
Weak Subtweakeys in SKINNY
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Abstract. Lightweight cryptography is characterized by the need for
low implementation cost, while still providing sufficient security. This
requires careful analysis of building blocks and their composition.
SKINNY is an ISO/IEC standardized family of tweakable block ciphers
and is used in the NIST lightweight cryptography standardization process
finalist Romulus. We present non-trivial linear approximations of two-
round SKINNY that have correlation one or minus one and that hold
for a large fraction of all round tweakeys. Moreover, we show how these
could have been avoided.

Keywords: cryptanalysis, lightweight symmetric cryptography, block
ciphers

1 Introduction

In 2018, NIST initiated a process for the standardization of lightweight cryptogra-
phy [14], i.e., cryptography that is suitable for use in constrained environments.
A typical cryptographic primitive is built by composing a relatively simple round
function with itself a number of times. To choose this number of rounds, a trade-
off is made between the security margin and the performance.

One of the finalists in this standardization process is the Romulus [8] scheme
for authenticated encryption with associated data. This scheme is based on
the ISO/IEC 18033-7:2022 [1] standardized lightweight tweakable block cipher
SKINNY [2].

Two of the most important techniques for the analysis of symmetric primi-
tives are differential [3] and linear cryptanalysis [12]. To reason about the security
against these attacks, the designers of SKINNY have computed lower bounds
on the number of active S-boxes in linear and differential trails. However, at the
end of Section 4.1 of [2] they write:

The above bounds are for single characteristic, thus it will be interesting
to take a look at differentials and linear hulls. Being a rather complex
task, we leave this as future work.

Building on the work of [4], [15] investigated clustering of two-round trails in
SKINNY and in this paper we report and explain its most striking finding.

By examination of two rounds, we argue why it is sensible to look at the sub-
structure that consists of a double S-box with a subtweakey addition in between.



We study this double S-box structure both from an algebraic point of view and
a statistical point of view. We found that for some subtweakeys there are non-
trivial perfect linear approximations, i.e., that have correlation one or minus one.
We present them in this paper together with their constituent linear trails. For
both the version of SKINNY that uses the 4-bit S-box and the version that uses
the 8-bit S-box, we present one non-trivial perfect linear approximation of the
double S-box structure that holds for 1/4 of all subtweakeys and four non-trivial
perfect linear approximations that each hold for 1/16 of all subtweakeys. In to-
tal, 1/4 of the subtweakeys is weak, i.e., it has an associated non-trivial perfect
linear approximation. The linear approximations of the double S-box structure
can be extended to linear approximations of the full two rounds of SKINNY.
From the fact that the double S-box structure appears in four different locations,
it follows that 1− (3/4)4 ≈ 68% of the round tweakeys is weak, i.e., two rounds
have a non-trivial perfect linear approximation.

Despite requiring more resources to compute, this shows that for many round
tweakeys two rounds are weaker than a single round. Moreover, this also shows
that the bounds on the squared correlations of linear approximations that are
based on counting the number of active S-boxes in linear trails may not be readily
assumed.

We conclude by showing how this undesired property could have easily been
avoided by composing the S-box with a permutation of its output bits, which
has a negligible impact on the implementation cost.

1.1 Outline and Contributions

In Section 2 we remind the reader of the parts of the SKINNY block cipher
specification that are relevant to our analysis. We argue why it is reasonable to
study the double S-box structure and explore its algebraic properties. Section 3
serves as a reminder for the reader of the relevant statistical analysis tools of
linear cryptanalysis. Section 4 presents our findings from the study of the linear
trails of the double S-box structure. We show how the problem could have been
avoided in Section 5. Finally, we state the main message behind our findings in
Section 6.

2 The SKINNY Family of Block Ciphers

SKINNY [2] is a family of tweakable block ciphers. A member of the SKINNY
family is denoted by SKINNY-b-t, where b denotes the block size and t denotes
the size of the tweakey [10]. The block size b is equal to 64 bits or 128 bits. The
tweakey t is b, 2b, or 3b bits.

The AES-like [7] data path of the SKINNY block cipher is the repeated
application of a round function on a representation of the state as a four by four
array of m-bit vectors, where m is either four or eight.

Pairs (i, j) comprising a row index i and column index j with 0 ≤ i, j ≤ 3
are used to index into the state array. For example, (0, 0) refers to the entry in
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the top left and (3, 3) to the entry in the bottom right. The m-bit entries x(i,j)

are of the form (x
(i,j)
m−1, . . . , x

(i,j)
0 ).

