
Practical Sublinear Proofs for R1CS from
Lattices?

Ngoc Khanh Nguyen1,2 and Gregor Seiler1

1 IBM Research Europe, Switzerland
2 ETH Zurich, Switzerland

Abstract. We propose a practical sublinear-size zero-knowledge proof
system for Rank-1 Constraint Satisfaction (R1CS) based on lattices.
The proof size scales asymptotically with the square root of the witness
size. Concretely, the size becomes 2-3 times smaller than Ligero (ACM
CCS 2017), which also exhibits square root scaling, for large instances
of R1CS. At the core lies an interactive variant of the Schwartz-Zippel
Lemma that might be of independent interest.

1 Introduction

Zero-Knowledge proof systems are an important tool in the construction of many
cryptographic protocols, especially in the area of privacy-preserving cryptogra-
phy. This paper is about zero-knowledge proof systems based on techniques and
hardness assumptions from lattice cryptography. In recent years there has been a
lot of progress in the construction of lattice-based proof systems whose proof sizes
scale linearly with the statement size [ESS+19, EZS+19, ALS20, ENS20, LNS20].
The concrete proof sizes for typical statements have been reduced by a factor
of about 100 over earlier proof systems. This in turn has made it possible to
construct efficient advanced quantum-safe privacy-preserving schemes, for ex-
ample group and ring signature schemes, that achieve or get near to practically
acceptable bandwidth requirements [ESLL19, LNPS21, LNS21b].

On the other hand, the linear scaling of the proof systems implies that they
are only practical for proving relatively small statements and great care needs to
be taken to minimize the statement sizes when using them in the construction of
advanced schemes. For example, the linear-size proof systems can not be used to
construct efficient group signature schemes on top of vetted lattice-based basic
signature schemes such as the NIST PQC finalists Dilithium [DKL+18] and
Falcon [FHK+18]. Dilithium and Falcon involve a hash function that is modeled
as a random oracle and proving a preimage to such a hash function would lead
to a very large proof size.

For solving this problem and more generally for being able to prove arbi-
trary circuit satisfaction with lattice-based proof systems, practically efficient
sublinear-size proof systems are needed. There are several proposals of asymptot-
ically sublinear lattice-based proof systems in the literature [BBC+18, BLNS20,

? This work is supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Ngoc Khanh Nguyen and Gregor Seiler

ACK21, AL21], but their concrete proof sizes are not analyzed in the papers
and they are not practically efficient. These sublinear-size lattice-based proof
systems use adaptations and extensions of techniques from discrete-log-based
proof systems. In particular several forms of “folding” stemming from the two-
tiered commitment scheme [Gro11] and Bulletproofs [BBB+18]. While folding
techniques are very effective in the discrete-log setting and retain asymptotic
efficiency in the lattice setting, they do not play nicely with the shortness re-
quirement in lattice cryptography. This leads to a concrete blow-up of the proof
size. We exemplify this in the case of lattice-based Bulletproofs.On a high level,
it must be possible to invert the folding in the extraction such that the extracted
solution vector is still short. For general (short) challenges this will not be the
case. In [BLNS20, ACK21] monomial challenges Xi are used that result in a
large soundness error which can not be boosted [AF21]. But even when ignoring
this problem, the length of the extracted solution vector grows by a factor of
12d3 for every level of folding where d is the dimension of the polynomial ring.
Then the parameters must be chosen such that the Module Short Integer Solu-
tion problem (Module-SIS) is hard with respect to the length of the extracted
solution vector, resulting in the need for large integer moduli q. It follows that
the length of the extracted solution becomes prohibitively large for less than 10
foldings. When choosing an optimal number of foldings the required modulus q
still needs to be in the order of several hundred bits and the proof size turns out
to be in excess of 100 Megabytes for typical example applications.

In light of these problems, we construct the first concretely efficient sublinear-
size lattice-base zero-knowledge proof system in this paper. Our proof system
uses new techniques that avoid any folding and the proof size scales with the
square root of the statement size. We apply it for proving R1CS [BCG+13] where
it is most efficient and achieves optimal sizes for numbers of constraints above
220. Because of the square root scaling, we compare our proof system to the
PCP-type Ligero proof system [AHIV17], and more specifically to the straight-
forward extension Ligero-R1CS from [BCR+19] to the R1CS language, which
also exhibits square root scaling and is faster and less memory-demanding than
other PCP-type proof systems. In the setting over a finite field of size 128 bits
our system results in a proof size of 10.79 Megabytes for 224 constraints, whereas
Ligero results in 31.83 Megabytes, for the same field size, number of constraints,
and comparable soundness error around 2−110.

Outside of lattice-based cryptography there has been tremendous progress
in the construction of practical zero-knowledge proof systems and they have
progressed to the point where they can be used routinely to prove relatively
large arithmetic circuits with practical costs. When restricting to (plausibly)
quantum-safe protocols, the PCP-type systems like Ligero++ [BFH+20] or Au-
rora [BCR+19] achieve proof sizes that scale poly-logarithmically with the wit-
ness size and have small concrete base sizes in the order of 100 Kilobytes. More-
over, these systems only rely on unstructured quantum-safe hardness assump-
tions (hash functions). It is clear that the polylogarithmic proof systems with
small concrete costs like e.g. Aurora offer much smaller proof sizes for large

Practical Sublinear Proofs for R1CS from Lattices 3

statements than our square-root sized proof system. We use the comparison
with Ligero to be able to claim practicality of our proof system. Namely, that
our proof system has very small constants for a proof system that asymptotically
scales with the square root of the witness size. It is an important and interesting
open research question whether it will be possible to improve upon the polylog-
arithmic PCP-type systems by relying on structured quantum-safe assumptions
as for example lattice-based assumptions, which for example has been achieved
for basic signature schemes where lattice-based signatures are more efficient than
hash-based ones.

Next to the conventional publicly verifiable proof systems this paper is about,
there has recently been much work on (lattice-based) proof systems in the des-
ignated verifier preprocessing model. For example, [GMNO18], MAC’n’Cheese
[BMRS21], Wolverine [WYKW21], QuickSilver [YSWW21], and [ISW21]. These
proof systems achieve very practical sizes but are not directly comparable to
publicly verifiable protocols.

1.1 Technical Overview

Our proof system from this paper is constructed in two stages and uses the
protocols from [ALS20, ENS20] as a building block. First, we construct an exact
binary amortized opening proof for many lattice-based hashes. Then we use
this proof to prove an opening to a Merkle hash tree via induction over the
levels of the tree. Both proofs can be amended to also prove linear and product
relations among the preimage coefficients. We now give some more details about
the techniques.

Our sublinear-size proof system is presented as a protocol for proving preim-
ages to many collision-resistant hashes ~ui = A~si over a cyclotomic polynomial
ring, typically Rq = Zq[X]/(X128 + 1) with fully splitting prime q ≈ 2128. The

preimages ~si are binary and lie in {0, 1}m ⊂ Rm/128q where m is a multiple of
128. The hashes can be commitments if parts of the ~si are random, but our proof
system does not rely on this. Concretely, there are n hashes to m bits each, and
we want m ≈ n and a proof size that is linear in n. Then our proof system scales
with the square root of the witness size. We start from an amortized approximate
opening proof for all the hashes that is a variant of the protocol in [LNS21a]. In
the protocol the prover sends an amortized masked opening

~z = ~y + x1~s1 + · · ·+ xn~sn,

where ~y is the masking vector and xi ∈ Zq are integer challenges. We forget the
polynomial structure and let ~si be the coefficient vectors corresponding to the
~si. We then enhance the protocol with a binary proof that shows that all the
~si are binary vectors ~si ∈ {0, 1}m. To this end, we construct the polynomial (in
the xi)

f(x1, . . . , xn) = 〈~ϕ, ~z ◦ ((x1 + · · ·+ xn)~1− ~z)〉
for a challenge vector ~ϕ. Here ◦ denotes the componentwise product. The terms
divisible by x2i for i ∈ {1, . . . , n} are given by 〈~ϕ,~si ◦ (~1− ~si)〉 and vanish when

4 Ngoc Khanh Nguyen and Gregor Seiler

~si is binary, which we want to prove. There are now two problems that we need
to overcome to make this work. First, there is a quadratic number (n2 +n+2)/2
of terms that we would need to commit to in order to prove that the interesting
terms divisible by x2i vanish. These are called garbage commitments and they
would be very expensive and not result in a sublinear-size proof system. Secondly,
it is not clear how to prove hat ~z is always of the same form with fixed masking
vector ~y so that the polynomial f is really independent of the challenges. We solve
the first problem with a technique that can be seen as a multi-round interactive
variant of the Schwartz-Zippel lemma. The high-level idea is that we prove

f(x1, . . . , xn) = f0 + f1(x1) + f
(x1)
2 (x2) + · · ·+ f (x1,...,xn−1)

n (xn), (1)

where f0 ∈ Zq and f
(x1,...,xi−1)
i ∈ Zq[xi] is a degree-one polynomial in xi with

zero constant coefficient, depending on x1, . . . , xi−1. More precisely, we do not

prove that the f
(x1,...,xi−1)
i (xi) are in fact multivariate polynomials in x1, . . . , xi

of degree 2 whose terms x2i vanish. It suffices to prove that they are arbitrary
functions from Zi−1q to Zq[xi] given by (x1, . . . , xi−1) 7→ f (x1,...,xi−1)(xi) where
the image polynomials are of the form γixi for all (x1, . . . , xi−1). The important

information is that f
(x1,...,xi−1)
i does not depend on xi, . . . , xn. This can be proven

in a protocol with 2n rounds where the prover has to commit to the coefficient
γi for f (x1,...,xi−1) after he has received the challenges x1, . . . , xi−1 but before
getting the challenges xi, . . . , xn. Then, intuitively, if ~si is not binary, the prover
can not use γixi to make Equation (1) true for all (x1, . . . , xn) because the
left-hand side contains the non-zero term 〈~ϕ,~si ◦ (~1− ~si)〉x2i that is quadratic
in xi. He can also not use the later γj because they all get multiplied by later
challenges xj that the prover does not know when making the commitments. A
precise analysis shows that this argument has soundness error 2n/q for uniformly
random challenges xi.

So our protocol will have many rounds but we do not consider this to be
a problem as we are only interested in the non-interactive variant where the
number of rounds has no direct impact on the performance of the proof system.
The interactive variant only serves as a convenient intermediate representation
that is easy to reason about. From a theoretical point of view our multi round
protocol is simple in that the extraction algorithm is relatively straight-forward
compared to for example Bulletproofs where a complicated tree extraction algo-
rithm is needed.

For the second problem we do not know how to prove that ~z must follow
the fixed form from using the approximate opening proof protocol alone. But
in conjunction with the binary proof protocol it turns out to be provable. The
argument proceeds along the following lines. Let ~s∗i be the bound weak openings
to the hashes ~ui that we can extract from the approximate proof. If they are
not all binary, then there is a last non-binary vector ~s∗i0 . We can write ~z −
xi0+1~s

∗
i0+1 − · · · − xn~s∗n = ~y∗ + xi0~s

∗
i0

in any accepting transcript where A~y∗ =
~w+ x1~u1 + · · ·+ xi0−1~ui0−1. So this can be viewed as a masked opening of the
single secret vector ~s∗i0 because the left hand side is short. Then we can use the
argument for the non-amortized case to argue that the prover is bound to the

Practical Sublinear Proofs for R1CS from Lattices 5

~y∗ in all interactions with fixed first challenges x1, . . . , xi0−1. Indeed, if in an
accepting transcript ~z′ = ~y∗∗+ x′i0~s

∗
i0

+ · · ·+ x′n~s
∗
n with ~y∗∗ 6= ~y∗∗, then we can

compute a short Module-SIS solution

x̄(~y∗−~y∗∗) = x̄(~z−~z′−(xi0+1−x′i0+1)~s∗i0+1−· · ·−(xn−x′n)~s∗n)−(xi0−x′i0)x̄~s∗i0

for A, where x̄ is a difference of two challenges such that x̄~s∗i0 is short. This in
turn suffices to show that the prover has small success probability in the binary
proof restricted to the vectors ~si0 , . . . , ~sn.

Given this exact amortized binary opening proof, we extend it to be also
able to prove linear and product relations on the secret vectors. This already
provides a sublinear-size proof system even when the size of the commitments
~ui is counted as part of the proof size. There are n hashes, each of essentially
constant size. Unfortunately, this simple sublinear-size proof system is only com-
petitive in a small regime of parameters. We achieve competitive proof sizes for
larger parameters in a further protocol where we use the previous exact amor-
tized binary opening proof as a building block to prove knowledge of a Merkle
tree opening by induction over the levels of the tree when only the root hash is
given (see Section 5).

So we use a Merkle tree with hashes ~ui = A~si for i = 1, . . . , 2a − 1, where
~u1 is the root hash and ~u2a−1 , . . . , ~u2a−1 are the leaves. The binary preimages
~si are the expansions of the two children ~u2i and ~u2i+1; that is, ~si = ~si,l ‖ ~si,r
and ~u2i = G~si,l, ~u2i+1 = G~si,r. Here G is the power-of-two gadget matrix
G = I ⊗ (1, 2, . . . , 2dlog qe), i.e. the identity matrix tensored with the two-power
vector.

Now, in the protocol the prover sends an amortized masked opening of all
the preimages,

~z = ~y +

2a−1∑
i=1

xi~si.

The main idea is that all the terms xi~si for i > 1 can be absorbed into the
masking vector so that we have ~z = ~y0 + x1~s1. This is just a masked opening of
~s1 and the verifier checks that

A~z = ~w0 + x1~u1

using the vector ~w0 = A~y0 = A~y +
∑2a−1
i=2 si~ui that he has received from the

prover before the challenge x1. Next, from this opening proof we can extract ~s1.
Moreover the prover also proves the linear relation

~w0 = ~w1 + x2G~s1,l + x3G~s1,r

for a vector ~w1 = A~y1 = A~y+
∑2a−1
i=4 xi~ui that he has sent before the challenges

x2 and x3. So, this implies

A~z = ~w1 + x1~u1 + x2~u2 + x3~u3.

6 Ngoc Khanh Nguyen and Gregor Seiler

In other words the extracted ~s1 defines the hashes in the first level of the tree
and there is a proof for the verification equation of an amortized opening proof
for this level. So we can continue recursively and extract level by level from the
prover until we have an opening for the full tree. Our protocol can be seen as
a sequence of exact amortized binary opening proofs, one for each level for the
tree, that use the linear proof technique to prove the verification equation for
the proof for the next level. The proof also shows that all the preimages ~si are
binary as this is needed for the approach to work, as explained.

We use our Merkle tree opening protocol that can also prove linear and
product relations on the preimages of the leaves to prove instances of Rank-
1 Constraint Satisfaction (R1CS) [BCG+13] which is an NP-complete problem
(see Section 6). Recall that in the (simplified) R1CS setting, the prover P wants
to convince the verifier V that it knows a vector ~s ∈ Zkq such that

(A~s) ◦ (B~s) = C~s (2)

where A,B,C ∈ Zk×kq are public matrices and ◦ denotes the component-wise
product. The usual way to prove such a relation is to first commit to ~s as well
as to the vectors

~a = A~s,~b = B~s,~c = C~s. (3)

Then, P only needs to prove the linear relations described in (3) and the multi-

plicative relation ~a◦~b = ~c. This method requires us to commit to three additional
vectors over Zq of length k. In Section 6.1 we show a potential optimization to
prove (2) by committing to only one vector in Zkq .

Table 1 contains a comparison of our proof system for R1CS to Ligero. We
chose a range of constraints above 220 as our proof system is most effective for
such large numbers of constraints. In particular, we observe that for large in-
stances, e.g. k ≥ 224, our system achieves 2-3 times smaller proof sizes than
Ligero. The proof sizes for Ligero were directly measured by running the imple-
mentation from https://github.com/scipr-lab/libiop. For both proof sys-
tems we used a field size of about 128 bits and comparable soundness errors.

2 Preliminaries

2.1 Notation

Let q be an odd prime, and Zq denote the ring of integers modulo q. For r ∈ Z,
we define r mod q to be the unique element in the interval [− q−12 , q−12] that is
congruent to r modulo q. We write ~v ∈ Zmq to denote vectors over Zq and matrices
over Zq will be written as regular capital letters M . By default, all vectors are
column vectors. We write ~v ‖ ~w for the concatenation of ~v and ~w (which is still

a column vector). We write x
$← S when x ∈ S is sampled uniformly at random

from the finite set S and similarly x
$← D when x is sampled according to the

distribution D.

https://github.com/scipr-lab/libiop

Practical Sublinear Proofs for R1CS from Lattices 7

Proof Size

Number of constraints Soundness error Ligero Our System

219 2−115 4.58 MB 4.53 MB
220 2−114 8.35 MB 5.22 MB
221 2−113 8.90 MB 6.08 MB
222 2−112 16.23 MB 7.19 MB
223 2−111 17.39 MB 10.79 MB
224 2−110 31.83 MB 13.21 MB
225 2−109 34.15 MB 16.59 MB
226 2−108 62.14 MB 21.68 MB
227 2−107 66.03 MB 29.04 MB
228 2−106 121.90 MB 42.42 MB

Table 1. Comparison of proof sizes between our proof system for R1CS over Zq with
q ≈ 2128, and Ligero.

Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd+ 1)
and Zq[X]/(Xd + 1), respectively. Bold lower-case letters p denote elements in

R or Rq and bold lower-case letters with arrows ~b represent column vectors
with components in R or Rq. We also use bold upper-case letters for matrices
B over R or Rq. The ring Rq is a Zq-module spanned by the power basis
{1, X, . . . ,Xd−1}. The multiplication homomorphism x 7→ ax for an a = a0 +
· · ·+ ad−1X

d−1 ∈ Rq is represented by the negacyclic rotation matrix

Rot(a) =

a0 −ad−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
ad−1 ad−2 . . . a0

 ∈ Zd×dq .

This extends to Rq-module homomorphisms given by A ∈ Rm×n in a block-wise
fashion. They are represented by Rot(A) ∈ Zmd×ndq .

In this paper we choose prime q such that Zq contains a primitive 2d-th
root of unity ζ ∈ Zq but no elements whose order is a higher power of two, i.e.
q − 1 ≡ 2d (mod 4d). Therefore, we have

Xd + 1 ≡
d−1∏
j=0

(
X − ζ2j+1

)
(mod q) (4)

where ζ2j+1 (j ∈ Zd) ranges over all the d primitive 2d-th roots of unity. We
define the Number Theoretic Transform (NTT) of a polynomial p ∈ Rq as
follows:

NTT(p) :=

 p̂0
...

p̂d−1

 ∈ Zdq where p̂j = p mod (X − ζ2j+1).

