On UC-Secure Range Extension and Batch Verification for ECVRF*

Christian Badertscher1, Peter Gaži2, Iñigo Querejeta-Azurmendi3, and Alexander Russell4,5

1Input Output, Switzerland – christian.badertscher@iohk.io
2Input Output, Slovakia – peter.gazi@iohk.io
3Input Output, United Kingdom – querejeta.azurmendi@iohk.io
4Input Output, United States – alexander.russell@iohk.io
5University of Connecticut, United States

September 22, 2022

Abstract

Verifiable random functions (Micali \textit{et al.}, FOCS’99) allow a key-pair holder to verifiably evaluate a pseudorandom function under that particular key pair. These primitives enable fair and verifiable pseudorandom lotteries, essential in proof-of-stake blockchains such as Algorand and Cardano, and are being used to secure billions of dollars of capital. As a result, there is an ongoing IRTF effort to standardize VRFs, with a proposed ECVRF based on elliptic-curve cryptography appearing as the most promising candidate.

In this work, towards understanding the general security of VRFs and in particular the ECVRF construction, we provide an ideal functionality in the Universal Composability (UC) framework (Canetti, FOCS’01) that captures VRF security, and show that ECVRF UC-realizes this functionality.

We further show how the range of a VRF can generically be extended in a modular fashion based on the above functionality. This observation is particularly useful for protocols such as Ouroboros since it allows to reduce the number of VRF evaluations (per slot) and VRF verifications (per block) from two to one at the price of additional (but much faster) hash-function evaluations.

Finally, we study batch verification in the context of VRFs. We provide a UC-functionality capturing a VRF with batch-verification capability, and propose modifications to ECVRF that allow for this feature. We again prove that our proposal UC-realizes the desired functionality. We provide a performance analysis showing that verification can yield a factor-two speedup for batches with 1024 proofs, at the cost of increasing the proof size from 80 to 128 bytes.

1 Introduction

A Verifiable Random Function (VRF, \textcite{MRV99}) is a pseudo-random function whose correct evaluation can be verified. It can be seen as a hash function that is keyed by a public-private key pair: the private key is necessary to evaluate the function and produce a proof of a correct evaluation, while the public key can be used to verify such proofs. VRFs were originally considered as tools for mitigation of offline dictionary attacks on hash-based data structures; more recently they have found applications in the design of verifiable lotteries. In particular, VRFs are fundamental primitives

*This is the full and extended version of the paper “A Composable Security Treatment of ECVRF and Batch Verifications” which is due to appear in the proceedings of ESORICS 2022 published by Springer Nature.
to several proof-of-stake ledger consensus protocols, such as those underlying the blockchains Algorand [GHM+17] and Cardano [DGKR18]. They allow for a pseudo-random selection of block leaders in the setting with adaptive corruption, an important security feature of these protocols.

There is an ongoing effort to standardize this primitive via an IRTF draft [GRPV22] that describes the desirable properties of VRFs and proposes (as of August '22) two concrete constructions. One of these constructions is based on RSA, while the other one relies on elliptic-curve cryptography (ECC); this latter construction is referred to as ECVRF. A clear advantage of ECVRF over the RSA-based alternative is the considerable improvement in key sizes it provides (for the same security level). Indeed, both Algorand and Cardano employ ECVRF, as do most of the existing implementations listed in the draft.

One of the VRF security properties articulated in the IRTF draft is that of random-oracle-like unpredictability. Roughly speaking, it requires that if the VRF input has sufficient entropy (i.e., cannot be predicted), then the output is indistinguishable from uniformly random. As the draft observes, this property is essential for the security of the leader-election mechanisms in PoS blockchains. The property is not formally defined in the draft, though a definition in the form of an ideal functionality in the Universal Composability (UC) framework [Can01, Can20] is given in [DGKR18]. The IRTF draft states that this strong notion is “believed” to be satisfied by the ECVRF construction; however, to the best of our knowledge, no formal proof of this claim exists to date. This state of affairs is clearly unsatisfactory: UC security is a desirable notion of security as it guarantees that the proven security provisions (in the sense of realizing an ideal functionality) are retained, by virtue of the composition theorem, when employing the scheme in higher-level applications. This is especially relevant for VRFs as a low-level primitive used in many protocols, including those mentioned above.

Returning to the ECVRF construction, another important benefit it provides is structural: it is essentially a Fiat-Shamir transformed [FS87] Σ-protocol [CDS94] and therefore—at least in principle—suitable for batch verification. The idea for batch verification first appears in foundational work by Naccache et al. [NMVR95] and consists of verifying a batch of linear equations by verifying a random linear combination of these. Bernstein et al. [BDL+12] exploited this technique with the state-of-the-art algorithms in multi-scalar multiplication, achieving a factor-two improvement in signature verification using batches of 64 signatures. Such an improvement in verification times is of direct relevance for blockchains, as the routine task of joining the protocol—which requires synchronizing with the current ledger—involves verification of many blocks and their VRF proofs. Indeed, typical synchronization conventions demand verification of the entire existing blockchain. We note in passing that the possibility of batch verifications for Schnorr signatures [Sch91] (derived from another type of Σ-protocol) is a significant competitive advantage over ECDSA, and was one of the reasons for Bitcoin [Nak08] to switch to that type of signature [WNR20]. The possibility of batch verification for ECVRF has already appeared in the IRTF draft mailing list [Rey21]. However, a concrete proposal for the design, along with a formal security notion and a corresponding security proof, has not been given.

Our Contributions. In this work we close the above gaps and have the following results:

1. We propose a cleaner formalization of the VRF functionality in the UC framework, building on the original proposal from [DGKR18] (later revised in [BGK+18] to remove some issues in the original formulation).

2. We show a generic and modular way to extend the range of an arbitrary VRF using the above UC formalization. As a case study, we show in [Section 6] precisely how range extensions can be used in Ouroboros [DGKR18, BGK+18] to reduce the number of invocations of the VRF.
3. We show that ECVRF UC-realizes this functionality in the random-oracle model (ROM). The proof of this claim is surprisingly involved, requiring a rather complex simulation. We point out that this is the first comprehensive UC proof for this type of VRF construction and further shows that the simulation can be done in a responsive manner \(^{CEK+16}\), a desirable property that simplifies the analysis of higher-level protocols using the VRF functionality (e.g., \(^{BGK+18}\)). In particular, the simulation strategy described in \(^{DGKR18}\) is not applicable (cf. related work below) and \(^{DGKR18}\) does not provide a proof for the revised functionality.

4. We introduce a UC formalization for a VRF providing batch verification via a natural extension of the above VRF functionality.

5. We define a concrete instantiation of batch verification for the ECVRF construction and prove that it UC-realizes the above ideal functionality of a VRF with batch verification. Despite our focus on VRFs, we believe that our formalization would naturally carry over to other widely used Fiat-Shamir transformed \(\Sigma\)-protocols, such as Schnorr signatures or Ed25519.

6. To evaluate the efficiency improvements of the batch-compatible version, we compare the efficiency of the current draft version versus the batch-compatible primitive presented in this work. Roughly speaking, we observe that the batch compatible primitive can achieve a factor-two efficiency gain with batches of size 1024 in exchange for a trade-off with respect to its size, growing from 80 bytes to 128 bytes.

Related Work. The VRF notion was introduced by Micali *et al.* \(^{MRV99}\). A stronger notion of VRF with security in the natural setting with malicious key generation was presented as a UC functionality by David *et al.* \(^{DGKR18}\). A particular instantiation, based on 2HashDH \(^{JKK14}\), was claimed to satisfy this stronger notion, but the provided simulation argument only holds for a revised version of the functionality which is first described in \(^{BGK+18}\). Jarecki *et al.* \(^{JKK14}\) provide a UC functionality of a slightly different notion, which is that of a Verifiable Oblivious Pseudo Random Function where two parties need to input some secret information in order to compute the random output.

The first systematic treatment of batch verification for modular exponentiation was presented by Bellare *et al.* \(^{BGR98}\), and adapted to digital signatures by Camenisch *et al.* \(^{CHP12}\). The batch verification technique that we adopt was initially developed by Naccache *et al.* \(^{NMVR95}\), and used by Bernstein *et al.* \(^{BDL+12}\) and Wuille *et al.* \(^{WNR20}\). Exploiting the batching technique in the context of VRFs was informally discussed in the IRTF group and mailing list \(^{Rey21}\) \(^{GRPV22}\).

Organization. The UC formalization of VRFs is presented in Section 3. The modular range extension and the proof appear in Sections 4 and 5 respectively. The Ouroboros case study is given in Section 6. We recall the ECVRF construction in Section 7 and give our specification for batch verifications in Section 8 and showcase the performance improvement of our proposal. Finally, Section 9 is devoted to the security proofs regarding ECVRF: In Section 9.1 we show the UC security of ECVRF and in Section 9.2 we provide the UC formalization of batch verifications and prove the security of our batch verification technique for ECVRF.

2 Preliminaries

UC security. We give a very brief overview of the UC security framework necessary to understand the rest of this work. For details we refer to \(^{Can20}\). In this framework a protocol execution (the
so-called “real-world process”) is represented by a group of interactive Turing machine instances (ITIs) running a protocol π, forming a protocol session. The environment Z orchestrates the inputs and receives the outputs of these machines. Additionally, an adversary is part of the execution and can corrupt parties and thereby take control of them (we assume throughout this work the standard UC adaptive corruption model defined in [Can20]). To capture security guarantees, UC defines a corresponding ideal process which is formulated w.r.t. an ideal functionality F. In the ideal process, the environment Z interacts with the ideal-world adversary (called simulator) S and with functionality F (or more precisely, with protocol machines that simply relay all inputs and outputs to and from F, respectively). A protocol π UC-realizes F if for any (efficient) adversary there exists an (efficient) simulator S such that for any (efficient) environment Z the real and ideal processes are indistinguishable. This means that the real protocol achieves the desired specification F.

VRF syntax. We denote by κ the security parameter. The domain of the VRF is denoted by X and its finite range is denoted by Y and typically represented by $Y = \{0, 1\}^{\ell_{\text{VRF}}(\kappa)}$, where $\ell_{\text{VRF}}(\cdot)$ is a function of the security parameter. For notational simplicity we often drop the explicit dependence on κ.

Definition 2.1 (VRF Syntax). A verifiable random function (VRF) consists of a triple of PPT algorithms $\text{VRF} := (\text{Gen}, \text{Eval}, \text{Vfy})$:

- The probabilistic algorithm $(sk, vk) \leftarrow \text{Gen}(1^\kappa)$ takes as input the security parameter κ in unary encoding and outputs a key pair, where sk is the secret key and vk is the (public) verification key.

- The probabilistic algorithm $(Y, \pi) \leftarrow \text{Eval}(sk, X)$ takes as input a secret key sk and $X \in X$ and outputs a function value $Y \in Y$ and a proof π.

- The (possibly probabilistic but usually deterministic) algorithm $b \leftarrow \text{Vfy}(vk, X, Y, \pi)$ takes as input a verification key vk, input value $X \in X$, output value $Y \in Y$, as well as a proof π, and returns a bit b. (If $X \not\in X$ or $Y \not\in Y$, we assume that b is 0 by default.)

In the context of Ouroboros [DGRK18, BGK18], we need that the VRF algorithms implement an ideal object that we call the VRF functionality. For security this means intuitively that all outputs generated by the VRF algorithms are indistinguishable from outputs of a truly random function—even to an attacker who could potentially craft its own private VRF key. We assume in the following some familiarity with the UC framework [Can20].

3 UC Security of Verifiable Random Functions

Modeling VRFs as a UC protocol. Any verifiable random function VRF can be cast as a simple protocol π_{VRF} in the UC framework [Can20] as follows: Each party U_i in session sid acts as follows: on its first input of the form (KeyGen, sid), run $(sk, vk) \leftarrow \text{VRF.Gen}(1^\kappa)$, output $(\text{VerificationKey}, sid, vk)$ and internally store sk; any further key generation requests are ignored. On input $(\text{EvalProve}, sid, m)$ for an input $m \in X$ (and if a key has been generated before) evaluate $(Y, \pi) \leftarrow \text{VRF.Eval}(sk, m)$ and output $(\text{Evaluated}, sid, Y, \pi)$. (If no key has been generated yet, evaluation queries are ignored.) On input $(\text{Verify}, sid, m, y, \pi, v')$, the party evaluates $b \leftarrow \text{VRF.Vfy}(v', m, y, \pi)$ and finally returns $(\text{Verified}, sid, v', m, y, \pi, b)$.

4
The functionality interacts with parties denoted by \(\mathcal{P} = \{ U_1, \ldots, U_{|\mathcal{P}|} \} \) as well as the adversary/simulator \(S \). It maintains tables \(T[\cdot, \cdot] \) that are initially empty (denoted by symbol \(\bot \)). The tables are initialized on-the-fly. The functionality maintains a set \(S_{pk} \) to keep track of registered keys, and \(S_{eval} \) to keep track of all known VRF evaluations.

- **Key Generation.** Upon receiving a message \((\text{KeyGen}, sid, v)\) from \(U_i \) s.t. \((U_i, \cdot) \notin S_{pk} \), hand \((\text{KeyGen}, sid, U_i, v)\) to \(S \) (ignore the request if \((U_i, \cdot) \in S_{pk} \)). Upon receiving \((\text{VerificationKey}, sid, U_i, v)\) from \(S \):

 1. If \(U_i \) is corrupted, ignore the request.
 2. If \((U_i, \cdot) \notin S_{pk} \) and \(\forall (\cdot, v') \in S_{pk} : v \neq v' \), set \(S_{pk} \leftarrow S_{pk} \cup \{(U_i, v)\} \) and return \((\text{VerificationKey}, sid, v)\) to \(U_i \).
 3. Else, ignore the request.

- **Malicious Key Generation.** Upon receiving a message \((\text{KeyGen}, sid, v)\) from \(S \), do the following: if \(\forall (\cdot, v') \in S_{pk} : v \neq v' \), set \(S_{pk} \leftarrow S_{pk} \cup \{(S, v)\} \). Return the activation to \(S \).

- **VRF Evaluation and Proof.** Upon receiving a message \((\text{EvalProve}, sid, m)\) from \(U_i \) with \(m \in X \), verify that some \((U_i, v) \in S_{pk} \) is recorded. If such an entry is not stored or \(m \notin X \), then ignore the request. Else, send \((\text{EvalProve}, sid, U_i, m)\) to \(S \) and upon receiving \((\text{EvalProve}, sid, U_i, m, \pi)\) from \(S \), do the following:

 1. Ignore the request if the proof is not unique, i.e., if \(\exists T[v', m'] = (y', S') \) such that \(\pi \in S' \land ((v' \neq v) \lor (m' \neq m)) \).
 2. If \(T[v, m] = \bot \), assign \(y \leftarrow \{0,1\}^{\kappa_{\text{vas}}} \) and set \(T[v, m] \leftarrow \{y, \{\pi\}\} \).
 3. If \(T[v, m] = (y, S) \neq \bot \), set \(T[v, m] \leftarrow \{y, S \cup \{\pi\}\} \).
 4. Set \(S_{eval} \leftarrow S_{eval} \cup \{(v, m, y)\} \) and output \((\text{Evaluated}, sid, m, y, \pi)\) to \(U_i \).

- **Malicious VRF Evaluation.** Upon receiving a message \((\text{Eval}, sid, v, m)\), \(m \in X \), from \(S \) (if \(m \notin X \) the request is ignored), do the following:

 Case 1: \(\exists (U_i, v) \in S_{pk} \) where \(U_i \) is not corrupted: if \(T[v, m] = (y, S) \) for \(S \neq \emptyset \), return \((\text{Evaluated}, sid, y)\) to \(S \). Otherwise, ignore the request.

 Case 2: \((S, v) \in S_{pk} \) or \(\exists (U_i, v) \in S_{pk}, U_i \) corrupted: if \(T[v, m] = \bot \), first choose \(y \leftarrow \{0,1\}^{\kappa_{\text{vas}}} \) and set \(T[v, m] \leftarrow (y, \emptyset) \). Return \((\text{Evaluated}, sid, y)\) to \(S \).

 Else: Ignore the request.

- **Verification.** Upon receiving a message \((\text{Verify}, sid, m, y, \pi, v')\) from any ITI \(M \), send \((\text{Verify}, sid, m, y, \pi, v', S_{eval})\) to \(S \). Upon receiving \((\text{Verified}, sid, m, y, \pi, v', \phi)\) from \(S \) do:

 Case 1: \(v' = v \) for some \((\cdot, v) \in S_{pk} \) s.t. \(T(v, m) = (y, S) \) for some set \(S \):

 1. If \(\pi \in S \), then set \(f \leftarrow 1 \).
 2. Else, if \(\phi = 1 \) and \(\forall T[\tilde{v}, \tilde{m}] = (y', S') : \pi \notin S' \), then set \(T[v, m] = (y, S \cup \{\pi\}) \) and \(f \leftarrow 1 \).
 3. Else, set \(f \leftarrow 0 \).

 Else: Set \(f \leftarrow 0 \).

 Provide the output \((\text{Verified}, sid, v', m, y, \pi, f)\) to the caller \(M \).

- **Adversarial Leakage** [New compared to \[DGKR18\] \[BGK’18\]]. On input \((\text{PastEvaluations}, sid)\) from \(S \), return \(S_{eval} \) to \(S \).

Figure 1: The VRF functionality.
Ideal Functionality $F_{\text{VRF}}^{\mathcal{X},\ell}$. In Figure 1 we present the functionality $F_{\text{VRF}}^{\mathcal{X},\ell}$ that captures the desired properties of a VRF. The functionality provides interfaces for key generation, evaluation and verification, as well as separate adversarial interfaces for malicious key generation, evaluation, and leakage. The function table corresponding to each public key is a truly random function (and thus also guarantees a unique association of the key-value pair to output Y) even for adversarily generated keys. Furthermore, no incorrect association can be ever verified and every completed honest evaluation can be later verified correctly.

The functionality is based on [DGKR18, BGK+18], but contains several modifications. First, verification is now more in line with typical UC formulations for (signature) verification, where the adversary is given some limited influence (in prior versions, the adversary had to inject proofs in between verification request and response to accomplish the same thing). Second, the uniqueness notion for proofs has been correctly adjusted to catch the corner case that schemes might choose to de-randomize the prover (akin signatures) which is a crucial point later when we look at ECVRF. The remaining changes are merely syntactical compared to [BGK+18]. If π_{VRF} UC realizes this functionality, then this means that the triple of algorithms VRF is essentially computationally indistinguishable from this functionality and therefore can be considered correct and secure.

