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Abstract. Zero-knowledge proof is a powerful cryptographic primitive
that has found various applications in the real world. However, existing
schemes with succinct proof size suffer from a high overhead on the proof
generation time that is super-linear in the size of the statement repre-
sented as an arithmetic circuit, limiting their efficiency and scalability
in practice. In this paper, we present Orion, a new zero-knowledge ar-
gument system that achieves O(N) prover time of field operations and
hash functions and O(log2 N) proof size. Orion is concretely efficient and
our implementation shows that the prover time is 3.09s and the proof
size is 1.5MB for a circuit with 220 multiplication gates. The prover time
is the fastest among all existing succinct proof systems, and the proof
size is an order of magnitude smaller than a recent scheme proposed in
Golovnev et al. 2021.
In particular, we develop two new techniques leading to the efficiency
improvement. (1) We propose a new algorithm to test whether a random
bipartite graph is a lossless expander graph or not based on the small
set expansion problem. It allows us to sample lossless expanders with an
overwhelming probability. The technique improves the efficiency and/or
security of all existing zero-knowledge argument schemes with a linear
prover time. (2) We develop an efficient proof composition scheme, code
switching, to reduce the proof size from square root to polylogarithmic
in the size of the computation. The scheme is built on the encoding
circuit of a linear code and shows that the witness of a second zero-
knowledge argument is the same as the message in the linear code. The
proof composition only introduces a small overhead on the prover time.

⋆ In the previous version, there was a mistake in the proof of the expander testing
algorithm based on the densets sub-graph algorithm. In particular, in Case 2 of
Theorem 2 in the original version, the density |E′|+c

|V ′|+1
> |E′|

|V ′| only holds when

c > |E′|
|V ′| , or |V ′| > |E′|, which was not the case for lossless expanders. In this

version, we propose a different algorithm based on the small set expansion problem
to identify lossles expander graphs with a negligible soundness error in Section 3.
We thank Quang Dao and Xifan Yu, Weijie Wang, Charalampos Papamanthou for
pointing out the mistake.



1 Introduction

Zero-knowledge proof (ZKP) allows a prover to convince a verifier that a state-
ment is valid, without revealing any additional information about the prover’s
secret witness of the statement. Since it was first introduced in the seminal
paper by Goldwasser, Micali and Rackoff [GMR89], ZKP has evolved from
a purely theoretical interest to a concretely efficient cryptographic primitive,
leading to many real-world applications in practice. It has been widely used
in blockchains and cryptocurrencies to achieve privacy (Zcash [BCG+14, zca])
and to improve scalability (zkRollup [zkr]). More recently, it also found appli-
cations in zero-knowledge machine learning [ZFZS20,LKKO20,LXZ21,FQZ+21,
WYX+21], zero-knowledge program analysis [FDNZ21], and zero-knowledge mid-
dlebox [GAZ+22].

There are three major efficiency measures in ZKP: the overhead of the prover
to generate the proof, which is referred to as the prover time; the total commu-
nication between the prover and the verifier, which is called the proof size; and
the time to verify the proof, which is called the verifier time. Despite its recent
progress, the efficiency of ZKP is still not good enough for many applications.
In particular, the prover time is one of the major bottlenecks preventing exist-
ing ZKP schemes from scaling to large statements. As pointed out by Golovnev
et al. in [GLS+], to prove a statement that can be modeled as an arithmetic
circuit with N gates, existing schemes with succinct proof size either perform
a fast Fourier transform (FFT) due to the Reed-Solomon code encodings or
polynomial interpolations, or a multi-scalar exponentiation due to the use of
discrete-logarithm assumptions or bilinear maps, over a vector of size O(N).
The former takes O(N logN) field additions and multiplications and the latter
takes O(N log |F|) field multiplications, where |F| is the size of the finite field.
With the Pippenger’s algorithm [Pip76], the complexity of the multi-scalar expo-
nentiation can be improved to O(N log |F|/ logN), which is still super-linear as
log |F| = ω(logN) to ensure security. These operations are indeed the dominat-
ing cost of the prover time both asymptotically and concretely. See Section 1.3
for more discussions about existing ZKP schemes categorized by the underlying
cryptographic techniques.

The only exceptions in the literature are schemes in [BCG+17,BCG20,BCL22,
GLS+]. Bootle et al. [BCG+17] proposed the first ZKP scheme with a prover
time of O(N) field operations and a proof size of O(

√
N) using a linear-time

encodable error-correcting code. The proof size is later improved to O(N1/c) for
any constant c via a tensor code in [BCG20], and then to polylog(N) via a generic
proof composition with a probabilistic checkable proof (PCP) in [BCL22]. These
schemes are mainly for theoretical interests and do not have implementations
with good concrete efficiency. Recently, Golovnev et al. [GLS+] proposed a ZKP
scheme based on the techniques in [BCG20] by instantiating the linear-time en-
codable code with a randomized construction. However, the security guarantee
(soundness error) is only inverse polynomial in the size of the circuit, instead
of negligible. Moreover, the proof size of the implemented scheme is O(

√
N)
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Prover time Proof size Verifier time∗ Soundness error Concrete efficiency
[BCG+17] O(N) O(

√
N) O(N) negl(N) ✗

[BCG20] O(N) O(N1/c) O(N1/c) negl(N) ✗

[BCL22] O(N) polylog(N) polylog(N) negl(N) ✗

[GLS+] O(N) O(
√
N) O(

√
N) O( 1

poly(N)
) ✓

our scheme O(N) O(log2 N) O(log2 N) negl(N) ✓

Table 1: Comparison to existing ZKP schemes with linear prover time. N is the
size of the circuit/R1CS and c ≥ 2 is a constant. * The verifier time is achieved
in the preprocessing setting. In addition, the scheme in [GLS+] achieves O(

√
N)

verifier for structured circuits in the non-preprocessing setting.

(more details are presented in Section 1.3). Therefore, the following question
still remains open:

Can we construct a concretely efficient ZKP scheme with O(N) prover time
and polylog(N) proof size?

1.1 Our Contributions

We answer the question above positively in this paper by proposing a new ZKP
scheme. In particular, our contributions include:

– First, we propose a random construction of the linear-time encodable code
that has a constant relative distance with overwhelming probability. Such
a code was used in all existing linear-time ZKP schemes [BCG+17,BCG20,
BCL22,GLS+] and thus our new construction also improves their efficiency.
The key technique is an algorithm to test whether a random graph is a good
expander graph based on the small set expansion problem.

– Second, we propose a new reduction that achieves a proof size of O(log2 N)
efficiently. Our technique is a proof composition named “code switching”
proposed in [RR20]. We develop an efficient instantiation using the encoding
circuit of the linear-time encodable code, which reduces the proof size of the
schemes in [BCG20,GLS+] from O(

√
N) to O(log2 N) with a small overhead

on the prover time.
– Finally, we implement our new ZKP scheme, Orion, and evaluate it experi-

mentally. On a circuit with 220 gates (rank-1-constraint-system (R1CS) with
220 constraints), the prover time is 3.09s, the proof size is 1.5 MBs and the
verifier time is 70ms. Orion has the fastest prover time among all existing
ZKP schemes in the literature. The proof size is 6.5× smaller than the sys-
tem in [GLS+]. The scheme is plausibly post-quantum secure and can be
made non-interactive via the Fiat-Shamir heuristic [FS86].

Table 1 shows the comparison between our scheme and existing schemes with
linear prover time and succinct proof size.
Verifier time. The verifier time in Table 1 is achieved in the preprocessing
setting (holographic proofs [CHM+20]). As all the schemes do not have a trusted
setup, their verifier time is O(N) in the worst case, as the verifier has to read the
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Fig. 1: An example of lossless expander. k = 6, k′ = 9, g = 3, δ = 1, ϵ = 1
6 .

description of the circuit/R1CS. In the preprocessing setting, the verifier time
becomes sublinear with the commitment of an indexer describing the circuit.
This is the best that can be achieved, and our scheme has a O(log2 N) verifier
time in this setting using the techniques in [Set20]. In addition, the scheme
in [GLS+] can also achieve a verifier time of O(

√
N) in the non-preprocessing

setting if the circuit/R1CS is structured, i.e., the description of the circuit can
be computed in sublinear time. Our scheme has an O(

√
N) verifier in this case,

but not O(log2 N). This is because the encoding circuit we use in the proof
compositing is of size O(

√
N) and is not structured.

1.2 Technical Overview

Testing expander graphs. All existing ZKP schemes with linear prover time
and succinct proof size [BCG+17,BCG20,BCL22,GLS+] use linear-time encod-
able codes with a constant relative distance proposed in [Spi96, DI14, GLS+],
which in turn all rely on the existence of good expander graphs. In a good ex-
pander graph, any subset of vertices expands to a large number of neighbors.
Figure 1 shows an example of a bipartite graph where any subset of vertices on
the left of size 2 expands to at least 5 vertices on the right. See Section 2.1 for
formal definitions and constructions. However, how to construct such good ex-
panders remain unclear in practice. Explicit constructions [CRVW02] have large
hidden constants in the complexity and thus are not practical. A random graph
tends to have good expansion, but the probability that a random graph is not
a good expander is inverse polynomial in the size of the graph. The code con-
structed from a non-expanding graph does not have a good minimum distance,
making the ZKP scheme insecure. Therefore, a randomly sampled graph is not
good for cryptographic applications.

In this paper, we propose an algorithm to efficiently test whether a random
graph is a good expander or not. With the new testing algorithm, we are able to
re-sample the random graph until it passes the test, obtaining a good expander
with an overwhelming probability and boosting the soundness error of the ZKP
scheme to be negligible. The testing algorithm is based on the small set bipartite
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vertex expansion problem [CDM17], which can be reduced to the Minimum s-
Union problem [CDK+18], finding s-sets from k sets minimizing the size of their
union. The problem is NP-hard for s = O(k), but we observe that in order
to achieve a negligible soundness error, it suffices to search for very small sets
with s ≤ log log k. In order to design a polynomial time algorithm, we rely on
two observations of random bipartite graphs: (1) if there exist a non-expanding
sub-graph, there has to be at least one that is connected (Lemma 4); (2) with
high probability, a vertex in the right set R has at most O(log k) neighbors
(Lemma 5). With these two observations, we are able to bound the search space
of each vertex v ∈ L. That is, the total number of connected sub-graphs with
≤ log log k vertices in L containing v is only O((log k)log log k). Therefore, we
can enumerate all such sub-graphs for every vertex v ∈ L to see if there is a
non-expanding one, and the complexity is o(k2 log log k). The formal algorithm,
theorem and proofs are presented in Section 3.