The round function consists of the following steps in sequence: SubCells,
AddConstants, AddRoundTweakey, ShiftRows, and MixColumns.

x
3

x
0

(a) 4-bit S-box S4.

x7 x0

(b) 8-bit S-box S8.

Fig. 1: Circuit-level representation of S4 and S8. (Figure adapted from [9].)

Figure 1 shows the circuit-level view of the S-boxes that are used in the
SubCells step of SKINNY.

The block matrix that is used in the MixColumns step is equal to

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 ,

where 0 denotes the zero matrix of size m×m and 1 denotes the identity matrix
of size m. Each of the four columns of the state is multiplied by M in parallel.

The composition of two rounds is depicted in Figure 2.
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Fig. 2: Two-round SKINNY. (Figure adapted from [9].)

Consider the entry of the state at position (0, 1) in Figure 2. It is of the form
Y0 = x(0,1). This expression propagates through the step functions of two rounds
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and leads to the following intermediate expressions:

Y1 = Sm(x(0,1))

Y2 = Sm(x(0,1)) + k(0)

Y3 = Sm(Sm(x(0,1)) + k(0))

Y4 = Sm(Sm(x(0,1)) + k(0)) + k(1)

Y5 + Y6 + Y7 = Sm(Sm(x(0,1)) + k(0)) + k(1) ,

Here, k(0) and k(1) are subtweakeys, which are linear expressions in the cipher
key and tweak bits (assuming that the tweakey does not consist entirely of cipher
key bits). These linear expressions depend on the round number, but they are
known to the attacker. The tweak can be chosen by the attacker and the cipher
key is unknown to the attacker. By choosing the tweak, the attacker can attain
all values of k(0) and k(1) for a given cipher key.

The final expression shows that the sum of certain triples of state entries at
the output of the second round is equal to the application of two S-boxes and
subtweakey additions to a single entry of the input to the first round. The second
subtweakey addition does not have an important influence on the statistical
properties of this expression, so we remove it and turn our attention to the
properties of the function

Dm,k = Sm ◦Tm,k ◦Sm ,

where Tm,k is defined by x 7→ x + k for x ∈ Fm
2 . We will refer to Dm,k as the

double S-box structure.
For reasons of simplicity, we study SKINNY-64-t, i.e., the version with 4-bit

S-boxes. However, our results can be extended to the case of 8-bit S-boxes as
well.

By concatenating two copies of the 4-bit S-box circuit with a subtweakey ad-
dition layer in between we obtain the circuit-level view of D4,k that is depicted in
Figure 3. Consider the input x1. It passes through an XOR gate, the subtweakey
addition layer, and finally through a second XOR gate before being routed to
the third component of the output of D4,k. If k3 = k2 = 0, then the XOR gates
cancel each other out and the third component of D4,k is equal to x1 + k0. This
observation does not depend on the value of k1.

Let us now derive this same result in an algebraic way. Of course, we could
compute the algebraic expression for D4,k directly, but it is more insightful to
study the S-box and its inverse.

The 4-bit S-box is of the form

S4 = N4 ◦L4 ◦N4 ◦L4 ◦N4 ◦L4 ◦N4

where

N4(x3, x2, x1, x0) = (x3, x2, x1, x2x3 + x0 + x2 + x3 + 1) and

L4(x3, x2, x1, x0) = (x2, x1, x0, x3) .
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Fig. 3: Circuit-level representation of D4,k. (Figure adapted from [9].)

It follows that S4 = (S
(3)
4 ,S

(2)
4 ,S

(1)
4 ,S

(0)
4 ) where

S
(3)
4 = x2x3 + x0 + x2 + x3 + 1

S
(2)
4 = x1x2 + x1 + x2 + x3 + 1

S
(1)
4 = x1x2x3 + x0x1 + x1x2 + x1x3 + x2x3 + x0 + x3

S
(0)
4 = x0x1x2 + x1x2x3 + x0x1 + x0x2 + x0x3 + x1x3 + x1 + x2 + x3

The S-box has a generalized Feistel structure [13]. Therefore, it is not difficult
to deduce that the inverse of T4,k ◦ S4 is of the form

I4,k = (T4,k ◦ S4)−1 = N4 ◦R4 ◦N4 ◦R4 ◦N4 ◦R4 ◦N4 ◦T4,k ,
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where R4(x3, x2, x1, x0) = (x0, x3, x2, x1). It follows that I4,k is of the form

(I
(3)
4,k , I

(2)
4,k , I

(1)
4,k , I

(0)
4,k) where

I
(3)
4,k = x1x2x3 + x0x1 + x0x3 + x1x2(k3 + 1) + x1x3(k2 + 1) + x2x3k1

+ x1(k2k3 + k0 + k2 + k3) + x2(k1k3 + k1 + 1) + x3(k1k2 + k0 + k1 + 1)