Definition 3.1 (UC security of a VRF). A verifiable random function VRF with input domain \mathcal{X} and range $\mathcal{Y} = \{0, 1\}^{\ell_{\text{VRF}}}$ is called UC-secure if π_{VRF} UC-realizes $F_{\text{VRF}}^{\mathcal{X},\ell_{\text{VRF}}}$ specified in Figure 1.

Random oracles in UC. When working in the random-oracle model, the UC protocol above is changed as follows: whenever VRF prescribes a call to a particular hash function to hash some value x, this is replaced by a call of the form $(\text{eval}, \text{sid}, x)$ to an instance of a so-called random oracle functionality, which internally implements an ideal random function $\{0, 1\}^* \rightarrow \mathcal{Y}'$ and returns the corresponding function value back to the caller. This functionality is specified in Figure 2. We will often use the notation $H(x)$ in the specifications to refer to a general hash function with the understanding that this call will be treated as a random oracle call in the security proof.

The functionality is parameterized by the finite output domain \mathcal{Y}. It maintains a (dynamically updatable) function table T (initially $T = \emptyset$). For simplicity we write $T[x]$ to denote the function value assigned to x in the table T (if defined) and use the expression $T[x] = \perp$ to denote that no pair of the form (x, \cdot) is in T.

- Upon receiving $(\text{eval}, \text{sid}, x)$ from some party U_p (or from the adversary), do the following:
 1. If $T[x] = \perp$ sample a value y uniformly at random from \mathcal{Y}, set $T[x] \leftarrow y$ and add $(x, T[x])$ to T.
 2. Return $(\text{eval}, \text{sid}, x, T[x])$ to the caller.

Figure 2: The random-oracle functionality idealizing a hash function $\{0, 1\}^* \rightarrow \mathcal{Y}$.
4 Generic VRF Range Extension in the ROM

4.1 Specification

Let \(H : \{0,1\}^* \rightarrow \mathcal{Y} \) denote a general hash function. Let \(VRF \) be a verifiable random function with input-value domain \(\mathcal{X} \) and output domain \(\mathcal{Y} \).

We construct a VRF \(\tilde{VRF} \) with input-value domain \(\mathcal{X} \) and output domain \(\mathcal{Y}^c \) for a fixed constant \(c > 0 \). In the following, we let \(\text{CONST}_i, i = 1, \ldots, c \) be \(c \) fixed and pairwise different constants (of fixed length) and \(\| \) denotes concatenation of bitstrings. The algorithms are defined as follows:

Key Generation: Key generation remains unchanged: \(\tilde{VRF}.\text{Gen}(1^\kappa) := VRF.\text{Gen}(1^\kappa) \).

Evaluation: The algorithm \(\tilde{VRF}.\text{Eval}(sk, X) \) for \(X \in \mathcal{X} \) is defined as follows:

1. Run \((Y, \pi) \leftarrow VRF.\text{Eval}(sk, X)\).
2. Compute \(Y_i \leftarrow H(\text{CONST}_i \| Y) \).
3. Return the pair \(((Y_1, \ldots, Y_c), (\pi, Y))\).

Verification: The algorithm \(\tilde{VRF}.\text{Vfy}(vk, X, Y, \pi) \) is defined as follows, where \(X \in \mathcal{X} \) and \(Y \in \mathcal{Y}^c \):

1. Parse \(\pi = (\pi', Y') \) where \(Y' \in \mathcal{Y} \) (return 0 in case of parsing error).
2. Return \(b := VRF.\text{Vfy}(vk, X, Y', \pi') \land \left(\bigwedge_{i=1}^c Y_i = H(\text{CONST}_i \| Y') \right) \).

Rationale of the construction. Before we cast the above construction in the provable security parlance of Ouroboros \([DGKR18, BGK]^+18\), we provide here a non-technical justification of the above construction. Assume that the underlying VRF provides all guarantees we informally demanded above, then our construction enjoys basically the same properties: the correctness properties follows from the correctness properties of the underlying VRF and the fact that \(H \) is a public function.

For security, we observe three properties for \(Y_i \): (1) it is unpredictable to anyone not knowing the secret key, (2) it cannot be manipulated even by the owner of the secret key, and (3) it is unpredictable to the owner of the secret key without evaluating the VRF. In particular note that \(Y_i \) can only be determined by someone who knows the value \(Y' \) (since in the ROM, \(H \) is a random function), and \(Y' \) can only be computed by someone having the secret key and otherwise is unpredictable thanks to the security of the underlying VRF. Furthermore, since \(H \) is a public function, \(Y_i \) is determined fully by \(Y' \) (and the constant \(\text{CONST}_i \)).

5 Security Analysis of the Range-Extension Construction

The required level of security of a VRF in the setting of Ouroboros is UC security. UC security is a strong notion and this strength is the main reason why the above construction needs a more formal security argument. In the following, we assume some familiarity with the security arguments in \([DGKR18, BGK]^+18\).

5.1 Range Extension as a Modular UC Protocol

The construction \(\tilde{VRF} \) can be cast as a modular UC protocol \(\pi_{\tilde{VRF}} \), where we assume that the protocol has access to the hybrid functionality \(F_{\tilde{VRF}}^{X,\text{Eval}} \) idealizing the underlying scheme VRF with range \(\{0,1\}^{\text{VRF}} \) (and also access to the random oracle \(F_{\text{RO}}^Y \) to idealize \(H \)).
Each party U_i in session sid acts as follows: on input (KeyGen, sid), relay this input to $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and when receiving the answer $(\text{VerificationKey}, sid, vk_i)$ return this answer as output. On input $(\text{EvalProve}, sid, m)$ relay this input to $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and when receiving the answer $(\text{Evaluated}, sid, Y, \pi)$, query, for $i \in [1, c]$, the random oracle $\mathcal{F}_{\text{RO}}^Y$ with input $(\text{eval}, sid, (\text{CONST}_i || Y))$. Let Y_i be the obtained answers. Then output the return value $(\text{Evaluated}, sid, (Y_1, \ldots, Y_c), (\pi, Y))$. Finally, on input $(\text{Verify}, sid, m, y, \pi, v')$, parse $\pi = (\pi', Y')$ and $y = (Y_1, \ldots, Y_c) \in \{0, 1\}^{c \cdot \text{VRF}}$. If the format is wrong, return $(\text{Verified}, sid, v', m, y, \pi, 0)$. Otherwise, query $(\text{Verify}, sid, m, Y', \pi', v')$ to $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and let the returned decision bit be b. Then query the $\mathcal{F}_{\text{RO}}^Y$, for $i \in [1, c]$, via $(\text{eval}, sid, (\text{CONST}_i || Y'))$ and denote the RO outputs by y_i. Then compute $b' \leftarrow b \land \left(\bigwedge_{i=1}^c Y_i = y_i \right)$ and return $(\text{Verified}, sid, v', m, y, \pi, b')$.

5.2 The UC Realization Statement

The formal theorem of our range extension can be stated in very simple terms:

Theorem 5.1. Protocol π_{VRF} UC-realizes $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$.

Proof. We first describe the simulator S for the so-called dummy real-world adversary that is under the control of the environment \mathcal{Z}. The simulator interacts with functionality $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and simulates towards the environment a transcript that is indistinguishable from a protocol run of π_{VRF}, where the environment interacts with parties running algorithms as specified in π_{VRF} and additionally has access to the adversarial interface of the assumed (hybrid) functionality $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and the random-oracle functionality $\mathcal{F}_{\text{RO}}^Y$. The simulator internally emulates an execution of $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ and emulates the random oracle by maintaining a function table $H[x]$ (initially empty).

Reaction on requests from $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$. We first define the simulation upon the different outputs of $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$ (provoked as reactions of inputs by honest parties).

On $(\text{KeyGen}, sid, U_i)$: Then obtain a new verification key from the emulated instance $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$; that is, ask the environment to provide a new key vk_i and return $(\text{VerificationKey}, sid, U_i, vk_i)$ to $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$.

On $(\text{EvalProve}, sid, U_i, m)$: The simulator obtains the output (y, π) on input m from its simulated instance $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$; this means it first obtains a proof π from the environment and then sampling a new value $y \in \{0, 1\}^\ell_{\text{VRF}}$ at random provided m has not been asked before. Then, the simulator defines $\pi' := (\pi, y)$ and returns $(\text{EvalProve}, sid, m, \pi')$ to $\mathcal{F}_{\text{VRF}}^{X,c,\text{VRF}}$. The simulator stores internally (PROG, i, m, y) to prepare for programming the RO.

On $(\text{Verify}, sid, m, y, \pi, v', S_{\text{eval}})$: The simulator first checks for new entries (PROG, i, m, y) added in previous activations. For each of these entries, it parses the set S_{eval} of all previously evaluated VRF values to obtain $(v_i, m, (y_1, \ldots, y_c))$ where $(y_1, \ldots, y_c) \in (\{0, 1\}^{\text{VRF}})^c$ and assigns for each of these new entries the random-oracle value $H[(\text{CONST}_j || y)] \leftarrow y_j$, $j = 1, \ldots, n$ if the locations $x_j = (\text{CONST}_j || y)$ have not been programmed already. If such an assignment is not possible because the location $(\text{CONST}_j || y)$ have already been programmed with different values y_j respectively, then abort the simulation. We call this event SIMFAIL.

1We point out that a UC proof w.r.t. this adversary implies security against any adversary.
Next, the simulator parses y as (y_1, \ldots, y_c) and π as pair (π', y') and verifies the combination (m, y', π', v') using the internally emulated functionality $F_{\text{VRF}}^{X,VRF}$. Part of this is sending $(\text{Verify}, sid, m, y', \pi, v', S'_{\text{eval}})$ to the environment (for the set S'_{eval} maintained by the internally emulated functionality), and when the environment returns the verification result $(\text{Verified}, sid, m, y', \pi, v', b')$ to the internally emulated instance. It then checks that $y_i = H[(\text{CONST}_j \mid | y')]$ for all $i = 1 \ldots c$. If all checks are fulfilled then abort the simulation. We call this event SIMFAIL.

Interaction with environment (adversarial interface). Whenever invoked with an input from the environment, the simulator first checks for new entries (PROG, i, m, y) added in previous activations. It thus first obtains the set via query S_{eval} ($\text{PastEvaluations}, sid$) to $F_{\text{VRF}}^{X,VRF}$. For each of the entries (PROG, i, m, y), it parses the set S_{eval} of all previously evaluated VRF values to obtain $(v, m, (y_1, \ldots, y_c))$ for $(y_1, \ldots, y_c) \in \{0, 1\}^{\text{VRF}}$ and assigns $H[(\text{CONST}_j \mid | y')] \leftarrow y_j$, $j = 1, \ldots, n$, if the locations $x_j = (\text{CONST}_j \mid | y)$ have not been programmed already. If such an assignment is not possible because the location $(\text{CONST}_i \mid | y)$ have already been programmed with different values y_i respectively, then abort the simulation. We call this event SIMFAIL.

Whenever the environment asks for an RO-evaluation for a new value x, then S samples a value $y \in \{0, 1\}^{\text{VRF}}$ at random and assigns $H[x] \leftarrow y$. If a function value for x is already defined, then return $H[x]$.

Whenever activated by (KeyGen, sid, v) from the environment, S provides this as input to the internally emulated instance and invokes $F_{\text{VRF}}^{X,VRF}$ on input (KeyGen, sid, v) and returns whatever is returned by the functionality.

Whenever activated with (Eval, sid, v, m) from Z (malicious evaluation of the underlying VRF functionality), S emulates this input on the internally emulated functionality $F_{\text{VRF}}^{X,VRF}$. When a simulated value y is obtained, then S invokes $F_{\text{VRF}}^{X,VRF}$ with (Eval, sid, v, m) to receive the function values (y_1, \ldots, y_c) it sampled for m (and w.r.t. v) and S programs the RO by setting $H[(\text{CONST}_i \mid | y)] \leftarrow y_i$ for $i = 1, \ldots, c$ unless the locations have already been written to with different values. As above, if such an assignment cannot be made because the location $(\text{CONST}_i \mid | y)$ have already been programmed with different values y_i respectively, then abort the simulation (event SIMFAIL). Finally, return to Z with output $(\text{Evaluated}, sid, y)$.

When activated with input $(\text{PastEvaluations}, sid)$ or with verification requests or verification results towards the internally emulated functionality $F_{\text{VRF}}^{X,VRF}$, then provide the received input to the emulated instance of $F_{\text{VRF}}^{X,VRF}$ and return to the environment whatever the emulated instance outputs.

Finally, whenever a party is corrupted, S corrupts the corresponding party in $F_{\text{VRF}}^{X,VRF}$ and marks it as corrupted in its internally emulated instance of $F_{\text{VRF}}^{X,VRF}$.

Analysis of the simulation. We observe that the simulation only fails in case it has to abort. The probability of event SIMFAIL corresponds to the probability that a location $x = (\text{CONST}_i \mid | y)$ of the random oracle has been evaluated before the simulator could program it correctly with the value y_i chosen by the ideal functionality. This probability is, however, negligible since upon each new evaluation of an honest party, the value y simulated by S is chosen uniformly at random. The probability of a collision with any previously queried value $x' = (\text{CONST}_j \mid | y')$ is negligible. As long as the simulator does not abort, it exactly mimics π_{VRF}: it internally simulates the underlying hybrid VRF functionality and ensures that whenever a proof π is defined to be a valid proof (w.r.t. $F_{\text{VRF}}^{X,VRF}$)
The following staking procedure is executed by party p. We highlight the usage of the VRF functionality and how the block is created.

StakingProcedure(\ldots)

Send $(\text{EvalProve}, \text{sid}, \eta \parallel \text{sl} \parallel \text{NONCE})$ to F_{VRF}. denote the response from F_{VRF} by $(\text{Evaluated}, \text{sid}, y_\rho, \pi_\rho)$.

Send $(\text{EvalProve}, \text{sid}, \eta \parallel \text{sl} \parallel \text{TEST})$ to F_{VRF}. denote the response from F_{VRF} by $(\text{Evaluated}, \text{sid}, y_T, \pi_T)$.

Send $(\text{EvalProve}, \text{sid}, \eta \parallel \text{sl})$ to F_{X}, $2 \cdot \ell_{\text{VRF}}$; obtain response $(\text{Evaluated}, \text{sid}, (y_\rho, y_T), \pi)$. (S1)

If $y_T < T_p$ then

Create new valid content for the block \mathbf{st} (for details see [BGK+18]). ▷ Local ops, party does not lose activation.

Set $\mathbf{crt} = (U_p, y_T, \pi), \rho = (y_\rho, \pi)$ and $h \leftarrow H(\text{head}(C_{\text{loc}}))$.

Send $(\text{USign}, \text{sid}, U_p, (h, \text{st}, \text{sl}, \text{crt}, \rho), \text{sl})$ to F_{KES}; obtain $(\text{Signature}, \text{sid}, (h, \text{st}, \text{sl}, \text{crt}, \rho), \text{sl}, \sigma)$. ▷ This call returns immediately and the party does not lose activation.

Set $B \leftarrow (h, \text{st}, \text{sl}, \text{crt}, \rho, \sigma)$ and update $C_{\text{loc}} \leftarrow C_{\text{loc}} \parallel B$.

Send $(\text{multicast}, \text{sid}, C_{\text{loc}})$ to F_{BC} and proceed from here upon next activation.

else

\ldots

end if

Figure 3: Staking procedure (excerpt).

for output value y on input m (for some party resp. verification key), then (π, y) is a valid proof for m for the vector (y_1, \ldots, y_c) that $F_{\text{VRF}}^{X,c \cdot \ell_{\text{VRF}}}$ samples for that same party resp. verification key. This establishes the claim.

\textbf{Remark.} Note that the simulator is responsive. This shows that the VRF functionality can be used in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be answered immediately\footnote{That is, without activating any other machine for any other purpose than providing the answer back to F_{VRF}.} This is a useful modeling property and we refer to [CEK+16, BGK+18] for the relevant details, as they are outside the scope of this paper.

6 Case Study: Usage of the Range-Extension Construction in Ouroboros

The purpose of this section is twofold: first, we show how to define formally the staking procedure of Ouroboros using the extended VRF functionality and we have to argue about the security. Next, we apply the composition theorem and show how the construction offers room for optimizations. The two most important places where VRF evaluation and verification happens are the staking procedure, cf. Figure 3 (for full details, we refer to the original papers), and the procedure to verify chains, cf. Figure 4, respectively. In each case, we show how the introduction of $F_{\text{VRF}}^{X \cdot c \cdot \ell_{\text{VRF}}}$ affects the code. We depict in gray boxes the original code which is no longer needed and is deleted. The dashed boxes show the effective changes and additions to the code. Note that the input domain of the VRF is $X = \{0,1\}^*$ in this section.

\textbf{Security.} The reader might have noticed that we have proven the statement with a slightly different (weaker) VRF functionality than what is used in [DGKR18, BGK+18]. The reason is...
that the range extension does not work for the stronger functionality presented there. However, the VRF functionality that we put forth here is sufficient to prove the security of Ouroboros by a straightforward inspection of the staking procedure.\footnote{Note that any VRF that realizes the stronger functionality also realizes the weaker one presented here. Therefore, any previously deployed VRF can be used as the basis of our range-extension construction.}

Consider Figure 3. First, we observe that thanks to the range extension, we can simply deal with one VRF invocation. The protocol needs two verifiable random values: first the value y_T to determine slot leadership, second the value y_ρ which contributes to the epoch randomness of the future epoch. We obtain both these values in one go from $\mathcal{F}_{\text{VRF}}^{X,2,\ell_{\text{VRF}}}$. The functionality, however, has a weakness: it allows the adversary to learn the output values (y_T, y_ρ), but only after the call returned to the party with value (Evaluated, sid, (y_ρ, y_T), π). In other words, the adversary is only able to learn the output values (y_T, y_ρ) from functionality $\mathcal{F}_{\text{VRF}}^{X,2,\ell_{\text{VRF}}}$ (via input (PastEvaluations, sid) or via a subsequent verification query) only once the party loses or gives up its activation token. The original formulation of \mathcal{F}_{VRF} in DGKR18\cite{DGKR18}\cite{BGK+18} guaranteed that \mathcal{F}_{VRF} never by itself would leak this. But now we see that this change is immaterial to the security of Ouroboros: the party, once the values (y_T, y_ρ) are obtained, it never loses the activation until it multicasts the block on the last depicted instruction in Figure 3. At this point, however, the function values are revealed to the adversary “for free”, as we multicast the values over the Internet. Since there is no additional
security concern regarding verification, we conclude that the introduction of $F_{VRF}^{X,\text{ref}}$ is sound.