Proof composition via code-switching. With the expander graph sampled
above and the corresponding linear code, we are able to build efficient ZKP
schemes following the approaches in [BCG+17, BCG20, GLS+]. However, the
proof size is O(N1/c) instead of polylog(N). To reduce the proof size, a common
technique in the literature is proof composition. Instead of sending the proof
directly to the verifier, the prover uses a second ZKP scheme to show that the
proof of the first ZKP is indeed valid. In particular, in [BCG+17,BCG20,GLS+],
the proof consists of several codewords of the linear-time encodable code, and
the checks can be represented as inner products between the messages in the
codewords and some public vectors.

Unfortunately, we do not have a second ZKP scheme based on the linear-
time encodable code with a polylog(N) proof size to prove inner products. If we
had it, we would already be able to build a ZKP scheme with polylog(N) proof
size in the first place. Instead, we rely on the fact that the proof consists of the
codewords of the linear code and construct the second ZKP scheme as follows.
One component of the second ZKP scheme is the encoding circuit of the linear-
time encodable code. It takes the witness of the second ZKP scheme, encodes
it and outputs several random locations of the codeword. The verifier checks
that these random locations are the same as the proof of the first ZKP scheme,
without receiving the entire proof. By the distance of the linear-time encodable
code, we show that the witness of the second ZKP must be the same as the
message in the proof of the first ZKP with overwhelming probability. After that,
the other component of the second ZKP checks the inner product relationship
modeled as an arithmetic circuit. A similar proof composition was also used
in [RR20]. We view our approach using the encoding circuit as a variant of the
proof composition that is efficient in practice, and thus we inherit the name “code
switching” from [RR20].

With this idea, we can use any general-purpose ZKP scheme on arithmetic
circuits with a polylog(N) proof size as the second ZKP scheme in the proof
composition. The size of this circuit is only O(

√
N), thus the second ZKP does

not introduce any overhead on the prover time as long as its prover time is no
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more than quadratic. In our construction, we use the ZKP scheme in [ZXZS20] as
the second ZKP. The scheme is based on the interactive oracle proofs (IOP) and
the witness is encoded using the Reed-Solomon code. Therefore, the technique
is called code switching. The formal protocols are presented in Section 4.

1.3 Related Work

Zero-knowledge proof was introduced in [GMR89] and generic constructions
based on PCPs were proposed by Kilian [Kil92] and Micali [Mic00] in the
early days. Driven by various applications mentioned in the introduction, there
has been significant progress in efficient ZKP protocols and systems. Catego-
rized by their underlying techniques, there are ZKP systems based on bilin-
ear maps [PHGR13,BSCG+13,BFR+13,BSCTV14,CFH+15,WSR+15,FFG+16,
GKM+18, MBKM19, GWC19, CHM+20, KPPS20], MPC-in-the-head [GMO16,
CDG+17,AHIV17,KKW18], interactive proofs [ZGK+17a,ZGK+17b,WTS+18,
ZGK+18,XZZ+19,ZLW+21], discrete logarithm [BBB+18,BFS20, Set20, SL20],
interactive oracle proofs (IOP) [BSCR+19,BSBHR19,ZXZS20,BFH+20,COS20,
BDFG20], and lattices [BBC+18,ESLL19,BLNS20,ISW21]. As mentioned in the
introduction, these schemes perform either an FFT (such as schemes based on
MPC-in-the-head and IOP) or a multi-scalar exponentiation (such as schemes
based on discrete-log and bilinear pairing), making the complexity of the prover
time super-linear in the size of the circuit.

With the techniques proposed in [XZZ+19,ZLW+21], the prover time of the
schemes based on the interactive proofs (the GKR protocol [GKR08]) is linear if
the size of the input is significantly smaller than the size of the circuit. However,
the goal of this paper is to make the prover time strictly linear without such a
requirement, and our polynomial commitment scheme can also be plugged into
these schemes to improve their efficiency.
Schemes with linear prover time. As mentioned before, schemes in [BCG+17,
BCG20,BCL22,GLS+] are the only candidates in the literature with linear prover
time and succinct proof size for arithmetic circuits. They all use linear-time en-
codable codes based on expander graphs and our first contribution applies to all
of them. Moreover, our ZKP scheme is based on the polynomial commitment
in [GLS+] and the tensor IOP in [BCG20], and we improve the proof size to
O(log2 N) through a proof composition. In fact, the scheme in [BCL22] also pro-
poses a proof composition with the PCP in [Mie09]. However, the complexity of
the PCP is polynomial time. That is why the scheme in [BCL22] has to be built
on the scheme in [BCG20] with a proof size of O(N1/c) and is not concretely
efficient, while our scheme can be built on top of the efficient scheme in [GLS+]
with a proof size of O(

√
N).

Finally, the scheme in [GLS+] samples a random graph to build the linear-
time encodable code. The scheme achieves a soundness error of O( 1

poly(N) ) and
the authors spent great efforts calculating parameters that achieve a concrete
failure probability of 2−100 for large circuits in practice [GLS+, Claim 2 and
Figure 2]. Our sampling algorithm provides the provable security guarantee of a
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negligible soundness error for their scheme. Moreover, we improve the proof size
from O(

√
N) to O(log2 N) efficiently, solving an open problem left in [GLS+].

There are two recent schemes that achieve linear prover time for Boolean
circuits [RR22,HR22]. We mainly focus on arithmetic circuits in this paper, but
our techniques may also apply to these schemes to obtain efficient instantiations.
Schemes with linear proof size. Recently, there is a line of work constructing
ZKP based on secure multiparty computation (MPC) techniques [WYKW20,
DIO21, BMRS21, YSWW21] and these schemes have demonstrated fast prover
time in practice. If one treats a block cipher (e.g., AES) as a constant-time
operation because of the CPU instruction, these schemes indeed have a linear
time prover (we are using a similar CPU instruction for the hash function SHA-
256 in our scheme to achieve linear prover time). However, they have linear
proof size in the size of the circuit, are inherently interactive, and are not publicly
verifiable, which are not desirable in many applications. We mainly focus on non-
interactive ZKP with succinct proof size and public verifiability in this paper.
Expander testing. Testing the properties of expander graphs is a deeply ex-
plored area in computer science. Many works [NS07,CS07,GR11] have proposed
efficient testing algorithms without accessing the whole graph. However, these
algorithms do not directly apply to our testing of lossless expander. For example,
the algorithm in [NS07] based on random walks can differentiate good expanders
from graphs that are far from expanders, while our scheme can differentiate
whether a graph is a lossless expander or not with overwhelming probability. Of
course our algorithm accesses the entire graph, which is fine in our application
of linear-time encodable code.

There are also impossibility results on expander testing [KS16]. Due to differ-
ent definitions of expansion, our testing algorithm cannot distinguish the cases
in [KS16, Theorem 1.1] and thus it does not violate the impossibility results.

2 Preliminary

We use [N ] to denote the set {0, 1, 2, ..., N −1}. poly(N) means a function upper
bounded by a polynomial in N with a constant degree . We use λ = ω(logN) to
denote the security parameter, and negl(N) to denote the negligible function in
N , i.e. negl(N) ≤ 1

poly(N) for all sufficiently large N and any polynomial. Some
papers define negl(λ) as the negligible function. As λ is a function of N , they are
essentially the same and negl(N) ≤ 1

2λ
. “PPT” stands for probabilistic polyno-

mial time. ⟨A(x), B(y)⟩(z) denotes an interactive protocol between algorithms
A,B with x as the input of A, y as the input of B and z as the common input.

2.1 Linear-Time Encodable Linear Code

Definition 1 (Linear Code). A linear error-correcting code with message length
k and codeword length n is a linear subspace C ∈ Fn, such that there exists an
injective mapping from message to codeword EC : Fk → C, which is called
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the encoder of the code. Any linear combination of codewords is also a code-
word. The rate of the code is defined as k

n . The distance between two code-
words u, v is the hamming distance denoted as ∆(u, v). The minimum distance
is d = minu,v ∆(u, v). Such a code is denoted as [n, k, d] linear code, and we also
refer to d

n as the relative distance of the code.

Generalized Spielman code. In our construction, we use a family of lin-
ear codes that can be encoded in linear time and has a constant relative dis-
tance [Spi96, DI14, GLS+]. The code was first proposed by Daniel Spielman
in [Spi96] over the Boolean alphabet. Druk and Ishai [DI14] generalized it to
a finite field F, and introduced a distance boosting technique to achieve the
Gilbert-Varshamov bound [Gil52,Var57]. We only use the basic construction over
F without the distance boosting, and thus refer to it as the generalized Spielman
code in this paper. The code relies on the existence of lossless expander graphs,
which is defined below:

Definition 2 (Lossless Expander [Spi96]). Let G = (L,R,E) be a bipartite
graph. 0 < ϵ < 1 and 0 < δ be some constants. The vertex set consists of L and
R, two disjoint subsets, henceforth the left and right vertex set. Let Γ (S) be the
neighbor set of some vertex set S. We say G is an (k, k′; g)-lossless expander
if |L| = k, |R| = k′ = αk for some constant α, and the following property hold:

1. Degree: The degree of every vertex in L is g.
2. Expansion: |Γ (S)| ≥ (1− ϵ)g|S| for every S ⊆ L with |S| ≤ δ|L|

g .