8 Ngoc Khanh Nguyen and Gregor Seiler

We will use the property that for any polynomials f , g ∈ Rq, we have NTT(f) ◦
NTT(g) = NTT(fg) where ◦ is the component-wise vector multiplication.

We also define the inverse NTT operation. Namely, for a vector ~v ∈ Zdq ,
NTT−1(~v) is the polynomial p ∈ Rq such that NTT(p) = ~v.

Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|.
Define the `∞ and `2 norms for w ∈ Rq as follows,

‖w‖∞ = max
i
|wi| and ‖w‖2 =

√
|w0|2 + . . .+ |wd−1|2.

Similarly, for ~w = (w1, . . . ,wk) ∈ Rk, we define

‖ ~w‖∞ = max
i
‖wi‖∞ and ‖ ~w‖2 =

√
‖w1‖22 + . . .+ ‖wk‖22.

2.2 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commit-
ment scheme from [BDL+18] in our protocols, and rely on the well-known Module-
LWE (MLWE) and Module-SIS (MSIS) problems [LPR10, Din12, LS15, Mic02,
LM06, PR06] problems to prove the security of our constructions. Both problems
are defined over a ring Rq for a positive modulus q ∈ Z+.

Definition 1 (MSISκ,β). In the Module-SIS problem with parameters κ, λ > 0

and β < q a uniformly random matrix A
$← Rκ×(κ+λ)q is given. Then the goal is

to find a vector ~s ∈ Rκ+λq such that A~s = ~0 and 0 < ‖~s‖2 ≤ β. We say that an
adversary A has advantage ε in solving MSISκ,β if

Pr
[
A~s = ~0 and 0 < ‖~s‖2 ≤ β

∣∣∣A $← Rκ×(κ+λ)q ; ~s← A(A)
]
≥ ε.

Definition 2 (MLWEλ,χ). In the Module-LWE problem with parameters κ, λ >

0 and χ an “error” distribution over Zq, a pair (A, ~t) ∈ Rκ×(κ+λ)q ×Rκq is given
where A is uniformly random. Then the goal is to distinguish between the two

cases where either ~t is given by ~t = A~s for a secret vector ~s
$← χ(κ+λ)d sampled

from the error distribution, or ~t is independently uniformly random. We say that
an adversary A has advantage ε in distinguishing MLWEλ,χ if∣∣∣Pr

[
b = 1

∣∣∣A $← Rκ×(κ+λ)q ; ~s
$← χ(κ+λ)d; ~t = A~s; b← A(A, t)

]
− Pr

[
b = 1

∣∣∣A $← Rκ×(κ+λ)q ; ~t
$← Rκq ; b← A(A, ~t)

]∣∣∣ ≥ ε.
For our practical security estimations of these two problems against known

attacks, the parameter κ in the Module-LWE problem and the parameter λ in
the Module-SIS problem do not play a crucial role. Therefore, we omit then in
the notations MSISκ,β and MLWEλ,χ.

Practical Sublinear Proofs for R1CS from Lattices 9

2.3 Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with co-
efficients −1, 0, 1. We define the following probability distribution C : C → [0, 1].

The coefficients of a challenge c
$← C are independently identically distributed

with P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4.
Consider the coefficients of the polynomial c mod (X − ζ2j+1) for c ← C.

Then, all coefficients follow the same distribution over Zq. Let us write Y for the
random variable over Zq that follows this distribution. Attema et al. [ALS20]
give an upper bound on the maximum probability of Y .

Lemma 1. Let the random variable Y over Zq be defined as above. Then for all
x ∈ Zq,

Pr[Y = x] ≤ 1

q
+

2d

q

∑
j∈Z×q /〈ζ〉

d−1∏
i=0

∣∣∣∣12 +
1

2
cos(2πjyζi/q)

∣∣∣∣ . (5)

One observes that computing the sum on the right-hand side would take essen-
tially O(q) time. Hence, computing the upper-bound for Pr[Y = x] is infeasible
for large primes q. However, based on experiments for smaller primes 3, we as-
sume that the probability is very close to 1/q. In fact, this process exhibits a
phase-shift behaviour, where the probability very rapidly drops to values close
to 1/q as soon as the entropy of c is slightly higher than log q.

2.4 BDLOP Commitment Scheme

We use a variant of the commitment scheme from [BDL+18], which allows to
commit to a vector of polynomials in Rq 4. Suppose that we want to commit to
~m = (m1, . . . ,mµ)T ∈ Rµq . Then, in the commitment parameter generation, a

uniformly random matrix B0
$← Rκ×(κ+λ+µ)q and vectors ~b1, . . . ,~bµ

$← Rκ+λ+µq

are generated and output as public parameters. In practice they never have to
be stored because they can be expanded from a short seed. One may choose to
generate B0,~b1, . . . ,~bµ in a more structured way as in [BDL+18] since it saves
some computation.

To commit to ~m, we first sample ~r
$← χ(κ+λ+µ)d. Now, there are two parts

of the commitment scheme; the binding part and the message encoding part. We
compute

~t0 = B0~r,

ti = 〈~bi, ~r〉+mi for i = 1, . . . , µ,

3 In particular, [ALS20, ENS20] computed that for q ≈ 232, the maximum probability
for each coefficient of c mod X4 − ζ8j+4 is around 2−31.4.

4 We provide more background on commitment schemes in Appendix A.

10 Ngoc Khanh Nguyen and Gregor Seiler

where ~t0 forms the binding part and each ti encodes a message polynomial mi.
The commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tµ is computationally hiding under the
MLWEλ,χ assumption and computationally binding under the MSISκ,β assump-

tion for some q > β > 2
√

(κ+ λ+ µ)d; see [BDL+18].
Moreover, the scheme is not only binding for the opening (~m, ~r) known by

the prover, but also binding with respect to a relaxed opening (~m∗, c̄, ~r∗). The
relaxed opening also includes a short invertible polynomial c̄ and the randomness
vector ~r∗ is longer than ~r. Attema et al. [ALS20] further reduce the requirements
of an opening and define the notion of a weak opening (see Appendix A.4).

3 Interactive Schwartz-Zippel

The Schwartz-Zippel Lemma [Sch80, Zip79] (first proven by Ore [Ore22]) is an
important tool in the construction of many zero-knowledge proof systems. It says
that for a non-zero polynomial f ∈ Zq[X1, . . . , Xn] of total degree d, the probabil-
ity that f(x1, . . . , xn) = 0 for independently uniformly random x1, . . . , xn ∈ Zq
is at most d/q. Note that the probability does not depend on the number n of
variables. This is used in zero-knowledge proof systems by committing to the
coefficients cα of f , where α = (α1, . . . , αn) ∈ Nn is a multi-index, and then
proving

f(x1, . . . , xn) =
∑
|α|≤d

cαx
α1
1 . . . xαn

n

for uniformly random challenges x1, . . . , xn ∈ Zq from the verifier. Then, if the
coefficient commitments where made before the challenges xi were known by
the prover, it is clear that the coefficients must be independent from the xi.
So, this implies that f =

∑
|α|≤d cαX

α1
1 . . . Xαn

n with soundness error d/q. Now,
one is usually only interested in a few of the coefficients cα, typically the n
coefficients of the pure highest-degree terms divisible by Xd

i for some i. The rest
are called garbage coefficients. But since the total number of coefficients, and
hence commitments, is equal to

(
n+d
d

)
, this gets impractical already for small

n and therefore the multivariate case with n > 1 is not often used in practical
zero-knowledge proof systems.

In this section we develop a new proof technique that only needs a number of
garbage commitments that is linear in n while having a modest cost of a linear
loss in soundness. First, we decompose the polynomial f such that

f(X1, . . . , Xn) = f0 + f1(X1) + · · ·+ fn(X1, . . . , Xn), (6)

where f0 ∈ Zq is the constant coefficient of f and fi ∈ Zq[X1, . . . , Xi], i ≥ 1,
consist of the monomials cαX

α1
1 . . . Xαn

n of f with αi ≥ 1 and αi+1 = · · · = αn =
0, i.e. the monomials that are divisible by Xi but not by any Xj for j > i. Next,
note that every polynomial fi can be viewed as a univariate polynomial in Xi

over the ring Zq[X1, . . . , Xi−1], divisible by Xi. More precisely, fi = fi,1Xi+· · ·+
fi,d−1X

d−1
i + liX

d
i where fi,j ∈ Zq[X1, . . . , Xi−1] and li ∈ Zq since f is of total

degree d. Now, we are only really interested in the coefficients li, and it turns

Practical Sublinear Proofs for R1CS from Lattices 11

out there is no need to prove that the other coefficients are actually polynomials
in X1, . . . , Xi−1 of degree at most d− 1. Indeed, we have the following lemma.

Lemma 2. Let f : Znq → Zq be a function of the form

f(x1, . . . , xn) = f0 + f1(x1) + f
(x1)
2 (x2) + · · ·+ f (x1,...,xn−1)

n (xn),

where f0 ∈ Zq, f1 ∈ Zq[X1], and, for i ≥ 2, fi ∈ (Zq[Xi])
Zi−1
q , i.e. fi is a

function from Zi−1q to Zq[Xi], given by (x1, . . . , xi−1) 7→ f
(x1,...,xi−1)
i . Suppose

that f
(x1,...,xi−1)
i is divisible by Xi (i.e. has zero constant coefficient) and of degree

at most d for all (x1, . . . , xi−1) ∈ Zi−1q , i ≥ 1. Moreover, suppose that there

exists a j ≥ 1 such that f
(x1,...,xj−1)
j 6= 0 for all (x1, . . . , xj−1) ∈ Zj−1q . Then, for

uniformly random (x1, . . . , xn) ∈ Znq , the probability that f(x1, . . . , xn) = 0 is at
most (n+ 1− j)d/q. That is,

Pr [f(x1, . . . , xn) = 0] ≤ (n+ 1− j)d
q

.

Proof. We write f≤i for the partial function

f≤i(x1, . . . , xi) = f0 + f1(x1) + f
(x1)
2 (x2) + · · ·+ f

(x1,...,xi−1)
i (xi)

that only includes the functions up to fi. In particular, f≤n = f . Then we find

Pr [f(x1, . . . , xn) = 0]

= Pr [f≤n−1(x1, . . . , xn−1) = 0]

· Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) = 0]

+ Pr [f≤n−1(x1, . . . , xn−1) 6= 0]

· Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 6= 0]

≤ Pr [f≤n−1(x1, . . . , xn−1) = 0]

+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 6= 0]

≤ Pr [f≤n−2(x1, . . . , xn−2) = 0]

+ Pr [f≤n−1(x1, . . . , xn−1) = 0 | f≤n−2(x1, . . . , xn−2) 6= 0]

+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 6= 0]

≤ . . .
≤ Pr [f≤j(x1, . . . , xj) = 0]

+ Pr [f≤j+1(x1, . . . , xj+1) = 0 | f≤j(x1, . . . , xj) 6= 0]

+ . . .

+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 6= 0] .

Consider the first probability Pr [f≤j(x1, . . . , xj) = 0] after the last inequality.
For every choice (x′1, . . . , x

′
j−1) ∈ Zj−1q , the function

f≤j(x
′
1, . . . , x

′
j−1, xj) = f≤j−1(x′1, . . . , x

′
j−1) + f

(x′1,...,x
′
j−1)

j (xj)

12 Ngoc Khanh Nguyen and Gregor Seiler

is a fixed univariate polynomial in xj of degree at most d and the random variable
xj is independent from it. Moreover, we know from the assumption in the lemma
that the polynomial is non-zero since fj is non-zero and divisible by xj ; that is,
fj is never constant. Therefore,

Pr [f≤j(x1, . . . , xj) = 0]

=
∑

x′1,...,x
′
j−1∈Zq

Pr
[
x1 = x′1 ∧ · · · ∧ xj−1 = x′j−1

]
Pr
[
f≤j(x

′
1, . . . , x

′
j−1, xj) = 0

]
≤

∑
x′1,...,x

′
j−1∈Zq

(
1

q

)j−1
d

q
=
d

q
.

Similarly, for the other probabilities Pr [f≤i(x1, . . . , xi) = 0 | f≤i−1(x1, . . . , xi−1) 6= 0]
we interpret f≤i(x1, . . . , xi) as the evaluation of a polynomial of degree at most
d at the independently uniformly random point xi. This time we condition on
the event that the constant coefficient of the polynomial, which is given by
f≤i−1(x1, . . . , xi−1), is non-zero. Hence,

Pr [f≤i(x1, . . . , xi) = 0 | f≤i−1(x1, . . . , xi−1) 6= 0] ≤ d/q

for all i = j + 1, . . . , n. ut

3.1 Making Use of Lemma 2 in Zero-Knowledge Protocols

Suppose we want to prove that the polynomial f ∈ Zq[X1, . . . , Xn] of total degree
d does not contain any terms divisible by Xd

i for any i; that is, f is of degree at
most d−1 in each Xi. Then decompose f as in Equation (6), and define the func-

tions Zi−1q → Zq[Xi], (x1, . . . , xi−1) 7→ f
(x1,...,xi−1)
i (Xi) = fi(x1, . . . , xi−1, Xi),

that forget the polynomial structure of fi in the variables X1, . . . , Xi. Now, in a
multi-round protocol where the uniformly random challenges xi are spread-out

over 2n rounds we can commit to the d−1 coefficients γi,k of f
(x1,...,xi−1)
i (Xi) =

γi,1Xi+ · · ·+γi,d−1X
d−1
i immediately after seeing x1, . . . , xi−1 but before know-

ing xi, . . . , xn. Then we show

f(x1, . . . , xn)−

(
γ0 +

d−1∑
k=1

γ1,kx
k
1 + · · ·+

d−1∑
k=1

γn,kx
k
n

)
= 0.

Here we assume that we know how to prove that some element of Zq is the
evaluation f(x1, . . . , xn) of the fixed polynomial f of degree d. The fact that the
commitments to the coefficients γi,k were produced before xi, . . . , xn were known
shows that they can only be functions of x1, . . . , xi−1. So, we have effectively
proven

g0 + g1(x1) + g
(x1)
2 (x2) + · · ·+ g(x1,...,xn−1)

n (xn) = 0,

for uniformly random (x1, . . . , xn) ∈ Znq and functions gi as in Lemma 2 that
fulfill the requirements that they have zero constant coefficient and are of degree

Practical Sublinear Proofs for R1CS from Lattices 13

at most d. Furthermore, for each i ∈ {1, . . . , n} and all (x′1, . . . , x
′
i−1) ∈ Zi−1q ,

the coefficient for Xd
i of g

(x′1,...,x
′
i−1)

i is given by the corresponding coefficient in
f . It follows that we proven f to be of degree d − 1 in all Xi with soundness
error nd/q. Note that we only needed n(d− 1) + 1 garbage commitments.

As an example, in our lattice-based protocols we let the prover ultimately
send amortized masked openings ~z(x1, . . . , xn) = ~y+ x1~s1 + · · ·+ xn~sn of secret
vectors ~si ∈ Zmq with challenges xi ∈ Zq, and we want to be able to prove that all
secret vectors are binary. So, using another uniformly random challenge vector
~ϕ ∈ Zmq , we want to show that the quadratic (d = 2) polynomial

f(x1, . . . , xn) = 〈~z ◦ ((x1 + · · ·+ xn)~1− ~z), ~ϕ〉 (7)

does not contain terms of the form x2i . Here each of the polynomials f
(x1,...,xi−1)
i

involves only one garbage coefficient and is of the form f
(x1,...,xi−1)
i (Xi) = γiXi.

So we end up only needing n + 1 garbage commitments to the coefficients γi.
The protocol proceeds as follows. The prover receives the challenge vector ~ϕ and
commits to the first garbage coefficient γ0 = −〈~y ◦ ~y, ~ϕ〉. Then, over the course
of the next 2n rounds, the protocol alternates between the prover committing
to the next garbage coefficient

γi =

〈
~y ◦ (1− 2~si) +

i−1∑
j=1

xj(~sj ◦ (~1− ~si) + ~si ◦ (~1− ~sj)), ~ϕ

〉
,

and the verifier sending the next challenge xi, for i = 1, . . . , n. Afterwards, the
protocol is finished by proving the linear relation (in the garbage coefficients)

〈~z ◦ ((x1 + · · ·+ xn)~1− ~z), ~ϕ〉 − (γ0 + γ1x1 + · · ·+ γnxn) = 0. (8)

In the PCP literature, when proving such pointwise multiplicative relations
on many vectors, a different technique is used to keep the number of garbage co-
efficients linear in the number of vectors. Namely, instead of multivariate masked
openings of degree one, univariate openings of degree n are used where the dif-
ferent vectors are separated as the basis coefficients with respect to a basis given
by Lagrange interpolation polynomials. See [GGPR13] for details. This tech-
nique does not seem to be compatible with our lattice-based setting. Concretely,
we will later need to conclude from SIS hardness that the prover is bound to
the vectors in the masked opening and our approach for achieving this requires
multivariate openings.

Moreover, the so-called sum check protocols for multivariate polynomials
from [LFKN92, Sha92] have similarities with our protocol. These protocols also
have n rounds and in each round the polynomial is reduced to a univariate
polynomial.

We don’t consider it a problem that our protocol has many rounds. We
don’t view the number of rounds to be of practical importance that needs to be
optimized. The interactive variants of our protocols only serve as a convenient
intermediate representation that is easy to reason about. But in practice only

14 Ngoc Khanh Nguyen and Gregor Seiler

the non-interactive variants will ever be used and there the number of rounds
only has an indirect effect on for example the prover and verifier runtime and
the soundness error but no independent relevance. If the protocol can achieve
negligible soundness error and still has acceptable runtimes and proof sizes, then
the number of rounds doesn’t matter.

4 Exact Amortized Binary Opening Proof

The aim of this section is to present a protocol for proving knowledge of (exactly)

binary preimages ~si ∈ {0, 1}m ⊂ Rm/dq to n collision-resistant hashes ~ui =
A~si. Our starting point is the approximate amortized proof that goes back to
[BBC+18]. There the prover samples a short masking vector ~y and commits to
it by sending ~w = A~y. The verifier then sends n short challenge polynomials
c1, . . . , cn and the prover replies by sending the amortized masked opening ~z =
~y + c1~s1 + · · · + cn~sn. The verifier accepts if ~z is short and a preimage of
~w + c1~u1 + · · ·+ cn~un. This protocol is sound, because, for every i = 1, . . . , n,
the prover must be able to answer two challenge tuples successfully that differ
only in the one challenge ci. Then the difference of the two corresponding masked
openings yields the approximate solution A(~z − ~z′) = (ci − c′i)~ui.