+ x0(k1 + k3) + k1k2k3 + k0k1 + k0k3 + k1k2 + k1k3 + k2 + k3 ,

I
(2)
4,k = x0x3 + x2x3 + x0(k3 + 1) + x2(k3 + 1) + x3(k0 + k2) + x1 + k0k3 + k2k3

+ k0 + k1 + k2 ,

I
(1)
4,k = x2x3 + x2(k3 + 1) + x3(k2 + 1) + x0 + k2k3 + k0 + k2 + k3 + 1 ,

I
(0)
4,k = x0x2x3 + x1x2x3 + x0x2(k3 + 1) + x0x3k2 + x1x2k3 + x1x3(k2 + 1)

+ x2x3(k0 + k1) + x0x1 + x0(k2k3 + k1 + k2 + 1) + x1(k2k3 + k0 + k3 + 1)

+ x2(k0k3 + k1k3 + k0 + 1) + x3(k0k2 + k1k2 + k1) + k0k2k3 + k1k2k3

+ k0k1 + k0k2 + k1k3 + k0 + k1 + k2 + 1 .

We observe that if k3 = k2 = 0, then the component I
(1)
4,k differs from S

(3)
4 by

the constant k0 for any value of k1. This implies that D
(3)
4,(0,0,k1,k0)

= x1 + k0.

3 Linear Cryptanalysis

To analyze Dm,k in more detail, we use the statistical framework of linear crypt-
analysis [6, 12].

The important concept here is a linear approximation, i.e., an ordered pair
of linear masks (u, v) ∈ Fm

2 × Fm
2 that determine linear combinations of output

and input bits, respectively. A mask u defines a linear functional

x 7→ u⊤x = u0x0 + · · ·+ um−1xm−1 .

We measure the quality of a linear approximation with the correlation between
the linear functionals defined by the masks.

Definition 1. The (signed) correlation between the linear functional defined by
the mask u ∈ Fm

2 at the output of a function G : Fm
2 → Fm

2 and the linear
functional defined by the mask v ∈ Fm

2 at its input is defined as

CG(u, v) =
1

2m

∑
x∈Fm

2

(−1)u
⊤ G(x)+v⊤x .

The 2m × 2m matrix CG with entries CG(u, v) is called the correlation matrix
of the function G. We call a linear approximation with a correlation of one or
minus one perfect.

In addition to specifying masks at the input and output of Dm,k, we may
also specify intermediate masks.
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Definition 2. A sequence (u, v, w) ∈ Fm
2 × Fm

2 × Fm
2 is called a linear trail of

Dm,k if it satisfies the following conditions:

1. CSm
(u, v) ̸= 0;

2. CSm
(v, w) ̸= 0.

Each of the trails contributes to the correlation of the linear approximation.

Definition 3. The correlation contribution of a linear trail (u, v, w) over Dm,k

equals

CDm,k
(u, v, w) = (−1)v

⊤k CSm(u, v) CSm(v, w) .

From the theory of correlation matrices [6], it follows that

CDm,k
(u, v) =

∑
v∈Fm

2

CDm,k
(u, v, w)

=
∑
v∈Fm

2

(−1)v
⊤k CSm(u, v) CSm(v, w) .

4 Linear Trails of Sm ◦Tm,k ◦ Sm

We can now translate the observations from Section 2 into the language of linear
cryptanalysis. The observations state that the linear approximation (1000, 0010)
of D4,(0,0,k1,k0) is perfect for all k0, k1 ∈ F2.

One way of seeing this is directly from the fact that

(1000)⊤ D4,(0,0,k1,k0) = D
(3)
4,(0,0,k1,k0)

= x1 + k0

= (0010)⊤x+ k0 .

Hence, the correlation is one if k0 is zero and minus one otherwise.
An alternative view is the following. Due to the equivalence of vectorial

Boolean functions and their correlation matrices [6], equality of S
(3)
4 and I

(1)
4,k

implies equality of row 1000 of CS4
and row 0010 of CI4,k . The latter corre-

sponds to column 0010 of CT4,k ◦ S4 . These are exactly the two vectors that we
need to multiply in order to compute CD4,k

(1000, 0010). Using the orthogonal-
ity relations [11], it is not difficult to show that this correlation is either one or

minus one, depending on the constant difference between S
(3)
4 and I

(1)
4,k , which

only influences the sign.
In general, we have computed all the non-trivial perfect linear approximations

for each of the 2m subtweakeys. This was accomplished by considering all the
possible linear trails over D4,k. The results are found in Table 1 for the case
m = 4, i.e., for the 4-bit S-box, and in Table 2 for the case m = 8, i.e., for the
8-bit S-box. The first column lists the output masks and the third column lists
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the input masks. An asterisk denotes that the linear approximation holds for
any subtweakey bit in that position. It turns out that in both cases such linear
approximations exist for a quarter of the subtweakeys. We call subtweakeys for
which this property holds weak.