Intuitively speaking, a lossless expander has very strong expansion. As the
degree of each left vertex is g, a set of |S| left vertices have at most g|S| neighbors,
while the second condition requires that every set expands to at least (1− ϵ)g|S|
vertices for a small constant ϵ. Meanwhile, as the right vertext set has |R| = αk
vertices, such an expansion is not possible if |S| > αk

(1−ϵ)g , thus there is a condition
|S| ≤ δk

g bounding the size of S. An example is shown in Figure 1.
Construction of generalized Spielman code. With the lossless expander, we give
a brief description of the generalized Spielman code. Let G = (L,R,E) be a
lossless expander with |L| = 2t, |R| = 2t−1. Let At be a 2t × 2t−1 matrix where
At[i][j] = 1 if there is an edge i, j in G for i ∈ [2t], j ∈ [2t−1]; otherwise At[i][j] =
0. The generalized Spielman code is constructed as follows:

1. Let Et
C(x) be the encoder function of input length |x| = 2t, and its output

will be a codeword of size 2t+2. We use EC to denote the encoder function
when length is clear.

2. If |x| ≤ n0 then directly output x, for some constant n0.
3. Compute m1 = xAt. Each entry of m1 can be viewed as a vertex in R, and

value of each vertex is the summation of its neighbors in L. The length of
m1 is 2t−1.

4. Recursively apply the encoder Et−1
C on m1, let c1 = Et−1

C (m1).
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5. Compute c2 = c1At+1.
6. Output x⊙ c1 ⊙ c2 as the codeword of size 2t+2. ⊙ denotes concatenation.

Lemma 1 (Generalized Spielman code, [DI14]). Given a family of lossless
expander, that achieves (1 − ϵ)g|S| expansion with |S| ≤ δ|L|

g , for input size k,
the generalized Spielman code is a [4k, k, δ

8gk] linear code over F.

The code in [GLS+] is a variant of generalized Spielman code. In their con-
struction, random weights are assigned to each edge of lossless expander at line
3, 5. The output at line 6 is randomized as (x ⊗ r) ⊙ c1 ⊙ c2, where ⊗ denotes
element-wise multiplication and r is a random vector.

Definition 3 (Tensor code). Let C be a [n, k, d] linear code, the tensor code
C⊗2 of dimension 2 is the linear code in Fn2

with message length k2, codeword
length n2, and distance nd. We can view the codeword as a n × n matrix. We
define the encoding function below:

1. A message of length k×k is parsed as a k×k matrix. Each row of the matrix
is encoded using EC , resulting in a codeword C1 of size k × n.

2. Each column of C1 is then encoded again using EC . The result C2 of size
n× n is the codeword of the tensor code.

2.2 Collision-Resistant Hash Function and Merkle Tree

Definition 4. A commitment scheme is a tuple of algorithms Setup(1λ) →
ck,Commit(ck,m, r)→ com,Open(ck, com,m, r)→ {0, 1} such that:

– Correctness. For any message m,

Pr[Setup(1λ)→ ck,Commit(ck,m, r)→ com,Open(ck, com,m, r)→ 1] = 1.

– Binding. For any PPT adversary A, the following probability is negl(N):

Pr

 Setup(1λ)→ ck m ̸= m′

A(ck→ (com,m, r,m′, r′) : ∧Open(ck, com,m, r)→ 1

∧Open(ck, com,m′, r′)→ 1)


– Hiding. For any Setup(1λ) → ck, for all m,m′, the following two distribu-

tions are statistically close:

Commit(ck,m, r) ≈ Commit(ck,m′, r′)

Let H : {0, 1}2λ → {0, 1}λ be a hash function. A Merkle Tree is a data
structure that allows one to commit to l = 2dep messages by a single hash value
h, such that revealing any bit of the message require dep+ 1 hash values.

A Merkle hash tree is represented by a binary tree of depth dep where l
messages elements m1,m2, ...,ml are assigned to the leaves of the tree. The
values assigned to internal nodes are computed by hashing the value of its two
child nodes. To reveal mi, we need to reveal mi together with the values on the
path from mi to the root. We denote the algorithm as follows:
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1. h← Merkle.Commit(m1, ...,ml).
2. (mi, πi)← Merkle.Open(m, i).
3. {accept, reject} ← Merkle.Verify(πi,mi, h).

To achieve zero-knowledge, we requires the hash function to be hiding and
we implicitly assumes for each hash function call on input x, we will append a
randomness r.

2.3 Zero-Knowledge Arguments

An argument system for an NP relation R is a protocol between a computa-
tionally bounded prover P and a verifier V. At the end of the protocol V will
be convinced that there exits a witness w such that (x,w) ∈ R for some public
input x. We focus on arguments of knowledge which require the prover know the
witness w. We formally define zero-knowledge as follows:

Definition 5 (View). We denote by View(⟨P,V⟩(x)) the view of V in an inter-
active protocol with P. Namely, it is the random variable (r, b1, b2, ..., bn, v1, v2, ..., vm)
where r is V’s randomness, b1, ..., bn are messages from V to P, and v1, ..., vm
are messages from P to V.

Definition 6. Let R be an NP relation. A tuple of algorithm (G,P,V) is a
zero-knowledge argument of knowledge for R if the following holds.

– Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

Pr[⟨P(w),V()⟩(pp, x) = accept] = 1.

– Knowledge Soundness. For any PPT adversary P∗, there exists a PPT
extractor ε such that for every pp output by G(1λ) and any x, the following
probability is negl(N):

Pr[⟨P∗(),V()⟩(pp, x) = accept, (x,w) /∈ R|w ← ε(pp, x,View(⟨P∗(),V()⟩(pp, x)))]

– Zero knowledge. There exists a PPT simulator S such that for any PPT
algorithm V∗, (x,w) ∈ R, pp output by G(1λ), it holds that

View(⟨P(w),V∗()⟩(x)) ≈ SV
∗
(pp, x)

Where SV∗
(x) denotes that S is given oracle accesses to V∗’s random tape.

We say that (G,P,V) is a succinct argument system if the total communication
between P and V (proof size) is poly(λ, |x|, log |w|).

In addition, in our construction, we need a zero-knowledge argument that
is a commit-and-prove SNARK (CP-SNARK) [CFQ19] as a building block.
Following the definition in [CFQ19], the relationship is represented by a pair
R = (ck,R) where ck is the commitment key generated by Setup(1λ). R is
over pairs (x,w) where x = (x, comw), w = (w, rw) and R holds if and only if
Open(ck, comw, w, rw) = 1 ∧R(x,w) = 1.
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Definition 7 (Arithmetic circuit). An arithmetic circuit C over F and a set
of variables x1, ..., xN is a directed acyclic graph as follows:

1. Each vertex is called a “gate”. A gate with in-degree zero is an input gate
and is labeled as a variable xi or a constant field element in F.

2. Other gates have 2 incoming edges. It calculates the addition or multiplication
over the two inputs and output the result.

3. The size of the circuit is defined as the number of gates N .

2.4 Polynomial Commitment

A polynomial commitment consists of three algorithms:

– PC.Commit(ϕ(·)): the algorithm outputs a commitment R of the polynomial
ϕ(·).

– PC.Prove(ϕ, x⃗,R): given an evaluation point ϕ(x⃗), the algorithm outputs a
tuple ⟨x⃗, ϕ(x⃗), πx⃗⟩, where πx⃗ is the proof.

– PC.VerifyEval(πx⃗, x⃗, ϕ(x⃗),R): given πx⃗, x⃗, ϕ(x⃗),R, the algorithm checks if
ϕ(x⃗) is the correct evaluation. The algorithm outputs accept or reject.

Definition 8 ((Multivariate) Polynomial commitment). A polynomial com-
mitment scheme has the following properties:

– Correctness. For every polynomial ϕ and evaluation point x⃗, the following
probability holds:

Pr


PC.Commit(ϕ)→ R

PC.Prove(ϕ, x⃗,R)→ x⃗, y, π

y = ϕ(x⃗)

PC.VerifyEval(π, x⃗, y,R)→ accept

 = 1

– Knowledge Soundness. For any PPT adversary P∗ with PC.Commit∗,
PC.Prove∗, there exists a PPT extractor E such that the probability below is
negligible:

Pr

 PC.Commit∗(ϕ∗)→ R∗

PC.Prove∗(ϕ∗, x⃗,R∗)→ x⃗, y∗, π∗

PC.VerifyEval(π∗, x⃗, y∗,R∗)→ accept

: ϕ∗ ← E(R∗, x⃗, π∗, y∗) ∧ y∗ ̸= ϕ∗(x⃗)


– Zero-knowledge. For security parameter λ, polynomial ϕ, any PPT ad-

versary A, there exists a simulator S = [S0,S1], we consider following two
experiments:

RealA,ϕ(pp):
1. R← Commit(pp, ϕ)
2. x⃗← A(R, pp)
3. (x⃗, y, π)← Prove(ϕ, x⃗,R)
4. b← A(π, x⃗, y,R)
5. Output b

IdealA,SA(pp):
1. R ← S0(1λ, pp)
2. x⃗← A(R, pp)
3. (x⃗, y, π) ← SA

1 (x⃗, pp), given oracle
access to y = ϕ(x⃗)

4. b← A(π, x⃗, y,R)
5. Output b

11



For any PPT adversary A, two experiments are identically distributed:

Pr[|RealA,f (pp)− IdealA,SA(pp)| = 1] ≤ negl(N)

3 Testing Algorithm for Lossless Expander

As explained above, the generalized Spielman code relies on the existence of loss-
less expanders. On one hand, there are explicit constructions of lossless expanders
in the literature [CRVW02]. However, there are large hidden constants in the
complexity and the constructions are not practical. On the other hand, a random
bipartite graph is a lossless expander with a high probability of 1 − O( 1

poly(k) ),
where k is the size of the left vertex set in the bipartite graph. However, this is
not good enough for cryptographic applications.

In this section, we propose a new approach to sample a lossless expander
with a negligible failure probability. The key ingredient of our approach is a
new algorithm to test whether a randomly sampled bipartite graph is a lossless
expander or not. We begin the section by introducing the classical randomized
construction of a lossless expander and its analysis.

3.1 Random Construction of Lossless Expander

As defined in Definition 2, a lossless expander graph is a g-left-regular bipartite
graph G = (L,R,E). Wigderson et al. [HLW06, Lemma1.9] showed that a ran-
dom bipartite graph is a lossless expander with a high probability. In particular,
we have the following lemma:

Lemma 2 ( [HLW06]). For fixed constant parameters g, δ, α, ϵ, a random g-
left-regular bipartite graph is a (k, k′; g)-lossless-expander with probability 1 −
O( 1

poly(k) ).