Next, we want to get rid of the perturbation factors c̄i = ci − c′i. In gen-
eral and for efficient parameters they are not invertible so we can not simply
divide through, but it is possible to use the strategy from [ALS20] where one
pieces together many extractions from potentially several parallel repetitions of
the protocol in order to get so-called weak openings ~s∗i such that A~s∗i = ~ui
(c.f. [ALS20, Definition 4.2]). The weak openings are not necessarily short but
the prover is still bound to them; see [ALS20, Lemma 4.3].

Now, to extend the proof and show that the ~s∗i are in fact binary, the amor-
tized masked opening ~z from above with polynomial challenges is not of much
help. The problem is that the polynomial product effectively intermingles all the
secret coefficients and then it seems inefficient to prove all the quadratic rela-
tions about individual coefficients that we need for proving that each and every
coefficient is binary. Therefore, our protocol has a second stage with integer
challenges xi ∈ Zq and masked opening

~z = ~y + x1~s1 + · · ·+ xn~sn.

To get as much soundness as possible, and at the same time not increase q more
than necessary, we want the challenges xi to be uniformly random modulo q. But
since we are relying on MSIS hardness we can not send ~z directly. Instead, we
compose it from l short ~zj with short integer challenges xi,j ∈ Z, j = 0, . . . , l−1.
More precisely, we set δ = dq1/le, and xi mod q = xi,0 + · · · + xi,l−1δ

l−1 (non-
negative standard representative), where 0 ≤ xi,j < δ. Then, the prover sends
the polynomial vectors

~zj = ~yj + x1,j~s1 + · · ·+ xn,j~sn.

Practical Sublinear Proofs for R1CS from Lattices 15

In principle the second stage with integer challenges xi,j alone would allow to
extract the weak openings ~s∗i , but we still include the first stage with polynomial
challenges as it turns out that the final norm bound for which we need Module-
SIS to be hard depends on the norm of the product of two challenges. Hence,
when one of the challenges can be a shorter polynomial challenge, this results in
a smaller Module-SIS norm bound and ultimately smaller proof sizes.

Next, for the actual binary proof we work with the composed ~z = ~z0 +
· · ·+ ~zl−1δ

l−1. We forget the polynomial structure and let ~z = ~y + x1~s1 + · · ·+
xn~sn ∈ Zmq be given by the coefficient vectors that correspond to the polynomial
vectors. This allows for the approach from Section 3.1 for proving that all secret
coefficients are binary. Let ~ϕ ∈ Zmq be a uniformly random challenge vector from
the verifier. Eventually we need to prove Equation (8) with garbage coefficients γi
that are from commitments produced interactively with increasing dependence
on the challenges xi as explained. We use the BDLOP commitment scheme
and apply the linear proof from [ENS20], which we call the auxiliary proof in
this protocol. Since our binary proof has a soundness error bigger than 1/q,
there is no need to apply the soundness boosting techniques for the linear proof.
That is, we use the simpler proof without automorphisms. So, after the initial
approximate proof, at the beginning of the second stage, the prover initializes the
BDLOP commitment scheme. He samples a randomness vector ~r(t) ∈ Rκ2+λ+µ

q

and commits to it in the top part ~t0 = B0~r ∈ Rκ2
q . Here κ2, λ, and µ =

d(n + 1)/de + 1 are the BDLOP MSIS rank, MLWE rank, and message rank,
respectively. Since the prover needs to commit to only one Zq-element at a time
and not a full Rq-polynomial, he is going to send individual NTT coefficients
of the low part of the BDLOP commitment scheme. More precisely, the prover

precomputes the NTT vector ~e = NTT(B1~r
(t)) ∈ Zd(n+1)/ded

q . Then, when he
wants to commit to γi ∈ Zq, he sends τi = ei + γi, i = 0, . . . , n. In the end the

verifier has the full commitment polynomial vector ~t2 = NTT−1(~τ) = B2~r +
NTT−1(~γ).

After the initialization of BDLOP, the prover samples l masking vectors ~yj
for the short shares ~zj of ~z and sends the commitments ~wj = A~yj , together

with ~t0. The verifier follows by sending the challenge vector ~ϕ for the binary
proof. Next, the core subprotocol with 2n + 2 rounds starts. Here the prover
and verifier alternate between garbage commitments to the parts fi = γixi of
the polynomial f(x1, . . . , xn) in Equation (7), and the challenges xi. Finally,
the prover computes the shares ~zj , performs rejection sampling on them, and
sends them if there was no rejection. This concludes the second stage and main
part of the protocol. Finally, the protocol is finished with the auxiliary proof for
Equation (8), exactly as in [ENS20].

Before we spell-out the protocol in detail in Figure 1 and then analyze its se-
curity, we mention a technical problem that we have to overcome in the security
proof of the protocol. When we sketched the binary proof in Section 3.1, we as-
sumed that ~z is the evaluation of a fixed polynomial in the challenges x1, . . . , xn.
In other words for the extraction this means that we must be sure that

~z = ~y∗ + x1~s
∗
1 + · · ·+ xn~s

∗
n

16 Ngoc Khanh Nguyen and Gregor Seiler

in (almost all) accepting transcripts with always the same weak openings ~y∗

and ~s∗i . The problem is that this is harder to prove in our amortized setting. Let
us recall the argument for the single-secret case with ~z = ~y∗ + x~s∗, which was
presented in [ALS20]. If we find some accepting transcript where the masked
opening ~z′ is given by ~z′ = ~y∗∗ + x′~s∗ with a different ~y∗∗ 6= ~y∗, then we know
a challenge difference x̄ such that x̄~s∗ is short and x̄(~z − ~z′) − (x − x′)x̄~s∗ =
x̄(~y∗− ~y∗∗) 6= 0 is a Module-SIS solution. This argument can not be extended to
the amortized setting since we would need to multiply by many different x̄i and
not find a sufficiently short Module-SIS solution. But it turns out we can turn the
whole argument around and proceed via the contraposition. Concretely, if one
of the weak openings ~s∗i is not binary, then we must be able to find accepting
transcripts with different ~y∗∗ that results in a SIS solution. See the proof of
Theorem 1 for the details.

Theorem 1. The protocol in Figure 1 is correct, computationally honest ver-
ifier zero-knowledge under the Module-LWE assumption and computationally
knowledge-sound under the Module-SIS assumption. More precisely, let p be the
maximum probability of c mod X − ζ as in Lemma 1. Let ω be a bound on the
`1-norm of the ci.

Then, for correctness, unless the honest prover P aborts due to rejection
sampling, it convinces the honest verifier V with overwhelming probability.

For zero-knowledge, there exists an efficient simulator S, that, without access
to the secret ~si, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement ~ui = A~si. An algorithm that can distin-
guish the simulation from the real transcript with advantage ε can distinguish
MLWEλ,χ with advantage ε− 2100 in the same running time.

For knowledge-soundness, there is an extractor E with the following proper-
ties. When given resettable black-box access to a deterministic prover P∗ that
convinces V with probability ε > (2n+ 2)/q + p, E either outputs binary preim-
ages ~s∗i ∈ {0, 1}m for all hashes ~ui, an MSISκ,B solution for A with B =
4(ωβ2 + δβ1 + nωδ

√
m), or an MSISκ2,8ωβ3 solution for B0.

Remark. In the interest of simplicity, we have chosen to present the protocol
for binary secret vectors only. It should be clear that the protocol can easily
be adapted to prove knowledge of secret preimages that have coefficients from
a larger interval, for example ternary coefficients in {−1, 0, 1}. Then the prover
would send two garbage commitments before each challenge xi.

4.1 Extending the Proof to Linear and Product Relations

In applications of our exact opening proof one usually also wants to prove linear
and product relations on the preimage (coefficient) vectors ~si. We now show
that our protocol can easily be extended to include such relations with little
additional cost.

Practical Sublinear Proofs for R1CS from Lattices 17

Prover P Verifier V
Inputs:

B0 ∈ Rκ2×(κ2+λ+µ)
q B0,B1,~b2

B1 ∈ R(µ−1)×(κ2+λ+µ)
q A, ~ui

~b2 ∈ Rκ2+λ+µq

A ∈ Rκ×m/dq

For i = 1, . . . , n :

~si ∈ {0, 1}m ⊂ Rm/dq

~ui = A~si

The prover and verifier run the approximate amortized opening proof from Figure 2,
〈Papprox(A, ~si),Vapprox(A, ~ui)〉. The verifier rejects if Vapprox rejects.

(~r(t), ~t0, ~e) = AUXINIT(B0,B1)

For j = 0, . . . , l − 1 :

~yj
$← Dm

s2

~wj = A~yj
~t0, ~wj

-

~ϕ
� ~ϕ

$← Zmq

~y =

l−1∑
j=0

~yjδ
j

γ0 = −〈~y ◦ ~y, ~ϕ〉

τ0 = e0 + γ0
τ0 -

The prover and verifier run the core protocol from Figure 4, (τ1, x1, . . . , τn, xn) =
〈Pcore(~e, ~y, ~ϕ,~si),Vcore()〉. Then they set ~τ = (τ0, . . . , τn)T , ~x = (1, x1, . . . , xn)T and
~t1 = NTT−1(~τ), and decompose xi = xi,0 + · · · + xi,l−1δ

l−1 for i = 1, . . . , n. The
prover keeps the garbage coefficients γi from Pcore and sets ~γ = (γ0, . . . , γn)T .

For j = 0, . . . , l − 1 :

~zj = ~yj +

n∑
i=1

xi,j~si

If Rej ((~zj), (~yj), s2) = 1, abort
~zj

-

VERIFY(A, ~ui, ~wj , xi,j , ~zj)

The prover and verifier run the auxiliary linear proof from Figure 5,
〈Paux(B, ~r

(t), ~t, ~γ, ~x),Vaux(B, ~t, p, ~x)〉, where p = 〈~z ◦ ((x1 + · · ·+ xn)~1− ~z), ~ϕ〉 for
~z =

∑l−1
j=0 ~zjδ

j . The verifier accepts if Vaux accepts.

Fig. 1. Exact amortized opening proof for lattice-based hashes.

18 Ngoc Khanh Nguyen and Gregor Seiler

Prover Papprox Verifier Vapprox
Inputs:

A ∈ Rκ×m/dq A, ~ui

For i = 1, . . . , n :

~si ∈ {0, 1}m ⊂ Rm/dq

~ui = A~si

~y(c) $← Dm
s1

~w(c) = A~y(c) ~w(c)

-

ci� ci
$← C ∀i ∈ [n]

~z(c) = ~w(c) +

n∑
i=1

ci~si

If Rej
(
~z(c), ~y(c), s1

)
= 1, abort

~z(c)

-

‖~z(c)‖
?

≤ s1
√

2m = β1

A~z(c) ?
= ~w(c) +

n∑
i=1

ci~ui

Fig. 2. Approximate amortized opening proof for lattice-based hashes. Used for boot-
strapping the exact amortized proof in Figure 1.

VERIFY(A, ~ui, ~wj , xi,j , ~zj)
01 For j = 0, . . . , l − 1 :

02 ‖~zj‖
?

≤ s2
√

2m = β2

03 A~zj
?
= ~wj +

∑n
i=1 xi,j~ui

AUXINIT(B0,B1)

01 ~r(t) $← χ(κ2+λ+µ)d

02 ~t0 = B0~r
(t)

03 ~e = NTT(B1~r
(t))

04 return (~r(t), ~t0, ~e)

VERIFYAUX(B, ~t, ~w(t), c(t), ~z(t), θ,h,v, p, ~x)

01 h0
?
= 0

02 ‖~z(t)‖
?

≤ s3
√

2(κ2 + λ+ µ)d = β3

03 B0~z
(t) ?

= ~w(t) + c(t)~t0
04 〈~b2, ~z(t)〉+ 〈NTT−1(dθ~x),B1~z

(t)〉
?
= v + c(t)(t2 + 〈NTT−1(dθ~x), ~t1〉 − θp− h)

Fig. 3. Helper functions VERIFY(), AUXINIT() and VERIFYAUX() used by exact amor-
tized opening proof in Figure 1. They check the verification equations, initialize the
auxiliary commitment, and check the verification equations of the auxiliary linear proof,
respectively.

Practical Sublinear Proofs for R1CS from Lattices 19

Prover Pcore Verifier Vcore
Inputs:

~e ∈ Zn+1
q

~y, ~ϕ ∈ Zmq
~s1, . . . , ~sn ∈ Zmq

γ1 = 〈~y ◦ (~1− 2~s1), ~ϕ〉

τ1 = e1 + γ1
τ1 -

x1� x1
$← Z×q

γ2 =〈~y ◦ (~1− 2~s2), ~ϕ〉

+ x1〈~s1 ◦ (~1− ~s2) + ~s2 ◦ (~1− ~s1), ~ϕ〉

τ2 = e2 + γ2
τ2 -

x2� x2
$← Z×q

...

γn =〈~y ◦ (~1− 2~sn), ~ϕ〉

+

n−1∑
i=1

xi〈~si ◦ (~1− ~sn) + ~sn ◦ (~1− ~si), ~ϕ〉

τn = en + γn
τn -

xn� xn
$← Z×q

Fig. 4. Core protocol for exact amortized opening proof in Figure 1

20 Ngoc Khanh Nguyen and Gregor Seiler

Prover Paux Verifier Vaux
Inputs:

B0 ∈ Rκ2×(κ2+λ+µ)
q B0,B1,~b2

B1 ∈ R(µ−1)×(κ2+λ+µ)
q

~t0, ~t1

~b2 ∈ Rκ2+λ+µ
q p ∈ Zq

~r(t) ∈ {−1, 0, 1}(κ2+λ+µ)d ⊂ Rκ2+λ+µ
q ~x ∈ Z(µ−1)d

q

~t0 = B0~r
(t)

~t1 = B1~r
(t) + NTT−1(~γ)

~γ, ~x ∈ Z(µ−1)d
q

g
$← {g ∈ Rq | g0 = 0}

t2 = 〈~b2, ~r(t)〉+ g

~y(t) $← D(κ2+λ+µ)d
s3

~w(t) = B0~y
(t) t2, ~w

(t)

-

θ� θ
$← Zq

h = g + 〈NTT−1(dθ~x),NTT−1(~γ)〉 − θ〈~x,~γ〉

v = 〈~b2, ~y(t)〉+ 〈NTT−1(dθ~x),B1~y
(t)〉 h,v

-

c(t)� c(t)
$← C

~z(t) = ~y(t) + c(t)~r(t)

If Rej
(
~z(t), ~y(t), s3

)
= 1, abort

~z(t)

-

VERIFYAUX(B, ~t,

~w(t), c(t), ~z(t),

θ,h,v, p, ~x)

Fig. 5. Auxiliary linear proof needed in our exact amortized opening proof in Figure 1
and in the tree opening proof in Figures 6 and 7 .

Practical Sublinear Proofs for R1CS from Lattices 21

Linear relations. Let ~s = ~s1 ‖ · · · ‖ ~sn be the concatenation of all the binary
~si and M = (M1, . . . ,Mn) ∈ Zν×nmq with Mi ∈ Zν×mq be a public matrix. Now
suppose in full generality that we want to prove the linear equation

M~s = M1~s1 + · · ·+Mn~sn = ~v

for some public vector ~v ∈ Rνq . So this is an “unstructured” linear equation not
necessarily compatible with the polynomial structure. As usual, the equation can
be proven by probabilistically reducing it to a scalar product first. So we prove

〈M~s− ~v, ~ψ〉 = 〈~s,MT ~ψ〉 − 〈~v, ~ψ〉 =

n∑
i=1

〈~si,MT
i
~ψ〉 − 〈~v, ~ψ〉 = 0

for a uniformly random challenge vector ~ψ ∈ Zνq that is given to the prover after
the hashes ~ui = A~si are known.

Now, we use a very similar approach to the one from Section 3.1. Concretely,
let ~ρ = x−11 ~ρ1 + · · · + x−1n ~ρn where ~ρi = MT

i
~ψ. Then we want to show that in

the multivariate quadratic polynomial

flin(x1, . . . , xn) = 〈~z, ~ρ〉 − 〈~v, ~ψ〉

the constant coefficient vanishes. More precisely, we want to prove the relation

〈~z, ~ρ〉 − 〈~v, ~ψ〉 −
n∑
i=1

(γ2i−1x
−1
i + γ2ixi) = 0

with garbage coefficients

γ
(lin)
2i−1 = 〈~y, ~ρi〉+

i−1∑
i=1

xj〈~sj , ~ρi〉,

γ
(lin)
2i =

i−1∑
j=1

x−1j 〈~si, ~ρj〉.

We can share the garbage commitments between the linear and binary proofs
by simply adding flin to f from Equation (7). That is, we finally prove

〈~z ◦ ((x1 + · · ·+ xn)~1− ~z), ~ϕ〉+ 〈~z, ~ρ〉 − 〈~v, ~ψ〉

−

(
γ0 +

n∑
i=1

(γ2i−1x
−1
i + γ2ixi)

)
= 0.

This is sufficient although the equation now contains the constant garbage co-
efficient γ0 so that it is not immediately clear why the contribution from the
linear proof to the constant term vanishes. The reason is that the prover can
commit to γ0 = −〈~y ◦ ~y, ~ϕ〉 before the challenge ~ψ is known. Then, if the linear
equation M~s = ~v were false, there would be a uniformly random contribution to
the constant term that is independent from γ0.

22 Ngoc Khanh Nguyen and Gregor Seiler

Product relations. By product relations we mean multiplicative relations of
the form s1s2 = s3 between coefficients s1, s2, s3 of the secret vectors ~si. For
simplicity we restrict to the case where the coefficients s1, s2, s3 are from the
same vector ~si and the relation holds in all vectors ~si. More precisely, we consider
relations si,j1si,j2 = si,j3 for a triple (j1, j2, j3) ∈ {0, . . . ,m− 1}3 and all i. This
is sufficient for many applications by packing the ~si in a suitable manner. For
example, if we want to hash three binary vectors ~a,~b,~c ∈ {0, 1}kn for some k ≥ 1,

and prove that ~a ◦~b = ~c, then we write ~a = ~a1 ‖ · · · ‖ ~ak with ~ai ∈ {0, 1}n, and

let ~si be the columns of the matrix with rows ~aTi ,
~bTi ,~c

T
i ,(

~s1 . . . ~sn
)

=
(
~a1 · · · ~ak ~b1 · · · ~bk ~c1 · · · ~ck

)T
.

