., br) is in
a differential (a, b) if b0 = a and br = b. If we now consider the following
set of equations

f1[k1](x+ b0) = f1[k1](x) + b1

...

(fR[kr] ◦ ... ◦ f1[k1])(x+ b0) = (fR[kr] ◦ ... ◦ f1[k1])(x) + br (1)

then the parameterized differential probability DPB[k](Q) of a character-
istic Q with respect to B[k](x) is defined as

DP [k](Q) = 2−n#{x ∈ Fn
2 | x satisfies (1)}.
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It is well-known [3] that for Markov ciphers we have

DP [k](a, b) =
∑

Q∈(a,b)

DP [k](Q).

and
EDP (a, b) =

∑
Q∈(a,b)

EDP (Q).

We now give the definition of plateau characteristics.

Definition 1 (Plateau characteristic, [4]) A characteristic Q is a
plateau characteristic with height height(Q) if and only if both of the
followings hold:

1. For a fraction 2nb−(weight(Q)+height(Q)) of the keys DP [k](Q) = 2height(q)−nb.
2. For all other keys DP [k](Q) = 0.

Here height is the number of right pairs for a characteristic in binary
logarithm.

3 A Plateau Characteristic for X Cipher

In this section we present a plateau characteristic for the X cipher. X is
a 4-bit block cipher containing only S boxes and 4 bit key addition. X
cipher is depicted in Figure 1.

Fig. 1. X Cipher

X uses Midori’s s box (given in Table 1), it is a 4-uniform s box, [5].
Namely, the maximum value in the difference distribution table is 4. Since
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X satisfies the criteria of Two-Round Plateau Characteristic Theorem
in [4], all characteristics Q in X are plateau characteristics. To present
a plateau characteristic for X, we first give the Difference Distribution
Table (DDT) in Table 2 of Midori’s s box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 10 13 3 14 11 15 7 8 9 1 5 0 2 4 6

Table 1. Midori’s s box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
a 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
b 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
c 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
d 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
e 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
f 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

Table 2. DDT for Midori S box

We consider a characteristic with the input difference 0x0a and the
output difference 0x01. By Table 2, the expected differential probability
(EDP) of this characteristics is EDP = 4

16 ×
2
16 = 2−5. Because the

difference path in the characteristic is

Q : 0x0a→ 0x05→ 0x01.

Let P be an input and K be a key. We consider the pairs S(S(P ) ⊕K)
and S(S(P ⊕ 0x0a) ⊕ K) for all input values P and all key values K.
Then we look at the outputs that satisfies the difference 0x01. Thus we
calculate right pairs that satisfy the characteristic 0x0a→ 0x05→ 0x01.
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We see that for some keys, actually a quarter of all keys, DP [k] is
nonzero, and equal to 2

16 in Table 3.

Key value Number of Right Pairs

0 0
1 0
2 0
3 2
4 0
5 0
6 2
7 0
8 0
9 2
10 0
11 0
12 2
13 0
14 0
15 0

Table 3. DP values of the characteristic 0x0a → 0x05 → 0x01 for X cipher

This is a plateau characteristics with height height(Q) = 1. Namely,
for nonzero DP values there are 2 right pairs for the characteristic. For
example, when the key value is 3, there are 2 right pairs (namely, (2,8)
and (8,2)) for the characteristic Q. Therefore the height is log22 = 1.
Thus Q is a plateau characteristic with height 1, by the Definition 4 in
[4]. For the key value k ∈ {3, 6, 9, 12}, the probability DP [k] is nonzero
and equal to DP [k] = 2height(Q)−4 = 21−4 = 2−3 from the Table 3.

In cipher X, we observe that the hypothesis of stochastic equivalence
does not hold since EDP 6= DP [k](Q), actually DP [k](Q) = 4×EDP (Q)
for the keys k ∈ {3, 6, 9, 12}.

4 Definiton of super boxes

In [4], it is given the definition of the super box.

Definition 2 A super box maps an array a of nt elements ai to an array e
of nt elements ei. Each of the elements has size ns. A super box takes a key
k of size nt×ns = nb. It consists of the sequence of four transformation :

– bi = S[ai]: nt parallel applications of a ns-bit S-box.
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– c = M(b): a linear map with branch number nt + 1

– d = c⊕ k: key addition

– ei = S[di]: nt parallel applications of a ns-bit S-box.