Proof. Let G = (L,R,E) be a random bipartite graph with k vertices on the
left and k′ = O(k) vertices on the right, where each left vertex connects to a
randomly chosen set of g vertices on the right.

Let s = |S| be the cardinality of a left subset of vertices S ⊆ L such that
s ≤ δk

g , and let t = |T | be the cardinality of a right subset of vertices T ⊆ R such
that t ≤ (1−ϵ)gs. Let XS,T be an indicator random variable for the event that all
the edges from S connect to T . Then for a particular S, if

∑
T∈R XS,T = 0, then

the number of neighboring vertices of S must be larger than (1−ϵ)gs. Otherwise,
if there exists a T ∈ R such that XS,T = 1, i.e., all edges from S connect to T ,
the graph is not a lossless expander. As the edges are sampled randomly, the
probability of this non-expanding event is ( t

k′ )
sg. Therefore, summing over all S

and by the union bound, the probability of a non-expanding graph is:
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Pr[(
∑
S,T

XS,T ) > 0] ≤
∑
S,T

Pr[XS,T = 1] =
∑
S,T

(
t

k′
)sg

≤

δk
g∑

s=2

(
k

s

)(
k′

t

)
(
t

k′
)sg ≤

δk
g∑

s=2

(
k

s

)(
k′

(1− ϵ)gs

)
(
(1− ϵ)gs

k′
)sg

Using the inequality
(
k
s

)
≤ (kes )s, the probability above is

≤

δk
g∑

s=2

(
ke

s
)s(

k′e

(1− ϵ)gs
)(1−ϵ)gs(

(1− ϵ)gs

k′
)sg

=

δk
g∑

s=2

(
ke

s
)se(1−ϵ)gs(

(1− ϵ)gs

k′
)ϵgs

=

δk
g∑

s=2

e(1−ϵ)gs+s · (k
s
)s · ( (1− ϵ)gs

k′
)ϵgs (1)

When s, ϵ, g are constants and k′ = O(k), e(1−ϵ)gs+s is a constant, (ks )
s is

O(poly(k)), and ( (1−ϵ)gs
k′ )ϵgs is O( 1

poly(k) ). Therefore, the overall upper bound is
at least O( 1

poly(k) ). ⊓⊔

The derivation above shows that the probability that a random graph is
not a lossless expander is upper-bounded by O( 1

poly(k) ), which is not negligible.
Furthermore, we show that the lower-bound of the non-expanding probability is
also not negligible through a simple argument here.

We focus on the case where s is a constant. The number of all possible sub-
graphs induced by a left subset of vertices S is at most k′sg = O(poly(k)). That is,
the size of the entire probability space is bounded by a polynomial. The number
of non-expanding graphs is at least 1 (e.g., all edges from S connect to a single
vertex in R). Therefore, the non-expanding probability is at least O( 1

poly(k) ).

Lossless expander in [GLS+] As explained in Section 2.1, in [GLS+], the authors
extended the generalized Spielman code by adding random weights to the edges
in the bipartite graph. However, the graph still needs to be a lossless expander in
order to achieve a constant relative distance, and the same issue above applies to
their construction. In particular, as shown by [GLS+, Claim 2], the probability
of not sampling a lossless expander is

2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 ,
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where H(x) = −x log x− (1− x) log(1− x). We show that the probability above
is not negligible. First, for any constant const,

xH(const/x) = x(−const

x
log

const

x
− (1− const

x
) log(

x− const

x
)

= (const log(x)− const log const) + (1− const

x
) log(

x− const

x
).

By taking the limit, we have limx→∞ xH(const/x) = (const log(x)−const log const)+
1 × 0. Therefore, xH(const/x) = O(log x). Applying this fact to the equation
above, kH(15/k) + αkH(19.2/(αk)) = O(log k), and −15g log αk

19.2 = −O(log k).
Therefore, 2kH(15/k)+αkH(19.2/(αk))−15g log αk

19.2 is at least 2−O(log k) = 1
poly(k) . The

failure probability is similar to the upper bound in Equation 1.

3.2 Algorithm based on Small Set Expansion

To reduce the non-expanding probability of the random construction, we take a
closer look at the equations above. Equation 1 shows that the probability that
a random bipartite graph is a not lossless expander is upper bounded by 1

poly(k) .
However, we observe that within the summation, the probability is actually
negligible when s is large. In particular, if we decompose the summation in
Equation 1 into two sums, one for 2 ≤ s ≤ log log k, and the other for s ≥
log log k, the second part is

δk
g∑

s=log log k

e(1−ϵ)gs+s · (k
s
)s · ( (1− ϵ)gs

k′
)ϵgs. (2)

Lemma 3. Equation 2 is negligible if the following conditions are met:

1. (1− ϵ)δ + δ
g + δ

g log(
g
δ ) + log( δ

α )ϵδ < −0.001,
2. ϵd > 2.

Here -0.001 is just any small constant that is less than 0. We give a proof in
Appendix A. To provide an intuition on how these parameters are set, we give
an example here: δ = 1

11 , ϵ =
7
16 , g = 16, k′ = 1

2k. We can verify the condition:

1. ϵg = 7 > 2.
2. (1− ϵ)δ + δ

g + δ
g log(

g
δ ) + log( δ

α )ϵδ = −0.009 < −0.001.

Sampling lossless expander with negligible failure probability. The ob-
servation above shows that the non-expanding probability is dominated by small
sub-graphs with size 2 ≤ s ≤ log log k. This actually matches our lower bound
in Section 3.1, as there are only polynomially many such sub-graphs and there
exist ones that do not expand. Therefore, in order to reduce the non-expanding
probability, we propose a new algorithm that detects small sub-graphs of size
s ≤ log log k that do not expand.
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The problem is related to the Small Set Bipartite Vertex Expansion prob-
lem [CDM17], which can further be reduced to the Minimum s-Union prob-
lem [CDK+18], finding s-sets from k sets minimizing the size of their union. The
problem is NP-hard in general for s = O(k), but in our case we only consider
very small sets with s ≤ log log k, and thus it is possible to have an algorithm in
polynomial time.

Definition 9 (Very Small Set Expansion (VSSE)). Let G = (L,R,E) be
a bipartite graph. We define the very small set expansion (VSSE) problem as
distinguishing following two cases:

1. Non-expanding case: there exists a subset S ⊂ L with |S| ≤ log log k such
that |Γ (S)| < (1− ε)g|S|.

2. Expansion: for all subsets S ⊂ L with |S| ≤ log log k, |Γ (S)| ≥ (1− ε)g|S|.

We introduce an algorithm for finding such a non-expanding sub-graph. We
first demonstrate that if a non-expanding sub-graph exists, then among all such
non-expanding sub-graphs, there must be at least one that is both non-expanding
and connected. We will then show that this connected sub-graph can be identified
using a search algorithm. We say that a graph is connected if there is a path
from any point to any other point in the graph.

Lemma 4. Let G = (L,R,E) be a bipartite graph. If there exists a subset S ⊂ L
with |S| ≤ log log k such that |Γ (S)| < (1− ε)g|S|, then there exists a connected
sub-graph induced by S′ ⊂ L with |S′| ≤ log log k and |Γ (S′)| < (1− ε)g|S′|.

Proof. If S itself is connected, then we have finished the proof. Otherwise, we
divide S into two disjoint parts S0, S1 such that the induced sub-graphs S0 ∪
Γ (S0), S1 ∪ Γ (S1) are not connected. Let the expansion of S0 be eS0

= |Γ (S0)|
|S0| ,

the expansion of S1 be eS1
= |Γ (S1)|

|S1| , then the expansion of S is eS = |Γ (S)|
|S| =

|Γ (S0)|+|Γ (S1)|
|S0|+|S1| , as the two sub-graphs are not connected. Next, we show that

eS0 ≤ eS or eS1 ≤ eS by contradiction. Suppose both eS0 and eS1 are larger
than eS . Then we have

eS(|S0|+ |S1|) = |Γ (S0)|+ |Γ (S1)|
⇒ (eS |S0| − |Γ (S0)|) + (eS |S1| − |Γ (S1)|) = 0

By the assumption, |Γ (S0)| = eS0
|S0| > eS |S0|, thus eS |S0| − |Γ (S0)| < 0.

Similarly, eS |S1| − |Γ (S1)| < 0 as well, and their sum cannot equal to 0 as in
the equation above. Therefore, eS0

≤ eS or eS1
≤ eS , i.e., at least one of the

sub-graph is non-expanding.
We can repeat this process on the non-expanding sub-graph until we find a

connected one. ⊓⊔

In order to find such a connected sub-graph that is non-expanding, we need
to bound the size of such sub-graphs and thus the search space.
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Algorithm 1 Searching Non-expanding Set
1: Let G = (L,R,E) be the random bipartite graph. If ∃v ∈ R with degree larger

than g
α
+ 10 ln k, abort.

2: for each v ∈ L do
3: find set D ∈ L such that:

– ∀u ∈ D, the minimum distance between u and v is ≤ 2 log log k.
– ∀u ∈ L \D, the minimum distance between u and v is > 2 log log k.

4: for All S ⊆ D and |S| ≤ log log k do
5: if |Γ (S)| < (1− ε)g|S| then
6: return Found
7: return Not Found

Lemma 5. For a random g-left regular bipartite graph G = (L,R,E), the degree
of every vertex in R is at most 10 ln k with high probability for constant g, k = |L|
and αk = |R|.

Proof. Consider a vertex in R, let a sequence of random variables Xi be indicator
function of the edge between this vertex and the i-th vertex in L. Then for a
random bipartite graph, Xi is a Bernoulli random variable with probability g

αk .
Let X =

∑k
i=1 Xi, by the Chernoff bound,

Pr(
X

k
≥ g

αk
+

10 ln k

k
) ≤ e−D( g

αk+ 10 ln k
k || g

αk )k,

where D(x||y) = x ln x
y +(1−x) ln 1−x

1−y is the Kullback-Leibler (KL) divergence.
By the inequality of the KL divergence, we have

D(
g

αk
+
10 ln k

k
|| g
αk

) ≥
( g
αk + 10 ln k

k − g
αk )

2

2( g
αk + 10 ln k

k )
=

( 10 ln k
k )2

2( g
αk + 10 ln k

k )
=

(10 ln k)2

2( gkα + 10k ln k)

Therefore,

Pr(
X

k
≥ g

αk
+

10 ln k

k
) ≤ e−D( g

αk+ 10 ln k
k || g

αk )k

≤ e
− (10 ln k)2

2(
g
α

+10 ln k) ≤ e−
10
3 ln k = k−

10
3

when k is large, as 2( gα + 10 ln k) < 3 · 10 ln k.
Finally, by the union bound, the probability that there exists a vertex in R

with degree larger than g
α + 10 ln k is less than or equal to

αk · Pr[X ≥ g

α
+ 10 ln k] = αk−

7
3 .