Now to prove the above relation we need to show that si,jsi,j+k = si,j+2k for all
i = 1, . . . , n and j = 0, . . . , k − 1. Note that such relations are only a very slight
generalisation of the relations si,j(1 − si,j) = 0 that we already prove in the
binary proof. More general product relations are possible, but they come with a
cost of more garbage commitments.

In the protocol, for every product relation si,j1si,j2 = si,j3 we add the poly-
nomial

fprod(x1, . . . , xn) = (zj1zj2 − (x1 + · · ·+ xn)zj3)θ

for a uniformly random challenge θ ∈ Zq to the previous f + flin that we prove.
Similarly as f from the binary proof, the polynomial fprod is a quadratic poly-
nomial that has no terms divisible by x2i if the product relation is true.

4.2 Proof Size

We study the size of the proof that is output by the non-interactive version
of the protocol in this section. The non-interactive version is obtained by ap-
plying the Fiat-Shamir transform. We handle the slightly more general case
where the secret vectors ~si are not necessarily binary but have coefficients in
the range {−bb/2c, . . . , b(b− 1)/2c}. Then there are (b− 1)n+ 1 garbage coeffi-
cients. The masking vector commitments ~w(c), ~wj and ~w(t) do not need to be
included in the proof since they can be computed from the verification equa-
tions and then verified with the random oracle when the challenges are included
in the proof. For ~w(c) and ~w(t) this is always efficient. Whether it is also ef-
ficient for the ~wj depends on n. For large n the cost of the n challenges xi
becomes bigger than the cost of the ~wj . The polynomial v in the auxiliary proof
does not need to be transmitted either. Hence a complete proof amounts to
the objects ~c, ~z(c) for the approximate amortized proof; ~t0, ~ϕ, ~t1, ~x, ~zj for the
main part; and t2, θ,h, c

(t), ~z(t) for the auxiliary proof. The actual size of the
challenges as (vectors of) polynomials or Zq-integers does not contribute to the
proof size since they can be expanded from small seeds by using a PRG. For
the security level we are aiming for, 16 bytes suffice for each challenge seed.
The full-size elements ~t0, ~t1, t2,h have a total size of (κ2 + µ + 1)ddlog qe =
(κ2 + d((b− 1)n+ 1)/de + 2)ddlog qe bits. Next, the short vectors ~z(c), ~zj , ~z

(t)

Practical Sublinear Proofs for R1CS from Lattices 23

have size m log 12s1 + lm log 12s2 + (κ2 + λ+ µ)d log 12s3 bits. Here we assume
that the coefficients of the short vectors are bounded by 6si in absolute value,
which can be ensured by the prover. Finally, the challenges ~c, ~ϕ, ~x, θ, c(t) need
4 + n seeds of total size 128(4 + n) bits.

We now compute the required standard deviations s1, s2, s3 for the Gaussian
masking vectors ~y(c), ~yj and ~y(t). So, we need to bound the `2 norms of the
secrets vectors c1~s1 + · · ·+ cn~sn, x1,j~s1 + · · ·+ xn,j~sn, and c(t)~r. For the rejec-
tion sampling we use the improved algorithm from [LNS21a] that leaks one bit
of information about the secret. In usual applications of the proof system the
prover will only ever compute one or at most very few proofs about a partic-
ular set of hashes ~ui. We assume that the challenge polynomial distribution C
for ci and c(t) is such that the polynomial coefficients are independently iden-
tically distributed in {−1, 0, 1} with probabilities 1/4, 1/2, 1/4, respectively. So
the challenge polynomials have 3d/2 bits of entropy. In particular, for ring rank
d = 128 and fully splitting q of length around 128 bits, the NTT coefficients of ci
will have maximum probability p close to 1/q. Then, a coefficient of a polynomial
in ci~si is the weighted sum of d independent coefficients of ci, where the weights
are given by the coefficients of the corresponding polynomial in ~si (up to signs).
Moreover, a coefficient of c1~s1 + · · · + cn~sn is the sum of dn such coefficients.
Write Sn for this random variable. Its distribution is centered and has standard
deviation sn ≤ bb/2c

√
dn/2. By the central limit theorem, the distribution of the

standardization Sn

sn
converges to the standard normal distribution for n → ∞.

This is also true for the random variable S′n that is distributed according to the
discrete Gaussian Distribution Dsn with the same standard deviation as Sn. So,
for all x ∈ Z,

lim
n→∞

|Pr [Sn ≤ xsn]− Pr [S′n ≤ xsn]| = 0,

and Dsn is a good model for the distribution of the coefficients of c1~s1 + · · · +
cn~sn. By the tail bound from Lemma 4, a coefficient is smaller than than
14bb/2c

√
dn/2 in absolute value with probability bigger than 1 − 2−140. Then,

using the union bound we conclude that no coefficient is bigger than that. There-
fore, we have

‖c1~s1 + · · ·+ cn~sn‖2 ≤ 14

⌊
b

2

⌋√
dmn

2
= s1,

and similarly,

‖x1,j~s1 + · · ·+ xn,j~sn‖2 ≤ 14

⌊
b

2

⌋√
(δ2 − 1)dmn

12
= s2.

In the second inequality we have used that the discrete uniform distribution
on [−δ/2, δ/2 − 1] has standard deviation

√
(δ2 − 1)/12. For c(t)~r(t) we make

use of the fact that also ~r(t) is random with polynomial coefficients distributed
according to the centered binomial distribution χ2 modulo 3. It follows that
every coefficient has standard deviation

√
5d/16, and, again by the tail and

24 Ngoc Khanh Nguyen and Gregor Seiler

union bounds, no coefficient is bigger than 14
√

5d/16 with large probability. So,∥∥∥c(t)~r(t)∥∥∥
2
≤ 14

√
5d2(κ2 + λ+ µ)/16 = s3.

Example As an example we compute concrete sizes for proving n = 1024
hashes ~ui = A~si of binary vectors ~si of length m = 2048 over the ring Rq
of rank d = 128 modulo a 128-bit fully-splitting prime q. We choose l = 4 so
that δ ≈ 232. For the Module-SIS rank κ2 and the Module-LWE rank λ of the
BDLOP commitments scheme we use κ2 = 2 and λ = 32. Then MSISκ2,8dβ3 has
a classical Core-SVP cost of 2100 when using the BDGL16 sieve, and MLWEλ,χ2

has a classical Core-SVP cost of 2108. The height κ of A, i.e. the hash rank for
the ~ui, does not influence the proof size of our protocol, but we need Module-SIS
to be hard for vectors of length B = 4(dβ2 + δβ1/2 + dnδb

√
m/4). This is for

example the case with κ = 7, where MSISκ,B has classical Core-SVP cost of 2213.
With these parameters we find that the proof size as explained above is 108.5
kilobytes. This translates to an amortized size of 108.6 bytes per equation.

One application of our amortized exact proof system is for proving statement
about the plaintexts in FHE ciphertexts. The FHE ciphertexts have a purpose
outside of the proof system and therefore their size does not count towards
the proof size. Moreover, they can not be compressed because otherwise one
could decrypt them anymore. Our proof system now allows to proof many such
ciphertexts with a small amortized cost.

Proof. Correctness. We need to argue that the equations checked by the verifier
are almost always true, except with negligible probability. From the sampling
of the masking vectors ~y(c), ~yj , and ~y(t) as discrete Gaussians with standard
deviations s1, s2, and s3, respectively, and Lemma 3 it follows that ~z(c), ~zj , ~z

(t)

are again distributed as discrete Gaussians in non-aborting transcripts with the
same standard deviations. Hence, the probability that the `2-norm

∥∥~z(c)∥∥
2

is at

most β1 = s1
√

2m as checked by the verifier, is overwhelming by Lemma 4. The
same holds for the norm checks of the other masked openings. Next, the equations
A~z(c) = ~w(c) +

∑
i ci~ui, A~zj = ~wj +

∑
i xi,j~ui, and B0~z

(t) = ~w(t) + c(t)~t0 are
immediately seen to be always true. We also find

h0 = g0 + 〈θ~x,~γ〉 − 〈θ~x,~γ〉 = 0.

Finally, the last verification equation in VERIFYAUX() from the auxiliary proof
remains. By substituting the expressions for ~z(c), v, ~t1, t2 and h as computed
by the honest prover we obtain

〈~b2, ~y(t)〉+ c(t)〈~b2, ~r(t)〉+ 〈NTT−1(dθ~x),B1~y
(t)〉+ c(t)〈NTT−1(dθ~x),B1~r

(t)〉

= 〈~b2, ~y(t)〉+ 〈NTT−1(dθ~x),B1~y
(t)〉+ c(t)(〈~b2, ~r(t)〉+ g)

+ c(t)(〈NTT−1(dθ~x),B1~r
(t)〉+ 〈NTT−1(dθ~x),NTT−1(~γ)〉 − θp)

− c(t)(g + 〈NTT−1(dθ~x),NTT−1(~γ)〉 − 〈θ~x,~γ〉).

Practical Sublinear Proofs for R1CS from Lattices 25

Cancelling all equal terms shows that this equation is implied by

p− 〈~x,~γ〉
= 〈~z ◦ ((x1 + · · ·+ xn)~1− ~z, ~ϕ〉 − 〈~x,~γ〉
= −〈~y ◦ ~y, ~ϕ〉

+

n∑
i=1

xi

〈~y ◦ (~1− 2~si), ~ϕ〉+

i−1∑
j=1

xj〈~si ◦ (~1− ~sj) + ~sj ◦ (~1− ~si), ~ϕ〉

−

(
γ0 +

n∑
i=1

xiγi

)
= 0.

It follows from the construction of the garbage coefficients γi that this equation
is indeed correct.

Zero-Knowledge. The proof of the zero-knowledge property is standard for
this type of protocol. In the real execution the masked openings ~z(c), ~zj , ~z

(t) are
distributed as discrete Gaussians. So, when we replace them by independently
sampled discrete Gaussian vectors and compute ~w(c), ~wj , ~w

(t), v such that the
verification equations are still all correct, then we get a transcript that is statis-
tically close to the real transcript with statistical distance 2−100 by Lemma 3.
Now, the randomness vector ~r(t) for the BDLOP commitment scheme is only
used anymore in the MLWE vectors B0~r

(t), B1~r
(t), and 〈~b2, ~r(t)〉. Hence, when

we replace these by uniformly random vectors, we obtain a transcript that can
be distinguished from the previous transcript with advantage ε only by an ad-
versary that can distinguish MLWEλ,χ with the same advantage. Next, we can

replace the vectors ~t0, ~t1, and t2 by independently uniformly random vectors
without changing the distribution of the transcript. Now, the only element that
still depends on the secret vectors ~si is the polynomial h. But h contains the
additive uniformly random polynomial g with constant zero coefficient. And g
is now only used in the computation of h since we have already replaced t2.
Therefore, we can also replace h by a uniformly random polynomial with zero
constant coefficient without changing the transcript distribution. We have thus
arrived at a simulatable transcript as required in the theorem statement.

Knowledge-Soundness. The first goal for the extractor is to obtain weak open-
ings ~s∗i for all the hashes ~ui. This is achieved by extracting the approximate
amortized opening proof at the beginning of the protocol. Here one NTT coef-
ficient ~s∗i mod pj of one opening ~s∗i is extracted at a time, where i ∈ {1, . . . , n}
and pj ⊂ R, j ∈ {1, . . . , d}, is one of the prime ideals dividing q in R. The
extractor repeatedly interacts with P∗ where he freshly samples all challenges in
each interaction until he hits an accepting interaction. Let ci and ~z(c) be the i-th
polynomial challenge and the corresponding masked opening in this interaction,
respectively. Next, the extractor interacts again with the prover, but this time
he sends the same challenges as in the previous accepting interaction, except for
ci, which is replaced by a freshly sampled challenge c′i under the constraint that

26 Ngoc Khanh Nguyen and Gregor Seiler

c′i 6≡ ci (mod pj). The extractor repeats until he either hits a second accepting

interaction with masked opening ~z(c
′), or the upper runtime limit 2/(ε/2− p) is

reached, in which case the extractor aborts. We compute the expected runtime
and probability for obtaining two accepting transcripts. The first accepting hit
takes expected time 1/ε. Then, with probability at least 1/2, the challenges lie on
a heavy row for ci so that the acceptance probability when keeping all challenges
fixed except ci is at least ε/2. The constraint c′i 6≡ c (mod pj) reduces the bound
on the acceptance probability to ε/2 − p. Now, the probability that a process
with expected runtime 1/(ε/2−p) runs longer than twice this amount is at most
1/2 by Markov’s inequality. Hence, when the first accepting interaction lies on
a heavy row for ci, then with probability at least 1/2 we obtain an accepting
interaction in the second stage before aborting due to the time limit. Overall, we
have that with probability at least 1/4 we obtain two accepting interactions in
expected time at most 1/ε+ 2/(ε/2− p) < 3/(ε/2− p). By restarting the whole
process when it aborts, we conclude that in expected time 12/(ε/2 − p) we get
the two accepting interactions.

Next, we have from the verification equations in the approximate amortized
opening proof in Figure 2,

A
(
~z(c) − ~z(c

′)
)

= (ci − c′i)~ui.

Since ci − c′i 6≡ 0 (mod pj), we can divide by the challenge difference in the
residue field modulo pj and obtain ~s∗i,j such that A~s∗i,j ≡ ~ui (mod pj). By
performing the strategy for all prime ideals pj , we can lift the local solutions
~s∗i,j to a global solution A~s∗i = ~ui over Rq. In the process we obtain c̄j and ~̄zj
for all j such that c̄j 6∈ pj and c̄j~s

∗
i ≡ ~̄zj (mod pj). The last equality must even

hold over Rq, c̄j~s∗i = ~̄zj , and hence ~s∗i is a weak opening for ~ui. For otherwise
we have the Module-SIS solution c̄j′~̄zj − c̄j~̄zj′ for A of length 8ωβ1 for some j′.

In the same way we obtain weak openings ~s∗i for all ~ui. If they are all binary
then we are done. So assume this is not the case and that ~s∗i0 is the last non-
binary vector, i.e. ~s∗i0 6∈ {0, 1}

m and ~s∗i ∈ {0, 1}m for all i > i0. For the following
discussion we are only interested in the main part of the protocol, i.e. the protocol
in Figure 1 without the initial approximate proof and the trailing auxiliary linear
proof. The acceptance probability for the main protocol, i.e. the probability that
the main verification equations in VERIFY() are correct, is at least ε. We partition
the challenge tuple of the main protocol into two pieces X0 = (x1, . . . , xi0−1)
and X1 = (~ϕ, xi0 , . . . , xn). There exists a choice of the challenges in X0 such
that the acceptance probability over the remaining challenges X1 is at least ε.
We fix this choice. Then, for each choice of the challenges in X1 we can define

~y∗j ∈ R
m/d
q , j = 0, . . . , l − 1, such that

~zj = ~y∗j + xi0,j~s
∗
i0 + · · ·+ xn,j~s

∗
n (9)

in the corresponding interaction. If the interaction is accepting, then, by con-
struction,

A~y∗j = ~wj + x1,j~u1 + · · ·+ xi0−1,j~ui0−1.

Practical Sublinear Proofs for R1CS from Lattices 27

The ~y∗j must be the same for all accepting interactions. To the contrary, assume
without loss of generality that there are two challenge tuples (ϕ, xi0 , . . . , xn) and
(ϕ′, x′i0 , . . . , x

′
n) with different ~y∗0 and ~y∗′0 , respectively. The vectors ~y∗0 and ~y∗′0

must differ modulo at least one of the prime ideals, say pj . But then, from the
extraction of the weak openings for the hashes, we know c̄j such that c̄j 6∈ pj
and c̄j~s

∗
i0

is short; that is, of length at most 2β1. Thus,

A(c̄j~z0 − xi0,0c̄j~s∗i0 − c̄j
n∑

i=i0+1

xi,0~s
∗
i)

= c̄jA~y
∗
0 = c̄jA~y

∗′
0

= A(c̄j~z
′
0 − x′i0,1c̄j~s

∗
i0 − c̄j

n∑
i=i0+1

x′i,1~s
∗
i)

gives a Module-SIS solution for A of length less than B = 2(2ωβ2 + 2δβ1 +
2nωδ

√
m). Here we have used that all ~s∗i are binary and hence of length at most√

m for i > i0.
For completeness, we sketch a simple concrete treatment of the previous argu-

ment. With probability at least 1/2, a completely random accepting interaction
(random over all challenges in X0 and X1) is such that the challenges in X0

define a “heavy row” for the challenges in X1. This means that the acceptance
probability over the challenges in X1 when fixing X0 is at least ε/2. So, it is easy
for the extractor to find such a heavy row. Now, assume that with another prob-
ability of at least 1/2, a heavy row is such that the largest fraction of accepting
interactions with matching ~y∗j make up for less than 1/2 of all the accepting
interactions on the heavy row. Then, with probability at least 1/8 two random
accepting interactions with equal X0 would have different ~y∗j and lead to an
MSIS solution as above. So, this cannot be and therefore with probability at
least 1/2, a heavy row is such that at least 1/2 of the accepting interactions on
the row result in the same masking vectors ~y∗j . Hence, it is easy for the extractor
to find challenges X0 such that the interactions with fixed X0 are accepting and
share the same ~y∗j with probability at least ε/4 over the challenges in X1. We
can increase the latter probability by also increasing the runtime needed by the
extractor to find the challenges X0. But since we don’t care about the extractor
runtime in the theorem statement we can assume the limiting probability ε.