For a one-to-one S-box with input difference zero, we have zero output
difference. Then, it has probability 1 in a super box. Thus, we consider
the S boxes with nonzero input difference. They are called active S-boxes.

In [4], the height of a super box is defined in Thereom 2. In [4], it is
shown that all two-round characteristics of AES are plateau characteris-
tics. Also, they show that for the AES the vast majority of characteristics
over 4 or more rounds are plateau characteristics. Moreover, they classify
characteristics with heights and give a table for that.

In this paper, we consider two kind of super boxes one of which has an
MDS matrix and other has an almost MDS matrix as a linear transfor-
mation. We observe that all differential characteristics of these two super
boxes are plateau characteristics. Moreover, we present plateau charac-
teristics for both types of super boxes.

5 A Plateau Characteristic for a Super Box with
4-uniform S Box and an MDS matrix

In this section, we build a 16-bit super box with Midori’s S-box and a
4 × 4 MDS matrix over F24 . We give this super box in Figure 2. All S
boxes are the same and it is Midori cipher’s S-box in Table 1. M is an
MDS matrix over F24 (it is a finite field over F and extended by using
irreducible polynomial x4 + x+ 1) :

M =


1 4 9 13
4 1 13 9
9 13 1 4
13 9 4 1

 .
Like in AES, all characteristics for this super box is a plateau char-

acteristic, [4, Thereom 2]. Now we give a plateau characteristic for this
super box by using Table 2.

1000
prob= 2

16−→
SSSS

4000
prob=1−→

M
4321

prob=( 2
16

)2× 4
16−→

SSSS
1446.

Here the numbers represent 4-bit values. After implementing the su-
per box we see that the differential probability of this characteristic is
8
216

= 2−13. Thus, the height is 3. We also observe that for some keys,

8



Fig. 2. A super box with an MDS matrix

actually for the half of keys, the differential probability is zero. By Table
2, EDP = (2−3)4×2−2 = 2−14. Thus, DP [k] = 2×EDP , in other words
the hypothesis of stochastic equivalence does not hold in this super box.

6 A Plateau Characteristics for Midori’s Super Box

In this section we consider the super box of Midori. Namely, we have a
super box using the s box and almost MDS matrix of Midori. As Midori’
s box is 4-uniform, all characteristic of Midori’s super box is plateau by
Theorem 1 in [4]. The super box for Midori is given in Figure 3. In this
figure, S boxes are all same and they are Midori’s s box (Table 1). The
matrix M ′ is an almost MDS matrix.

M ′ =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
For this super box, we find a plateau characteristic with differential

probability DP [k] = 27

216
= 2−9 for some keys, actually 1

8 of all keys.

1000
prob= 2

16−→
SSSS

1000
prob=1−→
M ′

0111
prob=( 2

16
)2× 4

16−→
SSSS

0111.

9



Fig. 3. A super box with an MDS matrix

Here numbers represent 4-bit values. The expected differential probability
of this characteristic, calculated by using differential distribution table 2,
is (2−3)4 = 2−12. Thus for a nonzero DP values DP [k] = 8 × EDP . For
this super box, we observe that the stochastic equivalence hypothesis does
not hold.

7 Conclusion

Since it is not easy to calcuate the probability of a differential characteris-
tic with a secret key and it is in general not possible to try all input pairs
for a block cipher with r rounds, it is reasonable to assume Markov model
and the hypothesis of stochastic equivalence. Under the assumptions that
the cipher is a Markov cipher and round keys are random and indepen-
dent, the probability of a differential characteristic is estimated by the
product of the probability in each round, which is the expected differen-
tial probability (EDP) of the characteristic, i.e., the averaged probability
over all independent round keys. By this assumptions the designer can
give a security proof against the differential cryptanalysis.

However, we observe that ciphers used in practice usually do not satify
this hypothesis of stochastic equivalence even if they satisfies the Markov
model. Thus, the expected probability will be different from the differ-
ential probability. As a result, when designing a block cipher one must
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be careful for evaluating theoretical and practical security against the
differential cryptanalysis.
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