⊓⊔

With these two lemmas, we present our search algorithm in Algorithm 1.
In the algorithm, we use a search algorithm to find a non-expanding connected
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component. First, we enumerate the vertex v ∈ L. Suppose v is a vertex belong-
ing to the non-expanding connected component. Then we find the subset D that
includes all vertices in L within distance 2 log log k of v. The minimum distance
between two vertices is defined as the number of edges in the shortest path be-
tween them. As we are trying to find non-expanding connected sub-graphs of size
≤ log log k, any connected sub-graph G′ = (L′, R′, E′) with size |L′| ≤ log log k
containing v must be included in D, as the minimum distance between any ver-
tex in L′ and v cannot be more than 2 log log k in a bipartite graph. Finally,
we enumerate all possible subsets of size ≤ log log k in D to find if there is a
non-expanding sub-graph.

Theorem 1. Algorithm 1 is a polynomial time algorithm for the VSSE problem
on a random g-left regular bipartite graph with constant g, |L| = k and |R| = αk.

To compute the complexity of the algorithm,

1. The size of D is at most (11g log k)log log k, as one vertex in L can at most
expand to g ·( gα+10 log k) < 11g log k vertices in L in two edges L→ R→ L,
and there are 2 log log k edges.

2. By Stirling’s approximation, the number of possible subsets S ⊆ D and
|S| ≤ log log k is at most

log log k∑
i=1

(
|D|
i

)
≤ log log k(

e(11g log k)log log k

log log k
)log log k = O(log klog log2 k) = o(k).

3. For each S, finding its neighbor set takes at most O(log log k) time.

Therefore, the total running time for all v ∈ |L| is o(k2 log log k).
Algorithm 1 gives a way to test whether a random graph is a lossless ex-

pander. As discussed in lemma 3, when s ≥ log log k, the non-expanding proba-
bility is negligible. Thus, it suffices to test whether there is a sub-graph of size
s < log log k that does not expand, which can be found by Algorithm 1 as long
as the degree of vertices in R is bounded. As shown by Lemma 5, it happens
with high probability, thus the expected running time of the testing algorithm
is polynomial as well. As long as the testing algorithm outputs Notfound, the
graph is a lossless expander with an overwhleming probability by Lemma 3.

4 Our new zero-knowledge argument

In this section, we present the construction of our zero-knowledge argument
scheme. Many existing papers show that one can build zero-knowledge arguments
from polynomial commitments [WTS+18,ZXZS20,CHM+20,Set20,GWC19,BFS20,
GLS+]. We adopt the same technique and focus on constructing a polynomial
commitment because of its simplicity and efficiency, but our approach can be
applied directly to the zero-knowledge arguments for R1CS in [BCG20,BCL22]
to improve the prover time and the proof size. We start the section by describing
the polynomial commitment scheme in [GLS+] based on the tensor IOP protocol
in [BCG20] with a proof size of O(

√
N).
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4.1 Polynomial commitment from tensor query

In [GLS+], Golovnev et al. observed that a polynomial evaluation can be ex-
pressed as a tensor product. Here we only consider multilinear polynomial com-
mitments, which can be used to construct zero-knowledge arguments based on
the approaches in [ZGK+17b,WTS+18,XZZ+19,ZXZS20,Set20], but our scheme
can be extended to univariate polynomials. In particular, given a multilinear
polynomial ϕ, its evaluation on input vector x0, x1, ..., xlogN−1 is:

ϕ(x0, x1, ..., xlogN−1) =

1∑
i0=0

1∑
i1=0

...

1∑
ilog N−1=0

wi0i1...ilog N−1
xi0
0 xi1

1 ...x
ilog N−1

logN−1.

The degree of each variable is either 0 or 1 by the definition of a multilinear poly-
nomial, and thus there are N monomials and coefficients with logN variables. We
let i =

∑logN−1
j=0 2jij , that is, i0i1...ilogN−1 is the binary representation of num-

ber i. We use w to denote the coefficients where w[i] = wi0i1...ilog N−1
. Similarly

we define Xi = xi0
0 xi1

1 ...x
ilog N−1

logN−1. Let k =
√
N , r0 = {X0, X1, ..., Xk−1}, r1 =

{X0×k, X1×k, X2×k, ..., X(k−1)×k}. Then we have X = r0 ⊗ r1. The polynomial
evaluation is reduced to a tensor product ϕ(x0, x1, ..., xlogN−1) = ⟨w, r0 ⊗ r1⟩.
Using the tensor IOP protocol in [BCG20], one can build a polynomial commit-
ment [GLS+] and we present the protocol in Protocol 2 for completeness. Here
we reuse the notation k as it is exactly the message length of the linear code.

As shown in the protocol, to commit to a polynomial, PC.Commit parses
the coefficients w as a k × k matrix and encodes it using the tensor code with
dimension 2 as defined in Definition 3. Then the algorithm constructs a Merkle
tree commitment for every column C2[:, i] of the n× n codeword C2, and finally
builds another Merkle tree on top of their roots as the final commitment.

To answer the tensor query, there are two checks in the protocol: a proximity
check and a consistency check. The proximity check ensures that the matrix in
the commitment is indeed close to a codeword of the tensor code. The consistency
check ensures that y = ⟨r0⊗ r1, w⟩ assuming R is a commitment of a codeword.
Proximity check. The proximity check has two steps. First, the verifier sends a
random vector γ0 to the prover, and the prover computes the linear combination
of all rows of C1 and w with γ0, as in Step 8 in Protocol 2. Because of the property
of a linear code, cγ0 is a codeword with message yγ0 , and this step is referred to
as the “fold” operation in [BCG20]. Second, the prover shows that cγ0 is indeed
computed from the committed tensor codeword. To do so, the verifier randomly
selects t columns and the prover opens them with their Merkle tree proofs. The
verifier checks that the inner product between each column and the random
vector γ0 is equal to the corresponding element of cγ0

(Step 15). As shown
in [BCG+17, BCG20], if the linear code has a constant relative distance, the
committed matrix is close to a tensor codeword with overwhelming probability.
Consistency check. The consistency check follows exactly the same steps of the
proximity check. Instead of using a random vector from the verifier, the linear
combination is done with r0 of the tensor query r0⊗r1. Similarly, c1 is a codeword

18



Protocol 2 Polynomial commitment from [BCG20,GLS+]
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ, the coefficient of ϕ is denoted by w.
Let C be the [n, k, d]-linear code, EC : Fk → Fn be the encoding function, N = k×k.
If N is not a perfect square, we can pad it to the next perfect square.
We use a python style notation to select the i-th column of a matrix mat[:, i].

1: function PC.Commit(ϕ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3. Here C1 is a k×n matrix and C2 is a n×n matrix.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-

put R as the commitment.
6: function PC.Prove(ϕ, x⃗,R)
7: The prover receives a random vector γ0 ∈ Fk from the verifier.
8: cγ0 =

∑k−1
i=0 γ0[i]C1[i], yγ0 =

∑k−1
i=0 γ0[i]w[i]. ▷ Proximity

9: c1 =
∑k−1

i=0 r0[i]C1[i], y1 =
∑k−1

i=0 r0[i]w[i]. ▷ Consistency
10: Prover sends c1, y1, cγ0 , yγ0 to the verifier.
11: Verifier randomly samples t ∈ [n] indexes as an array Î and send it to prover.
12: for idx ∈ Î do
13: Prover sends C1[:, idx] and the Merkle tree proof of Rootidx for C2[:, idx] under
R to verifier

14: function PC.VerifyEval(πx⃗, x⃗, y = ϕ(x⃗),R)
15: ∀idx ∈ Î , cγ0 [idx] == ⟨γ0,C1[:, idx]⟩ and EC(yγ0) == cγ0 . ▷ Proximity
16: ∀idx ∈ Î , c1[idx] == ⟨r0,C1[:, idx]⟩ and EC(y1) == c1. ▷ Consistency
17: y == ⟨r1, y1⟩. ▷ Tensor product
18: ∀idx ∈ Î, EC(C1[:, idx]) is consistent with Rootidx, and Rootidx’s Merkle tree proof

is valid.
19: Output accept if all conditions above holds. Otherwise output reject.

of the linear code with message y1, and ϕ(x) = ⟨y1, r1⟩ by the definition of
tensor product and polynomial evaluation. As shown in [BCG20], by the check
in Step 16, if the committed matrix in R is close to a tensor codeword, then
y = ϕ(x) with overwhelming probability. In particular, there exist an extractor
to extract a polynomial ϕ from the commitment such that y = ϕ(x).

Theorem 2 (Polynomial commitment [BCG20,GLS+]). Protocol 2 is a
polynomial commitment that is correct and sound as defined in Definition 8.

Efficiency. The prover’s computation is dominated by encoding the tensor code,
which takes O(N) time using a linear-time encodable code such as the generalized
Spielman code. The proof size is O(t

√
N), as the prover opens t random columns

of size
√
N to the verifier. The verifier time is also O(t

√
N) to check the inner

products and to encode t columns.
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Check 1:

Check 2:  = 𝐸𝐶( )
Check 3:  𝑦 = ⟨𝑦1, 𝑟1⟩
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Input:
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on few outputs

Code-Switch

Fig. 2: An illustration of code switching. The circuit on the right for Check 1,2
and Check 3,4 are the same.

4.2 Efficient Proof Composition via Code Switching3

The proof size of the polynomial commitment in Protocol 2 is O(
√
N) (the

complexity hides a security parameter t). There are three steps that incur O(
√
N)

proof size in Protocol 2: Step 8, 9, and 13. In this section, we present a new
protocol that reduces the proof size to O(log2 N) via the technique of proof
composition. The idea is to use a second proof system to prove that the checks
of these three steps are satisfied, without sending the proofs of these steps to
the verifier directly.