So, our conclusion above makes sense that we can fix challenges X0 such
that interactions are accepting and the ~zj are given by Equation (9) for fixed

~y∗j with probability at least ε. For the integer coefficient vector ~z =
∑l−1
j=0 ~zjδ

j

this translates to that it is given by

~z = ~y∗ + xi0~s
∗
i0 + · · ·+ xn~s

∗
n

in those interactions, with fixed ~y∗, ~s∗i . Next, in the auxiliary linear proof at the
end of the protocol the relation

〈~z ◦ ((x1 + · · ·+ xn)~1− ~z), ~ϕ〉 = γ∗0 + γ∗1x1 + · · ·+ γ∗nxn

28 Ngoc Khanh Nguyen and Gregor Seiler

is proven. Here the coefficients γ∗i are the (extracted) garbage coefficients inside
the BDLOP commitment. They are such that γi is independent from xi, . . . , xn
since it was committed to before the prover knew xi, . . . , xn. By plugging in the
expression for ~z we can now decompose the relation into

f0 + fi0xi0 + 〈~s∗i0 ◦ (~1− ~s∗i0), ~ϕ〉x2i0 + f
(xi0)
i0+1 xi0+1 + · · ·+ f

(xi0 ,...,xn−1)
n xn = 0

where

f0 = 〈~y∗ ◦ ((x1 + · · ·+ xi0−1)~1− ~y∗), ~ϕ〉
− (γ∗0 + x1γ

∗
1 + · · ·+ xi0−1γ

∗
i0−1)

f
(xi0

,...,xi−1)
i = 〈~y∗ ◦ (~1− ~s∗i), ~ϕ〉+ 〈~s∗i ◦ ((x1 + · · ·+ xi0−1)~1− ~y∗), ~ϕ〉

+

i−1∑
j=i0

xj〈~s∗j ◦ (~1− ~s∗i) + (~1− ~s∗j) ◦ ~s∗i , ~ϕ〉 − γ∗i

So we see that the coefficients f
(xi0 ,...,xi−1)
i depend on x1, . . . , xi−1 but not on

xi, . . . , xn. Moreover, with probability (1 − 1/q) for uniformly random ~ϕ, the
term 〈~s∗i0 ◦ (~1− ~s∗i0), ~ϕ〉 is non-zero since ~s∗i0 is not binary. Therefore, Lemma 2
says that the equation is only true with probability at most 1/q + 2n/q < ε.
Hence, with probability at least ε − (2n + 1)/q, the prover must be able to
succeed in the auxiliary linear proof although the relation is not true. Now,
since this probability is bigger than the soundness error of the linear proof,
ε − (2n + 1)/q > 1/q + p, [ENS20, Theorem 3.1] says that in this case we can
extract an MSISκ2,8ωβ3

solution for B0. ut

5 Induction

In many applications the public input hashes ~ui to our exact binary opening
proof from Section 4 are in fact produced as part of a larger zero-knowledge
proof system and their size counts towards the proof size. In the opening proof
the two dominating terms in the proof size are of order n log q for the garbage
commitments, and m log q for the masked openings, for a total of mn secret
coefficients. On the other hand, the hashes ~ui are of size nκd log q. So we see
that their size is very significant for the overall bandwidth efficiency. In fact, the
hashes are about two orders of magnitude larger than their proof and it would
be good if we did not need to transmit all the ~ui. In this section we show how
this can in fact be achieved by hashing them up in a Merkle hash tree and using
our opening proof as a building block to prove by induction an opening to the
hash tree when only the root hash is given.

Tree Construction. In our lattice-based hash tree, the hash input vector for
an inner node consists of the binary expansions of the hash output vectors from
the two children of the node. So the number of input bits m of the hash function

Practical Sublinear Proofs for R1CS from Lattices 29

must be twice the number of output bits, i.e. m = 2κddlog qe. Then we define
the gadget matrix

G = Iκ ⊗
(
1 2 · · · 2dlog qe−1

)
∈ Rκ×κdlog qeq

that we use to reconstruct the hashes from their binary expansions. Now, the
hash tree is constructed as follows. Let a be the depth of the tree. Then, the
inner nodes are given by

~ui = A~si, ~si =

(
~si,l
~si,r

)
∈ {0, 1}m ⊂ Rm/dq ,

G~si,l = ~u2i,

G~si,r = ~u2i+1

(10)

for i = 1, . . . , 2a−1 − 1. In particular ~u1 is the root of the tree. The leafs
are ~u2a−1+j = A~s2a−1+j for j = 0, . . . , 2a−1 − 1. More generally, the nodes
~u2k , . . . , ~u2k+1−1 form level k of the tree, where 0 ≤ k ≤ a− 1.

Proof by Induction. So we have a total of n = 2a − 1 binary vectors ~si that
recursively hash to ~u1 and that we want to prove knowledge of. Our protocol is
easiest to understand as a sequence πa−1, πa−2, . . . , π0 of a = dlog ne subproofs
that are essentially instances of our binary opening proof from Section 4. There
is one subproof for each level of the tree in the order from the leaves to the root,
and the subproofs are indexed by the corresponding level. More precisely, πk
proves knowledge of the level-k binary vectors ~s2k , . . . , ~s2k+1−1.

All the πk share one amortized masked opening of all the vectors ~si. Hence,
in the very end the prover sends

~z = ~y +

2a−1∑
i=1

xi~si.

Actually, the prover sends the short shares ~zj = ~yj +
∑
i xi,j~si that compose

to ~z but we explain the protocol in terms of the single vector ~z as this simpli-
fies the presentation. The 2k challenges x2k , . . . , x2k+1−1 for the level-k binary
vectors are from the subproof πk. Therefore and because of the reverse order-
ing of the subproofs, at the beginning of πk the prover knows all the challenges
x2k+1 , . . . , x2a−1 from deeper levels. We can thus absorb the terms xi~si, i ≥ 2k+1,
in ~z into the masking vector and use

~yk = ~y +

2a−1∑
i=2k+1

xi~si

as the masking vector in πk. So unlike in isolated instances of the binary opening
proof, πk inherits the mask from previous parts of the overall protocol instead
of sampling a fresh mask. The prover then sends the commitment ~wk = A~yk

30 Ngoc Khanh Nguyen and Gregor Seiler

(composed from ~wk,j = A~yk,j). Next, he engages in the 2k+1-round interaction
where he produces the garbage commitments and receives the challenges x2k+j
for proving exactly as before that the vectors ~s2k+j are binary. Furthermore, the
verifier only knows the root hash ~u1 and can check the verification equation

A~z = ~w0 + x1~u1.

for the last subproof π0 at the end of the protocol. So, to connect the subproofs
with each other and prove the verification equations for the πk, k ≥ 1, the prover
proves the following linear relations,

2k+1−1∑
i=2k

(x2iG~si,l + x2i+1G~si,r) = ~wk − ~wk+1. (11)

The challenges x2i, x2i+1, and the vectors ~wk, ~wk+1 are known by both the
prover and the verifier at the start of πk so this relation can be proven with the
linear proof technique from Section 4.1. Concretely, for each k = 0, . . . , a− 2 let
~ψk ∈ Zκdq be a challenge and define

~ρi = Rot

(
x2iG

†

x2i+1G
†

)
~ψk

for all i = 2k, . . . , 2k+1 with the multiplication matrix Rot(G†) associated to the
conjugate transpose of the polynomial matrix G. Then in πk the prover commits
to the garbage coefficients

γ
(lin)
2i−1 =

〈
~yk +

2k+1−1∑
j=i+1

xj~sj , ~ρi

〉
,

γ
(lin)
2i =

〈
~si,

2a−1−1∑
j=i+1

x−1j ~ρj

〉

for i = 2k, . . . , 2k+1 − 1. Finally, the following linear relation is proven in the
auxiliary proof at the end of the protocol,〈

~z,

2a−1−1∑
i=1

x−1i ~ρi

〉
−
a−2∑
k=0

〈
~wk − ~wk+1, ~ψk

〉

=

2a−1−1∑
i=1

(
x−1i γ

(lin)
2i−1 + xiγ

(lin)
2i

)
.

We now explain at a high level why this protocol suffices for proving the hash
tree. For 0 ≤ k ≤ a− 2, consider the statement Sk that the prover knows binary
vectors ~s1, . . . , ~s2k−1 and corresponding ~u1, . . . , ~u2k+1−1 as in Equation (10),
and that

A~z = ~wk′ +

2k
′+1−1∑
i=1

xi~ui (12)

Practical Sublinear Proofs for R1CS from Lattices 31

is true for all 0 ≤ k′ ≤ k in (almost) all accepting interactions. The statement
is trivially true for k = 0 because the list of known vectors is empty in this case
and (12) is directly checked by the verifier.

Now, we argue that the subproof πk proves the statement Sk+1 if Sk holds
true. We rewrite (12) and have

A

~z − 2k−1∑
i=1

xi~si

 = ~wk +

2k+1−1∑
i=2k

xi~ui.

Here the preimage on the left hand side is short since ~z is short and all the ~si are
binary. So, for every accepting transcript we can compute a short vector ~zk =

~z−
∑2k−1
i=1 xi~si that fulfills the main verification equation for the binary opening

proof πk for level k. Conceptually this means any prover for the protocol in this
section can be converted to a prover for the level-k hashes exactly as in Section 4.
Therefore we can use the extractor for our exact opening proof from Section 4
and compute binary preimages ~s2k , . . . , ~s2k+1−1 for the hashes ~u2k , . . . , ~u2k+1−1.
Moreover the newly extracted binary preimages define the level-(k + 1) hashes
~u2k+1 , . . . , ~u2k+2−1, and from the linear proof for (11) included in πk it follows
that

A~z = ~wk +

2k+1−1∑
i=1

xiui = ~wk+1 +

2k+2−1∑
i=1

xi~ui.

Therefore we have established that statement Sk+1 is true.
It then follows by induction that the statement Sa−1 is true. And a very

similar argument for the last-level proof πa−1, just without the linear proof
connecting to a previous level, shows that the prover also knows preimages for
the tree leaves, which completes the proof of the full hash tree.

Note that there is no problem with zero-knowledge associated with sending
all the ~wk since they differ from ~wa−1 = A~y only by terms of the form xi~ui that
we would send in the clear if we directly used the proof from Section 4. Finally
note that the size of the ~wk is small — we have effectively traded the n+ 1 = 2a

uniformly random vectors ~ui, ~w for the only a+ 1 vectors ~u1 and ~wk.
As before we want to use the approximate amortized opening proof with

polynomial challenges to bootstrap our protocol in order to benefit from smaller
SIS norm bounds. Therefore, the prover also samples an additional masking
vector ~y(c) at the beginning of the protocol. Then, in each subproof πk, he

first sends ~w
(c)
k = A~y(c) +

∑2a−1
i=2k+1 ci~ui, and then receives the next challenge

polynomials c2k , . . . , ~c2k+1−1. Finally, at the end of the protocol the prover sends

~z(c) = ~y(c) +
∑2a−1
i=1 ci~si. The verifier checks that ~z(c) is short and a preimage

of ~w
(c)
0 + c1~u1.

Theorem 2. The protocol in Figures 6 and 7 is correct, computational honest
verifier zero-knowledge under the Module-LWE assumption and computationally
knowledge-sound under the Module-SIS assumption. More precisely, let p be the
maximum probability of c mod X − ζ as in Lemma 1.

32 Ngoc Khanh Nguyen and Gregor Seiler

Prover Ptree Verifier Vtree
Inputs:

B0 ∈ Rκ2×(κ2+λ+µ)
q B0,B1,~b2

B1 ∈ R(µ−1)×(κ2+λ+µ)
q A, ~u1

~b2 ∈ Rκ2+λ+µ
q

A ∈ Rκ×m/dq

For i = 1, . . . , 2a − 1 :

~si =

(
~si,l
~si,r

)
∈ {0, 1}m ⊂ Rm/dq

~ui = A~si

~u2i = G~si,l

~u2i+1 = G~si,r

(~r(t), ~t0, ~e) = AUXINIT(B0,B1)
~t0 -

~ϕ
� ~ϕ

$← Zmq

~y(c) $← Dm
s1

For j = 0, . . . , l − 1 :

~yj
$← Dm

s2

~y =

l−1∑
j=0

~yjδ
j

γ0 = −〈~y ◦ ~y, ~ϕ〉
τ0 = e0 + γ0

τ0 -

The prover and verifier run the recursive subproof protocol from Figures 8 and 9,
〈Psubprf(a− 1,A, ~si, ~y

(c), ~yj , ~e, ~ϕ),Vsubprf(a− 1)〉. They receive the transcript with el-

ements ~w
(c)
k , ~wk,j , ~ψ

(c)
k , ~ψk,j , ci, τ2i−1, τ2i, xi. Then they set ~τ = (τ0, . . . , τ2a+1−2)T ,

~x = (1, x−1
1 , x1, . . . , x

−1
2a−1, x2a−1)T and ~t1 = NTT−1(~τ), and decompose xi =

xi,0 + · · · + xi,l−1δ
l−1 for i = 1, . . . , 2a − 1. Moreover, the prover keeps the garbage

coefficients γ2i−1, γ2i from Psubprf and sets ~γ = (γ0, . . . , γ2a+1−2)T .

Fig. 6. Exact opening proof for lattice-based Merkle tree, part I. The BDLOP message
rank µ is given by µ = (2a+1 − 1)d+ 1

Practical Sublinear Proofs for R1CS from Lattices 33

~z(c) = ~y(c) +

2a−1∑
i=1

ci~si

For j = 0, . . . , l − 1 :

~zj = ~yj +

2a−1∑
i=1

xi,j~si

If Rej
(
~z(c), ~y(c), s1

)
= 1, abort

If Rej ((~zj), (~yj), s2) = 1, abort
~z(c), ~zj

-

A~z(c) ?
= ~w

(c)
0 + c1~u1

For j = 0, . . . , l − 1 :

A~zj
?
= ~w0,j + x1,j~u1

The prover and verifier run the auxiliary linear proof from Figure 5,
〈Paux(B, ~r

(t), ~t, ~γ, ~x),Vaux(B, ~t, p, ~x)〉, where

p = 〈~z ◦ ((x1 + · · ·+ x2a−1)~1− ~z), ~ϕ〉+

2a−1−1∑
i=1

x−1
i 〈~z, ~ρi〉

−
a−2∑
k=0

(
l−1∑
j=0

〈~wk,j − ~wk+1,j , ~ψk,j〉+ 〈~w(c)
k − ~w

(c)
k+1,

~ψ
(c)
k 〉

)

The verifier accepts if Vaux accepts.

Fig. 7. Exact opening proof for lattice-based Merkle tree, part II.

34 Ngoc Khanh Nguyen and Gregor Seiler

Prover Psubprf Verifier Vsubprf
Inputs:

k ≥ 0 k

A ∈ Rκ×m/dq

For i = 1, . . . , 2k+1 − 1 :

~si =

(
~si,l
~si,r

)
∈ {0, 1}m ⊂ Rm/dq

~y
(c)
k ∈ R

m/d
q

For j = 0, . . . , l − 1 :

~yk,j ∈ Rm/dq

~e ∈ Z2a+1−1
q

~ϕ ∈ Zmq
~ρ2k+1 , . . . , ~ρ2a−1

c2k+1 , . . . , c2a−1 ∈ C
x2k+1 , . . . , x2a−1 ∈ Zq

~w
(c)
k = A~y

(c)
k

For j = 0, . . . , l − 1 :

~wk,j = A~yk,j
~w

(c)
k , ~wk,j

-

~ψ
(c)
k

$← Zκdq
For j = 0, . . . , l − 1 :

~ψk,j
$← Zκdq

~ψ
(c)
k , ~ψk,j , ci

�

For i = 2k, . . . , 2k+1 − 1 :

ci
$← C

For i = 2k, . . . , 2k+1 − 1 :

If k < a− 1 :

~ρi =

l−1∑
j=0

Rot

(
x2i,jG

†

x2i+1,jG
†

)
~ψk,j

+ Rot

(
c
σ−1

2i G†

c
σ−1

2i+1G
†

)
~ψ
(c)
k

Else ~ρi = 0

Fig. 8. Subprotocol for the Merkle tree proof in Figures 6 and 7, part I.

Practical Sublinear Proofs for R1CS from Lattices 35

The prover and verifier run the core protocol from Figure 10,

(τ2i−1, τ2i, xi)2k≤i≤2k+1−1

= 〈Pcore(k,~e, ~yk, ~ϕ, (~si)2k≤i≤2k+1−1, (~ρi)i≥2k , (xi)i≥2k+1),Vcore(k)〉.

Then they decompose xi = xi,0 + · · ·+ xi,l−1δ
l−1 for i = 2k, . . . , 2k+1 − 1.

If k > 0, then the prover and verifier recursively run〈
Psubprf

(
k − 1,A, (~si)i≤2k−1, ~y

(c)
k−1, ~yk−1,j , ~e, ~ϕ, (~ρi)i≥2k , (xi)i≥2k , (ci)i≥2k

)
,

Vsubprf(k − 1)
〉
,

where ~y
(c)
k−1 = ~y

(c)
k +

∑2k+1−1

i=2k
~ci~si and ~yk−1,j = ~yk,j +

∑2k+1−1

i=2k
xi,j~si.

Fig. 9. Subprotocol for the Merkle tree proof in Figures 6 and 7, part II.

Then, for correctness, unless the honest prover P aborts due to the rejection
sampling, it convinces the honest verifier V with overwhelming probability.

For zero-knowledge, there exists an efficient simulator S, that, when hav-
ing access to all the hashes ~ui (i ∈ {1, . . . , n}) in the Merkle tree but not the
preimages ~s2a−1 , . . . , ~s2a−1 for the leaves, outputs a simulation of a non-aborting
transcript of the protocol between P and V. An adversary who can distinguish the
simulation from the real transcript with advantage ε can distinguish MLWEλ,χ
with advantage ε− 2100.

For knowledge-soundness, there is an extractor E with the following proper-
ties. When given resettable black-box access to a deterministic prover P∗ that
convinces V with probability ε > 6n/q + dlog nep, E either outputs a binary tree
opening ~s∗i ∈ {0, 1}m (i ∈ {1, . . . , n}) as in Equation (10), an MSISκ,B solution
for A with B = 4(ωβ2 + δβ1 + nωδ

√
m), or an MSISκ2,8ωβ3 solution for B0.

Proof. Correctness. The correctness of the protocol follows from the discussion
in this Section and tedious analysis of the verification equations for the messages
sent by the honest prover.