Consider a fixed subtweakey. If (u1, w1) and (u2, w2) are two perfect linear
approximations, then their sum (u1 + u2, w1 + w2) is again a perfect linear
approximation, as evidenced by the tables. Moreover, the pair (0, 0) is always a
perfect linear approximation. It follows that the perfect linear approximations
for a fixed subtweakey form a linear subspace of Fm

2 × Fm
2 .

5 Patching the Problem

To patch the problem, we search within a specific subset of S-boxes that are
permutation equivalent [5] to the original.

Definition 4. Two functions F: Fm
2 → Fm

2 and G: Fm
2 → Fm

2 are called per-
mutation equivalent if there exist bit permutations σ and τ such that

F = τ ◦G ◦ σ .

A bit permutation τ is a permutation of {0, . . . ,m − 1} that has been extended
to Fm

2 by

(xm−1, . . . , x0) 7→ (xτ(m−1), . . . , xτ(0)) .

Many of the cryptographic properties of an S-box are preserved by permutation
equivalence, e.g., the algebraic degree, the differential uniformity, the linearity,
and the branch number. Moreover, the impact of a bit permutation on the im-
plementation cost is negligible. For example, in hardware it amounts to rewiring
of the signals. We have restricted our search to those permutation equivalent
S-boxes for which σ is the identity.

Any bit permutation applied to the output bits of S4 permutes the columns
of its correlation matrix. Indeed, we have

CG(u, v) = CS4
(u, τ−1(v)) .

Table 3 lists the bit permutations τ and the ratio of subtweakeys for which
there exist non-trivial perfect linear approximations. For example, the row
“(x2, x1, x0, x3) 0” corresponds to the bit permutation τ = L4 for which no
subtweakeys are weak. It turns out that there exist many permutation equivalent
S-boxes for which the double S-box structure does not have non-trivial perfect
linear approximations for any subtweakey.

Similarly, for the 8-bit S-box we found that there exist many permutation
equivalent S-boxes for which there exist no non-trivial perfect linear approxima-
tions. An example of such an S-box is obtained by applying the bit permutation
τ(x7, x6, x5, x4, x3, x2, x1, x0) = (x7, x5, x6, x4, x3, x2, x1, x0). Because the num-
ber of possible bit permutations is large, we did not include them all here.
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Table 1: Perfect linear approximations of S4 ◦T4,k ◦ S4 and their constituent
linear trails.

output intermediate input
mask mask mask subtweakey
u v w k CD4,k (u,w) CT4,k (v, v) CS(u, v) CS(v, w)

1000

0001

0010 00∗k0 (−1)k0

(−1)k0 1/2 1/2

0101 (−1)k0 −1/2 −1/2

1001 (−1)k0 −1/2 −1/2

1101 (−1)k0 −1/2 −1/2

1010

0001

1110 0001 1

−1 −1/4 1/4
0011 −1 1/4 −1/4
0100 1 −1/2 −1/2
0101 −1 1/4 −1/4
0110 1 −1/2 −1/2
0111 −1 −1/4 1/4
1001 −1 −1/4 1/4
1011 −1 1/4 −1/4
1101 −1 −1/4 1/4
1111 −1 1/4 −1/4

0010

0001

1100 0001 −1

−1 1/4 1/4
0011 −1 1/4 1/4
0100 1 1/2 −1/2
0101 −1 −1/4 −1/4
0110 1 −1/2 1/2
0111 −1 −1/4 −1/4
1001 −1 1/4 1/4
1011 −1 1/4 1/4
1101 −1 1/4 1/4
1111 −1 1/4 1/4

0010

0001

1110 0011 −1

−1 1/4 1/4
0011 1 1/4 −1/4
0100 1 1/2 −1/2
0101 −1 −1/4 −1/4
0110 −1 −1/2 −1/2
0111 1 −1/4 1/4
1001 −1 1/4 1/4
1011 1 1/4 −1/4
1101 −1 1/4 1/4
1111 1 1/4 −1/4