To design the second proof system efficiently, our key observation is that the
values sent by the prover in these three steps are messages of the linear-time
encodable code. That is, yγ0 is the message of cγ0 in Step 8, y1 is the message
of c1 in Step 9 and C1[:, idx] is the message of C2[:, idx] for every idx in Step 13.
Therefore, the second proof system takes yγ0

, y1 and C1[:, idx] for idx ∈ I as the
witness, and performs the following computations:

1. It encodes the witness using the encoding circuit of the linear-time encodable
code.

2. It outputs a subset of random indices of the codewords chosen by the veri-
fier. By checking whether the values of these indices are consistent with the
commitments by the prover via the Merkle tree, it guarantees that the wit-
ness is indeed the same as the messages specified above with overwhelming
probability because of the minimum distance property of the code.

3. Finally, it checks that these messages and their codewords satisfy the condi-
tions in line 15, 16 and 17 of Protocol 2.

3 In a previous version, we used a regular SNARK in Protocol 4 where the prover can
learn the random set I before generating the witness of the second SNARK. This
was not sound and is fixed by using a CP-SNARK. We thank Benedikt Bünz and
Binyi Chen for pointing it out in [CBBZ23].
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Protocol 3 Code Switching Statement CCS

Witness: yγ0 , y1, C1[:, idx] ∀idx ∈ Î in Protocol 2.
Public input: γ0, r0, r1, y.
Public information: Î and I chosen by the verifier.

1: Encode cγ0 := EC(yγ0), c1 := EC(y1).
2: for idx ∈ Î do
3: Encode C2[:, idx] := EC(C1[:, idx)

4: for idx ∈ Î do
5: Check if cγ0 [idx] == ⟨γ0,C1[:, idx]⟩. ▷ Proximity
6: Check if c1[idx] == ⟨r0,C1[:, idx]⟩. ▷ Consistency
7: Check if ⟨r1, y1⟩ == y. ▷ Tensor product
8: for idx ∈ Î do ▷ Encoder check
9: Output c1[idx], cγ0 [idx].

10: for 0 ≤ j < |I| do
11: Output C2[I[j], idx]

The idea is illustrated in Figure 2, and we formally present the statement of
the second proof system in Protocol 3. Note that Î is the random set chosen by
the verifier in Protocol 2, and is only used as a notation for the subscripts in
Protocol 3. I is the random set chosen by the verifier for the code switching. In
this way, we switch the message encoded using the linear-time encodable code
to the witness of the second proof system. In our implementation, we are using
an IOP-based zero-knowledge argument with the Reed-Solomon code, thus this
can be viewed as an efficient instantiation of the “code switching” technique
in [RR20].

We apply any CP-SNARK ZK on the statement and then check the consis-
tency between the output and the Merkle tree commitment R of the codeword
of the linear-time encodable code. The use of CP-SNARK was first proposed
in [CBBZ23]. We present the new protocol in Protocol 4 and highlight the dif-
ferences from Protocol 2 in blue. As shown in the protocol, instead of sending
c1, y1, cγ0

, yγ0
, the prover commits to c1 and cγ0

in Step 8 and 9. The codeword C2

was already committed column-wise inR. The prover then proves the constraints
of c1, y1, cγ0

, yγ0
and C1[:, idx] using the code switching technique in Step 14. In

this way, we are able to reduce the proof size of Protocol 2 to O(log2 N).

Theorem 3. Protocol 4 is a polynomial commitment that is correct and sound,
as defined in Definition 8 without zero-knowledge property.

The proof is presented in Appendix B.
Complexity of Protocol 4. The prover time remains O(N). This is because in
Step 8 and 9, the prover additionally commits to c1, cγ0 , which only takes O(n) =

O(
√
N) time. In Step 14, the prover invokes another CP-SNARK on CCS. CCS

consists of t + 2 encoding circuits EC of the linear-time encodable code and
t + 2 inner products. In Appendxi C, we show that the encoding circuit of
the generalized Spielman code is of size O(k). The circuit to compute an inner
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Protocol 4 Polynomial commitment with code-switching
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ with coefficients w.

1: function Commit(ϕ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-

put R as the commitment.
6: function Prove(ϕ, x⃗,R)
7: The prover receives a random vector γ0 ∈ Fk from the verifier.
8: c1 =

∑k−1
i=0 r0[i]C1[i], y1 =

∑k−1
i=0 r0[i]w[i], Rc1 = Merkle.Commit(c1)

9: cγ0 =
∑k−1

i=0 γ0[i]C1[i], yγ0 =
∑k−1

i=0 γ0[i]w[i], Rγ0 = Merkle.Commit(cγ0)
10: The prover computes the answer y := ⟨y1, r1⟩. Prover sends Rc1 ,Rγ0 , y to the

verifier.
11: The verifier randomly samples t ∈ [n] indexes as an array Î and send it to

prover.
12: The prover commits to the witness of the relationship CCS using the CP-SNARK
ZK.

13: The verifier randomly samples another index set I ⊆ [n], |I| = t and sends it to
the prover.

14: The prover calls the zero-knowledge argument protocol ZK.P on CCS. Let πzk

be the proof of the zero-knowledge argument. The prover sends the output of CCS:
C2[I[j], idx], c1[idx], cγ0 [idx] ∀idx ∈ Î , j ∈ I and πzk to the verifier.

15: The prover sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
16: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î under R.
17: The prover sends the Merkle tree proofs of c1[idx], cγ0 [idx] under Rc1 ,Rcγ0

.

18: function VerifyEval(πx⃗, x⃗, y = ϕ(x⃗),R)
19: The verifier calls the zero-knowledge argument protocol ZK.V on CCS.
20: The verifier checks the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î.
21: The verifier checks the Merkle tree proofs of Rootidx ∀idx ∈ Î using R.
22: The verifier checks the Merkle tree proofs of c1[idx], cγ0 [idx] using Rc1 ,Rcγ0

.
23: Output accept if all checks pass. Otherwise output reject.

product is of size O(k), thus the overall circuit size is O(t · k). By using any
CP-SNARK scheme with a quasi-linear prover time, the prover time of this step
is O(t · k log k). Since k =

√
N , the prover time is still O(N) dominated by the

encoding and the commitment of the k × k matrix. With the code switching
technique, the proof size and becomes O(t log2 N).

Since we apply ZK in a black-box way, the verification time of the protocol
will be O(

√
N) due to the size of recursive circuit.
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4.3 Putting Everything Together4

In this section, we show how to achieve zero-knowledge on top of our new poly-
nomial commitment in Protocol 4, and sketch how to build a zero-knowledge
argument using the polynomial commitment.
Achieving zero-knowledge. We apply a masking technique similar to the one
in [BCG+17]. The codeword C1 is replaced by a randomized encoding by setting
C′

1[i] = (EC(w[i]) + ri||ri) for i ∈ [k], where ri is a random vector of size n
chosen by the prover and || denotes concatenation. Now each codeword is of
length 2n and a value at index j looks uniformly random if the value at j + n is
not revealed. Therefore, the verifier now samples the opening set Î ⊂ [2n] such
that |Î| = 2t, |Î ∩ [n]| = t, |Î \ [n]| = t and there is no i ∈ Î such that i+n ∈ Î. In
addition, to compute the randomized encoding, we revise the statement of the
second ZKP in Protocol 6. The rest of the protocol remains mostly the same.
We present the protocol in Protocol 5 and the differences from the polynomial
commitment scheme without ZK are highlighted in blue. Note that in [BCG+17],
the prover also needs to add a random row to C′

1 in order to eliminate the leakage
of cγ0

, the linear combination in the proximity test. Our protocol is even simpler
without this random row, as cγ0 is not sent to the verifier at all, but is computed
in the second ZKP.

Theorem 4. Protocol 5 is a zero-knowledge polynomial commitment scheme by
definition 8.

We present the proof in Appendix D.
Zero-knowledge argument. Finally, we build our zero-knowledge argument sys-
tem by combining the multivariate polynomial commitment with the sumcheck
protocol as in [Set20,GLS+]. We state the theorem here and refer the readers
to [Set20,GLS+] for the construction and the proof.

Theorem 5. There exists a zero-knowledge argument scheme by definition 6
with O(N) prover time, O(log2 N) proof size and O(N) verifier time.

As we are using the IOP-based scheme in [ZXZS20] as the second zero-
knowledge argument in the proof composition, our scheme is an IOP with a
linear proof size and logarithmic query complexity. The scheme can be made
non-interactive via the Fiat-Shamir [FS86] heuristic, and has plausible post-
quantum security.

5 Experiments

We have implemented our scheme, Orion, and we present the evaluations of the
system and the comparions to existing ZKP schemes in this section.
4 In a previous version, we mistakenly mask the protocol by a random message instead

of a random vector of length n, which was not zero-knowledge. We thank Jonathan
Bootle for pointing out the mistake, and we provide a new protocol with proof of
soundness and zero-knowledge using the techniques in [BCG+17] properly.
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Protocol 5 zk-Polynomial commitment
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ with coefficients w.

1: function Commit(ϕ)
2: Parse w as a k × k matrix. The prover computes the randomized encoding C′

1

as C′
1[i] = (EC(w[i]) + ri)||ri for i ∈ [k], where each ri is a random vector of size

n chosen by the prover and the size of C′
1 is k × 2n. The prover computes C2 by

encoding each column of C′
1 and the size is n× 2n.

3: for i ∈ [2n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Root2n−1]) and out-

put R as the commitment.
6: function Prove(ϕ, x⃗,R)
7: The prover receives a random vector γ0 ∈ Fk from the verifier.
8: c1 =

∑k−1
i=0 r0[i]C

′
1[i], y1 =

∑k−1
i=0 r0[i]w[i], Rc1 = Merkle.Commit(c1)

9: cγ0 =
∑k−1

i=0 γ0[i]C
′
1[i], yγ0 =

∑k−1
i=0 γ0[i]w[i], Rγ0 = Merkle.Commit(cγ0)

10: The prover computes the answer y := ⟨y1, r1⟩. Prover sends Rc1 ,Rγ0 , y to the
verifier.