Implementation and Optimization. After showing security, we now can invoke the UC composition theorem by which we can securely replace the modular invocation of $F_{VRF}^{X,\text{ref}2}$ by the construction based on VRF and H. We now showcase what this means for the protocol and how one can apply optimizations at several places. Consider again Figure 3 (and the lines S1 and S2) as well as Figure 4 (and lines V1 to V4).

$S1$: This line is implemented by evaluating $(y, \pi) \leftarrow \text{VRF.Eval}(sk_p, \eta_j \parallel s1)$ and then defines $y_T \leftarrow H(\text{TEST} \parallel y)$ and $y_\rho \leftarrow H(\text{NONCE} \parallel y)$.

$S2$: In this line, we can apply an optimization: we can set $\text{crt} = (U_p, (y, \pi))$ and set $\rho = \epsilon$ (empty string). The reason is that whenever the protocol needs the verifiable values y_T and y_ρ, they can be computed on-the-fly based on the knowledge of (y, π), i.e., the output $\text{VRF.Eval}(\cdot)$. Thus, storing (y, π) in a block is sufficient. This also means that computing y_ρ above is actually not needed in the staking procedure.

$V1, V2$: Here, we can apply an optimization and in view of the above parse $\text{crt} = (U_p, (y, \pi))$ and recompute the values $y_T \leftarrow H(\text{TEST} \parallel y)$ and $y_\rho \leftarrow H(\text{NONCE} \parallel y)$.

$V3$: This line can be implemented by just computing $b := \text{VRF.Vfy}(v_{\text{vrf}}^{\text{ep}}, \eta_{\text{ep}} \parallel s1, y, \pi)$. Since we recomputed the values y_T and y_ρ above in $V1, V2$, $b = 1$ directly implies the validity of y_T and y_ρ for input $\eta_{\text{ep}} \parallel s1$ and w.r.t. verification key $v_{\text{vrf}}^{\text{ep}}$.

$V4$: This line is implemented using the recomputed value of y_T.

As a final remark note that when computing the epoch randomness at an epoch boundary based on a sequence of valid blocks, then the contribution of a block $B \leftarrow (h, st, s1, \text{crt}, \rho, \sigma)$ to the epoch randomness must be recomputed based on $\text{crt} = (U_p, (y, \pi))$ analogously to above, i.e., by computing $y_\rho \leftarrow H(\text{NONCE} \parallel y)$.

In summary, this shows that we have reduced the number of VRF evaluations (per slot) and VRF verifications (per block) from two to one, as well as reducing the number of VRF proofs needed to be stored, at the price of an additional hash function evaluation in each case.

7 The ECVRF Standard

This section recalls the elliptic-curve based schemes described in the IRTF draft [GRPV22] and focuses on the cipher suites suite-s ∈ \{0x03, 0x04\} for the sake of concreteness.

7.1 Notation

We denote by $E(\mathbb{F}_p)$ the finite abelian group based on an elliptic curve over a finite prime-order field \mathbb{F}_p (note that we simplify the notation and drop the explicit dependency on \mathbb{F}_p and security parameter κ). Most importantly, we assume the order of the group E to be of the form $\text{cf} \cdot q$ for some small $\text{cofactor} \text{ cf}$ and large prime number q, and that the (hence) unique subgroup \mathbb{G} of order q is generated by a known base point B, i.e., $\mathbb{G} = \langle B \rangle$ (q is represented by $\approx 2\kappa$ bits) in which the computational Diffie-Hellman (CDH) problem is believed to be hard. Group operations are written in additive notation, scalar multiplication for points $P \in E$ is denoted by $m \cdot P = \underbrace{P + \cdots + P}_m$, and
Gen(1κ):
1. \(sk \xleftarrow{\$} \{0,1\}^{2\kappa} \).
2. \((sk_0, sk_1) \leftarrow\) Expand_key\((sk)\).
3. \(x \leftarrow\) Compute_scalar\((sk_0)\).
4. \(vk \leftarrow x \cdot B \).
5. Return \((sk,vk)\).

Eval\((sk,X)\):
1. \(\pi \leftarrow\) Prove\((sk,X)\).
2. \(Y \leftarrow\) Compute\((\pi)\).
3. Return \((Y,\pi)\).

Prove\((sk,X)\):
1. Derive \(vk, x\) from \(sk\) as in Gen\((1\kappa)\).
2. \(H \leftarrow\) Encode_to_curve\((E2Cs || X)\).
3. \(\Gamma \leftarrow x \cdot H \).
4. \(k \leftarrow\) Nonce_generation\((sk,H)\).
5. \(c \leftarrow\) Hash_pts\((vk,H,\Gamma,k \cdot B, k \cdot H)\).
6. \(s \leftarrow (k + c \cdot x) \mod q \).
7. \(\pi \leftarrow (\Gamma,c,s) \).
8. Return \(\pi\).

\textbf{Compute}(\pi = \Gamma || ...): \text{Precondition:} \Gamma \in \mathbb{F}_q^*
\begin{enumerate}
\item Return \(\text{Hash(suite_s || DS_3 || (cf \cdot \Gamma) || DS_0)}\),
where \(cf\) is the co-factor (for curve25519, \(cf = 8\)).
\end{enumerate}

Vfy\((vk,X,Y,\pi)\):
\begin{enumerate}
\item If \(vk \not\in \mathbb{E}\) or \(cf \cdot vk = O\), return 0\(^b\).
\item Parse \((\Gamma,c,s) \leftarrow \pi\). If \(\Gamma \not\in \mathbb{E}\) return 0. Interpret the \(\kappa\) bits of \(c\) and the \(2\kappa\) bits of \(s\) as little-endian integers. If \(s \ge q\), return 0.
\item \(H \leftarrow\) Encode_to_curve\((E2Cs || X)\).
\item \(U \leftarrow s \cdot B - c \cdot vk \).
\item \(V \leftarrow s \cdot H - c \cdot \Gamma \).
\item \(c' \leftarrow\) Hash_pts\((vk,H,\Gamma,U,V)\).
\item If \(c = c'\) return \(b := (Y =\) Compute\((\pi))\); otherwise return 0.
\end{enumerate}

\(^a\)Otherwise an implementation could return some ERR \(\not\in\mathbb{Y}\). For the analysis this is not needed as the protocol ensures the precondition and the adversary is free to invoke the hash-function at will.

\(^b\)This check excludes low-order elements, i.e., \(P \in \mathbb{E}, ord(P) < q\).

Figure 5: Description of ECVRF, where \(B\) denotes the generator of the subgroup \(G\) of \(E\). Note that the salt value \(E2Cs\) leaves room for more general use cases. We consider the case \(E2Cs = vk\) in the analysis of the standard and its extensions.
the neutral element by $O = 0 \ast P$. We use $a \xleftarrow{\$} S$ to denote that a is selected uniformly at random from a set S. When working with binary arrays, $a \in \{0, 1\}^*$, we denote by $a[X..Y]$ the slice of a from position X till position $Y − 1$. Moreover, we denote by $a[..X]$ and $a[X..]$ the slice from position 0 till $X − 1$ and from X till the end, respectively. As usual, the operator $||$ denotes concatenation of strings; thus, for $A = 0||1$ we have $A[..1] = 0$ and $A[1..] = 1$.

The standard makes use of helper functions, all of which are defined and introduced in [GRPV22]. For sake of simplicity we only state the specification of the security-relevant helper functions. As domain separators we use values between 0 and 5 in hexadecimal representation. In particular, we use $\text{DS}_i \leftarrow 0x0i$ for $i \in \{0, 5\}$. The standard also uses $\text{encode_to_curve}_\text{salt}$ to denote the salt used for the Encode_to_curve function, which we denote by E2C_s. Note that all EC-ciphersuites define the salt as the prover’s public key which is the case we consider and analyze in this work.

Hash: This is a concrete hash function which will be modeled as a general hash function, respectively a random oracle, $H : \{0, 1\}^* \rightarrow \{0, 1\}^{\ell(\kappa)}$, in the analysis. Conveniently, we choose $\ell(\kappa) = 4\kappa$.

Encode_to_curve: This is a particular hash function (specified by the cipher suite) that takes an arbitrary string $S \in \{0, 1\}^*$ as input, and hashes it to a point in the prime order group \mathbb{G}. Specific details of this function can be found in [GRPV22]. This function will be modeled as a separate random oracle $H_{\text{e2c}} : \{0, 1\}^* \rightarrow \mathbb{G}$ in the security proof.

Expand_key: This function takes as input a secret seed $sk \in \{0, 1\}^{2\kappa}$, and returns a pair $(sk_0, sk_1) \in \{0, 1\}^{2\kappa} \times \{0, 1\}^{2\kappa}$. The specification prescribes that the seed is hashed $h_{sk} \leftarrow H(sk)$, and that the pair $(h_{sk}[..2\kappa], h_{sk}[2\kappa..])$ is returned. The function can thus be modeled as a very simple, random key-derivation function $KDF : \{0, 1\}^{2\kappa} \rightarrow \{0, 1\}^{4\kappa}$ based on the random oracle directly as $KDF(sk) := H(sk)$.

Compute_scalar: A helper function used to derive the secret exponent from a (random) bitstring $s \in \{0, 1\}^{2\kappa}$. The output domain of this function is a set $S \subseteq [\mathbb{G}]$ of size $2^{2\kappa-c}$, for some small constant c, and $\text{Compute_scalar}(X)$ is the uniform distribution on S, where X is the random variable with the uniform distribution over 2κ bitstrings.

Nonce_generation: A function that derives a nonce $k \in \mathbb{Z}_q$ from a pair $(sk, H) \in \{0, 1\}^{2\kappa} \times \mathbb{E}$. Internally, the algorithm first extends the secret key into a pair of random strings $(sk_0, sk_1) = \text{Expand_key}(sk)$. It then appends to sk_1 the given input, H, in binary form and computes $k \leftarrow H(sk_1 || H)$ (that is, interpreting the bitstring as an integer) and returns $k \mod q$. As we elaborate later, the distribution of the function $\text{RF}^{\text{nonce}}_{sk_1}(H) := H(sk_1 || H) \mod q$ derived from a random oracle (again interpreting the output as an integer) has negligible statistical distance to the distribution obtained from choosing a function uniformly at random from the set of all functions $F : \mathbb{E} \rightarrow \mathbb{Z}_q$.

Hash_pts: A function that takes as input five EC points, $A_i \in \mathbb{E}$ for $i \in \{1, \ldots, 5\}$, and hashes them (together with some padding), into an integer of κ bits in little-endian representation. In more detail, the points are interpreted in binary form and hashed into a binary array $r \leftarrow H(\text{suite}_s || \text{DS}_2 || A_1 || A_2 || A_3 || A_4 || A_5 || \text{DS}_0)$ (where the “wrapping” constants are domain separators, see below). Finally, the string $r[..\kappa]$ is returned. This is the helper function to instantiate the Fiat-Shamir heuristic, which computes a challenge in a sigma protocol by hashing the transcript. In the security proof, this will thus be treated as the random-oracle evaluation $H(\text{suite}_s || \text{DS}_2 || A_1 || A_2 || A_3 || A_4 || A_5 || \text{DS}_0[..\kappa])$. The associated challenge space is thus the set $C := \{0, 1\}^\kappa$ interpreted as integers.
To give a concrete example, the deployed VRF construction in Cardano is instantiated with $\kappa = 128$ and elliptic curve edwards25519 which has cofactor 8. The prime order q is represented by 32 octets, or more precisely 253 bits, and the hash function is \(\text{SHA512} : \{0, 1\}^* \to \{0, 1\}^{512} \). Conveniently, we choose $\ell(\kappa) = 4\kappa$. The function Hash_pts defines the associated challenge space, thus being the set $C := \{0, 1\}^\kappa$ interpreted as integers. For the function $\text{Compute}_\text{scalar}(sk_0)$, the string is first pruned: the lowest three bits of the first octet are cleared, the highest bit of the last octet is cleared, and the second highest bit of the last octet is set. This buffer is interpreted as a little-endian integer, forming the secret scalar x, which results in an output domain containing 2^{251} different elements.

7.2 The VRF Algorithms

The formal definition of a VRF in Section 3 denotes by Eval the function that computes the output of the VRF evaluation together with its proof. In this section the two actions are treated separately to follow the approach taken by the standard, and we define the functions Prove and Compute to represent the proof generation and the output computation, respectively. The algorithms from the standard are given in Figure 5.

8 ECVRF$_{bc}$: Batch Verification for ECVRF

In the interest of performance, we now study the possibility of batch-verifying the proofs generated by ECVRF. To this end, we introduce slight modifications that allow for an efficient batch-verification algorithm. Next, we prove that batch-verification does not affect the security properties of individual proofs.

We divide the exposition of the changes in two steps. First, in Section 8.1 we present the changes on the protocol (involving the prover and the verifier) to make the scheme batch-compatible. Second, in Section 8.2 we describe the specific computation performed by the verifier to batch several proof verifications.

The approach we use was first mentioned in the mailing group of the IRTF draft [Rey21]. However, as far as we know, no formal description or analysis of the technique was given so far.

Intuition. The operations performed in steps 4 and 5 of Vfy appear as good candidates for batching across several proofs. Namely, instead of sequential scalar multiplications, one could perform a single multiscalar multiplication for all proofs that are being verified. This batching technique was already introduced by Naccache [NMVR95], and later used by Bernstein [BDL+12] for signature verification batching. However, this trick can only be exploited if steps 4 and 5 are equality checks rather than computations. In ECVRF, the verifier has no knowledge of points U and V, and has to compute them first. We hence modify the scheme so that the prover includes points U and V in the transcript and the verifier can simply check for equality.

8.1 Making the Scheme Batch-Compatible

As discussed, in order to allow batch verification, steps 4 and 5 need to be equality checks. This requires a change in step 7 of Prove and changes in steps 2, 4, 5, and 7 of Vfy. Moreover, the challenge computation needs to be moved from step 6 to the position in between steps 3 and 4 (we call it step 3.5). The modifications result in scheme ECVRF$_{bc}$, summarized in Figure 6.

Intuitively, this change has no implications on the security of the scheme, as it is common for (Fiat-Shamir-transformed) Σ-protocols to send the commitment of the randomness (sometimes
Prove\((sk,X)\) remains unchanged except for step\[^7\] which changes as follows:

7. Let \(\pi \leftarrow (\Gamma, (k \ast B), (k \ast H), s)\).

Compute\((\pi)\) remains unchanged.

Vfy\((vk,X,Y,\pi)\) changes as follows:

1. Remains unchanged.

2. Parse \(\pi\) as tuple \((\Gamma, U, V, s)\). If \(\{\Gamma, U, V\} \not\subseteq E\), return 0. Interpret the 2\(\kappa\) bits of \(s\) as a little-endian integer. If \(s \geq q\), return 0.

3. Remains unchanged.

3.5. \(c \leftarrow \text{Hash}_\text{pts}(vk, H, \Gamma, U, V)\).

4. If \(U \neq s \ast B - c \ast vk\), return 0.

5. If \(V \neq s \ast H - c \ast \Gamma\), return 0.

6. [Moved to step 3.5]

7. Return \(b := (Y = \text{Compute}(\pi))\).

Figure 6: Description of modifications in ECVRF\(_{bc}\) compared to ECVRF.

called the announcement) instead of the challenge\[^4\] The choice of sending the challenge instead of the two announcements in ECVRF is simply to optimize communication complexity and efficiency.

8.2 Batch-Verification

To see how the changes described above allow for batch verification, first observe how steps\[^4\] and \[^5\] in ECVRF\(_{bc}\) can be combined into a single check: if they validate, then so does the equation

\[O = r \ast (s \ast B - c \ast vk - U) + l \ast (s \ast H - c \ast \Gamma - V)\]

where \(r, l\) are scalars chosen by the verifier. The reverse is also true with overwhelming probability if \(r\) and \(l\) are taken uniformly at random from a set of sufficient size (in particular, we choose the set \(\mathcal{C}\) for convenience).

More generally, to verify \(n\) different ECVRF\(_{bc}\) proofs, the verifier needs to check whether the equality relations

\[
U_i = s_i \ast B - c_i \ast vk_i, \\
V_i = s_i \ast H_i - c_i \ast \Gamma_i
\]

hold for each of the proofs. This can be merged into a single equality check

\[O = r_i \ast (s_i \ast B - c_i \ast vk_i - U_i) + l_i \ast (s_i \ast H_i - c_i \ast \Gamma_i - V_i)\]

for each \(i \in [1, n]\) and, moreover, into a single verification

\[O = \sum_{i\in[1,n]} (r_i \ast (s_i \ast B - c_i \ast vk_i - U_i) + l_i \ast (s_i \ast H_i - c_i \ast \Gamma_i - V_i))\]

across all proofs, where \(r_i\) and \(l_i\) are random scalars. By using the state of the art multi-scalar multiplication algorithms, leveraging this trick provides significant running time improvements, as discussed in Section 8.3.

\[^4\]As a matter of fact, ed25519 [BDL+12] is also a sigma protocol and encodes the announcement instead of the challenge in the non-interactive variant of this sigma-protocol.
Invalid batches. Note that if batch verification fails, one would need to break down the batch to determine which proof is invalid. However, in several practical cases (most notably, when validating the state of a blockchain), the verifier is primarily interested in whether the whole batch is valid (so that the respective part of the chain can be adopted): if the batch verification fails this has protocol-level consequences (e.g., disconnecting from the peer providing the invalid batch) that obviate the need for individual identification of the failed verification.

Pseudorandom coefficients. We describe how the coefficients \(l_i, r_i \) can be securely computed in a deterministic manner, a feature that is favorable from a practical perspective. Similarly to the well-known Fiat-Shamir heuristic for \(\Sigma \)-protocols, it is essential that the values cannot be known to the prover when defining the proof string. To this end, we propose to compute the scalars by hashing the contents of the proof itself, the value of \(H \) for the corresponding public key, and an index.

Concretely, for a batch proof of proofs \(\pi_1, \ldots, \pi_n \), one computes, for \(i \in [1, n] \):

1. \(\pi'_i \leftarrow H_i \parallel \pi_i \),
2. \(S_T \leftarrow \pi'_1 \parallel \pi'_2 \parallel \ldots \parallel \pi'_n \),
3. \(h_i \leftarrow \text{Hash(suite}_s \parallel \text{DS}_i \parallel S_T \parallel i \parallel \text{DS}_0) \),
4. \(l_i \leftarrow h_i[\kappa] \), and \(r_i \leftarrow h_i[\kappa..2 \cdot \kappa] \).