Zero-Knowledge. The proof of the zero-knowledge property is similar to the
proof of Theorem 1. One transforms the real computation of a transcript in a
series of steps until one arrives at a transcript that is indistinguishable from the
real transcript and efficiently computable without knowing the leaf preimages
~si. In every step, when changing the distribution of some of the messages, one

updates the messages ~w
(c)
0 , ~w0,j and ~w(t) that are determined by all the other

messages and the verification equations in real transcripts. Moreover, one also

updates the messages ~w
(c)
k and ~wk,k for k ≥ 1 that are determined by ~w

(c)
0

and ~w0,j , respectively, and the public tree nodes ~ui. First one replaces all the
masked openings ~z(c), ~zi and ~z(t) with independently sampled Gaussian vectors.
Then one can swap the commitments ~t0, ~t1, t2 for uniformly random vectors by

36 Ngoc Khanh Nguyen and Gregor Seiler

Prover Pcore Verifier Vcore
Inputs:

k ≤ 0 k

~e ∈ Z2a+1−1
q

~yk, ~ϕ ∈ Zmq
~s2k , . . . , ~s2k+1−1 ∈ Zmq
~ρ2k , . . . , ~ρ2a−1 ∈ Zmq
x2k+1 , . . . , x2a−1 ∈ Zq

γ2k+2−2 = 〈~yk ◦ (~1− ~s2k+1−1), ~ϕ〉

+ 〈~s2k+1−1 ◦ ((x2k+1 + · · ·+ x2a−1)~1− ~yk), ~ϕ〉

+ 〈~s2k+1−1, x
−1

2k+1~ρ2k+1 + · · ·+ x−1
2a−1~ρ2a−1〉

γ2k+2−3 = 〈~yk, ~ρ2k+1−1〉
τ2k+2−2 = e2k+2−2 + γ2k+2−2

τ2k+2−3 = e2k+2−3 + γ2k+2−3

τ2k+2−2, τ2k+2−3-
x2k+1−1� x2k+1−1

$← Z×q
γ2k+2−4 = 〈~yk ◦ (~1− ~s2k+1−2), ~ϕ〉

+ 〈~s2k+1−2 ◦ ((x2k+1 + · · ·+ x2a−1)~1− ~yk), ~ϕ〉
+ x2k+1−1〈~s2k+1−1 + ~s2k+1−2 − 2~s2k+1−1 ◦ ~s2k+1−2, ~ϕ〉

+ 〈~s2k+1−2, x
−1

2k+1−1
ρ2k+1−1 + · · ·+ x−1

2a−1~ρ2a−1〉

γ2k+2−5 = 〈~yk, ~ρ2k+1−2〉+ x2k+1−1〈~s2k+1−1, ~ρ2k+1−2〉
τ2k+2−4 = e2k+2−4 + γ2k+2−4

τ2k+2−5 = e2k+2−5 + γ2k+2−5

τ2k+2−4, τ2k+2−5-
x2k+1−2� x2k+1−2

$← Z×q

...

γ2k+1 = 〈~yk ◦ (~1− ~s2k), ~ϕ〉

+ 〈~s2k ◦ ((x2k+1 + · · ·+ x2a)~1− ~yk), ~ϕ〉

+

2k+1−1∑
i=2k+1

xi〈~si ◦ (~1− ~s2k) + ~s2k ◦ (~1− ~si), ~ϕ〉

+

2a−1∑
i=2k+1

x−1
i 〈~s2k , ~ρi〉

γ2k+1−1 = 〈~yk, ~ρ2k 〉+

2k+1−1∑
i=2k+1

xi〈~si, ~ρ2k 〉

τ2k+1 = e2k+1 + γ2k+1

τ2k+1−1 = e2k+1−1 + γ2k+1−1

τ2k+1 , τ2k+1−1-
x2k� x2k

$← Z×q

Fig. 10. Core protocol for Merkle tree opening proof in Figures 6 and 7.

Practical Sublinear Proofs for R1CS from Lattices 37

relying on the Module-LWE assumption. Finally, it remains to replace h which
is uniformly random with h0 = 0 since it contains the additive polynomial g
that is used nowhere else anymore.

Knowledge-Soundness. We will repeatedly need to condition on events where
subsets of the challenges have fixed values. To this end, we first introduce some
notation. Denote the total challenge space of the protocol by X ; that is, X is
the product of all the individual challenge spaces. The probability distributions
on the individual challenge spaces induce the product distribution on X . There
is a probability preserving one-to-one correspondence between challenge tuples
X ∈ X and transcripts tr of interactions between P∗ and the honest verifier V
since P∗ is deterministic.

For arguing about the polynomial equations that lie at the heart of the binary
and linear subproofs, we need to be able to open the garbage commitments τi.
The prover sends the top part ~t0 of the BDLOP commitment scheme in his
first message. Hence, ~t0 is independent from all the challenges and the same in
all interactions with P∗. We can thus extract the auxiliary linear proof at the
end of the protocol once, which includes an approximate opening proof for ~t0.
We obtain a weak opening ~r(t)∗ for ~t0 that we can use to open the garbage
commitments in any transcript. Concretely, we compute ~e∗ = NTT(B~r(t)∗), and
then γ∗i = τi − e∗i as the extraction of the commitment τi in some transcript.
With the opened commitments we can now write the statement of the auxiliary
proof in the clear:

〈~z ◦ ((x1 + · · ·+ x2a−1)~1− ~z), ~ϕ〉+

2a−1∑
i=1

x−1i 〈~z, ~ρi〉

−
a−2∑
k=0

 l−1∑
j=0

〈~wk,j − ~wk+1,j , ~ψk,j〉+ 〈~w(c)
k − ~w

(c)
k+1,

~ψ
(c)
k 〉

= γ∗0 +

2a−1∑
i=1

(x−1i γ∗2i−1 + xiγ
∗
2i),

(13)

where, for k = 0, . . . , a− 2, i = 2k, . . . , 2k+1 − 1,

~ρi =

l−1∑
j=0

Rot

(
x2i,jG

†

x2i+1,jG
†

)
~ψk,j + Rot

(
c
σ−1

2i G
†

c
σ−1

2i+1G
†

)
~ψ
(c)
k .

The soundness error of the auxiliary proof is 1/q+p (c.f. [ENS20, Theorem 3.1]).
This implies that the probability that an interaction between P∗ and V is accept-
ing and (13) turns out to be false can be at most 1/q + p. Assume the contrary.
Decompose the challenge space X into two parts, X = X0 × Xaux, where Xaux is
the space of the challenges θ, c(t) for the auxiliary proof. All the quantities in
Equation (13) are determined by the challenges from X0 and hence before the
auxiliary proof challenges from Xaux are sent in the protocol. Consider a fixed
X0 ∈ X0 such that (13) is false. If the success probability of P∗ over the remain-

ing challenges Xaux
$← Xaux is bigger than 1/q + p, then, by sending the fixed

38 Ngoc Khanh Nguyen and Gregor Seiler

values in X0 for the challenges outside of the auxiliary proof, one can convert
P∗ to a prover of a false statement in the auxiliary proof with sufficient suc-
cess probability so that the extractor for the auxiliary proof can be used. This
would either directly give an MSISκ2,8ωβ3

solution for B0, or different openings
γ∗∗i 6= γ∗i to the garbage commitments that in turn immediately result in a
Module-SIS solution for B0. Hence, this cannot be and the probability must be
at most 1/q+p. Therefore, also the probability that any interaction is accepting
and (13) is false can be at most 1/q + p.

Now, suppose that for a k ∈ {0, . . . , a− 1}, we already know binary vectors
~s∗i ∈ {0, 1}m as in Equation (10) for all i = 1, . . . , 2k−1. This defines the hashes
~u∗2, . . . , ~u

∗
2k+1−1 by ~u∗2i = G~s∗i,l and ~u∗2i+1 = G~s∗i,r. Then call an interaction with

P∗ k-accepting if it is accepting and such that, for all 0 ≤ k′ ≤ k,

A~zj = ~wk′,j +

2k
′+1−1∑
i=1

xi,j~u
∗
i ,

A~z(c) = ~w
(c)
k′ +

2k
′+1−1∑
i=1

ci~u
∗
i .

(14)

Clearly, k-accepting implies for all 0 ≤ k′ < k,

l−1∑
j=0

〈~wk′,j − ~wk′+1,j , ~ψk′,j〉+ 〈~w(c)
k′ − ~w

(c)
k′+1,

~ψ
(c)
k′ 〉

=

l−1∑
j=0

2k
′+2−1∑

i=2k′+1

〈xi,j~u∗i , ~ψk′,j〉+

2k
′+2−1∑

i=2k′+1

〈Rot(ci)~u∗i , ~ψ
(c)
k′ 〉

=

l−1∑
j=0

2k
′+1−1∑
i=2k′

〈
Rot(x2i,jGr)~s

∗
i,l + Rot(x2i+1,jG)~s∗i,r,

~ψk′,j

〉

+

2k
′+1−1∑
i=2k′

〈
Rot(c2iG)~s∗i,l + Rot(c2i+1G)~s∗i,r,

~ψ
(c)
k′

〉

=

2k
′+1−1∑
i=2k′

〈
~s∗i ,

l−1∑
j=0

Rot

(
x2i,jG

†

x2i+1,jG
†

)
~ψk′,j + Rot

(
c
σ−1

2i G
†

c
σ−1

2i+1G
†

)
~ψ
(c)
k′

〉

=

2k
′+1−1∑
i=2k′

〈~s∗i , ~ρi〉.

(15)

Next, denote by Sk the statement that we have extracted ~s∗1, . . . , ~s
∗
2k−1 as above

and that an interaction is k-accepting with probability εk ≥ ε−3(2k+1−2)/q−kp.
Clearly, S0 is true by the assumption in the theorem. We now show that if
Sk is true, then we can extract the next level of the tree and obtain vectors
~s∗2k , . . . , ~s

∗
2k+1−1 such that Sk+1 is true.

Practical Sublinear Proofs for R1CS from Lattices 39

Since εk > p and it is easy to decide if the verification equations (14) for
k′ = k are fulfilled, we can extract weak openings ~s∗i to the hashes ~u∗i for
i = 2k, . . . , 2k+1 − 1. This works as in the proof of Theorem 1 by extracting the
underlying approximate amortized opening proof with polynomial challenges ci.
Concretely, we then have A~s∗i = ~ui together with c̄i,j ∈ C̄ such that c̄i,j 6∈ pj
and c̄i,j~s

∗
i is of length at most 2β1.

Now, we need to show that the newly extracted ~s∗i must all be binary and that
interactions are (k + 1)-accepting with probability at least εk − 3 · 2k+1/q − p.
Towards an indirect proof of the binary property suppose that ~s∗i0 is the last

non-binary vector, meaning that i0 ∈ {2k, . . . , 2k+1 − 1} is the smallest index
such that ~s∗i0 is not binary (recall that the challenges xi are ordered in reverse
order in the protocol). Then, for uniformly random ~ϕ ∈ Rmq , the scalar product

〈~s∗i0 ◦ (~1− ~s∗i0), ~ϕ〉 only vanishes with probability 1/q. Hence, an interaction is
k-accepting and the scalar product non-zero with probability at least εk − 1/q.

Decompose X into three parts now; X = X0×Zi0q ×Xaux, where Zi0q is the space
for the integer challenges x1, . . . , xi0 , and Xaux for the auxiliary proof challenges
θ, c(t). Let tr be a transcript with challenge tuple X = (X0, x1, . . . , xi0 , θ, c

(t))
such that tr is k-accepting and the above scalar product 〈~s∗i0 ◦ (~1− ~s∗i0), ~ϕ〉 non-
zero for the ~ϕ in X0.

For all j ∈ {0, . . . , l − 1}, define the masking vectors ~y∗j ∈ Rκq such that
~zj = ~y∗j +x1,j~s

∗
1 + · · ·+xi0,j~s

∗
i0

in tr. From the k-acceptance of tr it follows that

A~y∗j = ~wk,j +

2k+1−1∑
i=i0+1

xi,j~u
∗
i .

We do not know yet that the ~y∗j are short. In fact, the ~zj are short and
~s∗1, . . . , ~s

∗
i0−1 are binary, but ~s∗i0 is not binary (by assumption) and we do not

even know whether it is necessarily short. On the other hand, we know that
~s∗i0 is a weak opening for ~u∗i0 . That is, for each prime ideal p dividing q in
R we have a short polynomial c̄ such that c̄ 6∈ p and c̄~s∗i0 is of length at
most 2β1. This allows us to extend the ~y∗j to weak openings of the above right

hand sides. Indeed, c̄~y∗j = c̄~zj − xi0,j c̄~s∗i0 − c̄
∑i0−1
i=1 xi,j~s

∗
i is of length at most

2ωβ2 + 2δβ1 + 2(2k+1 − 1)ωδ
√
m ≤ B/2.

Next, the challenges xi0+1, . . . , x2k+1−1 belong to the first part X0 of the chal-
lenge tuple X. The masking vector commitments ~wk,j only depend on challenges
belonging to X0. Therefore, the right hand sides of the previous displayed equa-
tions are completely determined by X0 before any of the remaining challenges are
sent. So the prover is bound to the extracted ~y∗ in all interactions where the first
challenges are given by X0. It then follows that the vector ~z = ~z0 + · · ·+~zl−1δ

l−1

in all such interactions must be given by

~z = ~y∗ +

i0∑
i=1

xi~s
∗
i , (16)

where ~y∗ = ~y∗0 + · · ·+ ~y∗l−1δ
l−1.

40 Ngoc Khanh Nguyen and Gregor Seiler

By substituting (15) and (16) into (13) we find

(
〈~y∗ ◦ ((xi0+1 + · · ·+ x2a−1)~1− ~y∗), ~ϕ〉

+ 〈~y∗, x−1i0+1~ρi0+1 + · · ·+ x−12a−1~ρ2a−1〉+

i0∑
i=2k

〈~s∗i , ~ρi〉
)

+

i0∑
i=1

[
x−1i

(
〈~y∗, ~ρi〉+

i0∑
j=i+1

xj〈~s∗j , ~ρi〉
)

+xi

(
〈~y∗ ◦ (~1− ~s∗i), ~ϕ〉+ 〈~s∗i ◦ ((xi0+1 + · · ·+ x2a−1)~1− ~y∗), ~ϕ〉

+

i0∑
j=i+1

(
xj〈~s∗j ◦ (~1− ~s∗i), ~ϕ〉+ xj〈~s∗i ◦ (~1− ~s∗j), ~ϕ〉

)
+ 〈~s∗i , x−1i0+1~ρi0+1 + · · ·+ x−12a−1~ρ2a−1〉

+

i0∑
j=i+1

x−1j 〈~s
∗
i , ~ρj〉

)

+ x2i 〈~s∗i ◦ (~1− ~s∗i), ~ϕ〉

]

−
a−2∑
k′=k

 l−1∑
j=0

〈~wk′j − ~wk′+1,j , ~ψk′,j〉+ 〈~w(c)
k′ − ~w

(c)
k′+1,

~ψ
(c)
k′ 〉

=

(
γ∗0 +

2a−1∑
i=i0+1

x−1i γ∗2i−1 + xiγ
∗
2i)

)
+

i0∑
i=1

(x−1i γ∗2i−1 + xiγ
∗
2i).

(17)

In this equation, the following quantities are determined before any of the chal-
lenges x1, . . . , xi0 are sent in the protocol and hence they only depend on chal-
lenges in X0: The extracted vectors ~y∗ and ~s∗i for all i; the challenges ~ϕ and
~ψk′,j , ~ψ

(c)
k′ for k′ = k, . . . , a − 2; ρi for i = 2k, . . . , 2a − 1; the extracted com-

mitment messages γ∗0 and γ∗2i−1, γ
∗
2i for i = i0 + 1, . . . , 2a − 1; and the masking

Practical Sublinear Proofs for R1CS from Lattices 41

vector commitments ~wk′,j , ~w
(c)
k′ for k′ = k, . . . , a− 1. Therefore,

f0 =〈~y∗ ◦ ((xi0+1 + · · ·+ x2a−1)~1− ~y∗), ~ϕ〉

+ 〈~y∗, x−1i0+1~ρi0+1 + · · ·+ x−12a−1~ρ2a−1〉+

i0∑
i=2k

〈~s∗i , ~ρi〉

−
a−2∑
k′=k

 l−1∑
j=0

〈~wk′,j − ~wk′+1,j , ~ψk′,j〉+ 〈~w(c)
k′ − ~w

(c)
k′+1,

~ψ
(c)
k′ 〉

−
(
γ∗0 +

2a−1∑
i=i0+1

(x−1i γ∗2i−1 + xiγ
∗
2i)

)
is independent from all the challenges x1, . . . , xi0 . Then,

f
(xi+1,...,xi0

)
i,−1 = 〈~y∗, ~ρi〉+

i0∑
j=i+1

xj〈~s∗j , ~ρi〉 − γ∗2i−1

f
(xi+1,...,xi0)
i,1 = 〈~y∗ ◦ (~1− ~s∗i), ~ϕ〉

+ 〈~s∗i ◦ ((xi0+1 + · · ·+ x2a−1)~1− ~y∗), ~ϕ〉
+ 〈~s∗i , x−1i0+1~ρi0+1 + · · ·+ x−12a−1~ρ2a−1〉

+

i0∑
j=i+1

(
xj〈~s∗j ◦ (~1− ~s∗i), ~ϕ〉+ xj〈~s∗i ◦ (~1− ~s∗j), ~ϕ〉+ x−1j 〈~s

∗
i , ~ρj〉

)
− γ∗2i

are functions of xi+1, . . . , xi0 but independent from x1, . . . , xi. Using these func-
tions we can now write Equation 17 as

f0 +

i0∑
i=1

(
f
(xi+1,...,xi0

)
i,−1 x−1i + f

(xi+1,...,xi0
)

i,1 xi

)
+ 〈~s∗i0 ◦ (~1− ~s∗i0), ~ϕ〉x2i0 = 0.

Now, we bound the probability over (x1, . . . , xi0 , θ, c
(t))

$← Zi0q × Xaux that an
interaction is k-accepting when the first challenges are given by X0. The previous
displayed equation is of the form of Lemma 2 (with reverse ordering of the
variables). It then follows from Lemma 2 that (17) is only true with probability
at most 3(2k+1 − 1)/q. If Equation (17) is false, then the prover must cheat
in the auxiliary proof in order to let the interaction be k-accepting. We have
explained at the beginning of the proof that the prover can only achieve this
with probability at most 1/q+ p. Therefore, we see that the k-accepting success
probability is bounded by 3(2k+1 − 1)/q + (1/q + p) when the first challenges
are X0. But since X0 is from an arbitrary transcript tr with probability εk− 1/q,
it follows that εk < 3 · 2k+1/q + p, which is a contradiction to the assumption
εk > ε−3(2k+1−2)/q−kp > 6n/q+dlog nep−3(2k+1−2)/q−kp > 3·2k+1/q−p.
Hence, all the extracted ~s∗i must be binary.