11: The verifier randomly samples Î ⊂ [2n] indexes such that |Î| = 2t, |Î ∩ [n]| =
t, |Î \ [n]| = t and there is no i ∈ Î such that i+ n ∈ Î. The verifier sends Î to the
prover.

12: The prover commits to the witness of the relationship CCS using the CP-SNARK
ZK.

13: The verifier randomly samples another index set I ⊆ [n], |I| = t and sends it to
the prover.

14: The prover calls the zero-knowledge argument protocol ZK.P on CCS. In line
1 of Protocol 6, in order to compute the randomized encoding of yγ0 and y1,
the prover provides

∑k−1
i=0 r0[i]ri and

∑k−1
i=0 γ0[i]ri as witness as well. Let πzk be

the proof of the zero-knowledge argument. The prover sends the output of CCS:
C2[I[j], idx], c1[idx], cγ0 [idx] ∀idx ∈ Î , j ∈ I and πzk to the verifier.

15: The prover sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
16: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î under R.
17: The prover sends the Merkle tree proofs of c1[idx], cγ0 [idx] under Rc1 ,Rcγ0

.

18: function VerifyEval(πx⃗, x⃗, y = ϕ(x⃗),R)
19: The verifier calls the zero-knowledge argument protocol ZK.V on CCS.
20: The verifier checks the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î.
21: The verifier checks the Merkle tree proofs of Rootidx ∀idx ∈ Î using R.
22: The verifier checks the Merkle tree proofs of c1[idx], cγ0 [idx] using Rc1 ,Rcγ0

.
23: Output accept if all checks pass. Otherwise output reject.

Settings and parameters. Our polynomial commitment scheme is imple-
mented in C++ with 6000 lines of code. The proof composition uses Virgo
in [ZXZS20] and its open-source implementation. We combine the polynomial
commitment with a sumcheck protocol to get our zero-knowledge argument fol-
lowing the approach in [Set20] and we implement our own code for this part.
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Protocol 6 Code Switching Statement CCS with ZK

Witness: yγ0 , y1, C1[:, idx] ∀idx ∈ Î, rr0 =
∑k

i=1 r0[i]ri and rγ0 =
∑k

i=1 γ0[i]ri.
Public input: γ0, r0, r1, y.
Public information: Î and I chosen by the verifier.

1: Encode cγ0 := EC(yγ0) + rγ0 ||rγ0 , c1 := EC(y1) + rr0 ||rr0 .
2: for idx ∈ Î do
3: Encode C2[:, idx] := EC(C1[:, idx)

4: for idx ∈ Î do
5: Check if cγ0 [idx] == ⟨γ0,C1[:, idx]⟩. ▷ Proximity
6: Check if c1[idx] == ⟨r0,C1[:, idx]⟩. ▷ Consistency
7: Check if ⟨r1, y1⟩ == y. ▷ Tensor product
8: for idx ∈ Î do ▷ Encoder check
9: Output c1[idx], cγ0 [idx].

10: for 0 ≤ j < |I| do
11: Output C2[I[j], idx]

Expander graph used in our implementation We use a modified version of gener-
alized Spielman code in [GLS+]. The code assigns a random weight to each edge
of the expander graph, achieving a better minimum distance. We take a step
further and fine-tune the dimensions more aggressively. With our testing algo-
rithm, the failure probability of the expander sampling remains negligible. There
are two types of expander graph used in our construction and the parameters
are G1: α = 0.33, δ = 0.6, ϵ = 0.78, g = 6; G2: α = 0.337, g = 6, δ = g, ϵ = 0.88.
Parameters of our linear code. With expanders above, the final relative distance
is 0.055. We set the security parameter λ = 128. This leads to opening t =

−128
log (1−0.055) = 1568 columns and locations in Protocol 4.

Hash function and finite field. We use the SHA-256 hash function implemented
by [arm]. We use the extension field of GF((261− 1)2) as our underlying field to
be compatible with the zero-knowledge argument in [ZXZS20].
Environment and method. We use an AWS m6i-32xlarge instance with Intel(R)
Xeon(R) Platinum 8375C CPU @ 2.90GHz CPU and 512GB memory to execute
all of our experiments. However, the largest instance in our experiment only
utilize 16 GB of memory. All experiments are using a single thread except the
expander testing algorithm. For each data point, we run the experiments 10
times and report the average.

5.1 Polynomial Commitment

In this section, we report the performance of our polynomial commitment scheme
and compare it with the scheme Brakedown in [GLS+], which is the only im-
plemented polynomial commitment scheme with a linear prover time. We use
the open-source implementation of Brakedown at [Wla] in the comparison. Our
current implementation is for the plain version of the polynomial commitment
without zero-knowledge, which is the same as Brakedown.
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Fig. 3: Performance of polynomial commitments.

Figure 3 shows the performance of our polynomial commitment and the poly-
nomial commitment in Brakedown. We vary the size of the polynomials from 215

to 229 and measure the prover time, the proof size and the verifier time. As
shown in the figure, our prover time is even slightly faster than Brakedown. It
only takes 115 seconds for a polynomial with 227 coefficients, while it is 132
seconds in Brakedown. This is because we use more aggressive parameters of the
expander code, while still achieving 128-bit of security thanks to our expander
testing algorithm. Moreover, the additional proof composition in our scheme in-
volves a second zero-knowledge argument on a circuit of size O(

√
N). In our

experiments, this extra zero-knowledge argument takes less than 20% of the to-
tal prover time, justifying that our code switching technique only introduces a
small overhead on the prover time.

Our proof size and verifier time is significantly smaller than Brakedown. The
proof size is only 6 MBs for a polynomial of size 227, 16× smaller than Brakedown.
The verifier time is 70ms for N = 227, 33× faster than Brakedown. The result
demonstrates the improvement of the O(log2 N) proof size and verifier time in
our scheme.

Note that there is a jump from N = 221 to N = 223 in the proof size and
verifier time. This is because in our implementation, instead of directly parsing
the coefficients into

√
N ×

√
N matrix, we optimize the dimensions for better

performance. When N < 223, it is not meaningful to do code-switching on the
columns. The prover only does the code-switching on the row (Protocol 4 Step 8
and 9), but opens the columns directly. We observe that this gives the best prover
time and the proof size. When N ≥ 223, the prover does the code-switching for
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Fig. 4: Performance of zero-knowledge arguments on R1CS.

both the row and the columns (Protocol 4, Step 8–14). Therefore, the proof size
and the verifier time have a big increase because of the larger column size and
the additional code-switching protocol.

5.2 Zero-knowledge Arguments

Finally, we present the performance of our zero-knowledege argument scheme for
R1CS as a whole in this section. We focus the comparison to existing schemes
that work on R1CS and have transparent setup and plausible post-quantum se-
curity. They include Brakedown [GLS+], Aurora [BSCR+19] and Ligero [AHIV17].
We use the implementation of Brakedown at [Wla], and the open-source code of
Ligero and Aurora at [aur] in the experiments.

We randomly generate the R1CS instances and vary the number of con-
straints from 215 to 220. As shown in Figure 4, Orion has the fastest prover
among all schemes. It only takes 3.09 seconds to generate the proof for N = 220.
This is slightly faster than Brakedown for the same reason as explained in Sec-
tion 5.1. It is 20× faster than Ligero and 142× faster than Aurora because of the
linear prover time and the simplified reduction via polynomial commitments.

The proof size of Orion is significantly smaller than Brakedown and Ligero. It
is only 1.5 MB for N = 220, 6.5× smaller than Brakedown and 12.5× smaller than
Ligero. The proof size is even comparable to Aurora, which has O(log2 N) proof
size and uses the Reed-Solomon code with a much better minimum distance than
our linear code. The result justifies the improvement of our code switching.
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We only implemented and compared with the variants of the protocols with
a linear verifier time. As explained in the introduction, the verifier time of all
schemes grow linearly with N in the worst case, and the comparisons are sim-
ilar to the prover time. One can reduce the verifier time to sublinear in the
holographic setting using the techniques in [CHM+20,COS20,Set20].
Other related schemes. There are several other existing transparent zero-
knowledge argument schemes. Hyrax [WTS+18], Virgo [ZXZS20] and Virgo++
[ZLW+21] work on layered arithmetic circuits and STARK [BSBHR19] works on
an algebraic intermediate representation that is close to a RAM program. It is
hard to compare directly to R1CS, but we expect our prover time to be faster
than these systems for similar computations based on the results shown in prior
papers [ZXZS20, ZLW+21]. Spartan and schemes in [SL20] are using the same
framework of polynomial commitment and sumcheck as in our scheme. However,
they are based on discrete-log and bilinear pairing and thus are not post-quantum
secure. As shown in [GLS+], their prover time is slower than Brakedown while
the proof size is better (tens of KBs). Finally, Bulletproofs [BBB+18] and Su-
personic [BFS20] are based on discrete-log and group of unknown order. Their
prover time is orders of magnitude slower than schemes mentioned above, while
providing the smallest proof size (1-2 KBs) because of the underlying crypto-
graphic techniques.
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A Proof of Lemma 3

Proof. When s ≥ log log k, we have following:

1. e(1−ϵ)gs+s = eO(s) = ec0s for some constant c0.
2. ( (1−ϵ)gs

k′ )ϵgs ≤ ( gsk′ )
ϵgs

We take the expression in the summation and simplify it:

e(1−ϵ)gs+s · (k
s
)s · ( (1− ϵ)gs

k′
)ϵgs ≤ ec0s(

k

s
)s(

gs

k′
)ϵgs

Let f(x) = ec0x(kx )
x( gxk′ )

ϵgx, then its derivative f ′(x) = ec0x(kx )
x( gxk′ )

ϵgx · (c0 +
ϵg log gx

k′ + ϵg + log k
x − 1). Let g(x) = (c0 + ϵg log gx

k′ + ϵg + log k
x − 1), we know

that when x > 2, f ′(x) is positive (negative or zero) if and only if g(x) is positive
(negative or zero). Taking the derivative of g(x), g′(x) = ϵg−1

x > 0 so f(x) is a
convex function. Therefore, the maximum of f(x) is maxx∈[log log k, δkg ](f(x)) =

max(f(log log k), f( δkg )).
We then compute these two values at the boundaries:

1. f(log log k) = logc0(k)( k
log log k )

log log k( g log log k
k′ )ϵg log log k, since k′ = αk, ϵg >

2, the equation is

≤ logc0(k)(
k

log log k
)log log k(

g
α log log k

k
)2 log log k = Õ((

log log k

k
)log log k),

which is negligible.
2. f( δkg ) = ec0

δk
g ( gδ )

δ
g k( δkk′ )

ϵδk = e(
c0δ
g + δ

g log( g
δ ))k+log( δ

α )ϵδk. It is negligible if
c0δ
g + δ

g log(
g
δ )+log( δ

α )ϵδ < −0.01. Therefore, we set c0 = (1−ϵ)g+1, and we
have c0δ

g + δ
g log(

g
δ )+log( δ

α )ϵδ = (1− ϵ)δ + δ
g +

δ
g log(

g
δ )+log( δ

α )ϵδ < −0.001

The reasoning above shows that every single value in the summation is neg-
ligible as the maximum is negligible, and there are linear number of values in
the summation, so the summation is negligible.