The values \(l_i \) and \(r_i \) are treated as little-endian integers and are thus picked from the domain \(C \) as the challenge defined earlier. As before, the security analysis can treat the invocation as an evaluation of a random oracle obtained using domain separation on \(\text{Hash} \) (where we follow the usual format).

Summary and specification. In summary, batch verification of a sequence of tuples \(T_i = (vk_i, X_i, Y_i, \pi_i) \), \(i = 1, \ldots, n \), encompasses the following steps:

1. Perform the basic consistency check for each \(T_i \), \(i = 1, \ldots, n \):
 - Verify that \(vk_i \in \mathbb{E} \) and then that \(\text{cf} \ast vk_i \neq O \).
 - Parse and verify \(\pi_i \) as tuple \((\Gamma_i, U_i, V_i, s_i) \in E^3 \times \mathbb{Z}_q \) (cf. Section 8.1 Step 2. of \(\text{Vfy}() \)).
 - Compute \(H_i \leftarrow \text{Encode_to_curve}(E2C_{si} \parallel X_i) \).
 - Compute \(c_i \leftarrow \text{Hash}_\text{pts}(vk_i, H_i, \Gamma_i, U_i, V_i) \).

2. If any of the above check fails then return 0.

3. Compute \(S_T \leftarrow \pi'_1 \parallel \pi'_2 \parallel \ldots \parallel \pi'_n \), and perform the batch verification:
 - For all \(i \in [n] \) evaluate:
 - Set \(\pi'_i \leftarrow H_i \parallel \pi_i \) for all \(i \in [n] \),
 - Let \(S_T \leftarrow \pi'_1 \parallel \ldots \parallel \pi'_n \),
 - \(h_i \leftarrow \text{Hash(suite}_s \parallel \text{DS}_i \parallel S_T \parallel i \parallel \text{DS}_0) \),
 - \(l_i \leftarrow h_i[\kappa] \), and
 - \(r_i \leftarrow h_i[\kappa..2 \cdot \kappa] \),
 and interpret \(l_i, r_i \) as little-endian integers.
 - Evaluate
 \[
 b_1 \leftarrow \left(O = \sum_{i \in [n]} (r_i \ast (s_i \ast B - c_i \ast vk_i - U_i)) + l_i \ast (s_i \ast H_i - c_i \ast \Gamma_i - V_i)) \right)
 \]
4. Evaluate $b_2 \leftarrow (\forall i \in [n] : Y_i = \text{Compute}(\pi_i))$.

5. Output $b_1 \land b_2$.

8.3 Performance Evaluation

In this section we evaluate the performance of the ECVRF-EDWARDS25519-SHA512-TAI ciphersuite as defined in the standard [GRPV22] against the batch-compatible variant proposed in this paper. Essentially, these are ECVRF and ECVRF$_{bc}$, respectively, over the curve edwards25519 with SHA512 as a hashing algorithm. We implement a Rust prototype of version 10 of the draft which we provide open source [QA22]. We use the curve25519-dalek [LdV22] rust implementation for the curve arithmetic operations, which implements multiscalar multiplication with Strauss’ [BS64] and Pippenger’s [BDLO12] algorithms, and optimize the choice depending on the size of the batch. We ran all experiments in MacOS on a commodity laptop using a single core of an Intel i7 processor running at 2.7 GHz. For the batch-compatible version we implement both a deterministic verification (using the hashing techniques as described in Section 8) as well as a random verification where the scalars r_i, l_i are sampled uniformly at random from $\mathbb{Z}_{2^{128}}$. We benchmark the proving and verification times for each, using batches of size 2^l for $l \in \{1, \ldots, 10\}$. In the standard version, the size of a VRF proof consists of a (32-byte) elliptic curve point, a 16-byte scalar, and a 32-byte scalar. In the batch compatible version, rather than sending the challenge we send the two announcements, which results in three elliptic curve points and a 32-byte scalar. Therefore the modifications increase proof size from 80 to 128 bytes.

This results in a considerable improvement in verification time. Figure 7 shows that proving time is unaffected, and there is no difference between the normal ECVRF and ECVRF$_{bc}$ (as expected). In Figure 8 we show the verification time per proof for different sized batches. We interpret the times of batch verification as a ratio with respect to ECVRF. Using deterministic batching, the verification time per proof is reduced to 0.71 with batches of 64 and to 0.56 with batches of 1024 signatures. With random coefficients, batching times get a bit better given that we no longer need to compute hashes for scalars l_i and r_i. The verification time per proof can be reduced to 0.6 with batches of 64 signatures, and up to 0.47 with batches of 1024.

9 Security Analysis of ECVRF$_{bc}$ and Batch Verifications

We first analyze the security of the standard without batch verifications in the next section and prove the security including batch verifications afterwards.

9.1 Security Analysis of ECVRF$_{bc}$

We first recall some preliminaries about zero-knowledge proofs of knowledge for a generic class of protocols.

9.1.1 On Σ-Protocols for Group Homomorphisms

We recall here a general class of zero-knowledge proofs of knowledge, namely the three-round protocols that prove the knowledge of a preimage of a (presumably one-way) group homomorphism [Mau15]. Consider two groups (\mathbb{H}, \circ) and (\mathbb{T}, \ast) together with a homomorphism $f : \mathbb{H} \to \mathbb{T}$, i.e.,

$$f(x \circ y) = f(x) \ast f(y).$$
Let R_f be the relation defined by $(z, x) \in R_f :\iff f(x) = z$. Consider the following three-round protocol between prover P and verifier V for the language $L_{R_f} := \{z \mid \exists x : (z, x) \in R_f\}$. That is, the common input is the proof instance $z \in \mathbb{T}$ (and the relation R_f), where the prover is supposed to know a value $x \in \mathbb{H}$ s.t. $f(x) = z$.

1. $P \to V$: P samples $k \xleftarrow{\$} \mathbb{H}$ and sends $t := f(k)$ to V.
2. $V \to P$: V picks at random an integer $c \in C \subset \mathbb{N}$ and sends it to P.
3. $P \to V$: P computes $s := k \circ x^c$ and sends s to V. V accepts the protocol run if and only if the equality

$$f(s) = t \ast z^c$$

holds.

The security of this protocol follows from the following lemma:

Lemma 9.1 ([Mau15]). Let R_f a relation as described above relative to a group homomorphism $f : \mathbb{H} \to \mathbb{T}$. The above protocol is a Σ-Protocol for the language L_{R_f} if there are two publicly known values $\ell \in \mathbb{Z}$ and $u \in \mathbb{H}$ s.t.

1. $\forall c, c' \in C, c \neq c'$: $\gcd(c - c', \ell) = 1$, and
2. $\forall z \in L_{R_f}, f(u) = z^\ell$.

Proof Sketch. We give an outline of the proof of [Mau15]. We need to prove three properties:

- Completeness: The property that on input z and private input x with $(z, x) \in R_f$, then an honest execution always accepts. This is clearly satisfied.
• Special soundness: From any z and any pair of accepting conversations for z denoted $(t, c, s), (t', c', s')$ with $c' \neq c$, one can efficiently compute x such that $(z, x) \in R_f$. The protocol satisfies this. The solution is

$$x := u^a \circ (s' \circ \circ s)^b,$$

and a and b are computed using the Extended Euclidean algorithm (EEA) as solutions to the equation $\ell a + (c' - c)b = 1$ over the integers. Note that $f(s' \circ s) = z^{c' - c}$ and

$$f(x) = f(u^a \circ (s' \circ s)^b) = f(u)^a \cdot f(s' \circ s)^b = z^{\ell a + (c' - c)b} = z.$$

• Special honest-verifier zero-knowledge: the property that there is an efficient simulator S such that on input $z \in L_{R_f}$ and a random challenge $c \in \mathcal{C}$, it generates an accepting conversation (t, c, s) with the same probability distribution as generated by a conversation between honest prover P and honest verifier V on common input z and private input x (s.t. $f(x) = z$) for P. This is achieved by the above protocol: given a challenge c and the statement z, the simulator selects $s \in H$ at random, computes $t := f(s) \cdot z^{-c}$ and outputs (t, c, s).

This concludes the proof sketch. \hfill \Box

The lemma implies that the protocol is a proof-of-knowledge with knowledge error $1/|\mathcal{C}|$. For our analysis, we only need the implication that if we have a statement $z \not\in L_{R_f}$, then the probability that a malicious prover convinces the verifier is at most $1/|\mathcal{C}|$, as in this case, no extractor can exist. We implicitly assume that any run is rejected if the values do not belong to the expected domain.

On domain checks of the proof instance. The above protocol assumes that the values are indeed in the domain of interest as in particular the existence of values $u \in \mathbb{H}$ and $\ell \in \mathbb{Z}$ [Lemma 9.1] could depend on the group order of \mathbb{T} (such as the one discussed below). We need to relax the relation a bit if domain checks on the instance $z \in \mathbb{T}$ are omitted.\footnote{Note that the expected security guarantees indeed become weaker: consider a cyclic group $\langle g \rangle$ of order $2q$ with $q > 2$ and let $\mathbb{T} = \langle h := g^2 \rangle$ be a subgroup together with the homomorphism $f(x) = h^x$ (which is the instantiation to obtain the typical Schnorr DL-proof). A malicious prover might choose the instance $z = h^x \cdot g^y$ and with probability $1/2$ the challenge c is even in which case the correct answer is $s := k + cz$ as $f(s)$ equals $f(k) \cdot z^c$. Still z is not a power of h (z has order $2q$) and thus no x can exist such that $(z, x) \in R_f$.}

This is especially relevant if \mathbb{T} is a subgroup of some larger group $\mathbb{T}' \setminus \mathbb{T}$ by a dishonest party while the verifier does not perform a domain check for $z \in \mathbb{T}$ (but only for $z \in \mathbb{T}'$).

Corollary 9.2. Consider the Σ-Protocol as in [Lemma 9.1] in the above setting, where an honest prover aborts on instances $z \in \mathbb{T}' \setminus \mathbb{T}$ and otherwise executes the protocol. The protocol is a zero-knowledge proof of knowledge for relation R_f as above on instances $z \in \mathbb{T}$, and additionally, it provides special soundness on instances $z \in \mathbb{T}' \setminus \mathbb{T}$ for the relation $(z, x) \in R_{f,e} : \leftrightarrow f(x) = z^e$ if we can fix $u \in \mathbb{H}$ and $\ell \in \mathbb{Z}$ as above such that

1. $\forall c, c' \in \mathcal{C}, c \neq c': \gcd(c - c', \ell) \mid e$, and
2. $f(u) = z^e$.

Proof. We find the greatest common divisor of ℓ and $c' - c$ and let it equal g. We further obtain values a, b s.t. $\ell a + (c' - c)b = g$ by the EEA. By the same reasoning as above, $\tilde{x} := u^a \circ (s' \circ s)^b$ satisfies $f(\tilde{x}) = z^g$. Now, we assume that $e = d \cdot g$ for some d, thus $x := \tilde{x}^d$ and $f(x) = f(\tilde{x})^d = z^e$. \hfill \Box

If for each instance $z \in \mathbb{T}'$ we can identify such an exponent e, the protocol can be assumed to be sound for any z in the sense that the probability of passing a protocol run on an instance z such that z^e has no preimage under the homomorphism, is at most $1/|\mathcal{C}|$.\footnote{Note that the expected security guarantees indeed become weaker: consider a cyclic group $\langle g \rangle$ of order $2q$ with $q > 2$ and let $\mathbb{T} = \langle h := g^2 \rangle$ be a subgroup together with the homomorphism $f(x) = h^x$ (which is the instantiation to obtain the typical Schnorr DL-proof). A malicious prover might choose the instance $z = h^x \cdot g^y$ and with probability $1/2$ the challenge c is even in which case the correct answer is $s := k + cz$ as $f(s)$ equals $f(k) \cdot z^c$. Still z is not a power of h (z has order $2q$) and thus no x can exist such that $(z, x) \in R_f$.}
Non-interactive \(\Sigma\)-Protocols. A standard result about \(\Sigma\)-protocols is that they can be made non-interactive (via the Fiat-Shamir transform) in the random-oracle model while preserving soundness and zero-knowledge. Consider the proof w.r.t. a given instance \(z\). A prover \(P\) can, instead of sending the first message to the verifier, evaluate \(H(t)\) to obtain a random challenge \(c\) and conclude the proof by generating the string \(s\) as above. The proof string can be represented by \((z, t, s)\). A verifier can thus verify the proof by calling the oracle on input \(t\) to obtain the challenge \(c\) and verify as in the protocol above.

Soundness is preserved since talking to the verifier is equivalent to talking to the random oracle. As long as the number of random-oracle queries is limited and the challenge space is larger, soundness is broken with only negligible probability.

Zero-knowledge is preserved since the interaction with the verifier is completely removed and replaced by the random oracle that has the behavior of an honest verifier in Step 2. Note that in the random-oracle model, the simulator is allowed to program the RO outputs as long as the outputs have the same uniform distribution. Simulation thus works by choosing a challenge \(c\) at random, simulating the protocol conversation as above on input \(z\) to obtain \((t, c, s)\) and define the oracle’s output on input \(t\) to be \(c\). The proof string is the tuple \((z, t, s)\). Note that this strategy works as long as the position on a random input \(t\) is programmable, which only fails with negligible probability if \(|H|\) is large.

The above arguments can be generalized to settings where the instance is not fixed (but for example derived by some context protocol). The above mentioned mapping between (interactive) protocol runs (with an honest verifier) and evaluations of the random oracle is retained when the random oracle is invoked as \(H(\text{aux} \; || \; t)\), where \(\text{aux}\) contains sufficient information to identify the “protocol run” in the above reasoning (which binds the oracle output to a context such as the instance, the relation etc.). This is of particular importance when proving the security in a composable framework.

9.1.2 Instantiation for \(\text{ECVRF}_{bc}\)

We recall that in \(\text{ECVRF}_{bc}\) we deal with a prime-order subgroup \(G\) of order \(q\) of an elliptic curve of order \(\text{cf} \cdot q\). Let \(B_1\) and \(B_2\) be two generators of this subgroup. Essentially, the \(\Sigma\)-protocol of interest is an equality proof of discrete logarithm, i.e., given two values \(z_1\) and \(z_2\) prove knowledge of \(x\) such that \(x \cdot B_1 = z_1 \wedge x \cdot B_2 = z_2\). To instantiate the above generic scheme, we let \(\mathbb{H} := (\mathbb{Z}_q, +)\) and define \((\mathbb{T}, \oplus) := (\mathbb{G}, +) \times (\mathbb{G}, +)\) as the direct product of \(G\), where the binary operation \(\oplus\) on \(T\) is defined component-wise. The homomorphism is given by

\[
f_{B_1, B_2} : \mathbb{Z}_q \to \mathbb{T}; \quad x \mapsto (x \cdot B_1, x \cdot B_2),
\]

as obviously, \(((x+y) \cdot B_1, (x+y) \cdot B_2) = (x \cdot B_1 + y \cdot B_1, x \cdot B_2 + y \cdot B_2) = (x \cdot B_1, x \cdot B_2) \oplus (y \cdot B_1, y \cdot B_2)\).

The relation \(R_{B_1, B_2} \subseteq \mathbb{T} \times \mathbb{Z}_q\) is formally defined by

\[
((z_1, z_2), x) \in R_{B_1, B_2} \iff x \cdot B_1 = z_1 \wedge x \cdot B_2 = z_2.
\]

(1)

Since \(G\) is of prime order \(q\), we can satisfy the conditions of Lemma 9.1 by letting \(u = 0\) and \(\ell = q\), and defining the challenge space to be a large subset \(C \subseteq [0, \ldots, q - 1]\).

We therefore conclude that the embedded non-interactive zero-knowledge proof of knowledge in \(\text{ECVRF}_{bc}\) has (in the random-oracle model) simulatable executions, and with only negligible probability can a valid proof for a wrong statement be generated.

As for the above mentioned domain checks, we conclude that the embedded protocol, without having the verifier check that \(z \in \mathbb{T}\), we fall into the realm of Corollary 9.2 (where instances \((z_1, z_2)\)
are checked to merely belong to \(E \times E\). Therefore, since the elliptic curve group \(E\) satisfies \(|E| = cf \cdot q\) (with \(cf = 8\) in the concrete case of curve25519) we can pick \(\ell = cf \cdot q\) and thus obtain the guarantees from Theorem 9.3 for the choice \(e = cf\), that is for the relation \(R_{B,H}^e \subseteq E \times E\) (and \(B, H\) generators of subgroup \(G\), defined by
\[
(z_1, z_2) \in R_{B,H}^e :\iff x \cdot B = cf \cdot z_1 \land x \cdot H = cf \cdot z_2.
\] (2)

The canonical epimorphism. Viewed from a different angle, Corollary 9.2 is a general statement that says that the verification equations of a particular run of the protocol can be interpreted in a different but related way (that might depend on the order of the particular instance) for which it constitutes a proof of knowledge. For finite elliptic curve groups as above, we can see that any run of the protocol can be interpreted in group \(G\): Consider the map \(P \mapsto cf \cdot P\) which is the canonical epimorphism \(\phi_{cf} : E \to G\) and the corresponding map \(P + \ker(\phi_{cf}) \mapsto \phi_{cf}(P)\) which identifies the isomorphism establishing \(E/\ker(\phi_{cf}) \cong G\) by the fundamental theorem on homomorphisms. From this we can deduce by Lagrange’s Theorem that \(|E| = |G| \cdot |\ker(\phi_{cf})|\). Since the choice of the representatives is immaterial one can think of each coset \(P + \ker(\phi_{cf})\) to be represented by a point \(P \in G\) (and the kernel consists of the low-order points, i.e., elements of order strictly less than \(q\).