1010

0001

1100 0011 1

−1 −1/4 1/4
0011 1 1/4 1/4
0100 1 −1/2 −1/2
0101 −1 1/4 −1/4
0110 −1 −1/2 1/2
0111 1 −1/4 −1/4
1001 −1 −1/4 1/4
1011 1 1/4 1/4
1101 −1 −1/4 1/4
1111 1 1/4 1/4
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Table 2: Perfect linear approximations of S8 ◦T8,k ◦ S8 and their constituent
linear trails.

output intermediate input
mask mask mask subtweakey
u v w k CD8,k (u,w) CT8,k (v, v) CS(u, v) CS(v, w)

01000000

00010000

00001000 00∗k4∗∗∗∗ (−1)k4

(−1)k4 1/2 1/2

01010000 (−1)k4 −1/2 −1/2

10010000 (−1)k4 −1/2 −1/2

11010000 (−1)k4 −1/2 −1/2

10010000

00001000

00000010 0001∗∗∗∗ −1

1 −1/2 1/2
00011000 −1 −1/4 −1/4
00101000 1 1/2 −1/2
00111000 −1 −1/4 −1/4
01011000 −1 1/4 1/4
01111000 −1 1/4 1/4
10011000 −1 1/4 1/4
10111000 −1 1/4 1/4
11011000 −1 1/4 1/4
11111000 −1 1/4 1/4

11010000

00001000

00001010 0001∗∗∗∗ 1

1 −1/2 −1/2
00011000 −1 −1/4 1/4
00101000 1 −1/2 −1/2
00111000 −1 1/4 −1/4
01011000 −1 1/4 −1/4
01111000 −1 −1/4 1/4
10011000 −1 1/4 −1/4
10111000 −1 −1/4 1/4
11011000 −1 1/4 −1/4
11111000 −1 −1/4 1/4

10010000

00001000

00001010 0011∗∗∗∗ 1

1 −1/2 −1/2
00011000 −1 −1/4 1/4
00101000 −1 1/2 −1/2
00111000 1 −1/4 −1/4
01011000 −1 1/4 −1/4
01111000 1 1/4 1/4
10011000 −1 1/4 −1/4
10111000 1 1/4 1/4
11011000 −1 1/4 −1/4
11111000 1 1/4 1/4

11010000

00001000

00000010 0011∗∗∗∗ −1

1 −1/2 1/2
00011000 −1 −1/4 −1/4
00101000 −1 −1/2 −1/2
00111000 1 1/4 −1/4
01011000 −1 1/4 1/4
01111000 1 −1/4 1/4
10011000 −1 1/4 1/4
10111000 1 −1/4 1/4
11011000 −1 1/4 1/4
11111000 1 −1/4 1/4

10



Table 3: Permutation equivalent S-boxes and their ratio of weak subtweakeys.

τ(x3, x2, x1, x0) Ratio of weak subtweakeys

(x3, x2, x1, x0) 4/16
(x2, x3, x1, x0) 6/16
(x3, x1, x2, x0) 0
(x2, x1, x3, x0) 0
(x1, x3, x2, x0) 0
(x1, x2, x3, x0) 2/16
(x3, x2, x0, x1) 0
(x2, x3, x0, x1) 0
(x3, x1, x0, x2) 0
(x2, x1, x0, x3) 0
(x1, x3, x0, x2) 5/16
(x1, x2, x0, x3) 0
(x3, x0, x2, x1) 7/16
(x2, x0, x3, x1) 0
(x3, x0, x1, x2) 0
(x2, x0, x1, x3) 0
(x1, x0, x3, x2) 6/16
(x1, x0, x2, x3) 0
(x0, x3, x2, x1) 10/16
(x0, x2, x3, x1) 8/16
(x0, x3, x1, x2) 0
(x0, x2, x1, x3) 0
(x0, x1, x3, x2) 0
(x0, x1, x2, x3) 0

6 Conclusion

The main message that we want to communicate is that the composition of
individually strong cryptographic functions may produce a weaker function for
a large subset of the round tweakey space. In SKINNY, this weakness holds for
any cipher key, because the subtweakeys are computed from the both the cipher
key and the tweak, the latter of which is chosen by the user. In small structures,
such undesired properties can be practically revealed through a combination
of algebraic and statistical analysis. This shows that counting the number of
active S-boxes in trails may have little meaning. Such properties could have been
avoided by moving to a slightly different function at a negligible implementation
cost.

We did not expect this kind of problem to exist for the 8-bit version of the
SKINNY S-box. However, like the 4-bit S-box, in the composition of the two
8-bit S-boxes, the first stage of the second S-box and the final stage of the first
S-box are the same, leading to cancellation. If the matrix that is used in the
MixColumns step did not have a row with a single one, then this double S-box
structure would not exist. As a result, this particular problem would not be
there.
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