⊓⊔

B Proof of Theorem 3

Proof. Correctness. It follows the correctness of Protocol 2, the zero-knowledge
argument ZK on CCS, and the Merkle trees.

Soundness. By Step 19 of Protocol 4, E first extracts the witness w∗ ∈ F(t+2)k

of ZK on CCS using EZK. Parse w∗ as y∗γ0
, y∗1 and C∗

1[:, idx] for idx ∈ Î, each of
length k. Let cγ0

, c1 and C2[:, idx] for idx ∈ Î be vectors committed by P under
Rγ0

,Rc1 ,Rootidx in Step 8, 9 and 4 in Protocol 4. By the check in Step 22, we
have

Pr

(
∆(c1, EC(y

∗
1)) >

d

2

)
≤ negl(N).
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To see this, since the minimum distance of the code is d = O(k), if the vector
in Rc1 is at least d

2 -far from the codeword of y∗1 , then the probability that c1 and
EC(y

∗
1) agrees on any idx is d

2n . Therefore, as I is chosen by the verifier after the
prover committing to the witness in Step 12, the probability to pass all t = O(λ)
checks in I in Step 22 is at most (1− d

2n )
t, which is negl(N). Similarly,

Pr

(
∆(cγ0

, EC(y
∗
γ0
)) >

d

2

)
≤ negl(N),

and
Pr

(
∆(C2[:, idx], EC(C

∗
1[:, idx])) >

d

2

)
≤ negl(N),∀idx ∈ Î .

This technique is exactly the proximity check. Therefore, y∗γ0
, y∗1 and C∗

1[:, idx]

for idx ∈ Î are indeed the only messages within the distance of d
2 of cγ0 , c1 and

C2[:, idx] for idx ∈ Î respectively, except for negl(N) probability.
Moreover, by the soundness of ZK on CCS,

Pr (y ̸= ⟨y∗1 , r0⟩) ≤ negl(N),

Pr
(
EC(y

∗
γ0
)[idx] ̸= ⟨C∗

1[:, idx], γ0⟩
)
≤ negl(N),∀idx ∈ Î .

and
Pr (EC(y

∗
1)[idx] ̸= ⟨C∗

1[:, idx], r0⟩) ≤ negl(N),∀idx ∈ Î .

Therefore, w = y∗1 , y
∗
γ0
, (C∗

1[:, idx]∀idx ∈ Î), and EC(y
∗
1), EC(y

∗
γ0
) passes the

PC.VerifyEval in Protocol 2 with an overwhleming probability. When PC.VerifyEval
outputs accept, by Theorem 2, E calls the extractor EPC to extract the coef-
ficients of a polynomial ϕ such that ϕ(x⃗) = y, where x = r0 ⊗ r1, except with
negligible probability. This completes the proof of knowledge soundness. ⊓⊔

C Encoding circuit

Recall the construction of generalized Spielman code in Preliminary section 2.1,
we prove the following:

Lemma 6 (Size of the encoder circuit). The size of the encoder circuit for
input size k = 2t, is at most 8dk. And the circuit depth is O(logN)

Proof. We prove by induction:
1. If k ≤ n0, the lemma holds.
2. Assume for all k∗ ≤ 2t−1 the lemma holds, we prove for k = 2t the lemma

holds:
(a) The step m1 = xAt can be done in dk steps, since At represents an

expander graph with dk edges, so At is sparse and have only dk non-
zeros.

(b) The step c1 = Et−1
C (m1) costs at most 8dk

2 = 4dk by induction.
(c) The step c2 = c1Bt+1 costs at most 2dk since Bt+1 represents an ex-

pander with 2dk edges.
(d) In total the cost is 7dk ≤ 8dk.

The circuit depth is O(t) = O(logN) from the construction.
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D Proof of Theorem 4

Proof. The correctness is straight-forward and we omit the proof here.

Knowledge Soundness. By Step 19 of Protocol 5, E first extracts the witness
w∗ ∈ F(t+2)k+2n of ZK on CCS using EZK. Parse w∗ as y∗γ0

, y∗1 , C∗
1[:, idx] for

idx ∈ Î, each of length k and r∗r0 , r
∗
γ0

of length n. Let cγ0
, c1 and C2[:, idx] for

idx ∈ Î be vectors committed by P under Rγ0
,Rc1 ,Rootidx in Step 8, 9 and 4 in

Protocol 5.
As in Theorem 3, by Step 20, 21,

Pr

(
∆(C2[:, idx], EC(C

∗
1[:, idx])) >

d

2

)
≤ negl(N),∀idx ∈ Î .

thus, C∗
1[:, idx] for idx ∈ Î are the only messages within the distance of d

2 of
C2[:, idx] for idx ∈ Î as well, except with negl(N) probability.

By the check in Step 22 and the soundness of ZK on Statement 6 (Step 5,6,
and 9), we have

cγ0
[idx] = ⟨γ0,C∗

1[:, idx]⟩,
and

c1[idx] = ⟨r0,C∗
1[:, idx]⟩,

except with probability negl(N).
Therefore, the commitment Rooti,R, C∗

1[:, idx], cγ0
and c1 form the instanti-

ation of the ideal linear commitment (ILC) in [BCG+17, Section 4], with w[i]
for i ∈ [k] as the prover’s vectors and r0 being the verifier’s query. By Theorem
4 in [BCG+17], there exist an extractor to extract w such that y∗1 = w × r0.

Finally, by the soundness of ZK, y = ⟨y∗1 , r1⟩ except with probability negl(N),
which completes the proof.

Zero-knowledge. The simulator S is constructed in Protocol 7. Note that in
order to make the commitment indistinguishable, we use the randmized version
of Merkle tree commitment that is hiding as defined in Section 2.2, and we omit
the randomness in the protocol and the simulator.

Next we prove that every message sent by the simulator is indistinguishable
from the real-world execution as follows:

1. In the commitment phase, the verifier receives a single Merkle tree root in
both worlds, which are indistinguishable because of the hiding property of
Merkle trees.

2. In Step 14, S sends two hashes and the result y from the oracle access. By
the hiding property of the Merkle tree, they are indistinguishable from the
real-world execution (Step 8,9,10 of Protocol 5).

3. In Step 16, S calls the simulator of ZK, making πZK indistinguishable from
the real world without knowing the witness of the zero-knowledge argument.

4. In Step 16, c1[idx], cγ0
[idx] ∀idx ∈ Î are uniformly distributed, subject to the

condition that cγ0
[idx] = ⟨γ0,C1[:, idx]⟩ and c1[idx] = ⟨r0,C1[:, idx]⟩. This is

the same as the real world.
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Protocol 7 Simulators
1: function SV

0 (pp)
2: With access to V ′’s random tape, S learns the random challenge γ0, query r0

and the random set Î.
3: S picks yγ0 , y1 randomly.
4: For each idx ∈ Î, S picks C1[:, idx] randomly.
5: For each i /∈ Î and i + n /∈ Î, S picks a random rγ0 [i], rr0 [i] and rj [i] for all

j ∈ [k].
6: For each i ∈ Î or i+ n ∈ Î, S computes the unique rγ0 [i], rr0 [i] and rj [i] for all

j ∈ [k] such that (EC(yγ0)+rγ0 ||rγ0) agrees with ⟨γ0,C1[:, i]⟩ and (EC(y1)+rr0 ||rr0)
agrees with ⟨r0,C1[:, i]⟩ for all i.

7: Finally, S sets all other C1[:, i] = 0⃗ for i /∈ Î.
8: S computes C2 by encoding each column of C1.
9: S computes the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).

10: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Root2n−1]) and out-
put R as the commitment.

11: function S1(y, r0, pp)
12: To generate a proof, S computes c1 =

∑k−1
i=0 r0[i]C1[i], Rc1 =

Merkle.Commit(c1)
13: cγ0 =

∑k−1
i=0 γ0[i]C1[i], Rγ0 = Merkle.Commit(cγ0)

14: S sends Rc1 ,Rγ0 , y to the verifier. S calls the simulator ZK.S to generate the
commitment of the witness of the CP-SNARK.

15: S reads V’s random tape to learn I.
16: S calls the simulator ZK.S with public input γ0, r0, r1, y to generate a proof

πZK. S sends πZK together with C2[I[j], idx], c1[idx], cγ0 [idx] ∀idx ∈ Î , j ∈ I to the
verifier.

17: S sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
18: S sends the Merkle tree proofs of Rootidx ∀idx ∈ Î under R.
19: S sends the Merkle tree proofs of c1[idx], cγ0 [idx] under Rc1 ,Rcγ0

.
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	Orion: Zero Knowledge Proof with Linear Prover TimeIn the previous version, there was a mistake in the proof of the expander testing algorithm based on the densets sub-graph algorithm. In particular, in Case 2 of Theorem 2 in the original version, the density |E'|+c|V'|+1>|E'||V'| only holds when c>|E'||V'|, or |V'|>|E'|, which was not the case for lossless expanders. In this version, we propose a different algorithm based on the small set expansion problem to identify lossles expander graphs with a negligible soundness error in Section 3. We thank Quang Dao and Xifan Yu, Weijie Wang, Charalampos Papamanthou for pointing out the mistake. 