Denoting the first round message of the prover by \((U,V)\), the projected verification equation in step 3 of the \(\Sigma\)-Protocol becomes \((O,O) = (\phi_{cf}(s \cdot B - U - c \cdot z_1), \phi_{cf}(s \cdot H - V - c \cdot z_2))\) which is an equation in the prime-order group \(\mathbb{T}\). More generally speaking, the above equality is satisfied when, in a run of the given \(\Sigma\)-protocol, it holds that \((s \cdot B - V - c \cdot z_1) \in \ker(\phi_{cf})\) and \((s \cdot H - V - c \cdot z_2) \in \ker(\phi_{cf})\). By the reasoning in the proof of Lemma 9.1, from any two runs (with the same first round message) that are accepting under the mapping \(\phi_{cf}\), we can extract a solution \(x\) for which \((x \cdot \phi_{cf}(B), x \cdot \phi_{cf}(H)) = (\phi_{cf}(z_1), \phi_{cf}(z_2))\). Since \(B\) and \(H\) are known generators of group \(G\), the above identification of the associated isomorphism implies \(\phi_{cf}^{-1}(\phi_{cf}(B)) = B\) and \(\phi_{cf}^{-1}(\phi_{cf}(H)) = H\) and in the other case, we have \(\phi_{cf}^{-1}(\phi_{cf}(z_i)) \in P_i + \ker(\phi_{cf})\) for representatives \(P_i \in G\). In summary, this establishes special soundness with respect to the relation
\[
(z_1, z_2) \in R_{B,H}^e :\iff x \cdot B = \phi_{cf}(z_1) \land x \cdot H = \phi_{cf}(z_2)
\] (3)
for the \(\Sigma\)-protocol above, where we could relax the checks performed by the verifier to \((s \cdot B - V - c \cdot z_1) \in \ker(\phi_{cf})\) and \((s \cdot H - V - c \cdot z_2) \in \ker(\phi_{cf})\) instead of equality checks \((s \cdot B - V - c \cdot z_1) = O\) and \((s \cdot H - V - c \cdot z_2) = O\).

9.1.3 The UC Construction Statement

Recall from Section 3 how any VRF can be understood as a UC protocol. We now establish the security of the \(\text{ECVRF}_{bc}\) protocol without the batching step, but with the (minor) modifications introduced in Section 8.1. We work in the random-oracle model; that is, we introduce the two general functions \(H\) (abstracting the details of \(\text{Hash}\)) and \(H_{e2c}\) (abstracting the details of \(\text{Encode_to_curve}\)) which are in the model represented by two instances of the random oracle functionality, which are \(\mathcal{F}_{RO}^{\mathcal{Y}}\) for \(\mathcal{Y} = \{0,1\}^{k_{\text{vrf}}}\), and \(\mathcal{F}_{RO}^{G}\), respectively, so that invocations of \(H\) and \(H_{e2c}\) correspond to invocations of the respective functionalities as explained in Section 3. For simplicity and clarity in the UC protocols, we continue to write \(H(x)\) (resp. \(H_{e2c}(x)\)) with the understanding that it stands for a call to an ideal object. Note that the remaining helper functions obtain their claimed security properties based on the assumption on \(H\) as is established in the proof.

Theorem 9.3. Let \(E\) and its prime-order subgroup \(G\) be defined as in Section 7.1. The protocol \(\pi_{\text{ECVRF}}\) UC-realizes \(\mathcal{F}_{\text{VRF}}^{X_{\text{vrf}}^\ast}\), for \(X = \{0,1\}^\ast\) and \(t_{\text{VRF}}(\kappa) = 4\kappa\), in the random-oracle model and under the assumption that the CDH problem is hard in \(G\).
We later argue that the simulation is identical to the real-world execution, until the point where a w.r.t. base which is straightforward to do as explained before.

Proof. We first describe the simulator and include in its description a variety of consistency checks. We later argue that the simulation is identical to the real-world execution, until the point where a consistency check fails. We then bound the associated probabilities of these bad events.

Description of the simulator. We now describe the simulator S for the construction. While formally the simulator simulates two instances of the random-oracle functionality towards Z, we keep the notation H_{2a} and H for simplicity. S maintains two tables T_{e2a} and T_h to store the mapping corresponding to the ideal function implemented by the RO. We use T_z to store all instances of completed VRF evaluations and their associated proofs (mirroring what the functionality stores) and T_{exp} to store the random base points H assigned to pairs (v, m) together with its exponent w.r.t. base B of the group G. We further keep a table $T_{Disallowed}$ to store information on which outputs of the RO yield inconsistent simulations. Finally, we have T_{pk} to store the mapping of honest users to public keys and we store private parameters of honest parties in T_{priv}.

- On receiving $(KeyGen, sid, U_i)$ from $F_{VRF}^{X, k}$, Pick three random strings, $s, s_0, s_1 \in \{0, 1\}^x$. Compute the scalar x from s_0 as in the real world and define the public key $v \leftarrow x \ast B$. Evaluate $\text{KGENFAIL} \leftarrow \exists i : T_{pk}[i] = (\cdot, v)$ and abort if true. Otherwise, store the tuple $(sk, U_i, s, s_0, s_1, x)$ in T_{priv} and (U, v) in T_{pk} and provide the input $(\text{VerificationKey}, sid, U_i, v)$ to $F_{VRF}^{X, k}$.

- On receiving $(\text{EvalProve}, sid, U_i, m)$ from $F_{VRF}^{X, k}$, the following steps are performed:
 1. Obtain the entry (U, v) from T_{pk}.
 2. If for this honest party U_i we have $(v, m, \cdot, \pi) \in T_z$, then return $(\text{EvalProve}, sid, U_i, m, \pi, 1)$ to $F_{VRF}^{X, k}$. Otherwise, proceed to the next step.
 3. Invoke $H_{2a}(v, m)$ (i.e., make a simulated RO call) to obtain the instance base point H and retrieve the tuple (v, m, H, B, t) from T_{exp}, where $H := t \ast B$ (which is guaranteed to exist after the RO call). Define $\Gamma := t \ast v$.
 4. At this point, the statement and the relation of the NIZK proof are defined: $z = (v, \Gamma)$ and the relation is defined by $R_{B, H}$ as defined in equation (1). The proof string π is now simulated as explained in Section 9.1.1. For the above relation, this means we pick random $s \in \mathbb{Z}_q$ and $c \in \mathcal{C}$, compute $t = (U, V) \leftarrow (s \ast B - c \ast v, s \ast H - c \ast \Gamma)$, and define $\pi := \Gamma \mid U \mid V \mid s$.
 5. Evaluate $\text{EVALFAIL}_1 \leftarrow (T_h|suite_s| \mid DS_2 \mid v \mid H \mid \Gamma \mid U \mid V \mid DS_0 \neq \bot)$. If EVALFAIL_1 holds, then abort the simulation, otherwise pick $r \leftarrow \{0, 1\}^{3x}$ and program the RO by $T_h|suite_s| \mid DS_2 \mid v \mid H \mid \Gamma \mid U \mid V \mid DS_0 \leftarrow c \mid r$ (where c is represented as a bitstring).
 6. Evaluate $\text{EVALFAIL}_2 \leftarrow \exists (v', m', \cdot, P') \in T_z$ such that $\pi \in P' \land ((v' \neq v) \lor (m' \neq m))$. Abort if EVALFAIL_2 holds (proof is not unique).
 7. If $(v, m, \cdot, \cdot) \notin T_z$ then insert $(v, m, ?, \{\pi\})$ into T_z. Otherwise retrieve the entry of the form (v, m, y, P) and update it to $(v, m, y, P \cup \{\pi\})$.

Looking ahead, this distinction is crucial when arguing security. The simulation is design such that except for corruption queries, the set T_{priv} is not used in the simulation. In particular, if party U_i is never corrupted, knowledge of its secret key is not required for a correct simulation.
The simulation for the random oracle is done as follows:

9. Store \((\text{proof}, U_i, H, s, c)\) in \(T_{\text{priv}}\).
10. Return \((\text{EvalProve}, \text{sid}, U_i, m, \pi)\) to \(F_{\text{VRF}}^{X, \text{VRF}}\).

- On receiving \((\text{Verify}, \text{sid}, m, y', \pi, v', S_{\text{eval}})\) from \(F_{\text{VRF}}^{X, \text{VRF}}\), do the following:
 1. Parse \(\pi\) as four values \((\Gamma, U, V, s)\in\mathbb{E}^3 \times \mathbb{Z}_q\) and verify that the order of \(v'\) is at least \(q\). If these conditions are not satisfied but \((v', m, y', \mathcal{P}) \in T_2\) with \(\pi \in \mathcal{P}\), then \(\text{VERFAIL}_1 \leftarrow 1\) and the simulation is aborted. Otherwise return \((\text{Verified}, \text{sid}, m, y, \pi, v', 0)\) to \(F_{\text{VRF}}^{X, \text{VRF}}\).
 2. Make a call to \(H_{2\epsilon}(v', m)\) to obtain the base point \(H\). Retrieve the associated exponent \(t\) from \(T_{\text{exp}}\). Invoke \(H(\text{suite}_s || \text{DS}_2 || v || H || \Gamma || U || V || \text{DS}_0)\) to derive challenge \(c\).
 3. Evaluate the truth value of the proof string: \(f_\pi \leftarrow (s*B = U+c*v') \land (s*H = V+c*\Gamma)\).
 Evaluate \(\text{VERFAIL}_2 \leftarrow (f_\pi = 0) \lor (v', m, y', \mathcal{P}) \in T_2\) with \(\pi \in \mathcal{P}\). Abort the simulation if \(\text{VERFAIL}_2\) holds.
 4. If \(f_\pi = 0\) then return \((\text{Verified}, \text{sid}, m, y, \pi, v', 0)\) to \(F_{\text{VRF}}^{X, \text{VRF}}\).
 5. At this point we have a claimed instance \((v', \Gamma)\) and a valid proof \(\pi\) for the claim \((v', \Gamma) \in L_{B_{\epsilon}^t,H}^P\) where the relation is defined by \(\text{equation (2)}\). Define \(\text{VERFAIL}_3 \leftarrow t*(\text{cf} * v') \neq (\text{cf} * \Gamma)\). Abort if \(\text{VERFAIL}_3\) holds.
 6. If \((v', m, \cdot, \cdot) \in T_2\), then make an internal call to \(H(\text{suite}_s || \text{DS}_3 || \text{(cf} * \Gamma) || \text{DS}_0)\) to obtain the hash \(y\) and go to the next step. Otherwise, let \(\text{VERFAIL}_4 \leftarrow (v', m, \cdot, \cdot) \notin T_2 \land T_2[\text{suite}_s || \text{DS}_3 || \text{(cf} * \Gamma) || \text{DS}_0] \neq \bot\), abort if the condition holds and else set \(y \leftarrow \bot\) and set \(T_{\text{Disallowed}} \leftarrow T_{\text{Disallowed}} \cup \{(\text{cf} * \Gamma, y')\}\).
 7. Evaluate \(\text{VERFAIL}_5 \leftarrow (y = y') \land \exists(v'', m'', \cdot, \cdot) \in T_2\) such that \(\pi \in \mathcal{P}'' \land ((v'' \neq v) \lor (m'' \neq m))\). Abort if \(\text{VERFAIL}_5\) holds (proof is not unique).
 8. If \(y = y'\) then retrieve the record \((v', m, y', \mathcal{P}) \in T_2\) (for some \(\mathcal{P}\)), update the entry to \((v', m, y', \mathcal{P} \cup \{\pi\})\) and return \((\text{Verified}, \text{sid}, m, y, \pi, v', 1)\). Otherwise the simulator returns \((\text{Verified}, \text{sid}, m, y, \pi, v', 0)\) to \(F_{\text{VRF}}^{X, \text{VRF}}\).

The simulation for the random oracle is done as follows:

- **Invocation of** \(H_{\epsilon2\epsilon}\) **on input** \(s \in \{0,1\}^*\):

 If \(s = (v \parallel m)\) s.t. \((v, m) \in \{P \in \mathbb{E} : \text{ord}\(P) \geq q\} \times \{0.1\}^\ell\): If \(T_{\epsilon2\epsilon}[(v, m)] \neq \bot\), return \(T_{\epsilon2\epsilon}[(v, m)]\).

 Otherwise, pick a random \(t \in \mathbb{Z}_q\), define \(H := t*B\), and store \((v, m, H, B, t)\) in \(T_{\text{exp}}\).

 Define \(\text{ROCOL} \leftarrow (\exists i, j \neq j, T_{\epsilon2\epsilon}[i] = (\cdot, H_i, \cdot, \cdot), T_{\epsilon2\epsilon}[j] = (\cdot, H_j, \cdot, \cdot) : H_i = H_j)\),

 Define \(\text{ROIDENT} \leftarrow (\exists i : T_{\epsilon2\epsilon}[i] = (\cdot, H_i, \cdot, \cdot) \land \text{ord}(H_i) = 1)\).

 Else: If \(T_{\epsilon2\epsilon}[s] = \bot\), pick \(H \overset{\$}{\leftarrow} \mathbb{G}\) and set \(T_{\epsilon2\epsilon}[s] \leftarrow H\). Return \(T_{\epsilon2\epsilon}[s]\).

- **Invocation of** \(H\) **on input** \(s \in \{0,1\}^*\):

 If \(s = (\text{suite}_s || \text{DS}_3 || P || \text{DS}_0), P \in \mathbb{G}\): Perform the following steps:

 1. Ensure consistency with the functionality:

 (a) If this is an internal call, the set \(S_{\text{eval}}\) is provided by the functionality as part of the most recent input\(^7\). Otherwise, the set \(S_{\text{eval}}\) is obtained via querying \((\text{PastEvaluations}, \text{sid})\) to \(F_{\text{VRF}}^{X, \text{VRF}}\).
(b) Let the entries of T_{exp} be denoted by (v_i, m_i, H_i, B, t_i).
(c) Define $S := \{(v_i, m_i, H_i, B, t_i) \in T_{exp} | t_i \ast (cf \ast v_i) = P\}$.
(d) Evaluate $\text{ROFAIL}_1 \leftarrow |S| > 1$ and abort if ROFAIL_1 holds.
(e) If $S = \emptyset$:
 i. If $T_h[s] = \bot$, assign y to a random value in $\{0, 1\}^{\ell_{\text{VRF}}}$.
 ii. Otherwise, let $y \leftarrow T_h[s]$.
(f) If $S = \{(v, m, H, t)\} \land (v, m, \cdot) \in T_z$:
 i. If there is an entry $(v, m, y, \mathcal{P}) \in T_z$ for $y' \in \{0, 1\}^{\ell_{\text{VRF}}}$, then set $y \leftarrow y'$.
 ii. Otherwise, find $(v, m, y') \in S_{\text{eval}}$ and update the entry $(v, m, ?, \mathcal{P})$ in T_z to
 (v, m, y', \mathcal{P}). Set $y \leftarrow y'$.
(g) If $S = \{(v, m, H, t)\} \land (v, m, \cdot) \not\in T_z$; do the following:
 i. If $(\cdot, v) \not\in T_{pk}$, then send (KeyGen, sid, v) to $\mathcal{F}_{VRF}^{X,\ell_{\text{VRF}}}$ and add (S, v) to T_{pk}.
 ii. Set $\text{ROFAIL}_2 \leftarrow 1$ if $(U_i, v) \in T_{pk}$ for U_i that is not corrupted. Abort if
 ROFAIL_2 holds.
 iii. At this point, send (Eval, sid, v, m) to $\mathcal{F}_{VRF}^{X,\ell_{\text{VRF}}}$ and obtain the result
 $(\text{Evaluated}, sid, y')$, $y \leftarrow y'$ and add (v, m, y', \emptyset) to T_z.
2. Evaluate $\text{ROFAIL}_3 \leftarrow T[s] \not\in \bot$ and $T[s] \not\in \emptyset$. Abort if ROFAIL_3 holds.
3. If $T_h[s] \not\in \bot$, return $T_h[s] \leftarrow y$.
4. Evaluate $\text{ROFAIL}_4 \leftarrow (P, y) \in T_{\text{Disallowed}}$. Abort if ROFAIL_4 holds.
5. Return y.

If $s = (\text{suite}_s || DS_2 || v || H || \Gamma || U || V || DS_0), (v, H, \Gamma, U, V) \in E^2$: If $T_h[s] \not\in \bot$, return $T_h[s]$.
Otherwise, pick a random challenge c and an additional random string $r \xleftarrow{} \{0, 1\}^{3\kappa}$ and
assign $T_h[s] \leftarrow c \| r$ (where c is represented as a bitstring).

Else: If $T_h[s] = \bot$, pick y at random from the set $\{0, 1\}^{4\kappa}$ and set $T_h[s] \leftarrow y$. Return $T_h[s]$.

• Upon corruption of party U_i: Retrieve the record $(sk, U_i, s, s_0, s_1, x)$ and all records of the
 form $(\text{proof}, U_i, H, s, c)$ from T_{priv} and ensure a correct programming of the RO as follows:

 1. If $T_h[s] \not\in \bot$ then set $\text{CORRFAIL}_1 \leftarrow 1$ and abort. Otherwise, set $T_h[s] \leftarrow s_0 || s_1$.
 2. If $T_h[x] \not\in \bot$ for some $x = s_1 || x'$ then set $\text{CORRFAIL}_2 \leftarrow 1$ and abort. Otherwise, for
 each record $(\text{proof}, U_i, H, s, c)$ program the RO as follows:
 (a) Compute the nonce as $k \leftarrow s - cx$.
 (b) Set $T_h[s_1 || H] \xleftarrow{} \{n \in [2^{4\kappa} - 1] | n \mod q = k\}$ (where integers are encoded as
 bitstrings).

 3. Mark U_i as corrupted (in the functionality) and return s to the adversary.

This concludes the description of the simulator.

Analysis of the simulation. The failure conditions of the simulator play a crucial role in our
argument. Recall that the simulator performs consistency checks, and if they fail to hold, it aborts.
We first note that the checks performed by the simulator can be phrased as bad events for both
the real and the ideal executions. Recall that the real execution refers to the random experiment
where the environment \mathcal{Z} interacts with protocol π_{ECVRF} and the dummy adversary, and the ideal
execution refers to the random experiment, where the environment interacts with the ideal protocol
for \mathcal{F}_V, and the ideal-world adversary (aka simulator) \mathcal{S} as defined above. We define the events in Figure 9 that imply a consistent simulation. We now argue by a that \mathcal{S}’s views in the real and ideal executions are indistinguishable as long as none of the bad events F_x of Figure 9 occur (we denote by F_x the complement of F_x). We analyze the different inputs that \mathcal{S} can provide:

Key Generations: New keys are sampled identically in the real and ideal world and all public keys are unique until the point when bad event F_{KG} occurs. In particular, F_{KG} implies $\text{KGENFAIL} = 0$ and the simulation is perfect.