42 Ngoc Khanh Nguyen and Gregor Seiler

Finally, we bound the probability that an interaction is k-accepting but not
(k + 1)-accepting when k ≤ a− 2. In an interaction that is k-accepting but not
(k + 1)-accepting,

~wk,j 6= ~wk+1,j +

2k+2−1∑
i=2k+1

xi,j~u
∗
i

= ~wk+1,j +

2k+1−1∑
i=2k

(x2i,jG~s
∗
i,l + x2i+1,jG~s

∗
i,r)

for some j ∈ {0, . . . , l − 1}, or

~w
(c)
k 6= ~w

(c)
k+1 +

2k+2−1∑
i=2k+1

ci~u
∗
i

= ~w
(c)
k+1 +

2k+1−1∑
i=2k

(c2iG~s
∗
i,l + c2i+1G~s

∗
i,r).

Decompose X again differently as X = X0 × (Zκdq)l+1 × Z2k+1−1
q × Xaux, where

(Zκdq)l+1 is the space for the challenges ~ψk,j and ~ψ
(c)
k , and Zi0q , Xaux are as before

with i0 = 2k+1 − 1. Let tr be an arbitrary k-accepting but not (k+ 1)-accepting

transcript with challenge tuple (X0, ~ψk,j , ~ψ
(c)
k , x1, . . . , x2k+1−1, θ, c

(t)). As before,
the right hand sides for the masking vectors ~y∗j are completely determined by
X0 and the prover is bound to these masking vectors in any interaction with first
challenges X0. We can also still write the equation proven by the auxiliary proof
as

f0 +

2k+1−1∑
i=1

(
f
(xi+1,...,x2k+1−1

)

i,−1 x−1i + f
(xi+1,...,x2k+1−1

)

i,1 xi

)
= 0

with the functions fi from above for i0 = 2k+1−1. But now f0 contains the term

2k+1−1∑
i=2k

〈~s∗i , ~ρi〉 −

 l−1∑
j=0

〈~wk+1,j − ~wk,j , ~ψk,j〉+ 〈~w(c)
k+1 − ~w

(c)
k , ~ψ

(c)
k 〉

that vanishes only with probability 1/q; c.f. Equation (15). Moreover, all the
other terms in f0 are determined by X0 and so f0 is non-zero with probability
(1 − 1/q). In this case we can follow the same chain of arguments from above.
Lemma 2 says that the equation for the auxiliary proof is only true with prob-
ability at most 3(2k+1 − 1)/q, and if it is not then the prover can only win
with probability at most 1/q + p. Therefore, we conclude that the probability
that an arbitrary interaction is k-accepting but not (k+ 1)-accepting is at most

Practical Sublinear Proofs for R1CS from Lattices 43

3 · 2k+1/q + p. It follows that

εk = Pr [k-acc]

= Pr [k-acc ∧ ¬(k + 1)-acc] + Pr [k-acc ∧ (k + 1)-acc]

= Pr [k-acc ∧ ¬(k + 1)-acc] + Pr [(k + 1)-acc]

< 3 · 2k+1/q + p+ εk+1.

Thus, an interaction is (k+1)-accepting with probability εk+1 > εk−3 ·2k+1/q−
p > ε− 3(2k+2 − 2)/q − (k + 1)p. ut

5.1 Proof Size

As before we analyze the proof size for the more general case of secret coefficients
in the interval {−bb/2c, . . . , b(b− 1)/2c} for a base b ≥ 2. A proof from the
non-interactive variant of the protocol in this section consists of the following
elements:

• ~t0, ~t1, t2, h,

• ~w
(c)
k , ~wk,j for k = 1, . . . , a− 1,

• ~ψ0,j , ~ψ
(c)
0 , c1, x1, θ, c(t),

• ~z(c), ~zj , ~z(t).

Only the masking vector commitments ~w0,j and ~w
(c)
0 can be omitted from the

proof since the verification equations for all the other vectors are only proven
in zero-knowledge and hence can not be used by the verifier to compute the

commitments. The challenges ~ψ0,j , ~ψ
(c)
0 and c1 are sent together in the interactive

protocol and hence they require only one seed. The combined size of all the
elements amounts to

S = (κ2 + µ+ 1)ddlog qe
+ (l + 1)(dlog ne − 1)κd log q

+ 4 · 128

+m log(12s1) + lm log(12s2) + (κ2 + λ+ µ)d log(12s3)

bits, where µ =
⌈
bn+1
d

⌉
+ 1. It remains to compute the standard deviations si.

They are precisely as discussed in Section 4.2.

Examples We use the following simple approximation to the proof size to guide
our choice of parameters:

S ≈ m
(

log q +
l + 1

2
log(b2mn)

)
+ nb log q + κ(l + 1)d log n log q.

The hash input length m needs to be such that m log b ≥ 2κd log q so that two
hash outputs can fit, and it is has to be a multiple of d since the hash function

44 Ngoc Khanh Nguyen and Gregor Seiler

is defined as an Rq-module homomorphism. So we take

m =

⌈
2κ log q

log b

⌉
d.

For q ≈ 2128 and the MSIS bound B that appears in our protocol the hash
output length κd needs to be at least 210 and hence we find that our protocol
requires a fairly large m between about 216 and 220. Therefore, from the above
approximation of the proof size we see that the proof size is governed by the
term m log q, which will always be bigger than 223. So, the proof size will be
bigger than one Megabyte. The number of secret coefficients that are hashed
in the leaves of the tree is equal to m(n + 1)/2 and the witness size given by

m (n+1)
2 log b bits. An optimal proof size with respect to the witness size is reached

when bn ≈ m and the terms m log q and nb log q in the approximate proof size
are roughly balanced. At the same time we see that it is advantageous to choose
a small number l of masked opening shares so that the remaining terms in the
proof size do not contribute much. It then follows that in first approximation
the ratio of the proof size and the square root of the witness size is given by
2nb log q/

√
n2b log b/2 = 2

√
2b/ log b log q. In other words, asymptotically and

for b = 2 it holds that S = (512 + o(1))
√
Sw where Sw is the size of the witness.

We present a selection of parameters in Table 2 that span a wide range of
witness sizes. In all parameter sets the prime modulus is in the order of 2128 and
the rank of the ring R is d = 128. We have always chosen the hash output rank
κ, the BDLOP MSIS rank κ2, and the BDLOP MLWE rank λ such that the
corresponding problems MSISκ,B , MSISκ2,8dβ3

, and MLWEλ,χ, respectively, have
classical Core-SVP hardness of about 100 bits with respect to the BDLG16 sieve
[BDGL16]. As usual this only includes the cost for one call to the SVP solver and
ignores many additional costs, which are particularly large in our case because of
the relatively large lattice dimensions. Moreover, it does not take into account
the enormous memory requirements from the sieving algorithm. We are thus
confident that the actual computational hardness is sufficient for 128 bits of
security. For the BDLOP ranks κ2 = 3 and λ = 40 are sufficient for all the
parameter sets. The required κ mainly depends on l. The BDLOP MSIS rank
can be much smaller than κ because only a polynomial challenge is used in the
masked opening ~z(t) and hence the MSIS norm 8dβ3 is much smaller than B
that is determined by the lengths of the masked openings ~zj with large integer
challenges of up to 64 bits.

6 Application to R1CS

The proof system from Section 5 allows to prove large commitment openings with
acceptable costs in practice. The system therefore becomes interesting for the
application of proving arithmetic circuits over Zq. This means, given a circuit
with addition and multiplication gates over Zq, we want to be able to prove
knowledge of an input vector that leads to a known output. We use rank-one

Practical Sublinear Proofs for R1CS from Lattices 45

κ m n l b B Witness Size Proof Size

16 216.60 210 − 1 3 39 280.45 32.00 MB 4.53 MB
16 216.79 211 − 1 3 25 280.48 64.07 MB 5.22 MB
16 216.97 212 − 1 3 27 280.58 128.12 MB 6.08 MB
16 217.21 213 − 1 3 11 280.65 256.21 MB 7.19 MB
25 217.98 214 − 1 2 9 2102.66 800.01 MB 10.79 MB
25 218.15 215 − 1 2 7 2102.93 1600.19 MB 13.21 MB
25 218.43 216 − 1 2 5 2103.13 3200.78 MB 16.59 MB
25 218.64 217 − 1 2 4 2103.86 6400.00 MB 21.68 MB
25 218.98 218 − 1 2 3 2103.71 12800.16 MB 29.04 MB
26 219.64 219 − 1 2 2 2104.94 26624.00 MB 42.42 MB

Table 2. Example parameter choices for our exact Merkle tree proof system. All ex-
amples use prime modulus q ≈ 2128, ring rank d = 128, BDLOP MSIS rank κ2 = 3,
and BDLOP MLWE rank λ = 40. The witness size is the size of the preimages to the
leaves of the tree.

constraint satisfaction (R1CS) as a powerful intermediate representation. On
one hand, R1CS is straight-forward to prove with our proof system, and, on the
other hand, it easily represents arbitrary circuits. Moreover, there are advanced
toolchains available that allow to compile (subsets of) standard programming
languages into instances of R1CS [BCG+13]. An instance of R1CS is given by
three matrices A,B,C ∈ Zk×kq and a solution vector ~s ∈ Zkq such that

(A~s) ◦ (B~s) = C~s. (18)

In order to prove knowledge of ~s one commits to the four vectors ~s, ~x = A~s,
~y = B~s and ~z = C~s. Then one proves that ~x, ~y, ~z are indeed the images of ~s with
the linear proof technique and that ~x◦~y = ~z with the product proof. This is easy
to do in our proof system without additional cost as described in Section 4.1.

For this application the leaf hashes ~u2a−1 , . . . , ~u2a−1 have to be hiding com-
mitments. We make them hiding under the Module-LWE assumption by letting
the first λ polynomials in the preimage vectors ~s2a−1+j be uniformly random vec-
tors ~rj in {−bb/2c, . . . , b(b− 1)/2c}λd, where λ is chosen such that Module-LWE
for the given uniform error distribution and module rank λ is hard.

We can only commit to short vectors and thus expand ~s, ~x, ~y, ~z in base b.
Then recall that the number of secret coefficients of our proof system is given by
m(n + 1)/2. It follows that for given m and n we can prove an R1CS instance
over Zq with k constraints if

4

⌈
kdlogb(q)e
(n+ 1)/2

⌉
≤ m− λd.

Then, let R ∈ Zλd×(n+1)/2
q be the matrix with columns ~r0, . . . , ~r2a−1−1. Let ~s′ ∈

Zkdlogb(q)e
q be the base-b expansion of ~s, split ~s′ into vectors of length (n+ 1)/2,

~s′ = ~s′1 ‖ · · · ‖ ~s′(m−λd)/4 and let S ∈ Z(m−λd)/4×(n+1)/2
q be the matrix with

46 Ngoc Khanh Nguyen and Gregor Seiler

columns ~s′j . Do the same for ~x, ~y and ~z. Now the coefficient vectors of the
~s2a−1+j are given by the columns of the matrix

(
~s2a−1 · · · ~s2a−1

)
=

R
S
X
Y
Z

 .

Proving the linear relations for ~x, ~y, ~z is straight forward. For proving the
product relation ~x ◦ ~y = ~z note that the masked openings ~zi include masked
openings to the expanded ~x′, ~y′, ~z′. The verifier can use them to reconstruct
masked openings for ~x, ~y, ~z. Then he can construct the quadratic polynomial
that contains the coefficient relations in the terms x22a−1+j as in Section 4.1.

By multiplying the polynomial by (x2a−1 + · · ·+ x2a−1)b−2 we can increase the
degree so that we can combine this with the polynomial for the shortness proof
of degree b and do not need additional garbage commitments.

Example. As an example consider the parameter set in the third-to-last row of
Table 2 with b = 4. Here λ = 38 is sufficient so that the leaf hashes are hiding
with MLWE Core-SVP hardness more than 100 bits. We then find that these
parameters allow to prove an R1CS instance with 226.62 constraints.

6.1 Reducing the Number of Commitments

We observe that Equation 18 can proven by committing to only one more vector
in Zkq . The approach is similar as in [ENS20]. Namely, the prover P sends a

commitment to ~s and obtains a challenge vector ~γ = (γ1, . . . , γk)
$← Zkq from the

verifier. Next, P proves that

〈(A~s) ◦ (B~s)− C~s,~γ〉 = 0.

The key idea is that the inner product can be equivalently written as

〈(A~s) ◦ (B~s)− C~s,~γ〉 = 〈(A~s) ◦ (B~s), ~γ〉 − 〈C~s,~γ〉
= 〈A~s,~γ ◦ (B~s)〉 − 〈C~s,~γ〉
= 〈A~s, ΓB~s〉 − 〈C~s,~γ〉
= 〈~s,ATΓB~s〉 − 〈~s, CT~γ〉

where matrix Γ is defined as

Γ =

γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γk

 ∈ Zk×kq .

Practical Sublinear Proofs for R1CS from Lattices 47

Thus, the prover commits to ~x := ATΓB~s ∈ Zkq and proves that (i) ~x was

correctly formed (linear proof) and more importantly (ii) 〈~s, ~x〉 − 〈~s, CT~γ〉 = 0.
We believe that with current techniques (i.e. similarly as above and in Section
4.1), one can prove (ii) by committing to small number of additional garbage
terms but we leave the concrete analysis for future work. This approach comes
with an negligible increase in the soundness error by an additional factor of 1/q.

In summary, we would reduce the number of committed messages from 4k
to 2k elements in Zq. Hence, for given m and n, we can prove an R1CS instance
over Zq with k constrains if

2

⌈
kdlogb(q)e
(n+ 1)/2

⌉
≤ m− λd.

This implies that we can prove an R1CS instance with essentially two times
more constrains than before.

6.2 Comparison to Ligero

We compare the performance of our proof system for R1CS in terms of proof size
to the Ligero system [AHIV17]. We picked Ligero over for example Ligero++
[BFH+20] or Aurora [BCR+19] since Ligero also exhibits square root sized
proofs, whereas the other two scale (poly-)logarithmically. Our lattice-based
proof system does not yet achieve the proof sizes of the best non-lattice sys-
tems. But there has been tremendeous improvements in the last few years and
the comparison with Ligero serves to show that lattice-based systems are not
very far behind anymore. Next to the proof size, the running time and memory
requirements of the prover algorithm are very important characteristics. Here
Ligero has an advantage over Aurora as it is more than 10 times faster. We
expect our proof system to be very competitive in terms of running time due
to the underlying fast arithmetic. Lattice cryptography is generally known to
be very fast — often an order of magnitue faster than classical or hash-based
cryptoraphy [LS19].

Furthermore, the enormous memory requirements of the PCP-type systems
like Ligero or Aurora render them unpractical for the numbers of constraints
that are important in practice. For example Boschini et. al. [BCOS20] could
not run the signing algorithm of their otherwise very compact quantum-safe
group signature scheme that they have designed using Aurora as a building-
block because of the memory requirements. And they were even using large-
memory instances from the Google Cloud for their experiments. This is especially
problematic since for privacy-preserving protocols to be used in practice, the
prover would often need to be run on constrained devices, possibly down to
smart cards or TPM chips. In our experiments we found that Aurora needs
more than 67 Gigabytes of RAM and a proof computation time of around 80
minutes for 222 constraints on an AMD ZEN CPU core. Ligero can be used for
up to 225 constraints with 67 Gigabytes of RAM. We expect our system to be
very attractive with respect to memory requirements as well. But we leave a

48 Ngoc Khanh Nguyen and Gregor Seiler

demonstration of these performance characteristics and an implementation to
future work.

Table 1 contains a comparison of our proof system for R1CS to Ligero. We
chose a range of constraints above 220 as our proof system is most effective for
such large numbers of constraints. The proof sizes for Ligero were directly mea-
sured by running the implementation from https://github.com/scipr-lab/

libiop. For both proof systems we used a field size of about 128 bits and com-
parable soundness errors.

References

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed
$\varsigma $-protocol theory for lattices. In CRYPTO (2), volume 12826
of Lecture Notes in Computer Science, pages 549–579. Springer, 2021.

AF21. Thomas Attema and Serge Fehr. Parallel repetition of (k1, dots, kµ)-

special-sound multi-round interactive proofs. IACR Cryptol. ePrint Arch.,
page 1259, 2021.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In CCS, pages 2087–2104. ACM, 2017.

AL21. Martin R. Albrecht and Russell W. F. Lai. Subtractive sets over cyclo-
tomic rings - limits of schnorr-like arguments over lattices. In CRYPTO
(2), volume 12826 of Lecture Notes in Computer Science, pages 519–548.
Springer, 2021.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In CRYPTO (2), volume 12171 of
Lecture Notes in Computer Science, pages 470–499. Springer, 2020.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Mathematische Annalen, 296:625–635, 1993.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society, 2018.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In CRYPTO (2), volume 10992 of Lec-
ture Notes in Computer Science, pages 669–699. Springer, 2018.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Snarks for C: verifying program executions succinctly and
in zero knowledge. In CRYPTO (2), volume 8043 of Lecture Notes in
Computer Science, pages 90–108. Springer, 2013.

BCOS20. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum snarks for RSIS and RLWE and their applications
to privacy. In PQCrypto, volume 12100 of Lecture Notes in Computer
Science, pages 247–267. Springer, 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In EUROCRYPT (1), volume 11476 of Lecture Notes in
Computer Science, pages 103–128. Springer, 2019.

https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop

Practical Sublinear Proofs for R1CS from Lattices 49

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
SODA, pages 10–24. SIAM, 2016.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In SCN, volume 11035 of Lecture Notes in Computer Science,
pages 368–385. Springer, 2018.

BFH+20. Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In CCS, pages 2025–2038. ACM, 2020.

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. A non-pcp approach to succinct quantum-safe zero-knowledge. In
CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages
441–469. Springer, 2020.

BMRS21. Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits
with nested disjunctions. In CRYPTO (4), volume 12828 of Lecture Notes
in Computer Science, pages 92–122. Springer, 2021.

Din12. Jintai Ding. New cryptographic constructions using generalized learning
with errors problem. IACR Cryptol. ePrint Arch., page 387, 2012.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):238–268, 2018.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In ASIACRYPT (2), volume 12492 of Lecture Notes in Computer Science,
pages 259–288. Springer, 2020.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
Lattice-based zero-knowledge proofs: New techniques for shorter and faster
constructions and applications. In CRYPTO (1), volume 11692 of Lecture
Notes in Computer Science, pages 115–146. Springer, 2019.

ESS+19. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications
to ring signatures. In ACNS, volume 11464 of Lecture Notes in Computer
Science, pages 67–88. Springer, 2019.