Evaluations: During the proof generation performed by an honest party with public key v on message m, in both worlds, the base point H is derived by an invocation of $\text{H}_2(v, m)$ which is distributed identically. As long as bad events F_{col} and F_{id} do not occur, both worlds proceed to generating a proof string. If the party has already performed a proof on input m, then in both worlds, the exact same proof string is returned and otherwise, a new base point H is derived in the same way. The proof string consists of four values Γ, U, V, and s which are simulated as derived in Lemma 9.1 (based on a random exponent $k \leftarrow \mathbb{Z}_q$) unless the random oracle turns out not to be programmable at location (v, H, Γ, U, V), which can only be if the location has been queried before which is exactly captured by F_{Evl1}. The output distribution in the real world on the other hand is generated using function $\text{RF}^{\text{nonce}}(H)$, which implies an output distribution on a fresh input H that has a statistical distance of at most 2^{-2s} from the uniform distribution on \mathbb{Z}_q. Both worlds output this proof string unless it is not unique, which can only happen if bad event F_{Evl2} occurs. Therefore, the simulation is indistinguishable from the real world and does not abort.

Verifications: Consider the tuple $I = (v, m, y, \pi)$ submitted for verification, where $\pi = \Gamma || \ldots$ is a proof string which is either valid or invalid with respect to (v, m) (recall that Γ and the fixed based point B together with v, m precisely define the instance and the relation of the NIZK). We observe that in both worlds the proof is rejected if it does not have the correct format or the public key v has low order, as long as $F_{\text{F}1}$ does not occur. Furthermore as long as bad event $F_{\text{F}2}$ does not occur, all verification results are consistent, in particular no invalid proof string π has ever been contained in a tuple that has been deemed valid.

We observe that in both worlds as long as $F_{\text{F}3}$ does not occur (i.e., the environment provides a convincing proof of a wrong statement and hence breaks soundness), the tuple I can only successfully verify, if it encodes a valid statement, i.e., by Corollary 9.2 we get that in this case π correctly asserts the fact that (v, m, \ldots) is such that there is an x such that $x \ast B = \text{cf} \ast v \land x \ast H = \text{cf} \ast \Gamma$, where H is the unique base point associated to (v, m) (unless F_{col} or F_{id} would occur). This in particular implies that as long as $F_{\text{F}3}$ does not occur, the function value y for (v, m, \ldots, π) can only be $H(\ldots || P \ldots)$ with $P = \text{cf} \ast \Gamma = x \ast H$ because there is exactly one $x \in \mathbb{Z}_q$ such that $x \ast B = \text{cf} \ast v \in \mathbb{G}$ is fulfilled, where B is the reference base point of \mathbb{G} of order q. We further see that unless $F_{\text{F}4}$ occurs, the function value $y = H(\ldots || \text{cf} \ast \Gamma \ldots)$ has been queried after $\text{H}_2(v, m)$ was invoked the first time and in this case both worlds do define $H(\ldots || \text{cf} \ast \Gamma \ldots)$ to be the output unless any of the bad events F_{ROFI} occur during the evaluation of the random oracle. And if $H(\ldots || \text{cf} \ast \Gamma \ldots)$ has never been invoked so far, both worlds let the tuple I be deemed invalid unless F_{pred} happens (in which case, the environment predicted a RO output correctly in the real world). Finally, the proof string is unique in both worlds unless $F_{\text{F}3}$ occurs. In conclusion, as long as none of the
above bad events occur, we see that both worlds (in particular the ideal world) can deem the
tuple valid if the function output y specified in I is the correct value, and there is only one
correct value for the function output for (v, m) for this tuple, which is $H(... || cf * \Gamma || ...)$.
In any other case, the tuple will be rejected.

RO queries to H_{id}: Both worlds sample random elements with identical distributions, and both
worlds return the sampled values as long as F_{col} or F_{id} do not occur.

RO queries to H: For any input other than $x = DS_3 || P || DS_0$, both worlds return consistent
function values, which have been sampled uniformly at random. Also, for any fresh input
$x = DS_1 || DS_3 || P || DS_0$, both worlds compute uniformly random values to be result of the
query (where the simulator either samples on its own or obtains a uniformly random value
from $F_{VRF}^{\phi_4}$), but the simulator might fail to achieve consistency in which case it aborts. As
long as it does not abort, the outputs are thus identically distributed and consistent with the
entire Z. To see consistency, we argue as follows:

First, observe that if a point P (from the set of distinct points queried to the random oracle)
is associated with a key-message pair (v, m), then this is a valid association, in the sense that
valid proof strings $\pi = \Gamma || \ldots$ can only exist that assert $(v, \Gamma) \in L_{B,H}^{P,cf}$, where $cf * \Gamma = P$ and
H is derived from (v, m). The assignment is unique assuming F_{ROF1}. Also the converse is
true, i.e., at most one of the distinct points P queried to the random oracle can be associated
with (v, m) as long as none of the bad events occur. Based on F_{col} and F_{id} we can assume
that H is a generator uniquely associated to (v, m) and we have $b * B = \phi_{cf}(v)$ for some
$b \neq 0$ (since we exclude low-order public keys by conditioning on F_{VF1}). Excluding soundness
failure, in view of [equation (3)] from any two valid proofs $\pi = \Gamma || \ldots$ and $\pi' = \Gamma' || \ldots$
asserting $(v, \Gamma), (v, \Gamma') \in L_{B,H}^{P,cf}$, we conclude using $\phi_{cf}(\Gamma) = p * B$ and $\phi_{cf}(\Gamma') = p' * B$ (for
some exponents p, p'), that $H = p/b * B = p'/b * B$. Since the computations p/b and p'/b
are over \mathbb{Z}_q, the uniqueness follows. Therefore, in order to get a consistent simulation, this
assignment must be computed by the simulator upon the first invocation of the random oracle
that specifies P. In which case, the random oracle is programmed with the output y that a
correctly proven VRF evaluation would result in.

This is possible except when (1) (v, m) has never been queried before and v belongs to an honest
party (as in this case, the simulator cannot obtain the random value y from the functionality),
(2) the point x has never been programmed already with a value y' that is inconsistent with what
the $F_{VRF}^{\phi_4}$ outputs (which happens when the simulator could not associate P to a pair (v, m)
upon the first invocation of the form $H(... || P || ...)$), and (3) if the value y has already been
rejected as the function value associated with P during a verification request. In any other case,
the output is made consistent with (v, m), i.e., any valid proof (assuming F_{VF3} does
not occur) will assert the function value y as the output associated to (v, m). The conditions
(1)-(3) are precisely captured by F_{ROF2}, F_{ROF3}, and F_{ROF4}.

Corruptions of honest parties: When a party is corrupted, its secret key material is leaked,
which here is the basic seed s from which all other values are derived. We observe that all
values derived from s are explainable as long as we can program the random oracle on the
respective domains, which is precisely possible unless any of F_{Corr1} or F_{Corr2} occur.

Bounding the probabilities of bad events. It now remains to bound the probability of a
failure due to a bad event being triggered, where, in view of [BR06], a failure can formally be
<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corresp. Bad Event</td>
<td></td>
</tr>
<tr>
<td>KGENFAIL</td>
<td>F_{KG} \mathcal{Z} provides input (KeyGen, sid) to honest party U_i and the resulting (real or simulated) public key v collides with any previously queried $(v', \cdot), v \in \mathbb{G}$, to H_{2c}.$|_{\cdot}$</td>
</tr>
<tr>
<td>EVALFAIL1</td>
<td>F_{Ev1} \mathcal{Z} provides input (EvalProve, sid, m) to honest party U_i and the resulting (real or simulated) EC points (v, H, Γ, U, V) collide with a previous tuple A_1, \ldots, A_5 for which $H(suite_s</td>
</tr>
<tr>
<td>EVALFAIL2</td>
<td>F_{Ev2} \mathcal{Z} provides input (EvalProve, sid, m) to honest party U_i and the resulting (real or simulated) proof string π collides with some proof string π' for which $(Verified, sid, v', v', \pi', 1)$ has been output previously.</td>
</tr>
<tr>
<td>VERFAIL1</td>
<td>F_{VF1} \mathcal{Z} issues $(Verify, sid, m, y, \pi, v')$ where π is a valid proof w.r.t. (v', m) but has the wrong format or $ord(v') < q$.</td>
</tr>
<tr>
<td>VERFAIL2</td>
<td>F_{VF2} \mathcal{Z} issues $(Verify, sid, m, y, \pi, v')$ where π is an invalid proof string (w.r.t. (v', m)) for which previously either $(Evaluated, sid, m, y, \pi)$ has been output to honest party associated with public key v', or $(Verified, sid, v', m, y, \pi, 1)$ has been output by some honest party.</td>
</tr>
<tr>
<td>VERFAIL3</td>
<td>F_{VF3} \mathcal{Z} issues $(Verify, sid, m, y, \pi, v')$ where $\pi = \Gamma | \ldots$ is a valid proof (w.r.t. (v', m)) but it holds that $(v', \Gamma) \notin L_{P_{2c}}$ for any $\epsilon \in \mathbb{C}$.</td>
</tr>
<tr>
<td>VERFAIL4</td>
<td>F_{VF4} \mathcal{Z} issues $(Verify, sid, m, y, \pi, v')$ for a valid proof $\pi = \Gamma | \ldots$ (w.r.t. (v', m)) s.t. $(v', \Gamma) \in L_{P_{2c}}$ and $ord(v') \geq q$ and $H = H_{2c}(v', m)$, but there has been a previous call $H(suite_s</td>
</tr>
<tr>
<td>VERFAIL5</td>
<td>F_{VF5} \mathcal{Z} issues $(Verify, sid, m, y, \pi, v')$ for a valid proof $\pi = \Gamma | \ldots$ (w.r.t. (v', m)) for which the equation $H(\ldots</td>
</tr>
<tr>
<td>Corresp. Bad Event</td>
<td></td>
</tr>
<tr>
<td>ROFAIL1</td>
<td>F_{ROF1} \mathcal{Z} makes a call $H(\ldots</td>
</tr>
<tr>
<td>ROFAIL2</td>
<td>F_{ROF2} \mathcal{Z} makes a call $H(\ldots</td>
</tr>
<tr>
<td>ROFAIL3</td>
<td>F_{ROF3} \mathcal{Z} makes a call $H(\ldots</td>
</tr>
<tr>
<td>ROFAIL4</td>
<td>F_{ROF4} \mathcal{Z} makes a call $H(\ldots</td>
</tr>
<tr>
<td>CORFAIL1</td>
<td>F_{Corr1} \mathcal{Z} makes a call $H(s</td>
</tr>
<tr>
<td>CORFAIL2</td>
<td>F_{Corr2} \mathcal{Z} makes a call $H(s</td>
</tr>
</tbody>
</table>

Figure 9: Definition of events that imply a consistent simulation.
modeled as a “failure flag” which is set when the first bad event specified in Figure 9 is triggered in the execution. As argued above both worlds are indistinguishable until the point of a failure (note that by definition, in any execution, at most one of the defined events can occur as the first bad event triggering the failure). Therefore, we now bound this probability by bounding for each event F_x the probability that F_x occurs as a consequence of an input by the environment issued at some point in the execution where the flag has not been set yet (that is, none of the conditions of any bad event have been fulfilled yet, which we denote by \overline{F}_x). Note that by the above analysis, the probability of this is identical in the real and the ideal experiments.

Event F_{KGC}: If n denotes the upper bound on the number of public keys in the system, the probability of a collision is upper bounded by $n/2^{2k-c}$, where c is the loss induced by function $\text{Compute_scalar}(.)$. The number of public keys can be upper bounded by the sum of key generation requests made by Z and the number of random-oracle queries made by Z to $H_{\ell 2c}$.

Event F_{Evl1}: A fresh proof string contains at least the entropy of the nonce, where for example U is a random point in G. If n_h denotes the upper bound on the RO queries, the probability of a collision is at most n_h/q per honest VRF evaluation (where n_h is a polynomial quantity and q is an exponential quantity in the security parameter).

Event F_{Evl2}: A proof string $\pi = \Gamma \parallel U \parallel V \parallel s$ for (v, m) is valid if $(s*B, s*H) = (U+c*v, V+c*\Gamma)$, where H is by assumption the unique point associated with (v, m). Since we deal with an honestly generated proof, the string s is uniformly distributed, and since the RO has not been programmed before, the challenge c is a random challenge.

Assume that there was any other tuple $I = (v', m', y', \ldots)$ with $(v', m') \neq (v, m)$, for which π would satisfy the verification equations. We can assume the base associated to (v', m') to be $H' \neq H$. To pass the associated verification equation, and assuming for simplicity that c' is fixed, we would at least need that $V = s * H' - c' * \Gamma$ which equals $s * H - c * \Gamma$. Now, let $H = h * B$ and $H' = h' * B$ for $h \neq h'$ by assumption. Therefore, $(s \cdot h) * B - (c \cdot h \cdot x) * B = (s \cdot h') * B - (c' \cdot h \cdot x) * B = V$. Since V is a point in G, we thus see that the relation $s \cdot (h' - h) + (c - c') \cdot (h \cdot x) = 0$ must hold over Z_q, which, based on the above, is an equation $S \cdot a_1 + C \cdot a_2 = 0$ for two independent random variables S and C (where the support of C is a subset of the support of S) chosen by the honest verifier conditioned on the other bad events not happening, and fixed $a_1, a_2 \neq 0$. The probability to obtain, in an honest evaluation, a valid proof string for a particular other instance is thus at most $1/q$. The number of instances is upper bounded by the upper bound $n_{\ell 2c}$ on the number of calls to $H_{\ell 2c}$ (which is polynomial in the security parameter). In an execution, the probability of event F_{Evl2} can thus be upper bounded by $m \cdot (n_{\ell 2c}/q)$ where m is an upper bound on the number of honest VRF evaluations (which is polynomial in the security parameter).

Event F_{V1F1}: In the real world, the verification algorithm rejects a verification request if the order of the public key is not at least q. Furthermore, the proof string is parsed as a 4 tuple and rejected if not correct. The simulator on the other hand will never evaluate \overline{F}_x on any pair (v, m), since those are never added to the set T_{exp} and consequently never added to T. Hence, such requests are rejected in both worlds and the probability of this event is 0.

Event F_{V1F2}: In both worlds, (v, m) maps to a unique base point H. In the ideal world, tuples $(v, m, ., \pi)$ are never accepted where π fulfills the conditions as stated above for event F_{Evl2}. Second, all proof strings generated on honest evaluations are correct. In summary, if $(v, m, ., \pi)$ does not fulfill the verification equations, then this tuple will never be successfully verified since
verification is deterministic. This holds for both the real and ideal worlds. The probability of failure conditioned on the other bad events not occurring is therefore 0.

Event F_{VF3}: By definition of the event, we have a pair (v, m), the two bases B and H, and an accepting proof string $\pi = \Gamma || U || V || s$ but (v, Γ) is not in the language of the NIZK. This is bounded by the soundness of the proof scheme: By [Section 9.1.1](#), we can consider every verification request as a proof run between a potentially malicious prover and an honest verifier. Each such run is uniquely identified by the auxiliary information (v, Γ, H, B) and the first message is the pair (U, V). The mapping to the non-interactive version, where the honest verifier is implemented by a random oracle, is generically achieved by evaluating it on the tuple (v, Γ, H, B, U, V) and since by [Corollary 9.2](#) an invalid instance passes the run with probability at most $1/|\mathcal{C}|$, the same holds for the non-interactive version. Since the base point B (and hence the group G) is fixed by the protocol (identified by an explicit cipher suite), the tuple (v, H, Γ, U, V) suffices to preserve the reasoning from above. By the domain separation of this invocation, we observe that obtaining challenges does not interfere with evaluations of the random oracle for other purposes (such as evaluating the VRF). In summary, the probability of this bad event (conditioned on the other bad events not occurring) is upper bounded by $n_v/|\mathcal{C}|$, where n_v denotes an upper bound on the number of verification requests.

Event F_{VF4}: For this event to happen before any other bad event happens, we assume a fixed point $s \Gamma$ for which the random oracle has been evaluated but there was no pair (v, m) and associated point H, such that v is was detected to satisfy $(v, \Gamma) \in L_{R_B^{\text{cf}}, H}$. We are now given a tuple (v', m', π) and can assume for this case that since $\pi = \Gamma || \ldots$ is a valid proof, it holds that $(v', \Gamma) \in L_{R_B^{\text{cf}}, H}$. To bound the probability of this event, we bound the probability that for a fixed $P = \text{cf} \ast \Gamma = p \ast B$ for some $p \in \mathbb{Z}_q$, a random oracle call $H_{\text{e2c}}(v', m')$ for a pair that has not been queried before, yields a valid instance for (v', Γ) and relation $R_B^{\text{cf}, H}$, where all values are fixed and $H = h \ast B$ is sampled at random during the RO evaluation. Since no other bad event has happened, the random oracle call did not produce the identity element or a collision. Since P is fixed before calling the random oracle, and similarly, $\text{cf} \ast v = \phi_{\text{cf}}(v') = x \ast B$ for some x is fixed before evaluating the random oracle, we would need that h satisfies the equation $(x \cdot h) \ast B = x \ast H = p \ast B$ in group G, i.e., $h = p/x$ computed over \mathbb{Z}_q where we need $x \neq 0$ or, equivalently, $v' \notin \ker(\phi_{\text{cf}})$, which holds since we condition on F_{VF1} that excludes low-order points. Therefore, the event $h = p/x$ happens with probability at most $1/q$. If n_h denotes the upper bound on random-oracle queries to H and n_{e2c} denotes an upper bound on the number of random-oracle queries to H_{e2c}, we obtain that provoking the event F_{VF4} (while the above bad events have not occurred) happens with probability at most $n_{\text{e2c}} \cdot (n_h/q)$.

Event F_{VF5}: Here we bound the probability that a proof string $\pi = (\Gamma || U || V || s)$ is valid for (v, m, y) but we have already previously successfully evaluated tuple (v', m', y, π) where $H(\ldots || \text{cf} \ast \Gamma \ldots) = y$ (and where the pair (v', m') is different from (v, m)). Since the proof is valid and none of the other bad events are assumed to have occurred, we have $(v, \Gamma), (v', \Gamma) \in L_{R_B^{\text{cf}}, H}$. Let $\text{cf} \ast \Gamma = p \ast B$ for some p.

By definition of event F_{VF5} $H(\ldots || \text{cf} \ast \Gamma \ldots)$ has been evaluated and since we can assume that F_{VF4} did not occur, the above RO evaluation happened for the first time at a point in

9Recall that $E2C_v$ equals the public key. In this case, the public key v in the challenge computation is not needed for the above argument. The reason is that we can condition on the fact that each pair (v, m) is uniquely mapped to its base point H.

30
the execution at which \(H' = H_{e2c}(v', m') \) as well as \(H = H_{e2c}(v, m) \) were already evaluated. Therefore, we directly reach a contradiction to \(\mathcal{F}_{\text{ROF1}} \). Therefore, the probability of this event conditioned on none of the previous events happening, is 0.

Event \(F_{\text{pred}} \): The chances that a given \(y' \) equals \(H(... || P || ...) \) for some \(P \) that has never been queried to the random oracle, is \(2^{-4\kappa} \). Let \(m \) denote the number of verification queries, where each query can be seen as identifying the query \(P_i \) and the corresponding guess \(y'_i \). \(m \) can be partitioned as the sum \(m = m_1 + \cdots + m_j \) where \(j = |\{P_1, \ldots, P_m\}| \), where \(m_k \) is the number of verification requests identifying point \(P_k \). The probability of predicting at least one value correctly is thus upper bounded by \(\sum_{k=1}^j m_k \cdot 2^{-4\kappa} = m \cdot 2^{-4\kappa} \).

Event \(F_{\text{id}} \): This is a standard collision probability on outputs of the random oracle \(H_{e2c} \) on inputs \((v, m)\), where \(v \) is an EC point of order at least \(q \). Conditioned on the event that none of the results are the identity element, if \(n_{e2c} \) denotes an upper bound on these queries, the probability of this event can be bounded by \(n_{e2c}^2/(q - 1) \).

Event \(F_{\text{ROF1}} \): Recall that any two distinct queries \(H_{e2c}(v_i, m_i) \) and \(H_{e2c}(v_j, m_j) \) result in random base points \(H_i \) resp. \(H_j \). In this case, we condition in particular on \(\mathcal{F}_{\text{col}} \) and \(\mathcal{F}_{\text{id}} \), which means that if we have \(n_{e2c} \) distinct queries to the random oracle, this induces a sequence \((h_1, \ldots, h_{n_{e2c}})\) drawn from the set \(\mathbb{Z}_q \setminus \{0\} \) without repetition. We now bound the probability that any two positions in this sequence fulfill the relation to provoke the event.

We know that \(\phi \ast v_i = x_i \ast B \), \(\phi \ast v_j = x_j \ast B \), for some exponents \(x_i \) and \(x_j \). The critical relation is whether the sampled points \(H_i \), \(H_j \), written as \(h_i \ast B \) and \(h_j \ast B \), respectively, satisfy, for certain \(\Gamma_i \) and \(\Gamma_j \), the equations \((x_i \cdot h_i) \ast B = \phi(\Gamma_i) = P = \phi(\Gamma_j) = (x_j \cdot h_j) \ast B \). This implies that \(x_i \cdot h_i = x_j \cdot h_j \) over \(\mathbb{Z}_q \), or equivalently \(h_i/h_j = x_j/x_i \), where \(x_j, x_i \) are fixed before sampling \(h_i \) and \(h_j \).

Given a fixed coefficient \(a_{ij} \in \mathbb{Z}_q \), the probability that the two values \(h_i, h_j \) satisfy \(h_i = a_{ij} \cdot h_j \) is at most \(1/(q - 2) \). By the union bound, the probability of provoking \(F_{\text{ROF1}} \) conditioned on none of the bad events happening is at most \(n_{e2c}^2/(q - 2) \).

Event \(F_{\text{ROF2}} \): Assume we have an environment \(Z \) that provokes event \(F_{\text{ROF2}} \) and no other bad event and denote the probability of this event by \(\epsilon \). This means that there is an honest party \(U \) with public key \(v = x \ast B \), and a message \(m \) s.t. \(H = H_{e2c}(v, m) \), but the party has never evaluated the VRF on input \((v, m)\). In particular, it has never computed the point \(\Gamma = x \ast H \).

Assume \(Z \) provides a point \(P \) in such an execution such that \(\phi \ast x \ast H = P \) holds w.r.t. a key of an honest party \(U \). Then, we can construct an algorithm \(A \) that solves the computational Diffie-Hellman problem in group \(G \) with probability at least \(\epsilon'(n_h, n_{e2c}, |P|, c) \), where \(n_h \) is an upper bound on the number of random-oracle queries to \(H \), \(n_{e2c} \) is an upper bound on the number of random-oracle queries to \(H_{e2c} \), \(P \) is the set of registered parties, and \(c \) is the loss induced by function \text{Compute_scalar}() \), i.e., the constant such that the size of the support of honestly generated public keys is \(2^{2c-e} \).

Algorithm \(A(P_1, P_2) \) works as follows: it maintains a \(|P| \times n_{e2c} \) matrix \(M \), where the \(i \)th row stores all returned queries \(H_{e2c}(v_i, \cdot) \) for the public key associated with party \(U_i \). Furthermore, it stores for all points \(P \in G \) provided in an invocation \(H(... || P || ...) \), the point \(P' \in G \) s.t. \(\phi \ast P' = P \) in an array \(N \) of size \(1 \times n_h \). \(A \) now first picks a random location \((i, j)\) in \(M \), defines \(v_i = P_1 \),
and $M(i,j) = P_2$. It then emulates the ideal world execution towards Z, injecting P_1 as public key and P_2 as random base point $P_2 = H_{e;2c}(P_1, m_j)$, where the tuple $(P_1, m_j, P_2, B, ?)$ is added to T_{exp} since the exponent is not known. Any consistency check done by the simulator that would involve the exponent of P_2 w.r.t. base point B, is set to be satisfied. A stops the execution when either one of the following stopping conditions occur: (1) Z corrupts U_i; (2) Z requests U_i to evaluate the VRF on m; (3) Z terminates. In any case, the output is determined by picking a random position k in array N and returning $N[k]$.

We observe that conditioned on none of the other bad events occurring during the emulation, the emulation provides, until the point when it stops, an identical view to Z as the ideal execution as long as no EC point P is provided as input to the random oracle for which $(P_1, P_2, cf^{-1} * P)$ is a Diffie-Hellman triple: Conditioned on none of the other bad events happening, the computation of the set S defined in step 1(c) of the simulation of the random-oracle query $H(... || P || ...)$ is correct except until the point when the emulation fails to detect the relation $t_H * cf * v = P$, where t_H is the exponent of $H_{e;2c}(v, m')$ to the base B. Clearly, the simulation only fails to detect the relation w.r.t. P_2 if for some x we have $x \cdot cf \cdot P_1 = P$ and $P_2 = x \cdot B$. That is the associated point $P' = (x \cdot y) * B$ for $P_2 = x \cdot B$ and $P_1 = y \cdot B$ that we are looking for.

Since by definition of the event, there must be at least one entry (i, j) in matrix M such that (v_i, m) was not evaluated and party U_i is not corrupted, we obtain that the success probability of A is at least $\epsilon' = \epsilon/(n_h \cdot n_{e;2c} \cdot |P| \cdot 2^c)$, where ϵ is the probability of event F_{ROF2} happening conditioned on none of the other bad events occurring, and where the (small and constant) factor 2^{-c} is due to the probability that a random point P_1 is a valid public key in the correct domain of $Gen(1^s)$.

Event F_{ROF3}: The condition of this event is that a given RO evaluation $H(... || P || ...)$ a subsequent call to $H_{e;2c}(v', m')$ for some v' results in a base point H' from which a valid proof instance (v', Γ') with $cf \cdot \Gamma' = P$ can be deduced. By definition of the event, P is fixed before any such instance (v', Γ') is known. Therefore, there must have been a fresh call $H_{e;2c}(v', m')$ for some m', which resulted in random base point H'. Since v' is fixed before, the exponent x, such that $cf * v' = x * B$, is fixed before the point H' is sampled. In order to deduce a valid instance Γ', the relation $x * H' = P$ must hold. Since H and P are elements of G, we write $H' = h' * B$ and $P = p * B$ and see that the relation $(x \cdot h') * B = p * B$ implies that the relation $h' = p/x$ must hold over \mathbb{Z}_q. Given an upper bound n_h on the RO queries to H and an upper bound $n_{e;2c}$ on the number of RO queries to $H_{e;2c}$, there can be at most $n_{e;2c}$ queries to $H_{e;2c}$ that could result in any of the relations to hold with any of the at most P points queried before. An upper bound on the probability of the event F_{ROF3} conditioned on no other bad event happening can be obtained by a union bound which yields $n_h \cdot n_{e;2c}/(q-1)$.

Event F_{ROF4}: Conditioned on F_{pred}, the probability of F_{ROF4} is 0. The reason is that if $(\text{Verify}, sid, v, m, y', \pi, 0)$ (where $\pi = \Gamma || ...$) has been output to a party, then the input $(\text{Verify}, sid, m, y', \pi, v)$ must have been given as input which correctly predicted $H(... || cf \cdot \Gamma || ...)$ before it was called.

Event F_{Corr1}: This event only occurs if the environment correctly guesses the secret seed of an honest party. There are at most $|P|$ honest parties, and if n_h is an upper bound on the number of RO evaluations to H, the probability of this event is no more than $n_h \cdot |P| \cdot 2^{-2\kappa}$.

Event F_{Corr2}: This event only occurs if the environment correctly guesses the bitstring s_1 of an honest party. Conditioned on F_{Corr1}, the probability of this event is no more than $n_h \cdot |P| \cdot 2^{-2\kappa}$.
Functionality \(\mathcal{G}_{BB} \)

The function maintains a (dynamically updatable) list \(L_s \) (initially empty). The functionality manages the set \(\mathcal{P} \) of registered machines (identified by extended identities), i.e., a machine is added to \(\mathcal{P} \) when receiving input \textsc{register} (and removes a machine from \(\mathcal{P} \) when receiving \textsc{de-register}. The requests give activation back to the calling machine).

- Upon receiving \((\text{add}, sid, x)\) from \(P \in \mathcal{P} \) or from the adversary, set \(L \leftarrow L \| x \) output \((\text{Updated}, sid, L)\) to the adversary.

- Upon receiving \((\text{retrieve}, sid, i, j)\) from \(P \in \mathcal{P} \) or from the adversary, do the following: if \(L[j] \) is undefined, return \((i, j, \emptyset)\) to the caller. Otherwise, return the result \((\text{Retrieved}, sid, i, j, L[i] \| \ldots \| L[j])\) to the caller.

Figure 10: The global bulletin board.

It is easy to see that all these failure probabilities are negligible in the security parameter. The theorem follows.

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be answered immediately.\(^{10}\) This is a useful modeling property and we refer to CEK\(^{+16}\)BGK\(^{+18}\) for the relevant details, as they are outside the scope of this paper.

9.2 Security Analysis of ECVRF\(_{bc}\) with Batch Verifications

We first describe the setting and the ideal world that idealizes the security requirements for batch verifications.

9.2.1 The Setting

We want to capture a general setting where the protocol is asked to verify a bunch of claimed VRF proofs originating from any source outside the system, including maliciously generated ones by the adversary. We model this setting using a global bulletin-board functionality \(\mathcal{G}_{BB} \) and describe it in Figure 10. This abstraction fits not only the public blockchain setting (which can be seen as a bulletin board), but any application that makes use of batch verifications where new proofs appear in the system over time, potentially visible and updatable by anyone including an adversary. Each instance of this functionality maintains a list of values. The list is append-only, but there is no other restriction on what is appended and thus the only guarantee it offers is that if we refer to an interval \([i \ldots j]\) in the list associated to session \(sid \) then, once defined, the returned list of values is always the same. The functionality is a global setup BCH\(^{+20}\) for full generality of the statement. In particular, once proven for this setting, simpler settings (such as defining a protocol interface taking a batch of proofs directly from a caller) follow in a straightforward manner.

9.2.2 The Ideal World

In the ideal world, we introduce a new simple command to the VRF functionality described in Figure 11. Upon input \((\text{BatchVerify}, sid, i, j)\), the functionality retrieves the corresponding list from \(\mathcal{G}_{BB} \) and if the list is non-empty, it verifies whether all claimed combinations are known

\(^{10}\)That is, without activating any other machine for any other purpose than providing the answer back to \(\mathcal{F}_{\text{VRF}} \).
The functionality interacts with parties denoted by $P = \{U_1, \ldots, U_{|P|}\}$ and the adversary/simulator S. It maintains tables $T[\cdot, \cdot]$ that are initially empty (denoted by symbol \perp). The tables are initialized on-the-fly. The functionality maintains a set S_{pk} to keep track of registered keys, and S_{eval} to keep track of all known VRF evaluations. The functionality registers to the instance of G_{BB} with the same session identifier sid.

- **Key Generation.** As in Figure 1

- **Malicious Key Generation.** As in Figure 1

- **VRF Evaluation and Proof.** As in Figure 1

- **Malicious VRF Evaluation.** As in Figure 1

- **Verification.** As in Figure 1

- **Batch Verification.** Upon receiving a message $(\text{BatchVerify}, sid, i, j)$ from any party, send $(\text{retrieve}, sid, i, j)$ to G_{BB} to receive the list (i, j, L_{ij}). Then output $(\text{BatchVerify}, sid, i, j)$ to the adversary. Upon receiving $(\text{BatchVerified}, sid, i, j, b)$ do the following:

 1. If $L_{ij} = \emptyset$ holds then return $(\text{BatchVerified}, sid, i, j, 0)$ to the caller. If this is not the case, but all pairs (v_i, m_i, y_i) specify the correct input-output-pairs as stored by the functionality, i.e., $T(v_i, m_i) = y_i$, then the functionality lets the adversary decide on the output value. This case captures the fact that although the proofs strings might not be stored in the functionality (or will never be), batch verification will never assert a wrong input-output mapping. In any other case, the output is defined to be 0. One can further consider an enhanced version of the functionality that includes a consistency requirement, achieved for example by protocols (like the one in the next section) with deterministic verification. Such a functionality is formally obtained by replacing step 1 of batch verification by its enhanced version 1^* in Figure 1

Figure 11: The VRF functionality with Batch Verifications. Replacing step 1 by the enhanced version 1^* yields a formally stronger functionality that additionally captures the consistency requirement achieved by schemes with deterministic verification.
Theorem 9.4. Under the same assumptions as Theorem 9.3, the protocol verifies. We thus get the following simulator S simulator F that this corresponds to evaluating the random oracles \mathcal{F}_G^3 and \mathcal{F}_R^3, respectively.

- On input $(\text{BatchVerify}, sid, i, j)$, send (RETRIEVE, sid, i, j) to G_{BB} and receive the answer (Retrieved, $sid, i, j, L_{i,j}$). If $L_{i,j} = \emptyset$ then return $(\text{BatchVerified}, sid, i, j, 0)$. Otherwise, do the following:

1. Parse every item in the list as tuple, i.e., for each $k \in \|L_{i,j}\|$ obtain $T_k = (m_k, y_k, \pi_k, v_k)$. If the tuple has wrong format, return $(\text{BatchVerified}, sid, i, j, 0)$.

2. For each T_k perform first the steps 1. to 3. and then step 3.5 of ECVRF.Vfy, that is:
 - Verify that $v_k \in E$ and then that $cf \neq v_k \in O$.
 - Parse and verify π_k as tuple $(\Gamma_k, U_k, V_k, s_k) \in E^3 \times \mathbb{Z}_q$.
 - Compute $H_k \leftarrow H_{e_{2e}}(v_k, m_k)$.
 - Compute $c_k \leftarrow H(\text{suite}_s || DS_2 || H_k || \Gamma_k || U_k || V_k || DS_0)[..k]$.

3. If any check fails then return $(\text{BatchVerified}, sid, i, j, 0)$.

4. Perform the batch verification:
 - Set $\pi_k \leftarrow H_k || \pi_k$ for all $k \in \|L_{i,j}\|$.
 - Let $S_T \leftarrow \pi_1 || \ldots || \pi_{|L_{i,j}|}$.
 - $\forall k \in \|L_{i,j}\|: h_k \leftarrow H(\text{suite}_s || DS_4 || S_T || k || DS_0)$.
 - $\forall k \in \|L_{i,j}\|: l_k \leftarrow h_k[..k]$.
 - $\forall k \in \|L_{i,j}\|: r_k \leftarrow h_k[k..2 \cdot k]$.
 - Evaluate
 \[b_1 \leftarrow \left(O = \sum_{k \in \|L_{i,j}\|} \left(r_k \ast (s_k \ast B - c_k \ast v_k - U_k) + l_k \ast (s_k \ast H_k - c_k \ast \Gamma_k - V_k) \right) \right). \tag{4} \]

5. Evaluate $b_2 \leftarrow (\forall k \in \|L_{i,j}\|: y_k = \text{Compute}(\pi_k))$.
6. Define $b \leftarrow b_1 \land b_2$ and return $(\text{BatchVerified}, sid, i, j, b)$ to the caller.

9.2.4 The UC Construction Statement

Theorem 9.4. Under the same assumptions as Theorem 9.3, the protocol $\pi^{\text{+}}_{\text{ECVRF}}$ UC-realizes $\mathcal{F}_{\text{VRF}}^3$ (where G_{BB} is a global setup), for $X = \{0, 1\}^*$ and $\ell_{\text{VRF}}(\kappa) = 4\kappa$.

Proof. Consider the simulator in the proof of Theorem 9.3 and denote it S_{ECVRF}. We build our new simulator $S^{\text{+}}$ on top of S_{ECVRF} as follows: we simulate identically to S_{ECVRF} and ensure that at any point in time all combinations stored in G_{BB} are verified with the functionality to prepare for batch verifications. We thus get the following simulator $S^{\text{+}}$:

35
• On receiving (KeyGen, sid, Ui) from \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) invoke \(\mathcal{S}_{\text{ECVRF}}\) on the same input and return to \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) whatever \(\mathcal{S}_{\text{ECVRF}}\) outputs (and abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

• On receiving (EvalProve, sid, Ui, m) from \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\), invoke \(\mathcal{S}_{\text{ECVRF}}\) on the same input and return to \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) whatever \(\mathcal{S}_{\text{ECVRF}}\) outputs (and abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

• On receiving (Verify, sid, m, y', \(\pi', v', S_{\text{eval}}\)) from \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) invoke \(\mathcal{S}_{\text{ECVRF}}\) on the same input and return to \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) whatever \(\mathcal{S}_{\text{ECVRF}}\) outputs (and abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

• On receiving (BatchVerify, sid, i, j) from \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\), retrieve the list \(L_{i,j}\) from \(\mathcal{G}_{\text{BB}}\) and perform the batch verification steps like the protocol (i.e., emulate the steps from \([\text{Item 1]}\) to \([\text{Item 6]}\) of the batch verification) to derive the return value \(b\) and return (BatchVerify, \(\text{sid}, i, j, b\)) to \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\). Define SIMFAIL if \(b = 1\) but there exists a tuple \((m', y', \pi' = \Gamma || \ldots, v')\) but Compute(\(\pi'\)) \(\neq y'\). Abort if SIMFAIL occurs.