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu,
and Dongxi Liu. Matrict: Efficient, scalable and post-quantum blockchain
confidential transactions protocol. In CCS, pages 567–584. ACM, 2019.

FHK+18. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum
cryptography standardization process, 36, 2018.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–
645. Springer, 2013.

50 Ngoc Khanh Nguyen and Gregor Seiler

GMNO18. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù.
Lattice-based zk-snarks from square span programs. In CCS, pages 556–
573. ACM, 2018.

Gro11. Jens Groth. Efficient zero-knowledge arguments from two-tiered homo-
morphic commitments. In ASIACRYPT, volume 7073 of Lecture Notes in
Computer Science, pages 431–448. Springer, 2011.

ISW21. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum
designated-verifier zksnarks from lattices. In CCS, pages 212–234. ACM,
2021.

LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
1992.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In ICALP (2), volume 4052 of Lecture Notes
in Computer Science, pages 144–155. Springer, 2006.

LNPS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor
Seiler. Shorter lattice-based group signatures via ”almost free” encryption
and other optimizations. In ASIACRYPT (4), volume 13093 of Lecture
Notes in Computer Science, pages 218–248. Springer, 2021.

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In CCS, pages
1051–1070. ACM, 2020.

LNS21a. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Public
Key Cryptography (1), volume 12710 of Lecture Notes in Computer Sci-
ence, pages 215–241. Springer, 2021.

LNS21b. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. SMILE:
set membership from ideal lattices with applications to ring signatures and
confidential transactions. In CRYPTO (2), volume 12826 of Lecture Notes
in Computer Science, pages 611–640. Springer, 2021.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT, volume 6110 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2010.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

LS19. Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using
NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180–201, 2019.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Public Key Cryptography, volume 4939 of Lecture Notes
in Computer Science, pages 162–179. Springer, 2008.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, volume 5912 of Lecture Notes
in Computer Science, pages 598–616. Springer, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, volume 7237 of Lecture Notes in Computer Science, pages 738–
755. Springer, 2012.

Mic02. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions. In
FOCS, pages 356–365. IEEE Computer Society, 2002.

Ore22. Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter,
1(7):15, 1922.

Practical Sublinear Proofs for R1CS from Lattices 51

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, volume 3876 of Lecture
Notes in Computer Science, pages 145–166. Springer, 2006.

Sch80. Jacob T. Schwartz. Fast probabilistic algorithms for verification of poly-
nomial identities. J. ACM, 27(4):701–717, 1980.

Sha92. Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-

ine: Fast, scalable, and communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits. In IEEE Symposium on Security and
Privacy, pages 1074–1091. IEEE, 2021.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In CCS, pages 2986–3001. ACM, 2021.

Zip79. Richard Zippel. Probabilistic algorithms for sparse polynomials. In EU-
ROSAM, volume 72 of Lecture Notes in Computer Science, pages 216–226.
Springer, 1979.

A Additional Background

A.1 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
a particular variant of the Module-LWE problem, we need to specify the error
distribution χ on Zq. We define χ as the computationally simple centered bino-
mial distribution on {−1, 0, 1} where ±1 both have probability 5/16 and 0 has
probability 6/16. This distribution is chosen (rather than the more natural uni-
form one) because it is easy to sample given a random bit-string by computing
a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi.

Rejection Sampling In our zero-knowledge proofs, the prover wants to output
a vector ~z whose distribution should be independent of a secret randomness
vector ~r, so that ~z cannot be used to gain any information on the prover’s secret.
During the protocol, the prover computes ~z = ~y+c~r where ~r is the randomness
used to commit to the prover’s secret, c ∈ {−1, 0, 1}d is a ternary challenge
polynomial, and ~y is a “masking vector”. To remove the dependency of ~z on ~r, we
use the rejection sampling technique by Lyubashevsky [Lyu08, Lyu09, Lyu12]. In
the two variants of this technique the masking vector is either sampled uniformly
from some bounded region or using a discrete Gaussian distribution. We focus
on the latter approach.

We first define the discrete Gaussian distribution and then state the rejection
sampling algorithm in Figure 11, which plays a central role in Lemma 3.

Definition 3. The discrete Gaussian distribution on Zn centered around ~v ∈ Zn
with standard deviation s > 0 is given by

Dn
~v,s(~z) =

e−‖~z−~v‖
2
2/2s

2∑
~z′∈Zn e−‖~z

′‖22/2s2
.

52 Ngoc Khanh Nguyen and Gregor Seiler

When it is centered around ~0 ∈ Zn we write Dn
s = Dn

~0,s

Lemma 3 (Rejection Sampling). Let V ⊆ Zn be a set of vectors with norm
at most T and ρ : V → [0, 1] be a probability distribution. Also, write s = 5T

and M = exp(12/5 + 1/50) ≈ 11.25. Now, sample ~v
$← ρ and ~y

$← Dn
s , set

~z = ~y + ~v, and run b ← Rej (~z,~v, s). Then, the probability that b = 0 is at least
(1 − 2−100)/M and the distribution of (~v, ~z), conditioned on b = 0, is within
statistical distance of 2−100/M of the product distribution ρ×Dn

s .

Rej (~z,~v, s)

01 u
$← [0, 1[

02 If u > 1
M

exp
(
−2〈~z,~v〉+‖~v‖22

2s2

)
03 return 1
04 Else
05 return 0

Fig. 11. Rejection sampling algorithm from [Lyu12].

We will also use the following tail bound, which follows from [Ban93, Lemma
1.5(i)].

Lemma 4. Let ~z
$← Dn

s . Then

Pr
[
‖~z‖2 < s

√
2n
]
> 1− 2− log(e/2)n/2 > 1− 2−n/8.

A.2 Commitment Scheme

In the usual definition, a commitment scheme consists of a triple of algorithms
(ComGen,Com,Open) which work as follows. ComGen : ∅ → {0, 1}∗ is a prob-

abilistic algorithm that produces the public parameters p
$← ComGen() for

the commitment scheme. Com : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, (c, r)
$←

Com(p,m) is a probabilistic algorithm that takes the public parameters p and
a message m as input and produces a commitment c and some randomness r
used to compute and open c. Open : {0, 1}∗×{0, 1}∗×{0, 1}∗×{0, 1}∗ → {0, 1},
b ← Open(p, c,m, r) is a deterministic algorithm that takes the public parame-
ters p, a commitment c, a message m, and randomness r as input, and produces
a bit b as output.

A commitment scheme should be hiding and binding.

Definition 4 (Hiding). A commitment scheme (ComGen,Com,Open) is hid-
ing under the assumption that a problem P is hard if for every adversary A and

Practical Sublinear Proofs for R1CS from Lattices 53

ε ≥ 0 such that

Pr

b = b′

∣∣∣∣∣∣∣
p

$← ComGen(); (m0,m1)
$← A(p)

b
$← {0, 1}; (c, r)

$← Com(p,mb)

b′
$← A(p, c)

 =
1

2
(1 + ε)

there exists an adversary A′ with about the same running time than A that solves
P with advantage ε.

Definition 5 (Binding). A commitment scheme (ComGen,Com,Open) is bind-
ing under the assumption that a problem P is hard if for every adversary A and
ε ≥ 0 such that

Pr

[
m 6= m′ and

1 = Open(p, c,m, r) = Open(p, c,m′, r′)

∣∣∣∣∣ p
$← ComGen();

(m,m′, r, r′, c)
$← A(p)

]
= ε

there exists an adversary A′ that has about the same running time than A and
solves P with advantage ε.

A.3 Zero-Knowledge Proofs of Knowledge

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1} and t ∈ {0, 1}∗. We want to prove knowledge
of a w ∈ {0, 1}∗ such that f(t, w) = 1. The bit-string t is called the statement
and w the witness. For example, f can be such that f(t, w) = 1 if and only if w
encodes a binary vector ~s ∈ {0, 1}n such that A~s = ~u for a matrix A ∈ Zm×nq

and ~u ∈ Zmq encoded by t.
Now, an interactive proof system for f consists of a pair (P,V) of efficient

probabilistic interactive algorithms. The algorithm P is called the prover and
gets as inputs a statement t ∈ {0, 1}∗ and a witness w ∈ {0, 1}∗. The algorithm
V is the verifier and only gets t. The verifier outputs a bit b ∈ {0, 1} as the
last message of the interaction. Intuitively, if the prover knows a witness for t,
for example f(t, w) = 1, then he shall always make the verifier output b = 1,
i.e. make the verifier accept (correctness), but if the prover does not know such
a witness he should not be able to do so (knowledge-soundness). We also want
our protocols be such that the prover does not reveal any additional information

about his witness (zero-knowledge). We write tr
$← 〈P(t, w),V(t)〉 for the tran-

script tr of the messages exchanged in a random experiment where P interacts
with V.

Definition 6. An interactive proof system (P,V) for f : {0, 1}∗ × {0, 1}∗ →
{0, 1} is correct if for all t, w ∈ {0, 1}∗ such that f(t, w) = 1, the verifier accepts
with overwhelming probability in the interaction 〈P(t, w),V(t)〉.

Definition 7. Let (P,V) be an interactive proof system for the predicate f . A
simulator is an efficient probabilistic algorithm that gets a statement but not a
witness and outputs a transcript of an interaction between P and V.

54 Ngoc Khanh Nguyen and Gregor Seiler

Then, (P,V) is statistically honest-verifier zero-knowledge if there exists a
simulator S such that for all t, w ∈ {0, 1}∗ with f(t, w) = 1 the simulated tran-

script tr
$← S(t) is statistically close to the real transcript tr′

$← 〈P(t, w),V(t)〉.
On the other hand, (P,V) is computationally honest-verifier zero-knowledge

under the assumption that a problem P is hard if there exists a simulator S such
that for all t, w ∈ {0, 1}∗ with f(t, w) = 1 and every distinguisher A that is able

to distinguish tr
$← S(t) from tr′

$← 〈P(t, w),V(t)〉 with advantage ε,∣∣∣Pr [b = 1 | tr← S(t); b← A(tr)]

− Pr [b = 1 | tr← 〈P(t, w),V(t)〉; b← A(tr)]
∣∣∣ ≥ ε,

there exists a solver A′ that has about the same running time than A and is able
to solve P with advantage ε.

Definition 8. Let (P,V) be an interactive proof system for the predicate f . An
extractor is an algorithm that has resettable black-box access to a prover P∗.

Then, (P,V) is computationally knowledge-sound with soundness error 0 ≤
ε0 < 1 under the assumption that a problem P is hard if there exists an extractor
E such that for every t ∈ {0, 1}∗ and every deterministic prover P∗ that makes
V accept with probability ε > ε0 in 〈P∗(t),V(t)〉, EP∗(t) outputs a witness w for t
or a solution to P in expected runtime at most k

ε−ε0 for some small k > 0 where
running P∗ once takes unit time.

Several of our protocols are for predicates where it is easy to find a witness
for all statements. These protocols are used as building blocks for our linear-size
proof system. The reason why the protocols are still interesting is that they can
be viewed as commit-and-proof protocolsThis means that the prover sends a
commitment to the witness in his first message. Then the statement is extended
to also include the commitment and the proof not only shows that the prover
knows a witness for the original statement, but that he knows a commitment
opening that is a witness.

In all of our protocols the verifier messages are simply uniformly random.
Hence, our protocols can be made non-interactive with the Fiat-Shamir trans-
form [FS86]. We view the interactive variants of the protocols only as interme-
diate representations that are easy to reason about but that have no practical
relevance. As a result, we do not consider the number of rounds an important
quantity and make no effort in optimizing it.

A.4 Proving Linear and Multiplicative Relations

In this paper we will use techniques developed in [ALS20, ENS20] to prove certain
linear and multiplicative relations. For completeness, we will briefly recall the
protocols to prove such relations and refer to [ALS20, ENS20] for more details.

Practical Sublinear Proofs for R1CS from Lattices 55

Opening proof [ALS20]. The key component of proving linear and multiplica-
tive relations is the proof of knowledge of a committed message. Concretely, the
prover P wants to convince the verifier V, which has a BDLOP commitment
(~t0, t1), that P knows a short randomness vector ~r over Rq and a message

m ∈ Rq such that B0~r = ~t0 and 〈~b1, ~r〉+m = t1.
The proof goes as follows. Prover P starts by sampling a vector ~y from a

discrete Gaussian and computing ~w = B0~y. Then, it sends ~w to the verifier.

After receiving the challenge c
$← C from V, the prover computes ~z = ~y+c~r and

applies rejection sampling. If it does not abort, P sends ~z. Finally, the verifier

checks that coefficients of ~z are small and B0~z
?
= ~w + c~t0.

Attema et al. [ALS20] show that one can efficiently extract a weak opening
of (~t0, t1) defined below.

Definition 9. A weak opening for the commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn
consists of d polynomials c̄i ∈ Rq, a randomness vector ~r∗ over Rq and messages
m∗1, . . . ,m

∗
n ∈ Rq such that

‖c̄i‖1 ≤ 2k and c̄i mod X − ζ2i+1 6= 0 for all 0 ≤ i < d,

‖c̄i~r∗‖2 ≤ 2β for all 0 ≤ i < d,

B0~r
∗ = ~t0,

〈~bi, ~r∗〉+m∗i = ti for i ∈ [n]

Attema et al. show that the BDLOP commitment scheme is still binding with
respect to weak openings under the Module-SIS assumption.

Product proof [ALS20]. For simplicity, we will prove that a committed poly-
nomial m has binary NTT coefficients, i.e. NTT(m) ∈ {0, 1}d ⊂ Zdq . This is
equivalent to proving m(m − 1) = 0 over Rq. Then, one can easily generalise
the protocol to prove arbitrary multiplicative relations, e.g. m1m2 = m3 for
polynomials m1,m2,m3 ∈ Rq.

Let (~t0, t1) be the BDLOP commitment tom, i.e.B0~r = ~t0 and 〈~b1, ~r〉+m =
t1 for a short randomness vector ~r. Let us adapt the notation from the opening
proof above and set f := 〈~b1, ~z〉 − ct1. Note that f can be computed by the

verifier. Since ~z = ~y + c~r we have that f = 〈~b1, ~y〉 − cm. Thus,

f(f + c) = v0 + v1c+m(m− 1)c2

for v0 := 〈~b1, ~y〉2 and v1 = 〈~b1, ~y〉(1− 2m). Hence, the goal is to prove that the
quadratic coefficient of f(f − 1) vanishes. We proceed as follows.

The prover starts by generating vectors ~r, ~y and the BDLOP commitment
~t = (~t0, t1, t2) where

B0~r = ~t0
~bT1 ~r +m = t1
~bT2 ~r + v1 = t2.

56 Ngoc Khanh Nguyen and Gregor Seiler

As in the opening proof, it computes ~w = B0~y. Then, it outputs (t, ~w,v′0) where

v′0 = v0 + ~aT2 ~y. After getting a challenge c
$← C from the verifier, P computes

~z = ~y+ c~r and applies rejection sampling. If it does not fail, the prover outputs

~z. Then, V checks that ~z has small coefficients and B0~z
?
= ~w + c~t0. Next, it

computes
f = 〈~b1, ~z〉 − ct1 and f2 = 〈~b2, ~z〉 − ct2.

Eventually, V checks whether:

f(f + c) + f2
?
= v′0.

As described in [ALS20], proving additional quadratic relations does not affect
the proof size.

Linear proof [ENS20]. Another building block, which will be used in our
protocols, is the proof of a linear relation. Namely, suppose the prover wants to
prove knowledge of a vector ~s ∈ Zmq which satisfies:

A~s = ~u

for a public matrix A ∈ Zn×mq and vector ~u ∈ Znq . For simplicity, we assume that

n = m = d. The idea is to ask the verifier for a random challenge ~γ
$← Zdq and

then prove that
〈A~s− ~u,~γ〉 = 0.

Now,

〈A~s− ~u,~γ〉 = 〈A~s,~γ〉 − 〈~u,~γ〉 = 〈~s,AT~γ〉 − 〈~u,~γ〉 =

l−1∑
i=0

fi

where ~f := ~s◦ (AT~γ)−~u◦~γ. In other words, the sum of coefficients of ~f is equal
to 〈A~s− ~u,~γ〉. Consequently, Esgin et al. [ENS20, Lemma 2.1] observe that the

constant coefficient of f̌ := NTT−1(~f) ∈ Rq satisfies:

f̌0 =
〈A~s− ~u,~γ〉

d
.

Hence, the goal is to prove that the constant of f̌ is zero.
To this end, let (~t0, t1) be a BDLOP commitment to s defined below:{

B0~r = ~t0

〈~b1, ~r〉+ s = t1.

Note that given a commitment to s, the verifier can manually construct a com-
mitment to f̌ as follows:

tf := t1NTT
−1(AT~γ)− NTT−1(~u ◦ ~γ) = 〈NTT−1(AT~γ)~b1, ~r〉+ f̌ .

Practical Sublinear Proofs for R1CS from Lattices 57

In order to prove f̌0 = 0, at the beginning P commits to a uniformly random
polynomial g ∈ Rq that also has the constant coefficient equal to zero, i.e.

t2 = 〈~b2, ~r〉 + g. After getting a challenge ~γ from the verifier, P computes
h = g + f̌ and sends h. Then, V checks whether h0 = 0. Finally, we need to
prove that the equation h = g + f̌ holds. We do it by proving that t2 + tf − h
is a commitment to zero.

We are now ready to sketch out the protocol. First, the prover generates
~r, ~y as before and computes ~t = (~t0, t1, t2) defined above. As usual, it computes

~w = B0~y. Then, it sends (~t, ~w) to the verifier. Next, given a challenge ~γ
$← Zdq

from V, the prover computes h := g + f̌ and w′ defined as

w′ := 〈~b2 + NTT−1(AT~γ)~b1, ~y〉.

Then, P outputs (h,w′). Further, V outputs the challenge c
$← C . Eventually,

P calculates ~z = ~y + c~r and runs rejection sampling as before. After obtaining

~z, the verifier checks that coefficients of ~z are small, B0~z
?
= ~w + c~t0 as in the

opening proof. Then, it also checks whether the first coefficient of h is indeed
zero as well as

〈~b2 + NTT−1(AT~γ)~b1, ~z〉
?
= w′ + c (t2 + tf − h) .

This protocol extends naturally when the length of vectors ~s and ~u are a
multiple of d. Finally, we highlight that having additional linear relations on ~s
does not affect the total proof size.

	Practical Sublinear Proofs for R1CS from Lattices