• On receiving (Updated, \(\text{sid}, L\)) from \(\mathcal{G}_{\text{BB}}, S^+\) determines all new added tuples \(T_i\) of the correct form \((m_i, y_i, \pi_i, v_k)\) and calls \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) with input (Verify, \(\text{sid}, m_i, y, \pi, v')\), (which in turn triggers the simulation \(\mathcal{S}_{\text{ECVRF}}\) on input (Verify, \(\text{sid}, m_i, y_i, \pi_i, v_i, S_{\text{eval}}\)) as above). Finally, \(S^+\) outputs (Updated, \(\text{sid}, L\)) to the environment.

Invocation of \(H_{e2c}\) on input \(s \in \{0,1\}^*\): Perform the same actions as \(\mathcal{S}_{\text{ECVRF}}\) (abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

Invocation of \(H\) on input \(s \in \{0,1\}^*\): First, perform a case distinction on the separated domain \(s = (\text{suite}_s || DS_4 || X || DS_0)\) which is simulated as follows: If \(T_h[s] \neq \perp\), return \(T_h[s]\). Otherwise, pick a random challenge pair \(c = c_1 \| c_2\) (each \(c_i\) represented by \(\kappa\) bits) and an additional random string \(r \leftarrow \{0,1\}^{2\kappa}\) and assign \(T_h[s] \leftarrow c \| r\). For any other domain, perform the respective actions of \(\mathcal{S}_{\text{ECVRF}}\) (abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

Upon corruption of party \(U_i\): Perform the same actions as \(\mathcal{S}_{\text{ECVRF}}\) (abort if \(\mathcal{S}_{\text{ECVRF}}\) aborts).

Analysis of the simulation. We first consider the same set of bad events defined in \([\text{Figure 9}]\) but we formally extend the events \(F_i \cup F_i\) to not only includes queries (Verify, \(\text{sid}, m, y, \pi, v'\), made by \(\mathcal{Z}\), but also that a tuple of the form \(T = (m, y, \pi, v')\) is added as part of a query (ADD, \(\text{sid}, T\)) to \(\mathcal{G}_{BB}\).

We first observe that any environment \(\mathcal{Z}\) which does not make any invocation of the form (BatchVerify, \(\text{sid}, i, j\)) to any honest party and which has non-negligible advantage in distinguishing the real and ideal executions, contradicts \([\text{Theorem 9.3}]\). Since the only difference between the two executions is the availability of the bulletin board \(\mathcal{G}_{BB}\), we can design an environment \(\mathcal{Z}'\) which internally runs \(\mathcal{Z}\) and emulates \(\mathcal{G}_{BB}\) towards it, and whenever new updates are pushed on \(\mathcal{G}_{BB}\), \(\mathcal{Z}'\) lets the challenge protocol verify these updates. For all other queries, it invokes the main parties of its challenge session. If at any point, the execution is aborted (in which case \(\mathcal{Z}'\) must be connected to an ideal execution), the distinguisher outputs 0, and in any other case outputs whatever \(\mathcal{Z}\) outputs. Since no other entity ever writes or reads from \(\mathcal{G}_{BB}\) except \(\mathcal{Z}\) in the real world, if \(\mathcal{Z}'\) interacts with \(\pi_{\text{ECVRF}}\) then the view emulated towards \(\mathcal{Z}\) is exactly the view it has when interacting with \(\pi_{\text{VRF}}\). And if \(\mathcal{Z}'\) interacts with \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) (and simulator \(\mathcal{S}_{\text{ECVRF}}\)) then the view emulated towards \(\mathcal{Z}\) is exactly the view it has when interacting with \(\mathcal{F}_{\text{VRF}}^{X,\ell_{\text{VRF}}}\) (and simulator \(S^+\)) until the point where
a failure event is provoked as defined in Figure 9. Therefore, the distinguishing advantage of Z' is at least the advantage of Z.

It thus suffices to analyze the real and ideal executions’ behavior on inputs ($\text{BatchVerify}, sid, i, j$). By definition of S^+, whenever a tuple $T_k = (m_k, y_k, \pi_k, v_k)$ is added to G_{BB}, this is equivalent to have $F_{\text{VRF}}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$ verify the tuple (m, y, π, v') (and the verification is identical to the verification of $F_{\text{VRF}}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$). Therefore, in the ideal execution with $F_{\text{VRF}}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$ and S^+, the output of any query ($\text{BatchVerify}, sid, i, j$) is 1 if all tuples T_1, \ldots, T_j have been successfully verified.

For the remaining cases, we see that the simulator can decide on the value, with the restriction that the output can only be decided to be 1, if all input-output pairs $((v_i, m_i), y_i)$ are consistent with function table of the $F_{\text{VRF}}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$.

That is consider the case that we have $b = 1$ upon batch verification and none of the bad events defined in Figure 9 occur. The simulator has made, for each tuple $T_k = (m_k, y_k, \pi_k, v_k)$ a call $\mathcal{H}_{e2c}(v_k, m_k)$ (to obtain H_k) and a call $\mathcal{H}(\ldots \| \mathcal{cf} * \Gamma_k \| \ldots) = (\text{to obtain } y_k)$. The latter call associates the point $\mathcal{cf} \ast \Gamma_k$ with at most one pair (v', m') that satisfies the relation $t' * (\mathcal{cf} * v') = \mathcal{cf} \ast \Gamma_k$ (where t' is such that $t' * B = H'$), i.e., for which $(v', \Gamma_k) \in R_{B,H}^{t'}$. If such a match is found (and no bad event occurs), the simulation has consistently programmed the random oracle $\mathcal{H}(\ldots \| \mathcal{cf} \ast \Gamma_k \| \ldots)$ to match the output of the functionality on a query for (v', m').

Therefore, the computed batch verification value $b = 1$ by the simulator must be accepted by the functionality if for each Γ_k specified in tuple T_k, the pair (v', m') that is associated to each Γ_k specified in tuple T_k is exactly the pair (v_k, m_k) listed in tuple T_k. Stated differently, and in view of equation (3), assuming that no tuple breaks the NIZK soundness individually (condition on \overline{F}_T and since the simulator verifies every proof string added to G_{BB}), the simulator could only fail to simulate if the entire batch verifies, but for a tuple T_k, with $\mathcal{cf}(\Gamma_k) = x_k \ast B$ for some $x_k \neq 0$, we have that $\mathcal{cf}(\Gamma_k) \neq x_k \ast H_k$, where H_k (conditioned on \overline{F}_{id}) is the unique generator associated to (v_k, m_k). This motivates the following new bad event F_{Batch} that rules out this case and which implies that the simulator never aborts. Based on the above considerations as long as none of the bad events (including F_{Batch}) occur, Z’s views in the real and ideal executions must be indistinguishable.

New event F_{Batch}. This is the event that Z provides input ($\text{BatchVerify}, sid, i, j$), which refers to tuples T_i, \ldots, T_j, upon which the computed result is ($\text{BatchVerified}, sid, i, j, 1$), but at least one of the tuples, say T_k, $i \leq k \leq j$, encodes correctly formatted values $(m_k, y_k, \pi_k, v_k), \pi_k = \Gamma_k \| \ldots$, such that $y_k = \text{Compute}(\pi_k)$, but $(v_k, \Gamma_k) \notin R_{B,H_k}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$ for $H_k = \mathcal{H}_{e2c}(v_k, m_k)$.

Bounding the probability of the new bad event. We now bound the probability of event F_{Batch} to happen conditioned on none of the other bad events occurring. Due to the condition in particular on \overline{F}_{F_i}, event F_{Batch} can only be triggered on input ($\text{BatchVerify}, sid, i, j$), where all tuples $L_{i,j} = T_i, \ldots, T_j$ in G_{BB} are defined and well-formed. Furthermore, we can assume that for each $T_k = (m_k, y_k, \pi_k, v_k), \pi_k = \Gamma_k \| U_k \| V_k \| s_k$, it holds that $\text{Compute}(\pi_k) = H(\ldots \| \mathcal{cf} * \Gamma_k \| \ldots) = y_k$, as otherwise, the batch verification output is fixed to 0. Likewise, all relations under Item 2 of the batch verification step must hold. Furthermore, since all proof strings to G_{BB} are assumed to be implicitly verified, by \overline{F}_F, no tuple added to G_{BB} constitutes a soundness breach of the NIZK.

Thus, we investigate the probability that equation (4) is satisfied despite of the existence of a tuple $T_k = (m_k, y_k, \pi_k, v_k)$ with $\pi_k = (\Gamma_k, U_k, V_k, s_k)$, where $(v_k, \Gamma_k) \notin R_{B,H_k}^{\mathcal{X}, \mathcal{A}_{\text{VRF}}}$, for which by

11 And note that at most one point $P \in G$ can be associated to (v', m') as argued in the proof of Theorem 9.3 based on no bad events being triggered so far.

12 This follows by \overline{F}_F. 37
assumption the equations
\[
U_k = s_k * B - c_k * v_k,
V_k = s_k * H_k - c_k * \Gamma_k
\]
are not simultaneously satisfied, where \(H_k\) is the unique base associated to \((v_k, m_k)\) and \(c_k\) is the challenge associated to this proof string for this proof instance. We therefore have
\[
\sum_{k \in \{L_{i,j}\} \setminus \{\hat{k}\}} (r_k * (s_k * B - c_k * v_k - U_k) + l_k * (s_k * H_k - c_k * \Gamma_k - V_k))
\]
as an equation over the elliptic curve group \(E\). Towards the argument, define
\[
Q := \sum_{k \in \{L_{i,j}\} \setminus \{\hat{k}\}} (r_k * (s_k * B - c_k * v_k - U_k) + l_k * (s_k * H_k - c_k * \Gamma_k - V_k))
\]
\[
Q_1^{(r)} := s_k * B; \quad Q_2^{(r)} := c_k * v_k; \quad Q_3^{(r)} := U_k;
Q_1^{(l)} := s_k * H_k; \quad Q_2^{(l)} := c_k * \Gamma_k; \quad Q_3^{(l)} := V_k
\]
which allows us to rewrite the equation as
\[
l_k * (Q_1^{(l)} - Q_2^{(l)} - Q_3^{(l)}) + r_k * (Q_1^{(r)} - Q_2^{(r)} - Q_3^{(r)}) = Q. \quad (5)
\]

Similar to the Fiat-Shamir transform, we can consider the verification as the non-interactive version of an interactive proof, where the prover presents a list \(L_{i,j}\) of tuples and the verifier samples the coefficients \(r_k\) and \(l_k\) at random from a large space \(C\), and the probability of a soundness failure is bounded by the probability that equation (5) happens to be satisfied as described above. In the random-oracle model, the honest verifier can be replaced by the random oracle as described in Section 9.1.1 if there is a one-to-one mapping between protocol runs and invocations to the random oracle. We observe that given our assumptions of none other bad event happening, for each list of tuples presented by a potentially malicious prover, the sampling \(l_k \leftarrow H(\text{suite}_s || DS_4 || S_T || k || DS_0 || \kappa..2\kappa)\) and \(r_k \leftarrow H(\text{suite}_s || DS_4 || S_T || k || DS_0 \{\kappa..2\kappa\})\) is performed using different inputs to the random oracle and taking different portions from the random output for the respective coefficients for this particular set \(S_T\), which establishes the mapping. In particular, \(S_T\) is the ordered list specifying for each \(k\), \(H_k \parallel \Gamma_k \parallel U_k \parallel V_k \parallel s_k\) which, assuming no collision among the random base points \(H_k\) assigned to \((v_k, m_k)\), is the representation for the tuple \((m_k, y_k, \pi_k, v_k)\) and \(y_k = \text{Compute}(\pi_k)\) must hold. Therefore, different lists obtained from \(G_{BB}\) result in different values for \(S_T\), and by domain separation and taking independent random bits from the RO output, independent random coefficients are derived.

Returning to equation (5) it is easy to see that if either \(Q_1^{(l)} - Q_2^{(l)} - Q_3^{(l)} \in \mathbb{G}\) or \(Q_1^{(r)} - Q_2^{(r)} - Q_3^{(r)} \in \mathbb{G}\), and recall that by assumption at least one sum does not equal the identity, the equation is fulfilled with probability at most \(1/|C|\) over the random choice of the coefficients.

For the general case, where \(Q_1^{(z)} - Q_2^{(z)} - Q_3^{(z)} \neq O\) for at least one \(z \in \{l, r\}\), denote \(Q_1 := Q_1^{(z)}\) and \(P := -(Q_2^{(z)} + Q_3^{(z)})\). We thus have \(Q_1 + P \neq O\), where \(Q_1 \in \mathbb{G}\) and \(P \in \mathbb{E}\) and \(P \notin \mathbb{G}\) by assumption. We observe that any \(l_k\) for which \(l_k * (Q_1 + P) = Q\), we obtain a solution for
\[
l_k * \phi_{ct}(Q_1 + P) = \phi_{ct}(Q),
\]
where the right-hand sides are independent of the random coefficient and the points \(Q_1 + P\) and \(Q\) are defined before sampling the random coefficient. Thus, as long as \(Q_1 + P \notin \ker(\phi_{ct})\), the probability to satisfy the condition is at most \(1/|C|\). Therefore, the
probability of passing the check is at most $1/|\mathcal{C}|$ provided that at least one of $Q_1^{(r)} - Q_2^{(r)} - Q_3^{(r)}$ and $Q_1^{(l)} - Q_2^{(l)} - Q_3^{(l)}$ is not in the kernel of ϕ_{cf}.

The remaining case is simple based on our considerations in Section 9.1.2; a tuple T_k fixes the entire instance of a particular proof, i.e., B, H_k, v_k, Γ_k, and encodes a particular run of the associated Σ-protocol where the challenge is computed correctly based on the random oracle using the Fiat-Shamir transform (otherwise, the entire sequence of tuples is rejected). In view of equation (3), we see that the employed Σ-protocol is sound w.r.t. relation R_{B,H_k} even for the relaxed verification $Q_1^{(r)} - Q_2^{(r)} - Q_3^{(r)} \in \ker(\phi_{cf}) \land Q_1^{(l)} - Q_2^{(l)} - Q_3^{(l)} \in \ker(\phi_{cf})$. Thus, the probability that the instance and proof run encoded in T_k satisfies this check but $(v_k, \Gamma_k) \notin R_{B,H_k}^{cf}$ is at most $1/|\mathcal{C}|$. The theorem follows by taking the union bound over all batch verifications instructed by the environment. \hfill \square

10 Putting Everything Together

We analyzed the range-extension construction in Section 5 without batch verification in a modular way based on any VRF that UC-realizes $\mathcal{F}_{EC\text{-VRF}}$. Nevertheless, it is easy to see that batch verification and range extension can be done in a single step in the protocol above. All we have to do is to modify the algorithm Compute in $\pi_{EC\text{-VRF}}^{+}$ which changes the format of the tuples $T = (m, y, \pi, v)$ only in one place, i.e., $y \in \{0, 1\}^{c \cdot \ell_{\text{VRF}}}$, where c is the fixed constant in the range-extension construction. We denote the new protocol with the new output computation Compute below by $\pi_{EC\text{-VRF}}^{+}$:

- Compute(π), where string $\pi = \Gamma || \ldots$ with $\Gamma \in \mathcal{E}$:
 1. Compute $Y \leftarrow H(\text{suite}_s || DS_3 || (cf * \Gamma) || DS_0)$.
 2. Output $(H(\text{suite}_s || DS_3 || 1 || Y || DS_0), \ldots, H(\text{suite}_s || DS_5 || c || Y || DS_0))$.

Corollary 10.1. Under the same assumptions as Theorem 9.4, protocol $\pi_{EC\text{-VRF}}^{+}$ UC-realizes $\mathcal{F}_{VRF}^{X \cdot \ell_{\text{VRF}}}$, for $X = \{0, 1\}^*$ and $\ell_{\text{VRF}}(\kappa) = 4\kappa$.

Proof Sketch. The only difference in the simulation compared to the proof of Theorem 9.4 is that the output of the VRF functionality $y = (y_1, \ldots, y_c)$ w.r.t. (v,m) must additionally be made consistent with the value of the random oracle in the domain-separated positions $(\text{suite}_s || DS_4 || i || Y || DS_0)$ for $i = 1, \ldots, c$, where Y is obtained by evaluating $H(\text{suite}_s || DS_3 || P || DS_0)$ and P is derived from a valid proof string $\pi = \Gamma || \ldots$ as $P = cf * \Gamma$.

We recall from the proofs of Theorem 9.3 and Theorem 9.4 that as long as the bad events defined in Figure 9 do not occur, that if a point P (from the set of points queried at the random oracle as above) is associated with a key-message pair (v,m), then this is a valid association\footnote{In the sense that valid proof strings can exist that prove the statement $(v,\Gamma) \in L_{Ref}^{B,H}$, where $cf * \Gamma = P$ and H is derived from (v,m).} and that the assignment is unique. Also the converse is proven, i.e., at most one of the points P queried to the random oracle can be associated with (v,m) as long as none of the bad events occur. Since the simulation is consistent, the assignment of points P to pairs (v,m) can be done upon the first invocation of the form $H(... || P || ...)$. Finally, correctly predicting the random-oracle output Y derived from point P (that is associated to (v,m)) is a negligible probability event. Therefore, all the pairs (i,Y), $i = 1, \ldots, c$, queried to the RO are to be programmed just at the moment when $Y \overset{\$}{\leftarrow} \{0, 1\}^{\ell_{\text{VRF}}}$ is defined for the first time in the simulation and associated to the pair (v,m) via point P. Similar to the proof of Theorem 5.1.
a consistent simulation is only possible if none of these positions \((i, Y)\) for \(i = 1, \ldots, c\) has been programmed before, which is an event that can be bounded by the (negligible) collision probability of bitstrings drawn uniformly at random from \(\{0, 1\}^{\ell_{\text{VRF}}}\). Therefore, if neither such collisions nor any of the above defined bad events occur we obtain a simulator for which the real and ideal executions are indistinguishable. The claim follows.

\[\Box\]

References

